CINXE.COM

Search results for: disk

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: disk</title> <meta name="description" content="Search results for: disk"> <meta name="keywords" content="disk"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="disk" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="disk"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 232</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: disk</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">232</span> Enhanced Disk-Based Databases towards Improved Hybrid in-Memory Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Kaspi">Samuel Kaspi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sitalakshmi%20Venkatraman"> Sitalakshmi Venkatraman </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable in-memory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of disk-based database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of in-memory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in-memory%20database" title="in-memory database">in-memory database</a>, <a href="https://publications.waset.org/abstracts/search?q=disk-based%20system" title=" disk-based system"> disk-based system</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20database" title=" hybrid database"> hybrid database</a>, <a href="https://publications.waset.org/abstracts/search?q=concurrency%20control" title=" concurrency control"> concurrency control</a> </p> <a href="https://publications.waset.org/abstracts/20941/enhanced-disk-based-databases-towards-improved-hybrid-in-memory-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">231</span> HcDD: The Hybrid Combination of Disk Drives in Active Storage Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shu%20Yin">Shu Yin</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhiyang%20Ding"> Zhiyang Ding</a>, <a href="https://publications.waset.org/abstracts/search?q=Jianzhong%20Huang"> Jianzhong Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaojun%20Ruan"> Xiaojun Ruan</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaomin%20Zhu"> Xiaomin Zhu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiao%20Qin"> Xiao Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since large-scale and data-intensive applications have been widely deployed, there is a growing demand for high-performance storage systems to support data-intensive applications. Compared with traditional storage systems, next-generation systems will embrace dedicated processor to reduce computational load of host machines and will have hybrid combinations of different storage devices. The advent of flash- memory-based solid state disk has become a critical role in revolutionizing the storage world. However, instead of simply replacing the traditional magnetic hard disk with the solid state disk, it is believed that finding a complementary approach to corporate both of them is more challenging and attractive. This paper explores an idea of active storage, an emerging new storage configuration, in terms of the architecture and design, the parallel processing capability, the cooperation of other machines in cluster computing environment, and a disk configuration, the hybrid combination of different types of disk drives. Experimental results indicate that the proposed HcDD achieves better I/O performance and longer storage system lifespan. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=arallel%20storage%20system" title="arallel storage system">arallel storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20storage%20system" title=" hybrid storage system"> hybrid storage system</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20inten-%20sive" title=" data inten- sive"> data inten- sive</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20state%20disks" title=" solid state disks"> solid state disks</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a> </p> <a href="https://publications.waset.org/abstracts/14833/hcdd-the-hybrid-combination-of-disk-drives-in-active-storage-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">230</span> Design of a Sliding Controller for Optical Disk Drives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Sheng%20Lu">Yu-Sheng Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Hsin%20Cheng"> Chung-Hsin Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuen-Shing%20Jan"> Shuen-Shing Jan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the design and implementation of a sliding-mod controller for tracking servo of optical disk drives. The tracking servo is majorly subject to two disturbance sources: radial run-out and shock. The lateral run-out disturbance is mostly repeatable, and a model of such disturbance is incorporated into the controller design to effectively compensate for it. Meanwhile, as a shock disturbance is usually non-repeatable and unpredictable, the sliding-mode controller is employed for its robustness to abrupt perturbations. As a result, a sliding-mode controller design based on the internal model principle is tailored for tracking servo of optical disk drives in order to deal with these two major disturbances. Experimental comparative studies are conducted to investigate the effectiveness of the specially designed controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mechatronics" title="mechatronics">mechatronics</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20disk%20drive" title=" optical disk drive"> optical disk drive</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding-mode%20control" title=" sliding-mode control"> sliding-mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=servo%20systems" title=" servo systems"> servo systems</a> </p> <a href="https://publications.waset.org/abstracts/9020/design-of-a-sliding-controller-for-optical-disk-drives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9020.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">229</span> Increasing of Gain in Unstable Thin Disk Resonator </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Asl.%20Dehghan">M. Asl. Dehghan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20Daemi"> M. H. Daemi</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Radmard"> S. Radmard</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Nabavi"> S. H. Nabavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thin disk lasers are engineered for efficient thermal cooling and exhibit superior performance for this task. However the disk thickness and large pumped area make the use of this gain format in a resonator difficult when constructing a single-mode laser. Choosing an unstable resonator design is beneficial for this purpose. On the other hand, the low gain medium restricts the application of unstable resonators to low magnifications and therefore to a poor beam quality. A promising idea to enable the application of unstable resonators to wide aperture, low gain lasers is to couple a fraction of the out coupled radiation back into the resonator. The output coupling gets dependent on the ratio of the back reflection and can be adjusted independently from the magnification. The excitation of the converging wave can be done by the use of an external reflector. The resonator performance is numerically predicted. First of all the threshold condition of linear, V and 2V shape resonator is investigated. Results show that the maximum magnification is 1.066 that is very low for high quality purposes. Inserting an additional reflector covers the low gain. The reflectivity and the related magnification of a 350 micron Yb:YAG disk are calculated. The theoretical model was based on the coupled Kirchhoff integrals and solved numerically by the Fox and Li algorithm. Results show that with back reflection mechanism in combination with increasing the number of beam incidents on disk, high gain and high magnification can occur. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=unstable%20resonators" title="unstable resonators">unstable resonators</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20disk%20lasers" title=" thin disk lasers"> thin disk lasers</a>, <a href="https://publications.waset.org/abstracts/search?q=gain" title=" gain"> gain</a>, <a href="https://publications.waset.org/abstracts/search?q=external%20reflector" title=" external reflector"> external reflector</a> </p> <a href="https://publications.waset.org/abstracts/34584/increasing-of-gain-in-unstable-thin-disk-resonator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34584.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">228</span> Mixed Mode Fracture Analyses Using Finite Element Method of Edge Cracked Heavy Spinning Annulus Pulley</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bijit%20Kalita">Bijit Kalita</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20V.%20N.%20Surendra"> K. V. N. Surendra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rotating disk is one of the most indispensable parts of a rotating machine. Rotating disk has found many applications in the diverging field of science and technology. In this paper, we have taken into consideration the problem of a heavy spinning disk mounted on a rotor system acted upon by boundary traction. Finite element modelling is used at various loading condition to determine the mixed mode stress intensity factors. The effect of combined shear and normal traction on the boundary is incorporated in the analysis under the action of gravity. The variation near the crack tip is characterized in terms of the stress intensity factor (SIF) with an aim to find the SIF for a wide range of parameters. The results of the finite element analyses carried out on the compressed disk of a belt pulley arrangement using fracture mechanics concepts are shown. A total of hundred cases of the problem are solved for each of the variations in loading arc parameter and crack orientation using finite element models of the disc under compression. All models were prepared and analyzed for the uncracked disk, disk with a single crack at different orientation emanating from shaft hole as well as for a disc with pair of cracks emerging from the same center hole. Curves are plotted for various loading conditions. Finally, crack propagation paths are determined using kink angle concepts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crack-tip%20deformations" title="crack-tip deformations">crack-tip deformations</a>, <a href="https://publications.waset.org/abstracts/search?q=static%20loading" title=" static loading"> static loading</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20concentration" title=" stress concentration"> stress concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=stress%20intensity%20factor" title=" stress intensity factor"> stress intensity factor</a> </p> <a href="https://publications.waset.org/abstracts/105294/mixed-mode-fracture-analyses-using-finite-element-method-of-edge-cracked-heavy-spinning-annulus-pulley" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105294.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">227</span> Bio-Heat Transfer in Various Transcutaneous Stimulation Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Trevor%20E.%20Davis">Trevor E. Davis</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Cassar"> Isaac Cassar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Kai%20Lo"> Yi-Kai Lo</a>, <a href="https://publications.waset.org/abstracts/search?q=Wentai%20Liu"> Wentai Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study models the use of transcutaneous electrical nerve stimulation on skin with a disk electrode in order to simulate tissue damage. The current density distribution above a disk electrode is known to be a dynamic and non-uniform quantity that is intensified at the edges of the disk. The non-uniformity is subject to change through using various electrode geometries or stimulation methods. One of these methods known as edge-retarded stimulation has shown to reduce this edge enhancement. Though progress has been made in modeling the behavior of a disk electrode, little has been done to test the validity of these models in simulating the actual heat transfer from the electrode. This simulation uses finite element software to couple the injection of current from a disk electrode to heat transfer described by the Pennesbioheat transfer equation. An example application of this model is studying an experimental form of stimulation, known as edge-retarded stimulation. The edge-retarded stimulation method will reduce the current density at the edges of the electrode. It is hypothesized that reducing the current density edge enhancement effect will, in turn, reduce temperature change and tissue damage at the edges of these electrodes. This study tests this hypothesis as a demonstration of the capabilities of this model. The edge-retarded stimulation proved to be safer after this simulation. It is shown that temperature change and the fraction of tissue necrosis is much greater in the square wave stimulation. These results bring implications for changes of procedures in transcutaneous electrical nerve stimulation and transcutaneous spinal cord stimulation as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bioheat%20transfer" title="bioheat transfer">bioheat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=neuroprosthetics" title=" neuroprosthetics"> neuroprosthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=TENS" title=" TENS"> TENS</a>, <a href="https://publications.waset.org/abstracts/search?q=transcutaneous%20stimulation" title=" transcutaneous stimulation"> transcutaneous stimulation</a> </p> <a href="https://publications.waset.org/abstracts/14551/bio-heat-transfer-in-various-transcutaneous-stimulation-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14551.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">226</span> Flow Analysis of Viscous Nanofluid Due to Rotating Rigid Disk with Navier’s Slip: A Numerical Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Ur%20Rehman">Khalil Ur Rehman</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Y.%20Malik"> M. Y. Malik</a>, <a href="https://publications.waset.org/abstracts/search?q=Usman%20Ali"> Usman Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the problem proposed by Von Karman is treated in the attendance of additional flow field effects when the liquid is spaced above the rotating rigid disk. To be more specific, a purely viscous fluid flow yield by rotating rigid disk with Navier&rsquo;s condition is considered in both magnetohydrodynamic and hydrodynamic frames. The rotating flow regime is manifested with heat source/sink and chemically reactive species. Moreover, the features of thermophoresis and Brownian motion are reported by considering nanofluid model. The flow field formulation is obtained mathematically in terms of high order differential equations. The reduced system of equations is solved numerically through self-coded computational algorithm. The pertinent outcomes are discussed systematically and provided through graphical and tabular practices. A simultaneous way of study makes this attempt attractive in this sense that the article contains dual framework and validation of results with existing work confirms the execution of self-coded algorithm for fluid flow regime over a rotating rigid disk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Navier%E2%80%99s%20condition" title="Navier’s condition">Navier’s condition</a>, <a href="https://publications.waset.org/abstracts/search?q=Newtonian%20fluid%20model" title=" Newtonian fluid model"> Newtonian fluid model</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20reaction" title=" chemical reaction"> chemical reaction</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20source%2Fsink" title=" heat source/sink"> heat source/sink</a> </p> <a href="https://publications.waset.org/abstracts/82330/flow-analysis-of-viscous-nanofluid-due-to-rotating-rigid-disk-with-naviers-slip-a-numerical-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82330.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">225</span> Exponential Stabilization of a Flexible Structure via a Delayed Boundary Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Smaoui">N. Smaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Chentouf"> B. Chentouf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The boundary stabilization problem of the rotating disk-beam system is a topic of interest in research studies. This system involves a flexible beam attached to the center of a disk, and the control and stabilization of this system have been extensively studied. This research focuses on the case where the center of mass is fixed in an inertial frame, and the rotation of the center is non-uniform. The system is represented by a set of nonlinear coupled partial differential equations and ordinary differential equations. The boundary stabilization problem of this system via a delayed boundary control is considered. We assume that the boundary control is either of a force type control or a moment type control and is subject to the presence of a constant time-delay. The aim of this research is threefold: First, we demonstrate that the rotating disk-beam system is well-posed in an appropriate functional space. Then, we establish the exponential stability property of the system. Finally, we provide numerical simulations that illustrate the theoretical findings. The research utilizes the semigroup theory to establish the well-posedness of the system. The resolvent method is then employed to prove the exponential stability property. Finally, the finite element method is used to demonstrate the theoretical results through numerical simulations. The research findings indicate that the rotating disk-beam system can be stabilized using a boundary control with a time delay. The proof of stability is based on the resolvent method and a variation of constants formula. The numerical simulations further illustrate the theoretical results. The findings have potential implications for the design and implementation of control strategies in similar systems. In conclusion, this research demonstrates that the rotating disk-beam system can be stabilized using a boundary control with time delay. The well-posedness and exponential stability properties are established through theoretical analysis, and these findings are further supported by numerical simulations. The research contributes to the understanding and practical application of control strategies for flexible structures, providing insights into the stability of rotating disk-beam systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk-beam" title="rotating disk-beam">rotating disk-beam</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20force%20control" title=" delayed force control"> delayed force control</a>, <a href="https://publications.waset.org/abstracts/search?q=delayed%20moment%20control" title=" delayed moment control"> delayed moment control</a>, <a href="https://publications.waset.org/abstracts/search?q=torque%20control" title=" torque control"> torque control</a>, <a href="https://publications.waset.org/abstracts/search?q=exponential%20stability" title=" exponential stability"> exponential stability</a> </p> <a href="https://publications.waset.org/abstracts/175174/exponential-stabilization-of-a-flexible-structure-via-a-delayed-boundary-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">224</span> Contact Temperature of Sliding Surfaces in AISI 316 Austenitic Stainless Steel During PIN on Disk Dry Wear Testing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dler%20Abdullah%20Ahmed">Dler Abdullah Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Zozan%20Ahmed%20Mohammed"> Zozan Ahmed Mohammed</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study looked into contact surface temperature during a pin-on-disk test. Friction and wear between sliding surfaces raised the temperature differential between the contact surface and ambient temperatures Tdiff. Tdiff was significantly influenced by wear test variables. Tdiff rose with the increase of sliding speed and applied load while dropped with the increase in ambient temperature. The highest Tdiff was 289°C during the tests at room temperature and 2.5 m/s sliding speed, while the minimum was only 24 °C during the tests at 400°C and 0.5 m/s. However, the maximum contact temperature Tmax was found during tests conducted at high ambient temperatures. The Tmax was estimated based on the theoretical equation. The comparison of experimental and theoretical Tmax data revealed good agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pin%20on%20disk%20test" title="pin on disk test">pin on disk test</a>, <a href="https://publications.waset.org/abstracts/search?q=contact%20temperature" title=" contact temperature"> contact temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20surface" title=" sliding surface"> sliding surface</a>, <a href="https://publications.waset.org/abstracts/search?q=friction" title=" friction"> friction</a>, <a href="https://publications.waset.org/abstracts/search?q=ambient%20temperature" title=" ambient temperature"> ambient temperature</a> </p> <a href="https://publications.waset.org/abstracts/185244/contact-temperature-of-sliding-surfaces-in-aisi-316-austenitic-stainless-steel-during-pin-on-disk-dry-wear-testing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185244.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">223</span> Hard Disk Failure Predictions in Supercomputing System Based on CNN-LSTM and Oversampling Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingkun%20Huang">Yingkun Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Guo"> Li Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Zekang%20Lan"> Zekang Lan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kai%20Tian"> Kai Tian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hard disk drives (HDD) failure of the exascale supercomputing system may lead to service interruption and invalidate previous calculations, and it will cause permanent data loss. Therefore, initiating corrective actions before hard drive failures materialize is critical to the continued operation of jobs. In this paper, a highly accurate analysis model based on CNN-LSTM and oversampling technique was proposed, which can correctly predict the necessity of a disk replacement even ten days in advance. Generally, the learning-based method performs poorly on a training dataset with long-tail distribution, especially fault prediction is a very classic situation as the scarcity of failure data. To overcome the puzzle, a new oversampling was employed to augment the data, and then, an improved CNN-LSTM with the shortcut was built to learn more effective features. The shortcut transmits the results of the previous layer of CNN and is used as the input of the LSTM model after weighted fusion with the output of the next layer. Finally, a detailed, empirical comparison of 6 prediction methods is presented and discussed on a public dataset for evaluation. The experiments indicate that the proposed method predicts disk failure with 0.91 Precision, 0.91 Recall, 0.91 F-measure, and 0.90 MCC for 10 days prediction horizon. Thus, the proposed algorithm is an efficient algorithm for predicting HDD failure in supercomputing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HDD%20replacement" title="HDD replacement">HDD replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a>, <a href="https://publications.waset.org/abstracts/search?q=CNN-LSTM" title=" CNN-LSTM"> CNN-LSTM</a>, <a href="https://publications.waset.org/abstracts/search?q=oversampling" title=" oversampling"> oversampling</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction" title=" prediction"> prediction</a> </p> <a href="https://publications.waset.org/abstracts/160810/hard-disk-failure-predictions-in-supercomputing-system-based-on-cnn-lstm-and-oversampling-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160810.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">222</span> Magnetoviscous Effects on Axi-Symmetric Ferrofluid Flow over a Porous Rotating Disk with Suction/Injection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar">Vikas Kumar </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study is carried out to investigate the magneto-viscous effects on incompressible ferrofluid flow over a porous rotating disc with suction or injection on the surface of the disc subjected to a magnetic field. The flow under consideration is axi-symmetric steady ferrofluid flow of electrically non-conducting fluid. Karman’s transformation is used to convert the governing boundary layer equations involved in the problem to a system of non linear coupled differential equations. The solution of this system is obtained by using power series approximation. The flow characteristics i.e. radial, tangential, axial velocities and boundary layer displacement thickness are calculated for various values of MFD (magnetic field dependent) viscosity and for different values of suction injection parameter. Besides this, skin friction coefficients are also calculated on the surface of the disk. Thus, the obtained results are presented numerically and graphically in the paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=axi-symmetric" title="axi-symmetric">axi-symmetric</a>, <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title=" ferrofluid"> ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20rotating%20disk" title=" porous rotating disk"> porous rotating disk</a> </p> <a href="https://publications.waset.org/abstracts/2034/magnetoviscous-effects-on-axi-symmetric-ferrofluid-flow-over-a-porous-rotating-disk-with-suctioninjection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2034.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">221</span> Investigation of the Flow in Impeller Sidewall Gap of a Centrifugal Pump Using CFD </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20DaqiqShirazi">Mohammadreza DaqiqShirazi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Torabi"> Rouhollah Torabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Riasi"> Alireza Riasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Nourbakhsh"> Ahmad Nourbakhsh </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the flow in a sidewall gap of an impeller which belongs to a centrifugal pump is studied using numerical method. The flow in sidewall gap forms internal leakage and is the source of “disk friction loss” which is the most important cause of reduced efficiency in low specific speed centrifugal pumps. Simulation is done using CFX software and a high quality mesh, therefore the modeling error has been reduced. Navier-Stokes equations have been solved for this domain. In order to predict the turbulence effects the SST model has been employed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=numerical%20study" title="numerical study">numerical study</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20pumps" title=" centrifugal pumps"> centrifugal pumps</a>, <a href="https://publications.waset.org/abstracts/search?q=disk%20friction%20loss" title=" disk friction loss"> disk friction loss</a>, <a href="https://publications.waset.org/abstracts/search?q=sidewall%20gap" title=" sidewall gap"> sidewall gap</a> </p> <a href="https://publications.waset.org/abstracts/15309/investigation-of-the-flow-in-impeller-sidewall-gap-of-a-centrifugal-pump-using-cfd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15309.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">529</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">220</span> Magnetohydrodynamic (MHD) Flow of Cu-Water Nanofluid Due to a Rotating Disk with Partial Slip</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tasawar%20Hayat">Tasawar Hayat</a>, <a href="https://publications.waset.org/abstracts/search?q=Madiha%20Rashid"> Madiha Rashid</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Imtiaz"> Maria Imtiaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Alsaedi"> Ahmed Alsaedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This problem is about the study of flow of viscous fluid due to rotating disk in nanofluid. Effects of magnetic field, slip boundary conditions and thermal radiations are encountered. An incompressible fluid soaked the porous medium. In this model, nanoparticles of Cu is considered with water as the base fluid. For Copper-water nanofluid, graphical results are presented to describe the influences of nanoparticles volume fraction (φ) on velocity and temperature fields for the slip boundary conditions. The governing differential equations are transformed to a system of nonlinear ordinary differential equations by suitable transformations. Convergent solution of the nonlinear system is developed. The obtained results are analyzed through graphical illustrations for different parameters. Moreover, the features of the flow and heat transfer characteristics are analyzed. It is found that the skin friction coefficient and heat transfer rate at the surface are highest in copper-water nanofluid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=MHD%20nanofluid" title="MHD nanofluid">MHD nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=slip%20effect" title=" slip effect"> slip effect</a> </p> <a href="https://publications.waset.org/abstracts/55344/magnetohydrodynamic-mhd-flow-of-cu-water-nanofluid-due-to-a-rotating-disk-with-partial-slip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55344.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">219</span> CFD-Parametric Study in Stator Heat Transfer of an Axial Flux Permanent Magnet Machine</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Rasekh">Alireza Rasekh</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Sergeant"> Peter Sergeant</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Vierendeels"> Jan Vierendeels</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper copes with the numerical simulation for convective heat transfer in the stator disk of an axial flux permanent magnet (AFPM) electrical machine. Overheating is one of the main issues in the design of AFMPs, which mainly occurs in the stator disk, so that it needs to be prevented. A rotor-stator configuration with 16 magnets at the periphery of the rotor is considered. Air is allowed to flow through openings in the rotor disk and channels being formed between the magnets and in the gap region between the magnets and the stator surface. The rotating channels between the magnets act as a driving force for the air flow. The significant non-dimensional parameters are the rotational Reynolds number, the gap size ratio, the magnet thickness ratio, and the magnet angle ratio. The goal is to find correlations for the Nusselt number on the stator disk according to these non-dimensional numbers. Therefore, CFD simulations have been performed with the multiple reference frame (MRF) technique to model the rotary motion of the rotor and the flow around and inside the machine. A minimization method is introduced by a pattern-search algorithm to find the appropriate values of the reference temperature. It is found that the correlations are fast, robust and is capable of predicting the stator heat transfer with a good accuracy. The results reveal that the magnet angle ratio diminishes the stator heat transfer, whereas the rotational Reynolds number and the magnet thickness ratio improve the convective heat transfer. On the other hand, there a certain gap size ratio at which the stator heat transfer reaches a maximum. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AFPM" title="AFPM">AFPM</a>, <a href="https://publications.waset.org/abstracts/search?q=CFD" title=" CFD"> CFD</a>, <a href="https://publications.waset.org/abstracts/search?q=magnet%20parameters" title=" magnet parameters"> magnet parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=stator%20heat%20transfer" title=" stator heat transfer"> stator heat transfer</a> </p> <a href="https://publications.waset.org/abstracts/56746/cfd-parametric-study-in-stator-heat-transfer-of-an-axial-flux-permanent-magnet-machine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">250</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">218</span> Subclass of Close-To-Convex Harmonic Mappings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jugal%20K.%20Prajapat">Jugal K. Prajapat</a>, <a href="https://publications.waset.org/abstracts/search?q=Manivannan%20M."> Manivannan M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this article we have studied a class of sense preserving harmonic mappings in the unit disk D. Let B⁰H (α, β) denote the class of sense-preserving harmonic mappings f=h+g ̅ in the open unit disk D and satisfying the condition |z h״(z)+α (h׳(z)-1) | ≤ β - |z g″(z)+α g′(z)| (α > -1, β > 0). We have proved that B⁰H (α, β) is close-to-convex in D. We also prove that the functions in B⁰H (α, β) are stable harmonic univalent, stable harmonic starlike and stable harmonic convex in D for different values of its parameters. Further, the coefficient estimates, growth results, area theorem, boundary behavior, convolution and convex combination properties of the class B⁰H (α, β) of harmonic mapping are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic" title="analytic">analytic</a>, <a href="https://publications.waset.org/abstracts/search?q=univalent" title=" univalent"> univalent</a>, <a href="https://publications.waset.org/abstracts/search?q=starlike" title=" starlike"> starlike</a>, <a href="https://publications.waset.org/abstracts/search?q=convex%20and%20close-to-convex" title=" convex and close-to-convex"> convex and close-to-convex</a> </p> <a href="https://publications.waset.org/abstracts/109786/subclass-of-close-to-convex-harmonic-mappings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">217</span> A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sonkham">S. Sonkham</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20Pinsopon"> U. Pinsopon</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Chatlatanagulchai"> W. Chatlatanagulchai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20disk%20drive" title="hard disk drive">hard disk drive</a>, <a href="https://publications.waset.org/abstracts/search?q=dual-stage%20actuator" title=" dual-stage actuator"> dual-stage actuator</a>, <a href="https://publications.waset.org/abstracts/search?q=track%20following" title=" track following"> track following</a>, <a href="https://publications.waset.org/abstracts/search?q=hdd%20servo%20control" title=" hdd servo control"> hdd servo control</a>, <a href="https://publications.waset.org/abstracts/search?q=sliding%20mode%20control" title=" sliding mode control"> sliding mode control</a>, <a href="https://publications.waset.org/abstracts/search?q=model-reference" title=" model-reference"> model-reference</a>, <a href="https://publications.waset.org/abstracts/search?q=tracking%20control" title=" tracking control"> tracking control</a> </p> <a href="https://publications.waset.org/abstracts/6748/a-model-reference-sliding-mode-for-dual-stage-actuator-servo-control-in-hdd" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">365</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">216</span> Effecting the Unaffected Through the Effervescent Disk Theory, a Different Perspective of Media Effective Theories</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarik%20Elaujali">Tarik Elaujali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study examines a new media effective theory was developed by the author, it is called ‘The Effervescent Disk Theory’ (EDT). The theory main goal is to affect the unaffected audience who are either not exposing to a particular message or do not show interest in it. EDT suggest melting down messages that means to be affected within the media materials which are selected willingly by the audience themselves. A certain set of procedures to test EDT hypotheses were taken and illustrated in this study. A sample of 342 respondents (males & females) was collected from Tripoli University in Libya during the academic year 2013-2014. The designated sample is representing students who were failing to pass the English module for beginners’. This study aims to change the students’ negative notion about the importance of learning English, and to put their new idea into action. The theory seeks to affect audience cognition, emotions, and behaviors. EDT was applied in the present study alongside the media dependency theory. EDT hypotheses were confirmed, study results denoted that 73.6 percentage of the students responded positively and passed their English exam for beginners after being exposed selectively to their favorite TV program that contains a dissolved messages about the importance and vitality of learning English language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=effervescent%20disk%20theory" title="effervescent disk theory">effervescent disk theory</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20exposure" title=" selective exposure"> selective exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=media%20dependency" title=" media dependency"> media dependency</a>, <a href="https://publications.waset.org/abstracts/search?q=Libyan%20students" title=" Libyan students"> Libyan students</a> </p> <a href="https://publications.waset.org/abstracts/47220/effecting-the-unaffected-through-the-effervescent-disk-theory-a-different-perspective-of-media-effective-theories" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47220.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">215</span> Model of Obstacle Avoidance on Hard Disk Drive Manufacturing with Distance Constraint </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rawinun%20Praserttaweelap">Rawinun Praserttaweelap</a>, <a href="https://publications.waset.org/abstracts/search?q=Somyot%20Kiatwanidvilai"> Somyot Kiatwanidvilai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Obstacle avoidance is the one key for the robot system in unknown environment. The robots should be able to know their position and safety region. This research starts on the path planning which are SLAM and AMCL in ROS system. In addition, the best parameters of the obstacle avoidance function are required. In situation on Hard Disk Drive Manufacturing, the distance between robots and obstacles are very serious due to the manufacturing constraint. The simulations are accomplished by the SLAM and AMCL with adaptive velocity and safety region calculation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=obstacle%20avoidance" title="obstacle avoidance">obstacle avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=OA" title=" OA"> OA</a>, <a href="https://publications.waset.org/abstracts/search?q=Simultaneous%20Localization%20and%20Mapping" title=" Simultaneous Localization and Mapping"> Simultaneous Localization and Mapping</a>, <a href="https://publications.waset.org/abstracts/search?q=SLAM" title=" SLAM"> SLAM</a>, <a href="https://publications.waset.org/abstracts/search?q=Adaptive%20Monte%20Carlo%20Localization" title=" Adaptive Monte Carlo Localization"> Adaptive Monte Carlo Localization</a>, <a href="https://publications.waset.org/abstracts/search?q=AMCL" title=" AMCL"> AMCL</a>, <a href="https://publications.waset.org/abstracts/search?q=KLD%20sampling" title=" KLD sampling"> KLD sampling</a>, <a href="https://publications.waset.org/abstracts/search?q=KLD" title=" KLD"> KLD</a> </p> <a href="https://publications.waset.org/abstracts/87279/model-of-obstacle-avoidance-on-hard-disk-drive-manufacturing-with-distance-constraint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87279.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">214</span> Increasing the Frequency of Laser Impulses with Optical Choppers with Rotational Shafts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Virgil-Florin%20Duma">Virgil-Florin Duma</a>, <a href="https://publications.waset.org/abstracts/search?q=Dorin%20Demian"> Dorin Demian</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical choppers are among the most common optomechatronic devices, utilized in numerous applications, from radiometry to telescopes and biomedical imaging. The classical configuration has a rotational disk with windows with linear margins. This research points out the laser signals that can be obtained with these classical choppers, as well as with another, novel, patented configuration, of eclipse choppers (i.e., with rotational disks with windows with non-linear margins, oriented outwards or inwards). Approximately triangular laser signals can be obtained with eclipse choppers, in contrast to the approximately sinusoidal – with classical devices. The main topic of this work refers to another, novel device, of choppers with shafts of different shapes and with slits of various profiles (patent pending). A significant improvement which can be obtained (with regard to disk choppers) refers to the chop frequencies of the laser signals. Thus, while 1 kHz is their typical limit for disk choppers, with choppers with shafts, a more than 20 times increase in the chop frequency can be obtained with choppers with shafts. Their transmission functions are also discussed, for different types of laser beams. Acknowledgments: This research is supported by the Romanian National Authority for Scientific Research, through the project PN-III-P2-2.1-BG-2016-0297. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=laser%20signals" title="laser signals">laser signals</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20systems" title=" laser systems"> laser systems</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20choppers" title=" optical choppers"> optical choppers</a>, <a href="https://publications.waset.org/abstracts/search?q=optomechatronics" title=" optomechatronics"> optomechatronics</a>, <a href="https://publications.waset.org/abstracts/search?q=transfer%20functions" title=" transfer functions"> transfer functions</a>, <a href="https://publications.waset.org/abstracts/search?q=eclipse%20choppers" title=" eclipse choppers"> eclipse choppers</a>, <a href="https://publications.waset.org/abstracts/search?q=choppers%20with%20shafts" title=" choppers with shafts"> choppers with shafts</a> </p> <a href="https://publications.waset.org/abstracts/94836/increasing-the-frequency-of-laser-impulses-with-optical-choppers-with-rotational-shafts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94836.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">213</span> Magneto-Electric Behavior a Couple Aluminum / Steel Xc48</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Mekroud">A. Mekroud</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Khemis"> A. Khemis</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Mecibah"> M. S. Mecibah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tribological behavior of a pin of paramagnetic material (aluminum), rolling on a rotating disk made of ferromagnetic material (steel XC48) in the presence of an externally applied alternating magnetic field, with the passage of electric current were studied. All tests were performed using a conventional tribometer pin- disk. Structural characterization of the surfaces in contact, oxides and wear debris, by X-ray diffraction (θ-2θ angle), showed the significant effect of magnetic field on the activation of the contact surface of the pin in no ferromagnetic material. The absence of the magnetic field causes a change of wear mode. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20characterization%20of%20the%20surfaces" title="structural characterization of the surfaces">structural characterization of the surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=oxides%20and%20wear%20debris" title=" oxides and wear debris"> oxides and wear debris</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction "> X-ray diffraction </a> </p> <a href="https://publications.waset.org/abstracts/28068/magneto-electric-behavior-a-couple-aluminum-steel-xc48" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28068.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">419</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">212</span> Comparative Advantage of Mobile Agent Application in Procuring Software Products on the Internet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20K.%20Adu">Michael K. Adu</a>, <a href="https://publications.waset.org/abstracts/search?q=Boniface%20K.%20Alese"> Boniface K. Alese</a>, <a href="https://publications.waset.org/abstracts/search?q=Olumide%20S.%20Ogunnusi"> Olumide S. Ogunnusi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper brings to fore the inherent advantages in application of mobile agents to procure software products rather than downloading software content on the Internet. It proposes a system whereby the products come on compact disk with mobile agent as deliverable. The client/user purchases a software product, but must connect to the remote server of the software developer before installation. The user provides an activation code that activates mobile agent which is part of the software product on compact disk. The validity of the activation code is checked on connection at the developer&rsquo;s end to ascertain authenticity and prevent piracy. The system is implemented by downloading two different software products as compare with installing same products on compact disk with mobile agent&rsquo;s application. Downloading software contents from developer&rsquo;s database as in the traditional method requires a continuously open connection between the client and the developer&rsquo;s end, a fixed network is not economically or technically feasible. Mobile agent after being dispatched into the network becomes independent of the creating process and can operate asynchronously and autonomously. It can reconnect later after completing its task and return for result delivery. Response Time and Network Load are very minimal with application of Mobile agent. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=software%20products" title="software products">software products</a>, <a href="https://publications.waset.org/abstracts/search?q=software%20developer" title=" software developer"> software developer</a>, <a href="https://publications.waset.org/abstracts/search?q=internet" title=" internet"> internet</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20code" title=" activation code"> activation code</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20agent" title=" mobile agent"> mobile agent</a> </p> <a href="https://publications.waset.org/abstracts/75446/comparative-advantage-of-mobile-agent-application-in-procuring-software-products-on-the-internet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">211</span> Magnetohydrodynamics Flow and Heat Transfer in a Non-Newtonian Power-Law Fluid due to a Rotating Disk with Velocity Slip and Temperature Jump</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Dayana%20Khairunnisa%20Rosli">Nur Dayana Khairunnisa Rosli</a>, <a href="https://publications.waset.org/abstracts/search?q=Seripah%20Awang%20Kechil"> Seripah Awang Kechil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Swirling flows with velocity slip are important in nature and industrial processes. The present work considers the effects of velocity slip, temperature jump and suction/injection on the flow and heat transfer of power-law fluids due to a rotating disk in the presence of magnetic field. The system of the partial differential equations is highly non-linear. The number of independent variables is reduced by transforming the system into a system of coupled non-linear ordinary differential equations using similarity transformations. The effects of suction/injection, velocity slip and temperature jump on the flow rates are investigated for various cases of shear thinning and shear thickening power law fluids. The thermal and velocity jump strongly reduce the heat transfer rate and skin friction coefficient. Suction decreases the radial and tangential skin friction coefficient and the rate of heat transfer. It is also observed that the effects are more pronounced in the case of shear thinning fluids as compared to shear thickening fluids. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title="heat transfer">heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=power-law%20fluids" title=" power-law fluids"> power-law fluids</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=suction%20or%20injection" title=" suction or injection"> suction or injection</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20jump" title=" temperature jump"> temperature jump</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity%20slip" title=" velocity slip"> velocity slip</a> </p> <a href="https://publications.waset.org/abstracts/53534/magnetohydrodynamics-flow-and-heat-transfer-in-a-non-newtonian-power-law-fluid-due-to-a-rotating-disk-with-velocity-slip-and-temperature-jump" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">210</span> The Application of Line Balancing Technique and Simulation Program to Increase Productivity in Hard Disk Drive Components</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alonggot%20Limcharoen">Alonggot Limcharoen</a>, <a href="https://publications.waset.org/abstracts/search?q=Jintana%20Wannarat"> Jintana Wannarat</a>, <a href="https://publications.waset.org/abstracts/search?q=Vorawat%20Panich"> Vorawat Panich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to investigate the balancing of the number of operators (Line Balancing technique) in the production line of hard disk drive components in order to increase efficiency. At present, the trend of using hard disk drives has continuously declined leading to limits in a company&rsquo;s revenue potential. It is important to improve and develop the production process to create market share and to have the ability to compete with competitors with a higher value and quality. Therefore, an effective tool is needed to support such matters. In this research, the Arena program was applied to analyze the results both before and after the improvement. Finally, the precedent was used before proceeding with the real process. There were 14 work stations with 35 operators altogether in the RA production process where this study was conducted. In the actual process, the average production time was 84.03 seconds per product piece (by timing 30 times in each work station) along with a rating assessment by implementing the Westinghouse principles. This process showed that the rating was 123% underlying an assumption of 5% allowance time. Consequently, the standard time was 108.53 seconds per piece. The Takt time was calculated from customer needs divided by working duration in one day; 3.66 seconds per piece. Of these, the proper number of operators was 30 people. That meant five operators should be eliminated in order to increase the production process. After that, a production model was created from the actual process by using the Arena program to confirm model reliability; the outputs from imitation were compared with the original (actual process) and this comparison indicated that the same output meaning was reliable. Then, worker numbers and their job responsibilities were remodeled into the Arena program. Lastly, the efficiency of production process enhanced from 70.82% to 82.63% according to the target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20disk%20drive" title="hard disk drive">hard disk drive</a>, <a href="https://publications.waset.org/abstracts/search?q=line%20balancing" title=" line balancing"> line balancing</a>, <a href="https://publications.waset.org/abstracts/search?q=ECRS" title=" ECRS"> ECRS</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=arena%20program" title=" arena program"> arena program</a> </p> <a href="https://publications.waset.org/abstracts/70014/the-application-of-line-balancing-technique-and-simulation-program-to-increase-productivity-in-hard-disk-drive-components" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">225</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">209</span> Synthesis of Magnesium Oxide in Spinning Disk Reactor and Its Applications in Cycloaddition of Carbon Dioxide to Epoxides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzu-Wen%20Liu">Tzu-Wen Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi-Feng%20Lin"> Yi-Feng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu-Shao%20Chen"> Yu-Shao Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CO_2 is believed to be partly responsible for changes to the global climates. Carbon capture and storage (CCS) is one way to reduce carbon dioxide emissions in the past. Recently, how to convert the captured CO_2 into fine chemicals gets lots of attention owing to reducing carbon dioxide emissions and providing greener feedstock for the chemicals industry. A variety of products can be manufactured from carbon dioxide and the most attractive products are cyclic carbonates. Therefore, the kind of catalyst plays an important role in cycloaddition of carbon dioxide to epoxides. Magnesium oxide can be an efficiency heterogeneous catalyst for the cycloaddition of carbon dioxide to epoxides because magnesium oxide has both acid and base active sites and can provide the adsorption of carbon dioxide, promoting ring-opening reaction. Spinning disk reactor (SDR) is one of the device of high-gravity technique and has successfully used for synthesis of nanoparticles by precipitation methods because of the high mass transfer rate. Synthesis of nanoparticles in SDR has advantages of low energy consumption and easy to scale up. The aim of this research is to synthesize magnesium hydroxide nanoparticles in SDR as precursors for magnesium oxide. Experimental results showed that the calcination temperature of magnesium hydroxide to magnesium oxide, and the pressure and temperature of cycloaddition reaction had significantly effect on the conversion and selectivity of the reaction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20oxide" title="magnesium oxide">magnesium oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst" title=" catalyst"> catalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=cycloaddition" title=" cycloaddition"> cycloaddition</a>, <a href="https://publications.waset.org/abstracts/search?q=spinning%20disk%20reactor" title=" spinning disk reactor"> spinning disk reactor</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20dioxide" title=" carbon dioxide"> carbon dioxide</a> </p> <a href="https://publications.waset.org/abstracts/63228/synthesis-of-magnesium-oxide-in-spinning-disk-reactor-and-its-applications-in-cycloaddition-of-carbon-dioxide-to-epoxides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">208</span> Performance Assessment in a Voice Coil Motor for Maximizing the Energy Harvesting with Gait Motions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hector%20A.%20Tinoco">Hector A. Tinoco</a>, <a href="https://publications.waset.org/abstracts/search?q=Cesar%20Garcia-Diaz"> Cesar Garcia-Diaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20L.%20Ocampo-Lopez"> Olga L. Ocampo-Lopez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an experimental approach is established to assess the performance of different beams coupled to a Voice Coil Motor (VCM) with the aim to maximize mechanically the energy harvesting in the inductive transducer that is included on it. The VCM is extracted from a recycled hard disk drive (HDD) and it is adapted for carrying out experimental tests of energy harvesting. Two individuals were selected for walking with the VCM-beam device as well as to evaluate the performance varying two parameters in the beam; length of the beams and a mass addition. Results show that the energy harvesting is maximized with specific beams; however, the harvesting efficiency is improved when a mass is added to the end of the beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hard%20disk%20drive" title="hard disk drive">hard disk drive</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvesting" title=" energy harvesting"> energy harvesting</a>, <a href="https://publications.waset.org/abstracts/search?q=voice%20coil%20motor" title=" voice coil motor"> voice coil motor</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20harvester" title=" energy harvester"> energy harvester</a>, <a href="https://publications.waset.org/abstracts/search?q=gait%20motions" title=" gait motions"> gait motions</a> </p> <a href="https://publications.waset.org/abstracts/56716/performance-assessment-in-a-voice-coil-motor-for-maximizing-the-energy-harvesting-with-gait-motions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">207</span> On Boundary Values of Hardy Space Banach Space-Valued Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irina%20Peterburgsky">Irina Peterburgsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Let T be a unit circumference of a complex plane, E be a Banach space, E* and E** be its conjugate and second conjugate, respectively. In general, a Hardy space Hp(E), p ≥1, where functions act from the open unit disk to E, could contain a function for which even weak nontangential (angular) boundary value in the space E** does not exist at any point of the unit circumference T (C. Grossetete.) The situation is "better" when certain restrictions to the Banach space of values are applied (more or less resembling a classical case of scalar-valued functions depending on constrains, as shown by R. Ryan.) This paper shows that, nevertheless, in the case of a Banach space of a general type, the following positive statement is true: Proposition. For any function f(z) from Hp(E), p ≥ 1, there exists a function F(eiθ) on the unit circumference T to E** whose Poisson (in the Pettis sense) is integral regains the function f(z) on the open unit disk. Some characteristics of the function F(eiθ) are demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hardy%20spaces" title="hardy spaces">hardy spaces</a>, <a href="https://publications.waset.org/abstracts/search?q=Banach%20space-valued%20function" title=" Banach space-valued function"> Banach space-valued function</a>, <a href="https://publications.waset.org/abstracts/search?q=boundary%20values" title=" boundary values"> boundary values</a>, <a href="https://publications.waset.org/abstracts/search?q=Pettis%20integral" title=" Pettis integral"> Pettis integral</a> </p> <a href="https://publications.waset.org/abstracts/142709/on-boundary-values-of-hardy-space-banach-space-valued-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142709.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">249</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">206</span> Statistical Analysis of Failure Cases in Aerospace</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20H.%20Lv">J. H. Lv</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Z.%20Wang"> W. Z. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=S.W.%20Liu"> S.W. Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerospace" title="aerospace">aerospace</a>, <a href="https://publications.waset.org/abstracts/search?q=disk" title=" disk"> disk</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20analysis" title=" failure analysis"> failure analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a> </p> <a href="https://publications.waset.org/abstracts/77819/statistical-analysis-of-failure-cases-in-aerospace" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77819.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">205</span> Behavior of Epoxy Insulator with Surface Defect under HVDC Stress</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingying%20Liu">Qingying Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Liu"> S. Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Hao"> L. Hao</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Zhang"> B. Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20D.%20Yan"> J. D. Yan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> HVDC technology is becoming increasingly popular due to its simplicity in topology and less power loss over long distance of power transmission, in comparison with HVAC technology. However, the dielectric behavior of insulators in the long term under HVDC stress is completely different from that under HVAC stress as a result of charge accumulation in a constant electric field. Insulators used in practical systems are never perfect in their structural conditions. Over time shallow cracks may develop on their surface. The presence of defects can lead to drastic change in their dielectric behaviour and thus increase the probability of surface flashover. In this contribution, experimental investigations have been carried out on the charge accumulation phenomenon on the surface of a rod insulator made of epoxy that is placed between two disk shaped electrodes at different voltage levels and in different gases (SF6, CO2 and N2). Many results obtained, such as, the two-dimensional electrostatic potential distribution along the insulator surface after the removal of the power source following a pre-defined period of application. The probe has been carefully calibrated before each test. Results show that surface charge distribution near the two disk shaped electrodes is not uniform in the circumferential direction, possibly due to the imperfect electrical connections between the embeded conductor in the insulator and the disk shaped electrodes. The axial length of this non-uniform region is experimentally determined, which provides useful information for shielding design. A charge transport model is also used to explain the formation of the long term electrostatic potential distribution under a constant applied voltage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HVDC" title="HVDC">HVDC</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20systems" title=" power systems"> power systems</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20behavior" title=" dielectric behavior"> dielectric behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=insulation" title=" insulation"> insulation</a>, <a href="https://publications.waset.org/abstracts/search?q=charge%20accumulation" title=" charge accumulation"> charge accumulation</a> </p> <a href="https://publications.waset.org/abstracts/67562/behavior-of-epoxy-insulator-with-surface-defect-under-hvdc-stress" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67562.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">223</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">204</span> Revolving Ferrofluid Flow in Porous Medium with Rotating Disk</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paras%20Ram">Paras Ram</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar"> Vikas Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The transmission of Malaria with seasonal were studied through the use of mathematical models. The data from the annual number of Malaria cases reported to the Division of Epidemiology, Ministry of Public Health, Thailand during the period 1997-2011 were analyzed. The transmission of Malaria with seasonal was studied by formulating a mathematical model which had been modified to describe different situations encountered in the transmission of Malaria. In our model, the population was separated into two groups: the human and vector groups, and then constructed a system of nonlinear differential equations. Each human group was divided into susceptible, infectious in hot season, infectious in rainy season, infectious in cool season and recovered classes. The vector population was separated into two classes only: susceptible and infectious vectors. The analysis of the models was given by the standard dynamical modeling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrofluid" title="ferrofluid">ferrofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20medium" title=" porous medium"> porous medium</a>, <a href="https://publications.waset.org/abstracts/search?q=rotating%20disk" title=" rotating disk"> rotating disk</a>, <a href="https://publications.waset.org/abstracts/search?q=Neuringer-Rosensweig%20Model" title=" Neuringer-Rosensweig Model"> Neuringer-Rosensweig Model</a> </p> <a href="https://publications.waset.org/abstracts/1876/revolving-ferrofluid-flow-in-porous-medium-with-rotating-disk" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">203</span> Linear Dynamic Stability Analysis of a Continuous Rotor-Disk-Blades System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Rahimi%20Dehgolan">F. Rahimi Dehgolan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Khadem"> S. E. Khadem</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bab"> S. Bab</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Najafee"> M. Najafee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, using rotating systems like shafts and disks in industrial machines have been increased constantly. Dynamic stability is one of the most important factors in designing rotating systems. In this study, linear frequencies and stability of a coupled continuous flexible rotor-disk-blades system are studied. The Euler-Bernoulli beam theory is utilized to model the blade and shaft. The equations of motion are extracted using the extended Hamilton principle. The equations of motion have been simplified using the Coleman and complex transformations method. The natural frequencies of the linear part of the system are extracted, and the effects of various system parameters on the natural frequencies and decay rates (stability condition) are clarified. It can be seen that the centrifugal stiffening effect applied to the blades is the most important parameter for stability of the considered rotating system. This result highlights the importance of considering this stiffing effect in blades equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rotating%20shaft" title="rotating shaft">rotating shaft</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20blades" title=" flexible blades"> flexible blades</a>, <a href="https://publications.waset.org/abstracts/search?q=centrifugal%20stiffness" title=" centrifugal stiffness"> centrifugal stiffness</a>, <a href="https://publications.waset.org/abstracts/search?q=stability" title=" stability"> stability</a> </p> <a href="https://publications.waset.org/abstracts/56540/linear-dynamic-stability-analysis-of-a-continuous-rotor-disk-blades-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56540.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=disk&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=disk&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=disk&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=disk&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=disk&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=disk&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=disk&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=disk&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10