CINXE.COM
Fahrettin Horasan | KIRIKKALE UNIVERSITY-TURKEY - Academia.edu
<!DOCTYPE html> <html lang="en" xmlns:fb="http://www.facebook.com/2008/fbml" class="wf-loading"> <head prefix="og: https://ogp.me/ns# fb: https://ogp.me/ns/fb# academia: https://ogp.me/ns/fb/academia#"> <meta charset="utf-8"> <meta name=viewport content="width=device-width, initial-scale=1"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <title>Fahrettin Horasan | KIRIKKALE UNIVERSITY-TURKEY - Academia.edu</title> <!-- _ _ _ | | (_) | | __ _ ___ __ _ __| | ___ _ __ ___ _ __ _ ___ __| |_ _ / _` |/ __/ _` |/ _` |/ _ \ '_ ` _ \| |/ _` | / _ \/ _` | | | | | (_| | (_| (_| | (_| | __/ | | | | | | (_| || __/ (_| | |_| | \__,_|\___\__,_|\__,_|\___|_| |_| |_|_|\__,_(_)___|\__,_|\__,_| We're hiring! See https://www.academia.edu/hiring --> <link href="//a.academia-assets.com/images/favicons/favicon-production.ico" rel="shortcut icon" type="image/vnd.microsoft.icon"> <link rel="apple-touch-icon" sizes="57x57" href="//a.academia-assets.com/images/favicons/apple-touch-icon-57x57.png"> <link rel="apple-touch-icon" sizes="60x60" href="//a.academia-assets.com/images/favicons/apple-touch-icon-60x60.png"> <link rel="apple-touch-icon" sizes="72x72" href="//a.academia-assets.com/images/favicons/apple-touch-icon-72x72.png"> <link rel="apple-touch-icon" sizes="76x76" href="//a.academia-assets.com/images/favicons/apple-touch-icon-76x76.png"> <link rel="apple-touch-icon" sizes="114x114" href="//a.academia-assets.com/images/favicons/apple-touch-icon-114x114.png"> <link rel="apple-touch-icon" sizes="120x120" href="//a.academia-assets.com/images/favicons/apple-touch-icon-120x120.png"> <link rel="apple-touch-icon" sizes="144x144" href="//a.academia-assets.com/images/favicons/apple-touch-icon-144x144.png"> <link rel="apple-touch-icon" sizes="152x152" href="//a.academia-assets.com/images/favicons/apple-touch-icon-152x152.png"> <link rel="apple-touch-icon" sizes="180x180" href="//a.academia-assets.com/images/favicons/apple-touch-icon-180x180.png"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-194x194.png" sizes="194x194"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-96x96.png" sizes="96x96"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/android-chrome-192x192.png" sizes="192x192"> <link rel="icon" type="image/png" href="//a.academia-assets.com/images/favicons/favicon-16x16.png" sizes="16x16"> <link rel="manifest" href="//a.academia-assets.com/images/favicons/manifest.json"> <meta name="msapplication-TileColor" content="#2b5797"> <meta name="msapplication-TileImage" content="//a.academia-assets.com/images/favicons/mstile-144x144.png"> <meta name="theme-color" content="#ffffff"> <script> window.performance && window.performance.measure && window.performance.measure("Time To First Byte", "requestStart", "responseStart"); </script> <script> (function() { if (!window.URLSearchParams || !window.history || !window.history.replaceState) { return; } var searchParams = new URLSearchParams(window.location.search); var paramsToDelete = [ 'fs', 'sm', 'swp', 'iid', 'nbs', 'rcc', // related content category 'rcpos', // related content carousel position 'rcpg', // related carousel page 'rchid', // related content hit id 'f_ri', // research interest id, for SEO tracking 'f_fri', // featured research interest, for SEO tracking (param key without value) 'f_rid', // from research interest directory for SEO tracking 'f_loswp', // from research interest pills on LOSWP sidebar for SEO tracking 'rhid', // referrring hit id ]; if (paramsToDelete.every((key) => searchParams.get(key) === null)) { return; } paramsToDelete.forEach((key) => { searchParams.delete(key); }); var cleanUrl = new URL(window.location.href); cleanUrl.search = searchParams.toString(); history.replaceState({}, document.title, cleanUrl); })(); </script> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "profiles/works", 'action': "summary", 'controller_action': 'profiles/works#summary', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script type="text/javascript"> window.sendUserTiming = function(timingName) { if (!(window.performance && window.performance.measure)) return; var entries = window.performance.getEntriesByName(timingName, "measure"); if (entries.length !== 1) return; var timingValue = Math.round(entries[0].duration); gtag('event', 'timing_complete', { name: timingName, value: timingValue, event_category: 'User-centric', }); }; window.sendUserTiming("Time To First Byte"); </script> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="KdrC5QzqcbiKczk3Vm6JIN7bRJFpjbA-e1SBG5bus6bOadb1ibTTgVKpOC-R3vCAhgsb0wv3lGmSUXo884NBuw" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/wow-3d36c19b4875b226bfed0fcba1dcea3f2fe61148383d97c0465c016b8c969290.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/social/home-79e78ce59bef0a338eb6540ec3d93b4a7952115b56c57f1760943128f4544d42.css" /><script type="application/ld+json">{"@context":"https://schema.org","@type":"ProfilePage","mainEntity":{"@context":"https://schema.org","@type":"Person","name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan","image":"https://0.academia-photos.com/12024395/6514263/11756508/s200_fahrettin.horasan.jpg","sameAs":[]},"dateCreated":"2014-05-13T23:05:25-07:00","dateModified":"2025-02-25T11:10:43-08:00","name":"Fahrettin Horasan","description":"","image":"https://0.academia-photos.com/12024395/6514263/11756508/s200_fahrettin.horasan.jpg","thumbnailUrl":"https://0.academia-photos.com/12024395/6514263/11756508/s65_fahrettin.horasan.jpg","primaryImageOfPage":{"@type":"ImageObject","url":"https://0.academia-photos.com/12024395/6514263/11756508/s200_fahrettin.horasan.jpg","width":200},"sameAs":[],"relatedLink":"https://www.academia.edu/123428043/Secure_Encryption_of_Biomedical_Images_Based_on_Arneodo_Chaotic_System_with_the_Lowest_Fractional_Order_Value"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/heading-95367dc03b794f6737f30123738a886cf53b7a65cdef98a922a98591d60063e3.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-8c9ae4b5c8a2531640c354d92a1f3579c8ff103277ef74913e34c8a76d4e6c00.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-170d1319f0e354621e81ca17054bb147da2856ec0702fe440a99af314a6338c5.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-2b6f90dbd75f5941bc38f4ad716615f3ac449e7398313bb3bc225fba451cd9fa.css" /> <meta name="author" content="fahrettin horasan" /> <meta name="description" content="Fahrettin Horasan, KIRIKKALE UNIVERSITY-TURKEY: 35 Followers, 38 Following, 25 Research papers. Research interests: Computer Science, Software Engineering, and…" /> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs" /> <script> var $controller_name = 'works'; var $action_name = "summary"; var $rails_env = 'production'; var $app_rev = '6fcca95512a7c7d374afaaf32852bf5b3b30bf4e'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.Aedu = { hit_data: null }; window.Aedu.SiteStats = {"premium_universities_count":13994,"monthly_visitors":"114 million","monthly_visitor_count":114517624,"monthly_visitor_count_in_millions":114,"user_count":284211818,"paper_count":55203019,"paper_count_in_millions":55,"page_count":432000000,"page_count_in_millions":432,"pdf_count":16500000,"pdf_count_in_millions":16}; window.Aedu.serverRenderTime = new Date(1741110507000); window.Aedu.timeDifference = new Date().getTime() - 1741110507000; window.Aedu.isUsingCssV1 = false; window.Aedu.enableLocalization = true; window.Aedu.activateFullstory = false; window.Aedu.serviceAvailability = { status: {"attention_db":"on","bibliography_db":"on","contacts_db":"on","email_db":"on","indexability_db":"on","mentions_db":"on","news_db":"on","notifications_db":"on","offsite_mentions_db":"on","redshift":"on","redshift_exports_db":"on","related_works_db":"on","ring_db":"on","user_tests_db":"on"}, serviceEnabled: function(service) { return this.status[service] === "on"; }, readEnabled: function(service) { return this.serviceEnabled(service) || this.status[service] === "read_only"; }, }; window.Aedu.viewApmTrace = function() { // Check if x-apm-trace-id meta tag is set, and open the trace in APM // in a new window if it is. var apmTraceId = document.head.querySelector('meta[name="x-apm-trace-id"]'); if (apmTraceId) { var traceId = apmTraceId.content; // Use trace ID to construct URL, an example URL looks like: // https://app.datadoghq.com/apm/traces?query=trace_id%31298410148923562634 var apmUrl = 'https://app.datadoghq.com/apm/traces?query=trace_id%3A' + traceId; window.open(apmUrl, '_blank'); } }; </script> <!--[if lt IE 9]> <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.2/html5shiv.min.js"></script> <![endif]--> <link href="https://fonts.googleapis.com/css?family=Roboto:100,100i,300,300i,400,400i,500,500i,700,700i,900,900i" rel="stylesheet"> <link rel="preload" href="//maxcdn.bootstrapcdn.com/font-awesome/4.3.0/css/font-awesome.min.css" as="style" onload="this.rel='stylesheet'"> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/libraries-a9675dcb01ec4ef6aa807ba772c7a5a00c1820d3ff661c1038a20f80d06bb4e4.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/academia-1eb081e01ca8bc0c1b1d866df79d9eb4dd2c484e4beecf76e79a7806c72fee08.css" /> <link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system_legacy-056a9113b9a0f5343d013b29ee1929d5a18be35fdcdceb616600b4db8bd20054.css" /> <script src="//a.academia-assets.com/assets/webpack_bundles/runtime-bundle-005434038af4252ca37c527588411a3d6a0eabb5f727fac83f8bbe7fd88d93bb.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/webpack_libraries_and_infrequently_changed.wjs-bundle-803e71d0b85992fbb0dfd37651b4efefde12a19c48ab47f5a49414891d1ab4d4.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/core_webpack.wjs-bundle-53737366d2690238229ab1eddd7d1618e8a89d97bf6767ded339b2668277487a.js"></script> <script src="//a.academia-assets.com/assets/webpack_bundles/sentry.wjs-bundle-5fe03fddca915c8ba0f7edbe64c194308e8ce5abaed7bffe1255ff37549c4808.js"></script> <script> jade = window.jade || {}; jade.helpers = window.$h; jade._ = window._; </script> <!-- Google Tag Manager --> <script id="tag-manager-head-root">(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer_old','GTM-5G9JF7Z');</script> <!-- End Google Tag Manager --> <script> window.gptadslots = []; window.googletag = window.googletag || {}; window.googletag.cmd = window.googletag.cmd || []; </script> <script type="text/javascript"> // TODO(jacob): This should be defined, may be rare load order problem. // Checking if null is just a quick fix, will default to en if unset. // Better fix is to run this immedietely after I18n is set. if (window.I18n != null) { I18n.defaultLocale = "en"; I18n.locale = "en"; I18n.fallbacks = true; } </script> <link rel="canonical" href="https://kirikkaleturkey.academia.edu/FahrettinHorasan" /> </head> <!--[if gte IE 9 ]> <body class='ie ie9 c-profiles/works a-summary logged_out'> <![endif]--> <!--[if !(IE) ]><!--> <body class='c-profiles/works a-summary logged_out'> <!--<![endif]--> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script><script>window.fbAsyncLoad = function() { // Protection against double calling of this function if (window.FB) { return; } (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) {return;} js = d.createElement(s); js.id = id; js.src = "//connect.facebook.net/en_US/sdk.js"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk')); } if (!window.defer_facebook) { // Autoload if not deferred window.fbAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.fbAsyncLoad(); }, 5000); }</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script><script>window.googleAsyncLoad = function() { // Protection against double calling of this function (function(d) { var js; var id = 'google-jssdk'; var ref = d.getElementsByTagName('script')[0]; if (d.getElementById(id)) { return; } js = d.createElement('script'); js.id = id; js.async = true; js.onload = loadGoogle; js.src = "https://accounts.google.com/gsi/client" ref.parentNode.insertBefore(js, ref); }(document)); } if (!window.defer_google) { // Autoload if not deferred window.googleAsyncLoad(); } else { // Defer loading by 5 seconds setTimeout(function() { window.googleAsyncLoad(); }, 5000); }</script> <div id="tag-manager-body-root"> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5G9JF7Z" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <!-- Event listeners for analytics --> <script> window.addEventListener('load', function() { if (document.querySelector('input[name="commit"]')) { document.querySelector('input[name="commit"]').addEventListener('click', function() { gtag('event', 'click', { event_category: 'button', event_label: 'Log In' }) }) } }); </script> </div> <script>var _comscore = _comscore || []; _comscore.push({ c1: "2", c2: "26766707" }); (function() { var s = document.createElement("script"), el = document.getElementsByTagName("script")[0]; s.async = true; s.src = (document.location.protocol == "https:" ? "https://sb" : "http://b") + ".scorecardresearch.com/beacon.js"; el.parentNode.insertBefore(s, el); })();</script><img src="https://sb.scorecardresearch.com/p?c1=2&c2=26766707&cv=2.0&cj=1" style="position: absolute; visibility: hidden" /> <div id='react-modal'></div> <div class='DesignSystem'> <a class='u-showOnFocus' href='#site'> Skip to main content </a> </div> <div id="upgrade_ie_banner" style="display: none;"><p>Academia.edu no longer supports Internet Explorer.</p><p>To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.getElementById('upgrade_ie_banner').style.display = 'block'; }</script> <div class="DesignSystem bootstrap ShrinkableNav"><div class="navbar navbar-default main-header"><div class="container-wrapper" id="main-header-container"><div class="container"><div class="navbar-header"><div class="nav-left-wrapper u-mt0x"><div class="nav-logo"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="visible-xs-inline-block" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hidden-xs" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a></div><div class="nav-search"><div class="SiteSearch-wrapper select2-no-default-pills"><form class="js-SiteSearch-form DesignSystem" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><i class="SiteSearch-icon fa fa-search u-fw700 u-positionAbsolute u-tcGrayDark"></i><input class="js-SiteSearch-form-input SiteSearch-form-input form-control" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" value="" /></form></div></div></div><div class="nav-right-wrapper pull-right"><ul class="NavLinks js-main-nav list-unstyled"><li class="NavLinks-link"><a class="js-header-login-url Button Button--inverseGray Button--sm u-mb4x" id="nav_log_in" rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="NavLinks-link u-p0x"><a class="Button Button--inverseGray Button--sm u-mb4x" rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li></ul><button class="hidden-lg hidden-md hidden-sm u-ml4x navbar-toggle collapsed" data-target=".js-mobile-header-links" data-toggle="collapse" type="button"><span class="icon-bar"></span><span class="icon-bar"></span><span class="icon-bar"></span></button></div></div><div class="collapse navbar-collapse js-mobile-header-links"><ul class="nav navbar-nav"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/login">Log In</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/signup">Sign Up</a></li><li class="u-borderColorGrayLight u-borderBottom1 js-mobile-nav-expand-trigger"><a href="#">more <span class="caret"></span></a></li><li><ul class="js-mobile-nav-expand-section nav navbar-nav u-m0x collapse"><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/about">About</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/press">Press</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="false" href="https://www.academia.edu/documents">Papers</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://www.academia.edu/hiring"><i class="fa fa-briefcase"></i> We're Hiring!</a></li><li class="u-borderColorGrayLight u-borderBottom1"><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><i class="fa fa-question-circle"></i> Help Center</a></li><li class="js-mobile-nav-collapse-trigger u-borderColorGrayLight u-borderBottom1 dropup" style="display:none"><a href="#">less <span class="caret"></span></a></li></ul></li></ul></div></div></div><script>(function(){ var $moreLink = $(".js-mobile-nav-expand-trigger"); var $lessLink = $(".js-mobile-nav-collapse-trigger"); var $section = $('.js-mobile-nav-expand-section'); $moreLink.click(function(ev){ ev.preventDefault(); $moreLink.hide(); $lessLink.show(); $section.collapse('show'); }); $lessLink.click(function(ev){ ev.preventDefault(); $moreLink.show(); $lessLink.hide(); $section.collapse('hide'); }); })() if ($a.is_logged_in() || false) { new Aedu.NavigationController({ el: '.js-main-nav', showHighlightedNotification: false }); } else { $(".js-header-login-url").attr("href", $a.loginUrlWithRedirect()); } Aedu.autocompleteSearch = new AutocompleteSearch({el: '.js-SiteSearch-form'});</script></div></div> <div id='site' class='fixed'> <div id="content" class="clearfix"> <script>document.addEventListener('DOMContentLoaded', function(){ var $dismissible = $(".dismissible_banner"); $dismissible.click(function(ev) { $dismissible.hide(); }); });</script> <script src="//a.academia-assets.com/assets/webpack_bundles/profile.wjs-bundle-0c520f41a7e652503af68560ee3537ebecbbe8eb03a4ec4128782e72b1c1806f.js" defer="defer"></script><script>$viewedUser = Aedu.User.set_viewed( {"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan","photo":"https://0.academia-photos.com/12024395/6514263/11756508/s65_fahrettin.horasan.jpg","has_photo":true,"department":{"id":335359,"name":"Bilgisayar Mühendisliği","url":"https://kirikkaleturkey.academia.edu/Departments/Bilgisayar_M%C3%BChendisli%C4%9Fi/Documents","university":{"id":9504,"name":"KIRIKKALE UNIVERSITY-TURKEY","url":"https://kirikkaleturkey.academia.edu/"}},"position":"Faculty Member","position_id":1,"is_analytics_public":false,"interests":[{"id":422,"name":"Computer Science","url":"https://www.academia.edu/Documents/in/Computer_Science"},{"id":449,"name":"Software Engineering","url":"https://www.academia.edu/Documents/in/Software_Engineering"},{"id":79948,"name":"Web Programming","url":"https://www.academia.edu/Documents/in/Web_Programming"},{"id":4278,"name":"Web Mining","url":"https://www.academia.edu/Documents/in/Web_Mining"},{"id":5639,"name":"Text Mining","url":"https://www.academia.edu/Documents/in/Text_Mining"},{"id":4205,"name":"Data Analysis","url":"https://www.academia.edu/Documents/in/Data_Analysis"},{"id":289278,"name":"Big Data Analytics","url":"https://www.academia.edu/Documents/in/Big_Data_Analytics"},{"id":370219,"name":"Matrix Decomposition","url":"https://www.academia.edu/Documents/in/Matrix_Decomposition"}]} ); if ($a.is_logged_in() && $viewedUser.is_current_user()) { $('body').addClass('profile-viewed-by-owner'); } $socialProfiles = []</script><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://kirikkaleturkey.academia.edu/FahrettinHorasan","location":"/FahrettinHorasan","scheme":"https","host":"kirikkaleturkey.academia.edu","port":null,"pathname":"/FahrettinHorasan","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="ProfileCheckPaperUpdate" data-props="{}" data-trace="false" data-dom-id="ProfileCheckPaperUpdate-react-component-d3047d28-56e8-4939-a882-8f10d39b1a2b"></div> <div id="ProfileCheckPaperUpdate-react-component-d3047d28-56e8-4939-a882-8f10d39b1a2b"></div> <div class="DesignSystem"><div class="onsite-ping" id="onsite-ping"></div></div><div class="profile-user-info DesignSystem"><div class="social-profile-container"><div class="left-panel-container"><div class="user-info-component-wrapper"><div class="user-summary-cta-container"><div class="user-summary-container"><div class="social-profile-avatar-container"><img class="profile-avatar u-positionAbsolute" alt="Fahrettin Horasan" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/12024395/6514263/11756508/s200_fahrettin.horasan.jpg" /></div><div class="title-container"><h1 class="ds2-5-heading-sans-serif-sm">Fahrettin Horasan</h1><div class="affiliations-container fake-truncate js-profile-affiliations"><div><a class="u-tcGrayDarker" href="https://kirikkaleturkey.academia.edu/">KIRIKKALE UNIVERSITY-TURKEY</a>, <a class="u-tcGrayDarker" href="https://kirikkaleturkey.academia.edu/Departments/Bilgisayar_M%C3%BChendisli%C4%9Fi/Documents">Bilgisayar Mühendisliği</a>, <span class="u-tcGrayDarker">Faculty Member</span></div></div></div></div><div class="sidebar-cta-container"><button class="ds2-5-button hidden profile-cta-button grow js-profile-follow-button" data-broccoli-component="user-info.follow-button" data-click-track="profile-user-info-follow-button" data-follow-user-fname="Fahrettin" data-follow-user-id="12024395" data-follow-user-source="profile_button" data-has-google="false"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">add</span>Follow</button><button class="ds2-5-button hidden profile-cta-button grow js-profile-unfollow-button" data-broccoli-component="user-info.unfollow-button" data-click-track="profile-user-info-unfollow-button" data-unfollow-user-id="12024395"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">done</span>Following</button></div></div><div class="user-stats-container"><a><div class="stat-container js-profile-followers"><p class="label">Followers</p><p class="data">35</p></div></a><a><div class="stat-container js-profile-followees" data-broccoli-component="user-info.followees-count" data-click-track="profile-expand-user-info-following"><p class="label">Following</p><p class="data">38</p></div></a><div class="js-mentions-count-container" style="display: none;"><a href="/FahrettinHorasan/mentions"><div class="stat-container"><p class="label">Mentions</p><p class="data"></p></div></a></div><span><div class="stat-container"><p class="label"><span class="js-profile-total-view-text">Public Views</span></p><p class="data"><span class="js-profile-view-count"></span></p></div></span></div><div class="user-bio-container"><div class="profile-bio fake-truncate js-profile-about" style="margin: 0px;"><b>Address: </b>Kırıkkale, Turkey<br /><div class="js-profile-less-about u-linkUnstyled u-tcGrayDarker u-textDecorationUnderline u-displayNone">less</div></div></div><div class="suggested-academics-container"><div class="suggested-academics--header"><p class="ds2-5-body-md-bold">Related Authors</p></div><ul class="suggested-user-card-list"><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://uco-es.academia.edu/Sebasti%C3%A1nVentura"><img class="profile-avatar u-positionAbsolute" alt="Sebastián Ventura" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/22418/7508/17390188/s200_sebasti_n.ventura.png" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://uco-es.academia.edu/Sebasti%C3%A1nVentura">Sebastián Ventura</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Universidad de Córdoba</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://vit.academia.edu/cherukuri"><img class="profile-avatar u-positionAbsolute" alt="Aswani Kumar Cherukuri" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/116222/31240/7470926/s200_aswani_kumar.cherukuri.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://vit.academia.edu/cherukuri">Aswani Kumar Cherukuri</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">VIT University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://univie.academia.edu/KatalinPrajda"><img class="profile-avatar u-positionAbsolute" alt="Kati (Katalin) Prajda" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/284975/58171/140089718/s200_katalin.prajda.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://univie.academia.edu/KatalinPrajda">Kati (Katalin) Prajda</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">University of Vienna</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://vub.academia.edu/CosminLazar"><img class="profile-avatar u-positionAbsolute" alt="Cosmin Lazar" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/339610/93580/104133/s200_cosmin.lazar.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://vub.academia.edu/CosminLazar">Cosmin Lazar</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Vrije Universiteit Brussel</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://ncit.academia.edu/RoshanChitrakar"><img class="profile-avatar u-positionAbsolute" alt="Roshan Chitrakar" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/371695/9733675/15833098/s200_roshan.chitrakar.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://ncit.academia.edu/RoshanChitrakar">Roshan Chitrakar</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Nepal College of Information Technology</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://gc-cuny.academia.edu/LevManovich"><img class="profile-avatar u-positionAbsolute" alt="Lev Manovich" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/412778/130321/66062342/s200_lev.manovich.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://gc-cuny.academia.edu/LevManovich">Lev Manovich</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Graduate Center of the City University of New York</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://rmit-vn.academia.edu/HadiWinarto"><img class="profile-avatar u-positionAbsolute" alt="Hadi Winarto" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/786518/266999/315517/s200_hadi.winarto.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://rmit-vn.academia.edu/HadiWinarto">Hadi Winarto</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">RMIT International University Vietnam</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://monash.academia.edu/SylvesterOluboluOrimaye"><img class="profile-avatar u-positionAbsolute" alt="Sylvester Olubolu Orimaye" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1057130/475277/1074974/s200_sylvester_olubolu.orimaye.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://monash.academia.edu/SylvesterOluboluOrimaye">Sylvester Olubolu Orimaye</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Monash University</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://budiluhur.academia.edu/AchmadSolichin"><img class="profile-avatar u-positionAbsolute" alt="Achmad Solichin" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" src="https://gravatar.com/avatar/6d0ac61aaf54947c6728e45aef212add?s=200" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://budiluhur.academia.edu/AchmadSolichin">Achmad Solichin</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Budi Luhur university</p></div></div><div class="suggested-user-card"><div class="suggested-user-card__avatar social-profile-avatar-container"><a href="https://su-se.academia.edu/ViacheslavKuleshov"><img class="profile-avatar u-positionAbsolute" alt="Viacheslav Kuleshov" border="0" onerror="if (this.src != '//a.academia-assets.com/images/s200_no_pic.png') this.src = '//a.academia-assets.com/images/s200_no_pic.png';" width="200" height="200" src="https://0.academia-photos.com/1895779/1756649/167070895/s200_viacheslav.kuleshov.jpg" /></a></div><div class="suggested-user-card__user-info"><a class="suggested-user-card__user-info__header ds2-5-body-sm-bold ds2-5-body-link" href="https://su-se.academia.edu/ViacheslavKuleshov">Viacheslav Kuleshov</a><p class="suggested-user-card__user-info__subheader ds2-5-body-xs">Stockholm University</p></div></div></ul></div><div class="ri-section"><div class="ri-section-header"><span>Interests</span><a class="ri-more-link js-profile-ri-list-card" data-click-track="profile-user-info-primary-research-interest" data-has-card-for-ri-list="12024395">View All (8)</a></div><div class="ri-tags-container"><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12024395" href="https://www.academia.edu/Documents/in/Computer_Science"><div id="js-react-on-rails-context" style="display:none" data-rails-context="{"inMailer":false,"i18nLocale":"en","i18nDefaultLocale":"en","href":"https://kirikkaleturkey.academia.edu/FahrettinHorasan","location":"/FahrettinHorasan","scheme":"https","host":"kirikkaleturkey.academia.edu","port":null,"pathname":"/FahrettinHorasan","search":null,"httpAcceptLanguage":null,"serverSide":false}"></div> <div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Computer Science"]}" data-trace="false" data-dom-id="Pill-react-component-4bc77ae3-fa0c-4422-936d-c953e2dd3dae"></div> <div id="Pill-react-component-4bc77ae3-fa0c-4422-936d-c953e2dd3dae"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12024395" href="https://www.academia.edu/Documents/in/Software_Engineering"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Software Engineering"]}" data-trace="false" data-dom-id="Pill-react-component-20b9fe93-0af4-4444-840d-8aa20ec144de"></div> <div id="Pill-react-component-20b9fe93-0af4-4444-840d-8aa20ec144de"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12024395" href="https://www.academia.edu/Documents/in/Web_Programming"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Web Programming"]}" data-trace="false" data-dom-id="Pill-react-component-8da02a8b-7910-4a39-b5c8-8017760436c9"></div> <div id="Pill-react-component-8da02a8b-7910-4a39-b5c8-8017760436c9"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12024395" href="https://www.academia.edu/Documents/in/Web_Mining"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Web Mining"]}" data-trace="false" data-dom-id="Pill-react-component-b11305e9-a0a7-4ac4-98e0-092babdfe8c0"></div> <div id="Pill-react-component-b11305e9-a0a7-4ac4-98e0-092babdfe8c0"></div> </a><a data-click-track="profile-user-info-expand-research-interests" data-has-card-for-ri-list="12024395" href="https://www.academia.edu/Documents/in/Text_Mining"><div class="js-react-on-rails-component" style="display:none" data-component-name="Pill" data-props="{"color":"gray","children":["Text Mining"]}" data-trace="false" data-dom-id="Pill-react-component-d0c06639-c534-4ca5-a688-4637ae0dee8a"></div> <div id="Pill-react-component-d0c06639-c534-4ca5-a688-4637ae0dee8a"></div> </a></div></div></div></div><div class="right-panel-container"><div class="user-content-wrapper"><div class="uploads-container" id="social-redesign-work-container"><div class="upload-header"><h2 class="ds2-5-heading-sans-serif-xs">Uploads</h2></div><div class="documents-container backbone-social-profile-documents" style="width: 100%;"><div class="u-taCenter"></div><div class="profile--tab_content_container js-tab-pane tab-pane active" id="all"><div class="profile--tab_heading_container js-section-heading" data-section="Papers" id="Papers"><h3 class="profile--tab_heading_container">Papers by Fahrettin Horasan</h3></div><div class="js-work-strip profile--work_container" data-work-id="123428043"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123428043/Secure_Encryption_of_Biomedical_Images_Based_on_Arneodo_Chaotic_System_with_the_Lowest_Fractional_Order_Value"><img alt="Research paper thumbnail of Secure Encryption of Biomedical Images Based on Arneodo Chaotic System with the Lowest Fractional-Order Value" class="work-thumbnail" src="https://attachments.academia-assets.com/117861254/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123428043/Secure_Encryption_of_Biomedical_Images_Based_on_Arneodo_Chaotic_System_with_the_Lowest_Fractional_Order_Value">Secure Encryption of Biomedical Images Based on Arneodo Chaotic System with the Lowest Fractional-Order Value</a></div><div class="wp-workCard_item"><span>Electronics</span><span>, May 29, 2024</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fractional-order (FO) chaotic systems exhibit richer and more complex dynamic behaviors compared ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fractional-order (FO) chaotic systems exhibit richer and more complex dynamic behaviors compared to integer-order ones. This inherent richness and complexity enhance the security of FO chaotic systems against various attacks in image cryptosystems. In the present study, a comprehensive examination of the dynamical characteristics of the fractional-order Arneodo (FOAR) system with cubic nonlinearity is conducted. This investigation involves the analysis of phase planes, bifurcation diagrams, Lyapunov exponential spectra, and spectral entropy. Numerical studies show that the Arneodo chaotic system exhibits chaotic behavior when the lowest fractional-order (FO) value is set to 0.55. In this context, the aim is to securely encrypt biomedical images based on the Arneodo chaotic system with the lowest FO value using the Nvidia Jetson Nano development board. However, though the lowest FO system offers enhanced security in biomedical image encryption due to its richer dynamic behaviors, it necessitates careful consideration of the trade-off between high memory requirements and increasing complexity in encryption algorithms. Within the scope of the study, a novel random number generator (RNG) is designed using the FOAR chaotic system. The randomness of the random numbers is proven by using internationally accepted NIST 800-22 and ENT test suites. A biomedical image encryption application is developed using pseudo-random numbers. The images obtained as a result of the application are evaluated with tests such as histogram, correlation, differential attack, and entropy analyses. As a result of the study, it has been shown that encryption and decryption of biomedical images can be successfully performed on a mobile Nvidia Jetson Nano development card in a secure and fast manner.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="84fd5b8230cc84b65ac6a0f166d9e7d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":117861254,"asset_id":123428043,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/117861254/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123428043"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123428043"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123428043; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123428043]").text(description); $(".js-view-count[data-work-id=123428043]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123428043; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123428043']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "84fd5b8230cc84b65ac6a0f166d9e7d3" } } $('.js-work-strip[data-work-id=123428043]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123428043,"title":"Secure Encryption of Biomedical Images Based on Arneodo Chaotic System with the Lowest Fractional-Order Value","internal_url":"https://www.academia.edu/123428043/Secure_Encryption_of_Biomedical_Images_Based_on_Arneodo_Chaotic_System_with_the_Lowest_Fractional_Order_Value","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":117861254,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117861254/thumbnails/1.jpg","file_name":"electronics-13-02122-v2.pdf","download_url":"https://www.academia.edu/attachments/117861254/download_file","bulk_download_file_name":"Secure_Encryption_of_Biomedical_Images_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117861254/electronics-13-02122-v2-libre.pdf?1725168615=\u0026response-content-disposition=attachment%3B+filename%3DSecure_Encryption_of_Biomedical_Images_B.pdf\u0026Expires=1741114107\u0026Signature=aqkATHr1PYQWepfZILFkyVEn1YfcXKH-JtXbo1Yzqfr5vYDCT5CF6M2KVZvitlQJLqxEo0i-q3aRTfEy92WX1mhR9aoM~~j~-v4au1ZniqIdfuTzM9JXUku-448ErkUn~4B19TG2ldOLUFjNgOd8aEyfbt1-GiJI78u3k8Q7Kg8RcuTwq5zCD0CFplTORqRhsKMJoNFaEFg5YGdND5g~C4zjg2bgScXGdxGCY36rFO-4HHCXQITmhyuq2UU-Vyws-FQY2PFKAY~~WYhAOloNNDG9Mip40~i4gAaULiBxZKA51jxw3btGhWnME9TvE-fw1QVVvQA-rTs8n3foFVnZCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117861255,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117861255/thumbnails/1.jpg","file_name":"electronics-13-02122-v2.pdf","download_url":"https://www.academia.edu/attachments/117861255/download_file","bulk_download_file_name":"Secure_Encryption_of_Biomedical_Images_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117861255/electronics-13-02122-v2-libre.pdf?1725168707=\u0026response-content-disposition=attachment%3B+filename%3DSecure_Encryption_of_Biomedical_Images_B.pdf\u0026Expires=1741114107\u0026Signature=YPMCkGIFZ1x1Ft13iRQGCEX3DCLi3-ktH0Ms3mnKmQ5~g6L65kl1RNbwg00YyVe-QPnWMx~6IT6a8mkBvJJ-TVlIX~emFhkrGF-bFpOYqOz8FOAk8L5GU2XdZh2do75Zvyks-oaaAGLBqbcgUc6-XsvXsPb~oGRBXwy6oLd7dB-2DjuU1WQHLxzCLqAxj9D8XE6QG3B4C2EFfoAt0YIxM7M0EIvlt6iocti92T2if~zaqTzzFkP6~MqCduuuVWc62ehaXbangJx1EA~w60ez6eo1LD26BCHo82~UCEjPWlTypjdLPbVbjrd7ktkforZvLywBT50PjU6dV8Pu9tmMZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257529"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111257529/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1"><img alt="Research paper thumbnail of Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması" class="work-thumbnail" src="https://attachments.academia-assets.com/108842854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111257529/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1">Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması</a></div><div class="wp-workCard_item"><span>Uluslararası mühendislik araştırma ve geliştirme dergisi</span><span>, Jul 31, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Classification of network traffic not only contributes to improving the quality of network servic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Classification of network traffic not only contributes to improving the quality of network services of institutions, but also helps to protect important data. Machine learning algorithms are frequently used in the classification of network traffic, since port-based and load-based classification processes are insufficient in encrypted networks. In this study, VPN and Tor network traffic combined in the Darknet category was classified with the Gradient Boosting Algorithm. 70% of the dataset is reserved for training and 30% for testing. 10 fold cross validation was applied in the training set. Network Flows in 8 different categories: Audio-Streaming, Browsing, Chat, E-mail, P2P, File Transfer, Video-Streaming and VOIP were classified with 99.8% accuracy. The proposed method automated the process of network analysis from the Darknet. It enabled organizations to protect the important data with high accuracy in a short time.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d6982a7d450e8fea8d9c161fd9c59f15" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842854,"asset_id":111257529,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842854/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257529"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257529"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257529; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257529]").text(description); $(".js-view-count[data-work-id=111257529]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257529; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257529']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d6982a7d450e8fea8d9c161fd9c59f15" } } $('.js-work-strip[data-work-id=111257529]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257529,"title":"Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması","internal_url":"https://www.academia.edu/111257529/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842854/thumbnails/1.jpg","file_name":"2431954.pdf","download_url":"https://www.academia.edu/attachments/108842854/download_file","bulk_download_file_name":"Gradyan_Artirma_Algoritmasi_ile_Karanlik.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842854/2431954-libre.pdf?1702409313=\u0026response-content-disposition=attachment%3B+filename%3DGradyan_Artirma_Algoritmasi_ile_Karanlik.pdf\u0026Expires=1741114107\u0026Signature=gxM1sydHoG25Abbuw4v3aztg11-rfKe0hdngscnl1JFfqZTOcac6jzy9IMTMh072hVGqwgGJou8XSD~A9pne6i~Di4o5AFuq89FEUt9cz8TWHqjsRSx0GJv8FjzwyAJPbsIPw0X7-7e3VA8NAtCMhhHtmfmjUZcgoXy5GrMcLP86AL46F4a83es4JBZbGpljvRaGDbi1um03pZ9GXMhTIFBlZHSSRhJAxLJJkDq-INe3g~YK0msDNeryaB9GI0lbuEXipe-H70-4yn9Je4lVgZfmWCxar~xPynpoqIs2hGJ56RU6oFYlL3u6EM3LmLDjL4Mlpld4JafBF6On1CEPXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111257528/Keyword_Extraction_for_Search_Engine_Optimization_Using_Latent_Semantic_Analysis"><img alt="Research paper thumbnail of Keyword Extraction for Search Engine Optimization Using Latent Semantic Analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/108842815/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111257528/Keyword_Extraction_for_Search_Engine_Optimization_Using_Latent_Semantic_Analysis">Keyword Extraction for Search Engine Optimization Using Latent Semantic Analysis</a></div><div class="wp-workCard_item"><span>Politeknik dergisi</span><span>, Jun 1, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Horasan F., "Keyword ext...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Horasan F., "Keyword extraction for search engine optimization using latent semantic analysis",</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="082debdb4501c95b5df1d034d7dd14a5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842815,"asset_id":111257528,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842815/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257528]").text(description); $(".js-view-count[data-work-id=111257528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "082debdb4501c95b5df1d034d7dd14a5" } } $('.js-work-strip[data-work-id=111257528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257528,"title":"Keyword Extraction for Search Engine Optimization Using Latent Semantic Analysis","internal_url":"https://www.academia.edu/111257528/Keyword_Extraction_for_Search_Engine_Optimization_Using_Latent_Semantic_Analysis","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842815,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842815/thumbnails/1.jpg","file_name":"1049982.pdf","download_url":"https://www.academia.edu/attachments/108842815/download_file","bulk_download_file_name":"Keyword_Extraction_for_Search_Engine_Opt.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842815/1049982-libre.pdf?1702405321=\u0026response-content-disposition=attachment%3B+filename%3DKeyword_Extraction_for_Search_Engine_Opt.pdf\u0026Expires=1741114107\u0026Signature=XjxBWlQsoOr34NIcSmMP1CbmRIB9WNMFTn-Z-lZm0IOdNnAofKOQPBPeCLh7YQf9uYh5PqmjWdoGHT6VZyr25h4X4z8ke7yMw4-3~tPcPOHkMFMFOGXHzgOBdL34K6hASFoOox6sXPhHX85p-sRpMfN4ESTihgi36ZHIByVoXRCaUAtf~lPjE-hqKjM1NxuckX6fIEj5EkKAsbvsfwTi6fUNh~RQnKg~VGk2LCZgWb7SU7S3lyupKr1UgcabEWJZ1E0hj-XNWrQUykRxeDJ6Dl5zB9CkhzJpo4NBbxTsUIK1IHQG0rHvS2K~de4FpsynWzoAZaQua003GZyE2sn6kQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111257527/Latent_semantic_analysis_via_truncated_ULV_decomposition"><img alt="Research paper thumbnail of Latent semantic analysis via truncated ULV decomposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111257527/Latent_semantic_analysis_via_truncated_ULV_decomposition">Latent semantic analysis via truncated ULV decomposition</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Latent semantic analysis (LSA) usually uses the singular value decomposition (SVD) of the term-do...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Latent semantic analysis (LSA) usually uses the singular value decomposition (SVD) of the term-document matrix for discovering the latent relationships within the document collection. With the SVD, by disregarding the smaller singular values of the term-document matrix a vector space cleaned from noises that distort the meaning is obtained. The latent semantic structure of the terms and documents is obtained by examining the relationship of representative vectors in the vector space. However, the computational time of re-computing or updating the SVD of the term-document is high when adding new terms and/or documents to pre-existing document collection. Thus, the need a method not only has low computational complexity but also creates the correct semantic structure when updating the latent semantic structure is arisen. This study shows that the truncated ULV decomposition is a good alternative to the SVD in LSA modelling about cost and producing the correct semantic structure.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257527]").text(description); $(".js-view-count[data-work-id=111257527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111257527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257527,"title":"Latent semantic analysis via truncated ULV decomposition","internal_url":"https://www.academia.edu/111257527/Latent_semantic_analysis_via_truncated_ULV_decomposition","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111257526/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems"><img alt="Research paper thumbnail of Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111257526/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems">Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems</a></div><div class="wp-workCard_item"><span>Arabian journal for science and engineering</span><span>, Mar 9, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257526]").text(description); $(".js-view-count[data-work-id=111257526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111257526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257526,"title":"Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems","internal_url":"https://www.academia.edu/111257526/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111257525/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform"><img alt="Research paper thumbnail of Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform" class="work-thumbnail" src="https://attachments.academia-assets.com/108842817/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111257525/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform">Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform</a></div><div class="wp-workCard_item"><span>Fen ve mühendislik bilimleri dergisi</span><span>, Aug 31, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Telif hakkı koruma, kimlik doğrulama, parmak izi, içerik etiketleme gibi alanlarda kullanılan dam...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Telif hakkı koruma, kimlik doğrulama, parmak izi, içerik etiketleme gibi alanlarda kullanılan damgalama tekniklerinde genel olarak sinyal işleme dönüşümleri ve matematiksel teknikler kullanılır. Bu araştırmada çoğu damgalama tekniğinde tercih edilen Tekil Değer Ayrışımı (TDA) yerine, boyut indirgeme tabanlı Kesik-TDA tekniği kullanılmıştır. Önerilen bu teknik Ayrık Dalgacık Dönüşümü (ADD) ile birlikte kullanılmıştır. Temel TDA-ADD tabanlı yönteme göre önerilen yöntemin histogram eşitleme dışında tüm olası saldırılara karşı algılanamazlık ve dayanıklılık performanslarında ilerleme kaydettiği gözlenmiştir. Önerilen şemanın farklı matris ayrışımı ve sinyal işleme dönüşümlerinin kullanıldığı alternatif damgalama şemalarına yön vereceği tahmin edilmektedir.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d56cc8d1ff46add1c4394ae438ba27df" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842817,"asset_id":111257525,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842817/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257525]").text(description); $(".js-view-count[data-work-id=111257525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d56cc8d1ff46add1c4394ae438ba27df" } } $('.js-work-strip[data-work-id=111257525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257525,"title":"Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform","internal_url":"https://www.academia.edu/111257525/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842817,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842817/thumbnails/1.jpg","file_name":"2528175.pdf","download_url":"https://www.academia.edu/attachments/108842817/download_file","bulk_download_file_name":"Dimension_Reduction_Based_Robust_Digital.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842817/2528175-libre.pdf?1702405368=\u0026response-content-disposition=attachment%3B+filename%3DDimension_Reduction_Based_Robust_Digital.pdf\u0026Expires=1741114107\u0026Signature=KLn1D4UkpgLlAD0NAmzLIZhIksWgtfKxjb9-AjEMe5MHOGb9hs5e9iXv7sRGlWTYdXb72ap~m4sjg~Z2Bg30d2jBtaBRJCoyh3ExAwEOP7pqbx6US-hyv547e0QvghnBIgbAF-IaDkhZ0UWtsWrZuHnFwN8PGNuSnYDlEjQOTCVTnvAgunfeqxtmcGkOMu0WzUk4WS7LmHtjVTbiVN8dwmdWT5a-cP6-n9vjZy5ut1ghjGh91B~C7LIO-LgYcM~uMk-PRA5a4CTEMoxoVC54NpgZ871Pi2Sc8EEJTIbN1kw44zqC0BtKTcITLNpH4iZNDbEQVLkef1wjS-YB3Dzkfw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108842816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842816/thumbnails/1.jpg","file_name":"2528175.pdf","download_url":"https://www.academia.edu/attachments/108842816/download_file","bulk_download_file_name":"Dimension_Reduction_Based_Robust_Digital.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842816/2528175-libre.pdf?1702405367=\u0026response-content-disposition=attachment%3B+filename%3DDimension_Reduction_Based_Robust_Digital.pdf\u0026Expires=1741114107\u0026Signature=Watv2vvCpGZS9vb1X7snfzTNspQ6OYPe-2G1tMkz6a2UhxwcVbdcspr55KF7RR~MPujtmCRpZScBw6HqQzqgKr9Cswp9jUJSGr9hUtVfuDENt4dzD4liAr~7wBBdO4USrQIfxcVX~WwYxb4mM-knfapX2kn9oNYPExOlhXQrh1Y6aAj8AgVH972DhTbvN55N1CJniR~g-w32tzGrDr3DdpM7VyutDZvFZq9JH1rd~8mhBlAnrFxy6PdkYDsUN-dzMW3As1u1~xg0mPiyhNJ3Q023YN1IM3dqdqJrZty226oiHNaNB5opqp5~XMQzbkWXy6WsY1khL-3MlE-N85SVVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257513"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111257513/Extractive_Text_Summarization_System_for_News_Texts"><img alt="Research paper thumbnail of Extractive Text Summarization System for News Texts" class="work-thumbnail" src="https://attachments.academia-assets.com/108842803/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111257513/Extractive_Text_Summarization_System_for_News_Texts">Extractive Text Summarization System for News Texts</a></div><div class="wp-workCard_item"><span>International Journal of Applied Mathematics, Electronics and Computers</span><span>, Dec 31, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="141c9b1886ed12f82029e5ddd66b0702" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842803,"asset_id":111257513,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842803/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257513"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257513"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257513; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257513]").text(description); $(".js-view-count[data-work-id=111257513]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257513; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257513']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "141c9b1886ed12f82029e5ddd66b0702" } } $('.js-work-strip[data-work-id=111257513]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257513,"title":"Extractive Text Summarization System for News Texts","internal_url":"https://www.academia.edu/111257513/Extractive_Text_Summarization_System_for_News_Texts","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842803/thumbnails/1.jpg","file_name":"1312721.pdf","download_url":"https://www.academia.edu/attachments/108842803/download_file","bulk_download_file_name":"Extractive_Text_Summarization_System_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842803/1312721-libre.pdf?1702405219=\u0026response-content-disposition=attachment%3B+filename%3DExtractive_Text_Summarization_System_for.pdf\u0026Expires=1741114107\u0026Signature=ITzaMLzLTkm58sUFi~u386HFrVE0Jb0gUGpgHRdHHCBNIUKRS8bXaqWFc-lOgFC5JnZi60Xn2eeGcEsyQgB4eB5Jzvu4p1-ynl94j-AE2DLVjyBZcTunKMvVBVE0aDs92kKQDOVRePugDWsQitRXwMqZBL2TvFy0-~beYd10gW3d3m3D-NQG8-MxLP2TN~HBp0zjoBRB37wbuylYr9o3rC9Onvh5MnhMuVaFkdwWgarfHOlE9g5huvZo2S9jhCu2JkiWoEgITCYCNlXGppqKq4DGrAdxn037gTpl-Fp8Dca3EaQOkAdIAfQTHbh6FCSFUUY-OJxM7vMI9uexhrj3WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108842804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842804/thumbnails/1.jpg","file_name":"1312721.pdf","download_url":"https://www.academia.edu/attachments/108842804/download_file","bulk_download_file_name":"Extractive_Text_Summarization_System_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842804/1312721-libre.pdf?1702405214=\u0026response-content-disposition=attachment%3B+filename%3DExtractive_Text_Summarization_System_for.pdf\u0026Expires=1741114107\u0026Signature=GOTJ5vENqe-~TVv1DRanL6vEYGchrAAc61BZRzUqxftCStxhleC4pw~YINVIh~ST3QjrgrDDZ~q5R2aBQ1YLXHbM~Q95Vr2r1NW2pOk-yMWgA3lNRHZE3XGpEFJmXR7Idm4hgfSDSjFr0ksqXNlVhx1kHD8ZVKgwU~7uFAbcEPV5cO3NeH2DaqR2GGnpKwxXKRvKeHXHwnoNHuBgwUUfMCP4rpEDrZV8JRPkbTEnbI~wOSxgDmwxOgNzYhz9CCu3KsCeb2fO6O6W12U5xtr38J7xQWxuJsKydXWQHhRoijfsH8VCZQEPIDmQiKpkfYXVFwRL9W7SqRR45QXPrq4VGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257512"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111257512/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews"><img alt="Research paper thumbnail of LSTM Network based Sentiment Analysis for Customer Reviews" class="work-thumbnail" src="https://attachments.academia-assets.com/108842801/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111257512/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews">LSTM Network based Sentiment Analysis for Customer Reviews</a></div><div class="wp-workCard_item"><span>Politeknik dergisi</span><span>, Oct 1, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Provision of a new dataset to this field to work on it. Showing the effects of noise normalizat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Provision of a new dataset to this field to work on it. Showing the effects of noise normalization and preprocessing on the classification accuracy. Representation of texts in vector form in various ways to be able to work on them. Comparison of the LSTM Network with several machine learning algorithms.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d83db159a9268e0866c541b06774daa0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842801,"asset_id":111257512,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842801/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257512"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257512"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257512; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257512]").text(description); $(".js-view-count[data-work-id=111257512]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257512; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257512']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d83db159a9268e0866c541b06774daa0" } } $('.js-work-strip[data-work-id=111257512]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257512,"title":"LSTM Network based Sentiment Analysis for Customer Reviews","internal_url":"https://www.academia.edu/111257512/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842801,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842801/thumbnails/1.jpg","file_name":"1459231.pdf","download_url":"https://www.academia.edu/attachments/108842801/download_file","bulk_download_file_name":"LSTM_Network_based_Sentiment_Analysis_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842801/1459231-libre.pdf?1702405216=\u0026response-content-disposition=attachment%3B+filename%3DLSTM_Network_based_Sentiment_Analysis_fo.pdf\u0026Expires=1741114107\u0026Signature=RwTyq7mXxyi5iQMGAJyURteEBi~3dxlEJgmzeIiLO8sMk6eJgTtb~FbgOx-2FuzGTXGGX2bqWhBhPSzJPBjIIWkKTVySWRFT1OtgH-bWZSV~ISWKYnMJHvWljRSAX5cjwX0DsWYbR75n5lCUddC8UxcGm01dogWUtijVx9qg452xRdVnBg2cJitMhEO~HQQjKDzzg-OHHg0bzxZeJaZ8LPeDIHQuxYiSZrADWph3JLlzTYVVcI4csHpjvIIEvCRuGD~Of9WW~XM1meRUhoaXQd6Mvlm5IIolB3ryHaNhzQyu4d2PUdx4X-MdXK4FDZIrA2Sudak6AWURovOfKIhRhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108842802,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842802/thumbnails/1.jpg","file_name":"1459231.pdf","download_url":"https://www.academia.edu/attachments/108842802/download_file","bulk_download_file_name":"LSTM_Network_based_Sentiment_Analysis_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842802/1459231-libre.pdf?1702405215=\u0026response-content-disposition=attachment%3B+filename%3DLSTM_Network_based_Sentiment_Analysis_fo.pdf\u0026Expires=1741114107\u0026Signature=JLB7k6dlaidtpz9eCFxToHOpmMw7oEU4AVzsjUKzxdGVwVUYSvREupq9zzxunEsYULqqvDJo9WVy5LP7lDOEQJVB6s45BokWvdkDKpoGp4CuB4pgudhtktNv5gUfuVw-OjBOHUlkkRACn0WUGN72SCHM~rM7yXIHSbRC5y31dQLIlijyvQJhJ6vT90x4C2CHpFSdP-1de10ybvLbhqEwSt5HCu0Dt8NHK4lswXoU6s-6ajDr~EYHhDWh8PHhz5nq4ONm3PvdwF6HXv65m1d0Z2m2DzoVnI3D6unjQxhfVG2NmtyoiDkdy6RfQ8mahXamdixisu-c5PJJ4Qk62ngErw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257508"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111257508/A_novel_image_watermarking_scheme_using_ULV_decomposition"><img alt="Research paper thumbnail of A novel image watermarking scheme using ULV decomposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111257508/A_novel_image_watermarking_scheme_using_ULV_decomposition">A novel image watermarking scheme using ULV decomposition</a></div><div class="wp-workCard_item"><span>Optik</span><span>, Jun 1, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257508"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257508"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257508; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257508]").text(description); $(".js-view-count[data-work-id=111257508]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257508; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257508']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111257508]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257508,"title":"A novel image watermarking scheme using ULV decomposition","internal_url":"https://www.academia.edu/111257508/A_novel_image_watermarking_scheme_using_ULV_decomposition","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107332651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/107332651/A_novel_model_based_collaborative_filtering_recommender_system_via_truncated_ULV_decomposition"><img alt="Research paper thumbnail of A novel model based collaborative filtering recommender system via truncated ULV decomposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/107332651/A_novel_model_based_collaborative_filtering_recommender_system_via_truncated_ULV_decomposition">A novel model based collaborative filtering recommender system via truncated ULV decomposition</a></div><div class="wp-workCard_item"><span>Journal of King Saud University - Computer and Information Sciences</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107332651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107332651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107332651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107332651]").text(description); $(".js-view-count[data-work-id=107332651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107332651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107332651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=107332651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107332651,"title":"A novel model based collaborative filtering recommender system via truncated ULV decomposition","internal_url":"https://www.academia.edu/107332651/A_novel_model_based_collaborative_filtering_recommender_system_via_truncated_ULV_decomposition","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91135800"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/91135800/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform"><img alt="Research paper thumbnail of Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/91135800/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform">Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform</a></div><div class="wp-workCard_item"><span>Afyon Kocatepe University Journal of Sciences and Engineering</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Telif hakkı koruma, kimlik doğrulama, parmak izi, içerik etiketleme gibi alanlarda kullanılan dam...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Telif hakkı koruma, kimlik doğrulama, parmak izi, içerik etiketleme gibi alanlarda kullanılan damgalama tekniklerinde genel olarak sinyal işleme dönüşümleri ve matematiksel teknikler kullanılır. Bu araştırmada çoğu damgalama tekniğinde tercih edilen Tekil Değer Ayrışımı (TDA) yerine, boyut indirgeme tabanlı Kesik-TDA tekniği kullanılmıştır. Önerilen bu teknik Ayrık Dalgacık Dönüşümü (ADD) ile birlikte kullanılmıştır. Temel TDA-ADD tabanlı yönteme göre önerilen yöntemin histogram eşitleme dışında tüm olası saldırılara karşı algılanamazlık ve dayanıklılık performanslarında ilerleme kaydettiği gözlenmiştir. Önerilen şemanın farklı matris ayrışımı ve sinyal işleme dönüşümlerinin kullanıldığı alternatif damgalama şemalarına yön vereceği tahmin edilmektedir.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91135800"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91135800"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91135800; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91135800]").text(description); $(".js-view-count[data-work-id=91135800]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91135800; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91135800']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91135800]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91135800,"title":"Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform","internal_url":"https://www.academia.edu/91135800/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91135797"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/91135797/Alternatif_d%C3%BC%C5%9F%C3%BCk_rankl%C4%B1_matris_ayr%C4%B1%C5%9F%C4%B1m%C4%B1_ile_gizli_anlamsal_dizinleme"><img alt="Research paper thumbnail of Alternatif düşük ranklı matris ayrışımı ile gizli anlamsal dizinleme" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/91135797/Alternatif_d%C3%BC%C5%9F%C3%BCk_rankl%C4%B1_matris_ayr%C4%B1%C5%9F%C4%B1m%C4%B1_ile_gizli_anlamsal_dizinleme">Alternatif düşük ranklı matris ayrışımı ile gizli anlamsal dizinleme</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tez (Doktora) -- Kırıkkale Üniversitesiref. no : 10199884119916</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91135797"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91135797"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91135797; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91135797]").text(description); $(".js-view-count[data-work-id=91135797]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91135797; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91135797']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91135797]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91135797,"title":"Alternatif düşük ranklı matris ayrışımı ile gizli anlamsal dizinleme","internal_url":"https://www.academia.edu/91135797/Alternatif_d%C3%BC%C5%9F%C3%BCk_rankl%C4%B1_matris_ayr%C4%B1%C5%9F%C4%B1m%C4%B1_ile_gizli_anlamsal_dizinleme","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91135791"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91135791/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1"><img alt="Research paper thumbnail of Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması" class="work-thumbnail" src="https://attachments.academia-assets.com/94508713/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91135791/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1">Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması</a></div><div class="wp-workCard_item"><span>Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ağ trafiğinin sınıflandırılması kurumların ağ hizmetlerinin kalitesinin artırılmasına katkı sağla...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ağ trafiğinin sınıflandırılması kurumların ağ hizmetlerinin kalitesinin artırılmasına katkı sağlamasının yanında önemli verilerinin korunmasına da yardımcı olmaktadır. Ağ trafiğinin sınıflandırmada, port tabanlı ve yük tabanlı sınıflandırma işlemlerinin şifreli ağlarda yetersiz kalması nedeniyle makine öğrenmesi algoritmaları sıklıkla kullanılmaktadır. Bu çalışmada, Darknet kategorisinde birleştirilen VPN ve Tor ağ trafiği Gradyan Artırma Algoritması ile sınıflandırılmıştır. Veri setinin %70’i eğitim, %30’u test için ayrılmıştır. Eğitim setinde 10 kat çapraz doğrulama uygulanmıştır. 8 farklı kategoride ağ akışları: Ses Akışı, Tarama, Sohbet, E-posta, P2P, Dosya Aktarımı, Video Akışı ve VOIP %99,8 doğrulukla sınıflandırıldı. Önerilen yöntem, karanlık ağdan ağ analizi sürecini otomatikleştirmiştir. Kuruluşların önemli verilerini kısa sürede yüksek doğrulukla korumasını sağlamaktadır.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="313df1f335604997ee7b1da85c21b0d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94508713,"asset_id":91135791,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94508713/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91135791"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91135791"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91135791; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91135791]").text(description); $(".js-view-count[data-work-id=91135791]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91135791; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91135791']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "313df1f335604997ee7b1da85c21b0d0" } } $('.js-work-strip[data-work-id=91135791]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91135791,"title":"Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması","internal_url":"https://www.academia.edu/91135791/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":94508713,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94508713/thumbnails/1.jpg","file_name":"2431954.pdf","download_url":"https://www.academia.edu/attachments/94508713/download_file","bulk_download_file_name":"Gradyan_Artirma_Algoritmasi_ile_Karanlik.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94508713/2431954-libre.pdf?1668866155=\u0026response-content-disposition=attachment%3B+filename%3DGradyan_Artirma_Algoritmasi_ile_Karanlik.pdf\u0026Expires=1741114107\u0026Signature=gAQbjtVawo6R5LugL~Dq71PpKHmZ9TjfCic1r4tBbPgrgx8en8QUdQClONUiCM3-tVQ3U00xb6wg0Iv-dWeNHWPZbk72Tt9P~Z0g7K-lj95J4zt7dVuVQc7jE7mvivL9Sku7bDN5F8o~VGFUVaNpXZTE~AMdOBuHTmRg~8HlG6HA63Vq9hX0KCTOOQ9WOPnobOI4gyx916bpTeh6FnLKXA6a~9ij3eAFAEvTEG7vw7y7CsN2VzgEotOQiMRt~ZjnuwdVN233IdtEOsPEyUTTbWBZAPKijD6NPBS2FQ83sdIGDdA5~xckyJ7XQWarDEZDKGF72nmM3QZf2dHUtGEASw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91135772"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91135772/DWT_SVD_Based_Watermarking_for_High_Resolution_Medical_Holographic_Images"><img alt="Research paper thumbnail of DWT-SVD Based Watermarking for High-Resolution Medical Holographic Images" class="work-thumbnail" src="https://attachments.academia-assets.com/94508667/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91135772/DWT_SVD_Based_Watermarking_for_High_Resolution_Medical_Holographic_Images">DWT-SVD Based Watermarking for High-Resolution Medical Holographic Images</a></div><div class="wp-workCard_item"><span>Complexity</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Watermarking is one of the most common techniques used to protect data’s authenticity, integrity,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Watermarking is one of the most common techniques used to protect data’s authenticity, integrity, and security. The obfuscation in the frequency domain used in the watermarking method makes the watermarking stronger than the obfuscation in the spatial domain. It occupies an important place in watermarking works in imperceptibility, capacity, and robustness. Finding the optimal location to hide the watermarking is one of the most challenging tasks in these methods and affects the method’s performance. In this article, sample identification information is processed with the method of watermaking on the hiding environment created by using a chaos-based random number generator on biomedical data to provide solutions to problems such as visual attack, identity theft, and information confusion. In order to obtain biomedical data, a lensless digital in-line holographic microscopy (DIHM) setup was designed, and holographic data of human blood and cancer cell lines, which are widely used in ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d5b6118708a8c8b7523f90362455b967" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94508667,"asset_id":91135772,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94508667/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91135772"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91135772"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91135772; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91135772]").text(description); $(".js-view-count[data-work-id=91135772]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91135772; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91135772']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d5b6118708a8c8b7523f90362455b967" } } $('.js-work-strip[data-work-id=91135772]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91135772,"title":"DWT-SVD Based Watermarking for High-Resolution Medical Holographic Images","internal_url":"https://www.academia.edu/91135772/DWT_SVD_Based_Watermarking_for_High_Resolution_Medical_Holographic_Images","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":94508667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94508667/thumbnails/1.jpg","file_name":"3154650.pdf","download_url":"https://www.academia.edu/attachments/94508667/download_file","bulk_download_file_name":"DWT_SVD_Based_Watermarking_for_High_Reso.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94508667/3154650-libre.pdf?1668866155=\u0026response-content-disposition=attachment%3B+filename%3DDWT_SVD_Based_Watermarking_for_High_Reso.pdf\u0026Expires=1741114107\u0026Signature=ab2yKK6VvG1YqkkUBRbG~0yV4ezcJZaIuRP0hi3V3mq5D49jw2NRWUuGEbn7luiDI6XHRCRK3~wA354CxNK3oBbIWoAl9GZATY9HqVkJud9TP18EmPJCxpefTLQfcMoEnuz9rOBpkb8D2djmR39mLF75pzKYovUd~IxEeR~DGKFeozwWzr5rj4Dk8IyQVgWv1IRPjAU5tg-WF7NMIN~r8HEEfwOeSRh9gfClj5PZU7Usc9PfZBKvm-YGkH0AW3lZ85EYigWXG0FC3qZ26rQ0at1QzB0Wa57gDb37vwtNxvGiz608TUIrZx0kAh8AKM5WjIYosaPFccRL9D7eCZ93MQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":94508668,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94508668/thumbnails/1.jpg","file_name":"3154650.pdf","download_url":"https://www.academia.edu/attachments/94508668/download_file","bulk_download_file_name":"DWT_SVD_Based_Watermarking_for_High_Reso.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94508668/3154650-libre.pdf?1668866158=\u0026response-content-disposition=attachment%3B+filename%3DDWT_SVD_Based_Watermarking_for_High_Reso.pdf\u0026Expires=1741114107\u0026Signature=A6p99GFERKnhOehpp8jXEv-tLm3cIBddcaW6kOLvhR9tR8xVJ3vpg4AU3DwfB5rPRAoOc4e0ercciG3Ov9EAE7fSFYkfks~YOIF6wj8yWK2~3bdH10y5YTuZ3P2QSoAPUlDmeKVxRv~xCJLLXhp78~HYu69SP21HDYZYXkXp-Jl3JU-dHAKnlzBLNM9bqUuznGYAYJQWwH8iRl~h4-c7S2CF7MwzQFixbWqpQ5rYO9LVrLPA4s4Rl6Dg7vCku4UK83-bFGl-Hx07XAro6KDdnML97L~g0x2D7qR4NpVXdgeqGXxscmAXMDYnrhxa0qX1Y6Sxbc5NmcfYsJTI1yeGWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85907355"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85907355/Genetik_algoritma_ile_arama_motorlar%C4%B1_i%C3%A7in_web_site_optimizasyonu"><img alt="Research paper thumbnail of Genetik algoritma ile arama motorları için web site optimizasyonu" class="work-thumbnail" src="https://attachments.academia-assets.com/90472593/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85907355/Genetik_algoritma_ile_arama_motorlar%C4%B1_i%C3%A7in_web_site_optimizasyonu">Genetik algoritma ile arama motorları için web site optimizasyonu</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Günümüzün en önemli teknolojilerinden biri olan İnternetin hayatımız daki önemi her geçen gün artmaktadır. İnternetin sunduğu başlıca hizmetlerden biri olan web sitelernde amac hedef kitlelere ulaşmaktır. Kişisel ya da kurumsal web sitelerinin bu hedefi gerçekleştirmesinde arama motorlarının payı büyüktür. Arama motorlarnın etkin bir şekilde yardımcı olabilmesi, hazırlanan web siteleri için &quot;arama motoru optimizasyonu&quot; işleminin en uygun bir şekilde yapılmasına bağlıdır. Bu işlemin gerçekleştirilmesi için optimizasyon işlemini yapacak personelin veya destek alınan firmanın personelinin kullanılan web tekonolojilerinin yanında hazırlanan içerik i...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cf1f387e8c639aac11e57f956a2815be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90472593,"asset_id":85907355,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90472593/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85907355"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85907355"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85907355; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85907355]").text(description); $(".js-view-count[data-work-id=85907355]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85907355; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85907355']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cf1f387e8c639aac11e57f956a2815be" } } $('.js-work-strip[data-work-id=85907355]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85907355,"title":"Genetik algoritma ile arama motorları için web site optimizasyonu","internal_url":"https://www.academia.edu/85907355/Genetik_algoritma_ile_arama_motorlar%C4%B1_i%C3%A7in_web_site_optimizasyonu","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":90472593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90472593/thumbnails/1.jpg","file_name":"417579710.pdf","download_url":"https://www.academia.edu/attachments/90472593/download_file","bulk_download_file_name":"Genetik_algoritma_ile_arama_motorlari_ic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90472593/417579710-libre.pdf?1661895046=\u0026response-content-disposition=attachment%3B+filename%3DGenetik_algoritma_ile_arama_motorlari_ic.pdf\u0026Expires=1741114107\u0026Signature=MWIaaTNis7lMx3pNrsvE8Lhlr3xFTZZvldR3eQiUNGrRdI8ljmVvVGpFZ~aNR5bw5wBOO7mwCU31cBHSo86n1GhjkdwPzO4svdgnabXGerUc2WWON7ruIhM4TSWoKqvmQ1fE5m1gRFIRgxJm0RoZv-P4AhV-uzH~B2ldVWn92cMO4cmaCkGjZSRllxWMUTzgIJWYRbUptiekaRQbwoLG2-R4hMhwRuevVqPFq7bz7ZE7S6cJNCqeyhUM8oEt-KzJYrqoDMkNcQ4Gyq1YEAJD5YVQs~NQJ2QNIKZoTLE9UnJMzoxRgYU0R-yMOR1Z2rpsBjsQK531WxKM09QSC0rDcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80480239"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/80480239/Research_Guides_Education_Research_Guide_Books"><img alt="Research paper thumbnail of Research Guides: * Education Research Guide: Books" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/80480239/Research_Guides_Education_Research_Guide_Books">Research Guides: * Education Research Guide: Books</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80480239"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80480239"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80480239; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80480239]").text(description); $(".js-view-count[data-work-id=80480239]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80480239; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80480239']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=80480239]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80480239,"title":"Research Guides: * Education Research Guide: Books","internal_url":"https://www.academia.edu/80480239/Research_Guides_Education_Research_Guide_Books","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80480235"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/80480235/A_novel_image_watermarking_scheme_using_ULV_decomposition"><img alt="Research paper thumbnail of A novel image watermarking scheme using ULV decomposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/80480235/A_novel_image_watermarking_scheme_using_ULV_decomposition">A novel image watermarking scheme using ULV decomposition</a></div><div class="wp-workCard_item"><span>Optik</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80480235"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80480235"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80480235; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80480235]").text(description); $(".js-view-count[data-work-id=80480235]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80480235; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80480235']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=80480235]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80480235,"title":"A novel image watermarking scheme using ULV decomposition","internal_url":"https://www.academia.edu/80480235/A_novel_image_watermarking_scheme_using_ULV_decomposition","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="74513844"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/74513844/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems"><img alt="Research paper thumbnail of Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/74513844/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems">Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems</a></div><div class="wp-workCard_item"><span>Arabian Journal for Science and Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="74513844"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="74513844"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 74513844; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=74513844]").text(description); $(".js-view-count[data-work-id=74513844]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 74513844; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='74513844']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=74513844]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":74513844,"title":"Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems","internal_url":"https://www.academia.edu/74513844/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="64407776"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/64407776/Decision_Trees_in_Large_Data_Sets"><img alt="Research paper thumbnail of Decision Trees in Large Data Sets" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/64407776/Decision_Trees_in_Large_Data_Sets">Decision Trees in Large Data Sets</a></div><div class="wp-workCard_item"><span>Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Data mining is the process of obtaining information, which is used to identify and define the rel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Data mining is the process of obtaining information, which is used to identify and define the relationships between data of different qualities. One of the important problems encountered in this process is the classification process in large data sets. Extensive research has been done to find solutions to this classification problem and different solution methods have been introduced. Some decision tree algorithms are among the structures that can be used effectively in this field. In this article, various decision tree structures and algorithms used for classification process in large data sets are discussed. Along with the definitions of the algorithms, the similarities and existing differences between them were determined, their advantages and disadvantages were investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="64407776"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="64407776"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 64407776; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=64407776]").text(description); $(".js-view-count[data-work-id=64407776]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 64407776; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='64407776']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=64407776]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":64407776,"title":"Decision Trees in Large Data Sets","internal_url":"https://www.academia.edu/64407776/Decision_Trees_in_Large_Data_Sets","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="64407775"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/64407775/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews"><img alt="Research paper thumbnail of LSTM Network based Sentiment Analysis for Customer Reviews" class="work-thumbnail" src="https://attachments.academia-assets.com/76459622/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/64407775/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews">LSTM Network based Sentiment Analysis for Customer Reviews</a></div><div class="wp-workCard_item"><span>Journal of Polytechnic</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Continuously increasing data bring new problems and problems usually reveal new research areas. O...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Continuously increasing data bring new problems and problems usually reveal new research areas. One of the new areas is Sentiment Analysis. This field has some difficulties. The fact that people have complex sentiments is the main cause of the difficulty, but this has not prevented the progress of the studies in this field. Sentiment analysis is generally used to obtain information about persons by collecting their texts or expressions. Sentiment analysis can sometimes bring serious benefits. In this study, with singular tag-plural class approach, a binary classification was performed. An LSTM network and several machine learning models were tested. The dataset collected in Turkish, and Stanford Large Movie Reviews datasets were used in this study. Due to the noise in the dataset, the Zemberek NLP Library for Turkic Languages and Regular Expression techniques were used to normalize and clean texts, later, the data were transformed into vector sequences. The preprocessing process mad...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="11a3c4151313cd123daa609d052a4134" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":76459622,"asset_id":64407775,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/76459622/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="64407775"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="64407775"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 64407775; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=64407775]").text(description); $(".js-view-count[data-work-id=64407775]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 64407775; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='64407775']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "11a3c4151313cd123daa609d052a4134" } } $('.js-work-strip[data-work-id=64407775]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":64407775,"title":"LSTM Network based Sentiment Analysis for Customer Reviews","internal_url":"https://www.academia.edu/64407775/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":76459622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76459622/thumbnails/1.jpg","file_name":"1459231.pdf","download_url":"https://www.academia.edu/attachments/76459622/download_file","bulk_download_file_name":"LSTM_Network_based_Sentiment_Analysis_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76459622/1459231-libre.pdf?1639635023=\u0026response-content-disposition=attachment%3B+filename%3DLSTM_Network_based_Sentiment_Analysis_fo.pdf\u0026Expires=1741114107\u0026Signature=ZXcxThNfPZsQvz81T4JGSMH-IIPXBm1MOrVpYCZH2bS07G2ji0lv9Fk-k9ddQ4oxAhbdpqAFaetWFYTrepybTLKSmgH3jwvB33rD3gfRcyADzVjXCzdl6BbSwiG2f5kj~IDslqjTlbrpxVLEBZSsTED1FBss1wSE-NtelQtEgdO7x9u5pGptOyCToTHjq1i7CSgNvpzHDCLuzFc4QKPAzblS1PSVp9l9Lo6RPU5RcZKDsYBH8lwnIDkzwPv-d3R1OEPAvTWqe-wFBWXg8CNSypaAS2K5NIugQ102Yogk0lJ8kwHEMPXSYBzgPAwlyteDtp7-b8N0SJVEEz0OUXCH~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div><div class="profile--tab_content_container js-tab-pane tab-pane" data-section-id="11205055" id="papers"><div class="js-work-strip profile--work_container" data-work-id="123428043"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/123428043/Secure_Encryption_of_Biomedical_Images_Based_on_Arneodo_Chaotic_System_with_the_Lowest_Fractional_Order_Value"><img alt="Research paper thumbnail of Secure Encryption of Biomedical Images Based on Arneodo Chaotic System with the Lowest Fractional-Order Value" class="work-thumbnail" src="https://attachments.academia-assets.com/117861254/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/123428043/Secure_Encryption_of_Biomedical_Images_Based_on_Arneodo_Chaotic_System_with_the_Lowest_Fractional_Order_Value">Secure Encryption of Biomedical Images Based on Arneodo Chaotic System with the Lowest Fractional-Order Value</a></div><div class="wp-workCard_item"><span>Electronics</span><span>, May 29, 2024</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Fractional-order (FO) chaotic systems exhibit richer and more complex dynamic behaviors compared ...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Fractional-order (FO) chaotic systems exhibit richer and more complex dynamic behaviors compared to integer-order ones. This inherent richness and complexity enhance the security of FO chaotic systems against various attacks in image cryptosystems. In the present study, a comprehensive examination of the dynamical characteristics of the fractional-order Arneodo (FOAR) system with cubic nonlinearity is conducted. This investigation involves the analysis of phase planes, bifurcation diagrams, Lyapunov exponential spectra, and spectral entropy. Numerical studies show that the Arneodo chaotic system exhibits chaotic behavior when the lowest fractional-order (FO) value is set to 0.55. In this context, the aim is to securely encrypt biomedical images based on the Arneodo chaotic system with the lowest FO value using the Nvidia Jetson Nano development board. However, though the lowest FO system offers enhanced security in biomedical image encryption due to its richer dynamic behaviors, it necessitates careful consideration of the trade-off between high memory requirements and increasing complexity in encryption algorithms. Within the scope of the study, a novel random number generator (RNG) is designed using the FOAR chaotic system. The randomness of the random numbers is proven by using internationally accepted NIST 800-22 and ENT test suites. A biomedical image encryption application is developed using pseudo-random numbers. The images obtained as a result of the application are evaluated with tests such as histogram, correlation, differential attack, and entropy analyses. As a result of the study, it has been shown that encryption and decryption of biomedical images can be successfully performed on a mobile Nvidia Jetson Nano development card in a secure and fast manner.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="84fd5b8230cc84b65ac6a0f166d9e7d3" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":117861254,"asset_id":123428043,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/117861254/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="123428043"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="123428043"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 123428043; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=123428043]").text(description); $(".js-view-count[data-work-id=123428043]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 123428043; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='123428043']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "84fd5b8230cc84b65ac6a0f166d9e7d3" } } $('.js-work-strip[data-work-id=123428043]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":123428043,"title":"Secure Encryption of Biomedical Images Based on Arneodo Chaotic System with the Lowest Fractional-Order Value","internal_url":"https://www.academia.edu/123428043/Secure_Encryption_of_Biomedical_Images_Based_on_Arneodo_Chaotic_System_with_the_Lowest_Fractional_Order_Value","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":117861254,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117861254/thumbnails/1.jpg","file_name":"electronics-13-02122-v2.pdf","download_url":"https://www.academia.edu/attachments/117861254/download_file","bulk_download_file_name":"Secure_Encryption_of_Biomedical_Images_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117861254/electronics-13-02122-v2-libre.pdf?1725168615=\u0026response-content-disposition=attachment%3B+filename%3DSecure_Encryption_of_Biomedical_Images_B.pdf\u0026Expires=1741114107\u0026Signature=aqkATHr1PYQWepfZILFkyVEn1YfcXKH-JtXbo1Yzqfr5vYDCT5CF6M2KVZvitlQJLqxEo0i-q3aRTfEy92WX1mhR9aoM~~j~-v4au1ZniqIdfuTzM9JXUku-448ErkUn~4B19TG2ldOLUFjNgOd8aEyfbt1-GiJI78u3k8Q7Kg8RcuTwq5zCD0CFplTORqRhsKMJoNFaEFg5YGdND5g~C4zjg2bgScXGdxGCY36rFO-4HHCXQITmhyuq2UU-Vyws-FQY2PFKAY~~WYhAOloNNDG9Mip40~i4gAaULiBxZKA51jxw3btGhWnME9TvE-fw1QVVvQA-rTs8n3foFVnZCg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":117861255,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/117861255/thumbnails/1.jpg","file_name":"electronics-13-02122-v2.pdf","download_url":"https://www.academia.edu/attachments/117861255/download_file","bulk_download_file_name":"Secure_Encryption_of_Biomedical_Images_B.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/117861255/electronics-13-02122-v2-libre.pdf?1725168707=\u0026response-content-disposition=attachment%3B+filename%3DSecure_Encryption_of_Biomedical_Images_B.pdf\u0026Expires=1741114107\u0026Signature=YPMCkGIFZ1x1Ft13iRQGCEX3DCLi3-ktH0Ms3mnKmQ5~g6L65kl1RNbwg00YyVe-QPnWMx~6IT6a8mkBvJJ-TVlIX~emFhkrGF-bFpOYqOz8FOAk8L5GU2XdZh2do75Zvyks-oaaAGLBqbcgUc6-XsvXsPb~oGRBXwy6oLd7dB-2DjuU1WQHLxzCLqAxj9D8XE6QG3B4C2EFfoAt0YIxM7M0EIvlt6iocti92T2if~zaqTzzFkP6~MqCduuuVWc62ehaXbangJx1EA~w60ez6eo1LD26BCHo82~UCEjPWlTypjdLPbVbjrd7ktkforZvLywBT50PjU6dV8Pu9tmMZA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257529"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111257529/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1"><img alt="Research paper thumbnail of Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması" class="work-thumbnail" src="https://attachments.academia-assets.com/108842854/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111257529/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1">Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması</a></div><div class="wp-workCard_item"><span>Uluslararası mühendislik araştırma ve geliştirme dergisi</span><span>, Jul 31, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Classification of network traffic not only contributes to improving the quality of network servic...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Classification of network traffic not only contributes to improving the quality of network services of institutions, but also helps to protect important data. Machine learning algorithms are frequently used in the classification of network traffic, since port-based and load-based classification processes are insufficient in encrypted networks. In this study, VPN and Tor network traffic combined in the Darknet category was classified with the Gradient Boosting Algorithm. 70% of the dataset is reserved for training and 30% for testing. 10 fold cross validation was applied in the training set. Network Flows in 8 different categories: Audio-Streaming, Browsing, Chat, E-mail, P2P, File Transfer, Video-Streaming and VOIP were classified with 99.8% accuracy. The proposed method automated the process of network analysis from the Darknet. It enabled organizations to protect the important data with high accuracy in a short time.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d6982a7d450e8fea8d9c161fd9c59f15" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842854,"asset_id":111257529,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842854/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257529"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257529"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257529; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257529]").text(description); $(".js-view-count[data-work-id=111257529]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257529; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257529']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d6982a7d450e8fea8d9c161fd9c59f15" } } $('.js-work-strip[data-work-id=111257529]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257529,"title":"Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması","internal_url":"https://www.academia.edu/111257529/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842854,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842854/thumbnails/1.jpg","file_name":"2431954.pdf","download_url":"https://www.academia.edu/attachments/108842854/download_file","bulk_download_file_name":"Gradyan_Artirma_Algoritmasi_ile_Karanlik.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842854/2431954-libre.pdf?1702409313=\u0026response-content-disposition=attachment%3B+filename%3DGradyan_Artirma_Algoritmasi_ile_Karanlik.pdf\u0026Expires=1741114107\u0026Signature=gxM1sydHoG25Abbuw4v3aztg11-rfKe0hdngscnl1JFfqZTOcac6jzy9IMTMh072hVGqwgGJou8XSD~A9pne6i~Di4o5AFuq89FEUt9cz8TWHqjsRSx0GJv8FjzwyAJPbsIPw0X7-7e3VA8NAtCMhhHtmfmjUZcgoXy5GrMcLP86AL46F4a83es4JBZbGpljvRaGDbi1um03pZ9GXMhTIFBlZHSSRhJAxLJJkDq-INe3g~YK0msDNeryaB9GI0lbuEXipe-H70-4yn9Je4lVgZfmWCxar~xPynpoqIs2hGJ56RU6oFYlL3u6EM3LmLDjL4Mlpld4JafBF6On1CEPXg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257528"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111257528/Keyword_Extraction_for_Search_Engine_Optimization_Using_Latent_Semantic_Analysis"><img alt="Research paper thumbnail of Keyword Extraction for Search Engine Optimization Using Latent Semantic Analysis" class="work-thumbnail" src="https://attachments.academia-assets.com/108842815/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111257528/Keyword_Extraction_for_Search_Engine_Optimization_Using_Latent_Semantic_Analysis">Keyword Extraction for Search Engine Optimization Using Latent Semantic Analysis</a></div><div class="wp-workCard_item"><span>Politeknik dergisi</span><span>, Jun 1, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Horasan F., "Keyword ext...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Bu makaleye şu şekilde atıfta bulunabilirsiniz(To cite to this article): Horasan F., "Keyword extraction for search engine optimization using latent semantic analysis",</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="082debdb4501c95b5df1d034d7dd14a5" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842815,"asset_id":111257528,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842815/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257528"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257528"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257528; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257528]").text(description); $(".js-view-count[data-work-id=111257528]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257528; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257528']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "082debdb4501c95b5df1d034d7dd14a5" } } $('.js-work-strip[data-work-id=111257528]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257528,"title":"Keyword Extraction for Search Engine Optimization Using Latent Semantic Analysis","internal_url":"https://www.academia.edu/111257528/Keyword_Extraction_for_Search_Engine_Optimization_Using_Latent_Semantic_Analysis","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842815,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842815/thumbnails/1.jpg","file_name":"1049982.pdf","download_url":"https://www.academia.edu/attachments/108842815/download_file","bulk_download_file_name":"Keyword_Extraction_for_Search_Engine_Opt.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842815/1049982-libre.pdf?1702405321=\u0026response-content-disposition=attachment%3B+filename%3DKeyword_Extraction_for_Search_Engine_Opt.pdf\u0026Expires=1741114107\u0026Signature=XjxBWlQsoOr34NIcSmMP1CbmRIB9WNMFTn-Z-lZm0IOdNnAofKOQPBPeCLh7YQf9uYh5PqmjWdoGHT6VZyr25h4X4z8ke7yMw4-3~tPcPOHkMFMFOGXHzgOBdL34K6hASFoOox6sXPhHX85p-sRpMfN4ESTihgi36ZHIByVoXRCaUAtf~lPjE-hqKjM1NxuckX6fIEj5EkKAsbvsfwTi6fUNh~RQnKg~VGk2LCZgWb7SU7S3lyupKr1UgcabEWJZ1E0hj-XNWrQUykRxeDJ6Dl5zB9CkhzJpo4NBbxTsUIK1IHQG0rHvS2K~de4FpsynWzoAZaQua003GZyE2sn6kQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257527"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111257527/Latent_semantic_analysis_via_truncated_ULV_decomposition"><img alt="Research paper thumbnail of Latent semantic analysis via truncated ULV decomposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111257527/Latent_semantic_analysis_via_truncated_ULV_decomposition">Latent semantic analysis via truncated ULV decomposition</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Latent semantic analysis (LSA) usually uses the singular value decomposition (SVD) of the term-do...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Latent semantic analysis (LSA) usually uses the singular value decomposition (SVD) of the term-document matrix for discovering the latent relationships within the document collection. With the SVD, by disregarding the smaller singular values of the term-document matrix a vector space cleaned from noises that distort the meaning is obtained. The latent semantic structure of the terms and documents is obtained by examining the relationship of representative vectors in the vector space. However, the computational time of re-computing or updating the SVD of the term-document is high when adding new terms and/or documents to pre-existing document collection. Thus, the need a method not only has low computational complexity but also creates the correct semantic structure when updating the latent semantic structure is arisen. This study shows that the truncated ULV decomposition is a good alternative to the SVD in LSA modelling about cost and producing the correct semantic structure.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257527"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257527"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257527; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257527]").text(description); $(".js-view-count[data-work-id=111257527]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257527; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257527']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111257527]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257527,"title":"Latent semantic analysis via truncated ULV decomposition","internal_url":"https://www.academia.edu/111257527/Latent_semantic_analysis_via_truncated_ULV_decomposition","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257526"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111257526/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems"><img alt="Research paper thumbnail of Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111257526/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems">Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems</a></div><div class="wp-workCard_item"><span>Arabian journal for science and engineering</span><span>, Mar 9, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257526"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257526"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257526; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257526]").text(description); $(".js-view-count[data-work-id=111257526]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257526; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257526']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111257526]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257526,"title":"Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems","internal_url":"https://www.academia.edu/111257526/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257525"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111257525/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform"><img alt="Research paper thumbnail of Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform" class="work-thumbnail" src="https://attachments.academia-assets.com/108842817/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111257525/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform">Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform</a></div><div class="wp-workCard_item"><span>Fen ve mühendislik bilimleri dergisi</span><span>, Aug 31, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Telif hakkı koruma, kimlik doğrulama, parmak izi, içerik etiketleme gibi alanlarda kullanılan dam...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Telif hakkı koruma, kimlik doğrulama, parmak izi, içerik etiketleme gibi alanlarda kullanılan damgalama tekniklerinde genel olarak sinyal işleme dönüşümleri ve matematiksel teknikler kullanılır. Bu araştırmada çoğu damgalama tekniğinde tercih edilen Tekil Değer Ayrışımı (TDA) yerine, boyut indirgeme tabanlı Kesik-TDA tekniği kullanılmıştır. Önerilen bu teknik Ayrık Dalgacık Dönüşümü (ADD) ile birlikte kullanılmıştır. Temel TDA-ADD tabanlı yönteme göre önerilen yöntemin histogram eşitleme dışında tüm olası saldırılara karşı algılanamazlık ve dayanıklılık performanslarında ilerleme kaydettiği gözlenmiştir. Önerilen şemanın farklı matris ayrışımı ve sinyal işleme dönüşümlerinin kullanıldığı alternatif damgalama şemalarına yön vereceği tahmin edilmektedir.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d56cc8d1ff46add1c4394ae438ba27df" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842817,"asset_id":111257525,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842817/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257525"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257525"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257525; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257525]").text(description); $(".js-view-count[data-work-id=111257525]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257525; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257525']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d56cc8d1ff46add1c4394ae438ba27df" } } $('.js-work-strip[data-work-id=111257525]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257525,"title":"Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform","internal_url":"https://www.academia.edu/111257525/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842817,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842817/thumbnails/1.jpg","file_name":"2528175.pdf","download_url":"https://www.academia.edu/attachments/108842817/download_file","bulk_download_file_name":"Dimension_Reduction_Based_Robust_Digital.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842817/2528175-libre.pdf?1702405368=\u0026response-content-disposition=attachment%3B+filename%3DDimension_Reduction_Based_Robust_Digital.pdf\u0026Expires=1741114107\u0026Signature=KLn1D4UkpgLlAD0NAmzLIZhIksWgtfKxjb9-AjEMe5MHOGb9hs5e9iXv7sRGlWTYdXb72ap~m4sjg~Z2Bg30d2jBtaBRJCoyh3ExAwEOP7pqbx6US-hyv547e0QvghnBIgbAF-IaDkhZ0UWtsWrZuHnFwN8PGNuSnYDlEjQOTCVTnvAgunfeqxtmcGkOMu0WzUk4WS7LmHtjVTbiVN8dwmdWT5a-cP6-n9vjZy5ut1ghjGh91B~C7LIO-LgYcM~uMk-PRA5a4CTEMoxoVC54NpgZ871Pi2Sc8EEJTIbN1kw44zqC0BtKTcITLNpH4iZNDbEQVLkef1wjS-YB3Dzkfw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108842816,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842816/thumbnails/1.jpg","file_name":"2528175.pdf","download_url":"https://www.academia.edu/attachments/108842816/download_file","bulk_download_file_name":"Dimension_Reduction_Based_Robust_Digital.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842816/2528175-libre.pdf?1702405367=\u0026response-content-disposition=attachment%3B+filename%3DDimension_Reduction_Based_Robust_Digital.pdf\u0026Expires=1741114107\u0026Signature=Watv2vvCpGZS9vb1X7snfzTNspQ6OYPe-2G1tMkz6a2UhxwcVbdcspr55KF7RR~MPujtmCRpZScBw6HqQzqgKr9Cswp9jUJSGr9hUtVfuDENt4dzD4liAr~7wBBdO4USrQIfxcVX~WwYxb4mM-knfapX2kn9oNYPExOlhXQrh1Y6aAj8AgVH972DhTbvN55N1CJniR~g-w32tzGrDr3DdpM7VyutDZvFZq9JH1rd~8mhBlAnrFxy6PdkYDsUN-dzMW3As1u1~xg0mPiyhNJ3Q023YN1IM3dqdqJrZty226oiHNaNB5opqp5~XMQzbkWXy6WsY1khL-3MlE-N85SVVA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257513"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111257513/Extractive_Text_Summarization_System_for_News_Texts"><img alt="Research paper thumbnail of Extractive Text Summarization System for News Texts" class="work-thumbnail" src="https://attachments.academia-assets.com/108842803/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111257513/Extractive_Text_Summarization_System_for_News_Texts">Extractive Text Summarization System for News Texts</a></div><div class="wp-workCard_item"><span>International Journal of Applied Mathematics, Electronics and Computers</span><span>, Dec 31, 2020</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="141c9b1886ed12f82029e5ddd66b0702" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842803,"asset_id":111257513,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842803/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257513"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257513"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257513; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257513]").text(description); $(".js-view-count[data-work-id=111257513]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257513; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257513']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "141c9b1886ed12f82029e5ddd66b0702" } } $('.js-work-strip[data-work-id=111257513]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257513,"title":"Extractive Text Summarization System for News Texts","internal_url":"https://www.academia.edu/111257513/Extractive_Text_Summarization_System_for_News_Texts","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842803,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842803/thumbnails/1.jpg","file_name":"1312721.pdf","download_url":"https://www.academia.edu/attachments/108842803/download_file","bulk_download_file_name":"Extractive_Text_Summarization_System_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842803/1312721-libre.pdf?1702405219=\u0026response-content-disposition=attachment%3B+filename%3DExtractive_Text_Summarization_System_for.pdf\u0026Expires=1741114107\u0026Signature=ITzaMLzLTkm58sUFi~u386HFrVE0Jb0gUGpgHRdHHCBNIUKRS8bXaqWFc-lOgFC5JnZi60Xn2eeGcEsyQgB4eB5Jzvu4p1-ynl94j-AE2DLVjyBZcTunKMvVBVE0aDs92kKQDOVRePugDWsQitRXwMqZBL2TvFy0-~beYd10gW3d3m3D-NQG8-MxLP2TN~HBp0zjoBRB37wbuylYr9o3rC9Onvh5MnhMuVaFkdwWgarfHOlE9g5huvZo2S9jhCu2JkiWoEgITCYCNlXGppqKq4DGrAdxn037gTpl-Fp8Dca3EaQOkAdIAfQTHbh6FCSFUUY-OJxM7vMI9uexhrj3WQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108842804,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842804/thumbnails/1.jpg","file_name":"1312721.pdf","download_url":"https://www.academia.edu/attachments/108842804/download_file","bulk_download_file_name":"Extractive_Text_Summarization_System_for.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842804/1312721-libre.pdf?1702405214=\u0026response-content-disposition=attachment%3B+filename%3DExtractive_Text_Summarization_System_for.pdf\u0026Expires=1741114107\u0026Signature=GOTJ5vENqe-~TVv1DRanL6vEYGchrAAc61BZRzUqxftCStxhleC4pw~YINVIh~ST3QjrgrDDZ~q5R2aBQ1YLXHbM~Q95Vr2r1NW2pOk-yMWgA3lNRHZE3XGpEFJmXR7Idm4hgfSDSjFr0ksqXNlVhx1kHD8ZVKgwU~7uFAbcEPV5cO3NeH2DaqR2GGnpKwxXKRvKeHXHwnoNHuBgwUUfMCP4rpEDrZV8JRPkbTEnbI~wOSxgDmwxOgNzYhz9CCu3KsCeb2fO6O6W12U5xtr38J7xQWxuJsKydXWQHhRoijfsH8VCZQEPIDmQiKpkfYXVFwRL9W7SqRR45QXPrq4VGA__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257512"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/111257512/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews"><img alt="Research paper thumbnail of LSTM Network based Sentiment Analysis for Customer Reviews" class="work-thumbnail" src="https://attachments.academia-assets.com/108842801/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/111257512/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews">LSTM Network based Sentiment Analysis for Customer Reviews</a></div><div class="wp-workCard_item"><span>Politeknik dergisi</span><span>, Oct 1, 2022</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Provision of a new dataset to this field to work on it. Showing the effects of noise normalizat...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Provision of a new dataset to this field to work on it. Showing the effects of noise normalization and preprocessing on the classification accuracy. Representation of texts in vector form in various ways to be able to work on them. Comparison of the LSTM Network with several machine learning algorithms.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d83db159a9268e0866c541b06774daa0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":108842801,"asset_id":111257512,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/108842801/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257512"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257512"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257512; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257512]").text(description); $(".js-view-count[data-work-id=111257512]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257512; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257512']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d83db159a9268e0866c541b06774daa0" } } $('.js-work-strip[data-work-id=111257512]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257512,"title":"LSTM Network based Sentiment Analysis for Customer Reviews","internal_url":"https://www.academia.edu/111257512/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":108842801,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842801/thumbnails/1.jpg","file_name":"1459231.pdf","download_url":"https://www.academia.edu/attachments/108842801/download_file","bulk_download_file_name":"LSTM_Network_based_Sentiment_Analysis_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842801/1459231-libre.pdf?1702405216=\u0026response-content-disposition=attachment%3B+filename%3DLSTM_Network_based_Sentiment_Analysis_fo.pdf\u0026Expires=1741114107\u0026Signature=RwTyq7mXxyi5iQMGAJyURteEBi~3dxlEJgmzeIiLO8sMk6eJgTtb~FbgOx-2FuzGTXGGX2bqWhBhPSzJPBjIIWkKTVySWRFT1OtgH-bWZSV~ISWKYnMJHvWljRSAX5cjwX0DsWYbR75n5lCUddC8UxcGm01dogWUtijVx9qg452xRdVnBg2cJitMhEO~HQQjKDzzg-OHHg0bzxZeJaZ8LPeDIHQuxYiSZrADWph3JLlzTYVVcI4csHpjvIIEvCRuGD~Of9WW~XM1meRUhoaXQd6Mvlm5IIolB3ryHaNhzQyu4d2PUdx4X-MdXK4FDZIrA2Sudak6AWURovOfKIhRhg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":108842802,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/108842802/thumbnails/1.jpg","file_name":"1459231.pdf","download_url":"https://www.academia.edu/attachments/108842802/download_file","bulk_download_file_name":"LSTM_Network_based_Sentiment_Analysis_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/108842802/1459231-libre.pdf?1702405215=\u0026response-content-disposition=attachment%3B+filename%3DLSTM_Network_based_Sentiment_Analysis_fo.pdf\u0026Expires=1741114107\u0026Signature=JLB7k6dlaidtpz9eCFxToHOpmMw7oEU4AVzsjUKzxdGVwVUYSvREupq9zzxunEsYULqqvDJo9WVy5LP7lDOEQJVB6s45BokWvdkDKpoGp4CuB4pgudhtktNv5gUfuVw-OjBOHUlkkRACn0WUGN72SCHM~rM7yXIHSbRC5y31dQLIlijyvQJhJ6vT90x4C2CHpFSdP-1de10ybvLbhqEwSt5HCu0Dt8NHK4lswXoU6s-6ajDr~EYHhDWh8PHhz5nq4ONm3PvdwF6HXv65m1d0Z2m2DzoVnI3D6unjQxhfVG2NmtyoiDkdy6RfQ8mahXamdixisu-c5PJJ4Qk62ngErw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="111257508"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/111257508/A_novel_image_watermarking_scheme_using_ULV_decomposition"><img alt="Research paper thumbnail of A novel image watermarking scheme using ULV decomposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/111257508/A_novel_image_watermarking_scheme_using_ULV_decomposition">A novel image watermarking scheme using ULV decomposition</a></div><div class="wp-workCard_item"><span>Optik</span><span>, Jun 1, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="111257508"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="111257508"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 111257508; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=111257508]").text(description); $(".js-view-count[data-work-id=111257508]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 111257508; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='111257508']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=111257508]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":111257508,"title":"A novel image watermarking scheme using ULV decomposition","internal_url":"https://www.academia.edu/111257508/A_novel_image_watermarking_scheme_using_ULV_decomposition","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="107332651"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/107332651/A_novel_model_based_collaborative_filtering_recommender_system_via_truncated_ULV_decomposition"><img alt="Research paper thumbnail of A novel model based collaborative filtering recommender system via truncated ULV decomposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/107332651/A_novel_model_based_collaborative_filtering_recommender_system_via_truncated_ULV_decomposition">A novel model based collaborative filtering recommender system via truncated ULV decomposition</a></div><div class="wp-workCard_item"><span>Journal of King Saud University - Computer and Information Sciences</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="107332651"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="107332651"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 107332651; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=107332651]").text(description); $(".js-view-count[data-work-id=107332651]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 107332651; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='107332651']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=107332651]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":107332651,"title":"A novel model based collaborative filtering recommender system via truncated ULV decomposition","internal_url":"https://www.academia.edu/107332651/A_novel_model_based_collaborative_filtering_recommender_system_via_truncated_ULV_decomposition","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91135800"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/91135800/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform"><img alt="Research paper thumbnail of Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/91135800/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform">Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform</a></div><div class="wp-workCard_item"><span>Afyon Kocatepe University Journal of Sciences and Engineering</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Telif hakkı koruma, kimlik doğrulama, parmak izi, içerik etiketleme gibi alanlarda kullanılan dam...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Telif hakkı koruma, kimlik doğrulama, parmak izi, içerik etiketleme gibi alanlarda kullanılan damgalama tekniklerinde genel olarak sinyal işleme dönüşümleri ve matematiksel teknikler kullanılır. Bu araştırmada çoğu damgalama tekniğinde tercih edilen Tekil Değer Ayrışımı (TDA) yerine, boyut indirgeme tabanlı Kesik-TDA tekniği kullanılmıştır. Önerilen bu teknik Ayrık Dalgacık Dönüşümü (ADD) ile birlikte kullanılmıştır. Temel TDA-ADD tabanlı yönteme göre önerilen yöntemin histogram eşitleme dışında tüm olası saldırılara karşı algılanamazlık ve dayanıklılık performanslarında ilerleme kaydettiği gözlenmiştir. Önerilen şemanın farklı matris ayrışımı ve sinyal işleme dönüşümlerinin kullanıldığı alternatif damgalama şemalarına yön vereceği tahmin edilmektedir.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91135800"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91135800"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91135800; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91135800]").text(description); $(".js-view-count[data-work-id=91135800]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91135800; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91135800']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91135800]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91135800,"title":"Dimension Reduction Based Robust Digital Image Watermarking Using Truncated Singular Value Decomposition and Discrete Wavelet Transform","internal_url":"https://www.academia.edu/91135800/Dimension_Reduction_Based_Robust_Digital_Image_Watermarking_Using_Truncated_Singular_Value_Decomposition_and_Discrete_Wavelet_Transform","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91135797"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/91135797/Alternatif_d%C3%BC%C5%9F%C3%BCk_rankl%C4%B1_matris_ayr%C4%B1%C5%9F%C4%B1m%C4%B1_ile_gizli_anlamsal_dizinleme"><img alt="Research paper thumbnail of Alternatif düşük ranklı matris ayrışımı ile gizli anlamsal dizinleme" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/91135797/Alternatif_d%C3%BC%C5%9F%C3%BCk_rankl%C4%B1_matris_ayr%C4%B1%C5%9F%C4%B1m%C4%B1_ile_gizli_anlamsal_dizinleme">Alternatif düşük ranklı matris ayrışımı ile gizli anlamsal dizinleme</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Tez (Doktora) -- Kırıkkale Üniversitesiref. no : 10199884119916</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91135797"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91135797"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91135797; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91135797]").text(description); $(".js-view-count[data-work-id=91135797]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91135797; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91135797']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=91135797]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91135797,"title":"Alternatif düşük ranklı matris ayrışımı ile gizli anlamsal dizinleme","internal_url":"https://www.academia.edu/91135797/Alternatif_d%C3%BC%C5%9F%C3%BCk_rankl%C4%B1_matris_ayr%C4%B1%C5%9F%C4%B1m%C4%B1_ile_gizli_anlamsal_dizinleme","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91135791"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91135791/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1"><img alt="Research paper thumbnail of Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması" class="work-thumbnail" src="https://attachments.academia-assets.com/94508713/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91135791/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1">Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması</a></div><div class="wp-workCard_item"><span>Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Ağ trafiğinin sınıflandırılması kurumların ağ hizmetlerinin kalitesinin artırılmasına katkı sağla...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Ağ trafiğinin sınıflandırılması kurumların ağ hizmetlerinin kalitesinin artırılmasına katkı sağlamasının yanında önemli verilerinin korunmasına da yardımcı olmaktadır. Ağ trafiğinin sınıflandırmada, port tabanlı ve yük tabanlı sınıflandırma işlemlerinin şifreli ağlarda yetersiz kalması nedeniyle makine öğrenmesi algoritmaları sıklıkla kullanılmaktadır. Bu çalışmada, Darknet kategorisinde birleştirilen VPN ve Tor ağ trafiği Gradyan Artırma Algoritması ile sınıflandırılmıştır. Veri setinin %70’i eğitim, %30’u test için ayrılmıştır. Eğitim setinde 10 kat çapraz doğrulama uygulanmıştır. 8 farklı kategoride ağ akışları: Ses Akışı, Tarama, Sohbet, E-posta, P2P, Dosya Aktarımı, Video Akışı ve VOIP %99,8 doğrulukla sınıflandırıldı. Önerilen yöntem, karanlık ağdan ağ analizi sürecini otomatikleştirmiştir. Kuruluşların önemli verilerini kısa sürede yüksek doğrulukla korumasını sağlamaktadır.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="313df1f335604997ee7b1da85c21b0d0" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94508713,"asset_id":91135791,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94508713/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91135791"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91135791"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91135791; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91135791]").text(description); $(".js-view-count[data-work-id=91135791]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91135791; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91135791']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "313df1f335604997ee7b1da85c21b0d0" } } $('.js-work-strip[data-work-id=91135791]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91135791,"title":"Gradyan Artırma Algoritması ile Karanlık Ağ Web Trafiği Sınıflandırması","internal_url":"https://www.academia.edu/91135791/Gradyan_Art%C4%B1rma_Algoritmas%C4%B1_ile_Karanl%C4%B1k_A%C4%9F_Web_Trafi%C4%9Fi_S%C4%B1n%C4%B1fland%C4%B1rmas%C4%B1","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":94508713,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94508713/thumbnails/1.jpg","file_name":"2431954.pdf","download_url":"https://www.academia.edu/attachments/94508713/download_file","bulk_download_file_name":"Gradyan_Artirma_Algoritmasi_ile_Karanlik.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94508713/2431954-libre.pdf?1668866155=\u0026response-content-disposition=attachment%3B+filename%3DGradyan_Artirma_Algoritmasi_ile_Karanlik.pdf\u0026Expires=1741114107\u0026Signature=gAQbjtVawo6R5LugL~Dq71PpKHmZ9TjfCic1r4tBbPgrgx8en8QUdQClONUiCM3-tVQ3U00xb6wg0Iv-dWeNHWPZbk72Tt9P~Z0g7K-lj95J4zt7dVuVQc7jE7mvivL9Sku7bDN5F8o~VGFUVaNpXZTE~AMdOBuHTmRg~8HlG6HA63Vq9hX0KCTOOQ9WOPnobOI4gyx916bpTeh6FnLKXA6a~9ij3eAFAEvTEG7vw7y7CsN2VzgEotOQiMRt~ZjnuwdVN233IdtEOsPEyUTTbWBZAPKijD6NPBS2FQ83sdIGDdA5~xckyJ7XQWarDEZDKGF72nmM3QZf2dHUtGEASw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="91135772"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/91135772/DWT_SVD_Based_Watermarking_for_High_Resolution_Medical_Holographic_Images"><img alt="Research paper thumbnail of DWT-SVD Based Watermarking for High-Resolution Medical Holographic Images" class="work-thumbnail" src="https://attachments.academia-assets.com/94508667/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/91135772/DWT_SVD_Based_Watermarking_for_High_Resolution_Medical_Holographic_Images">DWT-SVD Based Watermarking for High-Resolution Medical Holographic Images</a></div><div class="wp-workCard_item"><span>Complexity</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Watermarking is one of the most common techniques used to protect data’s authenticity, integrity,...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Watermarking is one of the most common techniques used to protect data’s authenticity, integrity, and security. The obfuscation in the frequency domain used in the watermarking method makes the watermarking stronger than the obfuscation in the spatial domain. It occupies an important place in watermarking works in imperceptibility, capacity, and robustness. Finding the optimal location to hide the watermarking is one of the most challenging tasks in these methods and affects the method’s performance. In this article, sample identification information is processed with the method of watermaking on the hiding environment created by using a chaos-based random number generator on biomedical data to provide solutions to problems such as visual attack, identity theft, and information confusion. In order to obtain biomedical data, a lensless digital in-line holographic microscopy (DIHM) setup was designed, and holographic data of human blood and cancer cell lines, which are widely used in ...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="d5b6118708a8c8b7523f90362455b967" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":94508667,"asset_id":91135772,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/94508667/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="91135772"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="91135772"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 91135772; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=91135772]").text(description); $(".js-view-count[data-work-id=91135772]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 91135772; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='91135772']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "d5b6118708a8c8b7523f90362455b967" } } $('.js-work-strip[data-work-id=91135772]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":91135772,"title":"DWT-SVD Based Watermarking for High-Resolution Medical Holographic Images","internal_url":"https://www.academia.edu/91135772/DWT_SVD_Based_Watermarking_for_High_Resolution_Medical_Holographic_Images","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":94508667,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94508667/thumbnails/1.jpg","file_name":"3154650.pdf","download_url":"https://www.academia.edu/attachments/94508667/download_file","bulk_download_file_name":"DWT_SVD_Based_Watermarking_for_High_Reso.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94508667/3154650-libre.pdf?1668866155=\u0026response-content-disposition=attachment%3B+filename%3DDWT_SVD_Based_Watermarking_for_High_Reso.pdf\u0026Expires=1741114107\u0026Signature=ab2yKK6VvG1YqkkUBRbG~0yV4ezcJZaIuRP0hi3V3mq5D49jw2NRWUuGEbn7luiDI6XHRCRK3~wA354CxNK3oBbIWoAl9GZATY9HqVkJud9TP18EmPJCxpefTLQfcMoEnuz9rOBpkb8D2djmR39mLF75pzKYovUd~IxEeR~DGKFeozwWzr5rj4Dk8IyQVgWv1IRPjAU5tg-WF7NMIN~r8HEEfwOeSRh9gfClj5PZU7Usc9PfZBKvm-YGkH0AW3lZ85EYigWXG0FC3qZ26rQ0at1QzB0Wa57gDb37vwtNxvGiz608TUIrZx0kAh8AKM5WjIYosaPFccRL9D7eCZ93MQ__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"},{"id":94508668,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/94508668/thumbnails/1.jpg","file_name":"3154650.pdf","download_url":"https://www.academia.edu/attachments/94508668/download_file","bulk_download_file_name":"DWT_SVD_Based_Watermarking_for_High_Reso.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/94508668/3154650-libre.pdf?1668866158=\u0026response-content-disposition=attachment%3B+filename%3DDWT_SVD_Based_Watermarking_for_High_Reso.pdf\u0026Expires=1741114107\u0026Signature=A6p99GFERKnhOehpp8jXEv-tLm3cIBddcaW6kOLvhR9tR8xVJ3vpg4AU3DwfB5rPRAoOc4e0ercciG3Ov9EAE7fSFYkfks~YOIF6wj8yWK2~3bdH10y5YTuZ3P2QSoAPUlDmeKVxRv~xCJLLXhp78~HYu69SP21HDYZYXkXp-Jl3JU-dHAKnlzBLNM9bqUuznGYAYJQWwH8iRl~h4-c7S2CF7MwzQFixbWqpQ5rYO9LVrLPA4s4Rl6Dg7vCku4UK83-bFGl-Hx07XAro6KDdnML97L~g0x2D7qR4NpVXdgeqGXxscmAXMDYnrhxa0qX1Y6Sxbc5NmcfYsJTI1yeGWg__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="85907355"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/85907355/Genetik_algoritma_ile_arama_motorlar%C4%B1_i%C3%A7in_web_site_optimizasyonu"><img alt="Research paper thumbnail of Genetik algoritma ile arama motorları için web site optimizasyonu" class="work-thumbnail" src="https://attachments.academia-assets.com/90472593/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/85907355/Genetik_algoritma_ile_arama_motorlar%C4%B1_i%C3%A7in_web_site_optimizasyonu">Genetik algoritma ile arama motorları için web site optimizasyonu</a></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Günümüzün en önemli teknolojilerinden biri olan İnternetin hayatımız daki önemi her geçen gün artmaktadır. İnternetin sunduğu başlıca hizmetlerden biri olan web sitelernde amac hedef kitlelere ulaşmaktır. Kişisel ya da kurumsal web sitelerinin bu hedefi gerçekleştirmesinde arama motorlarının payı büyüktür. Arama motorlarnın etkin bir şekilde yardımcı olabilmesi, hazırlanan web siteleri için &quot;arama motoru optimizasyonu&quot; işleminin en uygun bir şekilde yapılmasına bağlıdır. Bu işlemin gerçekleştirilmesi için optimizasyon işlemini yapacak personelin veya destek alınan firmanın personelinin kullanılan web tekonolojilerinin yanında hazırlanan içerik i...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="cf1f387e8c639aac11e57f956a2815be" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":90472593,"asset_id":85907355,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/90472593/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="85907355"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="85907355"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 85907355; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=85907355]").text(description); $(".js-view-count[data-work-id=85907355]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 85907355; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='85907355']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "cf1f387e8c639aac11e57f956a2815be" } } $('.js-work-strip[data-work-id=85907355]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":85907355,"title":"Genetik algoritma ile arama motorları için web site optimizasyonu","internal_url":"https://www.academia.edu/85907355/Genetik_algoritma_ile_arama_motorlar%C4%B1_i%C3%A7in_web_site_optimizasyonu","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":90472593,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/90472593/thumbnails/1.jpg","file_name":"417579710.pdf","download_url":"https://www.academia.edu/attachments/90472593/download_file","bulk_download_file_name":"Genetik_algoritma_ile_arama_motorlari_ic.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/90472593/417579710-libre.pdf?1661895046=\u0026response-content-disposition=attachment%3B+filename%3DGenetik_algoritma_ile_arama_motorlari_ic.pdf\u0026Expires=1741114107\u0026Signature=MWIaaTNis7lMx3pNrsvE8Lhlr3xFTZZvldR3eQiUNGrRdI8ljmVvVGpFZ~aNR5bw5wBOO7mwCU31cBHSo86n1GhjkdwPzO4svdgnabXGerUc2WWON7ruIhM4TSWoKqvmQ1fE5m1gRFIRgxJm0RoZv-P4AhV-uzH~B2ldVWn92cMO4cmaCkGjZSRllxWMUTzgIJWYRbUptiekaRQbwoLG2-R4hMhwRuevVqPFq7bz7ZE7S6cJNCqeyhUM8oEt-KzJYrqoDMkNcQ4Gyq1YEAJD5YVQs~NQJ2QNIKZoTLE9UnJMzoxRgYU0R-yMOR1Z2rpsBjsQK531WxKM09QSC0rDcw__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80480239"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/80480239/Research_Guides_Education_Research_Guide_Books"><img alt="Research paper thumbnail of Research Guides: * Education Research Guide: Books" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/80480239/Research_Guides_Education_Research_Guide_Books">Research Guides: * Education Research Guide: Books</a></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80480239"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80480239"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80480239; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80480239]").text(description); $(".js-view-count[data-work-id=80480239]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80480239; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80480239']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=80480239]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80480239,"title":"Research Guides: * Education Research Guide: Books","internal_url":"https://www.academia.edu/80480239/Research_Guides_Education_Research_Guide_Books","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="80480235"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/80480235/A_novel_image_watermarking_scheme_using_ULV_decomposition"><img alt="Research paper thumbnail of A novel image watermarking scheme using ULV decomposition" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/80480235/A_novel_image_watermarking_scheme_using_ULV_decomposition">A novel image watermarking scheme using ULV decomposition</a></div><div class="wp-workCard_item"><span>Optik</span><span>, 2022</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="80480235"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="80480235"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 80480235; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=80480235]").text(description); $(".js-view-count[data-work-id=80480235]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 80480235; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='80480235']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=80480235]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":80480235,"title":"A novel image watermarking scheme using ULV decomposition","internal_url":"https://www.academia.edu/80480235/A_novel_image_watermarking_scheme_using_ULV_decomposition","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="74513844"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/74513844/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems"><img alt="Research paper thumbnail of Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/74513844/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems">Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems</a></div><div class="wp-workCard_item"><span>Arabian Journal for Science and Engineering</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="74513844"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="74513844"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 74513844; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=74513844]").text(description); $(".js-view-count[data-work-id=74513844]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 74513844; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='74513844']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=74513844]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":74513844,"title":"Latent Semantic Indexing-Based Hybrid Collaborative Filtering for Recommender Systems","internal_url":"https://www.academia.edu/74513844/Latent_Semantic_Indexing_Based_Hybrid_Collaborative_Filtering_for_Recommender_Systems","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="64407776"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" rel="nofollow" href="https://www.academia.edu/64407776/Decision_Trees_in_Large_Data_Sets"><img alt="Research paper thumbnail of Decision Trees in Large Data Sets" class="work-thumbnail" src="https://a.academia-assets.com/images/blank-paper.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" rel="nofollow" href="https://www.academia.edu/64407776/Decision_Trees_in_Large_Data_Sets">Decision Trees in Large Data Sets</a></div><div class="wp-workCard_item"><span>Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Data mining is the process of obtaining information, which is used to identify and define the rel...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Data mining is the process of obtaining information, which is used to identify and define the relationships between data of different qualities. One of the important problems encountered in this process is the classification process in large data sets. Extensive research has been done to find solutions to this classification problem and different solution methods have been introduced. Some decision tree algorithms are among the structures that can be used effectively in this field. In this article, various decision tree structures and algorithms used for classification process in large data sets are discussed. Along with the definitions of the algorithms, the similarities and existing differences between them were determined, their advantages and disadvantages were investigated.</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="64407776"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="64407776"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 64407776; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=64407776]").text(description); $(".js-view-count[data-work-id=64407776]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 64407776; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='64407776']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (false){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "-1" } } $('.js-work-strip[data-work-id=64407776]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":64407776,"title":"Decision Trees in Large Data Sets","internal_url":"https://www.academia.edu/64407776/Decision_Trees_in_Large_Data_Sets","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> <div class="js-work-strip profile--work_container" data-work-id="64407775"><div class="profile--work_thumbnail hidden-xs"><a class="js-work-strip-work-link" data-click-track="profile-work-strip-thumbnail" href="https://www.academia.edu/64407775/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews"><img alt="Research paper thumbnail of LSTM Network based Sentiment Analysis for Customer Reviews" class="work-thumbnail" src="https://attachments.academia-assets.com/76459622/thumbnails/1.jpg" /></a></div><div class="wp-workCard wp-workCard_itemContainer"><div class="wp-workCard_item wp-workCard--title"><a class="js-work-strip-work-link text-gray-darker" data-click-track="profile-work-strip-title" href="https://www.academia.edu/64407775/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews">LSTM Network based Sentiment Analysis for Customer Reviews</a></div><div class="wp-workCard_item"><span>Journal of Polytechnic</span><span>, 2021</span></div><div class="wp-workCard_item"><span class="js-work-more-abstract-truncated">Continuously increasing data bring new problems and problems usually reveal new research areas. O...</span><a class="js-work-more-abstract" data-broccoli-component="work_strip.more_abstract" data-click-track="profile-work-strip-more-abstract" href="javascript:;"><span> more </span><span><i class="fa fa-caret-down"></i></span></a><span class="js-work-more-abstract-untruncated hidden">Continuously increasing data bring new problems and problems usually reveal new research areas. One of the new areas is Sentiment Analysis. This field has some difficulties. The fact that people have complex sentiments is the main cause of the difficulty, but this has not prevented the progress of the studies in this field. Sentiment analysis is generally used to obtain information about persons by collecting their texts or expressions. Sentiment analysis can sometimes bring serious benefits. In this study, with singular tag-plural class approach, a binary classification was performed. An LSTM network and several machine learning models were tested. The dataset collected in Turkish, and Stanford Large Movie Reviews datasets were used in this study. Due to the noise in the dataset, the Zemberek NLP Library for Turkic Languages and Regular Expression techniques were used to normalize and clean texts, later, the data were transformed into vector sequences. The preprocessing process mad...</span></div><div class="wp-workCard_item wp-workCard--actions"><span class="work-strip-bookmark-button-container"></span><a id="11a3c4151313cd123daa609d052a4134" class="wp-workCard--action" rel="nofollow" data-click-track="profile-work-strip-download" data-download="{"attachment_id":76459622,"asset_id":64407775,"asset_type":"Work","button_location":"profile"}" href="https://www.academia.edu/attachments/76459622/download_file?s=profile"><span><i class="fa fa-arrow-down"></i></span><span>Download</span></a><span class="wp-workCard--action visible-if-viewed-by-owner inline-block" style="display: none;"><span class="js-profile-work-strip-edit-button-wrapper profile-work-strip-edit-button-wrapper" data-work-id="64407775"><a class="js-profile-work-strip-edit-button" tabindex="0"><span><i class="fa fa-pencil"></i></span><span>Edit</span></a></span></span></div><div class="wp-workCard_item wp-workCard--stats"><span><span><span class="js-view-count view-count u-mr2x" data-work-id="64407775"><i class="fa fa-spinner fa-spin"></i></span><script>$(function () { var workId = 64407775; window.Academia.workViewCountsFetcher.queue(workId, function (count) { var description = window.$h.commaizeInt(count) + " " + window.$h.pluralize(count, 'View'); $(".js-view-count[data-work-id=64407775]").text(description); $(".js-view-count[data-work-id=64407775]").attr('title', description).tooltip(); }); });</script></span></span><span><span class="percentile-widget hidden"><span class="u-mr2x work-percentile"></span></span><script>$(function () { var workId = 64407775; window.Academia.workPercentilesFetcher.queue(workId, function (percentileText) { var container = $(".js-work-strip[data-work-id='64407775']"); container.find('.work-percentile').text(percentileText.charAt(0).toUpperCase() + percentileText.slice(1)); container.find('.percentile-widget').show(); container.find('.percentile-widget').removeClass('hidden'); }); });</script></span></div><div id="work-strip-premium-row-container"></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/work_edit-ad038b8c047c1a8d4fa01b402d530ff93c45fee2137a149a4a5398bc8ad67560.js"], function() { // from javascript_helper.rb var dispatcherData = {} if (true){ window.WowProfile.dispatcher = window.WowProfile.dispatcher || _.clone(Backbone.Events); dispatcherData = { dispatcher: window.WowProfile.dispatcher, downloadLinkId: "11a3c4151313cd123daa609d052a4134" } } $('.js-work-strip[data-work-id=64407775]').each(function() { if (!$(this).data('initialized')) { new WowProfile.WorkStripView({ el: this, workJSON: {"id":64407775,"title":"LSTM Network based Sentiment Analysis for Customer Reviews","internal_url":"https://www.academia.edu/64407775/LSTM_Network_based_Sentiment_Analysis_for_Customer_Reviews","owner_id":12024395,"coauthors_can_edit":true,"owner":{"id":12024395,"first_name":"Fahrettin","middle_initials":null,"last_name":"Horasan","page_name":"FahrettinHorasan","domain_name":"kirikkaleturkey","created_at":"2014-05-13T23:05:25.230-07:00","display_name":"Fahrettin Horasan","url":"https://kirikkaleturkey.academia.edu/FahrettinHorasan"},"attachments":[{"id":76459622,"title":"","file_type":"pdf","scribd_thumbnail_url":"https://attachments.academia-assets.com/76459622/thumbnails/1.jpg","file_name":"1459231.pdf","download_url":"https://www.academia.edu/attachments/76459622/download_file","bulk_download_file_name":"LSTM_Network_based_Sentiment_Analysis_fo.pdf","bulk_download_url":"https://d1wqtxts1xzle7.cloudfront.net/76459622/1459231-libre.pdf?1639635023=\u0026response-content-disposition=attachment%3B+filename%3DLSTM_Network_based_Sentiment_Analysis_fo.pdf\u0026Expires=1741114107\u0026Signature=ZXcxThNfPZsQvz81T4JGSMH-IIPXBm1MOrVpYCZH2bS07G2ji0lv9Fk-k9ddQ4oxAhbdpqAFaetWFYTrepybTLKSmgH3jwvB33rD3gfRcyADzVjXCzdl6BbSwiG2f5kj~IDslqjTlbrpxVLEBZSsTED1FBss1wSE-NtelQtEgdO7x9u5pGptOyCToTHjq1i7CSgNvpzHDCLuzFc4QKPAzblS1PSVp9l9Lo6RPU5RcZKDsYBH8lwnIDkzwPv-d3R1OEPAvTWqe-wFBWXg8CNSypaAS2K5NIugQ102Yogk0lJ8kwHEMPXSYBzgPAwlyteDtp7-b8N0SJVEEz0OUXCH~Q__\u0026Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA"}]}, dispatcherData: dispatcherData }); $(this).data('initialized', true); } }); $a.trackClickSource(".js-work-strip-work-link", "profile_work_strip") }); </script> </div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js","https://a.academia-assets.com/assets/google_contacts-0dfb882d836b94dbcb4a2d123d6933fc9533eda5be911641f20b4eb428429600.js"], function() { // from javascript_helper.rb $('.js-google-connect-button').click(function(e) { e.preventDefault(); GoogleContacts.authorize_and_show_contacts(); Aedu.Dismissibles.recordClickthrough("WowProfileImportContactsPrompt"); }); $('.js-update-biography-button').click(function(e) { e.preventDefault(); Aedu.Dismissibles.recordClickthrough("UpdateUserBiographyPrompt"); $.ajax({ url: $r.api_v0_profiles_update_about_path({ subdomain_param: 'api', about: "", }), type: 'PUT', success: function(response) { location.reload(); } }); }); $('.js-work-creator-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_document_path({ source: encodeURIComponent(""), }); }); $('.js-video-upload-button').click(function (e) { e.preventDefault(); window.location = $r.upload_funnel_video_path({ source: encodeURIComponent(""), }); }); $('.js-do-this-later-button').click(function() { $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("WowProfileImportContactsPrompt"); }); $('.js-update-biography-do-this-later-button').click(function(){ $(this).closest('.js-profile-nag-panel').remove(); Aedu.Dismissibles.recordDismissal("UpdateUserBiographyPrompt"); }); $('.wow-profile-mentions-upsell--close').click(function(){ $('.wow-profile-mentions-upsell--panel').hide(); Aedu.Dismissibles.recordDismissal("WowProfileMentionsUpsell"); }); $('.wow-profile-mentions-upsell--button').click(function(){ Aedu.Dismissibles.recordClickthrough("WowProfileMentionsUpsell"); }); new WowProfile.SocialRedesignUserWorks({ initialWorksOffset: 20, allWorksOffset: 20, maxSections: 1 }) }); </script> </div></div></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/wow_profile_edit-5ea339ee107c863779f560dd7275595239fed73f1a13d279d2b599a28c0ecd33.js","https://a.academia-assets.com/assets/add_coauthor-22174b608f9cb871d03443cafa7feac496fb50d7df2d66a53f5ee3c04ba67f53.js","https://a.academia-assets.com/assets/tab-dcac0130902f0cc2d8cb403714dd47454f11fc6fb0e99ae6a0827b06613abc20.js","https://a.academia-assets.com/assets/wow_profile-a9bf3a2bc8c89fa2a77156577594264ee8a0f214d74241bc0fcd3f69f8d107ac.js"], function() { // from javascript_helper.rb window.ae = window.ae || {}; window.ae.WowProfile = window.ae.WowProfile || {}; if(Aedu.User.current && Aedu.User.current.id === $viewedUser.id) { window.ae.WowProfile.current_user_edit = {}; new WowProfileEdit.EditUploadView({ el: '.js-edit-upload-button-wrapper', model: window.$current_user, }); new AddCoauthor.AddCoauthorsController(); } var userInfoView = new WowProfile.SocialRedesignUserInfo({ recaptcha_key: "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB" }); WowProfile.router = new WowProfile.Router({ userInfoView: userInfoView }); Backbone.history.start({ pushState: true, root: "/" + $viewedUser.page_name }); new WowProfile.UserWorksNav() }); </script> </div> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; } .sign-in-with-apple-button > div { margin: 0 auto; / This centers the Apple-rendered button horizontally }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "9f97f8791be1b002ea648cb9264018abfce1b67d38b83f5a01e325d7b807dcb3", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="mcPhjQcJ-KWzGK9Y8kDyvyFWU6zXBl0Jg82Cs2__SZZ-cPWdgldanGvCrkA18IsfeYYM7rV8eV5qyHmUCpK7iw" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://kirikkaleturkey.academia.edu/FahrettinHorasan" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input type="hidden" name="authenticity_token" value="VliepXBxJV0UCC0-ex2dV8aJSQI7fG4l4j1QRIj4X86x64q19S-HZMzSLCa8reT3nlkWQFkGSnILOKtj7ZWt0w" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><script src="https://recaptcha.net/recaptcha/api.js" async defer></script> <script> var invisibleRecaptchaSubmit = function () { var closestForm = function (ele) { var curEle = ele.parentNode; while (curEle.nodeName !== 'FORM' && curEle.nodeName !== 'BODY'){ curEle = curEle.parentNode; } return curEle.nodeName === 'FORM' ? curEle : null }; var eles = document.getElementsByClassName('g-recaptcha'); if (eles.length > 0) { var form = closestForm(eles[0]); if (form) { form.submit(); } } }; </script> <input type="submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" data-callback="invisibleRecaptchaSubmit" class="g-recaptcha btn btn-primary btn-block" value="Email me a link" value=""/> </form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div class="bootstrap" id="footer"><div class="footer-content clearfix text-center padding-top-7x" style="width:100%;"><ul class="footer-links-secondary footer-links-wide list-inline margin-bottom-1x"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/journals">Academia.edu Journals</a></li><li><a rel="nofollow" href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a rel="nofollow" href="https://support.academia.edu/hc/en-us"><svg style="width: 12px; height: 12px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer-links-tertiary list-inline margin-bottom-1x"><li class="small">Find new research papers in:</li><li class="small"><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li class="small"><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul></div></div><div class="DesignSystem" id="credit" style="width:100%;"><ul class="u-pl0x footer-links-legal list-inline"><li><a rel="nofollow" href="https://www.academia.edu/terms">Terms</a></li><li><a rel="nofollow" href="https://www.academia.edu/privacy">Privacy</a></li><li><a rel="nofollow" href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2025</li></ul></div><script> //<![CDATA[ window.detect_gmtoffset = true; window.Academia && window.Academia.set_gmtoffset && Academia.set_gmtoffset('/gmtoffset'); //]]> </script> <div id='overlay_background'></div> <div id='bootstrap-modal-container' class='bootstrap'></div> <div id='ds-modal-container' class='bootstrap DesignSystem'></div> <div id='full-screen-modal'></div> </div> </body> </html>