CINXE.COM
Search results for: Halil Demolli
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Halil Demolli</title> <meta name="description" content="Search results for: Halil Demolli"> <meta name="keywords" content="Halil Demolli"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Halil Demolli" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Halil Demolli"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 36</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Halil Demolli</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Effects of Vertimax Training on Agility, Quickness and Acceleration</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dede%20Basturk">Dede Basturk</a>, <a href="https://publications.waset.org/abstracts/search?q=Metin%20Kaya"> Metin Kaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Taskin"> Halil Taskin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nurtekin%20Erkmen"> Nurtekin Erkmen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In total, 29 students studying in Sel莽uk University Physical Training and Sports School who are recreationally active participated voluntarilyin this study which was carried out in order to examine effects of Vertimax trainings on agility, quickness and acceleration. 3 groups took their parts in this study as Vertimax training group (N=10), Ordinary training group (N=10) and Control group (N=9). Measurements were carried out in performance laboratory of Sel莽uk University Physical Training and Sports School. A training program for quickness and agility was followed up for subjects 3 days a week (Monday, Wednesday, Friday) for 8 weeks. Subjects taking their parts in vertimax training group and ordinary training group participated in the training program for quickness and agility. Measurements were applied as pre-test and post-test. Subjects of vertimax training group followed the training program with vertimax device and subjects of ordinary training group followed the training program without vertimax device. As to control group who are recreationally active, they did not participate in any program. 4 gate photocells were used for measuring and measurement of distances was carried out in m. Furthermore, single gate photocell and honi were used for agility test. Measurements started with 15 minutes of warm-up. Acceleration, quickness and agility tests were applied on subjects. 3 measurements were made for each subject at 3 minutes resting intervals. The best rating of three measurements was recorded. 5 m quickness pre-test value of vertimax training groups has been determined as 1,11卤0,06 s and post-test value has been determined as 1,06 卤 0,08 s (P<0,05). 5 m quickness pre-test value of ordinary training group has been determined as 1,11卤0,06 s and post-test value has been determined as 1,07卤0,07 s (P<0,05).5 m quickness pre-test value of control group has been determined as 1,13卤0,08 s and post-test value has been determined as 1,10 卤 0,07 s (P>0,05). Upon examination of 10 m acceleration value before and after the training, 10 m acceleration pre-test value of vertimax training group has been determined as 1,82 卤 0,07 s and post-test value has been determined as 1,76卤0,83 s (P>0,05). 10 m acceleration pre-test value of ordinary training group has been determined as 1,83卤0,05 s and post-test value has been determined as 1,78 卤 0,08 s (P>0,05).10 m acceleration pre-test value of control group has been determined as 1,87卤0,11 s and post-test value has been determined as 1,83 卤 0,09 s (P>0,05). Upon examination of 15 m acceleration value before and after the training, 15 m acceleration pre-test value of vertimax training group has been determined as 2,52卤0,10 s and post-test value has been determined as 2,46 卤 0,11 s (P>0,05).15 m acceleration pre-test value of ordinary training group has been determined as 2,52卤0,05 s and post-test value has been determined as 2,48 卤 0,06 s (P>0,05). 15 m acceleration pre-test value of control group has been determined as 2,55 卤 0,11 s and post-test value has been determined as 2,54 卤 0,08 s (P>0,05).Upon examination of agility performance before and after the training, agility pre-test value of vertimax training group has been determined as 9,50卤0,47 s and post-test value has been determined as 9,66 卤 0,47 s (P>0,05). Agility pre-test value of ordinary training group has been determined as 9,99 卤 0,05 s and post-test value has been determined as 9,86 卤 0,40 s (P>0,05). Agility pre-test value of control group has been determined as 9,74 卤 0,45 s and post-test value has been determined as 9,92 卤 0,49 s (P>0,05). Consequently, it has been observed that quickness and acceleration features were developed significantly following 8 weeks of vertimax training program and agility features were not developed significantly. It is suggested that training practices used for the study may be used for situations which may require sudden moves and in order to attain the maximum speed in a short time. Nevertheless, it is also suggested that this training practice does not make contribution in development of moves which may require sudden direction changes. It is suggested that productiveness and innovation may come off in terms of training by using various practices of vertimax trainings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vertimax" title="vertimax">vertimax</a>, <a href="https://publications.waset.org/abstracts/search?q=training" title=" training"> training</a>, <a href="https://publications.waset.org/abstracts/search?q=quickness" title=" quickness"> quickness</a>, <a href="https://publications.waset.org/abstracts/search?q=agility" title=" agility"> agility</a>, <a href="https://publications.waset.org/abstracts/search?q=acceleration" title=" acceleration"> acceleration</a> </p> <a href="https://publications.waset.org/abstracts/17944/effects-of-vertimax-training-on-agility-quickness-and-acceleration" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">496</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Mechanical Behavior of Sandwiches with Various Glass Fiber/Epoxy Skins under Bending Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Kara">Emre Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Metehan%20Demir"> Metehan Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eura%20Karakuzu"> 艦ura Karakuzu</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Ko%C3%A7"> Kadir Ko莽</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20F.%20Geylan"> Ahmet F. Geylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Aykul"> Halil Aykul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> While the polymeric foam cored sandwiches have been realized for many years, recently there is a growing and outstanding interest on the use of sandwiches consisting of aluminum foam core because of their some of the distinct mechanical properties such as high bending stiffness, high load carrying and energy absorption capacities. These properties make them very useful in the transportation industry (automotive, aerospace, shipbuilding industry), where the "lightweight design" philosophy and the safety of vehicles are very important aspects. Therefore, in this study, the sandwich panels with aluminum alloy foam core and various types and thicknesses of glass fiber reinforced polymer (GFRP) skins produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique were obtained by using a commercial toughened epoxy based adhesive with two components. The aim of this contribution was the analysis of the bending response of sandwiches with various glass fiber reinforced polymer skins. The three point bending tests were performed on sandwich panels at different values of support span distance using a universal static testing machine in order to clarify the effects of the type and thickness of the GFRP skins in terms of peak load, energy efficiency and absorbed energy values. The GFRP skins were easily bonded to the aluminum alloy foam core under press machine with a very low pressure. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, collapse mechanisms and the influence of the support span length and GFRP skins. The obtained results of the experimental investigation presented that the sandwich with the skin made of thicker S-Glass fabric failed at the highest load and absorbed the highest amount of energy compared to the other sandwich specimens. The increment of the support span distance made the decrease of the peak force and absorbed energy values for each type of panels. The common collapse mechanism of the panels was obtained as core shear failure which was not affected by the skin materials and the support span distance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20foam" title="aluminum foam">aluminum foam</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20mechanisms" title=" collapse mechanisms"> collapse mechanisms</a>, <a href="https://publications.waset.org/abstracts/search?q=light-weight%20structures" title=" light-weight structures"> light-weight structures</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20application" title=" transport application"> transport application</a> </p> <a href="https://publications.waset.org/abstracts/27535/mechanical-behavior-of-sandwiches-with-various-glass-fiberepoxy-skins-under-bending-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27535.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">398</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> An Investigation on the Sandwich Panels with Flexible and Toughened Adhesives under Flexural Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Kara">Emre Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eura%20Karakuzu"> 艦ura Karakuzu</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Fatih%20Geylan"> Ahmet Fatih Geylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Metehan%20Demir"> Metehan Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Ko%C3%A7"> Kadir Ko莽</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Aykul"> Halil Aykul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material selection in the design of the sandwich structures is very crucial aspect because of the positive or negative influences of the base materials to the mechanical properties of the entire panel. In the literature, it was presented that the selection of the skin and core materials plays very important role on the behavior of the sandwich. Beside this, the use of the correct adhesive can make the whole structure to show better mechanical results and behavior. By this way, the sandwich structures realized in the study were obtained with the combination of aluminum foam core and three different glass fiber reinforced polymer (GFRP) skins using two different commercial adhesives which are based on flexible polyurethane and toughened epoxy. The static and dynamic tests were already applied on the sandwiches with different types of adhesives. In the present work, the static three-point bending tests were performed on the sandwiches having an aluminum foam core with the thickness of 15 mm, the skins with three different types of fabrics ([0掳/90掳] cross ply E-Glass Biaxial stitched, [0掳/90掳] cross ply E-Glass Woven and [0掳/90掳] cross ply S-Glass Woven which have same thickness value of 1.75 mm) and two different commercial adhesives (flexible polyurethane and toughened epoxy based) at different values of support span distances (L= 55, 70, 80, 125 mm) by aiming the analyses of their flexural performance. The skins used in the study were produced via Vacuum Assisted Resin Transfer Molding (VARTM) technique and were easily bonded onto the aluminum foam core with flexible and toughened adhesives under a very low pressure using press machine with the alignment tabs having the total thickness of the whole panel. The main results of the flexural loading are: force-displacement curves obtained after the bending tests, peak force values, absorbed energy, collapse mechanisms, adhesion quality and the effect of the support span length and adhesive type. The experimental results presented that the sandwiches with epoxy based toughened adhesive and the skins made of S-Glass Woven fabrics indicated the best adhesion quality and mechanical properties. The sandwiches with toughened adhesive exhibited higher peak force and energy absorption values compared to the sandwiches with flexible adhesive. The core shear mode occurred in the sandwiches with flexible polyurethane based adhesive through the thickness of the core while the same mode took place in the sandwiches with toughened epoxy based adhesive along the length of the core. The use of these sandwich structures can lead to a weight reduction of the transport vehicles, providing an adequate structural strength under operating conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive%20and%20adhesion" title="adhesive and adhesion">adhesive and adhesion</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20foam" title=" aluminum foam"> aluminum foam</a>, <a href="https://publications.waset.org/abstracts/search?q=bending" title=" bending"> bending</a>, <a href="https://publications.waset.org/abstracts/search?q=collapse%20mechanisms" title=" collapse mechanisms"> collapse mechanisms</a> </p> <a href="https://publications.waset.org/abstracts/27466/an-investigation-on-the-sandwich-panels-with-flexible-and-toughened-adhesives-under-flexural-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Kara">Emre Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmet%20Fatih%20Geylan"> Ahmet Fatih Geylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Kadir%20Ko%C3%A7"> Kadir Ko莽</a>, <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eura%20Karakuzu"> 艦ura Karakuzu</a>, <a href="https://publications.waset.org/abstracts/search?q=Metehan%20Demir"> Metehan Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Aykul"> Halil Aykul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0掳/90掳] cross ply E-Glass Woven and [0掳/90掳] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20foam" title="aluminum foam">aluminum foam</a>, <a href="https://publications.waset.org/abstracts/search?q=composite%20panel" title=" composite panel"> composite panel</a>, <a href="https://publications.waset.org/abstracts/search?q=flexure" title=" flexure"> flexure</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20application" title=" transport application"> transport application</a> </p> <a href="https://publications.waset.org/abstracts/27534/flexural-performance-of-the-sandwich-structures-having-aluminum-foam-core-with-different-thicknesses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The Efficiency of Mechanization in Weed Control in Artificial Regeneration of Oriental Beech (Fagus orientalis Lipsky.)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tu%C4%9Frul%20Varol">Tu臒rul Varol</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Bar%C4%B1%C5%9F%20%C3%96zel"> Halil Bar谋艧 脰zel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study which has been conducted in Ak莽asu Forest Range District of Devrek Forest Directorate; 3 methods (cover removal with human force, cover removal with Hitachi F20 Excavator, and cover removal with agricultural equipment mounted on a Ferguson 240S agriculture tractor) utilized in weed control efforts in regeneration of degraded oriental beech forests have been compared. In this respect, 3 methods have been compared by determining certain work hours and standard durations of unit areas (1 hectare). For this purpose, evaluating the tasks made with human and machine force from the aspects of duration, productivity and costs, it has been aimed to determine the most productive method in accordance with the actual ecological conditions of research field. Within the scope of the study, the time studies have been conducted for 3 methods used in weed control efforts. While carrying out those studies, the performed implementations have been evaluated by dividing them into business stages. Also, the actual data have been used while calculating the cost accounts. In those calculations, the latest formulas and equations which are also used in developed countries have been utilized. The variance of analysis (ANOVA) was used in order to determine whether there is any statistically significant difference among obtained results, and the Duncan test was used for grouping if there is significant difference. According to the measurements and findings carried out within the scope of this study, it has been found during living cover removal efforts in regeneration efforts in demolished oriental beech forests that the removal of weed layer in 1 hectare of field has taken 920 hours with human force, 15.1 hours with excavator and 60 hours with an equipment mounted on a tractor. On the other hand, it has been determined that the cost of removal of living cover in unit area (1 hectare) was 3220.00 TL for man power, 788.70 TL for excavator and 2227.20 TL for equipment mounted on a tractor. According to the obtained results, it has been found that the utilization of excavator in weed control effort in regeneration of degraded oriental beech regions under actual ecological conditions of research field has been found to be more productive from both of aspects of duration and costs. These determinations carried out should be repeated in weed control efforts in degraded forest fields with different ecological conditions, it is compulsory for finding the most efficient weed control method. These findings will light the way of technical staff of forestry directorate in determination of the most effective and economic weed contol method. Thus, the more actual data will be used while preparing the weed control budgets, and there will be significant contributions to national economy. Also the results of this and similar studies are very important for developing the policies for our forestry in short and long term. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20regeneration" title="artificial regeneration">artificial regeneration</a>, <a href="https://publications.waset.org/abstracts/search?q=weed%20control" title=" weed control"> weed control</a>, <a href="https://publications.waset.org/abstracts/search?q=oriental%20beech" title=" oriental beech"> oriental beech</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanization" title=" mechanization"> mechanization</a>, <a href="https://publications.waset.org/abstracts/search?q=man%20power" title=" man power"> man power</a>, <a href="https://publications.waset.org/abstracts/search?q=cost%20analysis" title=" cost analysis"> cost analysis</a> </p> <a href="https://publications.waset.org/abstracts/13768/the-efficiency-of-mechanization-in-weed-control-in-artificial-regeneration-of-oriental-beech-fagus-orientalis-lipsky" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13768.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">418</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Flexural Response of Sandwiches with Micro Lattice Cores Manufactured via Selective Laser Sintering</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emre%20Kara">Emre Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kur%C5%9Fun"> Ali Kur艧un</a>, <a href="https://publications.waset.org/abstracts/search?q=Halil%20Aykul"> Halil Aykul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The lightweight sandwiches obtained with the use of various core materials such as foams, honeycomb, lattice structures etc., which have high energy absorbing capacity and high strength to weight ratio, are suitable for several applications in transport industry (automotive, aerospace, shipbuilding industry) where saving of fuel consumption, load carrying capacity increase, safety of vehicles and decrease of emission of harmful gases are very important aspects. While the sandwich structures with foams and honeycombs have been applied for many years, there is a growing interest on a new generation sandwiches with micro lattice cores. In order to produce these core structures, various production methods were created with the development of the technology. One of these production technologies is an additive manufacturing technique called selective laser sintering/melting (SLS/SLM) which is very popular nowadays because of saving of production time and achieving the production of complex topologies. The static bending and the dynamic low velocity impact tests of the sandwiches with carbon fiber/epoxy skins and the micro lattice cores produced via SLS/SLM were already reported in just a few studies. The goal of this investigation was the analysis of the flexural response of the sandwiches consisting of glass fiber reinforced plastic (GFRP) skins and the micro lattice cores manufactured via SLS under thermo-mechanical loads in order to compare the results in terms of peak load and absorbed energy values respect to the effect of core cell size, temperature and support span length. The micro lattice cores were manufactured using SLS technology that creates the product drawn by a 3D computer aided design (CAD) software. The lattice cores which were designed as body centered cubic (BCC) model having two different cell sizes (d= 2 and 2.5 mm) with the strut diameter of 0.3 mm were produced using titanium alloy (Ti6Al4V) powder. During the production of all the core materials, the same production parameters such as laser power, laser beam diameter, building direction etc. were kept constant. Vacuum Infusion (VI) method was used to produce skin materials, made of [0掳/90掳] woven S-Glass prepreg laminates. The combination of the core and skins were implemented under VI. Three point bending tests were carried out by a servo-hydraulic test machine with different values of support span distances (L = 30, 45, and 60 mm) under various temperature values (T = 23, 40 and 60 掳C) in order to analyze the influences of support span and temperature values. The failure mode of the collapsed sandwiches has been investigated using 3D computed tomography (CT) that allows a three-dimensional reconstruction of the analyzed object. The main results of the bending tests are: load-deflection curves, peak force and absorbed energy values. The results were compared according to the effect of cell size, support span and temperature values. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry, where problems of collision and crash have increased in the last years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=light-weight%20sandwich%20structures" title="light-weight sandwich structures">light-weight sandwich structures</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20lattice%20cores" title=" micro lattice cores"> micro lattice cores</a>, <a href="https://publications.waset.org/abstracts/search?q=selective%20laser%20sintering" title=" selective laser sintering"> selective laser sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=transport%20application" title=" transport application"> transport application</a> </p> <a href="https://publications.waset.org/abstracts/32914/flexural-response-of-sandwiches-with-micro-lattice-cores-manufactured-via-selective-laser-sintering" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Halil%20Demolli&page=1" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Halil%20Demolli&page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item disabled"><span class="page-link">›</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>