CINXE.COM

Natural deduction - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Natural deduction - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"33e0df59-5e5c-4c35-8a00-09248607b107","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Natural_deduction","wgTitle":"Natural deduction","wgCurRevisionId":1249686451,"wgRevisionId":1249686451,"wgArticleId":51072,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description matches Wikidata","Articles needing additional references from May 2024","All articles needing additional references","Articles with Stanford Encyclopedia of Philosophy links","Pages that use a deprecated format of the math tags","Logical calculi","Deductive reasoning","Proof theory","Methods of proof"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName": "Natural_deduction","wgRelevantArticleId":51072,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":70000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1572108","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform", "platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips", "ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.quicksurveys.init","ext.growthExperiments.SuggestedEditSession"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.6"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Natural deduction - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Natural_deduction"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Natural_deduction&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Natural_deduction"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Natural_deduction rootpage-Natural_deduction skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Natural+deduction" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Natural+deduction" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/?wmf_source=donate&amp;wmf_medium=sidebar&amp;wmf_campaign=en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Natural+deduction" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Natural+deduction" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-History_of_notation_styles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#History_of_notation_styles"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>History of notation styles</span> </div> </a> <ul id="toc-History_of_notation_styles-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Notation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Notation</span> </div> </a> <button aria-controls="toc-Notation-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Notation subsection</span> </button> <ul id="toc-Notation-sublist" class="vector-toc-list"> <li id="toc-Gentzen&#039;s_tree_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gentzen&#039;s_tree_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Gentzen's tree notation</span> </div> </a> <ul id="toc-Gentzen&#039;s_tree_notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Suppes–Lemmon_notation" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Suppes–Lemmon_notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Suppes–Lemmon notation</span> </div> </a> <ul id="toc-Suppes–Lemmon_notation-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Propositional_language_syntax" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Propositional_language_syntax"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Propositional language syntax</span> </div> </a> <button aria-controls="toc-Propositional_language_syntax-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Propositional language syntax subsection</span> </button> <ul id="toc-Propositional_language_syntax-sublist" class="vector-toc-list"> <li id="toc-Common_definition_styles" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Common_definition_styles"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Common definition styles</span> </div> </a> <ul id="toc-Common_definition_styles-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gentzen-style_definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gentzen-style_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Gentzen-style definition</span> </div> </a> <ul id="toc-Gentzen-style_definition-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Gentzen-style_propositional_logic" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Gentzen-style_propositional_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Gentzen-style propositional logic</span> </div> </a> <button aria-controls="toc-Gentzen-style_propositional_logic-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Gentzen-style propositional logic subsection</span> </button> <ul id="toc-Gentzen-style_propositional_logic-sublist" class="vector-toc-list"> <li id="toc-Gentzen-style_inference_rules" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gentzen-style_inference_rules"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Gentzen-style inference rules</span> </div> </a> <ul id="toc-Gentzen-style_inference_rules-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Gentzen-style_example_proofs" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Gentzen-style_example_proofs"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.2</span> <span>Gentzen-style example proofs</span> </div> </a> <ul id="toc-Gentzen-style_example_proofs-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Suppes–Lemmon-style_propositional_logic" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Suppes–Lemmon-style_propositional_logic"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Suppes–Lemmon-style propositional logic</span> </div> </a> <button aria-controls="toc-Suppes–Lemmon-style_propositional_logic-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Suppes–Lemmon-style propositional logic subsection</span> </button> <ul id="toc-Suppes–Lemmon-style_propositional_logic-sublist" class="vector-toc-list"> <li id="toc-Suppes–Lemmon-style_inference_rules" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Suppes–Lemmon-style_inference_rules"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Suppes–Lemmon-style inference rules</span> </div> </a> <ul id="toc-Suppes–Lemmon-style_inference_rules-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Suppes–Lemmon-style_example_proof" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Suppes–Lemmon-style_example_proof"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Suppes–Lemmon-style example proof</span> </div> </a> <ul id="toc-Suppes–Lemmon-style_example_proof-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Consistency,_completeness,_and_normal_forms" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Consistency,_completeness,_and_normal_forms"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Consistency, completeness, and normal forms</span> </div> </a> <ul id="toc-Consistency,_completeness,_and_normal_forms-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-First_and_higher-order_extensions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#First_and_higher-order_extensions"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>First and higher-order extensions</span> </div> </a> <ul id="toc-First_and_higher-order_extensions-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Proofs_and_type_theory" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Proofs_and_type_theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>Proofs and type theory</span> </div> </a> <button aria-controls="toc-Proofs_and_type_theory-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Proofs and type theory subsection</span> </button> <ul id="toc-Proofs_and_type_theory-sublist" class="vector-toc-list"> <li id="toc-Substitution_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Substitution_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.1</span> <span>Substitution theorem</span> </div> </a> <ul id="toc-Substitution_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Example:_Dependent_Type_Theory" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example:_Dependent_Type_Theory"> <div class="vector-toc-text"> <span class="vector-toc-numb">8.2</span> <span>Example: Dependent Type Theory</span> </div> </a> <ul id="toc-Example:_Dependent_Type_Theory-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Classical_and_modal_logics" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Classical_and_modal_logics"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Classical and modal logics</span> </div> </a> <button aria-controls="toc-Classical_and_modal_logics-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Classical and modal logics subsection</span> </button> <ul id="toc-Classical_and_modal_logics-sublist" class="vector-toc-list"> <li id="toc-Modal_substitution_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Modal_substitution_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">9.1</span> <span>Modal substitution theorem</span> </div> </a> <ul id="toc-Modal_substitution_theorem-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Comparison_with_sequent_calculus" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Comparison_with_sequent_calculus"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>Comparison with sequent calculus</span> </div> </a> <button aria-controls="toc-Comparison_with_sequent_calculus-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Comparison with sequent calculus subsection</span> </button> <ul id="toc-Comparison_with_sequent_calculus-sublist" class="vector-toc-list"> <li id="toc-Cut_(substitution)" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Cut_(substitution)"> <div class="vector-toc-text"> <span class="vector-toc-numb">10.1</span> <span>Cut (substitution)</span> </div> </a> <ul id="toc-Cut_(substitution)-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>References</span> </div> </a> <button aria-controls="toc-References-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle References subsection</span> </button> <ul id="toc-References-sublist" class="vector-toc-list"> <li id="toc-General_references" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#General_references"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.1</span> <span>General references</span> </div> </a> <ul id="toc-General_references-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Inline_citations" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Inline_citations"> <div class="vector-toc-text"> <span class="vector-toc-numb">13.2</span> <span>Inline citations</span> </div> </a> <ul id="toc-Inline_citations-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Natural deduction</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 16 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-16" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">16 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Systeme_nat%C3%BCrlichen_Schlie%C3%9Fens" title="Systeme natürlichen Schließens – German" lang="de" hreflang="de" data-title="Systeme natürlichen Schließens" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Deducci%C3%B3n_natural" title="Deducción natural – Spanish" lang="es" hreflang="es" data-title="Deducción natural" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D8%B3%D8%AA%D9%86%D8%AA%D8%A7%D8%AC_%D8%B7%D8%A8%DB%8C%D8%B9%DB%8C" title="استنتاج طبیعی – Persian" lang="fa" hreflang="fa" data-title="استنتاج طبیعی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/D%C3%A9duction_naturelle" title="Déduction naturelle – French" lang="fr" hreflang="fr" data-title="Déduction naturelle" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%9E%90%EC%97%B0_%EC%97%B0%EC%97%AD" title="자연 연역 – Korean" lang="ko" hreflang="ko" data-title="자연 연역" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Deduzione_naturale" title="Deduzione naturale – Italian" lang="it" hreflang="it" data-title="Deduzione naturale" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Natuurlijke_deductie" title="Natuurlijke deductie – Dutch" lang="nl" hreflang="nl" data-title="Natuurlijke deductie" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%BC%94%E7%B9%B9" title="自然演繹 – Japanese" lang="ja" hreflang="ja" data-title="自然演繹" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Naturlig_deduksjon" title="Naturlig deduksjon – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Naturlig deduksjon" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Dedukcja_naturalna" title="Dedukcja naturalna – Polish" lang="pl" hreflang="pl" data-title="Dedukcja naturalna" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Dedu%C3%A7%C3%A3o_natural" title="Dedução natural – Portuguese" lang="pt" hreflang="pt" data-title="Dedução natural" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9D%D0%B0%D1%82%D1%83%D1%80%D0%B0%D0%BB%D1%8C%D0%BD%D1%8B%D0%B9_%D0%B2%D1%8B%D0%B2%D0%BE%D0%B4" title="Натуральный вывод – Russian" lang="ru" hreflang="ru" data-title="Натуральный вывод" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Natural_deduction" title="Natural deduction – Simple English" lang="en-simple" hreflang="en-simple" data-title="Natural deduction" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Luonnollinen_p%C3%A4%C3%A4ttely" title="Luonnollinen päättely – Finnish" lang="fi" hreflang="fi" data-title="Luonnollinen päättely" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%BC%94%E7%B9%B9" title="自然演繹 – Cantonese" lang="yue" hreflang="yue" data-title="自然演繹" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E8%87%AA%E7%84%B6%E6%BC%94%E7%BB%8E" title="自然演绎 – Chinese" lang="zh" hreflang="zh" data-title="自然演绎" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1572108#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Natural_deduction" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Natural_deduction" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Natural_deduction"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Natural_deduction&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Natural_deduction&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Natural_deduction"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Natural_deduction&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Natural_deduction&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Natural_deduction" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Natural_deduction" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Natural_deduction&amp;oldid=1249686451" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Natural_deduction&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Natural_deduction&amp;id=1249686451&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlQ%C4%B1sald%C4%B1c%C4%B1s%C4%B1&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNatural_deduction"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrKodu&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FNatural_deduction"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Natural_deduction&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Natural_deduction&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1572108" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Kind of proof calculus</div> <p>In <a href="/wiki/Logic" title="Logic">logic</a> and <a href="/wiki/Proof_theory" title="Proof theory">proof theory</a>, <b>natural deduction</b> is a kind of <a href="/wiki/Proof_calculus" title="Proof calculus">proof calculus</a> in which <a href="/wiki/Logical_reasoning" title="Logical reasoning">logical reasoning</a> is expressed by <a href="/wiki/Inference_rules" class="mw-redirect" title="Inference rules">inference rules</a> closely related to the "natural" way of reasoning.<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> This contrasts with <a href="/wiki/Hilbert_system" title="Hilbert system">Hilbert-style systems</a>, which instead use <a href="/wiki/Axiom" title="Axiom">axioms</a> as much as possible to express the logical laws of <a href="/wiki/Deductive_reasoning" title="Deductive reasoning">deductive reasoning</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=1" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Natural deduction grew out of a context of dissatisfaction with the axiomatizations of deductive reasoning common to the systems of <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a>, <a href="/wiki/Gottlob_Frege" title="Gottlob Frege">Frege</a>, and <a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Russell</a> (see, e.g., <a href="/wiki/Hilbert_system" title="Hilbert system">Hilbert system</a>). Such axiomatizations were most famously used by <a href="/wiki/Bertrand_Russell" title="Bertrand Russell">Russell</a> and <a href="/wiki/Alfred_North_Whitehead" title="Alfred North Whitehead">Whitehead</a> in their mathematical treatise <i><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></i>. Spurred on by a series of seminars in Poland in 1926 by <a href="/wiki/Jan_Lukasiewicz" class="mw-redirect" title="Jan Lukasiewicz">Łukasiewicz</a> that advocated a more natural treatment of logic, <a href="/wiki/Stanis%C5%82aw_Ja%C5%9Bkowski" title="Stanisław Jaśkowski">Jaśkowski</a> made the earliest attempts at defining a more natural deduction, first in 1929 using a diagrammatic notation, and later updating his proposal in a sequence of papers in 1934 and 1935.<sup id="cite_ref-2" class="reference"><a href="#cite_note-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> His proposals led to different notations such as <a href="/wiki/Fitch-style_calculus" class="mw-redirect" title="Fitch-style calculus">Fitch-style calculus</a> (or Fitch's diagrams) or <a href="/wiki/Patrick_Suppes" title="Patrick Suppes">Suppes</a>' method for which <a href="/wiki/John_Lemmon" title="John Lemmon">Lemmon</a> gave a variant now known as <a href="/wiki/Suppes%E2%80%93Lemmon_notation" title="Suppes–Lemmon notation">Suppes–Lemmon notation</a>. </p><p>Natural deduction in its modern form was independently proposed by the German mathematician <a href="/wiki/Gerhard_Gentzen" title="Gerhard Gentzen">Gerhard Gentzen</a> in 1933, in a dissertation delivered to the faculty of mathematical sciences of the <a href="/wiki/University_of_G%C3%B6ttingen" title="University of Göttingen">University of Göttingen</a>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> The term <i>natural deduction</i> (or rather, its German equivalent <i>natürliches Schließen</i>) was coined in that paper: </p> <style data-mw-deduplicate="TemplateStyles:r1157697682">.mw-parser-output .verse_translation .translated{padding-left:2em!important}@media only screen and (max-width:43.75em){.mw-parser-output .verse_translation.wrap_when_small td{display:block;padding-left:0.5em}.mw-parser-output .verse_translation.wrap_when_small .translated{padding-left:0.5em!important}}</style> <table role="presentation" class="verse_translation" style="margin-left:1em !important"> <tbody><tr style="vertical-align:top"> <td><div style="font-style:italic;text-align:left" lang="de" class="poem"> <p>Ich wollte nun zunächst einmal einen Formalismus aufstellen, der dem wirklichen Schließen möglichst nahe kommt. So ergab sich ein "Kalkül des natürlichen Schließens".<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> </p> </div> </td> <td class="translated"><div style="font-style:roman;text-align:left" lang="" class="poem"> <p>First I wished to construct a formalism that comes as close as possible to actual reasoning. Thus arose a "calculus of natural deduction". </p> </div> </td></tr></tbody></table> <p>Gentzen was motivated by a desire to establish the consistency of <a href="/wiki/Number_theory" title="Number theory">number theory</a>. He was unable to prove the main result required for the consistency result, the <a href="/wiki/Cut_elimination_theorem" class="mw-redirect" title="Cut elimination theorem">cut elimination theorem</a>—the Hauptsatz—directly for natural deduction. For this reason he introduced his alternative system, the <a href="/wiki/Sequent_calculus" title="Sequent calculus">sequent calculus</a>, for which he proved the Hauptsatz both for <a href="/wiki/Classical_logic" title="Classical logic">classical</a> and <a href="/wiki/Intuitionistic_logic" title="Intuitionistic logic">intuitionistic logic</a>. In a series of seminars in 1961 and 1962 <a href="/wiki/Dag_Prawitz" title="Dag Prawitz">Prawitz</a> gave a comprehensive summary of natural deduction calculi, and transported much of Gentzen's work with sequent calculi into the natural deduction framework. His 1965 monograph <i>Natural deduction: a proof-theoretical study</i><sup id="cite_ref-prawitz1965_5-0" class="reference"><a href="#cite_note-prawitz1965-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> was to become a reference work on natural deduction, and included applications for <a href="/wiki/Modal_logic" title="Modal logic">modal</a> and <a href="/wiki/Second-order_logic" title="Second-order logic">second-order logic</a>. </p><p>In natural deduction, a <a href="/wiki/Proposition" title="Proposition">proposition</a> is deduced from a collection of premises by applying inference rules repeatedly. The system presented in this article is a minor variation of Gentzen's or Prawitz's formulation, but with a closer adherence to <a href="/wiki/Per_Martin-L%C3%B6f" title="Per Martin-Löf">Martin-Löf</a>'s description of logical judgments and connectives.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="History_of_notation_styles">History of notation styles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=2" title="Edit section: History of notation styles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Natural deduction has had a large variety of notation styles,<sup id="cite_ref-SEP_NaturalDeduction_7-0" class="reference"><a href="#cite_note-SEP_NaturalDeduction-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> which can make it difficult to recognize a proof if you're not familiar with one of them. To help with this situation, this article has a <a href="#Notation">§&#160;Notation</a> section explaining how to read all the notation that it will actually use. This section just explains the historical evolution of notation styles, most of which cannot be shown because there are no illustrations available under a <a href="/wiki/Public_copyright_license" title="Public copyright license">public copyright license</a> – the reader is pointed to the <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/spr2024/entries/natural-deduction/">SEP</a> and <a rel="nofollow" class="external text" href="https://iep.utm.edu/natural-deduction/">IEP</a> for pictures. </p> <ul><li><a href="/wiki/Gerhard_Gentzen" title="Gerhard Gentzen">Gentzen</a> invented natural deduction using tree-shaped proofs – see <a href="#Gentzen&#39;s_tree_notation">§&#160;Gentzen's tree notation</a> for details.</li> <li><a href="/wiki/Stanis%C5%82aw_Ja%C5%9Bkowski" title="Stanisław Jaśkowski">Jaśkowski</a> changed this to a notation that used various nested boxes.<sup id="cite_ref-SEP_NaturalDeduction_7-1" class="reference"><a href="#cite_note-SEP_NaturalDeduction-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li><a href="/wiki/Frederic_Fitch" title="Frederic Fitch">Fitch</a> changed Jaśkowski method of drawing the boxes, creating <a href="/wiki/Fitch_notation" title="Fitch notation">Fitch notation</a>.<sup id="cite_ref-SEP_NaturalDeduction_7-2" class="reference"><a href="#cite_note-SEP_NaturalDeduction-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup></li> <li>1940: In a textbook, <a href="/wiki/Willard_Van_Orman_Quine" title="Willard Van Orman Quine">Quine</a><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> indicated antecedent dependencies by line numbers in square brackets, anticipating Suppes' 1957 line-number notation.</li> <li>1950: In a textbook, <a href="#CITEREFQuine1982">Quine (1982</a>, pp.&#160;241–255) demonstrated a method of using one or more asterisks to the left of each line of proof to indicate dependencies. This is equivalent to Kleene's vertical bars. (It is not totally clear if Quine's asterisk notation appeared in the original 1950 edition or was added in a later edition.)</li> <li>1957: An introduction to practical logic theorem proving in a textbook by <a href="#CITEREFSuppes1999">Suppes (1999</a>, pp.&#160;25–150). This indicated dependencies (i.e. antecedent propositions) by line numbers at the left of each line.</li> <li>1963: <a href="#CITEREFStoll1979">Stoll (1979</a>, pp.&#160;183–190, 215–219) uses sets of line numbers to indicate antecedent dependencies of the lines of sequential logical arguments based on natural deduction inference rules.</li> <li>1965: The entire textbook by <a href="#CITEREFLemmon1965">Lemmon (1965)</a> is an introduction to logic proofs using a method based on that of <a href="/wiki/Patrick_Suppes" title="Patrick Suppes">Suppes</a>, what is now known as <a href="/wiki/Suppes%E2%80%93Lemmon_notation" title="Suppes–Lemmon notation">Suppes–Lemmon notation</a>.</li> <li>1967: In a textbook, <a href="#CITEREFKleene2002">Kleene (2002</a>, pp.&#160;50–58, 128–130) briefly demonstrated two kinds of practical logic proofs, one system using explicit quotations of antecedent propositions on the left of each line, the other system using vertical bar-lines on the left to indicate dependencies.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>a<span class="cite-bracket">&#93;</span></a></sup></li></ul> <div class="mw-heading mw-heading2"><h2 id="Notation">Notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=3" title="Edit section: Notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Here is a table with the most common notational variants for <a href="/wiki/Logical_connective" title="Logical connective">logical connectives</a>. </p> <table class="wikitable"> <caption>Notational variants of the connectives<sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:23_11-0" class="reference"><a href="#cite_note-:23-11"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </caption> <tbody><tr> <th>Connective </th> <th>Symbol </th></tr> <tr> <td><a href="/wiki/Logical_conjunction" title="Logical conjunction">AND</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\land B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\land B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/74954195333a8593163b93a9688695b8dc74da55" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\land B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cdot B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cdot B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/75a90e903f21f11a0f4ab3caca1e6943ba7a9849" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.186ex; height:2.176ex;" alt="{\displaystyle A\cdot B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle AB}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle AB}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b04153f9681e5b06066357774475c04aaef3a8bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.507ex; height:2.176ex;" alt="{\displaystyle AB}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\&amp;B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi mathvariant="normal">&#x0026;<!-- & --></mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\&amp;B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f65ee34a8896390e0d1f193c137d9eb64815c1a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.315ex; height:2.176ex;" alt="{\displaystyle A\&amp;B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\&amp;\&amp;B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mi mathvariant="normal">&#x0026;<!-- & --></mi> <mi mathvariant="normal">&#x0026;<!-- & --></mi> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\&amp;\&amp;B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ab3517dd859d7eaa8f3f1656c8125f99ada1470" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.123ex; height:2.176ex;" alt="{\displaystyle A\&amp;\&amp;B}"></span> </td></tr> <tr> <td><a href="/wiki/Logical_biconditional" title="Logical biconditional">equivalent</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\equiv B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2261;<!-- ≡ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\equiv B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b933daba3ef47ec3b4f3097ea6e741b85149707" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle A\equiv B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\Leftrightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\Leftrightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce08fffb4d36ba12921b8b3e06228887015b2b8e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\Leftrightarrow B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\leftrightharpoons B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x21CB;<!-- ⇋ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\leftrightharpoons B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a8639312e9e120cd65c98fc48a6d5256d57288c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\leftrightharpoons B}"></span> </td></tr> <tr> <td><a href="/wiki/Material_conditional" title="Material conditional">implies</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\Rightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\Rightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e560143d45c97e6387c7c3aa90e9d7745002228" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\Rightarrow B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\supset B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2283;<!-- ⊃ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\supset B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee952838d8b3e67045072a8f2b71e7fc0467dea6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.606ex; height:2.176ex;" alt="{\displaystyle A\supset B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\rightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\rightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/23efef033def56a67de7ded823f14626de26d174" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\rightarrow B}"></span> </td></tr> <tr> <td><a href="/wiki/Sheffer_stroke" title="Sheffer stroke">NAND</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A{\overline {\land }}B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x2227;<!-- ∧ --></mo> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A{\overline {\land }}B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0167d56141342887a74d56a036e6fbbad7172b0f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.172ex; height:2.843ex;" alt="{\displaystyle A{\overline {\land }}B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\mid B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\mid B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1400973074b4691cc0638a68118716a2b218fce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.444ex; height:2.843ex;" alt="{\displaystyle A\mid B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A\cdot B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>B</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A\cdot B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/225f35bb78e90b9126458f1bc6bf1ed3f0724bbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.301ex; height:3.009ex;" alt="{\displaystyle {\overline {A\cdot B}}}"></span> </td></tr> <tr> <td>nonequivalent </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\not \equiv B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2262;</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\not \equiv B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0339ed15cd58f7263c5eec8e5628168aa6006200" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.607ex; height:2.676ex;" alt="{\displaystyle A\not \equiv B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\not \Leftrightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x21CE;</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\not \Leftrightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47bfd97641b05a7f7fc0bcd02e83fa6532c62bb4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\not \Leftrightarrow B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\nleftrightarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x21AE;<!-- ↮ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\nleftrightarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/926467de6fd4709bdbc59c3168a21298cdf0d26c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:7.121ex; height:2.176ex;" alt="{\displaystyle A\nleftrightarrow B}"></span> </td></tr> <tr> <td><a href="/wiki/Logical_NOR" title="Logical NOR">NOR</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A{\overline {\lor }}B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mo>&#x2228;<!-- ∨ --></mo> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A{\overline {\lor }}B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/591afbca3e984765b18abb189f4bb1b88116c400" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.172ex; height:2.843ex;" alt="{\displaystyle A{\overline {\lor }}B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\downarrow B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo stretchy="false">&#x2193;<!-- ↓ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\downarrow B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c5e77260e67880093dafe958880ea02f5026164" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.96ex; height:2.509ex;" alt="{\displaystyle A\downarrow B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A+B}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mrow> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A+B}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08840f8e2022f127fc459d801a8f8ce93f65f55a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.462ex; height:3.176ex;" alt="{\displaystyle {\overline {A+B}}}"></span> </td></tr> <tr> <td><a href="/wiki/Negation" title="Negation">NOT</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/195aae731102b36b14a902a091d04ac5c6a5af49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.293ex; height:2.176ex;" alt="{\displaystyle \neg A}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6daf6db742ace65252b589963f7e7a07603ccb56" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.551ex; height:2.343ex;" alt="{\displaystyle -A}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\overline {A}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\overline {A}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/92efef0e89bdc77f6a848764195ef5b9d9bfcc6a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.858ex; height:3.009ex;" alt="{\displaystyle {\overline {A}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sim A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x223C;<!-- ∼ --></mo> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sim A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c79bf96c247833282e773fae43602343150c1665" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.196ex; height:2.176ex;" alt="{\displaystyle \sim A}"></span> </td></tr> <tr> <td><a href="/wiki/Logical_disjunction" title="Logical disjunction">OR</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\lor B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\lor B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9b9c9c90857c12727201dd9e47a4e7c8658fdbc5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\lor B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A+B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>+</mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A+B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4279cdbd3cb8ec4c3423065d9a7d83a82cfc89e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\displaystyle A+B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\mid B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\mid B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1400973074b4691cc0638a68118716a2b218fce2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.444ex; height:2.843ex;" alt="{\displaystyle A\mid B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\parallel B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2225;<!-- ∥ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\parallel B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04bd0239f9b74f7ef1520ba4e30454b06e695289" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.96ex; height:2.843ex;" alt="{\displaystyle A\parallel B}"></span> </td></tr> <tr> <td><a href="/wiki/XNOR_gate" title="XNOR gate">XNOR</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> XNOR <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/47136aad860d145f75f3eed3022df827cee94d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.764ex; height:2.176ex;" alt="{\displaystyle B}"></span> </td></tr> <tr> <td><a href="/wiki/Exclusive_or" title="Exclusive or">XOR</a> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A{\underline {\lor }}B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mo>&#x2228;<!-- ∨ --></mo> <mo>&#x005F;<!-- _ --></mo> </munder> </mrow> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A{\underline {\lor }}B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/803e1413692912954b90e99694e10c728e27a153" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.562ex; margin-bottom: -0.776ex; width:5.06ex; height:3.176ex;" alt="{\displaystyle A{\underline {\lor }}B}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\oplus B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2295;<!-- ⊕ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\oplus B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0512d6bdd29ff000dea0bf68b853618dcaabc3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.348ex; height:2.343ex;" alt="{\displaystyle A\oplus B}"></span> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Gentzen's_tree_notation"><span id="Gentzen.27s_tree_notation"></span>Gentzen's tree notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=4" title="Edit section: Gentzen&#039;s tree notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Gerhard_Gentzen" title="Gerhard Gentzen">Gentzen</a>, who invented natural deduction, had his own notation style for arguments. This will be exemplified by a simple argument below. Let's say we have a simple example argument in <a href="/wiki/Propositional_calculus" title="Propositional calculus">propositional logic</a>, such as, "if it's raining then it's cloudly; it is raining; therefore it's cloudy". (This is in <a href="/wiki/Modus_ponens" title="Modus ponens">modus ponens</a>.) Representing this as a list of propositions, as is common, we would have: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1)~P\to Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1)~P\to Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/364be4519e9193004f9f74228e17ea042b054ff9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.846ex; height:2.843ex;" alt="{\displaystyle 1)~P\to Q}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2)~P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2)~P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c550623bb1b5204d9c52cb5c11cb080318fc8b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.393ex; height:2.843ex;" alt="{\displaystyle 2)~P}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \therefore ~Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2234;<!-- ∴ --></mo> <mtext>&#xA0;</mtext> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \therefore ~Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6f12a34ab9c5fdc2ffef71226573f458c57f34a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.614ex; height:2.509ex;" alt="{\displaystyle \therefore ~Q}"></span></dd></dl> <p>In Gentzen's notation,<sup id="cite_ref-SEP_NaturalDeduction_7-3" class="reference"><a href="#cite_note-SEP_NaturalDeduction-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> this would be written like this: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {P\to Q,P}{Q}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo>,</mo> <mi>P</mi> </mrow> <mi>Q</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {P\to Q,P}{Q}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8c54517fd6fbb7e0354e22696003e88326d62397" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:10.813ex; height:5.843ex;" alt="{\displaystyle {\frac {P\to Q,P}{Q}}}"></span></dd></dl> <p>The premises are shown above a line, called the <b>inference line</b>,<sup id="cite_ref-JanVonPlato_Reasoning_12-0" class="reference"><a href="#cite_note-JanVonPlato_Reasoning-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-MiamiLogic_13-0" class="reference"><a href="#cite_note-MiamiLogic-13"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> separated by a <b>comma</b>, which indicates <i>combination</i> of premises.<sup id="cite_ref-SEP_Substructural_14-0" class="reference"><a href="#cite_note-SEP_Substructural-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> The conclusion is written below the inference line.<sup id="cite_ref-JanVonPlato_Reasoning_12-1" class="reference"><a href="#cite_note-JanVonPlato_Reasoning-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> The inference line represents <i>syntactic consequence</i>,<sup id="cite_ref-JanVonPlato_Reasoning_12-2" class="reference"><a href="#cite_note-JanVonPlato_Reasoning-12"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup> sometimes called <i>deductive consequence</i>,<sup id="cite_ref-IEP_Compactness_15-0" class="reference"><a href="#cite_note-IEP_Compactness-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> which is also symbolized with ⊢.<sup id="cite_ref-ColoradoLogic_16-0" class="reference"><a href="#cite_note-ColoradoLogic-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-IEP_Compactness_15-1" class="reference"><a href="#cite_note-IEP_Compactness-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> So the above can also be written in one line as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\to Q,P\vdash Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> <mo>,</mo> <mi>P</mi> <mo>&#x22A2;<!-- ⊢ --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\to Q,P\vdash Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f6b1bf712367f9c2db9774415f397953dda2fc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:14.526ex; height:2.509ex;" alt="{\displaystyle P\to Q,P\vdash Q}"></span>. (The turnstile, for syntactic consequence, is of lower <a href="/wiki/Order_of_operations" title="Order of operations">precedence</a> than the comma, which represents premise combination, which in turn is of lower precedence than the arrow, used for material implication; so no parentheses are needed to interpret this formula.)<sup id="cite_ref-SEP_Substructural_14-1" class="reference"><a href="#cite_note-SEP_Substructural-14"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> </p><p>Syntactic consequence is contrasted with <i>semantic consequence</i>,<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> which is symbolized with ⊧.<sup id="cite_ref-ColoradoLogic_16-1" class="reference"><a href="#cite_note-ColoradoLogic-16"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-IEP_Compactness_15-2" class="reference"><a href="#cite_note-IEP_Compactness-15"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> In this case, the conclusion follows <i>syntactically</i> because natural deduction is a <a href="/wiki/Propositional_calculus#Syntactic_proof_systems" title="Propositional calculus">syntactic proof system</a>, which assumes <a href="/wiki/Inference_rules" class="mw-redirect" title="Inference rules">inference rules</a> <a href="/wiki/Postulate" class="mw-redirect" title="Postulate">as primitives</a>. </p><p>Gentzen's style will be used in much of this article. Gentzen's discharging annotations used to internalise hypothetical judgments can be avoided by representing proofs as a tree of <a href="/wiki/Sequent" title="Sequent">sequents</a> <i>Γ ⊢A</i> instead of a tree of judgments that A (is true). </p> <div class="mw-heading mw-heading3"><h3 id="Suppes–Lemmon_notation"><span id="Suppes.E2.80.93Lemmon_notation"></span>Suppes–Lemmon notation</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=5" title="Edit section: Suppes–Lemmon notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many textbooks use <a href="/wiki/Suppes%E2%80%93Lemmon_notation" title="Suppes–Lemmon notation">Suppes–Lemmon notation</a>,<sup id="cite_ref-SEP_NaturalDeduction_7-4" class="reference"><a href="#cite_note-SEP_NaturalDeduction-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> so this article will also give that – although as of now, this is only included for <a href="/wiki/Propositional_calculus" title="Propositional calculus">propositional logic</a>, and the rest of the coverage is given only in Gentzen style. A <b>proof</b>, laid out in accordance with the <a href="/wiki/Suppes%E2%80%93Lemmon_notation" title="Suppes–Lemmon notation">Suppes–Lemmon notation</a> style, is a sequence of lines containing sentences,<sup id="cite_ref-AllenHand_18-0" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> where each sentence is either an assumption, or the result of applying a rule of proof to earlier sentences in the sequence.<sup id="cite_ref-AllenHand_18-1" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> Each <b>line of proof</b> is made up of a <b>sentence of proof</b>, together with its <b>annotation</b>, its <b>assumption set</b>, and the current <b>line number</b>.<sup id="cite_ref-AllenHand_18-2" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> The assumption set lists the assumptions on which the given sentence of proof depends, which are referenced by the line numbers.<sup id="cite_ref-AllenHand_18-3" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> The annotation specifies which rule of proof was applied, and to which earlier lines, to yield the current sentence.<sup id="cite_ref-AllenHand_18-4" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> Here's an example proof: </p> <table class="wikitable" style="margin:auto;"> <caption>Suppes–Lemmon style proof (first example) </caption> <tbody><tr> <th>Assumption set </th> <th>Line number </th> <th>Sentence of proof </th> <th>Annotation </th></tr> <tr> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span> </td> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\to Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\to Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7cad5b2c2991ae1dbded560c5d875fbf49fe8ea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.198ex; height:2.509ex;" alt="{\displaystyle P\to Q}"></span> </td> <td>A </td></tr> <tr> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span> </td> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ff459062914e488a99e0f453ee6fe6b1315a34d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.646ex; height:2.509ex;" alt="{\displaystyle -Q}"></span> </td> <td>A </td></tr> <tr> <td><span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> </td> <td><span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> </td> <td>A </td></tr> <tr> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>, <span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> </td> <td><span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">4</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8752c7023b4b3286800fe3238271bbca681219ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.838ex; height:2.509ex;" alt="{\displaystyle Q}"></span> </td> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>, <span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> →E </td></tr> <tr> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>, <span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span> </td> <td><span id="math_5" class="reference nourlexpansion" style="font-weight:bold;">5</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/11b61b997d0d9ebae227bd68325103c1a3e0f487" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.554ex; height:2.343ex;" alt="{\displaystyle -P}"></span> </td> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>, <span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">4</span> RAA </td></tr></tbody></table> <p>This proof will become clearer when the inference rules and their appropriate annotations are specified – see <a href="#Propositional_inference_rules_(Suppes–Lemmon_style)">§&#160;Propositional inference rules (Suppes–Lemmon style)</a>. </p> <div class="mw-heading mw-heading2"><h2 id="Propositional_language_syntax">Propositional language syntax</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=6" title="Edit section: Propositional language syntax"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Propositional_calculus#Syntax" title="Propositional calculus">Propositional calculus §&#160;Syntax</a></div><p>This section defines the <a href="/wiki/Formal_syntax" class="mw-redirect" title="Formal syntax">formal syntax</a> for a <a href="/wiki/Propositional_calculus#Language" title="Propositional calculus">propositional logic language</a>, contrasting the common ways of doing so with a Gentzen-style way of doing so. </p><div class="mw-heading mw-heading3"><h3 id="Common_definition_styles">Common definition styles</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=7" title="Edit section: Common definition styles"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Formal_language" title="Formal language">formal language</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {L}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">L</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {L}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9027196ecb178d598958555ea01c43157d83597c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.604ex; height:2.176ex;" alt="{\displaystyle {\mathcal {L}}}"></span> of a <a href="/wiki/Propositional_calculus" title="Propositional calculus">propositional calculus</a> is usually defined by a <a href="/wiki/Recursive_definition" title="Recursive definition">recursive definition</a>, such as this one, from <a href="/wiki/David_Bostock_(philosopher)" title="David Bostock (philosopher)">Bostock</a>:<sup id="cite_ref-:BostockLogic_19-0" class="reference"><a href="#cite_note-:BostockLogic-19"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </p> <ol><li>Each <a href="/wiki/Propositional_variable" title="Propositional variable">sentence-letter</a> is a <a href="/wiki/Well-formed_formula" title="Well-formed formula">formula</a>.</li> <li>"<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \top }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x22A4;<!-- ⊤ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \top }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf12e436fef2365e76fcb1034a51179d8328bb33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \top }"></span>" and "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \bot }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x22A5;<!-- ⊥ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \bot }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f282c7bc331cc3bfcf1c57f1452cc23c022f58de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.808ex; height:2.176ex;" alt="{\displaystyle \bot }"></span>" are formulae.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is a formula, so is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b6c4b627f483f3efdd7c27e708f6f37c20c63502" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.07ex; height:2.176ex;" alt="{\displaystyle \neg \varphi }"></span>.</li> <li>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> are formulae, so are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varphi \land \psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varphi \land \psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c07215375dfda492538534f26e3f4f1769b81c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.425ex; height:2.843ex;" alt="{\displaystyle (\varphi \land \psi )}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varphi \lor \psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varphi \lor \psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d43eb945ebfdc026f7433771ee07cba53f518600" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.425ex; height:2.843ex;" alt="{\displaystyle (\varphi \lor \psi )}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varphi \to \psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varphi \to \psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5b2e5835e3374498f795beec9875642375ebd5b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.457ex; height:2.843ex;" alt="{\displaystyle (\varphi \to \psi )}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\varphi \leftrightarrow \psi )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\varphi \leftrightarrow \psi )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/00e0250093a40ca047e6ad7b94c579c0a1bf2c6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.457ex; height:2.843ex;" alt="{\displaystyle (\varphi \leftrightarrow \psi )}"></span>.</li> <li>Nothing else is a formula.</li></ol> <p>There are other ways of doing it, such as the <a href="/wiki/BNF_grammar" class="mw-redirect" title="BNF grammar">BNF grammar</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \phi ::=a_{1},a_{2},\ldots ~|~\neg \phi ~|~\phi ~\land ~\psi ~|~\phi \vee \psi ~|~\phi \rightarrow \psi ~|~\phi \leftrightarrow \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03D5;<!-- ϕ --></mi> <mo>::=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>&#x03D5;<!-- ϕ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03D5;<!-- ϕ --></mi> <mtext>&#xA0;</mtext> <mo>&#x2227;<!-- ∧ --></mo> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mtext>&#xA0;</mtext> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mtext>&#xA0;</mtext> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \phi ::=a_{1},a_{2},\ldots ~|~\neg \phi ~|~\phi ~\land ~\psi ~|~\phi \vee \psi ~|~\phi \rightarrow \psi ~|~\phi \leftrightarrow \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2592aba5890d62a43fd210e3342e7d3630065f1c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.649ex; height:2.843ex;" alt="{\displaystyle \phi ::=a_{1},a_{2},\ldots ~|~\neg \phi ~|~\phi ~\land ~\psi ~|~\phi \vee \psi ~|~\phi \rightarrow \psi ~|~\phi \leftrightarrow \psi }"></span>.<sup id="cite_ref-:42_20-0" class="reference"><a href="#cite_note-:42-20"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-:0_21-0" class="reference"><a href="#cite_note-:0-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Gentzen-style_definition">Gentzen-style definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=8" title="Edit section: Gentzen-style definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>A syntax definition can also be given using <a href="#Gentzen&#39;s_tree_notation">§&#160;Gentzen's tree notation</a>, by writing well-formed formulas below the inference line and any schematic variables used by those formulas above it.<sup id="cite_ref-:0_21-1" class="reference"><a href="#cite_note-:0-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> For instance, the equivalent of rules 3 and 4, from Bostock's definition above, is written as follows: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\varphi }{(\neg \varphi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \lor \psi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \land \psi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \rightarrow \psi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \leftrightarrow \psi )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>&#x03C6;<!-- φ --></mi> <mrow> <mo stretchy="false">(</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mspace width="1em" /> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mspace width="1em" /> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mspace width="1em" /> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03C6;<!-- φ --></mi> <mspace width="1em" /> <mi>&#x03C8;<!-- ψ --></mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\varphi }{(\neg \varphi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \lor \psi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \land \psi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \rightarrow \psi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \leftrightarrow \psi )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/252c2f1f4f1569b37ee30eefe37d9c1c3d494c34" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:50.115ex; height:6.176ex;" alt="{\displaystyle {\frac {\varphi }{(\neg \varphi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \lor \psi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \land \psi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \rightarrow \psi )}}\quad {\frac {\varphi \quad \psi }{(\varphi \leftrightarrow \psi )}}}"></span>.</dd></dl> <p>A different notational convention sees the language's syntax as a <a href="/wiki/Categorial_grammar" title="Categorial grammar">categorial grammar</a> with the single category "formula", denoted by the symbol <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>. So any elements of the syntax are introduced by categorizations, for which the notation is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi :{\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi :{\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a5ae6e295ce36baa598761f6abd69b1935f3843" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.676ex;" alt="{\displaystyle \varphi :{\mathcal {F}}}"></span>, meaning "<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> is an expression for an object in the category <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/205d4b91000d9dcf1a5bbabdfa6a8395fa60b676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.927ex; height:2.176ex;" alt="{\displaystyle {\mathcal {F}}}"></span>."<sup id="cite_ref-:1_22-0" class="reference"><a href="#cite_note-:1-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> The sentence-letters, then, are introduced by categorizations such as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P:{\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P:{\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb17ebb976339164476ecff277663c6f20ae7eee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.609ex; height:2.176ex;" alt="{\displaystyle P:{\mathcal {F}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q:{\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Q</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Q:{\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f07a1891b45dab948928c318a0c4c641a1a12c62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.702ex; height:2.509ex;" alt="{\displaystyle Q:{\mathcal {F}}}"></span>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R:{\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R:{\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01c51d40ffc2b8cee3867344964ffcacd98ee92e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.628ex; height:2.176ex;" alt="{\displaystyle R:{\mathcal {F}}}"></span>, and so on;<sup id="cite_ref-:1_22-1" class="reference"><a href="#cite_note-:1-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> the connectives, in turn, are defined by statements similar to the above, but using categorization notation, as seen below: </p> <table class="wikitable"> <caption><b>Connectives defined through a categorial grammar<sup id="cite_ref-:1_22-2" class="reference"><a href="#cite_note-:1-22"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup></b> </caption> <tbody><tr> <th style="text-align: center;"><b>Conjunction (&amp;)</b> </th> <th style="text-align: center;"><b>Disjunction (∨)</b> </th> <th style="text-align: center;"><b>Implication (→)</b> </th> <th style="text-align: center;"><b>Negation (¬)</b> </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {A:{\mathcal {F}}\quad B:{\mathcal {F}}}{\&amp;(A)(B):{\mathcal {F}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mspace width="1em" /> <mi>B</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x0026;<!-- & --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {A:{\mathcal {F}}\quad B:{\mathcal {F}}}{\&amp;(A)(B):{\mathcal {F}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05b3c44203dc8ccfe10065385f521c764269f0ce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.393ex; height:6.176ex;" alt="{\displaystyle {\frac {A:{\mathcal {F}}\quad B:{\mathcal {F}}}{\&amp;(A)(B):{\mathcal {F}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {A:{\mathcal {F}}\quad B:{\mathcal {F}}}{\vee (A)(B):{\mathcal {F}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mspace width="1em" /> <mi>B</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> <mrow> <mo>&#x2228;<!-- ∨ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {A:{\mathcal {F}}\quad B:{\mathcal {F}}}{\vee (A)(B):{\mathcal {F}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/30043dfb4d5d9ebb3c6619b3858e68f8e774eafc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.393ex; height:6.176ex;" alt="{\displaystyle {\frac {A:{\mathcal {F}}\quad B:{\mathcal {F}}}{\vee (A)(B):{\mathcal {F}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {A:{\mathcal {F}}\quad B:{\mathcal {F}}}{\supset (A)(B):{\mathcal {F}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> <mspace width="1em" /> <mi>B</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> <mrow> <mo>&#x2283;<!-- ⊃ --></mo> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {A:{\mathcal {F}}\quad B:{\mathcal {F}}}{\supset (A)(B):{\mathcal {F}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06b916149065c60029eae99424e39a4d866536f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:14.393ex; height:6.176ex;" alt="{\displaystyle {\frac {A:{\mathcal {F}}\quad B:{\mathcal {F}}}{\supset (A)(B):{\mathcal {F}}}}}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {A:{\mathcal {F}}}{\neg (A):{\mathcal {F}}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {A:{\mathcal {F}}}{\neg (A):{\mathcal {F}}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5057aac407eddcbfdce4a9ed0ffb0e28cbca523a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:9.803ex; height:6.176ex;" alt="{\displaystyle {\frac {A:{\mathcal {F}}}{\neg (A):{\mathcal {F}}}}}"></span> </td></tr></tbody></table> <p>In the rest of this article, the <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi :{\mathcal {F}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi :{\mathcal {F}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a5ae6e295ce36baa598761f6abd69b1935f3843" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.384ex; height:2.676ex;" alt="{\displaystyle \varphi :{\mathcal {F}}}"></span> categorization notation will be used for any Gentzen-notation statements defining the language's grammar; any other statements in Gentzen notation will be inferences, asserting that a sequent follows rather than that an expression is a well-formed formula. </p> <div class="mw-heading mw-heading2"><h2 id="Gentzen-style_propositional_logic">Gentzen-style propositional logic</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=9" title="Edit section: Gentzen-style propositional logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Gentzen-style_inference_rules">Gentzen-style inference rules</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=10" title="Edit section: Gentzen-style inference rules"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following is a complete list of primitive inference rules for natural deduction in classical propositional logic:<sup id="cite_ref-:0_21-2" class="reference"><a href="#cite_note-:0-21"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable"> <caption>Rules for classical propositional logic </caption> <tbody><tr> <th>Introduction rules </th> <th>Elimination rules </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c}\varphi \qquad \psi \\\hline \varphi \wedge \psi \end{array}}(\wedge _{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mspace width="2em" /> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">(</mo> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c}\varphi \qquad \psi \\\hline \varphi \wedge \psi \end{array}}(\wedge _{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40b838f940e6696733e2ba8c2579ae9500841057" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.447ex; height:7.176ex;" alt="{\displaystyle {\begin{array}{c}\varphi \qquad \psi \\\hline \varphi \wedge \psi \end{array}}(\wedge _{i})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c}\varphi \wedge \psi \\\hline \varphi \end{array}}(\wedge _{e})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">(</mo> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c}\varphi \wedge \psi \\\hline \varphi \end{array}}(\wedge _{e})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/08e14aff68856d6c7ed3ea20d2dcb9ec64356d48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.583ex; height:7.176ex;" alt="{\displaystyle {\begin{array}{c}\varphi \wedge \psi \\\hline \varphi \end{array}}(\wedge _{e})}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c}\varphi \\\hline \varphi \vee \psi \end{array}}(\vee _{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">(</mo> <msub> <mo>&#x2228;<!-- ∨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c}\varphi \\\hline \varphi \vee \psi \end{array}}(\vee _{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a35e858fd4c9f766bfe9215a7f9a22fc0f739af7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:12.385ex; height:7.176ex;" alt="{\displaystyle {\begin{array}{c}\varphi \\\hline \varphi \vee \psi \end{array}}(\vee _{i})}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\varphi \vee \psi \quad {\begin{matrix}[\varphi ]^{u}\\\vdots \\\chi \end{matrix}}\quad {\begin{matrix}[\psi ]^{v}\\\vdots \\\chi \end{matrix}}}{\chi }}\ \vee _{E^{u,v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo stretchy="false">[</mo> <mi>&#x03C6;<!-- φ --></mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C7;<!-- χ --></mi> </mtd> </mtr> </mtable> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mo stretchy="false">[</mo> <mi>&#x03C8;<!-- ψ --></mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C7;<!-- χ --></mi> </mtd> </mtr> </mtable> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C7;<!-- χ --></mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msub> <mo>&#x2228;<!-- ∨ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mo>,</mo> <mi>v</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\varphi \vee \psi \quad {\begin{matrix}[\varphi ]^{u}\\\vdots \\\chi \end{matrix}}\quad {\begin{matrix}[\psi ]^{v}\\\vdots \\\chi \end{matrix}}}{\chi }}\ \vee _{E^{u,v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/14f723fa6df4f87f8f0c7240be570424a731d5f0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:26.001ex; height:14.509ex;" alt="{\displaystyle {\cfrac {\varphi \vee \psi \quad {\begin{matrix}[\varphi ]^{u}\\\vdots \\\chi \end{matrix}}\quad {\begin{matrix}[\psi ]^{v}\\\vdots \\\chi \end{matrix}}}{\chi }}\ \vee _{E^{u,v}}}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c}[\varphi ]^{u}\\\vdots \\\psi \\\hline \varphi \to \psi \end{array}}(\to _{i})\ u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none none solid"> <mtr> <mtd> <mo stretchy="false">[</mo> <mi>&#x03C6;<!-- φ --></mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">(</mo> <msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c}[\varphi ]^{u}\\\vdots \\\psi \\\hline \varphi \to \psi \end{array}}(\to _{i})\ u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c9134af77b25770df3f913190e8bd88ec48ecc6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:16.1ex; height:14.843ex;" alt="{\displaystyle {\begin{array}{c}[\varphi ]^{u}\\\vdots \\\psi \\\hline \varphi \to \psi \end{array}}(\to _{i})\ u}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c}\varphi \qquad \varphi \to \psi \\\hline \psi \end{array}}(\to _{e})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mspace width="2em" /> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C8;<!-- ψ --></mi> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">(</mo> <msub> <mo stretchy="false">&#x2192;<!-- → --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c}\varphi \qquad \varphi \to \psi \\\hline \psi \end{array}}(\to _{e})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38f6276d1a021e785899aa852a5b0efed29df548" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.554ex; height:7.176ex;" alt="{\displaystyle {\begin{array}{c}\varphi \qquad \varphi \to \psi \\\hline \psi \end{array}}(\to _{e})}"></span> </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c}[\varphi ]^{u}\\\vdots \\\bot \\\hline \neg \varphi \end{array}}(\neg _{i})\ u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none none solid"> <mtr> <mtd> <mo stretchy="false">[</mo> <mi>&#x03C6;<!-- φ --></mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x22A5;<!-- ⊥ --></mi> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c}[\varphi ]^{u}\\\vdots \\\bot \\\hline \neg \varphi \end{array}}(\neg _{i})\ u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f38af2a2e2ba05c6e1da33e8fb509c6e64f21de9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:12.665ex; height:14.843ex;" alt="{\displaystyle {\begin{array}{c}[\varphi ]^{u}\\\vdots \\\bot \\\hline \neg \varphi \end{array}}(\neg _{i})\ u}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c}\varphi \qquad \neg \varphi \\\hline \bot \end{array}}(\neg _{e})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="solid"> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> <mspace width="2em" /> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x22A5;<!-- ⊥ --></mi> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">(</mo> <msub> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>e</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c}\varphi \qquad \neg \varphi \\\hline \bot \end{array}}(\neg _{e})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/819fc50d54cc640c659d62b7c35a7dc38b202ad7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:16.203ex; height:7.176ex;" alt="{\displaystyle {\begin{array}{c}\varphi \qquad \neg \varphi \\\hline \bot \end{array}}(\neg _{e})}"></span> </td></tr> <tr> <td> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{c}[\neg \varphi ]^{u}\\\vdots \\\bot \\\hline \varphi \end{array}}({\text{PBC}})\ u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em" rowlines="none none solid"> <mtr> <mtd> <mo stretchy="false">[</mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>&#x03C6;<!-- φ --></mi> <msup> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x22A5;<!-- ⊥ --></mi> </mtd> </mtr> <mtr> <mtd> <mi>&#x03C6;<!-- φ --></mi> </mtd> </mtr> </mtable> </mrow> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>PBC</mtext> </mrow> <mo stretchy="false">)</mo> <mtext>&#xA0;</mtext> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{c}[\neg \varphi ]^{u}\\\vdots \\\bot \\\hline \varphi \end{array}}({\text{PBC}})\ u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c3750981dee8ceff32a0d05a542086c9ff44a5e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:16.772ex; height:14.843ex;" alt="{\displaystyle {\begin{array}{c}[\neg \varphi ]^{u}\\\vdots \\\bot \\\hline \varphi \end{array}}({\text{PBC}})\ u}"></span> </td></tr></tbody></table> <p>This table follows <a href="/wiki/Propositional_calculus#Constants_and_schemata" title="Propositional calculus">the custom of using Greek letters as <i>schemata</i></a>, which may range over any formulas, rather than only over atomic propositions. The name of a rule is given to the right of its formula tree. For instance, the first introduction rule is named <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \wedge _{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \wedge _{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af6a640048ec39dd86127a7500e94208b909505b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.35ex; height:2.343ex;" alt="{\displaystyle \wedge _{i}}"></span>, which is short for "conjunction introduction". </p> <div class="mw-heading mw-heading3"><h3 id="Gentzen-style_example_proofs">Gentzen-style example proofs</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=11" title="Edit section: Gentzen-style example proofs"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>As an example of the use of inference rules, consider commutativity of conjunction. If <i>A</i> ∧ <i>B</i>, then <i>B</i> ∧ <i>A</i>; this derivation can be drawn by composing inference rules in such a fashion that premises of a lower inference match the conclusion of the next higher inference. </p> <div style="margin-left: 2em"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {A\wedge B}{B{\hbox{ }}}}\ \wedge _{E2}\qquad {\cfrac {A\wedge B}{A}}\ \wedge _{E1}}{B\wedge A}}\ \wedge _{I}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;</mtext> </mstyle> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> <mn>2</mn> </mrow> </msub> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> <mn>1</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>A</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {A\wedge B}{B{\hbox{ }}}}\ \wedge _{E2}\qquad {\cfrac {A\wedge B}{A}}\ \wedge _{E1}}{B\wedge A}}\ \wedge _{I}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49758ab3d5ddacdc980d6462c1412ee275bff9ae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.439ex; height:10.676ex;" alt="{\displaystyle {\cfrac {{\cfrac {A\wedge B}{B{\hbox{ }}}}\ \wedge _{E2}\qquad {\cfrac {A\wedge B}{A}}\ \wedge _{E1}}{B\wedge A}}\ \wedge _{I}}"></span> </p> </div> <p>As a second example, consider the derivation of "<i>A ⊃ (B ⊃ (A ∧ B))</i>": </p> <div style="margin-left: 2em"> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {{\cfrac {{\cfrac {}{A}}\ u\quad {\cfrac {}{B}}\ w}{A\wedge B}}\ \wedge _{I}}{{\cfrac {B\supset \left(A\wedge B\right)}{A\supset \left(B\supset \left(A\wedge B\right)\right)}}\ \supset _{I^{u}}}}\ \supset _{I^{w}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>u</mi> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>w</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mo>&#x2283;<!-- ⊃ --></mo> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2283;<!-- ⊃ --></mo> <mrow> <mo>(</mo> <mrow> <mi>B</mi> <mo>&#x2283;<!-- ⊃ --></mo> <mrow> <mo>(</mo> <mrow> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> </mrow> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msub> <mo>&#x2283;<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msup> </mrow> </msub> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mtext>&#xA0;</mtext> <msub> <mo>&#x2283;<!-- ⊃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>w</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {{\cfrac {{\cfrac {}{A}}\ u\quad {\cfrac {}{B}}\ w}{A\wedge B}}\ \wedge _{I}}{{\cfrac {B\supset \left(A\wedge B\right)}{A\supset \left(B\supset \left(A\wedge B\right)\right)}}\ \supset _{I^{u}}}}\ \supset _{I^{w}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb0cb810f1be9ee299fa1af281e7f400c06c493b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:31.385ex; height:18.009ex;" alt="{\displaystyle {\cfrac {{\cfrac {{\cfrac {}{A}}\ u\quad {\cfrac {}{B}}\ w}{A\wedge B}}\ \wedge _{I}}{{\cfrac {B\supset \left(A\wedge B\right)}{A\supset \left(B\supset \left(A\wedge B\right)\right)}}\ \supset _{I^{u}}}}\ \supset _{I^{w}}}"></span> </p> </div> <p>This full derivation has no unsatisfied premises; however, sub-derivations <i>are</i> hypothetical. For instance, the derivation of "<i>B ⊃ (A ∧ B)</i>" is hypothetical with antecedent "<i>A</i>" (named <i>u</i>). </p> <div class="mw-heading mw-heading2"><h2 id="Suppes–Lemmon-style_propositional_logic"><span id="Suppes.E2.80.93Lemmon-style_propositional_logic"></span>Suppes–Lemmon-style propositional logic</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=12" title="Edit section: Suppes–Lemmon-style propositional logic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Suppes–Lemmon-style_inference_rules"><span id="Suppes.E2.80.93Lemmon-style_inference_rules"></span>Suppes–Lemmon-style inference rules</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=13" title="Edit section: Suppes–Lemmon-style inference rules"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Natural deduction inference rules, due ultimately to <a href="/wiki/Gerhard_Gentzen" title="Gerhard Gentzen">Gentzen</a>, are given below.<sup id="cite_ref-LemmonLogic_23-0" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> There are ten primitive rules of proof, which are the rule <i>assumption</i>, plus four pairs of introduction and elimination rules for the binary connectives, and the rule <i>reductio ad adbsurdum</i>.<sup id="cite_ref-AllenHand_18-5" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> Disjunctive Syllogism can be used as an easier alternative to the proper ∨-elimination,<sup id="cite_ref-AllenHand_18-6" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> and MTT and DN are commonly given rules,<sup id="cite_ref-LemmonLogic_23-1" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> although they are not primitive.<sup id="cite_ref-AllenHand_18-7" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </p> <table class="wikitable" style="margin:auto;"> <caption>List of Inference Rules </caption> <tbody><tr> <th>Rule Name </th> <th>Alternative names </th> <th>Annotation </th> <th>Assumption set </th> <th>Statement </th></tr> <tr> <td>Rule of Assumptions<sup id="cite_ref-LemmonLogic_23-2" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></td> <td>Assumption<sup id="cite_ref-AllenHand_18-8" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td><b>A<sup id="cite_ref-LemmonLogic_23-3" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AllenHand_18-9" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The current line number.<sup id="cite_ref-AllenHand_18-10" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>At any stage of the argument, introduce a proposition as an assumption of the argument.<sup id="cite_ref-LemmonLogic_23-4" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AllenHand_18-11" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Conjunction introduction</td> <td>Ampersand introduction,<sup id="cite_ref-LemmonLogic_23-5" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AllenHand_18-12" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> conjunction (CONJ)<sup id="cite_ref-AllenHand_18-13" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-TWArthurLogic_24-0" class="reference"><a href="#cite_note-TWArthurLogic-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></td> <td><b>m, n &amp;I<sup id="cite_ref-AllenHand_18-14" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LemmonLogic_23-6" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The union of the assumption sets at lines <b>m</b> and <b>n</b>.<sup id="cite_ref-AllenHand_18-15" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> at lines <b>m</b> and <b>n</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi ~\&amp;~\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0026;<!-- & --></mi> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi ~\&amp;~\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/349658552cb30c288027982baf983d594188b08c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.003ex; height:2.676ex;" alt="{\displaystyle \varphi ~\&amp;~\psi }"></span>.<sup id="cite_ref-LemmonLogic_23-7" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AllenHand_18-16" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Conjunction elimination</td> <td>Simplification (S),<sup id="cite_ref-AllenHand_18-17" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> ampersand elimination<sup id="cite_ref-LemmonLogic_23-8" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AllenHand_18-18" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td><b>m &amp;E<sup id="cite_ref-AllenHand_18-19" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LemmonLogic_23-9" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The same as at line <b>m</b>.<sup id="cite_ref-AllenHand_18-20" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi ~\&amp;~\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mtext>&#xA0;</mtext> <mi mathvariant="normal">&#x0026;<!-- & --></mi> <mtext>&#xA0;</mtext> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi ~\&amp;~\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/349658552cb30c288027982baf983d594188b08c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.003ex; height:2.676ex;" alt="{\displaystyle \varphi ~\&amp;~\psi }"></span> at line <b>m</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span>.<sup id="cite_ref-AllenHand_18-21" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LemmonLogic_23-10" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Disjunction introduction<sup id="cite_ref-LemmonLogic_23-11" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></td> <td>Addition (ADD)<sup id="cite_ref-AllenHand_18-22" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td><b>m ∨I<sup id="cite_ref-AllenHand_18-23" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LemmonLogic_23-12" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The same as at line <b>m</b>.<sup id="cite_ref-AllenHand_18-24" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> at line <b>m</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \lor \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \lor \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53732d566089f41274c3fc138c14cd87ba59febd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.616ex; height:2.676ex;" alt="{\displaystyle \varphi \lor \psi }"></span>, whatever <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> may be.<sup id="cite_ref-AllenHand_18-25" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LemmonLogic_23-13" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Disjunction elimination</td> <td>Wedge elimination,<sup id="cite_ref-LemmonLogic_23-14" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> dilemma (DL)<sup id="cite_ref-TWArthurLogic_24-1" class="reference"><a href="#cite_note-TWArthurLogic-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></td> <td><b>j,k,l,m,n ∨E<sup id="cite_ref-LemmonLogic_23-15" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The lines <b>j,k,l,m,n</b>.<sup id="cite_ref-LemmonLogic_23-16" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \lor \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \lor \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53732d566089f41274c3fc138c14cd87ba59febd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.616ex; height:2.676ex;" alt="{\displaystyle \varphi \lor \psi }"></span> at line <b>j</b>, and an assumption of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> at line <b>k</b>, and a derivation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656111758322ace96d80a9371771aa6d3de25437" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.455ex; height:2.009ex;" alt="{\displaystyle \chi }"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> at line <b>l</b>, and an assumption of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> at line <b>m</b>, and a derivation of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656111758322ace96d80a9371771aa6d3de25437" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.455ex; height:2.009ex;" alt="{\displaystyle \chi }"></span> from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> at line <b>n</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \chi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C7;<!-- χ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \chi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/656111758322ace96d80a9371771aa6d3de25437" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.455ex; height:2.009ex;" alt="{\displaystyle \chi }"></span>.<sup id="cite_ref-LemmonLogic_23-17" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Disjunctive Syllogism </td> <td>Wedge elimination (∨E),<sup id="cite_ref-AllenHand_18-26" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> modus tollendo ponens (MTP)<sup id="cite_ref-AllenHand_18-27" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td> <td><b>m,n DS<sup id="cite_ref-AllenHand_18-28" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The union of the assumption sets at lines <b>m</b> and <b>n</b>.<sup id="cite_ref-AllenHand_18-29" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \lor \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \lor \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53732d566089f41274c3fc138c14cd87ba59febd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.616ex; height:2.676ex;" alt="{\displaystyle \varphi \lor \psi }"></span> at line <b>m</b> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d48bd06914d3df71eb66552fc8f0fdb7af496a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.328ex; height:2.509ex;" alt="{\displaystyle -\varphi }"></span> at line <b>n</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span>; from <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \lor \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \lor \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53732d566089f41274c3fc138c14cd87ba59febd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.616ex; height:2.676ex;" alt="{\displaystyle \varphi \lor \psi }"></span> at line <b>m</b> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db179e0c31a9ae42d7e993a683a5ca791245ec7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.321ex; height:2.509ex;" alt="{\displaystyle -\psi }"></span> at line <b>n</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>.<sup id="cite_ref-AllenHand_18-30" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Arrow elimination<sup id="cite_ref-AllenHand_18-31" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>Modus ponendo ponens (MPP),<sup id="cite_ref-LemmonLogic_23-18" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AllenHand_18-32" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> modus ponens (MP),<sup id="cite_ref-TWArthurLogic_24-2" class="reference"><a href="#cite_note-TWArthurLogic-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AllenHand_18-33" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> conditional elimination</td> <td><b>m, n →E<sup id="cite_ref-AllenHand_18-34" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LemmonLogic_23-19" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The union of the assumption sets at lines <b>m</b> and <b>n</b>.<sup id="cite_ref-AllenHand_18-35" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \to \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \to \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc8cebc7ec869e87352963afa13d3f7862058f2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.647ex; height:2.676ex;" alt="{\displaystyle \varphi \to \psi }"></span> at line <b>m</b>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> at line <b>n</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span>.<sup id="cite_ref-AllenHand_18-36" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Arrow introduction<sup id="cite_ref-AllenHand_18-37" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>Conditional proof (CP),<sup id="cite_ref-TWArthurLogic_24-3" class="reference"><a href="#cite_note-TWArthurLogic-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LemmonLogic_23-20" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-AllenHand_18-38" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> conditional introduction</td> <td><b>n, →I (m)<sup id="cite_ref-AllenHand_18-39" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-LemmonLogic_23-21" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>Everything in the assumption set at line <b>n</b>, excepting <b>m</b>, the line where the antecedent was assumed.<sup id="cite_ref-AllenHand_18-40" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/45e5789e5d9c8f7c79744f43ecaaf8ba42a8553a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.513ex; height:2.509ex;" alt="{\displaystyle \psi }"></span> at line <b>n</b>, following from the assumption of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> at line <b>m</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \to \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \to \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc8cebc7ec869e87352963afa13d3f7862058f2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.647ex; height:2.676ex;" alt="{\displaystyle \varphi \to \psi }"></span>.<sup id="cite_ref-AllenHand_18-41" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Reductio ad absurdum<sup id="cite_ref-LemmonLogic_23-22" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></td> <td>Indirect Proof (IP),<sup id="cite_ref-AllenHand_18-42" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> negation introduction (−I),<sup id="cite_ref-AllenHand_18-43" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> negation elimination (−E)<sup id="cite_ref-AllenHand_18-44" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td><b>m,</b>&#160;<b>n</b>&#160;<b>RAA</b>&#160;<b>(k)<sup id="cite_ref-AllenHand_18-45" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The union of the assumption sets at lines <b>m</b> and <b>n</b>, excluding <b>k</b> (the denied assumption).<sup id="cite_ref-AllenHand_18-46" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>From a sentence and its denial<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>b<span class="cite-bracket">&#93;</span></a></sup> at lines <b>m</b> and <b>n</b>, infer the denial of any assumption appearing in the proof (at line <b>k</b>).<sup id="cite_ref-AllenHand_18-48" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Double arrow introduction<sup id="cite_ref-AllenHand_18-49" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>Biconditional definition (<i>Df</i> ↔),<sup id="cite_ref-LemmonLogic_23-23" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> biconditional introduction</td> <td><b>m, n ↔ I<sup id="cite_ref-AllenHand_18-50" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The union of the assumption sets at lines <b>m</b> and <b>n</b>.<sup id="cite_ref-AllenHand_18-51" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \to \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \to \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc8cebc7ec869e87352963afa13d3f7862058f2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.647ex; height:2.676ex;" alt="{\displaystyle \varphi \to \psi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi \to \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi \to \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36aefa2940287c7dc1e23df0a900019ea00df615" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.647ex; height:2.676ex;" alt="{\displaystyle \psi \to \varphi }"></span> at lines <b>m</b> and <b>n</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \leftrightarrow \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \leftrightarrow \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e68c9c0e49df2cdfb5bbb241b0d3f6f10e20aa90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.647ex; height:2.676ex;" alt="{\displaystyle \varphi \leftrightarrow \psi }"></span>.<sup id="cite_ref-AllenHand_18-52" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Double arrow elimination<sup id="cite_ref-AllenHand_18-53" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>Biconditional definition (<i>Df</i> ↔),<sup id="cite_ref-LemmonLogic_23-24" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> biconditional elimination</td> <td><b>m ↔ E<sup id="cite_ref-AllenHand_18-54" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The same as at line <b>m</b>.<sup id="cite_ref-AllenHand_18-55" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \leftrightarrow \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2194;<!-- ↔ --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \leftrightarrow \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e68c9c0e49df2cdfb5bbb241b0d3f6f10e20aa90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.647ex; height:2.676ex;" alt="{\displaystyle \varphi \leftrightarrow \psi }"></span> at line <b>m</b>, infer either <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \to \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \to \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc8cebc7ec869e87352963afa13d3f7862058f2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.647ex; height:2.676ex;" alt="{\displaystyle \varphi \to \psi }"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi \to \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C8;<!-- ψ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi \to \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/36aefa2940287c7dc1e23df0a900019ea00df615" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.647ex; height:2.676ex;" alt="{\displaystyle \psi \to \varphi }"></span>.<sup id="cite_ref-AllenHand_18-56" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Double negation<sup id="cite_ref-LemmonLogic_23-25" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-TWArthurLogic_24-4" class="reference"><a href="#cite_note-TWArthurLogic-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></td> <td>Double negation elimination</td> <td><b>m DN<sup id="cite_ref-LemmonLogic_23-26" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The same as at line <b>m</b>.<sup id="cite_ref-LemmonLogic_23-27" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle --\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle --\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fefa96151e4c2e8a8353adfa47aa23232326055d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.169ex; height:2.509ex;" alt="{\displaystyle --\varphi }"></span> at line <b>m</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span>.<sup id="cite_ref-LemmonLogic_23-28" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td>Modus tollendo tollens<sup id="cite_ref-LemmonLogic_23-29" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></td> <td>Modus tollens (MT)<sup id="cite_ref-TWArthurLogic_24-5" class="reference"><a href="#cite_note-TWArthurLogic-24"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup></td> <td><b>m, n MTT<sup id="cite_ref-LemmonLogic_23-30" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></b> </td> <td>The union of the assumption sets at lines <b>m</b> and <b>n</b>.<sup id="cite_ref-LemmonLogic_23-31" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup></td> <td>From <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi \to \psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi \to \psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc8cebc7ec869e87352963afa13d3f7862058f2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.647ex; height:2.676ex;" alt="{\displaystyle \varphi \to \psi }"></span> at line <b>m</b>, and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\psi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C8;<!-- ψ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\psi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db179e0c31a9ae42d7e993a683a5ca791245ec7d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.321ex; height:2.509ex;" alt="{\displaystyle -\psi }"></span> at line <b>n</b>, infer <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d48bd06914d3df71eb66552fc8f0fdb7af496a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.328ex; height:2.509ex;" alt="{\displaystyle -\varphi }"></span>.<sup id="cite_ref-LemmonLogic_23-32" class="reference"><a href="#cite_note-LemmonLogic-23"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Suppes–Lemmon-style_example_proof"><span id="Suppes.E2.80.93Lemmon-style_example_proof"></span>Suppes–Lemmon-style example proof</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=14" title="Edit section: Suppes–Lemmon-style example proof"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Recall that an example proof was already given when introducing <a href="#Suppes–Lemmon_notation">§&#160;Suppes–Lemmon notation</a>. This is a second example. </p> <table class="wikitable" style="margin:auto;"> <caption>Suppes–Lemmon style proof (second example) </caption> <tbody><tr> <th>Assumption set </th> <th>Line number </th> <th>Sentence of proof </th> <th>Annotation </th></tr> <tr> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span> </td> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P\lor Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo>&#x2228;<!-- ∨ --></mo> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P\lor Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d2bc60d4b9ff5ec772fec5c2ef72a39536d4323" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.166ex; height:2.509ex;" alt="{\displaystyle P\lor Q}"></span> </td> <td><b>A</b> </td></tr> <tr> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span> </td> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb0d6c8752f8c7256d69c62e77dfe4c466dbe58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.296ex; height:2.176ex;" alt="{\displaystyle \neg P}"></span> </td> <td><b>A</b> </td></tr> <tr> <td><span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> </td> <td><span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg P\to \neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg P\to \neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f557b1e30ca9d61042833c85784c3e74363caad5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.298ex; height:2.509ex;" alt="{\displaystyle \neg P\to \neg Q}"></span> </td> <td><b>A</b> </td></tr> <tr> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>, <span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> </td> <td><span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">4</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg Q}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>Q</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg Q}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fad34798abb0bbbc063c906e459f103a09b1660e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.389ex; height:2.509ex;" alt="{\displaystyle \neg Q}"></span> </td> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>, <span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> <b>→E</b> </td></tr> <tr> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>, <span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>, <span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> </td> <td><span id="math_5" class="reference nourlexpansion" style="font-weight:bold;">5</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> </td> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>, <span id="math_4" class="reference nourlexpansion" style="font-weight:bold;">4</span> <b>&amp;E</b> </td></tr> <tr> <td><span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>, <span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> </td> <td><span id="math_6" class="reference nourlexpansion" style="font-weight:bold;">6</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b4dc73bf40314945ff376bd363916a738548d40a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.745ex; height:2.176ex;" alt="{\displaystyle P}"></span> </td> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>, <span id="math_5" class="reference nourlexpansion" style="font-weight:bold;">5</span> <b>RAA(2)</b> </td></tr> <tr> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>, <span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> </td> <td><span id="math_7" class="reference nourlexpansion" style="font-weight:bold;">7</span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \neg P}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x00AC;<!-- ¬ --></mi> <mi>P</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \neg P}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5eb0d6c8752f8c7256d69c62e77dfe4c466dbe58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.296ex; height:2.176ex;" alt="{\displaystyle \neg P}"></span> </td> <td><span id="math_2" class="reference nourlexpansion" style="font-weight:bold;">2</span>, <span id="math_3" class="reference nourlexpansion" style="font-weight:bold;">3</span> <b>RAA(1)</b> </td></tr></tbody></table> <div class="mw-heading mw-heading2"><h2 id="Consistency,_completeness,_and_normal_forms"><span id="Consistency.2C_completeness.2C_and_normal_forms"></span>Consistency, completeness, and normal forms</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=15" title="Edit section: Consistency, completeness, and normal forms"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1251242444">.mw-parser-output .ambox{border:1px solid #a2a9b1;border-left:10px solid #36c;background-color:#fbfbfb;box-sizing:border-box}.mw-parser-output .ambox+link+.ambox,.mw-parser-output .ambox+link+style+.ambox,.mw-parser-output .ambox+link+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+style+.ambox,.mw-parser-output .ambox+.mw-empty-elt+link+link+.ambox{margin-top:-1px}html body.mediawiki .mw-parser-output .ambox.mbox-small-left{margin:4px 1em 4px 0;overflow:hidden;width:238px;border-collapse:collapse;font-size:88%;line-height:1.25em}.mw-parser-output .ambox-speedy{border-left:10px solid #b32424;background-color:#fee7e6}.mw-parser-output .ambox-delete{border-left:10px solid #b32424}.mw-parser-output .ambox-content{border-left:10px solid #f28500}.mw-parser-output .ambox-style{border-left:10px solid #fc3}.mw-parser-output .ambox-move{border-left:10px solid #9932cc}.mw-parser-output .ambox-protection{border-left:10px solid #a2a9b1}.mw-parser-output .ambox .mbox-text{border:none;padding:0.25em 0.5em;width:100%}.mw-parser-output .ambox .mbox-image{border:none;padding:2px 0 2px 0.5em;text-align:center}.mw-parser-output .ambox .mbox-imageright{border:none;padding:2px 0.5em 2px 0;text-align:center}.mw-parser-output .ambox .mbox-empty-cell{border:none;padding:0;width:1px}.mw-parser-output .ambox .mbox-image-div{width:52px}@media(min-width:720px){.mw-parser-output .ambox{margin:0 10%}}@media print{body.ns-0 .mw-parser-output .ambox{display:none!important}}</style><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Natural_deduction" title="Special:EditPage/Natural deduction">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">May 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>A <a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">theory</a> is said to be consistent if falsehood is not provable (from no assumptions) and is complete if every theorem or its negation is provable using the inference rules of the logic. These are statements about the entire logic, and are usually tied to some notion of a <a href="/wiki/Model_theory" title="Model theory">model</a>. However, there are local notions of consistency and completeness that are purely syntactic checks on the inference rules, and require no appeals to models. The first of these is local consistency, also known as local reducibility, which says that any derivation containing an introduction of a connective followed immediately by its elimination can be turned into an equivalent derivation without this detour. It is a check on the <i>strength</i> of elimination rules: they must not be so strong that they include knowledge not already contained in their premises. As an example, consider conjunctions. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}{\cfrac {{\cfrac {{\cfrac {}{A\ }}u\qquad {\cfrac {}{B\ }}w}{A\wedge B\ }}\wedge _{I}}{A\ }}\wedge _{E1}\end{aligned}}\quad \Rightarrow \quad {\cfrac {}{A\ }}u}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mi>u</mi> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mi>w</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> <mn>1</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> <mspace width="1em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mi>u</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}{\cfrac {{\cfrac {{\cfrac {}{A\ }}u\qquad {\cfrac {}{B\ }}w}{A\wedge B\ }}\wedge _{I}}{A\ }}\wedge _{E1}\end{aligned}}\quad \Rightarrow \quad {\cfrac {}{A\ }}u}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bd4f7d4519466d37b128b1de4e84d59764ebd333" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:35.623ex; height:14.343ex;" alt="{\displaystyle {\begin{aligned}{\cfrac {{\cfrac {{\cfrac {}{A\ }}u\qquad {\cfrac {}{B\ }}w}{A\wedge B\ }}\wedge _{I}}{A\ }}\wedge _{E1}\end{aligned}}\quad \Rightarrow \quad {\cfrac {}{A\ }}u}"></span></dd></dl> <p>Dually, local completeness says that the elimination rules are strong enough to decompose a connective into the forms suitable for its introduction rule. Again for conjunctions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {}{A\wedge B\ }}u\quad \Rightarrow \quad {\begin{aligned}{\cfrac {{\cfrac {{\cfrac {}{A\wedge B\ }}u}{A\ }}\wedge _{E1}\qquad {\cfrac {{\cfrac {}{A\wedge B\ }}u}{B\ }}\wedge _{E2}}{A\wedge B\ }}\wedge _{I}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mi>u</mi> <mspace width="1em" /> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mi>u</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> <mn>1</mn> </mrow> </msub> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mi>u</mi> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> <mn>2</mn> </mrow> </msub> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>A</mi> <mo>&#x2227;<!-- ∧ --></mo> <mi>B</mi> <mtext>&#xA0;</mtext> </mrow> </mstyle> </mrow> </mfrac> </mrow> <msub> <mo>&#x2227;<!-- ∧ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {}{A\wedge B\ }}u\quad \Rightarrow \quad {\begin{aligned}{\cfrac {{\cfrac {{\cfrac {}{A\wedge B\ }}u}{A\ }}\wedge _{E1}\qquad {\cfrac {{\cfrac {}{A\wedge B\ }}u}{B\ }}\wedge _{E2}}{A\wedge B\ }}\wedge _{I}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/80941a1fe9c037d9d5e51723cb57a94515c92d7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.671ex; width:54.036ex; height:14.343ex;" alt="{\displaystyle {\cfrac {}{A\wedge B\ }}u\quad \Rightarrow \quad {\begin{aligned}{\cfrac {{\cfrac {{\cfrac {}{A\wedge B\ }}u}{A\ }}\wedge _{E1}\qquad {\cfrac {{\cfrac {}{A\wedge B\ }}u}{B\ }}\wedge _{E2}}{A\wedge B\ }}\wedge _{I}\end{aligned}}}"></span></dd></dl> <p>These notions correspond exactly to <a href="/wiki/Lambda_calculus#.CE.B2-reduction" title="Lambda calculus">β-reduction (beta reduction)</a> and <a href="/wiki/Lambda_calculus#.CE.B7-conversion" title="Lambda calculus">η-conversion (eta conversion)</a> in the <a href="/wiki/Lambda_calculus" title="Lambda calculus">lambda calculus</a>, using the <a href="/wiki/Curry%E2%80%93Howard_isomorphism" class="mw-redirect" title="Curry–Howard isomorphism">Curry&#8211;Howard isomorphism</a>. By local completeness, we see that every derivation can be converted to an equivalent derivation where the principal connective is introduced. In fact, if the entire derivation obeys this ordering of eliminations followed by introductions, then it is said to be <i>normal</i>. In a normal derivation all eliminations happen above introductions. In most logics, every derivation has an equivalent normal derivation, called a <i><a href="/wiki/Normal_form_(abstract_rewriting)" title="Normal form (abstract rewriting)">normal form</a></i>. The existence of normal forms is generally hard to prove using natural deduction alone, though such accounts do exist in the literature, most notably by <a href="/wiki/Dag_Prawitz" title="Dag Prawitz">Dag Prawitz</a> in 1961.<sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> It is much easier to show this indirectly by means of a <a href="/wiki/Cut_elimination" class="mw-redirect" title="Cut elimination">cut-free</a> <a href="/wiki/Sequent_calculus" title="Sequent calculus">sequent calculus</a> presentation. </p> <div class="mw-heading mw-heading2"><h2 id="First_and_higher-order_extensions">First and higher-order extensions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=16" title="Edit section: First and higher-order extensions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Natural_deduction" title="Special:EditPage/Natural deduction">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">May 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:First_order_natural_deduction.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/First_order_natural_deduction.png/220px-First_order_natural_deduction.png" decoding="async" width="220" height="280" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/e0/First_order_natural_deduction.png/330px-First_order_natural_deduction.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/e0/First_order_natural_deduction.png/440px-First_order_natural_deduction.png 2x" data-file-width="685" data-file-height="873" /></a><figcaption>Summary of first-order system</figcaption></figure> <p>The logic of the earlier section is an example of a <i>single-sorted</i> logic, <i>i.e.</i>, a logic with a single kind of object: propositions. Many extensions of this simple framework have been proposed; in this section we will extend it with a second sort of <i>individuals</i> or <i><a href="/wiki/Term_(logic)" title="Term (logic)">terms</a></i>. More precisely, we will add a new category, "term", denoted <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\mathcal {T}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\mathcal {T}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8236d074e42310f5dc24d1d2b5b8f5981c3e87ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.936ex; height:2.343ex;" alt="{\displaystyle {\mathcal {T}}}"></span>. We shall fix a <a href="/wiki/Countable" class="mw-redirect" title="Countable">countable</a> set <i><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/af0f6064540e84211d0ffe4dac72098adfa52845" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.787ex; height:2.176ex;" alt="{\displaystyle V}"></span></i> of <i>variables</i>, another countable set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/545fd099af8541605f7ee55f08225526be88ce57" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.741ex; height:2.176ex;" alt="{\displaystyle F}"></span> of <i>function symbols</i>, and construct terms with the following formation rules: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {v\in V}{v:{\mathcal {T}}}}{\hbox{ var}}_{F}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>v</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> </mrow> <mrow> <mi>v</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;var</mtext> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {v\in V}{v:{\mathcal {T}}}}{\hbox{ var}}_{F}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1867140a281c92fe7a9ca9a722c185ee262004f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:11.937ex; height:5.509ex;" alt="{\displaystyle {\frac {v\in V}{v:{\mathcal {T}}}}{\hbox{ var}}_{F}}"></span></dd></dl> <p>and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {f\in F\qquad t_{1}:{\mathcal {T}}\qquad t_{2}:{\mathcal {T}}\qquad \cdots \qquad t_{n}:{\mathcal {T}}}{f(t_{1},t_{2},\cdots ,t_{n}):{\mathcal {T}}}}{\hbox{ app}}_{F}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>f</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>F</mi> <mspace width="2em" /> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> <mspace width="2em" /> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> <mspace width="2em" /> <mo>&#x22EF;<!-- ⋯ --></mo> <mspace width="2em" /> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> </mrow> <mrow> <mi>f</mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;app</mtext> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {f\in F\qquad t_{1}:{\mathcal {T}}\qquad t_{2}:{\mathcal {T}}\qquad \cdots \qquad t_{n}:{\mathcal {T}}}{f(t_{1},t_{2},\cdots ,t_{n}):{\mathcal {T}}}}{\hbox{ app}}_{F}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/358ad1b9dbcc09fdddeed40c421817bd80a20d8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:52.031ex; height:6.343ex;" alt="{\displaystyle {\frac {f\in F\qquad t_{1}:{\mathcal {T}}\qquad t_{2}:{\mathcal {T}}\qquad \cdots \qquad t_{n}:{\mathcal {T}}}{f(t_{1},t_{2},\cdots ,t_{n}):{\mathcal {T}}}}{\hbox{ app}}_{F}}"></span></dd></dl> <p>For propositions, we consider a third countable set <i>P</i> of <i><a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">predicates</a></i>, and define <i>atomic predicates over terms</i> with the following formation rule: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\phi \in P\qquad t_{1}:{\mathcal {T}}\qquad t_{2}:{\mathcal {T}}\qquad \cdots \qquad t_{n}:{\mathcal {T}}}{\phi (t_{1},t_{2},\cdots ,t_{n}):{\mathcal {F}}}}{\hbox{ pred}}_{F}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>P</mi> <mspace width="2em" /> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> <mspace width="2em" /> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> <mspace width="2em" /> <mo>&#x22EF;<!-- ⋯ --></mo> <mspace width="2em" /> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> </mrow> <mrow> <mi>&#x03D5;<!-- ϕ --></mi> <mo stretchy="false">(</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&#x22EF;<!-- ⋯ --></mo> <mo>,</mo> <msub> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> <msub> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;pred</mtext> </mstyle> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\phi \in P\qquad t_{1}:{\mathcal {T}}\qquad t_{2}:{\mathcal {T}}\qquad \cdots \qquad t_{n}:{\mathcal {T}}}{\phi (t_{1},t_{2},\cdots ,t_{n}):{\mathcal {F}}}}{\hbox{ pred}}_{F}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f98bc3c1386591760a2f9ad03eb4346b72336a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:52.924ex; height:6.343ex;" alt="{\displaystyle {\frac {\phi \in P\qquad t_{1}:{\mathcal {T}}\qquad t_{2}:{\mathcal {T}}\qquad \cdots \qquad t_{n}:{\mathcal {T}}}{\phi (t_{1},t_{2},\cdots ,t_{n}):{\mathcal {F}}}}{\hbox{ pred}}_{F}}"></span></dd></dl> <p>The first two rules of formation provide a definition of a term that is effectively the same as that defined in <a href="/wiki/Term_algebra" title="Term algebra">term algebra</a> and <a href="/wiki/Model_theory" title="Model theory">model theory</a>, although the focus of those fields of study is quite different from natural deduction. The third rule of formation effectively defines an <a href="/wiki/Atomic_formula" title="Atomic formula">atomic formula</a>, as in <a href="/wiki/First-order_logic" title="First-order logic">first-order logic</a>, and again in model theory. </p><p>To these are added a pair of formation rules, defining the notation for <i><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">quantified</a></i> propositions; one for universal (∀) and existential (∃) quantification: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {x\in V\qquad A:{\mathcal {F}}}{\forall x.A:{\mathcal {F}}}}\;\forall _{F}\qquad \qquad {\frac {x\in V\qquad A:{\mathcal {F}}}{\exists x.A:{\mathcal {F}}}}\;\exists _{F}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> <mspace width="2em" /> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>.</mo> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msub> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> <mspace width="2em" /> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>x</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>V</mi> <mspace width="2em" /> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> <mrow> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo>.</mo> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msub> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>F</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {x\in V\qquad A:{\mathcal {F}}}{\forall x.A:{\mathcal {F}}}}\;\forall _{F}\qquad \qquad {\frac {x\in V\qquad A:{\mathcal {F}}}{\exists x.A:{\mathcal {F}}}}\;\exists _{F}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3899e191e422b081619811fa74356b385bd3c403" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:50.184ex; height:5.509ex;" alt="{\displaystyle {\frac {x\in V\qquad A:{\mathcal {F}}}{\forall x.A:{\mathcal {F}}}}\;\forall _{F}\qquad \qquad {\frac {x\in V\qquad A:{\mathcal {F}}}{\exists x.A:{\mathcal {F}}}}\;\exists _{F}}"></span></dd></dl> <p>The <a href="/wiki/Universal_quantifier" class="mw-redirect" title="Universal quantifier">universal quantifier</a> has the introduction and elimination rules: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\begin{array}{c}{\cfrac {}{a:{\mathcal {T}}}}{\text{ u}}\\\vdots \\{}[a/x]A\end{array}}{\forall x.A}}\;\forall _{I^{u,a}}\qquad \qquad {\frac {\forall x.A\qquad t:{\mathcal {T}}}{[t/x]A}}\;\forall _{E}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;u</mtext> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> <mo stretchy="false">[</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> <mo stretchy="false">]</mo> <mi>A</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>.</mo> <mi>A</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msub> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>I</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> <mo>,</mo> <mi>a</mi> </mrow> </msup> </mrow> </msub> <mspace width="2em" /> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>x</mi> <mo>.</mo> <mi>A</mi> <mspace width="2em" /> <mi>t</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> </mrow> <mrow> <mo stretchy="false">[</mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> <mo stretchy="false">]</mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msub> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>E</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\begin{array}{c}{\cfrac {}{a:{\mathcal {T}}}}{\text{ u}}\\\vdots \\{}[a/x]A\end{array}}{\forall x.A}}\;\forall _{I^{u,a}}\qquad \qquad {\frac {\forall x.A\qquad t:{\mathcal {T}}}{[t/x]A}}\;\forall _{E}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa20ba2dd507c0b97e8f3820831eaa07bfd51e42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:42.744ex; height:18.509ex;" alt="{\displaystyle {\cfrac {\begin{array}{c}{\cfrac {}{a:{\mathcal {T}}}}{\text{ u}}\\\vdots \\{}[a/x]A\end{array}}{\forall x.A}}\;\forall _{I^{u,a}}\qquad \qquad {\frac {\forall x.A\qquad t:{\mathcal {T}}}{[t/x]A}}\;\forall _{E}}"></span></dd></dl> <p>The <a href="/wiki/Existential_quantifier" class="mw-redirect" title="Existential quantifier">existential quantifier</a> has the introduction and elimination rules: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {[t/x]A}{\exists x.A}}\;\exists _{I}\qquad \qquad {\cfrac {\begin{array}{cc}&amp;\underbrace {\,{\cfrac {}{a:{\mathcal {T}}}}{\hbox{ u}}\quad {\cfrac {}{[a/x]A}}{\hbox{ v}}\,} \\&amp;\vdots \\\exists x.A\quad &amp;C\\\end{array}}{C}}\exists _{E^{a,u,v}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">[</mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> <mo stretchy="false">]</mo> <mi>A</mi> </mrow> <mrow> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo>.</mo> <mi>A</mi> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msub> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>I</mi> </mrow> </msub> <mspace width="2em" /> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center center" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd /> <mtd> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <munder> <mrow> <mspace width="thinmathspace" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">T</mi> </mrow> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;u</mtext> </mstyle> </mrow> <mspace width="1em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">[</mo> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>x</mi> <mo stretchy="false">]</mo> <mi>A</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;v</mtext> </mstyle> </mrow> <mspace width="thinmathspace" /> </mrow> <mo>&#x23DF;<!-- ⏟ --></mo> </munder> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>x</mi> <mo>.</mo> <mi>A</mi> <mspace width="1em" /> </mtd> <mtd> <mi>C</mi> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>C</mi> </mrow> </mstyle> </mrow> </mfrac> </mrow> <msub> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>,</mo> <mi>u</mi> <mo>,</mo> <mi>v</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {[t/x]A}{\exists x.A}}\;\exists _{I}\qquad \qquad {\cfrac {\begin{array}{cc}&amp;\underbrace {\,{\cfrac {}{a:{\mathcal {T}}}}{\hbox{ u}}\quad {\cfrac {}{[a/x]A}}{\hbox{ v}}\,} \\&amp;\vdots \\\exists x.A\quad &amp;C\\\end{array}}{C}}\exists _{E^{a,u,v}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94ac4f9f1480f3290af8775c42cfd26fa28670c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:57.254ex; height:20.176ex;" alt="{\displaystyle {\frac {[t/x]A}{\exists x.A}}\;\exists _{I}\qquad \qquad {\cfrac {\begin{array}{cc}&amp;\underbrace {\,{\cfrac {}{a:{\mathcal {T}}}}{\hbox{ u}}\quad {\cfrac {}{[a/x]A}}{\hbox{ v}}\,} \\&amp;\vdots \\\exists x.A\quad &amp;C\\\end{array}}{C}}\exists _{E^{a,u,v}}}"></span></dd></dl> <p>In these rules, the notation [<i>t</i>/<i>x</i>] <i>A</i> stands for the substitution of <i>t</i> for every (visible) instance of <i>x</i> in <i>A</i>, avoiding capture.<sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>c<span class="cite-bracket">&#93;</span></a></sup> As before the superscripts on the name stand for the components that are discharged: the term <i>a</i> cannot occur in the conclusion of ∀I (such terms are known as <i>eigenvariables</i> or <i>parameters</i>), and the hypotheses named <i>u</i> and <i>v</i> in ∃E are localised to the second premise in a hypothetical derivation. Although the propositional logic of earlier sections was <a href="/wiki/Decidability_(logic)" title="Decidability (logic)">decidable</a>, adding the quantifiers makes the logic undecidable. </p><p>So far, the quantified extensions are <i>first-order</i>: they distinguish propositions from the kinds of objects quantified over. <a href="/wiki/Higher-order_logic" title="Higher-order logic">Higher-order logic</a> takes a different approach and has only a single sort of propositions. The quantifiers have as the domain of quantification the very same sort of propositions, as reflected in the formation rules: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\cfrac {\begin{matrix}{\cfrac {}{p:{\mathcal {F}}}}{\hbox{ u}}\\\vdots \\A:{\mathcal {F}}\\\end{matrix}}{\forall p.A:{\mathcal {F}}}}\;\forall _{F^{u}}\qquad \qquad {\cfrac {\begin{matrix}{\cfrac {}{p:{\mathcal {F}}}}{\hbox{ u}}\\\vdots \\A:{\mathcal {F}}\\\end{matrix}}{\exists p.A:{\mathcal {F}}}}\;\exists _{F^{u}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;u</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mi>p</mi> <mo>.</mo> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msub> <mi mathvariant="normal">&#x2200;<!-- ∀ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msup> </mrow> </msub> <mspace width="2em" /> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mtext>&#xA0;u</mtext> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>&#x22EE;<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <mrow> <mpadded width="0" height="8.6pt" depth="3pt"> <mrow /> </mpadded> <mstyle displaystyle="false" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mi>p</mi> <mo>.</mo> <mi>A</mi> <mo>:</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi class="MJX-tex-caligraphic" mathvariant="script">F</mi> </mrow> </mrow> </mrow> </mstyle> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msub> <mi mathvariant="normal">&#x2203;<!-- ∃ --></mi> <mrow class="MJX-TeXAtom-ORD"> <msup> <mi>F</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>u</mi> </mrow> </msup> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\cfrac {\begin{matrix}{\cfrac {}{p:{\mathcal {F}}}}{\hbox{ u}}\\\vdots \\A:{\mathcal {F}}\\\end{matrix}}{\forall p.A:{\mathcal {F}}}}\;\forall _{F^{u}}\qquad \qquad {\cfrac {\begin{matrix}{\cfrac {}{p:{\mathcal {F}}}}{\hbox{ u}}\\\vdots \\A:{\mathcal {F}}\\\end{matrix}}{\exists p.A:{\mathcal {F}}}}\;\exists _{F^{u}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3e9a6a36903df1d889eded734e5d1f891a563c75" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:37.93ex; height:18.343ex;" alt="{\displaystyle {\cfrac {\begin{matrix}{\cfrac {}{p:{\mathcal {F}}}}{\hbox{ u}}\\\vdots \\A:{\mathcal {F}}\\\end{matrix}}{\forall p.A:{\mathcal {F}}}}\;\forall _{F^{u}}\qquad \qquad {\cfrac {\begin{matrix}{\cfrac {}{p:{\mathcal {F}}}}{\hbox{ u}}\\\vdots \\A:{\mathcal {F}}\\\end{matrix}}{\exists p.A:{\mathcal {F}}}}\;\exists _{F^{u}}}"></span></dd></dl> <p>A discussion of the introduction and elimination forms for higher-order logic is beyond the scope of this article. It is possible to be in-between first-order and higher-order logics. For example, <a href="/wiki/Second-order_logic" title="Second-order logic">second-order logic</a> has two kinds of propositions, one kind quantifying over terms, and the second kind quantifying over propositions of the first kind. </p> <div class="mw-heading mw-heading2"><h2 id="Proofs_and_type_theory">Proofs and type theory</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=17" title="Edit section: Proofs and type theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Natural_deduction" title="Special:EditPage/Natural deduction">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">May 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>The presentation of natural deduction so far has concentrated on the nature of propositions without giving a formal definition of a <i>proof</i>. To formalise the notion of proof, we alter the presentation of hypothetical derivations slightly. We label the antecedents with <i>proof variables</i> (from some countable set <i>V</i> of variables), and decorate the succedent with the actual proof. The antecedents or <i>hypotheses</i> are separated from the succedent by means of a <i><a href="/wiki/Turnstile_(symbol)" title="Turnstile (symbol)">turnstile</a></i> (⊢). This modification sometimes goes under the name of <i>localised hypotheses</i>. The following diagram summarises the change. </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>──── u<sub>1</sub> ──── u<sub>2</sub> ... ──── u<sub>n</sub> J<sub>1</sub> J<sub>2</sub> J<sub>n</sub> ⋮ J </pre> </td> <td width="10%" align="center">⇒</td> <td> <pre>u<sub>1</sub>:J<sub>1</sub>, u<sub>2</sub>:J<sub>2</sub>, ..., u<sub>n</sub>:J<sub>n</sub> ⊢ J </pre> </td></tr></tbody></table> <p>The collection of hypotheses will be written as Γ when their exact composition is not relevant. To make proofs explicit, we move from the proof-less judgment "<i>A</i>" to a judgment: "π <i>is a proof of (A)</i>", which is written symbolically as "π&#160;: <i>A</i>". Following the standard approach, proofs are specified with their own formation rules for the judgment "π <i>proof</i>". The simplest possible proof is the use of a labelled hypothesis; in this case the evidence is the label itself. </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>u ∈ V ─────── proof-F u proof </pre> </td> <td width="10%"></td> <td> <pre>───────────────────── hyp u:A ⊢ u&#160;: A </pre> </td></tr></tbody></table> <p>Let us re-examine some of the connectives with explicit proofs. For conjunction, we look at the introduction rule ∧I to discover the form of proofs of conjunction: they must be a pair of proofs of the two conjuncts. Thus: </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>π<sub>1</sub> proof π<sub>2</sub> proof ──────────────────── pair-F (π<sub>1</sub>, π<sub>2</sub>) proof </pre> </td> <td width="10%"></td> <td> <pre>Γ ⊢ π<sub>1</sub>&#160;: A Γ ⊢ π<sub>2</sub>&#160;: B ───────────────────────── ∧I Γ ⊢ (π<sub>1</sub>, π<sub>2</sub>)&#160;: A ∧ B </pre> </td></tr></tbody></table> <p>The elimination rules ∧E<sub>1</sub> and ∧E<sub>2</sub> select either the left or the right conjunct; thus the proofs are a pair of projections&#8212;first (<b>fst</b>) and second (<b>snd</b>). </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>π proof ─────────── <b>fst</b>-F <b>fst</b> π proof </pre> </td> <td width="10%"></td> <td> <pre>Γ ⊢ π&#160;: A ∧ B ───────────── ∧E<sub>1</sub> Γ ⊢ <b>fst</b> π&#160;: A </pre> </td></tr> <tr> <td> <pre>π proof ─────────── <b>snd</b>-F <b>snd</b> π proof </pre> </td> <td width="10%"></td> <td> <pre>Γ ⊢ π&#160;: A ∧ B ───────────── ∧E<sub>2</sub> Γ ⊢ <b>snd</b> π&#160;: B </pre> </td></tr></tbody></table> <p>For implication, the introduction form localises or <i>binds</i> the hypothesis, written using a λ; this corresponds to the discharged label. In the rule, "Γ, <i>u</i>:<i>A</i>" stands for the collection of hypotheses Γ, together with the additional hypothesis <i>u</i>. </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>π proof ──────────── λ-F λu. π proof </pre> </td> <td width="10%"></td> <td> <pre>Γ, u:A ⊢ π&#160;: B ───────────────── ⊃I Γ ⊢ λu. π&#160;: A ⊃ B </pre> </td></tr> <tr> <td> <pre>π<sub>1</sub> proof π<sub>2</sub> proof ─────────────────── app-F π<sub>1</sub> π<sub>2</sub> proof </pre> </td> <td width="10%"></td> <td> <pre>Γ ⊢ π<sub>1</sub>&#160;: A ⊃ B Γ ⊢ π<sub>2</sub>&#160;: A ──────────────────────────── ⊃E Γ ⊢ π<sub>1</sub> π<sub>2</sub>&#160;: B </pre> </td></tr></tbody></table> <p>With proofs available explicitly, one can manipulate and reason about proofs. The key operation on proofs is the substitution of one proof for an assumption used in another proof. This is commonly known as a <i>substitution theorem</i>, and can be proved by <a href="/wiki/Mathematical_induction" title="Mathematical induction">induction</a> on the depth (or structure) of the second judgment. </p> <div class="mw-heading mw-heading3"><h3 id="Substitution_theorem">Substitution theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=18" title="Edit section: Substitution theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Natural_deduction" title="Special:EditPage/Natural deduction">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">May 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <dl><dd><i>If</i> Γ ⊢ π<sub>1</sub>&#160;: <i>A</i> <i>and</i> Γ, <i>u</i>:<i>A</i> ⊢ π<sub>2</sub>&#160;: <i>B</i>, <i>then</i> Γ ⊢ [π<sub>1</sub>/<i>u</i>] π<sub>2</sub>&#160;: B.</dd></dl> <p>So far the judgment "Γ ⊢ π&#160;: <i>A</i>" has had a purely logical interpretation. In <a href="/wiki/Type_theory" title="Type theory">type theory</a>, the logical view is exchanged for a more computational view of objects. Propositions in the logical interpretation are now viewed as <i>types</i>, and proofs as programs in the <a href="/wiki/Lambda_calculus" title="Lambda calculus">lambda calculus</a>. Thus the interpretation of "π&#160;: <i>A</i>" is "<i>the program</i> π has type <i>A</i>". The logical connectives are also given a different reading: conjunction is viewed as <a href="/wiki/Product_type" title="Product type">product</a> (×), implication as the function <a href="/wiki/Function_type" title="Function type">arrow</a> (→), etc. The differences are only cosmetic, however. Type theory has a natural deduction presentation in terms of formation, introduction and elimination rules; in fact, the reader can easily reconstruct what is known as <i>simple type theory</i> from the previous sections. </p><p>The difference between logic and type theory is primarily a shift of focus from the types (propositions) to the programs (proofs). Type theory is chiefly interested in the convertibility or reducibility of programs. For every type, there are canonical programs of that type which are irreducible; these are known as <i>canonical forms</i> or <i>values</i>. If every program can be reduced to a canonical form, then the type theory is said to be <i><a href="/wiki/Normalization_property_(abstract_rewriting)" class="mw-redirect" title="Normalization property (abstract rewriting)">normalising</a></i> (or <i>weakly normalising</i>). If the canonical form is unique, then the theory is said to be <i>strongly normalising</i>. Normalisability is a rare feature of most non-trivial type theories, which is a big departure from the logical world. (Recall that almost every logical derivation has an equivalent normal derivation.) To sketch the reason: in type theories that admit recursive definitions, it is possible to write programs that never reduce to a value; such looping programs can generally be given any type. In particular, the looping program has type ⊥, although there is no logical proof of "⊥". For this reason, the <i>propositions as types; proofs as programs</i> paradigm only works in one direction, if at all: interpreting a type theory as a logic generally gives an inconsistent logic. </p> <div class="mw-heading mw-heading3"><h3 id="Example:_Dependent_Type_Theory">Example: Dependent Type Theory</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=19" title="Edit section: Example: Dependent Type Theory"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Natural_deduction" title="Special:EditPage/Natural deduction">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">May 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>Like logic, type theory has many extensions and variants, including first-order and higher-order versions. One branch, known as <a href="/wiki/Dependent_type_theory" class="mw-redirect" title="Dependent type theory">dependent type theory</a>, is used in a number of <a href="/wiki/Computer-assisted_proof" title="Computer-assisted proof">computer-assisted proof</a> systems. Dependent type theory allows quantifiers to range over programs themselves. These quantified types are written as Π and Σ instead of ∀ and ∃, and have the following formation rules: </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>Γ ⊢ A type Γ, x:A ⊢ B type ───────────────────────────── Π-F Γ ⊢ Πx:A. B type </pre> </td> <td width="10%"></td> <td> <pre>Γ ⊢ A type Γ, x:A ⊢ B type ──────────────────────────── Σ-F Γ ⊢ Σx:A. B type </pre> </td></tr></tbody></table> <p>These types are generalisations of the arrow and product types, respectively, as witnessed by their introduction and elimination rules. </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>Γ, x:A ⊢ π&#160;: B ──────────────────── ΠI Γ ⊢ λx. π&#160;: Πx:A. B </pre> </td> <td width="10%"></td> <td> <pre>Γ ⊢ π<sub>1</sub>&#160;: Πx:A. B Γ ⊢ π<sub>2</sub>&#160;: A ───────────────────────────── ΠE Γ ⊢ π<sub>1</sub> π<sub>2</sub>&#160;: [π<sub>2</sub>/x] B </pre> </td></tr></tbody></table> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>Γ ⊢ π<sub>1</sub>&#160;: A Γ, x:A ⊢ π<sub>2</sub>&#160;: B ───────────────────────────── ΣI Γ ⊢ (π<sub>1</sub>, π<sub>2</sub>)&#160;: Σx:A. B </pre> </td> <td width="10%"></td> <td> <pre>Γ ⊢ π&#160;: Σx:A. B ──────────────── ΣE<sub>1</sub> Γ ⊢ <b>fst</b> π&#160;: A </pre> </td></tr></tbody></table> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>Γ ⊢ π&#160;: Σx:A. B ──────────────────────── ΣE<sub>2</sub> Γ ⊢ <b>snd</b> π&#160;: [<b>fst</b> π/x] B </pre> </td></tr></tbody></table> <p>Dependent type theory in full generality is very powerful: it is able to express almost any conceivable property of programs directly in the types of the program. This generality comes at a steep price &#8212; either typechecking is undecidable (<a href="/wiki/Extensional_type_theory" class="mw-redirect" title="Extensional type theory">extensional type theory</a>), or extensional reasoning is more difficult (<a href="/wiki/Intensional_type_theory" class="mw-redirect" title="Intensional type theory">intensional type theory</a>). For this reason, some dependent type theories do not allow quantification over arbitrary programs, but rather restrict to programs of a given decidable <i>index domain</i>, for example integers, strings, or linear programs. </p><p>Since dependent type theories allow types to depend on programs, a natural question to ask is whether it is possible for programs to depend on types, or any other combination. There are many kinds of answers to such questions. A popular approach in type theory is to allow programs to be quantified over types, also known as <i><a href="/wiki/Parametric_polymorphism" title="Parametric polymorphism">parametric polymorphism</a></i>; of this there are two main kinds: if types and programs are kept separate, then one obtains a somewhat more well-behaved system called <i><a href="/wiki/Predicative_polymorphism" class="mw-redirect" title="Predicative polymorphism">predicative polymorphism</a></i>; if the distinction between program and type is blurred, one obtains the type-theoretic analogue of higher-order logic, also known as <i><a href="/wiki/Impredicative_polymorphism" class="mw-redirect" title="Impredicative polymorphism">impredicative polymorphism</a></i>. Various combinations of dependency and polymorphism have been considered in the literature, the most famous being the <a href="/wiki/Lambda_cube" title="Lambda cube">lambda cube</a> of <a href="/wiki/Henk_Barendregt" title="Henk Barendregt">Henk Barendregt</a>. </p><p>The intersection of logic and type theory is a vast and active research area. New logics are usually formalised in a general type theoretic setting, known as a <a href="/wiki/Logical_framework" title="Logical framework">logical framework</a>. Popular modern logical frameworks such as the <a href="/wiki/Calculus_of_constructions" title="Calculus of constructions">calculus of constructions</a> and <a href="/wiki/LF_(logical_framework)" class="mw-redirect" title="LF (logical framework)">LF</a> are based on higher-order dependent type theory, with various trade-offs in terms of decidability and expressive power. These logical frameworks are themselves always specified as natural deduction systems, which is a testament to the versatility of the natural deduction approach. </p> <div class="mw-heading mw-heading2"><h2 id="Classical_and_modal_logics">Classical and modal logics</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=20" title="Edit section: Classical and modal logics"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Natural_deduction" title="Special:EditPage/Natural deduction">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">May 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <p>For simplicity, the logics presented so far have been <a href="/wiki/Intuitionistic_logic" title="Intuitionistic logic">intuitionistic</a>. <a href="/wiki/Classical_logic" title="Classical logic">Classical logic</a> extends intuitionistic logic with an additional <a href="/wiki/Axiom" title="Axiom">axiom</a> or principle of <a href="/wiki/Excluded_middle" class="mw-redirect" title="Excluded middle">excluded middle</a>: </p> <dl><dd>For any proposition p, the proposition p ∨ ¬p is true.</dd></dl> <p>This statement is not obviously either an introduction or an elimination; indeed, it involves two distinct connectives. Gentzen's original treatment of excluded middle prescribed one of the following three (equivalent) formulations, which were already present in analogous forms in the systems of <a href="/wiki/David_Hilbert" title="David Hilbert">Hilbert</a> and <a href="/wiki/Arend_Heyting" title="Arend Heyting">Heyting</a>: </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>────────────── XM<sub>1</sub> A ∨ ¬A </pre> </td> <td width="5%"></td> <td> <pre>¬¬A ────────── XM<sub>2</sub> A </pre> </td> <td width="5%"></td> <td> <pre>──────── <i>u</i> ¬A ⋮ <i>p</i> ────── XM<sub>3</sub><sup><i>u, p</i></sup> A </pre> </td></tr></tbody></table> <p>(XM<sub>3</sub> is merely XM<sub>2</sub> expressed in terms of E.) This treatment of excluded middle, in addition to being objectionable from a purist's standpoint, introduces additional complications in the definition of normal forms. </p><p>A comparatively more satisfactory treatment of classical natural deduction in terms of introduction and elimination rules alone was first proposed by <a href="/w/index.php?title=Michel_Parigot&amp;action=edit&amp;redlink=1" class="new" title="Michel Parigot (page does not exist)">Parigot</a> in 1992 in the form of a classical <a href="/wiki/Lambda_calculus" title="Lambda calculus">lambda calculus</a> called <a href="/wiki/Lambda-mu_calculus" title="Lambda-mu calculus">λμ</a>. The key insight of his approach was to replace a truth-centric judgment <i>A</i> with a more classical notion, reminiscent of the <a href="/wiki/Sequent_calculus" title="Sequent calculus">sequent calculus</a>: in localised form, instead of Γ ⊢ <i>A</i>, he used Γ ⊢ Δ, with Δ a collection of propositions similar to Γ. Γ was treated as a conjunction, and Δ as a disjunction. This structure is essentially lifted directly from classical <a href="/wiki/Sequent_calculus" title="Sequent calculus">sequent calculi</a>, but the innovation in λμ was to give a computational meaning to classical natural deduction proofs in terms of a <a href="/wiki/Callcc" class="mw-redirect" title="Callcc">callcc</a> or a throw/catch mechanism seen in <a href="/wiki/LISP" class="mw-redirect" title="LISP">LISP</a> and its descendants. (See also: <a href="/wiki/First_class_control" class="mw-redirect" title="First class control">first class control</a>.) </p><p>Another important extension was for <a href="/wiki/Modal_logic" title="Modal logic">modal</a> and other logics that need more than just the basic judgment of truth. These were first described, for the alethic modal logics <a href="/wiki/S4_(modal_logic)" class="mw-redirect" title="S4 (modal logic)">S4</a> and <a href="/wiki/S5_(modal_logic)" title="S5 (modal logic)">S5</a>, in a natural deduction style by <a href="/wiki/Dag_Prawitz" title="Dag Prawitz">Prawitz</a> in 1965,<sup id="cite_ref-prawitz1965_5-1" class="reference"><a href="#cite_note-prawitz1965-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> and have since accumulated a large body of related work. To give a simple example, the modal logic S4 requires one new judgment, "<i>A valid</i>", that is categorical with respect to truth: </p> <dl><dd>If "A" (is true) under no assumption that "B" (is true), then "A valid".</dd></dl> <p>This categorical judgment is internalised as a unary connective ◻<i>A</i> (read "<i>necessarily A</i>") with the following introduction and elimination rules: </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>A valid ──────── ◻I ◻ A </pre> </td> <td width="5%"></td> <td> <pre>◻ A ──────── ◻E A </pre> </td></tr></tbody></table> <p>Note that the premise "<i>A valid</i>" has no defining rules; instead, the categorical definition of validity is used in its place. This mode becomes clearer in the localised form when the hypotheses are explicit. We write "Ω;Γ ⊢ <i>A</i>" where Γ contains the true hypotheses as before, and Ω contains valid hypotheses. On the right there is just a single judgment "<i>A</i>"; validity is not needed here since "Ω ⊢ <i>A valid</i>" is by definition the same as "Ω;⋅ ⊢ <i>A</i>". The introduction and elimination forms are then: </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>Ω;⋅ ⊢ π&#160;: A ──────────────────── ◻I Ω;⋅ ⊢ <b>box</b> π&#160;: ◻ A </pre> </td> <td width="5%"></td> <td> <pre>Ω;Γ ⊢ π&#160;: ◻ A ────────────────────── ◻E Ω;Γ ⊢ <b>unbox</b> π&#160;: A </pre> </td></tr></tbody></table> <p>The modal hypotheses have their own version of the hypothesis rule and substitution theorem. </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>─────────────────────────────── valid-hyp Ω, u: (A valid)&#160;; Γ ⊢ u&#160;: A </pre> </td></tr></tbody></table> <div class="mw-heading mw-heading3"><h3 id="Modal_substitution_theorem">Modal substitution theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=21" title="Edit section: Modal substitution theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dt><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Natural_deduction" title="Special:EditPage/Natural deduction">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">May 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table></dt> <dd><i>If</i> Ω;⋅ ⊢ π<sub>1</sub>&#160;: <i>A</i> <i>and</i> Ω, <i>u</i>: (<i>A valid</i>)&#160;; Γ ⊢ π<sub>2</sub>&#160;: <i>C</i>, <i>then</i> Ω;Γ ⊢ [π<sub>1</sub>/<i>u</i>] π<sub>2</sub>&#160;: <i>C</i>.</dd></dl> <p>This framework of separating judgments into distinct collections of hypotheses, also known as <i>multi-zoned</i> or <i>polyadic</i> contexts, is very powerful and extensible; it has been applied for many different modal logics, and also for <a href="/wiki/Linear_logic" title="Linear logic">linear</a> and other <a href="/wiki/Substructural_logic" title="Substructural logic">substructural logics</a>, to give a few examples. However, relatively few systems of modal logic can be formalised directly in natural deduction. To give proof-theoretic characterisations of these systems, extensions such as labelling or systems of deep inference. </p><p>The addition of labels to formulae permits much finer control of the conditions under which rules apply, allowing the more flexible techniques of <a href="/wiki/Analytic_tableau" class="mw-redirect" title="Analytic tableau">analytic tableaux</a> to be applied, as has been done in the case of <a href="/w/index.php?title=Labelled_deduction&amp;action=edit&amp;redlink=1" class="new" title="Labelled deduction (page does not exist)">labelled deduction</a>. Labels also allow the naming of worlds in Kripke semantics; <a href="#CITEREFSimpson1993">Simpson (1993)</a> presents an influential technique for converting frame conditions of modal logics in Kripke semantics into inference rules in a natural deduction formalisation of <a href="/wiki/Hybrid_logic" title="Hybrid logic">hybrid logic</a>. <a href="#CITEREFStouppa2004">Stouppa (2004)</a> surveys the application of many proof theories, such as Avron and Pottinger's <a href="/wiki/Hypersequent" title="Hypersequent">hypersequents</a> and Belnap's <a href="/wiki/Display_logic" class="mw-redirect" title="Display logic">display logic</a> to such modal logics as S5 and B. </p> <div class="mw-heading mw-heading2"><h2 id="Comparison_with_sequent_calculus">Comparison with sequent calculus</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=22" title="Edit section: Comparison with sequent calculus"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Natural_deduction" title="Special:EditPage/Natural deduction">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">May 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Sequent_calculus" title="Sequent calculus">Sequent calculus</a></div> <p>The sequent calculus is the chief alternative to natural deduction as a foundation of <a href="/wiki/Mathematical_logic" title="Mathematical logic">mathematical logic</a>. In natural deduction the flow of information is bi-directional: elimination rules flow information downwards by deconstruction, and introduction rules flow information upwards by assembly. Thus, a natural deduction proof does not have a purely bottom-up or top-down reading, making it unsuitable for automation in proof search. To address this fact, <a href="/wiki/Gerhard_Gentzen" title="Gerhard Gentzen">Gentzen</a> in 1935 proposed his <a href="/wiki/Sequent_calculus" title="Sequent calculus">sequent calculus</a>, though he initially intended it as a technical device for clarifying the consistency of <a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">predicate logic</a>. <a href="/wiki/Stephen_Cole_Kleene" title="Stephen Cole Kleene">Kleene</a>, in his seminal 1952 book <i>Introduction to Metamathematics</i>, gave the first formulation of the sequent calculus in the modern style.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup> </p><p>In the sequent calculus all inference rules have a purely bottom-up reading. Inference rules can apply to elements on both sides of the <a href="/wiki/Turnstile_(symbol)" title="Turnstile (symbol)">turnstile</a>. (To differentiate from natural deduction, this article uses a double arrow ⇒ instead of the right tack ⊢ for sequents.) The introduction rules of natural deduction are viewed as <i>right rules</i> in the sequent calculus, and are structurally very similar. The elimination rules on the other hand turn into <i>left rules</i> in the sequent calculus. To give an example, consider disjunction; the right rules are familiar: </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>Γ ⇒ A ───────── ∨R<sub>1</sub> Γ ⇒ A ∨ B </pre> </td> <td></td> <td> <pre>Γ ⇒ B ───────── ∨R<sub>2</sub> Γ ⇒ A ∨ B </pre> </td></tr></tbody></table> <p>On the left: </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>Γ, u:A ⇒ C Γ, v:B ⇒ C ─────────────────────────── ∨L Γ, w: (A ∨ B) ⇒ C </pre> </td></tr></tbody></table> <p>Recall the ∨E rule of natural deduction in localised form: </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>Γ ⊢ A ∨ B Γ, u:A ⊢ C Γ, v:B ⊢ C ─────────────────────────────────────── ∨E Γ ⊢ C </pre> </td></tr></tbody></table> <p>The proposition <i>A ∨ B</i>, which is the succedent of a premise in ∨E, turns into a hypothesis of the conclusion in the left rule ∨L. Thus, left rules can be seen as a sort of inverted elimination rule. This observation can be illustrated as follows: </p> <table align="center"> <tbody><tr> <th>natural deduction </th> <td> </td> <th>sequent calculus </th></tr> <tr> <td><pre> ────── hyp | | elim. rules | ↓ ────────────────────── ↑↓ meet ↑ | | intro. rules | conclusion</pre> </td> <td width="20%" align="center">⇒</td> <td><pre> ─────────────────────────── init ↑ ↑ | | | left rules | right rules | | conclusion</pre> </td></tr></tbody></table> <p>In the sequent calculus, the left and right rules are performed in lock-step until one reaches the <i>initial sequent</i>, which corresponds to the meeting point of elimination and introduction rules in natural deduction. These initial rules are superficially similar to the hypothesis rule of natural deduction, but in the sequent calculus they describe a <i>transposition</i> or a <i>handshake</i> of a left and a right proposition: </p> <table style="margin-left: 2em;"> <tbody><tr> <td> <pre>────────── init Γ, u:A ⇒ A </pre> </td></tr></tbody></table> <p>The correspondence between the sequent calculus and natural deduction is a pair of soundness and completeness theorems, which are both provable by means of an inductive argument. </p> <dl><dt>Soundness of ⇒ wrt. ⊢</dt> <dd><i>If</i> Γ ⇒ <i>A</i>, <i>then</i> Γ ⊢ <i>A</i>.</dd> <dt>Completeness of ⇒ wrt. ⊢</dt> <dd><i>If</i> Γ ⊢ <i>A</i>, <i>then</i> Γ ⇒ <i>A</i>.</dd></dl> <p>It is clear by these theorems that the sequent calculus does not change the notion of truth, because the same collection of propositions remain true. Thus, one can use the same proof objects as before in sequent calculus derivations. As an example, consider the conjunctions. The right rule is virtually identical to the introduction rule </p> <table style="margin-left: 2em;"> <tbody><tr> <th>sequent calculus </th> <td> </td> <th>natural deduction </th></tr> <tr> <td> <pre>Γ ⇒ π<sub>1</sub>&#160;: A Γ ⇒ π<sub>2</sub>&#160;: B ─────────────────────────── ∧R Γ ⇒ (π<sub>1</sub>, π<sub>2</sub>)&#160;: A ∧ B </pre> </td> <td width="20%"></td> <td> <pre>Γ ⊢ π<sub>1</sub>&#160;: A Γ ⊢ π<sub>2</sub>&#160;: B ───────────────────────── ∧I Γ ⊢ (π<sub>1</sub>, π<sub>2</sub>)&#160;: A ∧ B </pre> </td></tr></tbody></table> <p>The left rule, however, performs some additional substitutions that are not performed in the corresponding elimination rules. </p> <table style="margin-left: 2em;"> <tbody><tr> <th>sequent calculus </th> <td> </td> <th>natural deduction </th></tr> <tr> <td> <pre>Γ, u:A ⇒ π&#160;: C ──────────────────────────────── ∧L<sub>1</sub> Γ, v: (A ∧ B) ⇒ [<b>fst</b> v/u] π&#160;: C </pre> </td> <td width="20%"></td> <td> <pre>Γ ⊢ π&#160;: A ∧ B ───────────── ∧E<sub>1</sub> Γ ⊢ <b>fst</b> π&#160;: A </pre> </td></tr> <tr> <td> <pre>Γ, u:B ⇒ π&#160;: C ──────────────────────────────── ∧L<sub>2</sub> Γ, v: (A ∧ B) ⇒ [<b>snd</b> v/u] π&#160;: C </pre> </td> <td width="20%"></td> <td> <pre>Γ ⊢ π&#160;: A ∧ B ───────────── ∧E<sub>2</sub> Γ ⊢ <b>snd</b> π&#160;: B </pre> </td></tr></tbody></table> <p>The kinds of proofs generated in the sequent calculus are therefore rather different from those of natural deduction. The sequent calculus produces proofs in what is known as the <i>β-normal η-long</i> form, which corresponds to a canonical representation of the normal form of the natural deduction proof. If one attempts to describe these proofs using natural deduction itself, one obtains what is called the <i>intercalation calculus</i> (first described by John Byrnes), which can be used to formally define the notion of a <i>normal form</i> for natural deduction. </p><p>The substitution theorem of natural deduction takes the form of a <a href="/wiki/Structural_rule" title="Structural rule">structural rule</a> or structural theorem known as <i>cut</i> in the sequent calculus. </p> <div class="mw-heading mw-heading3"><h3 id="Cut_(substitution)"><span id="Cut_.28substitution.29"></span>Cut (substitution)</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=23" title="Edit section: Cut (substitution)"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1251242444"><table class="box-Unreferenced_section plainlinks metadata ambox ambox-content ambox-Unreferenced" role="presentation"><tbody><tr><td class="mbox-image"><div class="mbox-image-div"><span typeof="mw:File"><a href="/wiki/File:Question_book-new.svg" class="mw-file-description"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/50px-Question_book-new.svg.png" decoding="async" width="50" height="39" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/75px-Question_book-new.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/9/99/Question_book-new.svg/100px-Question_book-new.svg.png 2x" data-file-width="512" data-file-height="399" /></a></span></div></td><td class="mbox-text"><div class="mbox-text-span">This section <b>does not <a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources">cite</a> any <a href="/wiki/Wikipedia:Verifiability" title="Wikipedia:Verifiability">sources</a></b>.<span class="hide-when-compact"> Please help <a href="/wiki/Special:EditPage/Natural_deduction" title="Special:EditPage/Natural deduction">improve this section</a> by <a href="/wiki/Help:Referencing_for_beginners" title="Help:Referencing for beginners">adding citations to reliable sources</a>. Unsourced material may be challenged and <a href="/wiki/Wikipedia:Verifiability#Burden_of_evidence" title="Wikipedia:Verifiability">removed</a>.</span> <span class="date-container"><i>(<span class="date">May 2024</span>)</i></span><span class="hide-when-compact"><i> (<small><a href="/wiki/Help:Maintenance_template_removal" title="Help:Maintenance template removal">Learn how and when to remove this message</a></small>)</i></span></div></td></tr></tbody></table> <dl><dd><i>If</i> Γ ⇒ π<sub>1</sub>&#160;: <i>A</i> <i>and</i> Γ, <i>u</i>:<i>A</i> ⇒ π<sub>2</sub>&#160;: <i>C</i>, <i>then</i> Γ ⇒ [π<sub>1</sub>/u] π<sub>2</sub>&#160;: <i>C</i>.</dd></dl> <p>In most well behaved logics, cut is unnecessary as an inference rule, though it remains provable as a <a href="/wiki/Meta-theorem" class="mw-redirect" title="Meta-theorem">meta-theorem</a>; the superfluousness of the cut rule is usually presented as a computational process, known as <i>cut elimination</i>. This has an interesting application for natural deduction; usually it is extremely tedious to prove certain properties directly in natural deduction because of an unbounded number of cases. For example, consider showing that a given proposition is <i>not</i> provable in natural deduction. A simple inductive argument fails because of rules like ∨E or E which can introduce arbitrary propositions. However, we know that the sequent calculus is complete with respect to natural deduction, so it is enough to show this unprovability in the sequent calculus. Now, if cut is not available as an inference rule, then all sequent rules either introduce a connective on the right or the left, so the depth of a sequent derivation is fully bounded by the connectives in the final conclusion. Thus, showing unprovability is much easier, because there are only a finite number of cases to consider, and each case is composed entirely of sub-propositions of the conclusion. A simple instance of this is the <i>global consistency</i> theorem: "⋅ ⊢ ⊥" is not provable. In the sequent calculus version, this is manifestly true because there is no rule that can have "⋅ ⇒ ⊥" as a conclusion! Proof theorists often prefer to work on cut-free sequent calculus formulations because of such properties. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=24" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1259569809">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Socrates.png/18px-Socrates.png" decoding="async" width="18" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Socrates.png/27px-Socrates.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/c/cd/Socrates.png/36px-Socrates.png 2x" data-file-width="326" data-file-height="500" /></span></span></span><span class="portalbox-link"><a href="/wiki/Portal:Philosophy" title="Portal:Philosophy">Philosophy portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 25em;"> <ul><li><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></li> <li><a href="/wiki/Sequent_calculus" title="Sequent calculus">Sequent calculus</a></li> <li><a href="/wiki/Gerhard_Gentzen" title="Gerhard Gentzen">Gerhard Gentzen</a></li> <li><a href="/wiki/System_L" class="mw-redirect" title="System L">System L</a> (tabular natural deduction)</li> <li><a href="/wiki/Argument_map" title="Argument map">Argument map</a>, the general term for tree-like logic notation</li></ul></div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=25" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text">A particular advantage of Kleene's tabular natural deduction systems is that he proves the validity of the inference rules for both propositional calculus and predicate calculus. See <a href="#CITEREFKleene2002">Kleene 2002</a>, pp.&#160;44–45, 118–119.</span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text">To simplify the statement of the rule, the word "denial" here is used in this way: the <i>denial</i> of a formula <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> that is not a <i>negation</i> is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d48bd06914d3df71eb66552fc8f0fdb7af496a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.328ex; height:2.509ex;" alt="{\displaystyle -\varphi }"></span>, whereas a <i>negation</i>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d48bd06914d3df71eb66552fc8f0fdb7af496a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:3.328ex; height:2.509ex;" alt="{\displaystyle -\varphi }"></span>, has two <i>denials</i>, viz., <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/33ee699558d09cf9d653f6351f9fda0b2f4aaa3e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:1.52ex; height:2.176ex;" alt="{\displaystyle \varphi }"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle --\varphi }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03C6;<!-- φ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle --\varphi }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fefa96151e4c2e8a8353adfa47aa23232326055d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.169ex; height:2.509ex;" alt="{\displaystyle --\varphi }"></span>.<sup id="cite_ref-AllenHand_18-47" class="reference"><a href="#cite_note-AllenHand-18"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text">See the article on <a href="/wiki/Lambda_calculus" title="Lambda calculus">lambda calculus</a> for more detail about the concept of substitution.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=26" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="General_references">General references</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=27" title="Edit section: General references"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFBarker-PlummerBarwiseEtchemendy2011" class="citation book cs1">Barker-Plummer, Dave; <a href="/wiki/Jon_Barwise" title="Jon Barwise">Barwise, Jon</a>; <a href="/wiki/John_Etchemendy" title="John Etchemendy">Etchemendy, John</a> (2011). <i>Language Proof and Logic</i> (2nd&#160;ed.). CSLI Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1575866321" title="Special:BookSources/978-1575866321"><bdi>978-1575866321</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Language+Proof+and+Logic&amp;rft.edition=2nd&amp;rft.pub=CSLI+Publications&amp;rft.date=2011&amp;rft.isbn=978-1575866321&amp;rft.aulast=Barker-Plummer&amp;rft.aufirst=Dave&amp;rft.au=Barwise%2C+Jon&amp;rft.au=Etchemendy%2C+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGallier2005" class="citation web cs1"><a href="/wiki/Jean_Gallier" title="Jean Gallier">Gallier, Jean</a> (2005). <a rel="nofollow" class="external text" href="ftp://ftp.cis.upenn.edu/pub/papers/gallier/conslog1.ps">"Constructive Logics. Part I: A Tutorial on Proof Systems and Typed λ-Calculi"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">12 June</span> 2014</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Constructive+Logics.+Part+I%3A+A+Tutorial+on+Proof+Systems+and+Typed+%CE%BB-Calculi&amp;rft.date=2005&amp;rft.aulast=Gallier&amp;rft.aufirst=Jean&amp;rft_id=ftp%3A%2F%2Fftp.cis.upenn.edu%2Fpub%2Fpapers%2Fgallier%2Fconslog1.ps&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGentzen1934" class="citation journal cs1"><a href="/wiki/Gerhard_Gentzen" title="Gerhard Gentzen">Gentzen, Gerhard Karl Erich</a> (1934). <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002375508">"Untersuchungen über das logische Schließen. I"</a>. <i>Mathematische Zeitschrift</i>. <b>39</b> (2): 176–210. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF01201353">10.1007/BF01201353</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121546341">121546341</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Zeitschrift&amp;rft.atitle=Untersuchungen+%C3%BCber+das+logische+Schlie%C3%9Fen.+I&amp;rft.volume=39&amp;rft.issue=2&amp;rft.pages=176-210&amp;rft.date=1934&amp;rft_id=info%3Adoi%2F10.1007%2FBF01201353&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121546341%23id-name%3DS2CID&amp;rft.aulast=Gentzen&amp;rft.aufirst=Gerhard+Karl+Erich&amp;rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Fdms%2Fresolveppn%2F%3FPPN%3DGDZPPN002375508&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span> (English translation <i>Investigations into Logical Deduction</i> in M. E. Szabo. The Collected Works of Gerhard Gentzen. North-Holland Publishing Company, 1969.)</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGentzen1935" class="citation journal cs1"><a href="/wiki/Gerhard_Gentzen" title="Gerhard Gentzen">Gentzen, Gerhard Karl Erich</a> (1935). <a rel="nofollow" class="external text" href="http://gdz.sub.uni-goettingen.de/dms/resolveppn/?PPN=GDZPPN002375605">"Untersuchungen über das logische Schließen. II"</a>. <i>Mathematische Zeitschrift</i>. <b>39</b> (3): 405–431. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fbf01201363">10.1007/bf01201363</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:186239837">186239837</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematische+Zeitschrift&amp;rft.atitle=Untersuchungen+%C3%BCber+das+logische+Schlie%C3%9Fen.+II&amp;rft.volume=39&amp;rft.issue=3&amp;rft.pages=405-431&amp;rft.date=1935&amp;rft_id=info%3Adoi%2F10.1007%2Fbf01201363&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A186239837%23id-name%3DS2CID&amp;rft.aulast=Gentzen&amp;rft.aufirst=Gerhard+Karl+Erich&amp;rft_id=http%3A%2F%2Fgdz.sub.uni-goettingen.de%2Fdms%2Fresolveppn%2F%3FPPN%3DGDZPPN002375605&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGirard1990" class="citation book cs1"><a href="/wiki/Jean-Yves_Girard" title="Jean-Yves Girard">Girard, Jean-Yves</a> (1990). <a rel="nofollow" class="external text" href="https://web.archive.org/web/20160704202340/http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html"><i>Proofs and Types</i></a>. Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, Cambridge, England. Archived from <a rel="nofollow" class="external text" href="http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html">the original</a> on 2016-07-04<span class="reference-accessdate">. Retrieved <span class="nowrap">2006-04-20</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Proofs+and+Types&amp;rft.series=Cambridge+Tracts+in+Theoretical+Computer+Science&amp;rft.pub=Cambridge+University+Press%2C+Cambridge%2C+England&amp;rft.date=1990&amp;rft.aulast=Girard&amp;rft.aufirst=Jean-Yves&amp;rft_id=http%3A%2F%2Fwww.cs.man.ac.uk%2F~pt%2Fstable%2FProofs%2BTypes.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span> Translated and with appendices by Paul Taylor and Yves Lafont.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJaśkowski1934" class="citation book cs1"><a href="/wiki/Stanis%C5%82aw_Ja%C5%9Bkowski" title="Stanisław Jaśkowski">Jaśkowski, Stanisław</a> (1934). <i>On the rules of suppositions in formal logic</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=On+the+rules+of+suppositions+in+formal+logic&amp;rft.date=1934&amp;rft.aulast=Ja%C5%9Bkowski&amp;rft.aufirst=Stanis%C5%82aw&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span> Reprinted in <i>Polish logic 1920–39</i>, ed. Storrs McCall.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleene1980" class="citation book cs1"><a href="/wiki/Stephen_Cole_Kleene" title="Stephen Cole Kleene">Kleene, Stephen Cole</a> (1980) [1952]. <i>Introduction to metamathematics</i> (Eleventh&#160;ed.). North-Holland. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-7204-2103-3" title="Special:BookSources/978-0-7204-2103-3"><bdi>978-0-7204-2103-3</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+metamathematics&amp;rft.edition=Eleventh&amp;rft.pub=North-Holland&amp;rft.date=1980&amp;rft.isbn=978-0-7204-2103-3&amp;rft.aulast=Kleene&amp;rft.aufirst=Stephen+Cole&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleene2009" class="citation book cs1"><a href="/wiki/Stephen_Cole_Kleene" title="Stephen Cole Kleene">Kleene, Stephen Cole</a> (2009) [1952]. <i>Introduction to metamathematics</i>. Ishi Press International. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-923891-57-2" title="Special:BookSources/978-0-923891-57-2"><bdi>978-0-923891-57-2</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+metamathematics&amp;rft.pub=Ishi+Press+International&amp;rft.date=2009&amp;rft.isbn=978-0-923891-57-2&amp;rft.aulast=Kleene&amp;rft.aufirst=Stephen+Cole&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKleene2002" class="citation book cs1"><a href="/wiki/Stephen_Cole_Kleene" title="Stephen Cole Kleene">Kleene, Stephen Cole</a> (2002) [1967]. <i>Mathematical logic</i>. Mineola, New York: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-42533-7" title="Special:BookSources/978-0-486-42533-7"><bdi>978-0-486-42533-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+logic&amp;rft.place=Mineola%2C+New+York&amp;rft.pub=Dover+Publications&amp;rft.date=2002&amp;rft.isbn=978-0-486-42533-7&amp;rft.aulast=Kleene&amp;rft.aufirst=Stephen+Cole&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLemmon1965" class="citation book cs1"><a href="/wiki/John_Lemmon" title="John Lemmon">Lemmon, Edward John</a> (1965). <i>Beginning logic</i>. Thomas Nelson. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-17-712040-4" title="Special:BookSources/978-0-17-712040-4"><bdi>978-0-17-712040-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Beginning+logic&amp;rft.pub=Thomas+Nelson&amp;rft.date=1965&amp;rft.isbn=978-0-17-712040-4&amp;rft.aulast=Lemmon&amp;rft.aufirst=Edward+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMartin-Löf1996" class="citation journal cs1"><a href="/wiki/Per_Martin-L%C3%B6f" title="Per Martin-Löf">Martin-Löf, Per</a> (1996). <a rel="nofollow" class="external text" href="http://docenti.lett.unisi.it/files/4/1/1/6/martinlof4.pdf">"On the meanings of the logical constants and the justifications of the logical laws"</a> <span class="cs1-format">(PDF)</span>. <i><a href="/w/index.php?title=Nordic_Journal_of_Philosophical_Logic&amp;action=edit&amp;redlink=1" class="new" title="Nordic Journal of Philosophical Logic (page does not exist)">Nordic Journal of Philosophical Logic</a></i>. <b>1</b> (1): 11–60.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Nordic+Journal+of+Philosophical+Logic&amp;rft.atitle=On+the+meanings+of+the+logical+constants+and+the+justifications+of+the+logical+laws&amp;rft.volume=1&amp;rft.issue=1&amp;rft.pages=11-60&amp;rft.date=1996&amp;rft.aulast=Martin-L%C3%B6f&amp;rft.aufirst=Per&amp;rft_id=http%3A%2F%2Fdocenti.lett.unisi.it%2Ffiles%2F4%2F1%2F1%2F6%2Fmartinlof4.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span> Lecture notes to a short course at Università degli Studi di Siena, April 1983.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPfenningDavies2001" class="citation journal cs1">Pfenning, Frank; Davies, Rowan (2001). <a rel="nofollow" class="external text" href="http://www-2.cs.cmu.edu/~fp/papers/mscs00.pdf">"A judgmental reconstruction of modal logic"</a> <span class="cs1-format">(PDF)</span>. <i>Mathematical Structures in Computer Science</i>. <b>11</b> (4): 511–540. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.1611">10.1.1.43.1611</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2FS0960129501003322">10.1017/S0960129501003322</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:16467268">16467268</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mathematical+Structures+in+Computer+Science&amp;rft.atitle=A+judgmental+reconstruction+of+modal+logic&amp;rft.volume=11&amp;rft.issue=4&amp;rft.pages=511-540&amp;rft.date=2001&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.43.1611%23id-name%3DCiteSeerX&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A16467268%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1017%2FS0960129501003322&amp;rft.aulast=Pfenning&amp;rft.aufirst=Frank&amp;rft.au=Davies%2C+Rowan&amp;rft_id=http%3A%2F%2Fwww-2.cs.cmu.edu%2F~fp%2Fpapers%2Fmscs00.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrawitz1965" class="citation book cs1"><a href="/wiki/Dag_Prawitz" title="Dag Prawitz">Prawitz, Dag</a> (1965). <span class="id-lock-registration" title="Free registration required"><a rel="nofollow" class="external text" href="https://archive.org/details/naturaldeduction0000praw"><i>Natural deduction: A proof-theoretical study</i></a></span>. Acta Universitatis Stockholmiensis, Stockholm studies in philosophy 3. Stockholm, Göteborg, Uppsala: Almqvist &amp; Wicksell.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Natural+deduction%3A+A+proof-theoretical+study&amp;rft.place=Stockholm%2C+G%C3%B6teborg%2C+Uppsala&amp;rft.series=Acta+Universitatis+Stockholmiensis%2C+Stockholm+studies+in+philosophy+3&amp;rft.pub=Almqvist+%26+Wicksell&amp;rft.date=1965&amp;rft.aulast=Prawitz&amp;rft.aufirst=Dag&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fnaturaldeduction0000praw&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPrawitz2006" class="citation book cs1"><a href="/wiki/Dag_Prawitz" title="Dag Prawitz">Prawitz, Dag</a> (2006) [1965]. <i>Natural deduction: A proof-theoretical study</i>. Mineola, New York: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-44655-4" title="Special:BookSources/978-0-486-44655-4"><bdi>978-0-486-44655-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Natural+deduction%3A+A+proof-theoretical+study&amp;rft.place=Mineola%2C+New+York&amp;rft.pub=Dover+Publications&amp;rft.date=2006&amp;rft.isbn=978-0-486-44655-4&amp;rft.aulast=Prawitz&amp;rft.aufirst=Dag&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuine1981" class="citation book cs1"><a href="/wiki/Willard_Van_Orman_Quine" title="Willard Van Orman Quine">Quine, Willard Van Orman</a> (1981) [1940]. <i>Mathematical logic</i> (Revised&#160;ed.). Cambridge, Massachusetts: Harvard University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-674-55451-1" title="Special:BookSources/978-0-674-55451-1"><bdi>978-0-674-55451-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Mathematical+logic&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.edition=Revised&amp;rft.pub=Harvard+University+Press&amp;rft.date=1981&amp;rft.isbn=978-0-674-55451-1&amp;rft.aulast=Quine&amp;rft.aufirst=Willard+Van+Orman&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFQuine1982" class="citation book cs1"><a href="/wiki/Willard_Van_Orman_Quine" title="Willard Van Orman Quine">Quine, Willard Van Orman</a> (1982) [1950]. <i>Methods of logic</i> (Fourth&#160;ed.). Cambridge, Massachusetts: Harvard University Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-674-57176-1" title="Special:BookSources/978-0-674-57176-1"><bdi>978-0-674-57176-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Methods+of+logic&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.edition=Fourth&amp;rft.pub=Harvard+University+Press&amp;rft.date=1982&amp;rft.isbn=978-0-674-57176-1&amp;rft.aulast=Quine&amp;rft.aufirst=Willard+Van+Orman&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSimpson1993" class="citation book cs1">Simpson, Alex (1993). <a rel="nofollow" class="external text" href="https://www.era.lib.ed.ac.uk/bitstream/handle/1842/407/ECS-LFCS-94-308.PDF?sequence=2&amp;isAllowed=y"><i>The proof theory and semantics of intuitionistic modal logic</i></a> <span class="cs1-format">(PDF)</span>. University of Edinburgh.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+proof+theory+and+semantics+of+intuitionistic+modal+logic&amp;rft.pub=University+of+Edinburgh&amp;rft.date=1993&amp;rft.aulast=Simpson&amp;rft.aufirst=Alex&amp;rft_id=https%3A%2F%2Fwww.era.lib.ed.ac.uk%2Fbitstream%2Fhandle%2F1842%2F407%2FECS-LFCS-94-308.PDF%3Fsequence%3D2%26isAllowed%3Dy&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span> PhD thesis.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStoll1979" class="citation book cs1">Stoll, Robert Roth (1979) [1963]. <i>Set Theory and Logic</i>. Mineola, New York: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-63829-4" title="Special:BookSources/978-0-486-63829-4"><bdi>978-0-486-63829-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Set+Theory+and+Logic&amp;rft.place=Mineola%2C+New+York&amp;rft.pub=Dover+Publications&amp;rft.date=1979&amp;rft.isbn=978-0-486-63829-4&amp;rft.aulast=Stoll&amp;rft.aufirst=Robert+Roth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStouppa2004" class="citation book cs1">Stouppa, Phiniki (2004). <i>The Design of Modal Proof Theories: The Case of S5</i>. University of Dresden. <a href="/wiki/CiteSeerX_(identifier)" class="mw-redirect" title="CiteSeerX (identifier)">CiteSeerX</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.140.1858">10.1.1.140.1858</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Design+of+Modal+Proof+Theories%3A+The+Case+of+S5&amp;rft.pub=University+of+Dresden&amp;rft.date=2004&amp;rft_id=https%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fsummary%3Fdoi%3D10.1.1.140.1858%23id-name%3DCiteSeerX&amp;rft.aulast=Stouppa&amp;rft.aufirst=Phiniki&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span> MSc thesis.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSuppes1999" class="citation book cs1"><a href="/wiki/Patrick_Suppes" title="Patrick Suppes">Suppes, Patrick Colonel</a> (1999) [1957]. <i>Introduction to logic</i>. Mineola, New York: Dover Publications. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-486-40687-9" title="Special:BookSources/978-0-486-40687-9"><bdi>978-0-486-40687-9</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+logic&amp;rft.place=Mineola%2C+New+York&amp;rft.pub=Dover+Publications&amp;rft.date=1999&amp;rft.isbn=978-0-486-40687-9&amp;rft.aulast=Suppes&amp;rft.aufirst=Patrick+Colonel&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Dalen2013" class="citation book cs1"><a href="/wiki/Dirk_van_Dalen" title="Dirk van Dalen">Van Dalen, Dirk</a> (2013) [1980]. <i>Logic and Structure</i>. Universitext (5&#160;ed.). London, Heidelberg, New York, Dordrecht: <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-1-4471-4558-5">10.1007/978-1-4471-4558-5</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4471-4558-5" title="Special:BookSources/978-1-4471-4558-5"><bdi>978-1-4471-4558-5</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Logic+and+Structure&amp;rft.place=London%2C+Heidelberg%2C+New+York%2C+Dordrecht&amp;rft.series=Universitext&amp;rft.edition=5&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft_id=info%3Adoi%2F10.1007%2F978-1-4471-4558-5&amp;rft.isbn=978-1-4471-4558-5&amp;rft.aulast=Van+Dalen&amp;rft.aufirst=Dirk&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li></ul> <div class="mw-heading mw-heading3"><h3 id="Inline_citations">Inline citations</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=28" title="Edit section: Inline citations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://iep.utm.edu/natural-deduction/">"Natural Deduction | Internet Encyclopedia of Philosophy"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-05-01</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Natural+Deduction+%7C+Internet+Encyclopedia+of+Philosophy&amp;rft_id=https%3A%2F%2Fiep.utm.edu%2Fnatural-deduction%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-2">^</a></b></span> <span class="reference-text"><a href="#CITEREFJaśkowski1934">Jaśkowski 1934</a>.</span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><a href="#CITEREFGentzen1934">Gentzen 1934</a>, <a href="#CITEREFGentzen1935">Gentzen 1935</a>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><a href="#CITEREFGentzen1934">Gentzen 1934</a>, p.&#160;176.</span> </li> <li id="cite_note-prawitz1965-5"><span class="mw-cite-backlink">^ <a href="#cite_ref-prawitz1965_5-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-prawitz1965_5-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFPrawitz1965">Prawitz 1965</a>, <a href="#CITEREFPrawitz2006">Prawitz 2006</a>.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><a href="#CITEREFMartin-Löf1996">Martin-Löf 1996</a>.</span> </li> <li id="cite_note-SEP_NaturalDeduction-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-SEP_NaturalDeduction_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SEP_NaturalDeduction_7-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-SEP_NaturalDeduction_7-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-SEP_NaturalDeduction_7-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-SEP_NaturalDeduction_7-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPelletierHazen2024" class="citation cs2">Pelletier, Francis Jeffry; Hazen, Allen (2024), <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/spr2024/entries/natural-deduction/">"Natural Deduction Systems in Logic"</a>, in Zalta, Edward N.; Nodelman, Uri (eds.), <i>The Stanford Encyclopedia of Philosophy</i> (Spring 2024&#160;ed.), Metaphysics Research Lab, Stanford University<span class="reference-accessdate">, retrieved <span class="nowrap">2024-03-22</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Natural+Deduction+Systems+in+Logic&amp;rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&amp;rft.edition=Spring+2024&amp;rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&amp;rft.date=2024&amp;rft.aulast=Pelletier&amp;rft.aufirst=Francis+Jeffry&amp;rft.au=Hazen%2C+Allen&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Fspr2024%2Fentries%2Fnatural-deduction%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><a href="#CITEREFQuine1981">Quine (1981)</a>. See particularly pages 91–93 for Quine's line-number notation for antecedent dependencies.</span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlato2013" class="citation book cs1">Plato, Jan von (2013). <i>Elements of logical reasoning</i> (1. publ&#160;ed.). Cambridge: Cambridge University press. p.&#160;9. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-03659-8" title="Special:BookSources/978-1-107-03659-8"><bdi>978-1-107-03659-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+logical+reasoning&amp;rft.place=Cambridge&amp;rft.pages=9&amp;rft.edition=1.+publ&amp;rft.pub=Cambridge+University+press&amp;rft.date=2013&amp;rft.isbn=978-1-107-03659-8&amp;rft.aulast=Plato&amp;rft.aufirst=Jan+von&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-:23-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-:23_11-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1">Weisstein, Eric W. <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/">"Connective"</a>. <i>mathworld.wolfram.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=mathworld.wolfram.com&amp;rft.atitle=Connective&amp;rft.aulast=Weisstein&amp;rft.aufirst=Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-JanVonPlato_Reasoning-12"><span class="mw-cite-backlink">^ <a href="#cite_ref-JanVonPlato_Reasoning_12-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-JanVonPlato_Reasoning_12-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-JanVonPlato_Reasoning_12-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlato2013" class="citation book cs1">Plato, Jan von (2013). <i>Elements of logical reasoning</i> (1. publ&#160;ed.). Cambridge: Cambridge University press. pp.&#160;9, 32, 121. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-03659-8" title="Special:BookSources/978-1-107-03659-8"><bdi>978-1-107-03659-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+logical+reasoning&amp;rft.place=Cambridge&amp;rft.pages=9%2C+32%2C+121&amp;rft.edition=1.+publ&amp;rft.pub=Cambridge+University+press&amp;rft.date=2013&amp;rft.isbn=978-1-107-03659-8&amp;rft.aulast=Plato&amp;rft.aufirst=Jan+von&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-MiamiLogic-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-MiamiLogic_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.cs.miami.edu/home/geoff/Courses/CSC648-12S/Content/Propositional.shtml">"Propositional Logic"</a>. <i>www.cs.miami.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.cs.miami.edu&amp;rft.atitle=Propositional+Logic&amp;rft_id=https%3A%2F%2Fwww.cs.miami.edu%2Fhome%2Fgeoff%2FCourses%2FCSC648-12S%2FContent%2FPropositional.shtml&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-SEP_Substructural-14"><span class="mw-cite-backlink">^ <a href="#cite_ref-SEP_Substructural_14-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-SEP_Substructural_14-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRestall2018" class="citation cs2">Restall, Greg (2018), <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/spr2018/entries/logic-substructural/">"Substructural Logics"</a>, in Zalta, Edward N. (ed.), <i>The Stanford Encyclopedia of Philosophy</i> (Spring 2018&#160;ed.), Metaphysics Research Lab, Stanford University<span class="reference-accessdate">, retrieved <span class="nowrap">2024-03-22</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Substructural+Logics&amp;rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&amp;rft.edition=Spring+2018&amp;rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&amp;rft.date=2018&amp;rft.aulast=Restall&amp;rft.aufirst=Greg&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Fspr2018%2Fentries%2Flogic-substructural%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-IEP_Compactness-15"><span class="mw-cite-backlink">^ <a href="#cite_ref-IEP_Compactness_15-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-IEP_Compactness_15-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-IEP_Compactness_15-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://iep.utm.edu/compactness/">"Compactness | Internet Encyclopedia of Philosophy"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Compactness+%7C+Internet+Encyclopedia+of+Philosophy&amp;rft_id=https%3A%2F%2Fiep.utm.edu%2Fcompactness%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-ColoradoLogic-16"><span class="mw-cite-backlink">^ <a href="#cite_ref-ColoradoLogic_16-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-ColoradoLogic_16-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://math.colorado.edu/~kearnes/Teaching/Courses/F23/discretel.html">"Lecture Topics for Discrete Math Students"</a>. <i>math.colorado.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2024-03-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=math.colorado.edu&amp;rft.atitle=Lecture+Topics+for+Discrete+Math+Students&amp;rft_id=https%3A%2F%2Fmath.colorado.edu%2F~kearnes%2FTeaching%2FCourses%2FF23%2Fdiscretel.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPaseauPregel2023" class="citation cs2">Paseau, Alexander; Pregel, Fabian (2023), <a rel="nofollow" class="external text" href="https://plato.stanford.edu/archives/fall2023/entries/deductivism-mathematics/">"Deductivism in the Philosophy of Mathematics"</a>, in Zalta, Edward N.; Nodelman, Uri (eds.), <i>The Stanford Encyclopedia of Philosophy</i> (Fall 2023&#160;ed.), Metaphysics Research Lab, Stanford University<span class="reference-accessdate">, retrieved <span class="nowrap">2024-03-22</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=Deductivism+in+the+Philosophy+of+Mathematics&amp;rft.btitle=The+Stanford+Encyclopedia+of+Philosophy&amp;rft.edition=Fall+2023&amp;rft.pub=Metaphysics+Research+Lab%2C+Stanford+University&amp;rft.date=2023&amp;rft.aulast=Paseau&amp;rft.aufirst=Alexander&amp;rft.au=Pregel%2C+Fabian&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Farchives%2Ffall2023%2Fentries%2Fdeductivism-mathematics%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-AllenHand-18"><span class="mw-cite-backlink">^ <a href="#cite_ref-AllenHand_18-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-AllenHand_18-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-AllenHand_18-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-AllenHand_18-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-AllenHand_18-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-AllenHand_18-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-AllenHand_18-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-AllenHand_18-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-AllenHand_18-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-AllenHand_18-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-AllenHand_18-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-AllenHand_18-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-AllenHand_18-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-AllenHand_18-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-AllenHand_18-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-AllenHand_18-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-AllenHand_18-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-AllenHand_18-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-AllenHand_18-18"><sup><i><b>s</b></i></sup></a> <a href="#cite_ref-AllenHand_18-19"><sup><i><b>t</b></i></sup></a> <a href="#cite_ref-AllenHand_18-20"><sup><i><b>u</b></i></sup></a> <a href="#cite_ref-AllenHand_18-21"><sup><i><b>v</b></i></sup></a> <a href="#cite_ref-AllenHand_18-22"><sup><i><b>w</b></i></sup></a> <a href="#cite_ref-AllenHand_18-23"><sup><i><b>x</b></i></sup></a> <a href="#cite_ref-AllenHand_18-24"><sup><i><b>y</b></i></sup></a> <a href="#cite_ref-AllenHand_18-25"><sup><i><b>z</b></i></sup></a> <a href="#cite_ref-AllenHand_18-26"><sup><i><b>aa</b></i></sup></a> <a href="#cite_ref-AllenHand_18-27"><sup><i><b>ab</b></i></sup></a> <a href="#cite_ref-AllenHand_18-28"><sup><i><b>ac</b></i></sup></a> <a href="#cite_ref-AllenHand_18-29"><sup><i><b>ad</b></i></sup></a> <a href="#cite_ref-AllenHand_18-30"><sup><i><b>ae</b></i></sup></a> <a href="#cite_ref-AllenHand_18-31"><sup><i><b>af</b></i></sup></a> <a href="#cite_ref-AllenHand_18-32"><sup><i><b>ag</b></i></sup></a> <a href="#cite_ref-AllenHand_18-33"><sup><i><b>ah</b></i></sup></a> <a href="#cite_ref-AllenHand_18-34"><sup><i><b>ai</b></i></sup></a> <a href="#cite_ref-AllenHand_18-35"><sup><i><b>aj</b></i></sup></a> <a href="#cite_ref-AllenHand_18-36"><sup><i><b>ak</b></i></sup></a> <a href="#cite_ref-AllenHand_18-37"><sup><i><b>al</b></i></sup></a> <a href="#cite_ref-AllenHand_18-38"><sup><i><b>am</b></i></sup></a> <a href="#cite_ref-AllenHand_18-39"><sup><i><b>an</b></i></sup></a> <a href="#cite_ref-AllenHand_18-40"><sup><i><b>ao</b></i></sup></a> <a href="#cite_ref-AllenHand_18-41"><sup><i><b>ap</b></i></sup></a> <a href="#cite_ref-AllenHand_18-42"><sup><i><b>aq</b></i></sup></a> <a href="#cite_ref-AllenHand_18-43"><sup><i><b>ar</b></i></sup></a> <a href="#cite_ref-AllenHand_18-44"><sup><i><b>as</b></i></sup></a> <a href="#cite_ref-AllenHand_18-45"><sup><i><b>at</b></i></sup></a> <a href="#cite_ref-AllenHand_18-46"><sup><i><b>au</b></i></sup></a> <a href="#cite_ref-AllenHand_18-47"><sup><i><b>av</b></i></sup></a> <a href="#cite_ref-AllenHand_18-48"><sup><i><b>aw</b></i></sup></a> <a href="#cite_ref-AllenHand_18-49"><sup><i><b>ax</b></i></sup></a> <a href="#cite_ref-AllenHand_18-50"><sup><i><b>ay</b></i></sup></a> <a href="#cite_ref-AllenHand_18-51"><sup><i><b>az</b></i></sup></a> <a href="#cite_ref-AllenHand_18-52"><sup><i><b>ba</b></i></sup></a> <a href="#cite_ref-AllenHand_18-53"><sup><i><b>bb</b></i></sup></a> <a href="#cite_ref-AllenHand_18-54"><sup><i><b>bc</b></i></sup></a> <a href="#cite_ref-AllenHand_18-55"><sup><i><b>bd</b></i></sup></a> <a href="#cite_ref-AllenHand_18-56"><sup><i><b>be</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAllenHand2022" class="citation book cs1">Allen, Colin; Hand, Michael (2022). <i>Logic primer</i> (3rd&#160;ed.). Cambridge, Massachusetts: The MIT Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-262-54364-4" title="Special:BookSources/978-0-262-54364-4"><bdi>978-0-262-54364-4</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Logic+primer&amp;rft.place=Cambridge%2C+Massachusetts&amp;rft.edition=3rd&amp;rft.pub=The+MIT+Press&amp;rft.date=2022&amp;rft.isbn=978-0-262-54364-4&amp;rft.aulast=Allen&amp;rft.aufirst=Colin&amp;rft.au=Hand%2C+Michael&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-:BostockLogic-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-:BostockLogic_19-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBostock1997" class="citation book cs1">Bostock, David (1997). <i>Intermediate logic</i>. Oxford&#160;: New York: Clarendon Press&#160;; Oxford University Press. p.&#160;21. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-19-875141-0" title="Special:BookSources/978-0-19-875141-0"><bdi>978-0-19-875141-0</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Intermediate+logic&amp;rft.place=Oxford+%3A+New+York&amp;rft.pages=21&amp;rft.pub=Clarendon+Press+%3B+Oxford+University+Press&amp;rft.date=1997&amp;rft.isbn=978-0-19-875141-0&amp;rft.aulast=Bostock&amp;rft.aufirst=David&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-:42-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-:42_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHanssonHendricks2018" class="citation book cs1">Hansson, Sven Ove; Hendricks, Vincent F. (2018). <i>Introduction to formal philosophy</i>. Springer undergraduate texts in philosophy. Cham: Springer. p.&#160;38. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-030-08454-7" title="Special:BookSources/978-3-030-08454-7"><bdi>978-3-030-08454-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Introduction+to+formal+philosophy&amp;rft.place=Cham&amp;rft.series=Springer+undergraduate+texts+in+philosophy&amp;rft.pages=38&amp;rft.pub=Springer&amp;rft.date=2018&amp;rft.isbn=978-3-030-08454-7&amp;rft.aulast=Hansson&amp;rft.aufirst=Sven+Ove&amp;rft.au=Hendricks%2C+Vincent+F.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-:0-21"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_21-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_21-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:0_21-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAyala-Rincónde_Moura2017" class="citation book cs1">Ayala-Rincón, Mauricio; de Moura, Flávio L.C. (2017). <a rel="nofollow" class="external text" href="https://link.springer.com/book/10.1007/978-3-319-51653-0"><i>Applied Logic for Computer Scientists</i></a>. Undergraduate Topics in Computer Science. Springer. pp.&#160;2, 20. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-3-319-51653-0">10.1007/978-3-319-51653-0</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-319-51651-6" title="Special:BookSources/978-3-319-51651-6"><bdi>978-3-319-51651-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Applied+Logic+for+Computer+Scientists&amp;rft.series=Undergraduate+Topics+in+Computer+Science&amp;rft.pages=2%2C+20&amp;rft.pub=Springer&amp;rft.date=2017&amp;rft_id=info%3Adoi%2F10.1007%2F978-3-319-51653-0&amp;rft.isbn=978-3-319-51651-6&amp;rft.aulast=Ayala-Rinc%C3%B3n&amp;rft.aufirst=Mauricio&amp;rft.au=de+Moura%2C+Fl%C3%A1vio+L.C.&amp;rft_id=https%3A%2F%2Flink.springer.com%2Fbook%2F10.1007%2F978-3-319-51653-0&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-:1-22"><span class="mw-cite-backlink">^ <a href="#cite_ref-:1_22-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:1_22-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-:1_22-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPlato2013" class="citation book cs1">Plato, Jan von (2013). <a rel="nofollow" class="external text" href="https://books.google.com/books?id=QrdEAgAAQBAJ"><i>Elements of Logical Reasoning</i></a>. Cambridge University Press. pp.&#160;12–13. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-03659-8" title="Special:BookSources/978-1-107-03659-8"><bdi>978-1-107-03659-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Elements+of+Logical+Reasoning&amp;rft.pages=12-13&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2013&amp;rft.isbn=978-1-107-03659-8&amp;rft.aulast=Plato&amp;rft.aufirst=Jan+von&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DQrdEAgAAQBAJ&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-LemmonLogic-23"><span class="mw-cite-backlink">^ <a href="#cite_ref-LemmonLogic_23-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-5"><sup><i><b>f</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-6"><sup><i><b>g</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-7"><sup><i><b>h</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-8"><sup><i><b>i</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-9"><sup><i><b>j</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-10"><sup><i><b>k</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-11"><sup><i><b>l</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-12"><sup><i><b>m</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-13"><sup><i><b>n</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-14"><sup><i><b>o</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-15"><sup><i><b>p</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-16"><sup><i><b>q</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-17"><sup><i><b>r</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-18"><sup><i><b>s</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-19"><sup><i><b>t</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-20"><sup><i><b>u</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-21"><sup><i><b>v</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-22"><sup><i><b>w</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-23"><sup><i><b>x</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-24"><sup><i><b>y</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-25"><sup><i><b>z</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-26"><sup><i><b>aa</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-27"><sup><i><b>ab</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-28"><sup><i><b>ac</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-29"><sup><i><b>ad</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-30"><sup><i><b>ae</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-31"><sup><i><b>af</b></i></sup></a> <a href="#cite_ref-LemmonLogic_23-32"><sup><i><b>ag</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLemmon1998" class="citation book cs1">Lemmon, Edward John (1998). <i>Beginning logic</i>. Boca Raton, FL: Chapman &amp; Hall/CRC. pp.&#160;passim, especially 39-40. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-0-412-38090-7" title="Special:BookSources/978-0-412-38090-7"><bdi>978-0-412-38090-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Beginning+logic&amp;rft.place=Boca+Raton%2C+FL&amp;rft.pages=passim%2C+especially+39-40&amp;rft.pub=Chapman+%26+Hall%2FCRC&amp;rft.date=1998&amp;rft.isbn=978-0-412-38090-7&amp;rft.aulast=Lemmon&amp;rft.aufirst=Edward+John&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-TWArthurLogic-24"><span class="mw-cite-backlink">^ <a href="#cite_ref-TWArthurLogic_24-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-TWArthurLogic_24-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-TWArthurLogic_24-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-TWArthurLogic_24-3"><sup><i><b>d</b></i></sup></a> <a href="#cite_ref-TWArthurLogic_24-4"><sup><i><b>e</b></i></sup></a> <a href="#cite_ref-TWArthurLogic_24-5"><sup><i><b>f</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArthur2017" class="citation book cs1">Arthur, Richard T. W. (2017). <a rel="nofollow" class="external text" href="https://www.worldcat.org/title/962129086"><i>An introduction to logic: using natural deduction, real arguments, a little history, and some humour</i></a> (2nd&#160;ed.). Peterborough, Ontario: Broadview Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-55481-332-2" title="Special:BookSources/978-1-55481-332-2"><bdi>978-1-55481-332-2</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/962129086">962129086</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=An+introduction+to+logic%3A+using+natural+deduction%2C+real+arguments%2C+a+little+history%2C+and+some+humour&amp;rft.place=Peterborough%2C+Ontario&amp;rft.edition=2nd&amp;rft.pub=Broadview+Press&amp;rft.date=2017&amp;rft_id=info%3Aoclcnum%2F962129086&amp;rft.isbn=978-1-55481-332-2&amp;rft.aulast=Arthur&amp;rft.aufirst=Richard+T.+W.&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Ftitle%2F962129086&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text">See also his book <a href="#CITEREFPrawitz1965">Prawitz 1965</a>, <a href="#CITEREFPrawitz2006">Prawitz 2006</a>.</span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><a href="#CITEREFKleene2009">Kleene 2009</a>, pp.&#160;440–516. See also <a href="#CITEREFKleene1980">Kleene 1980</a>.</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Natural_deduction&amp;action=edit&amp;section=29" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLaboreo2004" class="citation web cs1">Laboreo, Daniel Clemente (August 2004). <a rel="nofollow" class="external text" href="https://www.danielclemente.com/logica/dn.en.pdf">"Introduction to natural deduction"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Introduction+to+natural+deduction&amp;rft.date=2004-08&amp;rft.aulast=Laboreo&amp;rft.aufirst=Daniel+Clemente&amp;rft_id=https%3A%2F%2Fwww.danielclemente.com%2Flogica%2Fdn.en.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.winterdrache.de/freeware/domino/">"Domino On Acid"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">10 December</span> 2023</span>. <q>Natural deduction visualized as a game of dominoes</q></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Domino+On+Acid&amp;rft_id=http%3A%2F%2Fwww.winterdrache.de%2Ffreeware%2Fdomino%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPelletier" class="citation web cs1">Pelletier, Francis Jeffry. <a rel="nofollow" class="external text" href="https://www.sfu.ca/~jeffpell/papers/pelletierNDtexts.pdf">"A History of Natural Deduction and Elementary Logic Textbooks"</a> <span class="cs1-format">(PDF)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=A+History+of+Natural+Deduction+and+Elementary+Logic+Textbooks&amp;rft.aulast=Pelletier&amp;rft.aufirst=Francis+Jeffry&amp;rft_id=https%3A%2F%2Fwww.sfu.ca%2F~jeffpell%2Fpapers%2FpelletierNDtexts.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li> <li><a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/natural-deduction/">"Natural Deduction Systems in Logic"</a> entry by Pelletier, Francis Jeffry; Hazen, Allen in the <i><a href="/wiki/Stanford_Encyclopedia_of_Philosophy" title="Stanford Encyclopedia of Philosophy">Stanford Encyclopedia of Philosophy</a></i>, 29 October 2021</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLevy" class="citation web cs1">Levy, Michel. <a rel="nofollow" class="external text" href="http://teachinglogic.univ-grenoble-alpes.fr/DN1/">"A Propositional Prover"</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=A+Propositional+Prover&amp;rft.aulast=Levy&amp;rft.aufirst=Michel&amp;rft_id=http%3A%2F%2Fteachinglogic.univ-grenoble-alpes.fr%2FDN1%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3ANatural+deduction" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Mathematical_logic" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Mathematical_logic" title="Template:Mathematical logic"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Mathematical_logic" title="Template talk:Mathematical logic"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Mathematical_logic" title="Special:EditPage/Template:Mathematical logic"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Mathematical_logic" style="font-size:114%;margin:0 4em"><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">General</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axiom" title="Axiom">Axiom</a> <ul><li><a href="/wiki/List_of_axioms" title="List of axioms">list</a></li></ul></li> <li><a href="/wiki/Cardinality" title="Cardinality">Cardinality</a></li> <li><a href="/wiki/First-order_logic" title="First-order logic">First-order logic</a></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a href="/wiki/Formal_semantics_(logic)" class="mw-redirect" title="Formal semantics (logic)">Formal semantics</a></li> <li><a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations of mathematics</a></li> <li><a href="/wiki/Information_theory" title="Information theory">Information theory</a></li> <li><a href="/wiki/Lemma_(mathematics)" title="Lemma (mathematics)">Lemma</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Theorems&#160;(<a href="/wiki/Category:Theorems_in_the_foundations_of_mathematics" title="Category:Theorems in the foundations of mathematics">list</a>)<br />&#160;and&#160;<a href="/wiki/Paradoxes_of_set_theory" title="Paradoxes of set theory">paradoxes</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/G%C3%B6del%27s_completeness_theorem" title="Gödel&#39;s completeness theorem">Gödel's completeness</a>&#160;and&#160;<a href="/wiki/G%C3%B6del%27s_incompleteness_theorems" title="Gödel&#39;s incompleteness theorems">incompleteness theorems</a></li> <li><a href="/wiki/Tarski%27s_undefinability_theorem" title="Tarski&#39;s undefinability theorem">Tarski's undefinability</a></li> <li><a href="/wiki/Banach%E2%80%93Tarski_paradox" title="Banach–Tarski paradox">Banach–Tarski paradox</a></li> <li>Cantor's&#160;<a href="/wiki/Cantor%27s_theorem" title="Cantor&#39;s theorem">theorem,</a>&#160;<a href="/wiki/Cantor%27s_paradox" title="Cantor&#39;s paradox">paradox</a>&#160;and&#160;<a href="/wiki/Cantor%27s_diagonal_argument" title="Cantor&#39;s diagonal argument">diagonal argument</a></li> <li><a href="/wiki/Compactness_theorem" title="Compactness theorem">Compactness</a></li> <li><a href="/wiki/Halting_problem" title="Halting problem">Halting problem</a></li> <li><a href="/wiki/Lindstr%C3%B6m%27s_theorem" title="Lindström&#39;s theorem">Lindström's</a></li> <li><a href="/wiki/L%C3%B6wenheim%E2%80%93Skolem_theorem" title="Löwenheim–Skolem theorem">Löwenheim–Skolem</a></li> <li><a href="/wiki/Russell%27s_paradox" title="Russell&#39;s paradox">Russell's paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Logic" title="Logic">Logics</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Traditional" scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Term_logic" title="Term logic">Traditional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Classical_logic" title="Classical logic">Classical logic</a></li> <li><a href="/wiki/Logical_truth" title="Logical truth">Logical truth</a></li> <li><a href="/wiki/Tautology_(logic)" title="Tautology (logic)">Tautology</a></li> <li><a href="/wiki/Proposition" title="Proposition">Proposition</a></li> <li><a href="/wiki/Inference" title="Inference">Inference</a></li> <li><a href="/wiki/Logical_equivalence" title="Logical equivalence">Logical equivalence</a></li> <li><a href="/wiki/Consistency" title="Consistency">Consistency</a> <ul><li><a href="/wiki/Equiconsistency" title="Equiconsistency">Equiconsistency</a></li></ul></li> <li><a href="/wiki/Argument" title="Argument">Argument</a></li> <li><a href="/wiki/Soundness" title="Soundness">Soundness</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li> <li><a href="/wiki/Syllogism" title="Syllogism">Syllogism</a></li> <li><a href="/wiki/Square_of_opposition" title="Square of opposition">Square of opposition</a></li> <li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Boolean_algebra" title="Boolean algebra">Boolean algebra</a></li> <li><a href="/wiki/Boolean_function" title="Boolean function">Boolean functions</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connectives</a></li> <li><a href="/wiki/Propositional_calculus" title="Propositional calculus">Propositional calculus</a></li> <li><a href="/wiki/Propositional_formula" title="Propositional formula">Propositional formula</a></li> <li><a href="/wiki/Truth_table" title="Truth table">Truth tables</a></li> <li><a href="/wiki/Many-valued_logic" title="Many-valued logic">Many-valued logic</a> <ul><li><a href="/wiki/Three-valued_logic" title="Three-valued logic">3</a></li> <li><a href="/wiki/Finite-valued_logic" title="Finite-valued logic">finite</a></li> <li><a href="/wiki/Infinite-valued_logic" title="Infinite-valued logic">∞</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Predicate_logic" class="mw-redirect" title="Predicate logic">Predicate</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/First-order_logic" title="First-order logic">First-order</a> <ul><li><a href="/wiki/List_of_first-order_theories" title="List of first-order theories"><span style="font-size:85%;">list</span></a></li></ul></li> <li><a href="/wiki/Second-order_logic" title="Second-order logic">Second-order</a> <ul><li><a href="/wiki/Monadic_second-order_logic" title="Monadic second-order logic">Monadic</a></li></ul></li> <li><a href="/wiki/Higher-order_logic" title="Higher-order logic">Higher-order</a></li> <li><a href="/wiki/Fixed-point_logic" title="Fixed-point logic">Fixed-point</a></li> <li><a href="/wiki/Free_logic" title="Free logic">Free</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifiers</a></li> <li><a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">Predicate</a></li> <li><a href="/wiki/Monadic_predicate_calculus" title="Monadic predicate calculus">Monadic predicate calculus</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Set_theory" title="Set theory">Set theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Set</a> <ul><li><a href="/wiki/Hereditary_set" title="Hereditary set">hereditary</a></li></ul></li> <li><a href="/wiki/Class_(set_theory)" title="Class (set theory)">Class</a></li> <li>(<a href="/wiki/Urelement" title="Urelement">Ur-</a>)<a href="/wiki/Element_(mathematics)" title="Element (mathematics)">Element</a></li> <li><a href="/wiki/Ordinal_number" title="Ordinal number">Ordinal number</a></li> <li><a href="/wiki/Extensionality" title="Extensionality">Extensionality</a></li> <li><a href="/wiki/Forcing_(mathematics)" title="Forcing (mathematics)">Forcing</a></li> <li><a href="/wiki/Relation_(mathematics)" title="Relation (mathematics)">Relation</a> <ul><li><a href="/wiki/Equivalence_relation" title="Equivalence relation">equivalence</a></li> <li><a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a></li></ul></li> <li>Set operations: <ul><li><a href="/wiki/Intersection_(set_theory)" title="Intersection (set theory)">intersection</a></li> <li><a href="/wiki/Union_(set_theory)" title="Union (set theory)">union</a></li> <li><a href="/wiki/Complement_(set_theory)" title="Complement (set theory)">complement</a></li> <li><a href="/wiki/Cartesian_product" title="Cartesian product">Cartesian product</a></li> <li><a href="/wiki/Power_set" title="Power set">power set</a></li> <li><a href="/wiki/List_of_set_identities_and_relations" title="List of set identities and relations">identities</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Types of <a href="/wiki/Set_(mathematics)" title="Set (mathematics)">sets</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Countable_set" title="Countable set">Countable</a></li> <li><a href="/wiki/Uncountable_set" title="Uncountable set">Uncountable</a></li> <li><a href="/wiki/Empty_set" title="Empty set">Empty</a></li> <li><a href="/wiki/Inhabited_set" title="Inhabited set">Inhabited</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li> <li><a href="/wiki/Finite_set" title="Finite set">Finite</a></li> <li><a href="/wiki/Infinite_set" title="Infinite set">Infinite</a></li> <li><a href="/wiki/Transitive_set" title="Transitive set">Transitive</a></li> <li><a href="/wiki/Ultrafilter_(set_theory)" class="mw-redirect" title="Ultrafilter (set theory)">Ultrafilter</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive</a></li> <li><a href="/wiki/Fuzzy_set" title="Fuzzy set">Fuzzy</a></li> <li><a href="/wiki/Universal_set" title="Universal set">Universal</a></li> <li><a href="/wiki/Universe_(mathematics)" title="Universe (mathematics)">Universe</a> <ul><li><a href="/wiki/Constructible_universe" title="Constructible universe">constructible</a></li> <li><a href="/wiki/Grothendieck_universe" title="Grothendieck universe">Grothendieck</a></li> <li><a href="/wiki/Von_Neumann_universe" title="Von Neumann universe">Von Neumann</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Maps</a>&#160;and&#160;<a href="/wiki/Cardinality" title="Cardinality">cardinality</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Function_(mathematics)" title="Function (mathematics)">Function</a>/<a href="/wiki/Map_(mathematics)" title="Map (mathematics)">Map</a> <ul><li><a href="/wiki/Domain_of_a_function" title="Domain of a function">domain</a></li> <li><a href="/wiki/Codomain" title="Codomain">codomain</a></li> <li><a href="/wiki/Image_(mathematics)" title="Image (mathematics)">image</a></li></ul></li> <li><a href="/wiki/Injective_function" title="Injective function">In</a>/<a href="/wiki/Surjective_function" title="Surjective function">Sur</a>/<a href="/wiki/Bijection" title="Bijection">Bi</a>-jection</li> <li><a href="/wiki/Schr%C3%B6der%E2%80%93Bernstein_theorem" title="Schröder–Bernstein theorem">Schröder–Bernstein theorem</a></li> <li><a href="/wiki/Isomorphism" title="Isomorphism">Isomorphism</a></li> <li><a href="/wiki/G%C3%B6del_numbering" title="Gödel numbering">Gödel numbering</a></li> <li><a href="/wiki/Enumeration" title="Enumeration">Enumeration</a></li> <li><a href="/wiki/Large_cardinal" title="Large cardinal">Large cardinal</a> <ul><li><a href="/wiki/Inaccessible_cardinal" title="Inaccessible cardinal">inaccessible</a></li></ul></li> <li><a href="/wiki/Aleph_number" title="Aleph number">Aleph number</a></li> <li><a href="/wiki/Operation_(mathematics)" title="Operation (mathematics)">Operation</a> <ul><li><a href="/wiki/Binary_operation" title="Binary operation">binary</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Set theories</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel</a> <ul><li><a href="/wiki/Axiom_of_choice" title="Axiom of choice">axiom of choice</a></li> <li><a href="/wiki/Continuum_hypothesis" title="Continuum hypothesis">continuum hypothesis</a></li></ul></li> <li><a href="/wiki/General_set_theory" title="General set theory">General</a></li> <li><a href="/wiki/Kripke%E2%80%93Platek_set_theory" title="Kripke–Platek set theory">Kripke–Platek</a></li> <li><a href="/wiki/Morse%E2%80%93Kelley_set_theory" title="Morse–Kelley set theory">Morse–Kelley</a></li> <li><a href="/wiki/Naive_set_theory" title="Naive set theory">Naive</a></li> <li><a href="/wiki/New_Foundations" title="New Foundations">New Foundations</a></li> <li><a href="/wiki/Tarski%E2%80%93Grothendieck_set_theory" title="Tarski–Grothendieck set theory">Tarski–Grothendieck</a></li> <li><a href="/wiki/Von_Neumann%E2%80%93Bernays%E2%80%93G%C3%B6del_set_theory" title="Von Neumann–Bernays–Gödel set theory">Von Neumann–Bernays–Gödel</a></li> <li><a href="/wiki/Ackermann_set_theory" title="Ackermann set theory">Ackermann</a></li> <li><a href="/wiki/Constructive_set_theory" title="Constructive set theory">Constructive</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Formal_system" title="Formal system">Formal systems</a>&#160;(<a href="/wiki/List_of_formal_systems" title="List of formal systems"><span style="font-size:85%;">list</span></a>),<br /><a href="/wiki/Formal_language" title="Formal language">language</a>&#160;and&#160;<a href="/wiki/Syntax_(logic)" title="Syntax (logic)">syntax</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><td colspan="2" class="navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Alphabet_(formal_languages)" title="Alphabet (formal languages)">Alphabet</a></li> <li><a href="/wiki/Arity" title="Arity">Arity</a></li> <li><a href="/wiki/Automata_theory" title="Automata theory">Automata</a></li> <li><a href="/wiki/Axiom_schema" title="Axiom schema">Axiom schema</a></li> <li><a href="/wiki/Expression_(mathematics)" title="Expression (mathematics)">Expression</a> <ul><li><a href="/wiki/Ground_expression" title="Ground expression">ground</a></li></ul></li> <li><a href="/wiki/Extension_by_new_constant_and_function_names" title="Extension by new constant and function names">Extension</a> <ul><li><a href="/wiki/Extension_by_definitions" title="Extension by definitions">by definition</a></li> <li><a href="/wiki/Conservative_extension" title="Conservative extension">conservative</a></li></ul></li> <li><a href="/wiki/Finitary_relation" title="Finitary relation">Relation</a></li> <li><a href="/wiki/Formation_rule" title="Formation rule">Formation rule</a></li> <li><a href="/wiki/Formal_grammar" title="Formal grammar">Grammar</a></li> <li><a href="/wiki/Well-formed_formula" title="Well-formed formula">Formula</a> <ul><li><a href="/wiki/Atomic_formula" title="Atomic formula">atomic</a></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">closed</a></li> <li><a href="/wiki/Ground_formula" class="mw-redirect" title="Ground formula">ground</a></li> <li><a href="/wiki/Open_formula" title="Open formula">open</a></li></ul></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free/bound variable</a></li> <li><a href="/wiki/Formal_language" title="Formal language">Language</a></li> <li><a href="/wiki/Metalanguage" title="Metalanguage">Metalanguage</a></li> <li><a href="/wiki/Logical_connective" title="Logical connective">Logical connective</a> <ul><li><a href="/wiki/Negation" title="Negation">¬</a></li> <li><a href="/wiki/Logical_disjunction" title="Logical disjunction">∨</a></li> <li><a href="/wiki/Logical_conjunction" title="Logical conjunction">∧</a></li> <li><a href="/wiki/Material_conditional" title="Material conditional">→</a></li> <li><a href="/wiki/Logical_biconditional" title="Logical biconditional">↔</a></li> <li><a href="/wiki/Logical_equality" title="Logical equality">=</a></li></ul></li> <li><a href="/wiki/Predicate_(mathematical_logic)" title="Predicate (mathematical logic)">Predicate</a> <ul><li><a href="/wiki/Functional_predicate" title="Functional predicate">functional</a></li> <li><a href="/wiki/Predicate_variable" title="Predicate variable">variable</a></li> <li><a href="/wiki/Propositional_variable" title="Propositional variable">propositional variable</a></li></ul></li> <li><a href="/wiki/Formal_proof" title="Formal proof">Proof</a></li> <li><a href="/wiki/Quantifier_(logic)" title="Quantifier (logic)">Quantifier</a> <ul><li><a href="/wiki/Existential_quantification" title="Existential quantification">∃</a></li> <li><a href="/wiki/Uniqueness_quantification" title="Uniqueness quantification">!</a></li> <li><a href="/wiki/Universal_quantification" title="Universal quantification">∀</a></li> <li><a href="/wiki/Quantifier_rank" title="Quantifier rank">rank</a></li></ul></li> <li><a href="/wiki/Sentence_(mathematical_logic)" title="Sentence (mathematical logic)">Sentence</a> <ul><li><a href="/wiki/Atomic_sentence" title="Atomic sentence">atomic</a></li> <li><a href="/wiki/Spectrum_of_a_sentence" title="Spectrum of a sentence">spectrum</a></li></ul></li> <li><a href="/wiki/Signature_(logic)" title="Signature (logic)">Signature</a></li> <li><a href="/wiki/String_(formal_languages)" class="mw-redirect" title="String (formal languages)">String</a></li> <li><a href="/wiki/Substitution_(logic)" title="Substitution (logic)">Substitution</a></li> <li><a href="/wiki/Symbol_(formal)" title="Symbol (formal)">Symbol</a> <ul><li><a href="/wiki/Uninterpreted_function" title="Uninterpreted function">function</a></li> <li><a href="/wiki/Logical_constant" title="Logical constant">logical/constant</a></li> <li><a href="/wiki/Non-logical_symbol" title="Non-logical symbol">non-logical</a></li> <li><a href="/wiki/Variable_(mathematics)" title="Variable (mathematics)">variable</a></li></ul></li> <li><a href="/wiki/Term_(logic)" title="Term (logic)">Term</a></li> <li><a href="/wiki/Theory_(mathematical_logic)" title="Theory (mathematical logic)">Theory</a> <ul><li><a href="/wiki/List_of_mathematical_theories" title="List of mathematical theories"><span style="font-size:85%;">list</span></a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><span class="nowrap">Example&#160;<a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic<br />systems</a>&#160;<span style="font-size:85%;">(<a href="/wiki/List_of_first-order_theories" title="List of first-order theories">list</a>)</span></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>of <a href="/wiki/True_arithmetic" title="True arithmetic">arithmetic</a>: <ul><li><a href="/wiki/Peano_axioms" title="Peano axioms">Peano</a></li> <li><a href="/wiki/Second-order_arithmetic" title="Second-order arithmetic">second-order</a></li> <li><a href="/wiki/Elementary_function_arithmetic" title="Elementary function arithmetic">elementary function</a></li> <li><a href="/wiki/Primitive_recursive_arithmetic" title="Primitive recursive arithmetic">primitive recursive</a></li> <li><a href="/wiki/Robinson_arithmetic" title="Robinson arithmetic">Robinson</a></li> <li><a href="/wiki/Skolem_arithmetic" title="Skolem arithmetic">Skolem</a></li></ul></li> <li>of the <a href="/wiki/Construction_of_the_real_numbers" title="Construction of the real numbers">real numbers</a> <ul><li><a href="/wiki/Tarski%27s_axiomatization_of_the_reals" title="Tarski&#39;s axiomatization of the reals">Tarski's axiomatization</a></li></ul></li> <li>of <a href="/wiki/Axiomatization_of_Boolean_algebras" class="mw-redirect" title="Axiomatization of Boolean algebras">Boolean algebras</a> <ul><li><a href="/wiki/Boolean_algebras_canonically_defined" title="Boolean algebras canonically defined">canonical</a></li> <li><a href="/wiki/Minimal_axioms_for_Boolean_algebra" title="Minimal axioms for Boolean algebra">minimal axioms</a></li></ul></li> <li>of <a href="/wiki/Foundations_of_geometry" title="Foundations of geometry">geometry</a>: <ul><li><a href="/wiki/Euclidean_geometry" title="Euclidean geometry">Euclidean</a>: <ul><li><a href="/wiki/Euclid%27s_Elements" title="Euclid&#39;s Elements"><i>Elements</i></a></li> <li><a href="/wiki/Hilbert%27s_axioms" title="Hilbert&#39;s axioms">Hilbert's</a></li> <li><a href="/wiki/Tarski%27s_axioms" title="Tarski&#39;s axioms">Tarski's</a></li></ul></li> <li><a href="/wiki/Non-Euclidean_geometry" title="Non-Euclidean geometry">non-Euclidean</a></li></ul></li></ul> <ul><li><i><a href="/wiki/Principia_Mathematica" title="Principia Mathematica">Principia Mathematica</a></i></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Proof_theory" title="Proof theory">Proof theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Formal_proof" title="Formal proof">Formal proof</a></li> <li><a class="mw-selflink selflink">Natural deduction</a></li> <li><a href="/wiki/Logical_consequence" title="Logical consequence">Logical consequence</a></li> <li><a href="/wiki/Rule_of_inference" title="Rule of inference">Rule of inference</a></li> <li><a href="/wiki/Sequent_calculus" title="Sequent calculus">Sequent calculus</a></li> <li><a href="/wiki/Theorem" title="Theorem">Theorem</a></li> <li><a href="/wiki/Formal_system" title="Formal system">Systems</a> <ul><li><a href="/wiki/Axiomatic_system" title="Axiomatic system">axiomatic</a></li> <li><a href="/wiki/Deductive_system" class="mw-redirect" title="Deductive system">deductive</a></li> <li><a href="/wiki/Hilbert_system" title="Hilbert system">Hilbert</a> <ul><li><a href="/wiki/List_of_Hilbert_systems" class="mw-redirect" title="List of Hilbert systems">list</a></li></ul></li></ul></li> <li><a href="/wiki/Complete_theory" title="Complete theory">Complete theory</a></li> <li><a href="/wiki/Independence_(mathematical_logic)" title="Independence (mathematical logic)">Independence</a>&#160;(<a href="/wiki/List_of_statements_independent_of_ZFC" title="List of statements independent of ZFC">from&#160;ZFC</a>)</li> <li><a href="/wiki/Proof_of_impossibility" title="Proof of impossibility">Proof of impossibility</a></li> <li><a href="/wiki/Ordinal_analysis" title="Ordinal analysis">Ordinal analysis</a></li> <li><a href="/wiki/Reverse_mathematics" title="Reverse mathematics">Reverse mathematics</a></li> <li><a href="/wiki/Self-verifying_theories" title="Self-verifying theories">Self-verifying theories</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Model_theory" title="Model theory">Model theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Interpretation_(logic)" title="Interpretation (logic)">Interpretation</a> <ul><li><a href="/wiki/Interpretation_function" class="mw-redirect" title="Interpretation function">function</a></li> <li><a href="/wiki/Interpretation_(model_theory)" title="Interpretation (model theory)">of models</a></li></ul></li> <li><a href="/wiki/Structure_(mathematical_logic)" title="Structure (mathematical logic)">Model</a> <ul><li><a href="/wiki/Elementary_equivalence" title="Elementary equivalence">equivalence</a></li> <li><a href="/wiki/Finite_model_theory" title="Finite model theory">finite</a></li> <li><a href="/wiki/Saturated_model" title="Saturated model">saturated</a></li> <li><a href="/wiki/Spectrum_of_a_theory" title="Spectrum of a theory">spectrum</a></li> <li><a href="/wiki/Substructure_(mathematics)" title="Substructure (mathematics)">submodel</a></li></ul></li> <li><a href="/wiki/Non-standard_model" title="Non-standard model">Non-standard model</a> <ul><li><a href="/wiki/Non-standard_model_of_arithmetic" title="Non-standard model of arithmetic">of arithmetic</a></li></ul></li> <li><a href="/wiki/Diagram_(mathematical_logic)" title="Diagram (mathematical logic)">Diagram</a> <ul><li><a href="/wiki/Elementary_diagram" title="Elementary diagram">elementary</a></li></ul></li> <li><a href="/wiki/Categorical_theory" title="Categorical theory">Categorical theory</a></li> <li><a href="/wiki/Model_complete_theory" title="Model complete theory">Model complete theory</a></li> <li><a href="/wiki/Satisfiability" title="Satisfiability">Satisfiability</a></li> <li><a href="/wiki/Semantics_of_logic" title="Semantics of logic">Semantics of logic</a></li> <li><a href="/wiki/Strength_(mathematical_logic)" title="Strength (mathematical logic)">Strength</a></li> <li><a href="/wiki/Theories_of_truth" class="mw-redirect" title="Theories of truth">Theories of truth</a> <ul><li><a href="/wiki/Semantic_theory_of_truth" title="Semantic theory of truth">semantic</a></li> <li><a href="/wiki/Tarski%27s_theory_of_truth" class="mw-redirect" title="Tarski&#39;s theory of truth">Tarski's</a></li> <li><a href="/wiki/Kripke%27s_theory_of_truth" class="mw-redirect" title="Kripke&#39;s theory of truth">Kripke's</a></li></ul></li> <li><a href="/wiki/T-schema" title="T-schema">T-schema</a></li> <li><a href="/wiki/Transfer_principle" title="Transfer principle">Transfer principle</a></li> <li><a href="/wiki/Truth_predicate" title="Truth predicate">Truth predicate</a></li> <li><a href="/wiki/Truth_value" title="Truth value">Truth value</a></li> <li><a href="/wiki/Type_(model_theory)" title="Type (model theory)">Type</a></li> <li><a href="/wiki/Ultraproduct" title="Ultraproduct">Ultraproduct</a></li> <li><a href="/wiki/Validity_(logic)" title="Validity (logic)">Validity</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Computability_theory" title="Computability theory">Computability theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Church_encoding" title="Church encoding">Church encoding</a></li> <li><a href="/wiki/Church%E2%80%93Turing_thesis" title="Church–Turing thesis">Church–Turing thesis</a></li> <li><a href="/wiki/Computably_enumerable_set" title="Computably enumerable set">Computably enumerable</a></li> <li><a href="/wiki/Computable_function" title="Computable function">Computable function</a></li> <li><a href="/wiki/Computable_set" title="Computable set">Computable set</a></li> <li><a href="/wiki/Decision_problem" title="Decision problem">Decision problem</a> <ul><li><a href="/wiki/Decidability_(logic)" title="Decidability (logic)">decidable</a></li> <li><a href="/wiki/Undecidable_problem" title="Undecidable problem">undecidable</a></li> <li><a href="/wiki/P_(complexity)" title="P (complexity)">P</a></li> <li><a href="/wiki/NP_(complexity)" title="NP (complexity)">NP</a></li> <li><a href="/wiki/P_versus_NP_problem" title="P versus NP problem">P versus NP problem</a></li></ul></li> <li><a href="/wiki/Kolmogorov_complexity" title="Kolmogorov complexity">Kolmogorov complexity</a></li> <li><a href="/wiki/Lambda_calculus" title="Lambda calculus">Lambda calculus</a></li> <li><a href="/wiki/Primitive_recursive_function" title="Primitive recursive function">Primitive recursive function</a></li> <li><a href="/wiki/Recursion" title="Recursion">Recursion</a></li> <li><a href="/wiki/Recursive_set" class="mw-redirect" title="Recursive set">Recursive set</a></li> <li><a href="/wiki/Turing_machine" title="Turing machine">Turing machine</a></li> <li><a href="/wiki/Type_theory" title="Type theory">Type theory</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abstract_logic" title="Abstract logic">Abstract logic</a></li> <li><a href="/wiki/Algebraic_logic" title="Algebraic logic">Algebraic logic</a></li> <li><a href="/wiki/Automated_theorem_proving" title="Automated theorem proving">Automated theorem proving</a></li> <li><a href="/wiki/Category_theory" title="Category theory">Category theory</a></li> <li><a href="/wiki/Concrete_category" title="Concrete category">Concrete</a>/<a href="/wiki/Category_(mathematics)" title="Category (mathematics)">Abstract category</a></li> <li><a href="/wiki/Category_of_sets" title="Category of sets">Category of sets</a></li> <li><a href="/wiki/History_of_logic" title="History of logic">History of logic</a></li> <li><a href="/wiki/History_of_mathematical_logic" class="mw-redirect" title="History of mathematical logic">History of mathematical logic</a> <ul><li><a href="/wiki/Timeline_of_mathematical_logic" title="Timeline of mathematical logic">timeline</a></li></ul></li> <li><a href="/wiki/Logicism" title="Logicism">Logicism</a></li> <li><a href="/wiki/Mathematical_object" title="Mathematical object">Mathematical object</a></li> <li><a href="/wiki/Philosophy_of_mathematics" title="Philosophy of mathematics">Philosophy of mathematics</a></li> <li><a href="/wiki/Supertask" title="Supertask">Supertask</a></li></ul> </div></td></tr><tr><td class="navbox-abovebelow" colspan="2"><div><b><span class="nowrap"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/16px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/24px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/32px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span> </span><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics&#32;portal</a></b></div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Major_topics_in_Foundations_of_Mathematics" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2" style="background:#fdf;"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Foundations-footer" title="Template:Foundations-footer"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Foundations-footer" title="Template talk:Foundations-footer"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Foundations-footer" title="Special:EditPage/Template:Foundations-footer"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Major_topics_in_Foundations_of_Mathematics" style="font-size:114%;margin:0 4em">Major topics in <a href="/wiki/Foundations_of_mathematics" title="Foundations of mathematics">Foundations of Mathematics</a></div></th></tr><tr><th scope="row" class="navbox-group" style="background:#fdf;;width:1%"><a href="/wiki/Mathematical_logic" title="Mathematical logic">Mathematical logic</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Peano_axioms" title="Peano axioms">Peano axioms</a></li> <li><a href="/wiki/Mathematical_induction" title="Mathematical induction">Mathematical induction</a></li> <li><a href="/wiki/Formal_system" title="Formal system">Formal system</a> <ul><li><a href="/wiki/Axiomatic_system" title="Axiomatic system">Axiomatic system</a></li> <li><a href="/wiki/Hilbert_system" title="Hilbert system">Hilbert system</a></li> <li><a class="mw-selflink selflink">Natural deduction</a></li></ul></li> <li><a href="/wiki/Mathematical_proof" title="Mathematical proof">Mathematical proof</a></li> <li><a href="/wiki/Model_theory" title="Model theory">Model theory</a></li> <li><a href="/wiki/Mathematical_constructivism" class="mw-redirect" title="Mathematical constructivism">Mathematical constructivism</a></li> <li><a href="/wiki/Modal_logic" title="Modal logic">Modal logic</a></li> <li><a href="/wiki/List_of_mathematical_logic_topics" title="List of mathematical logic topics">List of mathematical logic topics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#fdf;;width:1%"><a href="/wiki/Set_theory" title="Set theory">Set theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Set_(mathematics)" title="Set (mathematics)">Set</a></li> <li><a href="/wiki/Naive_set_theory" title="Naive set theory">Naive set theory</a></li> <li><a href="/wiki/Set_theory#Axiomatic_set_theory" title="Set theory">Axiomatic set theory</a></li> <li><a href="/wiki/Zermelo_set_theory" title="Zermelo set theory">Zermelo set theory</a></li> <li><a href="/wiki/Zermelo%E2%80%93Fraenkel_set_theory" title="Zermelo–Fraenkel set theory">Zermelo–Fraenkel set theory</a></li> <li><a href="/wiki/Constructive_set_theory" title="Constructive set theory">Constructive set theory</a></li> <li><a href="/wiki/Descriptive_set_theory" title="Descriptive set theory">Descriptive set theory</a></li> <li><a href="/wiki/Determinacy" title="Determinacy">Determinacy</a></li> <li><a href="/wiki/Russell%27s_paradox" title="Russell&#39;s paradox">Russell's paradox</a></li> <li><a href="/wiki/List_of_set_theory_topics" title="List of set theory topics">List of set theory topics</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#fdf;;width:1%"><a href="/wiki/Type_theory" title="Type theory">Type theory</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Axiom_of_reducibility" title="Axiom of reducibility">Axiom of reducibility</a></li> <li><a href="/wiki/History_of_type_theory#Theory_of_simple_types" title="History of type theory">Simple type theory</a></li> <li><a href="/wiki/Dependent_type" title="Dependent type">Dependent type theory</a></li> <li><a href="/wiki/Intuitionistic_type_theory" title="Intuitionistic type theory">Intuitionistic type theory</a></li> <li><a href="/wiki/Homotopy_type_theory" title="Homotopy type theory">Homotopy type theory</a></li> <li><a href="/wiki/Univalent_foundations" title="Univalent foundations">Univalent foundations</a></li> <li><a href="/wiki/Girard%27s_paradox" class="mw-redirect" title="Girard&#39;s paradox">Girard's paradox</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="background:#fdf;;width:1%"><a href="/wiki/Category_theory" title="Category theory">Category theory</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Category_(mathematics)" title="Category (mathematics)">Category</a></li> <li><a href="/wiki/Topos" title="Topos">Topos theory</a></li> <li><a href="/wiki/Category_of_sets" title="Category of sets">Category of sets</a></li> <li><a href="/wiki/Higher_category_theory" title="Higher category theory">Higher category theory</a></li> <li><a href="/wiki/%E2%88%9E-groupoid" title="∞-groupoid">∞-groupoid</a></li> <li><a href="/wiki/%E2%88%9E-topos" title="∞-topos">∞-topos theory</a></li> <li><a href="/wiki/Structuralism_(philosophy_of_mathematics)" title="Structuralism (philosophy of mathematics)">Mathematical structuralism</a></li> <li><a href="/wiki/Glossary_of_category_theory" title="Glossary of category theory">Glossary of category theory</a></li> <li><a href="/wiki/List_of_category_theory_topics" class="mw-redirect" title="List of category theory topics">List of category theory topics</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐59b954b7fb‐npcrh Cached time: 20241206054734 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 1.109 seconds Real time usage: 1.387 seconds Preprocessor visited node count: 6380/1000000 Post‐expand include size: 208175/2097152 bytes Template argument size: 3642/2097152 bytes Highest expansion depth: 12/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 186917/5000000 bytes Lua time usage: 0.530/10.000 seconds Lua memory usage: 8040276/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 891.437 1 -total 24.08% 214.687 25 Template:Cite_book 18.43% 164.315 5 Template:Navbox 15.21% 135.602 2 Template:Reflist 14.91% 132.903 1 Template:Mathematical_logic 10.26% 91.469 1 Template:Short_description 8.85% 78.909 9 Template:Unreferenced_section 7.76% 69.163 9 Template:Unreferenced 7.15% 63.715 2 Template:Pagetype 6.91% 61.567 8 Template:Harvtxt --> <!-- Saved in parser cache with key enwiki:pcache:51072:|#|:idhash:canonical and timestamp 20241206054734 and revision id 1249686451. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?useformat=desktop&amp;type=1x1&amp;usesul3=0" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Natural_deduction&amp;oldid=1249686451">https://en.wikipedia.org/w/index.php?title=Natural_deduction&amp;oldid=1249686451</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Logical_calculi" title="Category:Logical calculi">Logical calculi</a></li><li><a href="/wiki/Category:Deductive_reasoning" title="Category:Deductive reasoning">Deductive reasoning</a></li><li><a href="/wiki/Category:Proof_theory" title="Category:Proof theory">Proof theory</a></li><li><a href="/wiki/Category:Methods_of_proof" title="Category:Methods of proof">Methods of proof</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_matches_Wikidata" title="Category:Short description matches Wikidata">Short description matches Wikidata</a></li><li><a href="/wiki/Category:Articles_needing_additional_references_from_May_2024" title="Category:Articles needing additional references from May 2024">Articles needing additional references from May 2024</a></li><li><a href="/wiki/Category:All_articles_needing_additional_references" title="Category:All articles needing additional references">All articles needing additional references</a></li><li><a href="/wiki/Category:Articles_with_Stanford_Encyclopedia_of_Philosophy_links" title="Category:Articles with Stanford Encyclopedia of Philosophy links">Articles with Stanford Encyclopedia of Philosophy links</a></li><li><a href="/wiki/Category:Pages_that_use_a_deprecated_format_of_the_math_tags" title="Category:Pages that use a deprecated format of the math tags">Pages that use a deprecated format of the math tags</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 6 October 2024, at 08:32<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Natural_deduction&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-59b954b7fb-9ftkg","wgBackendResponseTime":186,"wgPageParseReport":{"limitreport":{"cputime":"1.109","walltime":"1.387","ppvisitednodes":{"value":6380,"limit":1000000},"postexpandincludesize":{"value":208175,"limit":2097152},"templateargumentsize":{"value":3642,"limit":2097152},"expansiondepth":{"value":12,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":186917,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 891.437 1 -total"," 24.08% 214.687 25 Template:Cite_book"," 18.43% 164.315 5 Template:Navbox"," 15.21% 135.602 2 Template:Reflist"," 14.91% 132.903 1 Template:Mathematical_logic"," 10.26% 91.469 1 Template:Short_description"," 8.85% 78.909 9 Template:Unreferenced_section"," 7.76% 69.163 9 Template:Unreferenced"," 7.15% 63.715 2 Template:Pagetype"," 6.91% 61.567 8 Template:Harvtxt"]},"scribunto":{"limitreport-timeusage":{"value":"0.530","limit":"10.000"},"limitreport-memusage":{"value":8040276,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAllenHand2022\"] = 1,\n [\"CITEREFArthur2017\"] = 1,\n [\"CITEREFAyala-Rincónde_Moura2017\"] = 1,\n [\"CITEREFBarker-PlummerBarwiseEtchemendy2011\"] = 1,\n [\"CITEREFBostock1997\"] = 1,\n [\"CITEREFGallier2005\"] = 1,\n [\"CITEREFGentzen1934\"] = 1,\n [\"CITEREFGentzen1935\"] = 1,\n [\"CITEREFGirard1990\"] = 1,\n [\"CITEREFHanssonHendricks2018\"] = 1,\n [\"CITEREFJaśkowski1934\"] = 1,\n [\"CITEREFKleene1980\"] = 1,\n [\"CITEREFKleene2002\"] = 1,\n [\"CITEREFKleene2009\"] = 1,\n [\"CITEREFLaboreo2004\"] = 1,\n [\"CITEREFLemmon1965\"] = 1,\n [\"CITEREFLemmon1998\"] = 1,\n [\"CITEREFLevy\"] = 1,\n [\"CITEREFMartin-Löf1996\"] = 1,\n [\"CITEREFPaseauPregel2023\"] = 1,\n [\"CITEREFPelletier\"] = 1,\n [\"CITEREFPelletierHazen2024\"] = 1,\n [\"CITEREFPfenningDavies2001\"] = 1,\n [\"CITEREFPlato2013\"] = 3,\n [\"CITEREFPrawitz1965\"] = 1,\n [\"CITEREFPrawitz2006\"] = 1,\n [\"CITEREFQuine1981\"] = 1,\n [\"CITEREFQuine1982\"] = 1,\n [\"CITEREFRestall2018\"] = 1,\n [\"CITEREFSimpson1993\"] = 1,\n [\"CITEREFStoll1979\"] = 1,\n [\"CITEREFStouppa2004\"] = 1,\n [\"CITEREFSuppes1999\"] = 1,\n [\"CITEREFVan_Dalen2013\"] = 1,\n [\"CITEREFWeisstein\"] = 1,\n}\ntemplate_list = table#1 {\n [\"!\"] = 2,\n [\"Citation\"] = 3,\n [\"Cite book\"] = 25,\n [\"Cite journal\"] = 4,\n [\"Cite web\"] = 10,\n [\"Columns-list\"] = 1,\n [\"DEFAULTSORT:Natural Deduction\"] = 1,\n [\"EquationRef\"] = 43,\n [\"Foundations-footer\"] = 1,\n [\"Harvnb\"] = 12,\n [\"Harvtxt\"] = 8,\n [\"Main\"] = 1,\n [\"Main article\"] = 1,\n [\"Mathematical logic\"] = 1,\n [\"Portal\"] = 1,\n [\"Reflist\"] = 2,\n [\"Refn\"] = 3,\n [\"SEP\"] = 1,\n [\"Section link\"] = 5,\n [\"Short description\"] = 1,\n [\"Unreferenced section\"] = 9,\n [\"Verse translation\"] = 1,\n}\narticle_whitelist = table#1 {\n}\nciteref_patterns = table#1 {\n}\ntable#1 {\n [\"size\"] = \"tiny\",\n}\n"},"cachereport":{"origin":"mw-web.codfw.main-59b954b7fb-npcrh","timestamp":"20241206054734","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Natural deduction","url":"https:\/\/en.wikipedia.org\/wiki\/Natural_deduction","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1572108","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1572108","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-05-01T23:33:50Z","dateModified":"2024-10-06T08:32:39Z","headline":"kind of proof calculus"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10