CINXE.COM
Probabilistic metrics
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="description" content="Keras documentation"> <meta name="author" content="Keras Team"> <link rel="shortcut icon" href="https://keras.io/img/favicon.ico"> <link rel="canonical" href="https://keras.io/2.18/api/metrics/probabilistic_metrics/" /> <!-- Social --> <meta property="og:title" content="Keras documentation: Probabilistic metrics"> <meta property="og:image" content="https://keras.io/img/logo-k-keras-wb.png"> <meta name="twitter:title" content="Keras documentation: Probabilistic metrics"> <meta name="twitter:image" content="https://keras.io/img/k-keras-social.png"> <meta name="twitter:card" content="summary"> <title>Probabilistic metrics</title> <!-- Bootstrap core CSS --> <link href="/css/bootstrap.min.css" rel="stylesheet"> <!-- Custom fonts for this template --> <link href="https://fonts.googleapis.com/css2?family=Open+Sans:wght@400;600;700;800&display=swap" rel="stylesheet"> <!-- Custom styles for this template --> <link href="/css/docs.css" rel="stylesheet"> <link href="/css/monokai.css" rel="stylesheet"> <!-- Google Tag Manager --> <script>(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start': new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0], j=d.createElement(s),dl=l!='dataLayer'?'&l='+l:'';j.async=true;j.src= 'https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f); })(window,document,'script','dataLayer','GTM-5DNGF4N'); </script> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-175165319-128', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Tag Manager --> <script async defer src="https://buttons.github.io/buttons.js"></script> </head> <body> <!-- Google Tag Manager (noscript) --> <noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-5DNGF4N" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript> <!-- End Google Tag Manager (noscript) --> <div class='k-page'> <div class="k-nav" id="nav-menu"> <a href='/'><img src='/img/logo-small.png' class='logo-small' /></a> <div class="nav flex-column nav-pills" role="tablist" aria-orientation="vertical"> <a class="nav-link" href="/about/" role="tab" aria-selected="">About Keras</a> <a class="nav-link" href="/getting_started/" role="tab" aria-selected="">Getting started</a> <a class="nav-link" href="/guides/" role="tab" aria-selected="">Developer guides</a> <a class="nav-link" href="/examples/" role="tab" aria-selected="">Code examples</a> <a class="nav-link" href="/api/" role="tab" aria-selected="">Keras 3 API documentation</a> <a class="nav-link active" href="/2.18/api/" role="tab" aria-selected="">Keras 2 API documentation</a> <a class="nav-sublink" href="/2.18/api/models/">Models API</a> <a class="nav-sublink" href="/2.18/api/layers/">Layers API</a> <a class="nav-sublink" href="/2.18/api/callbacks/">Callbacks API</a> <a class="nav-sublink" href="/2.18/api/optimizers/">Optimizers</a> <a class="nav-sublink active" href="/2.18/api/metrics/">Metrics</a> <a class="nav-sublink2" href="/2.18/api/metrics/accuracy_metrics/">Accuracy metrics</a> <a class="nav-sublink2 active" href="/2.18/api/metrics/probabilistic_metrics/">Probabilistic metrics</a> <a class="nav-sublink2" href="/2.18/api/metrics/regression_metrics/">Regression metrics</a> <a class="nav-sublink2" href="/2.18/api/metrics/classification_metrics/">Classification metrics based on True/False positives & negatives</a> <a class="nav-sublink2" href="/2.18/api/metrics/segmentation_metrics/">Image segmentation metrics</a> <a class="nav-sublink2" href="/2.18/api/metrics/hinge_metrics/">Hinge metrics for "maximum-margin" classification</a> <a class="nav-sublink" href="/2.18/api/losses/">Losses</a> <a class="nav-sublink" href="/2.18/api/data_loading/">Data loading</a> <a class="nav-sublink" href="/2.18/api/datasets/">Built-in small datasets</a> <a class="nav-sublink" href="/2.18/api/applications/">Keras Applications</a> <a class="nav-sublink" href="/2.18/api/mixed_precision/">Mixed precision</a> <a class="nav-sublink" href="/2.18/api/utils/">Utilities</a> <a class="nav-link" href="/keras_tuner/" role="tab" aria-selected="">KerasTuner: Hyperparam Tuning</a> <a class="nav-link" href="/keras_hub/" role="tab" aria-selected="">KerasHub: Pretrained Models</a> </div> </div> <div class='k-main'> <div class='k-main-top'> <script> function displayDropdownMenu() { e = document.getElementById("nav-menu"); if (e.style.display == "block") { e.style.display = "none"; } else { e.style.display = "block"; document.getElementById("dropdown-nav").style.display = "block"; } } function resetMobileUI() { if (window.innerWidth <= 840) { document.getElementById("nav-menu").style.display = "none"; document.getElementById("dropdown-nav").style.display = "block"; } else { document.getElementById("nav-menu").style.display = "block"; document.getElementById("dropdown-nav").style.display = "none"; } var navmenu = document.getElementById("nav-menu"); var menuheight = navmenu.clientHeight; var kmain = document.getElementById("k-main-id"); kmain.style.minHeight = (menuheight + 100) + 'px'; } window.onresize = resetMobileUI; window.addEventListener("load", (event) => { resetMobileUI() }); </script> <div id='dropdown-nav' onclick="displayDropdownMenu();"> <svg viewBox="-20 -20 120 120" width="60" height="60"> <rect width="100" height="20"></rect> <rect y="30" width="100" height="20"></rect> <rect y="60" width="100" height="20"></rect> </svg> </div> <form class="bd-search d-flex align-items-center k-search-form" id="search-form"> <input type="search" class="k-search-input" id="search-input" placeholder="Search Keras documentation..." aria-label="Search Keras documentation..." autocomplete="off"> <button class="k-search-btn"> <svg width="13" height="13" viewBox="0 0 13 13"><title>search</title><path d="m4.8495 7.8226c0.82666 0 1.5262-0.29146 2.0985-0.87438 0.57232-0.58292 0.86378-1.2877 0.87438-2.1144 0.010599-0.82666-0.28086-1.5262-0.87438-2.0985-0.59352-0.57232-1.293-0.86378-2.0985-0.87438-0.8055-0.010599-1.5103 0.28086-2.1144 0.87438-0.60414 0.59352-0.8956 1.293-0.87438 2.0985 0.021197 0.8055 0.31266 1.5103 0.87438 2.1144 0.56172 0.60414 1.2665 0.8956 2.1144 0.87438zm4.4695 0.2115 3.681 3.6819-1.259 1.284-3.6817-3.7 0.0019784-0.69479-0.090043-0.098846c-0.87973 0.76087-1.92 1.1413-3.1207 1.1413-1.3553 0-2.5025-0.46363-3.4417-1.3909s-1.4088-2.0686-1.4088-3.4239c0-1.3553 0.4696-2.4966 1.4088-3.4239 0.9392-0.92727 2.0864-1.3969 3.4417-1.4088 1.3553-0.011889 2.4906 0.45771 3.406 1.4088 0.9154 0.95107 1.379 2.0924 1.3909 3.4239 0 1.2126-0.38043 2.2588-1.1413 3.1385l0.098834 0.090049z"></path></svg> </button> </form> <script> var form = document.getElementById('search-form'); form.onsubmit = function(e) { e.preventDefault(); var query = document.getElementById('search-input').value; window.location.href = '/search.html?query=' + query; return False } </script> </div> <div class='k-main-inner' id='k-main-id'> <div class='k-location-slug'> <span class="k-location-slug-pointer">►</span> <a href='/2.18/api/'>Keras 2 API documentation</a> / <a href='/2.18/api/metrics/'>Metrics</a> / Probabilistic metrics </div> <div class='k-content'> <h1 id="probabilistic-metrics">Probabilistic metrics</h1> <p><span style="float:right;"><a href="https://github.com/keras-team/tf-keras/tree/v2.18.0/tf_keras/metrics/probabilistic_metrics.py#L111">[source]</a></span></p> <h3 id="binarycrossentropy-class"><code>BinaryCrossentropy</code> class</h3> <div class="codehilite"><pre><span></span><code><span class="n">tf_keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">BinaryCrossentropy</span><span class="p">(</span> <span class="n">name</span><span class="o">=</span><span class="s2">"binary_crossentropy"</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">from_logits</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">label_smoothing</span><span class="o">=</span><span class="mi">0</span> <span class="p">)</span> </code></pre></div> <p>Computes the crossentropy metric between the labels and predictions.</p> <p>This is the crossentropy metric class to be used when there are only two label classes (0 and 1).</p> <p><strong>Arguments</strong></p> <ul> <li><strong>name</strong>: (Optional) string name of the metric instance.</li> <li><strong>dtype</strong>: (Optional) data type of the metric result.</li> <li><strong>from_logits</strong>: (Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution.</li> <li><strong>label_smoothing</strong>: (Optional) Float in [0, 1]. When > 0, label values are smoothed, meaning the confidence on label values are relaxed. e.g. <code>label_smoothing=0.2</code> means that we will use a value of <code>0.1</code> for label <code>0</code> and <code>0.9</code> for label <code>1</code>".</li> </ul> <p>Standalone usage:</p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">m</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">BinaryCrossentropy</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">]])</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">0.81492424</span> </code></pre></div> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">reset_state</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">]],</span> <span class="o">...</span> <span class="n">sample_weight</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">0.9162905</span> </code></pre></div> <p>Usage with <code>compile()</code> API:</p> <div class="codehilite"><pre><span></span><code><span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span> <span class="n">optimizer</span><span class="o">=</span><span class="s1">'sgd'</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'binary_crossentropy'</span><span class="p">,</span> <span class="n">metrics</span><span class="o">=</span><span class="p">[</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">BinaryCrossentropy</span><span class="p">()])</span> </code></pre></div> <hr /> <p><span style="float:right;"><a href="https://github.com/keras-team/tf-keras/tree/v2.18.0/tf_keras/metrics/probabilistic_metrics.py#L168">[source]</a></span></p> <h3 id="categoricalcrossentropy-class"><code>CategoricalCrossentropy</code> class</h3> <div class="codehilite"><pre><span></span><code><span class="n">tf_keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">CategoricalCrossentropy</span><span class="p">(</span> <span class="n">name</span><span class="o">=</span><span class="s2">"categorical_crossentropy"</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">,</span> <span class="n">from_logits</span><span class="o">=</span><span class="kc">False</span><span class="p">,</span> <span class="n">label_smoothing</span><span class="o">=</span><span class="mi">0</span><span class="p">,</span> <span class="n">axis</span><span class="o">=-</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span> </code></pre></div> <p>Computes the crossentropy metric between the labels and predictions.</p> <p>This is the crossentropy metric class to be used when there are multiple label classes (2 or more). Here we assume that labels are given as a <code>one_hot</code> representation. eg., When labels values are [2, 0, 1], <code>y_true</code> = [[0, 0, 1], [1, 0, 0], [0, 1, 0]].</p> <p><strong>Arguments</strong></p> <ul> <li><strong>name</strong>: (Optional) string name of the metric instance.</li> <li><strong>dtype</strong>: (Optional) data type of the metric result.</li> <li><strong>from_logits</strong>: (Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution.</li> <li><strong>label_smoothing</strong>: (Optional) Float in [0, 1]. When > 0, label values are smoothed, meaning the confidence on label values are relaxed. e.g. <code>label_smoothing=0.2</code> means that we will use a value of <code>0.1</code> for label <code>0</code> and <code>0.9</code> for label <code>1</code>"</li> <li><strong>axis</strong>: (Optional) -1 is the dimension along which entropy is computed. Defaults to <code>-1</code>.</li> </ul> <p>Standalone usage:</p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="c1"># EPSILON = 1e-7, y = y_true, y` = y_pred</span> <span class="o">>>></span> <span class="c1"># y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON)</span> <span class="o">>>></span> <span class="c1"># y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]</span> <span class="o">>>></span> <span class="c1"># xent = -sum(y * log(y'), axis = -1)</span> <span class="o">>>></span> <span class="c1"># = -((log 0.95), (log 0.1))</span> <span class="o">>>></span> <span class="c1"># = [0.051, 2.302]</span> <span class="o">>>></span> <span class="c1"># Reduced xent = (0.051 + 2.302) / 2</span> <span class="o">>>></span> <span class="n">m</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">CategoricalCrossentropy</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]],</span> <span class="o">...</span> <span class="p">[[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]])</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">1.1769392</span> </code></pre></div> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">reset_state</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">]],</span> <span class="o">...</span> <span class="p">[[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]],</span> <span class="o">...</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">([</span><span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">]))</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">1.6271976</span> </code></pre></div> <p>Usage with <code>compile()</code> API:</p> <div class="codehilite"><pre><span></span><code><span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span> <span class="n">optimizer</span><span class="o">=</span><span class="s1">'sgd'</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'categorical_crossentropy'</span><span class="p">,</span> <span class="n">metrics</span><span class="o">=</span><span class="p">[</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">CategoricalCrossentropy</span><span class="p">()])</span> </code></pre></div> <hr /> <p><span style="float:right;"><a href="https://github.com/keras-team/tf-keras/tree/v2.18.0/tf_keras/metrics/probabilistic_metrics.py#L240">[source]</a></span></p> <h3 id="sparsecategoricalcrossentropy-class"><code>SparseCategoricalCrossentropy</code> class</h3> <div class="codehilite"><pre><span></span><code><span class="n">tf_keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">SparseCategoricalCrossentropy</span><span class="p">(</span> <span class="n">name</span><span class="p">:</span> <span class="nb">str</span> <span class="o">=</span> <span class="s2">"sparse_categorical_crossentropy"</span><span class="p">,</span> <span class="n">dtype</span><span class="p">:</span> <span class="n">Union</span><span class="p">[</span><span class="nb">str</span><span class="p">,</span> <span class="n">tensorflow</span><span class="o">.</span><span class="n">python</span><span class="o">.</span><span class="n">framework</span><span class="o">.</span><span class="n">dtypes</span><span class="o">.</span><span class="n">DType</span><span class="p">,</span> <span class="n">NoneType</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">from_logits</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="kc">False</span><span class="p">,</span> <span class="n">ignore_class</span><span class="p">:</span> <span class="n">Optional</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="kc">None</span><span class="p">,</span> <span class="n">axis</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="o">-</span><span class="mi">1</span><span class="p">,</span> <span class="p">)</span> </code></pre></div> <p>Computes the crossentropy metric between the labels and predictions.</p> <p>Use this crossentropy metric when there are two or more label classes. We expect labels to be provided as integers. If you want to provide labels using <code>one-hot</code> representation, please use <code>CategoricalCrossentropy</code> metric. There should be <code># classes</code> floating point values per feature for <code>y_pred</code> and a single floating point value per feature for <code>y_true</code>.</p> <p>In the snippet below, there is a single floating point value per example for <code>y_true</code> and <code># classes</code> floating pointing values per example for <code>y_pred</code>. The shape of <code>y_true</code> is <code>[batch_size]</code> and the shape of <code>y_pred</code> is <code>[batch_size, num_classes]</code>.</p> <p><strong>Arguments</strong></p> <ul> <li><strong>name</strong>: (Optional) string name of the metric instance.</li> <li><strong>dtype</strong>: (Optional) data type of the metric result.</li> <li><strong>from_logits</strong>: (Optional) Whether output is expected to be a logits tensor. By default, we consider that output encodes a probability distribution.</li> <li><strong>ignore_class</strong>: Optional integer. The ID of a class to be ignored during metric computation. This is useful, for example, in segmentation problems featuring a "void" class (commonly -1 or 255) in segmentation maps. By default (<code>ignore_class=None</code>), all classes are considered.</li> <li><strong>axis</strong>: (Optional) The dimension along which entropy is computed. Defaults to <code>-1</code>.</li> </ul> <p>Standalone usage:</p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="c1"># y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]]</span> <span class="o">>>></span> <span class="c1"># logits = log(y_pred)</span> <span class="o">>>></span> <span class="c1"># softmax = exp(logits) / sum(exp(logits), axis=-1)</span> <span class="o">>>></span> <span class="c1"># softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]]</span> <span class="o">>>></span> <span class="c1"># xent = -sum(y * log(softmax), 1)</span> <span class="o">>>></span> <span class="c1"># log(softmax) = [[-2.9957, -0.0513, -16.1181],</span> <span class="o">>>></span> <span class="c1"># [-2.3026, -0.2231, -2.3026]]</span> <span class="o">>>></span> <span class="c1"># y_true * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]]</span> <span class="o">>>></span> <span class="c1"># xent = [0.0513, 2.3026]</span> <span class="o">>>></span> <span class="c1"># Reduced xent = (0.0513 + 2.3026) / 2</span> <span class="o">>>></span> <span class="n">m</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">SparseCategoricalCrossentropy</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="o">...</span> <span class="p">[[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]])</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">1.1769392</span> </code></pre></div> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">reset_state</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([</span><span class="mi">1</span><span class="p">,</span> <span class="mi">2</span><span class="p">],</span> <span class="o">...</span> <span class="p">[[</span><span class="mf">0.05</span><span class="p">,</span> <span class="mf">0.95</span><span class="p">,</span> <span class="mi">0</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.1</span><span class="p">,</span> <span class="mf">0.8</span><span class="p">,</span> <span class="mf">0.1</span><span class="p">]],</span> <span class="o">...</span> <span class="n">sample_weight</span><span class="o">=</span><span class="n">tf</span><span class="o">.</span><span class="n">constant</span><span class="p">([</span><span class="mf">0.3</span><span class="p">,</span> <span class="mf">0.7</span><span class="p">]))</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">1.6271976</span> </code></pre></div> <p>Usage with <code>compile()</code> API:</p> <div class="codehilite"><pre><span></span><code><span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span> <span class="n">optimizer</span><span class="o">=</span><span class="s1">'sgd'</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'sparse_categorical_crossentropy'</span><span class="p">,</span> <span class="n">metrics</span><span class="o">=</span><span class="p">[</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">SparseCategoricalCrossentropy</span><span class="p">()])</span> </code></pre></div> <hr /> <p><span style="float:right;"><a href="https://github.com/keras-team/tf-keras/tree/v2.18.0/tf_keras/metrics/probabilistic_metrics.py#L73">[source]</a></span></p> <h3 id="kldivergence-class"><code>KLDivergence</code> class</h3> <div class="codehilite"><pre><span></span><code><span class="n">tf_keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">KLDivergence</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">"kullback_leibler_divergence"</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span> </code></pre></div> <p>Computes Kullback-Leibler divergence metric between <code>y_true</code> and <code>y_pred</code>.</p> <p><code>metric = y_true * log(y_true / y_pred)</code></p> <p><strong>Arguments</strong></p> <ul> <li><strong>name</strong>: (Optional) string name of the metric instance.</li> <li><strong>dtype</strong>: (Optional) data type of the metric result.</li> </ul> <p>Standalone usage:</p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">m</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">KLDivergence</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">]])</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">0.45814306</span> </code></pre></div> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">reset_state</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span> <span class="p">[[</span><span class="mf">0.6</span><span class="p">,</span> <span class="mf">0.4</span><span class="p">],</span> <span class="p">[</span><span class="mf">0.4</span><span class="p">,</span> <span class="mf">0.6</span><span class="p">]],</span> <span class="o">...</span> <span class="n">sample_weight</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">0.9162892</span> </code></pre></div> <p>Usage with <code>compile()</code> API:</p> <div class="codehilite"><pre><span></span><code><span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">optimizer</span><span class="o">=</span><span class="s1">'sgd'</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'categorical_crossentropy'</span><span class="p">,</span> <span class="n">metrics</span><span class="o">=</span><span class="p">[</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">KLDivergence</span><span class="p">()])</span> </code></pre></div> <hr /> <p><span style="float:right;"><a href="https://github.com/keras-team/tf-keras/tree/v2.18.0/tf_keras/metrics/probabilistic_metrics.py#L34">[source]</a></span></p> <h3 id="poisson-class"><code>Poisson</code> class</h3> <div class="codehilite"><pre><span></span><code><span class="n">tf_keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">Poisson</span><span class="p">(</span><span class="n">name</span><span class="o">=</span><span class="s2">"poisson"</span><span class="p">,</span> <span class="n">dtype</span><span class="o">=</span><span class="kc">None</span><span class="p">)</span> </code></pre></div> <p>Computes the Poisson score between <code>y_true</code> and <code>y_pred</code>.</p> <p>🐟 🐟 🐟</p> <p>It is defined as: <code>poisson_score = y_pred - y_true * log(y_pred)</code>.</p> <p><strong>Arguments</strong></p> <ul> <li><strong>name</strong>: (Optional) string name of the metric instance.</li> <li><strong>dtype</strong>: (Optional) data type of the metric result.</li> </ul> <p>Standalone usage:</p> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">m</span> <span class="o">=</span> <span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">Poisson</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]])</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">0.49999997</span> </code></pre></div> <div class="codehilite"><pre><span></span><code><span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">reset_state</span><span class="p">()</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">update_state</span><span class="p">([[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span> <span class="p">[[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">1</span><span class="p">],</span> <span class="p">[</span><span class="mi">0</span><span class="p">,</span> <span class="mi">0</span><span class="p">]],</span> <span class="o">...</span> <span class="n">sample_weight</span><span class="o">=</span><span class="p">[</span><span class="mi">1</span><span class="p">,</span> <span class="mi">0</span><span class="p">])</span> <span class="o">>>></span> <span class="n">m</span><span class="o">.</span><span class="n">result</span><span class="p">()</span><span class="o">.</span><span class="n">numpy</span><span class="p">()</span> <span class="mf">0.99999994</span> </code></pre></div> <p>Usage with <code>compile()</code> API:</p> <div class="codehilite"><pre><span></span><code><span class="n">model</span><span class="o">.</span><span class="n">compile</span><span class="p">(</span><span class="n">optimizer</span><span class="o">=</span><span class="s1">'sgd'</span><span class="p">,</span> <span class="n">loss</span><span class="o">=</span><span class="s1">'categorical_crossentropy'</span><span class="p">,</span> <span class="n">metrics</span><span class="o">=</span><span class="p">[</span><span class="n">tf</span><span class="o">.</span><span class="n">keras</span><span class="o">.</span><span class="n">metrics</span><span class="o">.</span><span class="n">Poisson</span><span class="p">()])</span> </code></pre></div> <hr /> </div> <div class='k-outline'> <div class='k-outline-depth-1'> <a href='#probabilistic-metrics'>Probabilistic metrics</a> </div> <div class='k-outline-depth-3'> <a href='#binarycrossentropy-class'><code>BinaryCrossentropy</code> class</a> </div> <div class='k-outline-depth-3'> <a href='#categoricalcrossentropy-class'><code>CategoricalCrossentropy</code> class</a> </div> <div class='k-outline-depth-3'> <a href='#sparsecategoricalcrossentropy-class'><code>SparseCategoricalCrossentropy</code> class</a> </div> <div class='k-outline-depth-3'> <a href='#kldivergence-class'><code>KLDivergence</code> class</a> </div> <div class='k-outline-depth-3'> <a href='#poisson-class'><code>Poisson</code> class</a> </div> </div> </div> </div> </div> </body> <footer style="float: left; width: 100%; padding: 1em; border-top: solid 1px #bbb;"> <a href="https://policies.google.com/terms">Terms</a> | <a href="https://policies.google.com/privacy">Privacy</a> </footer> </html>