CINXE.COM
Search results for: food irradiation
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: food irradiation</title> <meta name="description" content="Search results for: food irradiation"> <meta name="keywords" content="food irradiation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="food irradiation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="food irradiation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4163</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: food irradiation</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4163</span> Food Irradiation in the Third Sector Development and Validation of Questionnaire to Standard Measuring Instrument for Evaluation of Acceptance and Sensory Analysis of Irradiated Foods</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Sagretti">Juliana Sagretti</a>, <a href="https://publications.waset.org/abstracts/search?q=Susy%20Sabato"> Susy Sabato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the poverty in the world, a third of all food produced in the world is wasted. FAO, the United Nations Organization of Agriculture and Food, points out the need to combine actions and new technologies to combat hunger and waste in contrast to the high production of food in the world. The energy of ionizing radiation in food brought many positive results, such as increased validity and insect infestation control. The food banks are organizations that act at various points of food chain to collect and distribute food to the needy. So, the aim of this study was to initiate a partnership between irradiation and the food bank through the development of a questionnaire to evaluate and disseminate the knowledge and acceptance of individuals in the food bank in Brazil. In addition, this study aimed to standardize a basis questionnaire for future research assessment of irradiated foods. For the construction of the questionnaire as a measuring instrument, a comprehensive and rigorous literature review was made. Its covered qualitative research, questionnaires, sensory evaluation and food irradiated. Three stages of pre - tests were necessary and related fields of experts were consulted. As a result, the questionnaire has three parts, personal issues, assertive issues and questions of multiple choices and finally an informative question. The questionnaire was applied in Ceagesp food bank in the biggest center of food in Brazil (data not shown). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20bank" title="food bank">food bank</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20irradiation" title=" food irradiation"> food irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20waste" title=" food waste"> food waste</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a> </p> <a href="https://publications.waset.org/abstracts/54526/food-irradiation-in-the-third-sector-development-and-validation-of-questionnaire-to-standard-measuring-instrument-for-evaluation-of-acceptance-and-sensory-analysis-of-irradiated-foods" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4162</span> Web-Based Tools to Increase Public Understanding of Nuclear Technology and Food Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Denise%20Levy">Denise Levy</a>, <a href="https://publications.waset.org/abstracts/search?q=Anna%20Lucia%20C.%20H.%20Villavicencio"> Anna Lucia C. H. Villavicencio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food irradiation is a processing and preservation technique to eliminate insects and parasites and reduce disease-causing microorganisms. Moreover, the process helps to inhibit sprouting and delay ripening, extending fresh fruits and vegetables shelf-life. Nevertheless, most Brazilian consumers seem to misunderstand the difference between irradiated food and radioactive food and the general public has major concerns about the negative health effects and environmental contamination. Society´s judgment and decision making are directly linked to perceived benefits and risks. The web-based project entitled ‘Scientific information about food irradiation: Internet as a tool to approach science and society’ was created by the Nuclear and Energetic Research Institute (IPEN), in order to offer an interdisciplinary approach to science education, integrating economic, ethical, social and political aspects of food irradiation. This project takes into account that, misinformation and unfounded preconceived ideas impact heavily on the acceptance of irradiated food and purchase intention by the Brazilian consumer. Taking advantage of the potential value of the Internet to enhance communication and education among general public, a research study was carried out regarding the possibilities and trends of Information and Communication Technologies among the Brazilian population. The content includes concepts, definitions and Frequently Asked Questions (FAQ) about processes, safety, advantages, limitations and the possibilities of food irradiation, including health issues, as well as its impacts on the environment. The project counts on eight self-instructional interactive web courses, situating scientific content in relevant social contexts in order to encourage self-learning and further reflections. Communication is a must to improve public understanding of science. The use of information technology for quality scientific divulgation shall contribute greatly to provide information throughout the country, spreading information to as many people as possible, minimizing geographic distances and stimulating communication and development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20irradiation" title="food irradiation">food irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=multimedia%20learning%20tools" title=" multimedia learning tools"> multimedia learning tools</a>, <a href="https://publications.waset.org/abstracts/search?q=nuclear%20science" title=" nuclear science"> nuclear science</a>, <a href="https://publications.waset.org/abstracts/search?q=society%20and%20education" title=" society and education"> society and education</a> </p> <a href="https://publications.waset.org/abstracts/55650/web-based-tools-to-increase-public-understanding-of-nuclear-technology-and-food-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55650.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">248</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4161</span> Evaluation of Knowledge and Acceptance of Food Irradiated by Individual from Food Bank of Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Juliana%20Altavista%20Sagretti%20Gallo">Juliana Altavista Sagretti Gallo</a>, <a href="https://publications.waset.org/abstracts/search?q=Susy%20Frey%20Sabato"> Susy Frey Sabato</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the poverty in the world, a third of all food produced in the world is wasted. FAO, the United Nations Organization of Agriculture and Food, points out the need to combine actions and new technologies to combat hunger and waste in contrast to the high production of food in the world. The energy of ionizing radiation in food brought many positive results, such as increased validity and insect infestation control. The food banks are organizations that act at various points of the food chain to collect and distribute food to the needy. So, the aim of this study was to initiate a partnership between irradiation and the food bank through the development of a questionnaire to evaluate and disseminate the knowledge and acceptance of individuals in the food bank in Brazil. Also, this study aimed to standardize a basis questionnaire for future research assessment of irradiated foods. For the construction of the questionnaire as a measuring instrument, a comprehensive and rigorous literature review was made. It's covered qualitative research, questionnaires, sensory evaluation, and food irradiated. Three stages of pre - tests were necessary, and related fields of experts were consulted. As a result, the questionnaire has three parts, personal issues, assertive issues and questions of multiple choices and finally an informative question. The questionnaire was applied in Ceagesp food bank in the biggest center of food in Brazil. Conclusions. 30 % of participants of Ceagesp bank had already heard of the Food irradiation but did not know about the mechanism, so they rejected the idea to associate with radioactivity and danger. The video showed in the last question and application of the questionnaire disseminated the idea of security. All individuals declare understand the goal of treatment and accept buy and consume irradiated food after them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bank%20of%20food" title="bank of food">bank of food</a>, <a href="https://publications.waset.org/abstracts/search?q=questionary" title=" questionary"> questionary</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiated%20food" title=" irradiated food"> irradiated food</a>, <a href="https://publications.waset.org/abstracts/search?q=acceptance%20of%20irradiated%20food" title=" acceptance of irradiated food"> acceptance of irradiated food</a> </p> <a href="https://publications.waset.org/abstracts/67968/evaluation-of-knowledge-and-acceptance-of-food-irradiated-by-individual-from-food-bank-of-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4160</span> Solar Cell Degradation by Electron Irradiation Effect of Irradiation Fluence</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Mazouz">H. Mazouz</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Belghachi"> A. Belghachi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Hadjaj"> F. Hadjaj </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar cells used in orbit are exposed to radiation environment mainly protons and high energy electrons. These particles degrade the output parameters of the solar cell. The aim of this work is to characterize the effects of electron irradiation fluence on the J (V) characteristic and output parameters of gaAs solar cell by numerical simulation. The results obtained demonstrate that the electron irradiation-induced degradation of performances of the cells concerns mainly the short circuit current. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gaAs%20solar%20cell" title="gaAs solar cell">gaAs solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=MeV%20electron%20irradiation" title=" MeV electron irradiation"> MeV electron irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation%20fluence" title=" irradiation fluence"> irradiation fluence</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20circuit" title=" short circuit"> short circuit</a> </p> <a href="https://publications.waset.org/abstracts/4028/solar-cell-degradation-by-electron-irradiation-effect-of-irradiation-fluence" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4028.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4159</span> Dosimetric Application of α-Al2O3:C for Food Irradiation Using TA-OSL</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Soni">A. Soni</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20R.%20Mishra"> D. R. Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20K.%20Koul"> D. K. Koul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> α-Al2O3:C has been reported to have deeper traps at 600°C and 900°C respectively. These traps have been reported to accessed at relatively earlier temperatures (122 and 322 °C respectively) using thermally assisted OSL (TA-OSL). In this work, the dose response α-Al2O3:C was studied in the dose range of 10Gy to 10kGy for its application in food irradiation in low ( upto 1kGy) and medium(1 to 10kGy) dose range. The TOL (Thermo-optically stimulated luminescence) measurements were carried out on RisØ TL/OSL, TL-DA-15 system having a blue light-emitting diodes (λ=470 ±30nm) stimulation source with power level set at the 90% of the maximum stimulation intensity for the blue LEDs (40 mW/cm2). The observations were carried on commercial α-Al2O3:C phosphor. The TOL experiments were carried out with number of active channel (300) and inactive channel (1). Using these settings, the sample is subjected to linear thermal heating and constant optical stimulation. The detection filter used in all observations was a Hoya U-340 (Ip ~ 340 nm, FWHM ~ 80 nm). Irradiation of the samples was carried out using a 90Sr/90Y β-source housed in the system. A heating rate of 2 °C/s was preferred in TL measurements so as to reduce the temperature lag between the heater plate and the samples. To study the dose response of deep traps of α-Al2O3:C, samples were irradiated with various dose ranging from 10 Gy to 10 kGy. For each set of dose, three samples were irradiated. In order to record the TA-OSL, initially TL was recorded up to a temperature of 400°C, to deplete the signal due to 185°C main dosimetry TL peak in α-Al2O3:C, which is also associated with the basic OSL traps. After taking TL readout, the sample was subsequently subjected to TOL measurement. As a result, two well-defined TA-OSL peaks at 121°C and at 232°C occur in time as well as temperature domain which are different from the main dosimetric TL peak which occurs at ~ 185°C. The linearity of the integrated TOL signal has been measured as a function of absorbed dose and found to be linear upto 10kGy. Thus, it can be used for low and intermediate dose range of for its application in food irradiation. The deep energy level defects of α-Al2O3:C phosphor can be accessed using TOL section of RisØ reader system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B1-Al2O3%3AC" title="α-Al2O3:C">α-Al2O3:C</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20traps" title=" deep traps"> deep traps</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20irradiation" title=" food irradiation"> food irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=TA-OSL" title=" TA-OSL"> TA-OSL</a> </p> <a href="https://publications.waset.org/abstracts/46419/dosimetric-application-of-a-al2o3c-for-food-irradiation-using-ta-osl" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4158</span> Effect of Dose-Dependent Gamma Irradiation on the Fatty Acid Profile of Mud Crab, Scylla Serrata: A GC-FID Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keethadath%20Arshad">Keethadath Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Kappalli%20Sudha"> Kappalli Sudha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mud crab, Scylla Serrata, a commercially important shellfish with high global demand appears to be the rich source of dietary fatty acids. Its increased production through aquaculture and highly perishable nature would necessitate improved techniques for their proper preservation. Optimized irradiation has been identified as an effective method to facilitate safety and extended shelf life for a broad range of the perishable food items including finfishes and shellfishes. The present study analyzed the effects of dose-dependent gamma irradiation on the fatty acid profile of the muscle derived from the candidate species (S. serrata) at both qualitative and quantitative levels. Wild grown, average sized, intermolt male S. Serrata were gamma irradiated (^60C, 3.8kGy/ hour) at the dosage of 0.5kGy, 1.0kGy and 2.0kGy using gamma chamber. Total lipid extracted by Folch method, after methylation, were analyzed for the presence fatty acids adopting Gas Chromatograph equipped with flame ionization detector by comparing with the authentic FAME reference standards. The tissue from non-irradiated S. serrata showed the presence of 12 SFA, 6 MUFA, 8PUFA and 2 TF; PUFA includes medicinally important ω-3 FA such as C18:3, C20:5 and C22:6 and ω-6 FA such as γ- C18:3 and C20:2. Dose-dependent gamma irradiation reduced the number of detectable fatty acids (10, 8 and 8 SFA, 6, 6 and 5MUFA, 7, 7, and 6 PUFA and 1, 1, and 0 TF in 0.5kGy, 1.0kGy and 2kGy irradiated samples respectively). Major fatty acids detected in both irradiated and non-irradiated samples were as follows: SFA- C16:0, C18:0, C22:0 and C14:0; MUFA - C18:1 and C16:1and PUFA- C18:2, C20:5, C20:2 and C22:6. Irradiation doses ranging from 1-2kGy substantially reduced the ω-6 C18:3 and ω-3 C18:3. However, the omega fatty acids such as C20:5, C22:6 and C20:2 could survive even after 2kGy irradiation. Significantly, trans fat like C18:2T and C18:1T were completely disappeared upon 2kGy irradiation. From the overall observations made from the present study, it is suggested that irradiation dose up to 1kGy is optimum to maintain the fatty acid profile and eradicate the trans fat of the muscle derived from S. serrata. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fatty%20acid%20profile" title="fatty acid profile">fatty acid profile</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20preservation" title=" food preservation"> food preservation</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title=" gamma irradiation"> gamma irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=scylla%20serrata" title=" scylla serrata"> scylla serrata</a> </p> <a href="https://publications.waset.org/abstracts/22523/effect-of-dose-dependent-gamma-irradiation-on-the-fatty-acid-profile-of-mud-crab-scylla-serrata-a-gc-fid-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22523.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">276</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4157</span> Prediction of Ionizing Radiation Doses in Irradiated red Pepper (Capsicum annuum) and Mint (Mentha piperita) by Gel Electrophoresis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=%C5%9Eeyma%20%C3%96z%C3%A7irak%20Erg%C3%BCn">Şeyma Özçirak Ergün</a>, <a href="https://publications.waset.org/abstracts/search?q=Erg%C3%BCn%20%C5%9Eakalar"> Ergün Şakalar</a>, <a href="https://publications.waset.org/abstracts/search?q=Emrah%20Yalazi%CC%87"> Emrah Yalazi̇</a>, <a href="https://publications.waset.org/abstracts/search?q=Nebahat%20%C5%9Eahi%CC%87n"> Nebahat Şahi̇n</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food irradiation is a usage of exposing food to ionising radiation (IR) such as gamma rays. IR has been used to decrease the number of harmful microorganisms in the food such as spices. Excessive usage of IR can cause damage to both food and people who consuming food. And also it causes to damages on food DNA. Generally, IR detection techniques were utilized in literature for spices are Electron Spin Resonance (ESR), Thermos Luminescence (TL). Storage creates negative effect on IR detection method then analyses of samples have been performed without storage in general. In the experimental part, red pepper (Capsicum annuum) and mint (Mentha piperita) as spices were exposed to 0, 0.272, 0.497, 1.06, 3.64, 8.82, and 17.42 kGy ionize radiation. ESR was applied to samples irradiated. DNA isolation from irradiated samples was performed using GIDAGEN Multi Fast DNA isolation kit. The DNA concentration was measured using a microplate reader spectrophotometer (Infinite® 200 PRO-Life Science–Tecan). The concentration of each DNA was adjusted to 50 ng/µL. Genomic DNA was imaged by UV transilluminator (Gel Doc XR System, Bio-Rad) for the estimation of genomic DNA bp-fragment size after IR. Thus, agarose gel profiles of irradiated spices were obtained to determine the change of band profiles. Besides, samples were examined at three different time periods (0, 3, 6 months storage) to show the feasibility of developed method. Results of gel electrophoresis showed especially degradation of DNA of irradiated samples. In conclusion, this study with gel electrophoresis can be used as a basis for the identification of the dose of irradiation by looking at degradation profiles at specific amounts of irradiation. Agarose gel results of irradiated samples were confirmed with ESR analysis. This method can be applied widely to not only food products but also all biological materials containing DNA to predict radiation-induced damage of DNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DNA" title="DNA">DNA</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoresis" title=" electrophoresis"> electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=gel%20electrophoresis" title=" gel electrophoresis"> gel electrophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=ionizeradiation" title=" ionizeradiation"> ionizeradiation</a> </p> <a href="https://publications.waset.org/abstracts/53071/prediction-of-ionizing-radiation-doses-in-irradiated-red-pepper-capsicum-annuum-and-mint-mentha-piperita-by-gel-electrophoresis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">259</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4156</span> Market Acceptance of Irradiated Food in the City of Piracicaba, Brazil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20de%20Cillos%20Silva">Vanessa de Cillos Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabr%C3%ADcio%20Jos%C3%A9%20Piacente"> Fabrício José Piacente</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%B4nia%20Maria%20De%20Stefano%20Piedade"> Sônia Maria De Stefano Piedade</a>, <a href="https://publications.waset.org/abstracts/search?q=Valter%20Arthur"> Valter Arthur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing concern in relation to safety and hygiene of food consumption makes it so that food conservation is studied. Food radiation is a technique used for conservation, but many consumers associate this technique with dangers such as environmental contamination and development of diseases. This research had the objective of evaluating the acceptance of radiated products by the consumer market in the city of Piracicaba/SP-Brasil. The methodology adopted was the application of a questionnaire in the city’s supermarkets. After the application, the data was tabulated and analyzed. It was observed that the majority of interviewees would not eat irradiated food. The unfamiliarity and questions about the safety of irradiated food were the main causes of your rejection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation" title="irradiation">irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=storage" title=" storage"> storage</a>, <a href="https://publications.waset.org/abstracts/search?q=market%20acceptance" title=" market acceptance"> market acceptance</a> </p> <a href="https://publications.waset.org/abstracts/30442/market-acceptance-of-irradiated-food-in-the-city-of-piracicaba-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30442.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4155</span> Growth of Droplet in Radiation-Induced Plasma of Own Vapour</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Selyshchev">P. Selyshchev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The theoretical approach is developed to describe the change of drops in the atmosphere of own steam and buffer gas under irradiation. It is shown that the irradiation influences on size of stable droplet and on the conditions under which the droplet exists. Under irradiation the change of drop becomes more complex: the not monotone and periodical change of size of drop becomes possible. All possible solutions are represented by means of phase portrait. It is found all qualitatively different phase portraits as function of critical parameters: rate generation of clusters and substance density. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation" title="irradiation">irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=steam" title=" steam"> steam</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma" title=" plasma"> plasma</a>, <a href="https://publications.waset.org/abstracts/search?q=cluster%20formation" title=" cluster formation"> cluster formation</a>, <a href="https://publications.waset.org/abstracts/search?q=liquid%20droplets" title=" liquid droplets"> liquid droplets</a>, <a href="https://publications.waset.org/abstracts/search?q=evolution" title=" evolution"> evolution</a> </p> <a href="https://publications.waset.org/abstracts/16380/growth-of-droplet-in-radiation-induced-plasma-of-own-vapour" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16380.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">441</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4154</span> Comparison Between the Radiation Resistance of n/p and p/n InP Solar Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mazouz%20Halima">Mazouz Halima</a>, <a href="https://publications.waset.org/abstracts/search?q=Belghachi%20Abdrahmane"> Belghachi Abdrahmane</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effects of electron irradiation-induced deep level defects have been studied on both n/p and p/n indium phosphide solar cells with very thin emitters. The simulation results show that n/p structure offers a somewhat better short circuit current but the p/n structure offers improved circuit voltage, not only before electron irradiation, but also after 1MeV electron irradiation with 5.1015 fluence. The simulation also shows that n/p solar cell structure is more resistant than that of p/n structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=InP%20solar%20cell" title="InP solar cell">InP solar cell</a>, <a href="https://publications.waset.org/abstracts/search?q=p%2Fn%20and%20n%2Fp%20structure" title=" p/n and n/p structure"> p/n and n/p structure</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20irradiation" title=" electron irradiation"> electron irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=output%20parameters" title=" output parameters"> output parameters</a> </p> <a href="https://publications.waset.org/abstracts/7526/comparison-between-the-radiation-resistance-of-np-and-pn-inp-solar-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">550</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4153</span> Effect of Irradiation on Nano-Indentation Properties and Microstructure of X-750 Ni-Based Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooyan%20Changizian">Pooyan Changizian</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwen%20Yao"> Zhongwen Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of current study is to make an excellent correlation between mechanical properties and microstructures of ion irradiated X-750 Ni-based superalloy. Towards this end, two different irradiation procedures were carried out, including single Ni ion irradiation and pre-helium implantation with subsequent Ni ion irradiation. Nano-indentation technique was employed to evaluate the mechanical properties of irradiated material. The nano-hardness measurements depict highly different results for two irradiation procedures. Single ion irradiated X-750 shows softening behavior; however, pre-helium implanted specimens present significant hardening compared to the un-irradiated material. Cross-section TEM examination demonstrates that softening is attributed to the γ׳-precipitate instability (disordering/dissolution) which overcomes the hardening effect of irradiation-induced defects. In contrast, the presence of cavities or helium bubbles is probably the main cause for irradiation-induced hardening of helium implanted samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20X-750" title="Inconel X-750">Inconel X-750</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=helium%20bubbles" title=" helium bubbles"> helium bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a> </p> <a href="https://publications.waset.org/abstracts/59555/effect-of-irradiation-on-nano-indentation-properties-and-microstructure-of-x-750-ni-based-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4152</span> Theoretical Research for Influence of Irradiation on Transient Creep of Metals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavlo%20Selyshchev">Pavlo Selyshchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetiana%20Didenko"> Tetiana Didenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Via formalism of the Complex systems and in the framework of the climb - glide model a theoretical approach to describe the influence of irradiation on transient creep of metals. We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion that consists in climb and glide. It is shown that there are qualitatively different regimes of a creep as a result of irradiation. Simulation and analysis of this phenomenon are performed. The time dependence of creep rate of metal under an irradiation is theoretically obtained. The conditions of zero minimums of the creep-rate existence as well as the times of their appearance are determined. The changing of the position of creep-rate dips in the conditions of the temperature exposure change is investigated. The obtained results are compared with the experimentally observed dependence of the creep rate on time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=climb%20and%20glide%20of%20dislocations" title=" climb and glide of dislocations"> climb and glide of dislocations</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20feed-back" title=" non-linear feed-back"> non-linear feed-back</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20defects" title=" point defects"> point defects</a> </p> <a href="https://publications.waset.org/abstracts/55261/theoretical-research-for-influence-of-irradiation-on-transient-creep-of-metals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4151</span> Effect of Gamma Irradiation on Structural and Optical Properties of ZnO/Mesoporous Silica Nanocomposite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Sowri%20Babu">K. Sowri Babu</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Srinath"> P. Srinath</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Rajeswara%20Rao"> N. Rajeswara Rao</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Venugopal%20Reddy"> K. Venugopal Reddy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of gamma ray irradiation on morphology and optical properties of ZnO/Mesoporous silica (MPS) nanocomposite was studied. The ZnO/MPS nanocomposite was irradiated with gamma rays of doses 30, 60, and 90 kGy and dose-rate of irradiation was 0.15 kGy/hour. Irradiated samples are characterized with FE-SEM, FT-IR, UV-vis, and Photoluminescence (PL) spectrometers. SEM pictures showed that morphology changed from spherical to flake like morphology. UV-vis analysis showed that the band gap increased with increase of gamma ray irradiation dose. This enhancement of the band gap is assigned to the depletion of oxygen vacancies with irradiation. The intensity of PL peak decreased gradually with increase of gamma ray irradiation dose. The decrease in PL intensity is attributed to the decrease of oxygen vacancies at the interface due to poor interface and improper passivation between ZnO/MPS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanoparticles" title="ZnO nanoparticles">ZnO nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=mesoporous%20silica" title=" mesoporous silica"> mesoporous silica</a>, <a href="https://publications.waset.org/abstracts/search?q=photoluminescence" title=" photoluminescence"> photoluminescence</a> </p> <a href="https://publications.waset.org/abstracts/72909/effect-of-gamma-irradiation-on-structural-and-optical-properties-of-znomesoporous-silica-nanocomposite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">234</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4150</span> Characterization of InP Semiconductor Quantum Dot Laser Diode after Am-Be Neutron Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulmalek%20Marwan%20Rajkhan">Abdulmalek Marwan Rajkhan</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Al%20Ghamdi"> M. S. Al Ghamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Damoum"> Mohammed Damoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Essam%20Banoqitah"> Essam Banoqitah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is about the Am-Be neutron source irradiation of the InP Quantum Dot Laser diode. A QD LD was irradiated for 24 hours and 48 hours. The laser underwent IV characterization experiments before and after the first and second irradiations. A computer simulation using GAMOS helped in analyzing the given results from IV curves. The results showed an improvement in the QD LD series resistance, current density, and overall ideality factor at all measured temperatures. This is explained by the activation of the QD LD Indium composition to Strontium, ionization of the compound QD LD materials, and the energy deposited to the QD LD. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20dot%20laser%20diode%20irradiation" title="quantum dot laser diode irradiation">quantum dot laser diode irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=effect%20of%20radiation%20on%20QD%20LD" title=" effect of radiation on QD LD"> effect of radiation on QD LD</a>, <a href="https://publications.waset.org/abstracts/search?q=Am-Be%20irradiation%20effect%20on%20SC%20QD%20LD" title=" Am-Be irradiation effect on SC QD LD"> Am-Be irradiation effect on SC QD LD</a> </p> <a href="https://publications.waset.org/abstracts/178642/characterization-of-inp-semiconductor-quantum-dot-laser-diode-after-am-be-neutron-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/178642.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">61</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4149</span> Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Kayad%20Abdourazak">Ahmed Kayad Abdourazak</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderafi%20Souad"> Abderafi Souad</a>, <a href="https://publications.waset.org/abstracts/search?q=Zejli%20Driss"> Zejli Driss</a>, <a href="https://publications.waset.org/abstracts/search?q=Idriss%20Abdoulkader%20Ibrahim"> Idriss Abdoulkader Ibrahim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20irradiation" title=" solar irradiation"> solar irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=concentrated%20solar%20power" title=" concentrated solar power"> concentrated solar power</a>, <a href="https://publications.waset.org/abstracts/search?q=Lavenberg-Marquardt" title=" Lavenberg-Marquardt"> Lavenberg-Marquardt</a> </p> <a href="https://publications.waset.org/abstracts/63486/forecasting-direct-normal-irradiation-at-djibouti-using-artificial-neural-network" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63486.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">354</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4148</span> Gamma Irradiation Effects on the Magnetic Properties of Hard Ferrites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Abbas%20Pour%20Khotbehsara">F. Abbas Pour Khotbehsara</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Salehpour"> B. Salehpour</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kianvash"> A. Kianvash</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many industrial materials like magnets need to be tested for the radiation environment expected at linear colliders (LC) where the accelerator and detectors will be subjected to large influences of beta, neutron and gamma’s over their life Gamma irradiation of the permanent sample magnets using a 60Co source was investigated up to an absorbed dose of 700Mrad shows a negligible effect on some magnetic properties of Nd-Fe-B. In this work, it has been tried to investigate the change of some important properties of Barium hexa ferrite. Results showed little decreases of magnetic properties at doses rang of 0.5 to 2.5 Mrad. But at the gamma irradiation dose up to 10 Mrad it is showed a few increase of properties. Also study of gamma irradiation of Nd-Fe-B showed considerably increase of magnetic properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gamma%20ray%20irradiation" title="gamma ray irradiation">gamma ray irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hard%20ferrite" title=" hard ferrite"> hard ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20coefficient" title=" magnetic coefficient"> magnetic coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20material" title=" magnetic material"> magnetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20dose" title=" radiation dose"> radiation dose</a> </p> <a href="https://publications.waset.org/abstracts/12934/gamma-irradiation-effects-on-the-magnetic-properties-of-hard-ferrites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4147</span> Application of UV-C Irradiation on Quality and Textural Properties of Button Mushrooms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ghasemi-Varnamkhasti">M. Ghasemi-Varnamkhasti</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Yoosefian.%20A.%20Mohammad-%20Razdari"> S. H. Yoosefian. A. Mohammad- Razdari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of 1.0 kJ/m<sup>2</sup> Ultraviolet-C (UV-C) light on pH, weight loss, color, and firmness of button mushroom (<em>Agaricus bisporus</em>) tissues during 21-days storage at 4 ºC was studied. UV-C irradiation enhanced pH, weight, color parameters, and firmness of mushroom during storage compared to control treatment. However, application of 1.0 kJ/m<sup>2</sup> UV-C treatment could effectively induce the increase of weight loss, firmness, and pH to 14.53%, 49.82%, and 10.39%, respectively. These results suggest that the application of UV-C irradiation could be an effective method to maintain the postharvest quality of mushrooms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mushroom" title="mushroom">mushroom</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylene%20film" title=" polyethylene film"> polyethylene film</a>, <a href="https://publications.waset.org/abstracts/search?q=quality" title=" quality"> quality</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-c%20irradiation" title=" UV-c irradiation"> UV-c irradiation</a> </p> <a href="https://publications.waset.org/abstracts/54384/application-of-uv-c-irradiation-on-quality-and-textural-properties-of-button-mushrooms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54384.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4146</span> Dynamic Degradation Mechanism of SiC VDMOS under Proton Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Junhong%20Feng">Junhong Feng</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenyu%20Lu"> Wenyu Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinhong%20Cheng"> Xinhong Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Zheng"> Li Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuehui%20Yu"> Yuehui Yu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effects of proton irradiation on the properties of gate oxide were evaluated by monitoring the static parameters (such as threshold voltage and on-resistance) and dynamic parameters (Miller plateau time) of 1700V SiC VDMOS before and after proton irradiation. The incident proton energy was 3MeV, and the doses were 5 × 10¹² P / cm², 1 × 10¹³ P / cm², respectively. The results show that the threshold voltage of MOS exhibits negative drift under proton irradiation, and the near-interface traps in the gate oxide layer are occupied by holes generated by the ionization effect of irradiation, thus forming more positive charges. The basis for selecting TMiller is that the change time of Vgs is the time when Vds just shows an upward trend until it rises to a stable value. The degradation of the turn-off time of the Miller platform verifies that the capacitance Cgd becomes larger, reflecting that the gate oxide layer is introduced into the trap by the displacement effect caused by proton irradiation, and the interface state deteriorates. As a more sensitive area in the irradiation process, the gate oxide layer will be optimized for its parameters (such as thickness, type, etc.) in subsequent studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SiC%20VDMOS" title="SiC VDMOS">SiC VDMOS</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20radiation" title=" proton radiation"> proton radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Miller%20time" title=" Miller time"> Miller time</a>, <a href="https://publications.waset.org/abstracts/search?q=gate%20oxide" title=" gate oxide"> gate oxide</a> </p> <a href="https://publications.waset.org/abstracts/168374/dynamic-degradation-mechanism-of-sic-vdmos-under-proton-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168374.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4145</span> Effects of Hydrogen-Ion Irritation on the Microstructure and Hardness of Fe-0.2wt.%V Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jing%20Zhang">Jing Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongqin%20Chang"> Yongqin Chang</a>, <a href="https://publications.waset.org/abstracts/search?q=Yongwei%20Wang"> Yongwei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaolin%20Li"> Xiaolin Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaoning%20Jiang"> Shaoning Jiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Farong%20Wan"> Farong Wan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yi%20Long"> Yi Long</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microstructural and hardening changes of Fe-0.2wt.%V alloy and pure Fe irradiated with 100 keV hydrogen ions at room temperature were investigated. It was found that dislocation density varies dramatically after irradiation, ranging from dislocation free to dense areas with tangled and complex dislocation configuration. As the irradiated Fe-0.2wt.%V samples were annealed at 773 K, the irradiation-induced dislocation loops disappear, while many small precipitates with enriched C distribute in the matrix. Some large precipitates with enriched V were also observed. The hardness of Fe-0.2wt.%V alloy and pure Fe increases after irradiation, which ascribes to the formation of dislocation loops in the irradiated specimens. Compared with pure Fe, the size of the irradiation-introduced dislocation loops in Fe-0.2wt.%V alloy decreases and the density increases, the change of the hardness also decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation" title="irradiation">irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe-0.2wt.%25V%20alloy" title=" Fe-0.2wt.%V alloy"> Fe-0.2wt.%V alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructures" title=" microstructures"> microstructures</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/30363/effects-of-hydrogen-ion-irritation-on-the-microstructure-and-hardness-of-fe-02wtv-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30363.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4144</span> Study of Laser Induced Damage Threshold in HfO₂/SiO₂ Multilayer Films after β-Ray Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meihua%20Fang">Meihua Fang</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Fei"> Tao Fei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post-processing can effectively improve the resistance to laser damage in multilayer films used in a high power laser system. In this work, HfO₂/SiO₂ multilayer films are prepared by e-beam evaporation and then β-ray irradiation is employed as the post-processing method. The particle irradiation affects the laser induced damage threshold (LIDT), which includes defects, surface roughness, packing density, and residual stress. The residual stress that is relaxed during irradiation changes from compressive stress into tensile stress. Our results indicate that appropriate tensile stress can improve LIDT remarkably. In view of the fact that LIDT rises from 8 J/cm² to 12 J/cm², i.e., 50% increase, after the film has been irradiated by 2.2×10¹³/cm² β-ray, the particle irradiation can be used as a controllable and desirable post-processing method to improve the resistance to laser induced damage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-ray%20irradiation" title="β-ray irradiation">β-ray irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=multilayer%20film" title=" multilayer film"> multilayer film</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=laser-induced%20damage%20threshold" title=" laser-induced damage threshold"> laser-induced damage threshold</a> </p> <a href="https://publications.waset.org/abstracts/112875/study-of-laser-induced-damage-threshold-in-hfo2sio2-multilayer-films-after-v-ray-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/112875.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4143</span> Theoretical Approach to Kinetics of Transient Plasticity of Metals under Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pavlo%20Selyshchev">Pavlo Selyshchev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tetiana%20Didenko"> Tetiana Didenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Within the framework of the obstacle radiation hardening and the dislocation climb-glide model a theoretical approach is developed to describe peculiarities of transient plasticity of metal under irradiation. It is considered nonlinear dynamics of accumulation of point defects (vacancies and interstitial atoms). We consider metal under such stress and conditions of irradiation at which creep is determined by dislocation motion: dislocations climb obstacles and glide between obstacles. It is shown that the rivalry between vacancy and interstitial fluxes to dislocation leads to fractures of plasticity time dependence. Simulation and analysis of this phenomenon are performed. Qualitatively different regimes of transient plasticity under irradiation are found. The fracture time is obtained. The theoretical results are compared with the experimental ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climb%20and%20glide%20of%20dislocations" title="climb and glide of dislocations">climb and glide of dislocations</a>, <a href="https://publications.waset.org/abstracts/search?q=fractures%20of%20transient%20plasticity" title=" fractures of transient plasticity"> fractures of transient plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=non-linear%20feed-back" title=" non-linear feed-back"> non-linear feed-back</a>, <a href="https://publications.waset.org/abstracts/search?q=point%20defects" title=" point defects"> point defects</a> </p> <a href="https://publications.waset.org/abstracts/55262/theoretical-approach-to-kinetics-of-transient-plasticity-of-metals-under-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55262.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">202</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4142</span> Effect of Gamma Irradiation on the Crystalline Structure of Poly(Vinylidene Fluoride)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Souza%20M.%20Batista">Adriana Souza M. Batista</a>, <a href="https://publications.waset.org/abstracts/search?q=Cl%C3%A1ubia%20Pereira"> Cláubia Pereira</a>, <a href="https://publications.waset.org/abstracts/search?q=Luiz%20O.%20Faria"> Luiz O. Faria</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The irradiation of polymeric materials has received much attention because it can produce diverse changes in chemical structure and physical properties. Thus, studying the chemical and structural changes of polymers is important in practice to achieve optimal conditions for the modification of polymers. The effect of gamma irradiation on the crystalline structure of poly(vinylidene fluoride) (PVDF) has been investigated using differential scanning calorimetry (DSC) and X-ray diffraction techniques (XRD). Gamma irradiation was carried out in atmosphere air with doses between 100 kGy at 3,000 kGy with a Co-60 source. In the melting thermogram of the samples irradiated can be seen a bimodal melting endotherm is detected with two melting temperature. The lower melting temperature is attributed to melting of crystals originally present and the higher melting peak due to melting of crystals reorganized upon heat treatment. These results are consistent with those obtained by XRD technique showing increasing crystallinity with increasing irradiation dose, although the melting latent heat is decreasing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=differential%20scanning%20calorimetry" title="differential scanning calorimetry">differential scanning calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title=" gamma irradiation"> gamma irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction%20technique" title=" X-ray diffraction technique"> X-ray diffraction technique</a> </p> <a href="https://publications.waset.org/abstracts/36098/effect-of-gamma-irradiation-on-the-crystalline-structure-of-polyvinylidene-fluoride" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">401</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4141</span> Radiation Effects and Defects in InAs, InP Compounds and Their Solid Solutions InPxAs1-x</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Kekelidze">N. Kekelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Kvirkvelia"> B. Kvirkvelia</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Khutsishvili"> E. Khutsishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Qamushadze"> T. Qamushadze</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Kekelidze"> D. Kekelidze</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Kobaidze"> R. Kobaidze</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Chubinishvili"> Z. Chubinishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Qobulashvili"> N. Qobulashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Kekelidze"> G. Kekelidze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the basis of InAs, InP and their InP<sub>x</sub>As<sub>1-x</sub> solid solutions, the technologies were developed and materials were created where the electron concentration and optical and thermoelectric properties do not change under the irradiation with <em>Ф </em>= 2∙10<sup>18 </sup>n/cm<sup>2</sup> fluences of fast neutrons high-energy electrons (50 MeV, <em>Ф </em>= 6·10<sup>17 </sup>e/cm<sup>2</sup>) and 3 MeV electrons with fluence <em>Ф </em>= 3∙10<sup>18 </sup>e/cm<sup>2</sup>. The problem of obtaining such material has been solved, in which under hard irradiation the mobility of the electrons does not decrease, but increases. This material is characterized by high thermal stability up to T = 700 °C. The complex process of defects formation has been analyzed and shown that, despite of hard irradiation, the essential properties of investigated materials are mainly determined by point type defects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=InAs" title="InAs">InAs</a>, <a href="https://publications.waset.org/abstracts/search?q=InP" title=" InP"> InP</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20solutions" title=" solid solutions"> solid solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiation" title=" irradiation"> irradiation</a> </p> <a href="https://publications.waset.org/abstracts/102935/radiation-effects-and-defects-in-inas-inp-compounds-and-their-solid-solutions-inpxas1-x" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">179</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4140</span> Radiation Stability of Pigment ZnO Modified by Nanopowders</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chundong%20Li">Chundong Li</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20V.%20Neshchimenko"> V. V. Neshchimenko</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Mikhailov"> M. M. Mikhailov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of the modification of ZnO powders by ZrO2, Al2O3, TiO2, SiO2, CeO2 and Y2O3 nanoparticles with a concentration of 1-30 wt % is investigated by diffuse reflectance spectra within the wavelength range 200 to 2500 nm before and after 100 keV proton and electron irradiation. It has been established that the introduction of nanoparticles ZrO2, Al2O3 enhances the optical stability of the pigments under proton irradiation, but reduces it under electron irradiation. Modifying with TiO2, SiO2, CeO2, Y2O3 nanopowders leads to decrease radiation stability in both types of irradiation. Samples modified by 5 wt. % of ZrO2 nanoparticles have the highest stability of optical properties after proton exposure. The degradation of optical properties under electron irradiation is not high for this concentration of nanoparticles. A decrease in the absorption of pigments modified with nanoparticles proton exposure is determined by a decrease in the intensity of bands located in the UV and visible regions. After electron exposure the absorption bands have in the whole spectrum range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=irradiation" title="irradiation">irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopowders" title=" nanopowders"> nanopowders</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation%20stability" title=" radiation stability"> radiation stability</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title=" zinc oxide"> zinc oxide</a> </p> <a href="https://publications.waset.org/abstracts/4949/radiation-stability-of-pigment-zno-modified-by-nanopowders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4949.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">425</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4139</span> Effect of He-Ne Laser Therapy on the Testis and Serum Testosterone Level in Adult Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadeem%20H.%20Meikha">Nadeem H. Meikha </a>, <a href="https://publications.waset.org/abstracts/search?q=Nazad%20H.%20Qader"> Nazad H. Qader</a>, <a href="https://publications.waset.org/abstracts/search?q=Basheer%20M.%20Hasafa"> Basheer M. Hasafa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The trial was conducted to examine the effect of He-Ne laser therapy on the testis and serum testosterone level in adult rats. Thirty five albino Western adult male rats aged 3-4 months and weighing approximately 250-300 g were used and divided into three treatments. Testicular tissue of rats in the first and second treatments were exposed once daily for three successively days to a dose of irradiation 1.02 j/cm2 (40 second), and to 2.03 j/cm2 (80 second) respectively, while the third group left without any treatments (control). The results showed that the process of irradiation adversely affected on the level of serum testosterone concentration of the irradiated rats in the first and second treatment comparing to the normal level in the control group. While the histological examination showed that decrease in number of germ cells with 40 second of irradiation at day three, with 80 second of irradiation the decreased started at day two and three. The spermatids number decreased in rate low, medium, high respectively for three days of 40 second of irradiation, while the spermatids number were adversely affected by dropping in a rate of medium, large and very large for three days of 80 second of irradiation, respectively. In conclusion our study revealed that any reduction in sertoli cells causes adverse affect on both spermatids and germinal cells which increase with the increasing of duration and repetition of irradiation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=He-Ne%20laser" title="He-Ne laser">He-Ne laser</a>, <a href="https://publications.waset.org/abstracts/search?q=rats" title=" rats"> rats</a>, <a href="https://publications.waset.org/abstracts/search?q=testosterone" title=" testosterone"> testosterone</a>, <a href="https://publications.waset.org/abstracts/search?q=spermatids" title=" spermatids "> spermatids </a> </p> <a href="https://publications.waset.org/abstracts/14431/effect-of-he-ne-laser-therapy-on-the-testis-and-serum-testosterone-level-in-adult-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4138</span> γ-Irradiation of Oat β- Glucan: Effect on Antioxidant and Antiproliferative Properties </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asima%20Shah">Asima Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Masoodi"> F. A. Masoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Gani"> Adil Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Ahmad%20Ashwar"> Bilal Ahmad Ashwar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present study was designed to evaluate the effect of γ-rays on the antioxidant and antiproliferative potential of β-glucan isolated from oats. The β-glucan was irradiated with 0, 2, 6, and 10 kGy by gamma ray. The samples were characterized by FT-IR, GPC, and quantitative estimation by Megazyme β-glucan assay kit. The average molecular weight of non-irradiated β-glucan was 199 kDa that decreased to 70 kDa at 10 kGy. Both FT-IR spectrum and chemical analysis revealed that the extracted β-glucan was pure having minor impurities. Antioxidant activity was evaluated by DPPH, lipid peroxidation, reducing power, metal chelating ability and oxidative DNA damage assays. Results revealed that the antioxidant activity of β-glucan increased with the increase in irradiation dose. Irradiated β-glucan also exhibited dose dependent cancer cell growth inhibition with irradiation doses. The study revealed that low molecular weight β-glucan with enhanced antioxidant and antiproliferative activities can be produced by a simple irradiation method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=%CE%B3-irradiation" title="γ-irradiation">γ-irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title=" antioxidant activity"> antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=antiproliferative%20activity" title=" antiproliferative activity"> antiproliferative activity</a>, <a href="https://publications.waset.org/abstracts/search?q=%CE%B2-glucan" title=" β-glucan"> β-glucan</a>, <a href="https://publications.waset.org/abstracts/search?q=oats" title=" oats"> oats</a> </p> <a href="https://publications.waset.org/abstracts/17343/gh-irradiation-of-oat-v-glucan-effect-on-antioxidant-and-antiproliferative-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17343.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">457</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4137</span> Effect of Gamma Irradiation on the Physicochemical Properties of Starches Extracted from Newly Released Rice Varieties Grown in North Temperate Regions of India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bilal%20Ahmad%20Ashwar">Bilal Ahmad Ashwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Asima%20Shah"> Asima Shah</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20A.%20Rather"> S. A. Rather</a>, <a href="https://publications.waset.org/abstracts/search?q=Asir%20Gani"> Asir Gani</a>, <a href="https://publications.waset.org/abstracts/search?q=S.M.%20Wani"> S.M. Wani</a>, <a href="https://publications.waset.org/abstracts/search?q=I.D.%20Wani"> I.D. Wani</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20A.%20Masoodi"> F. A. Masoodi</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Gani"> Adil Gani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Starches isolated from two newly released rice varieties (K-322 & K-448) were subject to irradiation at 0, 5, 10, and 20 kGy doses. Comparative study between native (not irradiated) and irradiated starch samples was carried out to evaluate the changes in physicochemical, morphological and pasting properties due to gamma irradiation. Significant decrease was found in apparent amylose content, pH, swelling power, syneresis, and pasting properties, whereas carboxyl content, water absorption capacity, transmittance and solubility were found to increase with the increase in irradiation dose. Granule morphology of native and irradiated starches under scanning electron microscope revealed that granules were polygonal or irregular in shape. The starch granules were somewhat deformed by gamma irradiation. X-ray diffraction pattern showed A type of pattern in native as well as irradiated starches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rice%20starch" title="rice starch">rice starch</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title=" gamma irradiation"> gamma irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20properties" title=" morphological properties"> morphological properties</a>, <a href="https://publications.waset.org/abstracts/search?q=pasting%20properties" title=" pasting properties"> pasting properties</a>, <a href="https://publications.waset.org/abstracts/search?q=physicochemical%20properties." title=" physicochemical properties."> physicochemical properties.</a> </p> <a href="https://publications.waset.org/abstracts/2683/effect-of-gamma-irradiation-on-the-physicochemical-properties-of-starches-extracted-from-newly-released-rice-varieties-grown-in-north-temperate-regions-of-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">474</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4136</span> Modification of Electrical and Switching Characteristics of a Non Punch-Through Insulated Gate Bipolar Transistor by Gamma Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hani%20Baek">Hani Baek</a>, <a href="https://publications.waset.org/abstracts/search?q=Gwang%20Min%20Sun"> Gwang Min Sun</a>, <a href="https://publications.waset.org/abstracts/search?q=Chansun%20Shin"> Chansun Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung%20Ho%20Ahn"> Sung Ho Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fast neutron irradiation using nuclear reactors is an effective method to improve switching loss and short circuit durability of power semiconductor (insulated gate bipolar transistors (IGBT) and insulated gate transistors (IGT), etc.). However, not only fast neutrons but also thermal neutrons, epithermal neutrons and gamma exist in the nuclear reactor. And the electrical properties of the IGBT may be deteriorated by the irradiation of gamma. Gamma irradiation damages are known to be caused by Total Ionizing Dose (TID) effect and Single Event Effect (SEE), Displacement Damage. Especially, the TID effect deteriorated the electrical properties such as leakage current and threshold voltage of a power semiconductor. This work can confirm the effect of the gamma irradiation on the electrical properties of 600 V NPT-IGBT. Irradiation of gamma forms lattice defects in the gate oxide and Si-SiO<sub>2</sub> interface of the IGBT. It was confirmed that this lattice defect acts on the center of the trap and affects the threshold voltage, thereby negatively shifted the threshold voltage according to TID. In addition to the change in the carrier mobility, the conductivity modulation decreases in the n-drift region, indicating a negative influence that the forward voltage drop decreases. The turn-off delay time of the device before irradiation was 212 ns. Those of 2.5, 10, 30, 70 and 100 kRad(Si) were 225, 258, 311, 328, and 350 ns, respectively. The gamma irradiation increased the turn-off delay time of the IGBT by approximately 65%, and the switching characteristics deteriorated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NPT-IGBT" title="NPT-IGBT">NPT-IGBT</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20irradiation" title=" gamma irradiation"> gamma irradiation</a>, <a href="https://publications.waset.org/abstracts/search?q=switching" title=" switching"> switching</a>, <a href="https://publications.waset.org/abstracts/search?q=turn-off%20delay%20time" title=" turn-off delay time"> turn-off delay time</a>, <a href="https://publications.waset.org/abstracts/search?q=recombination" title=" recombination"> recombination</a>, <a href="https://publications.waset.org/abstracts/search?q=trap%20center" title=" trap center"> trap center</a> </p> <a href="https://publications.waset.org/abstracts/93282/modification-of-electrical-and-switching-characteristics-of-a-non-punch-through-insulated-gate-bipolar-transistor-by-gamma-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93282.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4135</span> Gamma Irradiation Effect on Structural and Optical Properties of Bismuth-Boro-Tellurite Glasses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azuraida%20Amat">Azuraida Amat</a>, <a href="https://publications.waset.org/abstracts/search?q=Halimah%20Mohamed%20Kamari"> Halimah Mohamed Kamari</a>, <a href="https://publications.waset.org/abstracts/search?q=Che%20Azurahanim%20Che%20Abdullah"> Che Azurahanim Che Abdullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Ishak%20Mansor"> Ishak Mansor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The changes of the optical and structural properties of Bismuth-Boro-Tellurite glasses pre and post gamma irradiation were studied. Six glass samples, with different compositions [(TeO2)0.7 (B2O3)0.3]1-x (Bi2O3)x prepared by melt quenching method were irradiated with 25kGy gamma radiation at room temperature. The Fourier Transform Infrared Spectroscopy (FTIR) was used to explore the structural bonding in the prepared glass samples due to exposure, while UV-VIS Spectrophotometer was used to evaluate the changes in the optical properties before and after irradiation. Gamma irradiation causes a profound changes in the peak intensity as shown by FTIR spectra which is due to the breaking of the network bonding. Before gamma irradiation, the optical band gap, Eg value decreased from 2.44 eV to 2.15 eV with the addition of Bismuth content. The value kept decreasing (from 2.18 eV to 2.00 eV) following exposure to gamma radiation due to the increase of non-bridging oxygen (NBO) and the increase of defects in the glass. In conclusion, the glass with high content of Bi2O3 (0.30Bi) give the smallest Eg and show less changes in FTIR spectra after gamma irradiation, which indicate that this glass is more resistant to gamma radiation compared to other glasses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boro-tellurite" title="boro-tellurite">boro-tellurite</a>, <a href="https://publications.waset.org/abstracts/search?q=bismuth" title=" bismuth"> bismuth</a>, <a href="https://publications.waset.org/abstracts/search?q=gamma%20radiation" title=" gamma radiation"> gamma radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/25457/gamma-irradiation-effect-on-structural-and-optical-properties-of-bismuth-boro-tellurite-glasses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4134</span> Power and Efficiency of Photovoltaic Module: Effect of Cell Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Nasrin">R. Nasrin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferdows"> M. Ferdows</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the renewable energy sources, photovoltaic (PV) is a high potential, effective, and sustainable system. Irradiation intensity from 200 W/m2 to 1000 W/m2 has been considered to observe the performance of PV module. Generally, this module converts only about 15% - 20% of incident irradiation into electrical energy and the rest part is converted into heat energy. Finite element method has been used to solve the problem numerically. Simulation has been performed by considering the ambient temperature 30°C. Higher irradiation increase solar cell temperature and electrical power. The electrical efficiency of PV module decreases with the variation of solar radiation. The efficiency of PV module can be increased if cell temperature is reduced. Thus the effect of irradiation is significant to enhance the efficiency of PV module if the solar cell temperature is kept at a certain level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20module" title="PV module">PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20temperature" title=" cell temperature"> cell temperature</a> </p> <a href="https://publications.waset.org/abstracts/82035/power-and-efficiency-of-photovoltaic-module-effect-of-cell-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=138">138</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=139">139</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=food%20irradiation&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>