CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 335 results for author: <span class="mathjax">Yuille, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&amp;query=Yuille%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Yuille, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Yuille%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Yuille, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.15966">arXiv:2411.15966</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.15966">pdf</a>, <a href="https://arxiv.org/format/2411.15966">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Gaussian Scenes: Pose-Free Sparse-View Scene Reconstruction using Depth-Enhanced Diffusion Priors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Paul%2C+S">Soumava Paul</a>, <a href="/search/cs?searchtype=author&amp;query=Kaushik%2C+P">Prakhar Kaushik</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.15966v1-abstract-short" style="display: inline;"> In this work, we introduce a generative approach for pose-free reconstruction of $360^{\circ}$ scenes from a limited number of uncalibrated 2D images. Pose-free scene reconstruction from incomplete, unposed observations is usually regularized with depth estimation or 3D foundational priors. While recent advances have enabled sparse-view reconstruction of unbounded scenes with known camera poses us&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15966v1-abstract-full').style.display = 'inline'; document.getElementById('2411.15966v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.15966v1-abstract-full" style="display: none;"> In this work, we introduce a generative approach for pose-free reconstruction of $360^{\circ}$ scenes from a limited number of uncalibrated 2D images. Pose-free scene reconstruction from incomplete, unposed observations is usually regularized with depth estimation or 3D foundational priors. While recent advances have enabled sparse-view reconstruction of unbounded scenes with known camera poses using diffusion priors, these methods rely on explicit camera embeddings for extrapolating unobserved regions. This reliance limits their application in pose-free settings, where view-specific data is only implicitly available. To address this, we propose an instruction-following RGBD diffusion model designed to inpaint missing details and remove artifacts in novel view renders and depth maps of a 3D scene. We also propose a novel confidence measure for Gaussian representations to allow for better detection of these artifacts. By progressively integrating these novel views in a Gaussian-SLAM-inspired process, we achieve a multi-view-consistent Gaussian representation. Evaluations on the MipNeRF360 dataset demonstrate that our method surpasses existing pose-free techniques and performs competitively with state-of-the-art posed reconstruction methods in complex $360^{\circ}$ scenes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.15966v1-abstract-full').style.display = 'none'; document.getElementById('2411.15966v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages, 6 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.14384">arXiv:2411.14384</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.14384">pdf</a>, <a href="https://arxiv.org/format/2411.14384">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Graphics">cs.GR</span> </div> </div> <p class="title is-5 mathjax"> Baking Gaussian Splatting into Diffusion Denoiser for Fast and Scalable Single-stage Image-to-3D Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cai%2C+Y">Yuanhao Cai</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+H">He Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+K">Kai Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Liang%2C+Y">Yixun Liang</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+M">Mengwei Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Luan%2C+F">Fujun Luan</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Q">Qing Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Kim%2C+S+Y">Soo Ye Kim</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+J">Jianming Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zhifei Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yuqian Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+Z">Zhe Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.14384v2-abstract-short" style="display: inline;"> Existing feed-forward image-to-3D methods mainly rely on 2D multi-view diffusion models that cannot guarantee 3D consistency. These methods easily collapse when changing the prompt view direction and mainly handle object-centric prompt images. In this paper, we propose a novel single-stage 3D diffusion model, DiffusionGS, for object and scene generation from a single view. DiffusionGS directly out&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14384v2-abstract-full').style.display = 'inline'; document.getElementById('2411.14384v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.14384v2-abstract-full" style="display: none;"> Existing feed-forward image-to-3D methods mainly rely on 2D multi-view diffusion models that cannot guarantee 3D consistency. These methods easily collapse when changing the prompt view direction and mainly handle object-centric prompt images. In this paper, we propose a novel single-stage 3D diffusion model, DiffusionGS, for object and scene generation from a single view. DiffusionGS directly outputs 3D Gaussian point clouds at each timestep to enforce view consistency and allow the model to generate robustly given prompt views of any directions, beyond object-centric inputs. Plus, to improve the capability and generalization ability of DiffusionGS, we scale up 3D training data by developing a scene-object mixed training strategy. Experiments show that our method enjoys better generation quality (2.20 dB higher in PSNR and 23.25 lower in FID) and over 5x faster speed (~6s on an A100 GPU) than SOTA methods. The user study and text-to-3D applications also reveals the practical values of our method. Our Project page at https://caiyuanhao1998.github.io/project/DiffusionGS/ shows the video and interactive generation results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.14384v2-abstract-full').style.display = 'none'; document.getElementById('2411.14384v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">A novel one-stage 3DGS-based diffusion generates objects and scenes from a single view in ~6 seconds</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.11844">arXiv:2411.11844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.11844">pdf</a>, <a href="https://arxiv.org/format/2411.11844">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Generative World Explorer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lu%2C+T">Taiming Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Shu%2C+T">Tianmin Shu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Khashabi%2C+D">Daniel Khashabi</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jieneng Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.11844v2-abstract-short" style="display: inline;"> Planning with partial observation is a central challenge in embodied AI. A majority of prior works have tackled this challenge by developing agents that physically explore their environment to update their beliefs about the world state. In contrast, humans can $\textit{imagine}$ unseen parts of the world through a mental exploration and $\textit{revise}$ their beliefs with imagined observations. S&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11844v2-abstract-full').style.display = 'inline'; document.getElementById('2411.11844v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.11844v2-abstract-full" style="display: none;"> Planning with partial observation is a central challenge in embodied AI. A majority of prior works have tackled this challenge by developing agents that physically explore their environment to update their beliefs about the world state. In contrast, humans can $\textit{imagine}$ unseen parts of the world through a mental exploration and $\textit{revise}$ their beliefs with imagined observations. Such updated beliefs can allow them to make more informed decisions, without necessitating the physical exploration of the world at all times. To achieve this human-like ability, we introduce the $\textit{Generative World Explorer (Genex)}$, an egocentric world exploration framework that allows an agent to mentally explore a large-scale 3D world (e.g., urban scenes) and acquire imagined observations to update its belief. This updated belief will then help the agent to make a more informed decision at the current step. To train $\textit{Genex}$, we create a synthetic urban scene dataset, Genex-DB. Our experimental results demonstrate that (1) $\textit{Genex}$ can generate high-quality and consistent observations during long-horizon exploration of a large virtual physical world and (2) the beliefs updated with the generated observations can inform an existing decision-making model (e.g., an LLM agent) to make better plans. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.11844v2-abstract-full').style.display = 'none'; document.getElementById('2411.11844v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Website: generative-world-explorer.github.io</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10433">arXiv:2411.10433</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.10433">pdf</a>, <a href="https://arxiv.org/format/2411.10433">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> M-VAR: Decoupled Scale-wise Autoregressive Modeling for High-Quality Image Generation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ren%2C+S">Sucheng Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Y">Yaodong Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Ruiz%2C+N">Nataniel Ruiz</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+C">Cihang Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10433v1-abstract-short" style="display: inline;"> There exists recent work in computer vision, named VAR, that proposes a new autoregressive paradigm for image generation. Diverging from the vanilla next-token prediction, VAR structurally reformulates the image generation into a coarse to fine next-scale prediction. In this paper, we show that this scale-wise autoregressive framework can be effectively decoupled into \textit{intra-scale modeling}&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10433v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10433v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10433v1-abstract-full" style="display: none;"> There exists recent work in computer vision, named VAR, that proposes a new autoregressive paradigm for image generation. Diverging from the vanilla next-token prediction, VAR structurally reformulates the image generation into a coarse to fine next-scale prediction. In this paper, we show that this scale-wise autoregressive framework can be effectively decoupled into \textit{intra-scale modeling}, which captures local spatial dependencies within each scale, and \textit{inter-scale modeling}, which models cross-scale relationships progressively from coarse-to-fine scales. This decoupling structure allows to rebuild VAR in a more computationally efficient manner. Specifically, for intra-scale modeling -- crucial for generating high-fidelity images -- we retain the original bidirectional self-attention design to ensure comprehensive modeling; for inter-scale modeling, which semantically connects different scales but is computationally intensive, we apply linear-complexity mechanisms like Mamba to substantially reduce computational overhead. We term this new framework M-VAR. Extensive experiments demonstrate that our method outperforms existing models in both image quality and generation speed. For example, our 1.5B model, with fewer parameters and faster inference speed, outperforms the largest VAR-d30-2B. Moreover, our largest model M-VAR-d32 impressively registers 1.78 FID on ImageNet 256$\times$256 and outperforms the prior-art autoregressive models LlamaGen/VAR by 0.4/0.19 and popular diffusion models LDM/DiT by 1.82/0.49, respectively. Code is avaiable at \url{https://github.com/OliverRensu/MVAR}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10433v1-abstract-full').style.display = 'none'; document.getElementById('2411.10433v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.03670">arXiv:2411.03670</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.03670">pdf</a>, <a href="https://arxiv.org/format/2411.03670">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Touchstone Benchmark: Are We on the Right Way for Evaluating AI Algorithms for Medical Segmentation? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bassi%2C+P+R+A+S">Pedro R. A. S. Bassi</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+W">Wenxuan Li</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+Y">Yucheng Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Isensee%2C+F">Fabian Isensee</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zifu Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jieneng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Chou%2C+Y">Yu-Cheng Chou</a>, <a href="/search/cs?searchtype=author&amp;query=Kirchhoff%2C+Y">Yannick Kirchhoff</a>, <a href="/search/cs?searchtype=author&amp;query=Rokuss%2C+M">Maximilian Rokuss</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+Z">Ziyan Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Ye%2C+J">Jin Ye</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+J">Junjun He</a>, <a href="/search/cs?searchtype=author&amp;query=Wald%2C+T">Tassilo Wald</a>, <a href="/search/cs?searchtype=author&amp;query=Ulrich%2C+C">Constantin Ulrich</a>, <a href="/search/cs?searchtype=author&amp;query=Baumgartner%2C+M">Michael Baumgartner</a>, <a href="/search/cs?searchtype=author&amp;query=Roy%2C+S">Saikat Roy</a>, <a href="/search/cs?searchtype=author&amp;query=Maier-Hein%2C+K+H">Klaus H. Maier-Hein</a>, <a href="/search/cs?searchtype=author&amp;query=Jaeger%2C+P">Paul Jaeger</a>, <a href="/search/cs?searchtype=author&amp;query=Ye%2C+Y">Yiwen Ye</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+Y">Yutong Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+J">Jianpeng Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Z">Ziyang Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Xia%2C+Y">Yong Xia</a>, <a href="/search/cs?searchtype=author&amp;query=Xing%2C+Z">Zhaohu Xing</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+L">Lei Zhu</a> , et al. (28 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.03670v1-abstract-short" style="display: inline;"> How can we test AI performance? This question seems trivial, but it isn&#39;t. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and short-term outcome pressure. As a consequence, good performance on standard benchmarks does not guarantee success in real-world scenarios. To address these problems, we present Touchstone&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03670v1-abstract-full').style.display = 'inline'; document.getElementById('2411.03670v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.03670v1-abstract-full" style="display: none;"> How can we test AI performance? This question seems trivial, but it isn&#39;t. Standard benchmarks often have problems such as in-distribution and small-size test sets, oversimplified metrics, unfair comparisons, and short-term outcome pressure. As a consequence, good performance on standard benchmarks does not guarantee success in real-world scenarios. To address these problems, we present Touchstone, a large-scale collaborative segmentation benchmark of 9 types of abdominal organs. This benchmark is based on 5,195 training CT scans from 76 hospitals around the world and 5,903 testing CT scans from 11 additional hospitals. This diverse test set enhances the statistical significance of benchmark results and rigorously evaluates AI algorithms across various out-of-distribution scenarios. We invited 14 inventors of 19 AI algorithms to train their algorithms, while our team, as a third party, independently evaluated these algorithms on three test sets. In addition, we also evaluated pre-existing AI frameworks--which, differing from algorithms, are more flexible and can support different algorithms--including MONAI from NVIDIA, nnU-Net from DKFZ, and numerous other open-source frameworks. We are committed to expanding this benchmark to encourage more innovation of AI algorithms for the medical domain. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.03670v1-abstract-full').style.display = 'none'; document.getElementById('2411.03670v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to NeurIPS-2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.02753">arXiv:2411.02753</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.02753">pdf</a>, <a href="https://arxiv.org/format/2411.02753">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Label Critic: Design Data Before Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bassi%2C+P+R+A+S">Pedro R. A. S. Bassi</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Q">Qilong Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+W">Wenxuan Li</a>, <a href="/search/cs?searchtype=author&amp;query=Decherchi%2C+S">Sergio Decherchi</a>, <a href="/search/cs?searchtype=author&amp;query=Cavalli%2C+A">Andrea Cavalli</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.02753v1-abstract-short" style="display: inline;"> As medical datasets rapidly expand, creating detailed annotations of different body structures becomes increasingly expensive and time-consuming. We consider that requesting radiologists to create detailed annotations is unnecessarily burdensome and that pre-existing AI models can largely automate this process. Following the spirit don&#39;t use a sledgehammer on a nut, we find that, rather than creat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02753v1-abstract-full').style.display = 'inline'; document.getElementById('2411.02753v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.02753v1-abstract-full" style="display: none;"> As medical datasets rapidly expand, creating detailed annotations of different body structures becomes increasingly expensive and time-consuming. We consider that requesting radiologists to create detailed annotations is unnecessarily burdensome and that pre-existing AI models can largely automate this process. Following the spirit don&#39;t use a sledgehammer on a nut, we find that, rather than creating annotations from scratch, radiologists only have to review and edit errors if the Best-AI Labels have mistakes. To obtain the Best-AI Labels among multiple AI Labels, we developed an automatic tool, called Label Critic, that can assess label quality through tireless pairwise comparisons. Extensive experiments demonstrate that, when incorporated with our developed Image-Prompt pairs, pre-existing Large Vision-Language Models (LVLM), trained on natural images and texts, achieve 96.5% accuracy when choosing the best label in a pair-wise comparison, without extra fine-tuning. By transforming the manual annotation task (30-60 min/scan) into an automatic comparison task (15 sec/scan), we effectively reduce the manual efforts required from radiologists by an order of magnitude. When the Best-AI Labels are sufficiently accurate (81% depending on body structures), they will be directly adopted as the gold-standard annotations for the dataset, with lower-quality AI Labels automatically discarded. Label Critic can also check the label quality of a single AI Label with 71.8% accuracy when no alternatives are available for comparison, prompting radiologists to review and edit if the estimated quality is low (19% depending on body structures). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.02753v1-abstract-full').style.display = 'none'; document.getElementById('2411.02753v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.07599">arXiv:2410.07599</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.07599">pdf</a>, <a href="https://arxiv.org/format/2410.07599">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Causal Image Modeling for Efficient Visual Understanding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+T">Timing Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Y">Yaodong Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+S">Sucheng Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+G">Guoyizhe Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+A">Angtian Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Shao%2C+W">Wei Shao</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yuyin Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+C">Cihang Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.07599v1-abstract-short" style="display: inline;"> In this work, we present a comprehensive analysis of causal image modeling and introduce the Adventurer series models where we treat images as sequences of patch tokens and employ uni-directional language models to learn visual representations. This modeling paradigm allows us to process images in a recurrent formulation with linear complexity relative to the sequence length, which can effectively&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07599v1-abstract-full').style.display = 'inline'; document.getElementById('2410.07599v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.07599v1-abstract-full" style="display: none;"> In this work, we present a comprehensive analysis of causal image modeling and introduce the Adventurer series models where we treat images as sequences of patch tokens and employ uni-directional language models to learn visual representations. This modeling paradigm allows us to process images in a recurrent formulation with linear complexity relative to the sequence length, which can effectively address the memory and computation explosion issues posed by high-resolution and fine-grained images. In detail, we introduce two simple designs that seamlessly integrate image inputs into the causal inference framework: a global pooling token placed at the beginning of the sequence and a flipping operation between every two layers. Extensive empirical studies demonstrate the significant efficiency and effectiveness of this causal image modeling paradigm. For example, our base-sized Adventurer model attains a competitive test accuracy of 84.0% on the standard ImageNet-1k benchmark with 216 images/s training throughput, which is 5.3 times more efficient than vision transformers to achieve the same result. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.07599v1-abstract-full').style.display = 'none'; document.getElementById('2410.07599v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.06035">arXiv:2409.06035</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.06035">pdf</a>, <a href="https://arxiv.org/format/2409.06035">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Analyzing Tumors by Synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Q">Qi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Lai%2C+Y">Yuxiang Lai</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xiaoxi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Hu%2C+Q">Qixin Hu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.06035v1-abstract-short" style="display: inline;"> Computer-aided tumor detection has shown great potential in enhancing the interpretation of over 80 million CT scans performed annually in the United States. However, challenges arise due to the rarity of CT scans with tumors, especially early-stage tumors. Developing AI with real tumor data faces issues of scarcity, annotation difficulty, and low prevalence. Tumor synthesis addresses these challe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06035v1-abstract-full').style.display = 'inline'; document.getElementById('2409.06035v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.06035v1-abstract-full" style="display: none;"> Computer-aided tumor detection has shown great potential in enhancing the interpretation of over 80 million CT scans performed annually in the United States. However, challenges arise due to the rarity of CT scans with tumors, especially early-stage tumors. Developing AI with real tumor data faces issues of scarcity, annotation difficulty, and low prevalence. Tumor synthesis addresses these challenges by generating numerous tumor examples in medical images, aiding AI training for tumor detection and segmentation. Successful synthesis requires realistic and generalizable synthetic tumors across various organs. This chapter reviews AI development on real and synthetic data and summarizes two key trends in synthetic data for cancer imaging research: modeling-based and learning-based approaches. Modeling-based methods, like Pixel2Cancer, simulate tumor development over time using generic rules, while learning-based methods, like DiffTumor, learn from a few annotated examples in one organ to generate synthetic tumors in others. Reader studies with expert radiologists show that synthetic tumors can be convincingly realistic. We also present case studies in the liver, pancreas, and kidneys reveal that AI trained on synthetic tumors can achieve performance comparable to, or better than, AI only trained on real data. Tumor synthesis holds significant promise for expanding datasets, enhancing AI reliability, improving tumor detection performance, and preserving patient privacy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.06035v1-abstract-full').style.display = 'none'; document.getElementById('2409.06035v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted as a chapter in the Springer Book: &#34;Generative Machine Learning Models in Medical Image Computing.&#34;</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.01353">arXiv:2409.01353</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.01353">pdf</a>, <a href="https://arxiv.org/format/2409.01353">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> From Pixels to Objects: A Hierarchical Approach for Part and Object Segmentation Using Local and Global Aggregation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xie%2C+Y">Yunfei Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+C">Cihang Xie</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Mei%2C+J">Jieru Mei</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.01353v1-abstract-short" style="display: inline;"> In this paper, we introduce a hierarchical transformer-based model designed for sophisticated image segmentation tasks, effectively bridging the granularity of part segmentation with the comprehensive scope of object segmentation. At the heart of our approach is a multi-level representation strategy, which systematically advances from individual pixels to superpixels, and ultimately to cohesive gr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01353v1-abstract-full').style.display = 'inline'; document.getElementById('2409.01353v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.01353v1-abstract-full" style="display: none;"> In this paper, we introduce a hierarchical transformer-based model designed for sophisticated image segmentation tasks, effectively bridging the granularity of part segmentation with the comprehensive scope of object segmentation. At the heart of our approach is a multi-level representation strategy, which systematically advances from individual pixels to superpixels, and ultimately to cohesive group formations. This architecture is underpinned by two pivotal aggregation strategies: local aggregation and global aggregation. Local aggregation is employed to form superpixels, leveraging the inherent redundancy of the image data to produce segments closely aligned with specific parts of the object, guided by object-level supervision. In contrast, global aggregation interlinks these superpixels, organizing them into larger groups that correlate with entire objects and benefit from part-level supervision. This dual aggregation framework ensures a versatile adaptation to varying supervision inputs while maintaining computational efficiency. Our methodology notably improves the balance between adaptability across different supervision modalities and computational manageability, culminating in significant enhancement in segmentation performance. When tested on the PartImageNet dataset, our model achieves a substantial increase, outperforming the previous state-of-the-art by 2.8% and 0.8% in mIoU scores for part and object segmentation, respectively. Similarly, on the Pascal Part dataset, it records performance enhancements of 1.5% and 2.0% for part and object segmentation, respectively. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.01353v1-abstract-full').style.display = 'none'; document.getElementById('2409.01353v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02210">arXiv:2408.02210</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02210">pdf</a>, <a href="https://arxiv.org/format/2408.02210">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ExoViP: Step-by-step Verification and Exploration with Exoskeleton Modules for Compositional Visual Reasoning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yuxuan Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zhuowan Li</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Z">Zilong Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02210v1-abstract-short" style="display: inline;"> Compositional visual reasoning methods, which translate a complex query into a structured composition of feasible visual tasks, have exhibited a strong potential in complicated multi-modal tasks. Empowered by recent advances in large language models (LLMs), this multi-modal challenge has been brought to a new stage by treating LLMs as few-shot/zero-shot planners, i.e., vision-language (VL) program&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02210v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02210v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02210v1-abstract-full" style="display: none;"> Compositional visual reasoning methods, which translate a complex query into a structured composition of feasible visual tasks, have exhibited a strong potential in complicated multi-modal tasks. Empowered by recent advances in large language models (LLMs), this multi-modal challenge has been brought to a new stage by treating LLMs as few-shot/zero-shot planners, i.e., vision-language (VL) programming. Such methods, despite their numerous merits, suffer from challenges due to LLM planning mistakes or inaccuracy of visual execution modules, lagging behind the non-compositional models. In this work, we devise a &#34;plug-and-play&#34; method, ExoViP, to correct errors in both the planning and execution stages through introspective verification. We employ verification modules as &#34;exoskeletons&#34; to enhance current VL programming schemes. Specifically, our proposed verification module utilizes a mixture of three sub-verifiers to validate predictions after each reasoning step, subsequently calibrating the visual module predictions and refining the reasoning trace planned by LLMs. Experimental results on two representative VL programming methods showcase consistent improvements on five compositional reasoning tasks on standard benchmarks. In light of this, we believe that ExoViP can foster better performance and generalization on open-domain multi-modal challenges. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02210v1-abstract-full').style.display = 'none'; document.getElementById('2408.02210v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To Appear at COLM 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.16697">arXiv:2407.16697</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.16697">pdf</a>, <a href="https://arxiv.org/format/2407.16697">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> AbdomenAtlas: A Large-Scale, Detailed-Annotated, &amp; Multi-Center Dataset for Efficient Transfer Learning and Open Algorithmic Benchmarking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Li%2C+W">Wenxuan Li</a>, <a href="/search/cs?searchtype=author&amp;query=Qu%2C+C">Chongyu Qu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xiaoxi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Bassi%2C+P+R+A+S">Pedro R. A. S. Bassi</a>, <a href="/search/cs?searchtype=author&amp;query=Shi%2C+Y">Yijia Shi</a>, <a href="/search/cs?searchtype=author&amp;query=Lai%2C+Y">Yuxiang Lai</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Q">Qian Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Xue%2C+H">Huimin Xue</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yixiong Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+X">Xiaorui Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+Y">Yutong Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+Y">Yining Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Han%2C+H">Haoqi Han</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Z">Zheyuan Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+J">Jiawei Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+T">Tiezheng Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+Y">Yujiu Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jincheng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+G">Guang Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.16697v1-abstract-short" style="display: inline;"> We introduce the largest abdominal CT dataset (termed AbdomenAtlas) of 20,460 three-dimensional CT volumes sourced from 112 hospitals across diverse populations, geographies, and facilities. AbdomenAtlas provides 673K high-quality masks of anatomical structures in the abdominal region annotated by a team of 10 radiologists with the help of AI algorithms. We start by having expert radiologists manu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16697v1-abstract-full').style.display = 'inline'; document.getElementById('2407.16697v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.16697v1-abstract-full" style="display: none;"> We introduce the largest abdominal CT dataset (termed AbdomenAtlas) of 20,460 three-dimensional CT volumes sourced from 112 hospitals across diverse populations, geographies, and facilities. AbdomenAtlas provides 673K high-quality masks of anatomical structures in the abdominal region annotated by a team of 10 radiologists with the help of AI algorithms. We start by having expert radiologists manually annotate 22 anatomical structures in 5,246 CT volumes. Following this, a semi-automatic annotation procedure is performed for the remaining CT volumes, where radiologists revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from revised annotations. Such a large-scale, detailed-annotated, and multi-center dataset is needed for two reasons. Firstly, AbdomenAtlas provides important resources for AI development at scale, branded as large pre-trained models, which can alleviate the annotation workload of expert radiologists to transfer to broader clinical applications. Secondly, AbdomenAtlas establishes a large-scale benchmark for evaluating AI algorithms -- the more data we use to test the algorithms, the better we can guarantee reliable performance in complex clinical scenarios. An ISBI &amp; MICCAI challenge named BodyMaps: Towards 3D Atlas of Human Body was launched using a subset of our AbdomenAtlas, aiming to stimulate AI innovation and to benchmark segmentation accuracy, inference efficiency, and domain generalizability. We hope our AbdomenAtlas can set the stage for larger-scale clinical trials and offer exceptional opportunities to practitioners in the medical imaging community. Codes, models, and datasets are available at https://www.zongweiz.com/dataset <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.16697v1-abstract-full').style.display = 'none'; document.getElementById('2407.16697v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Medical Image Analysis</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.13094">arXiv:2407.13094</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.13094">pdf</a>, <a href="https://arxiv.org/format/2407.13094">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Rethinking Video-Text Understanding: Retrieval from Counterfactually Augmented Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+W">Wufei Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+K">Kai Li</a>, <a href="/search/cs?searchtype=author&amp;query=Jiang%2C+Z">Zhongshi Jiang</a>, <a href="/search/cs?searchtype=author&amp;query=Meshry%2C+M">Moustafa Meshry</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Q">Qihao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Huiyu Wang</a>, <a href="/search/cs?searchtype=author&amp;query=H%C3%A4ne%2C+C">Christian H盲ne</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.13094v1-abstract-short" style="display: inline;"> Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this pa&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13094v1-abstract-full').style.display = 'inline'; document.getElementById('2407.13094v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.13094v1-abstract-full" style="display: none;"> Recent video-text foundation models have demonstrated strong performance on a wide variety of downstream video understanding tasks. Can these video-text models genuinely understand the contents of natural videos? Standard video-text evaluations could be misleading as many questions can be inferred merely from the objects and contexts in a single frame or biases inherent in the datasets. In this paper, we aim to better assess the capabilities of current video-text models and understand their limitations. We propose a novel evaluation task for video-text understanding, namely retrieval from counterfactually augmented data (RCAD), and a new Feint6K dataset. To succeed on our new evaluation task, models must derive a comprehensive understanding of the video from cross-frame reasoning. Analyses show that previous video-text foundation models can be easily fooled by counterfactually augmented data and are far behind human-level performance. In order to narrow the gap between video-text models and human performance on RCAD, we identify a key limitation of current contrastive approaches on video-text data and introduce LLM-teacher, a more effective approach to learn action semantics by leveraging knowledge obtained from a pretrained large language model. Experiments and analyses show that our approach successfully learn more discriminative action embeddings and improves results on Feint6K when applied to multiple video-text models. Our Feint6K dataset and project page is available at https://feint6k.github.io. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.13094v1-abstract-full').style.display = 'none'; document.getElementById('2407.13094v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ECCV 2024. Project page: https://feint6k.github.io</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.09271">arXiv:2407.09271</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.09271">pdf</a>, <a href="https://arxiv.org/format/2407.09271">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Fischer%2C+T">Tom Fischer</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yaoyao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Jesslen%2C+A">Artur Jesslen</a>, <a href="/search/cs?searchtype=author&amp;query=Ahmed%2C+N">Noor Ahmed</a>, <a href="/search/cs?searchtype=author&amp;query=Kaushik%2C+P">Prakhar Kaushik</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+A">Angtian Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Kortylewski%2C+A">Adam Kortylewski</a>, <a href="/search/cs?searchtype=author&amp;query=Ilg%2C+E">Eddy Ilg</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.09271v2-abstract-short" style="display: inline;"> Different from human nature, it is still common practice today for vision tasks to train deep learning models only initially and on fixed datasets. A variety of approaches have recently addressed handling continual data streams. However, extending these methods to manage out-of-distribution (OOD) scenarios has not effectively been investigated. On the other hand, it has recently been shown that no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09271v2-abstract-full').style.display = 'inline'; document.getElementById('2407.09271v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.09271v2-abstract-full" style="display: none;"> Different from human nature, it is still common practice today for vision tasks to train deep learning models only initially and on fixed datasets. A variety of approaches have recently addressed handling continual data streams. However, extending these methods to manage out-of-distribution (OOD) scenarios has not effectively been investigated. On the other hand, it has recently been shown that non-continual neural mesh models exhibit strong performance in generalizing to such OOD scenarios. To leverage this decisive property in a continual learning setting, we propose incremental neural mesh models that can be extended with new meshes over time. In addition, we present a latent space initialization strategy that enables us to allocate feature space for future unseen classes in advance and a positional regularization term that forces the features of the different classes to consistently stay in respective latent space regions. We demonstrate the effectiveness of our method through extensive experiments on the Pascal3D and ObjectNet3D datasets and show that our approach outperforms the baselines for classification by $2-6\%$ in the in-domain and by $6-50\%$ in the OOD setting. Our work also presents the first incremental learning approach for pose estimation. Our code and model can be found at https://github.com/Fischer-Tom/iNeMo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.09271v2-abstract-full').style.display = 'none'; document.getElementById('2407.09271v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ECCV-24</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07174">arXiv:2407.07174</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07174">pdf</a>, <a href="https://arxiv.org/format/2407.07174">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> CamFreeDiff: Camera-free Image to Panorama Generation with Diffusion Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+X">Xiaoding Yuan</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+S">Shitao Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+K">Kejie Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07174v1-abstract-short" style="display: inline;"> This paper introduces Camera-free Diffusion (CamFreeDiff) model for 360-degree image outpainting from a single camera-free image and text description. This method distinguishes itself from existing strategies, such as MVDiffusion, by eliminating the requirement for predefined camera poses. Instead, our model incorporates a mechanism for predicting homography directly within the multi-view diffusio&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07174v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07174v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07174v1-abstract-full" style="display: none;"> This paper introduces Camera-free Diffusion (CamFreeDiff) model for 360-degree image outpainting from a single camera-free image and text description. This method distinguishes itself from existing strategies, such as MVDiffusion, by eliminating the requirement for predefined camera poses. Instead, our model incorporates a mechanism for predicting homography directly within the multi-view diffusion framework. The core of our approach is to formulate camera estimation by predicting the homography transformation from the input view to a predefined canonical view. The homography provides point-level correspondences between the input image and targeting panoramic images, allowing connections enforced by correspondence-aware attention in a fully differentiable manner. Qualitative and quantitative experimental results demonstrate our model&#39;s strong robustness and generalization ability for 360-degree image outpainting in the challenging context of camera-free inputs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07174v1-abstract-full').style.display = 'none'; document.getElementById('2407.07174v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.04687">arXiv:2407.04687</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.04687">pdf</a>, <a href="https://arxiv.org/format/2407.04687">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Embracing Massive Medical Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chou%2C+Y">Yu-Cheng Chou</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.04687v1-abstract-short" style="display: inline;"> As massive medical data become available with an increasing number of scans, expanding classes, and varying sources, prevalent training paradigms -- where AI is trained with multiple passes over fixed, finite datasets -- face significant challenges. First, training AI all at once on such massive data is impractical as new scans/sources/classes continuously arrive. Second, training AI continuously&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04687v1-abstract-full').style.display = 'inline'; document.getElementById('2407.04687v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.04687v1-abstract-full" style="display: none;"> As massive medical data become available with an increasing number of scans, expanding classes, and varying sources, prevalent training paradigms -- where AI is trained with multiple passes over fixed, finite datasets -- face significant challenges. First, training AI all at once on such massive data is impractical as new scans/sources/classes continuously arrive. Second, training AI continuously on new scans/sources/classes can lead to catastrophic forgetting, where AI forgets old data as it learns new data, and vice versa. To address these two challenges, we propose an online learning method that enables training AI from massive medical data. Instead of repeatedly training AI on randomly selected data samples, our method identifies the most significant samples for the current AI model based on their data uniqueness and prediction uncertainty, then trains the AI on these selective data samples. Compared with prevalent training paradigms, our method not only improves data efficiency by enabling training on continual data streams, but also mitigates catastrophic forgetting by selectively training AI on significant data samples that might otherwise be forgotten, outperforming by 15% in Dice score for multi-organ and tumor segmentation. The code is available at https://github.com/MrGiovanni/OnlineLearning <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.04687v1-abstract-full').style.display = 'none'; document.getElementById('2407.04687v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to MICCAI 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.20092">arXiv:2406.20092</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.20092">pdf</a>, <a href="https://arxiv.org/format/2406.20092">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Efficient Large Multi-modal Models via Visual Context Compression </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jieneng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Ye%2C+L">Luoxin Ye</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+J">Ju He</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zhao-Yang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Khashabi%2C+D">Daniel Khashabi</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.20092v2-abstract-short" style="display: inline;"> While significant advancements have been made in compressed representations for text embeddings in large language models (LLMs), the compression of visual tokens in multi-modal LLMs (MLLMs) has remained a largely overlooked area. In this work, we present the study on the analysis of redundancy concerning visual tokens and efficient training within these models. Our initial experiments show that el&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.20092v2-abstract-full').style.display = 'inline'; document.getElementById('2406.20092v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.20092v2-abstract-full" style="display: none;"> While significant advancements have been made in compressed representations for text embeddings in large language models (LLMs), the compression of visual tokens in multi-modal LLMs (MLLMs) has remained a largely overlooked area. In this work, we present the study on the analysis of redundancy concerning visual tokens and efficient training within these models. Our initial experiments show that eliminating up to 70% of visual tokens at the testing stage by simply average pooling only leads to a minimal 3% reduction in visual question answering accuracy on the GQA benchmark, indicating significant redundancy in visual context. Addressing this, we introduce Visual Context Compressor, which reduces the number of visual tokens to enhance training and inference efficiency without sacrificing performance. To minimize information loss caused by the compression on visual tokens while maintaining training efficiency, we develop LLaVolta as a light and staged training scheme that incorporates stage-wise visual context compression to progressively compress the visual tokens from heavily to lightly compression during training, yielding no loss of information when testing. Extensive experiments demonstrate that our approach enhances the performance of MLLMs in both image-language and video-language understanding, while also significantly cutting training costs and improving inference efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.20092v2-abstract-full').style.display = 'none'; document.getElementById('2406.20092v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2024 Camera Ready; Code is available at https://github.com/Beckschen/LLaVolta</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09613">arXiv:2406.09613</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.09613">pdf</a>, <a href="https://arxiv.org/format/2406.09613">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ImageNet3D: Towards General-Purpose Object-Level 3D Understanding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ma%2C+W">Wufei Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Zeng%2C+G">Guanning Zeng</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+G">Guofeng Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Q">Qihao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+L">Letian Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Kortylewski%2C+A">Adam Kortylewski</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yaoyao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09613v1-abstract-short" style="display: inline;"> A vision model with general-purpose object-level 3D understanding should be capable of inferring both 2D (e.g., class name and bounding box) and 3D information (e.g., 3D location and 3D viewpoint) for arbitrary rigid objects in natural images. This is a challenging task, as it involves inferring 3D information from 2D signals and most importantly, generalizing to rigid objects from unseen categori&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09613v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09613v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09613v1-abstract-full" style="display: none;"> A vision model with general-purpose object-level 3D understanding should be capable of inferring both 2D (e.g., class name and bounding box) and 3D information (e.g., 3D location and 3D viewpoint) for arbitrary rigid objects in natural images. This is a challenging task, as it involves inferring 3D information from 2D signals and most importantly, generalizing to rigid objects from unseen categories. However, existing datasets with object-level 3D annotations are often limited by the number of categories or the quality of annotations. Models developed on these datasets become specialists for certain categories or domains, and fail to generalize. In this work, we present ImageNet3D, a large dataset for general-purpose object-level 3D understanding. ImageNet3D augments 200 categories from the ImageNet dataset with 2D bounding box, 3D pose, 3D location annotations, and image captions interleaved with 3D information. With the new annotations available in ImageNet3D, we could (i) analyze the object-level 3D awareness of visual foundation models, and (ii) study and develop general-purpose models that infer both 2D and 3D information for arbitrary rigid objects in natural images, and (iii) integrate unified 3D models with large language models for 3D-related reasoning.. We consider two new tasks, probing of object-level 3D awareness and open vocabulary pose estimation, besides standard classification and pose estimation. Experimental results on ImageNet3D demonstrate the potential of our dataset in building vision models with stronger general-purpose object-level 3D understanding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09613v1-abstract-full').style.display = 'none'; document.getElementById('2406.09613v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07537">arXiv:2406.07537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.07537">pdf</a>, <a href="https://arxiv.org/format/2406.07537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Autoregressive Pretraining with Mamba in Vision </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ren%2C+S">Sucheng Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xianhang Li</a>, <a href="/search/cs?searchtype=author&amp;query=Tu%2C+H">Haoqin Tu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Shu%2C+F">Fangxun Shu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+L">Lei Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Mei%2C+J">Jieru Mei</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+L">Linjie Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+P">Peng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+H">Heng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+C">Cihang Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07537v1-abstract-short" style="display: inline;"> The vision community has started to build with the recently developed state space model, Mamba, as the new backbone for a range of tasks. This paper shows that Mamba&#39;s visual capability can be significantly enhanced through autoregressive pretraining, a direction not previously explored. Efficiency-wise, the autoregressive nature can well capitalize on the Mamba&#39;s unidirectional recurrent structur&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07537v1-abstract-full').style.display = 'inline'; document.getElementById('2406.07537v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07537v1-abstract-full" style="display: none;"> The vision community has started to build with the recently developed state space model, Mamba, as the new backbone for a range of tasks. This paper shows that Mamba&#39;s visual capability can be significantly enhanced through autoregressive pretraining, a direction not previously explored. Efficiency-wise, the autoregressive nature can well capitalize on the Mamba&#39;s unidirectional recurrent structure, enabling faster overall training speed compared to other training strategies like mask modeling. Performance-wise, autoregressive pretraining equips the Mamba architecture with markedly higher accuracy over its supervised-trained counterparts and, more importantly, successfully unlocks its scaling potential to large and even huge model sizes. For example, with autoregressive pretraining, a base-size Mamba attains 83.2\% ImageNet accuracy, outperforming its supervised counterpart by 2.0\%; our huge-size Mamba, the largest Vision Mamba to date, attains 85.0\% ImageNet accuracy (85.5\% when finetuned with $384\times384$ inputs), notably surpassing all other Mamba variants in vision. The code is available at \url{https://github.com/OliverRensu/ARM}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07537v1-abstract-full').style.display = 'none'; document.getElementById('2406.07537v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.05565">arXiv:2406.05565</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.05565">pdf</a>, <a href="https://arxiv.org/format/2406.05565">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Medical Vision Generalist: Unifying Medical Imaging Tasks in Context </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ren%2C+S">Sucheng Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Huang%2C+X">Xiaoke Huang</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+X">Xianhang Li</a>, <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+J">Junfei Xiao</a>, <a href="/search/cs?searchtype=author&amp;query=Mei%2C+J">Jieru Mei</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zeyu Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yuyin Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.05565v1-abstract-short" style="display: inline;"> This study presents Medical Vision Generalist (MVG), the first foundation model capable of handling various medical imaging tasks -- such as cross-modal synthesis, image segmentation, denoising, and inpainting -- within a unified image-to-image generation framework. Specifically, MVG employs an in-context generation strategy that standardizes the handling of inputs and outputs as images. By treati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05565v1-abstract-full').style.display = 'inline'; document.getElementById('2406.05565v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.05565v1-abstract-full" style="display: none;"> This study presents Medical Vision Generalist (MVG), the first foundation model capable of handling various medical imaging tasks -- such as cross-modal synthesis, image segmentation, denoising, and inpainting -- within a unified image-to-image generation framework. Specifically, MVG employs an in-context generation strategy that standardizes the handling of inputs and outputs as images. By treating these tasks as an image generation process conditioned on prompt image-label pairs and input images, this approach enables a flexible unification of various tasks, even those spanning different modalities and datasets. To capitalize on both local and global context, we design a hybrid method combining masked image modeling with autoregressive training for conditional image generation. This hybrid approach yields the most robust performance across all involved medical imaging tasks. To rigorously evaluate MVG&#39;s capabilities, we curated the first comprehensive generalist medical vision benchmark, comprising 13 datasets and spanning four imaging modalities (CT, MRI, X-ray, and micro-ultrasound). Our results consistently establish MVG&#39;s superior performance, outperforming existing vision generalists, such as Painter and LVM. Furthermore, MVG exhibits strong scalability, with its performance demonstrably improving when trained on a more diverse set of tasks, and can be effectively adapted to unseen datasets with only minimal task-specific samples. The code is available at \url{https://github.com/OliverRensu/MVG}. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.05565v1-abstract-full').style.display = 'none'; document.getElementById('2406.05565v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.04322">arXiv:2406.04322</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.04322">pdf</a>, <a href="https://arxiv.org/format/2406.04322">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> DIRECT-3D: Learning Direct Text-to-3D Generation on Massive Noisy 3D Data </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Q">Qihao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yi Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Bai%2C+S">Song Bai</a>, <a href="/search/cs?searchtype=author&amp;query=Kortylewski%2C+A">Adam Kortylewski</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.04322v2-abstract-short" style="display: inline;"> We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets (represented by Neural Radiance Fields) from text prompts. Unlike recent 3D generative models that rely on clean and well-aligned 3D data, limiting them to single or few-class generation, our model is directly trained on extensive noisy and unaligned `in-the-wild&#39; 3D assets, mitigating the key challenge&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04322v2-abstract-full').style.display = 'inline'; document.getElementById('2406.04322v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.04322v2-abstract-full" style="display: none;"> We present DIRECT-3D, a diffusion-based 3D generative model for creating high-quality 3D assets (represented by Neural Radiance Fields) from text prompts. Unlike recent 3D generative models that rely on clean and well-aligned 3D data, limiting them to single or few-class generation, our model is directly trained on extensive noisy and unaligned `in-the-wild&#39; 3D assets, mitigating the key challenge (i.e., data scarcity) in large-scale 3D generation. In particular, DIRECT-3D is a tri-plane diffusion model that integrates two innovations: 1) A novel learning framework where noisy data are filtered and aligned automatically during the training process. Specifically, after an initial warm-up phase using a small set of clean data, an iterative optimization is introduced in the diffusion process to explicitly estimate the 3D pose of objects and select beneficial data based on conditional density. 2) An efficient 3D representation that is achieved by disentangling object geometry and color features with two separate conditional diffusion models that are optimized hierarchically. Given a prompt input, our model generates high-quality, high-resolution, realistic, and complex 3D objects with accurate geometric details in seconds. We achieve state-of-the-art performance in both single-class generation and text-to-3D generation. We also demonstrate that DIRECT-3D can serve as a useful 3D geometric prior of objects, for example to alleviate the well-known Janus problem in 2D-lifting methods such as DreamFusion. The code and models are available for research purposes at: https://github.com/qihao067/direct3d. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.04322v2-abstract-full').style.display = 'none'; document.getElementById('2406.04322v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to CVPR 2024. Code: https://github.com/qihao067/direct3d Project page: https://direct-3d.github.io/</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00622">arXiv:2406.00622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00622">pdf</a>, <a href="https://arxiv.org/format/2406.00622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Compositional 4D Dynamic Scenes Understanding with Physics Priors for Video Question Answering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+X">Xingrui Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Ma%2C+W">Wufei Ma</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+A">Angtian Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+S">Shuo Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Kortylewski%2C+A">Adam Kortylewski</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00622v1-abstract-short" style="display: inline;"> For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions within 3D scenes from video is crucial for effective reasoning. In this work, we introduce a video question answering dataset SuperCLEVR-Physics that focuses on the dynamics properties of objects. We concentrate on physical concepts -- velocity, acceleration, and collisions within 4D scenes, w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00622v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00622v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00622v1-abstract-full" style="display: none;"> For vision-language models (VLMs), understanding the dynamic properties of objects and their interactions within 3D scenes from video is crucial for effective reasoning. In this work, we introduce a video question answering dataset SuperCLEVR-Physics that focuses on the dynamics properties of objects. We concentrate on physical concepts -- velocity, acceleration, and collisions within 4D scenes, where the model needs to fully understand these dynamics properties and answer the questions built on top of them. From the evaluation of a variety of current VLMs, we find that these models struggle with understanding these dynamic properties due to the lack of explicit knowledge about the spatial structure in 3D and world dynamics in time variants. To demonstrate the importance of an explicit 4D dynamics representation of the scenes in understanding world dynamics, we further propose NS-4Dynamics, a Neural-Symbolic model for reasoning on 4D Dynamics properties under explicit scene representation from videos. Using scene rendering likelihood combining physical prior distribution, the 4D scene parser can estimate the dynamics properties of objects over time to and interpret the observation into 4D scene representation as world states. By further incorporating neural-symbolic reasoning, our approach enables advanced applications in future prediction, factual reasoning, and counterfactual reasoning. Our experiments show that our NS-4Dynamics suppresses previous VLMs in understanding the dynamics properties and answering questions about factual queries, future prediction, and counterfactual reasoning. Moreover, based on the explicit 4D scene representation, our model is effective in reconstructing the 4D scenes and re-simulate the future or counterfactual events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00622v1-abstract-full').style.display = 'none'; document.getElementById('2406.00622v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.00327">arXiv:2406.00327</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.00327">pdf</a>, <a href="https://arxiv.org/format/2406.00327">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Quality Sentinel: Estimating Label Quality and Errors in Medical Segmentation Datasets </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Y">Yixiong Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.00327v1-abstract-short" style="display: inline;"> An increasing number of public datasets have shown a transformative impact on automated medical segmentation. However, these datasets are often with varying label quality, ranging from manual expert annotations to AI-generated pseudo-annotations. There is no systematic, reliable, and automatic quality control (QC). To fill in this bridge, we introduce a regression model, Quality Sentinel, to estim&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00327v1-abstract-full').style.display = 'inline'; document.getElementById('2406.00327v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.00327v1-abstract-full" style="display: none;"> An increasing number of public datasets have shown a transformative impact on automated medical segmentation. However, these datasets are often with varying label quality, ranging from manual expert annotations to AI-generated pseudo-annotations. There is no systematic, reliable, and automatic quality control (QC). To fill in this bridge, we introduce a regression model, Quality Sentinel, to estimate label quality compared with manual annotations in medical segmentation datasets. This regression model was trained on over 4 million image-label pairs created by us. Each pair presents a varying but quantified label quality based on manual annotations, which enable us to predict the label quality of any image-label pairs in the inference. Our Quality Sentinel can predict the label quality of 142 body structures. The predicted label quality quantified by Dice Similarity Coefficient (DSC) shares a strong correlation with ground truth quality, with a positive correlation coefficient (r=0.902). Quality Sentinel has found multiple impactful use cases. (I) We evaluated label quality in publicly available datasets, where quality highly varies across different datasets. Our analysis also uncovers that male and younger subjects exhibit significantly higher quality. (II) We identified and corrected poorly annotated labels, achieving 1/3 reduction in annotation costs with optimal budgeting on TotalSegmentator. (III) We enhanced AI training efficiency and performance by focusing on high-quality pseudo labels, resulting in a 33%--88% performance boost over entropy-based methods, with a cost of 31% time and 4.5% memory. The data and model are released. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.00327v1-abstract-full').style.display = 'none'; document.getElementById('2406.00327v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 6 figures, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.18356">arXiv:2405.18356</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.18356">pdf</a>, <a href="https://arxiv.org/format/2405.18356">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Universal and Extensible Language-Vision Models for Organ Segmentation and Tumor Detection from Abdominal Computed Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+J">Jie Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yixiao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+K">Kang Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yavuz%2C+M+C">Mehmet Can Yavuz</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xiaoxi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Yuan%2C+Y">Yixuan Yuan</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+H">Haoliang Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Tang%2C+Y">Yucheng Tang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.18356v1-abstract-short" style="display: inline;"> The advancement of artificial intelligence (AI) for organ segmentation and tumor detection is propelled by the growing availability of computed tomography (CT) datasets with detailed, per-voxel annotations. However, these AI models often struggle with flexibility for partially annotated datasets and extensibility for new classes due to limitations in the one-hot encoding, architectural design, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18356v1-abstract-full').style.display = 'inline'; document.getElementById('2405.18356v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.18356v1-abstract-full" style="display: none;"> The advancement of artificial intelligence (AI) for organ segmentation and tumor detection is propelled by the growing availability of computed tomography (CT) datasets with detailed, per-voxel annotations. However, these AI models often struggle with flexibility for partially annotated datasets and extensibility for new classes due to limitations in the one-hot encoding, architectural design, and learning scheme. To overcome these limitations, we propose a universal, extensible framework enabling a single model, termed Universal Model, to deal with multiple public datasets and adapt to new classes (e.g., organs/tumors). Firstly, we introduce a novel language-driven parameter generator that leverages language embeddings from large language models, enriching semantic encoding compared with one-hot encoding. Secondly, the conventional output layers are replaced with lightweight, class-specific heads, allowing Universal Model to simultaneously segment 25 organs and six types of tumors and ease the addition of new classes. We train our Universal Model on 3,410 CT volumes assembled from 14 publicly available datasets and then test it on 6,173 CT volumes from four external datasets. Universal Model achieves first place on six CT tasks in the Medical Segmentation Decathlon (MSD) public leaderboard and leading performance on the Beyond The Cranial Vault (BTCV) dataset. In summary, Universal Model exhibits remarkable computational efficiency (6x faster than other dataset-specific models), demonstrates strong generalization across different hospitals, transfers well to numerous downstream tasks, and more importantly, facilitates the extensibility to new classes while alleviating the catastrophic forgetting of previously learned classes. Codes, models, and datasets are available at https://github.com/ljwztc/CLIP-Driven-Universal-Model <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.18356v1-abstract-full').style.display = 'none'; document.getElementById('2405.18356v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to Medical Image Analysis</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15160">arXiv:2405.15160</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15160">pdf</a>, <a href="https://arxiv.org/format/2405.15160">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ARVideo: Autoregressive Pretraining for Self-Supervised Video Representation Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ren%2C+S">Sucheng Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+H">Hongru Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+C">Chen Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yijiang Li</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+C">Cihang Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15160v1-abstract-short" style="display: inline;"> This paper presents a new self-supervised video representation learning framework, ARVideo, which autoregressively predicts the next video token in a tailored sequence order. Two key designs are included. First, we organize autoregressive video tokens into clusters that span both spatially and temporally, thereby enabling a richer aggregation of contextual information compared to the standard spat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15160v1-abstract-full').style.display = 'inline'; document.getElementById('2405.15160v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15160v1-abstract-full" style="display: none;"> This paper presents a new self-supervised video representation learning framework, ARVideo, which autoregressively predicts the next video token in a tailored sequence order. Two key designs are included. First, we organize autoregressive video tokens into clusters that span both spatially and temporally, thereby enabling a richer aggregation of contextual information compared to the standard spatial-only or temporal-only clusters. Second, we adopt a randomized spatiotemporal prediction order to facilitate learning from multi-dimensional data, addressing the limitations of a handcrafted spatial-first or temporal-first sequence order. Extensive experiments establish ARVideo as an effective paradigm for self-supervised video representation learning. For example, when trained with the ViT-B backbone, ARVideo competitively attains 81.2% on Kinetics-400 and 70.9% on Something-Something V2, which are on par with the strong benchmark set by VideoMAE. Importantly, ARVideo also demonstrates higher training efficiency, i.e., it trains 14% faster and requires 58% less GPU memory compared to VideoMAE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15160v1-abstract-full').style.display = 'none'; document.getElementById('2405.15160v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.15125">arXiv:2405.15125</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.15125">pdf</a>, <a href="https://arxiv.org/format/2405.15125">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cai%2C+Y">Yuanhao Cai</a>, <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+Z">Zihao Xiao</a>, <a href="/search/cs?searchtype=author&amp;query=Liang%2C+Y">Yixun Liang</a>, <a href="/search/cs?searchtype=author&amp;query=Qin%2C+M">Minghan Qin</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yulun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xiaokang Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yaoyao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.15125v4-abstract-short" style="display: inline;"> High dynamic range (HDR) novel view synthesis (NVS) aims to create photorealistic images from novel viewpoints using HDR imaging techniques. The rendered HDR images capture a wider range of brightness levels containing more details of the scene than normal low dynamic range (LDR) images. Existing HDR NVS methods are mainly based on NeRF. They suffer from long training time and slow inference speed&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15125v4-abstract-full').style.display = 'inline'; document.getElementById('2405.15125v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.15125v4-abstract-full" style="display: none;"> High dynamic range (HDR) novel view synthesis (NVS) aims to create photorealistic images from novel viewpoints using HDR imaging techniques. The rendered HDR images capture a wider range of brightness levels containing more details of the scene than normal low dynamic range (LDR) images. Existing HDR NVS methods are mainly based on NeRF. They suffer from long training time and slow inference speed. In this paper, we propose a new framework, High Dynamic Range Gaussian Splatting (HDR-GS), which can efficiently render novel HDR views and reconstruct LDR images with a user input exposure time. Specifically, we design a Dual Dynamic Range (DDR) Gaussian point cloud model that uses spherical harmonics to fit HDR color and employs an MLP-based tone-mapper to render LDR color. The HDR and LDR colors are then fed into two Parallel Differentiable Rasterization (PDR) processes to reconstruct HDR and LDR views. To establish the data foundation for the research of 3D Gaussian splatting-based methods in HDR NVS, we recalibrate the camera parameters and compute the initial positions for Gaussian point clouds. Experiments demonstrate that our HDR-GS surpasses the state-of-the-art NeRF-based method by 3.84 and 1.91 dB on LDR and HDR NVS while enjoying 1000x inference speed and only requiring 6.3% training time. Code and recalibrated data will be publicly available at https://github.com/caiyuanhao1998/HDR-GS . A brief video introduction of our work is available at https://youtu.be/wtU7Kcwe7ck <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.15125v4-abstract-full').style.display = 'none'; document.getElementById('2405.15125v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NeurIPS 2024; The first 3D Gaussian Splatting-based method for HDR imaging</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.14858">arXiv:2405.14858</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.14858">pdf</a>, <a href="https://arxiv.org/format/2405.14858">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Mamba-R: Vision Mamba ALSO Needs Registers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jiahao Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Ren%2C+S">Sucheng Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+G">Guoyizhe Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Mei%2C+J">Jieru Mei</a>, <a href="/search/cs?searchtype=author&amp;query=Shao%2C+W">Wei Shao</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yuyin Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+C">Cihang Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.14858v1-abstract-short" style="display: inline;"> Similar to Vision Transformers, this paper identifies artifacts also present within the feature maps of Vision Mamba. These artifacts, corresponding to high-norm tokens emerging in low-information background areas of images, appear much more severe in Vision Mamba -- they exist prevalently even with the tiny-sized model and activate extensively across background regions. To mitigate this issue, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14858v1-abstract-full').style.display = 'inline'; document.getElementById('2405.14858v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.14858v1-abstract-full" style="display: none;"> Similar to Vision Transformers, this paper identifies artifacts also present within the feature maps of Vision Mamba. These artifacts, corresponding to high-norm tokens emerging in low-information background areas of images, appear much more severe in Vision Mamba -- they exist prevalently even with the tiny-sized model and activate extensively across background regions. To mitigate this issue, we follow the prior solution of introducing register tokens into Vision Mamba. To better cope with Mamba blocks&#39; uni-directional inference paradigm, two key modifications are introduced: 1) evenly inserting registers throughout the input token sequence, and 2) recycling registers for final decision predictions. We term this new architecture Mamba-R. Qualitative observations suggest, compared to vanilla Vision Mamba, Mamba-R&#39;s feature maps appear cleaner and more focused on semantically meaningful regions. Quantitatively, Mamba-R attains stronger performance and scales better. For example, on the ImageNet benchmark, our base-size Mamba-R attains 82.9% accuracy, significantly outperforming Vim-B&#39;s 81.8%; furthermore, we provide the first successful scaling to the large model size (i.e., with 341M parameters), attaining a competitive accuracy of 83.2% (84.5% if finetuned with 384x384 inputs). Additional validation on the downstream semantic segmentation task also supports Mamba-R&#39;s efficacy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.14858v1-abstract-full').style.display = 'none'; document.getElementById('2405.14858v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14248">arXiv:2404.14248</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14248">pdf</a>, <a href="https://arxiv.org/format/2404.14248">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> NTIRE 2024 Challenge on Low Light Image Enhancement: Methods and Results </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+X">Xiaoning Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+Z">Zongwei Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+A">Ao Li</a>, <a href="/search/cs?searchtype=author&amp;query=Vasluianu%2C+F">Florin-Alexandru Vasluianu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yulun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Gu%2C+S">Shuhang Gu</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+L">Le Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+C">Ce Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Timofte%2C+R">Radu Timofte</a>, <a href="/search/cs?searchtype=author&amp;query=Jin%2C+Z">Zhi Jin</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+H">Hongjun Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+C">Chenxi Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Ling%2C+H">Haitao Ling</a>, <a href="/search/cs?searchtype=author&amp;query=Cai%2C+Y">Yuanhao Cai</a>, <a href="/search/cs?searchtype=author&amp;query=Bian%2C+H">Hao Bian</a>, <a href="/search/cs?searchtype=author&amp;query=Zheng%2C+Y">Yuxin Zheng</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+J">Jing Lin</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Shao%2C+B">Ben Shao</a>, <a href="/search/cs?searchtype=author&amp;query=Guo%2C+J">Jin Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+T">Tianli Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wu%2C+M">Mohao Wu</a>, <a href="/search/cs?searchtype=author&amp;query=Feng%2C+Y">Yixu Feng</a>, <a href="/search/cs?searchtype=author&amp;query=Hou%2C+S">Shuo Hou</a>, <a href="/search/cs?searchtype=author&amp;query=Lin%2C+H">Haotian Lin</a> , et al. (87 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14248v1-abstract-short" style="display: inline;"> This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of generating brighter, clearer, and visually appealing results when dealing with a variety of conditions, including ultra-high resolution (4K and beyond), non-uniform illumination, backlig&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14248v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14248v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14248v1-abstract-full" style="display: none;"> This paper reviews the NTIRE 2024 low light image enhancement challenge, highlighting the proposed solutions and results. The aim of this challenge is to discover an effective network design or solution capable of generating brighter, clearer, and visually appealing results when dealing with a variety of conditions, including ultra-high resolution (4K and beyond), non-uniform illumination, backlighting, extreme darkness, and night scenes. A notable total of 428 participants registered for the challenge, with 22 teams ultimately making valid submissions. This paper meticulously evaluates the state-of-the-art advancements in enhancing low-light images, reflecting the significant progress and creativity in this field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14248v1-abstract-full').style.display = 'none'; document.getElementById('2404.14248v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">NTIRE 2024 Challenge Report</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.05626">arXiv:2404.05626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.05626">pdf</a>, <a href="https://arxiv.org/format/2404.05626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning a Category-level Object Pose Estimator without Pose Annotations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Tian%2C+F">Fengrui Tian</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yaoyao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Kortylewski%2C+A">Adam Kortylewski</a>, <a href="/search/cs?searchtype=author&amp;query=Duan%2C+Y">Yueqi Duan</a>, <a href="/search/cs?searchtype=author&amp;query=Du%2C+S">Shaoyi Du</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+A">Angtian Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.05626v1-abstract-short" style="display: inline;"> 3D object pose estimation is a challenging task. Previous works always require thousands of object images with annotated poses for learning the 3D pose correspondence, which is laborious and time-consuming for labeling. In this paper, we propose to learn a category-level 3D object pose estimator without pose annotations. Instead of using manually annotated images, we leverage diffusion models (e.g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05626v1-abstract-full').style.display = 'inline'; document.getElementById('2404.05626v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.05626v1-abstract-full" style="display: none;"> 3D object pose estimation is a challenging task. Previous works always require thousands of object images with annotated poses for learning the 3D pose correspondence, which is laborious and time-consuming for labeling. In this paper, we propose to learn a category-level 3D object pose estimator without pose annotations. Instead of using manually annotated images, we leverage diffusion models (e.g., Zero-1-to-3) to generate a set of images under controlled pose differences and propose to learn our object pose estimator with those images. Directly using the original diffusion model leads to images with noisy poses and artifacts. To tackle this issue, firstly, we exploit an image encoder, which is learned from a specially designed contrastive pose learning, to filter the unreasonable details and extract image feature maps. Additionally, we propose a novel learning strategy that allows the model to learn object poses from those generated image sets without knowing the alignment of their canonical poses. Experimental results show that our method has the capability of category-level object pose estimation from a single shot setting (as pose definition), while significantly outperforming other state-of-the-art methods on the few-shot category-level object pose estimation benchmarks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.05626v1-abstract-full').style.display = 'none'; document.getElementById('2404.05626v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.02132">arXiv:2404.02132</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.02132">pdf</a>, <a href="https://arxiv.org/format/2404.02132">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> ViTamin: Designing Scalable Vision Models in the Vision-Language Era </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jieneng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Q">Qihang Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Shen%2C+X">Xiaohui Shen</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+L">Liang-Chieh Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.02132v2-abstract-short" style="display: inline;"> Recent breakthroughs in vision-language models (VLMs) start a new page in the vision community. The VLMs provide stronger and more generalizable feature embeddings compared to those from ImageNet-pretrained models, thanks to the training on the large-scale Internet image-text pairs. However, despite the amazing achievement from the VLMs, vanilla Vision Transformers (ViTs) remain the default choice&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02132v2-abstract-full').style.display = 'inline'; document.getElementById('2404.02132v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.02132v2-abstract-full" style="display: none;"> Recent breakthroughs in vision-language models (VLMs) start a new page in the vision community. The VLMs provide stronger and more generalizable feature embeddings compared to those from ImageNet-pretrained models, thanks to the training on the large-scale Internet image-text pairs. However, despite the amazing achievement from the VLMs, vanilla Vision Transformers (ViTs) remain the default choice for the image encoder. Although pure transformer proves its effectiveness in the text encoding area, it remains questionable whether it is also the case for image encoding, especially considering that various types of networks are proposed on the ImageNet benchmark, which, unfortunately, are rarely studied in VLMs. Due to small data/model scale, the original conclusions of model design on ImageNet can be limited and biased. In this paper, we aim at building an evaluation protocol of vision models in the vision-language era under the contrastive language-image pretraining (CLIP) framework. We provide a comprehensive way to benchmark different vision models, covering their zero-shot performance and scalability in both model and training data sizes. To this end, we introduce ViTamin, a new vision models tailored for VLMs. ViTamin-L significantly outperforms ViT-L by 2.0% ImageNet zero-shot accuracy, when using the same publicly available DataComp-1B dataset and the same OpenCLIP training scheme. ViTamin-L presents promising results on 60 diverse benchmarks, including classification, retrieval, open-vocabulary detection and segmentation, and large multi-modal models. When further scaling up the model size, our ViTamin-XL with only 436M parameters attains 82.9% ImageNet zero-shot accuracy, surpassing 82.0% achieved by EVA-E that has ten times more parameters (4.4B). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.02132v2-abstract-full').style.display = 'none'; document.getElementById('2404.02132v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2024; https://github.com/Beckschen/ViTamin</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08689">arXiv:2403.08689</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.08689">pdf</a>, <a href="https://arxiv.org/format/2403.08689">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Exploiting Structural Consistency of Chest Anatomy for Unsupervised Anomaly Detection in Radiography Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xiang%2C+T">Tiange Xiang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yixiao Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yongyi Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+C">Chaoyi Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Cai%2C+W">Weidong Cai</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08689v1-abstract-short" style="display: inline;"> Radiography imaging protocols focus on particular body regions, therefore producing images of great similarity and yielding recurrent anatomical structures across patients. Exploiting this structured information could potentially ease the detection of anomalies from radiography images. To this end, we propose a Simple Space-Aware Memory Matrix for In-painting and Detecting anomalies from radiograp&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08689v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08689v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08689v1-abstract-full" style="display: none;"> Radiography imaging protocols focus on particular body regions, therefore producing images of great similarity and yielding recurrent anatomical structures across patients. Exploiting this structured information could potentially ease the detection of anomalies from radiography images. To this end, we propose a Simple Space-Aware Memory Matrix for In-painting and Detecting anomalies from radiography images (abbreviated as SimSID). We formulate anomaly detection as an image reconstruction task, consisting of a space-aware memory matrix and an in-painting block in the feature space. During the training, SimSID can taxonomize the ingrained anatomical structures into recurrent visual patterns, and in the inference, it can identify anomalies (unseen/modified visual patterns) from the test image. Our SimSID surpasses the state of the arts in unsupervised anomaly detection by +8.0%, +5.0%, and +9.9% AUC scores on ZhangLab, COVIDx, and CheXpert benchmark datasets, respectively. Code: https://github.com/MrGiovanni/SimSID <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08689v1-abstract-full').style.display = 'none'; document.getElementById('2403.08689v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI). arXiv admin note: substantial text overlap with arXiv:2111.13495</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.07277">arXiv:2403.07277</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.07277">pdf</a>, <a href="https://arxiv.org/format/2403.07277">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> A Bayesian Approach to OOD Robustness in Image Classification </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kaushik%2C+P">Prakhar Kaushik</a>, <a href="/search/cs?searchtype=author&amp;query=Kortylewski%2C+A">Adam Kortylewski</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.07277v1-abstract-short" style="display: inline;"> An important and unsolved problem in computer vision is to ensure that the algorithms are robust to changes in image domains. We address this problem in the scenario where we have access to images from the target domains but no annotations. Motivated by the challenges of the OOD-CV benchmark where we encounter real world Out-of-Domain (OOD) nuisances and occlusion, we introduce a novel Bayesian ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07277v1-abstract-full').style.display = 'inline'; document.getElementById('2403.07277v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.07277v1-abstract-full" style="display: none;"> An important and unsolved problem in computer vision is to ensure that the algorithms are robust to changes in image domains. We address this problem in the scenario where we have access to images from the target domains but no annotations. Motivated by the challenges of the OOD-CV benchmark where we encounter real world Out-of-Domain (OOD) nuisances and occlusion, we introduce a novel Bayesian approach to OOD robustness for object classification. Our work extends Compositional Neural Networks (CompNets), which have been shown to be robust to occlusion but degrade badly when tested on OOD data. We exploit the fact that CompNets contain a generative head defined over feature vectors represented by von Mises-Fisher (vMF) kernels, which correspond roughly to object parts, and can be learned without supervision. We obverse that some vMF kernels are similar between different domains, while others are not. This enables us to learn a transitional dictionary of vMF kernels that are intermediate between the source and target domains and train the generative model on this dictionary using the annotations on the source domain, followed by iterative refinement. This approach, termed Unsupervised Generative Transition (UGT), performs very well in OOD scenarios even when occlusion is present. UGT is evaluated on different OOD benchmarks including the OOD-CV dataset, several popular datasets (e.g., ImageNet-C [9]), artificial image corruptions (including adding occluders), and synthetic-to-real domain transfer, and does well in all scenarios outperforming SOTA alternatives (e.g. up to 10% top-1 accuracy on Occluded OOD-CV dataset). <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.07277v1-abstract-full').style.display = 'none'; document.getElementById('2403.07277v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">CVPR 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.06459">arXiv:2403.06459</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.06459">pdf</a>, <a href="https://arxiv.org/format/2403.06459">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> From Pixel to Cancer: Cellular Automata in Computed Tomography </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Lai%2C+Y">Yuxiang Lai</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xiaoxi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+A">Angtian Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.06459v2-abstract-short" style="display: inline;"> AI for cancer detection encounters the bottleneck of data scarcity, annotation difficulty, and low prevalence of early tumors. Tumor synthesis seeks to create artificial tumors in medical images, which can greatly diversify the data and annotations for AI training. However, current tumor synthesis approaches are not applicable across different organs due to their need for specific expertise and de&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06459v2-abstract-full').style.display = 'inline'; document.getElementById('2403.06459v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.06459v2-abstract-full" style="display: none;"> AI for cancer detection encounters the bottleneck of data scarcity, annotation difficulty, and low prevalence of early tumors. Tumor synthesis seeks to create artificial tumors in medical images, which can greatly diversify the data and annotations for AI training. However, current tumor synthesis approaches are not applicable across different organs due to their need for specific expertise and design. This paper establishes a set of generic rules to simulate tumor development. Each cell (pixel) is initially assigned a state between zero and ten to represent the tumor population, and a tumor can be developed based on three rules to describe the process of growth, invasion, and death. We apply these three generic rules to simulate tumor development--from pixel to cancer--using cellular automata. We then integrate the tumor state into the original computed tomography (CT) images to generate synthetic tumors across different organs. This tumor synthesis approach allows for sampling tumors at multiple stages and analyzing tumor-organ interaction. Clinically, a reader study involving three expert radiologists reveals that the synthetic tumors and their developing trajectories are convincingly realistic. Technically, we analyze and simulate tumor development at various stages using 9,262 raw, unlabeled CT images sourced from 68 hospitals worldwide. The performance in segmenting tumors in the liver, pancreas, and kidneys exceeds prevailing literature benchmarks, underlining the immense potential of tumor synthesis, especially for earlier cancer detection. The code and models are available at https://github.com/MrGiovanni/Pixel2Cancer <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.06459v2-abstract-full').style.display = 'none'; document.getElementById('2403.06459v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 11 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Early accepted to MICCAI 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.04116">arXiv:2403.04116</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.04116">pdf</a>, <a href="https://arxiv.org/format/2403.04116">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Cai%2C+Y">Yuanhao Cai</a>, <a href="/search/cs?searchtype=author&amp;query=Liang%2C+Y">Yixun Liang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+J">Jiahao Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+A">Angtian Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yulun Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Yang%2C+X">Xiaokang Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.04116v3-abstract-short" style="display: inline;"> X-ray is widely applied for transmission imaging due to its stronger penetration than natural light. When rendering novel view X-ray projections, existing methods mainly based on NeRF suffer from long training time and slow inference speed. In this paper, we propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we redesign a radiative Gaussian&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04116v3-abstract-full').style.display = 'inline'; document.getElementById('2403.04116v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.04116v3-abstract-full" style="display: none;"> X-ray is widely applied for transmission imaging due to its stronger penetration than natural light. When rendering novel view X-ray projections, existing methods mainly based on NeRF suffer from long training time and slow inference speed. In this paper, we propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we redesign a radiative Gaussian point cloud model inspired by the isotropic nature of X-ray imaging. Our model excludes the influence of view direction when learning to predict the radiation intensity of 3D points. Based on this model, we develop a Differentiable Radiative Rasterization (DRR) with CUDA implementation. Secondly, we customize an Angle-pose Cuboid Uniform Initialization (ACUI) strategy that directly uses the parameters of the X-ray scanner to compute the camera information and then uniformly samples point positions within a cuboid enclosing the scanned object. Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73x inference speed. The application on sparse-view CT reconstruction also reveals the practical values of our method. Code is publicly available at https://github.com/caiyuanhao1998/X-Gaussian . A video demo of the training process visualization is at https://www.youtube.com/watch?v=gDVf_Ngeghg . <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.04116v3-abstract-full').style.display = 'none'; document.getElementById('2403.04116v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ECCV 2024; The first 3D Gaussian Splatting-based method for X-ray 3D reconstruction</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.19470">arXiv:2402.19470</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.19470">pdf</a>, <a href="https://arxiv.org/format/2402.19470">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Towards Generalizable Tumor Synthesis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Chen%2C+Q">Qi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xiaoxi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Song%2C+H">Haorui Song</a>, <a href="/search/cs?searchtype=author&amp;query=Xiong%2C+Z">Zhiwei Xiong</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+C">Chen Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.19470v2-abstract-short" style="display: inline;"> Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation. However, success in tumor synthesis hinges on creating visually realistic tumors that are generalizable across multiple organs and, furthermore, the resulting AI models being capable of detecting real tumors in images sourced from different domai&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19470v2-abstract-full').style.display = 'inline'; document.getElementById('2402.19470v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.19470v2-abstract-full" style="display: none;"> Tumor synthesis enables the creation of artificial tumors in medical images, facilitating the training of AI models for tumor detection and segmentation. However, success in tumor synthesis hinges on creating visually realistic tumors that are generalizable across multiple organs and, furthermore, the resulting AI models being capable of detecting real tumors in images sourced from different domains (e.g., hospitals). This paper made a progressive stride toward generalizable tumor synthesis by leveraging a critical observation: early-stage tumors (&lt; 2cm) tend to have similar imaging characteristics in computed tomography (CT), whether they originate in the liver, pancreas, or kidneys. We have ascertained that generative AI models, e.g., Diffusion Models, can create realistic tumors generalized to a range of organs even when trained on a limited number of tumor examples from only one organ. Moreover, we have shown that AI models trained on these synthetic tumors can be generalized to detect and segment real tumors from CT volumes, encompassing a broad spectrum of patient demographics, imaging protocols, and healthcare facilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19470v2-abstract-full').style.display = 'none'; document.getElementById('2402.19470v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The IEEE / CVF Computer Vision and Pattern Recognition Conference (CVPR 2024)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.19423">arXiv:2402.19423</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.19423">pdf</a>, <a href="https://arxiv.org/format/2402.19423">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Leveraging AI Predicted and Expert Revised Annotations in Interactive Segmentation: Continual Tuning or Full Training? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+T">Tiezheng Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+X">Xiaoxi Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Qu%2C+C">Chongyu Qu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Zongwei Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.19423v1-abstract-short" style="display: inline;"> Interactive segmentation, an integration of AI algorithms and human expertise, premises to improve the accuracy and efficiency of curating large-scale, detailed-annotated datasets in healthcare. Human experts revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from these revised annotations. This interactive process continues to enhance the quality of annot&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19423v1-abstract-full').style.display = 'inline'; document.getElementById('2402.19423v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.19423v1-abstract-full" style="display: none;"> Interactive segmentation, an integration of AI algorithms and human expertise, premises to improve the accuracy and efficiency of curating large-scale, detailed-annotated datasets in healthcare. Human experts revise the annotations predicted by AI, and in turn, AI improves its predictions by learning from these revised annotations. This interactive process continues to enhance the quality of annotations until no major revision is needed from experts. The key challenge is how to leverage AI predicted and expert revised annotations to iteratively improve the AI. Two problems arise: (1) The risk of catastrophic forgetting--the AI tends to forget the previously learned classes if it is only retrained using the expert revised classes. (2) Computational inefficiency when retraining the AI using both AI predicted and expert revised annotations; moreover, given the dominant AI predicted annotations in the dataset, the contribution of newly revised annotations--often account for a very small fraction--to the AI training remains marginal. This paper proposes Continual Tuning to address the problems from two perspectives: network design and data reuse. Firstly, we design a shared network for all classes followed by class-specific networks dedicated to individual classes. To mitigate forgetting, we freeze the shared network for previously learned classes and only update the class-specific network for revised classes. Secondly, we reuse a small fraction of data with previous annotations to avoid over-computing. The selection of such data relies on the importance estimate of each data. The importance score is computed by combining the uncertainty and consistency of AI predictions. Our experiments demonstrate that Continual Tuning achieves a speed 16x greater than repeatedly training AI from scratch without compromising the performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19423v1-abstract-full').style.display = 'none'; document.getElementById('2402.19423v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IEEE International Symposium on Biomedical Imaging (ISBI)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.10896">arXiv:2402.10896</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.10896">pdf</a>, <a href="https://arxiv.org/format/2402.10896">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> PaLM2-VAdapter: Progressively Aligned Language Model Makes a Strong Vision-language Adapter </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+J">Junfei Xiao</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Z">Zheng Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Yan%2C+S">Shen Yan</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+B">Boyu Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.10896v2-abstract-short" style="display: inline;"> This paper demonstrates that a progressively aligned language model can effectively bridge frozen vision encoders and large language models (LLMs). While the fundamental architecture and pre-training methods of vision encoders and LLMs have been extensively studied, the architecture and training strategy of vision-language adapters vary significantly across recent works. Our research undertakes a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10896v2-abstract-full').style.display = 'inline'; document.getElementById('2402.10896v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.10896v2-abstract-full" style="display: none;"> This paper demonstrates that a progressively aligned language model can effectively bridge frozen vision encoders and large language models (LLMs). While the fundamental architecture and pre-training methods of vision encoders and LLMs have been extensively studied, the architecture and training strategy of vision-language adapters vary significantly across recent works. Our research undertakes a thorough exploration of the state-of-the-art perceiver resampler architecture and builds a strong baseline. However, we observe that the vision-language alignment with perceiver resampler exhibits slow convergence and limited scalability with a lack of direct supervision. To address this issue, we propose PaLM2-VAdapter, employing a progressively aligned language model as the vision-language adapter. Compared to the strong baseline with perceiver resampler, our method empirically shows faster convergence, higher performance, and stronger scalability. Extensive experiments across various Visual Question Answering (VQA) and captioning tasks on both images and videos demonstrate that our model exhibits state-of-the-art visual understanding and multi-modal reasoning capabilities. Notably, our method achieves these advancements with 30~70% fewer parameters than the state-of-the-art large vision-language models, marking a significant efficiency improvement. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.10896v2-abstract-full').style.display = 'none'; document.getElementById('2402.10896v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Technical report, 15 pages; v2 fix typos, add additional results in appendix</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.10848">arXiv:2401.10848</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.10848">pdf</a>, <a href="https://arxiv.org/format/2401.10848">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Source-Free and Image-Only Unsupervised Domain Adaptation for Category Level Object Pose Estimation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Kaushik%2C+P">Prakhar Kaushik</a>, <a href="/search/cs?searchtype=author&amp;query=Mishra%2C+A">Aayush Mishra</a>, <a href="/search/cs?searchtype=author&amp;query=Kortylewski%2C+A">Adam Kortylewski</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.10848v1-abstract-short" style="display: inline;"> We consider the problem of source-free unsupervised category-level pose estimation from only RGB images to a target domain without any access to source domain data or 3D annotations during adaptation. Collecting and annotating real-world 3D data and corresponding images is laborious, expensive, yet unavoidable process, since even 3D pose domain adaptation methods require 3D data in the target doma&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10848v1-abstract-full').style.display = 'inline'; document.getElementById('2401.10848v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.10848v1-abstract-full" style="display: none;"> We consider the problem of source-free unsupervised category-level pose estimation from only RGB images to a target domain without any access to source domain data or 3D annotations during adaptation. Collecting and annotating real-world 3D data and corresponding images is laborious, expensive, yet unavoidable process, since even 3D pose domain adaptation methods require 3D data in the target domain. We introduce 3DUDA, a method capable of adapting to a nuisance-ridden target domain without 3D or depth data. Our key insight stems from the observation that specific object subparts remain stable across out-of-domain (OOD) scenarios, enabling strategic utilization of these invariant subcomponents for effective model updates. We represent object categories as simple cuboid meshes, and harness a generative model of neural feature activations modeled at each mesh vertex learnt using differential rendering. We focus on individual locally robust mesh vertex features and iteratively update them based on their proximity to corresponding features in the target domain even when the global pose is not correct. Our model is then trained in an EM fashion, alternating between updating the vertex features and the feature extractor. We show that our method simulates fine-tuning on a global pseudo-labeled dataset under mild assumptions, which converges to the target domain asymptotically. Through extensive empirical validation, including a complex extreme UDA setup which combines real nuisances, synthetic noise, and occlusion, we demonstrate the potency of our simple approach in addressing the domain shift challenge and significantly improving pose estimation accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.10848v1-abstract-full').style.display = 'none'; document.getElementById('2401.10848v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 9 figures, 50 tables; ICLR 2024 (Poster)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.02931">arXiv:2401.02931</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.02931">pdf</a>, <a href="https://arxiv.org/format/2401.02931">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> SPFormer: Enhancing Vision Transformer with Superpixel Representation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Mei%2C+J">Jieru Mei</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+L">Liang-Chieh Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+C">Cihang Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.02931v1-abstract-short" style="display: inline;"> In this work, we introduce SPFormer, a novel Vision Transformer enhanced by superpixel representation. Addressing the limitations of traditional Vision Transformers&#39; fixed-size, non-adaptive patch partitioning, SPFormer employs superpixels that adapt to the image&#39;s content. This approach divides the image into irregular, semantically coherent regions, effectively capturing intricate details and ap&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02931v1-abstract-full').style.display = 'inline'; document.getElementById('2401.02931v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.02931v1-abstract-full" style="display: none;"> In this work, we introduce SPFormer, a novel Vision Transformer enhanced by superpixel representation. Addressing the limitations of traditional Vision Transformers&#39; fixed-size, non-adaptive patch partitioning, SPFormer employs superpixels that adapt to the image&#39;s content. This approach divides the image into irregular, semantically coherent regions, effectively capturing intricate details and applicable at both initial and intermediate feature levels. SPFormer, trainable end-to-end, exhibits superior performance across various benchmarks. Notably, it exhibits significant improvements on the challenging ImageNet benchmark, achieving a 1.4% increase over DeiT-T and 1.1% over DeiT-S respectively. A standout feature of SPFormer is its inherent explainability. The superpixel structure offers a window into the model&#39;s internal processes, providing valuable insights that enhance the model&#39;s interpretability. This level of clarity significantly improves SPFormer&#39;s robustness, particularly in challenging scenarios such as image rotations and occlusions, demonstrating its adaptability and resilience. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.02931v1-abstract-full').style.display = 'none'; document.getElementById('2401.02931v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.17192">arXiv:2312.17192</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.17192">pdf</a>, <a href="https://arxiv.org/format/2312.17192">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> HISR: Hybrid Implicit Surface Representation for Photorealistic 3D Human Reconstruction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+A">Angtian Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Xu%2C+Y">Yuanlu Xu</a>, <a href="/search/cs?searchtype=author&amp;query=Sarafianos%2C+N">Nikolaos Sarafianos</a>, <a href="/search/cs?searchtype=author&amp;query=Maier%2C+R">Robert Maier</a>, <a href="/search/cs?searchtype=author&amp;query=Boyer%2C+E">Edmond Boyer</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Tung%2C+T">Tony Tung</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.17192v1-abstract-short" style="display: inline;"> Neural reconstruction and rendering strategies have demonstrated state-of-the-art performances due, in part, to their ability to preserve high level shape details. Existing approaches, however, either represent objects as implicit surface functions or neural volumes and still struggle to recover shapes with heterogeneous materials, in particular human skin, hair or clothes. To this aim, we present&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17192v1-abstract-full').style.display = 'inline'; document.getElementById('2312.17192v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.17192v1-abstract-full" style="display: none;"> Neural reconstruction and rendering strategies have demonstrated state-of-the-art performances due, in part, to their ability to preserve high level shape details. Existing approaches, however, either represent objects as implicit surface functions or neural volumes and still struggle to recover shapes with heterogeneous materials, in particular human skin, hair or clothes. To this aim, we present a new hybrid implicit surface representation to model human shapes. This representation is composed of two surface layers that represent opaque and translucent regions on the clothed human body. We segment different regions automatically using visual cues and learn to reconstruct two signed distance functions (SDFs). We perform surface-based rendering on opaque regions (e.g., body, face, clothes) to preserve high-fidelity surface normals and volume rendering on translucent regions (e.g., hair). Experiments demonstrate that our approach obtains state-of-the-art results on 3D human reconstructions, and also shows competitive performances on other objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.17192v1-abstract-full').style.display = 'none'; document.getElementById('2312.17192v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by AAAI 2024 main track</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.13764">arXiv:2312.13764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.13764">pdf</a>, <a href="https://arxiv.org/format/2312.13764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> A Semantic Space is Worth 256 Language Descriptions: Make Stronger Segmentation Models with Descriptive Properties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+J">Junfei Xiao</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Z">Ziqi Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+W">Wenxuan Li</a>, <a href="/search/cs?searchtype=author&amp;query=Lan%2C+S">Shiyi Lan</a>, <a href="/search/cs?searchtype=author&amp;query=Mei%2C+J">Jieru Mei</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Z">Zhiding Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Zhou%2C+Y">Yuyin Zhou</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+C">Cihang Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.13764v3-abstract-short" style="display: inline;"> This paper introduces ProLab, a novel approach using property-level label space for creating strong interpretable segmentation models. Instead of relying solely on category-specific annotations, ProLab uses descriptive properties grounded in common sense knowledge for supervising segmentation models. It is based on two core designs. First, we employ Large Language Models (LLMs) and carefully craft&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13764v3-abstract-full').style.display = 'inline'; document.getElementById('2312.13764v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.13764v3-abstract-full" style="display: none;"> This paper introduces ProLab, a novel approach using property-level label space for creating strong interpretable segmentation models. Instead of relying solely on category-specific annotations, ProLab uses descriptive properties grounded in common sense knowledge for supervising segmentation models. It is based on two core designs. First, we employ Large Language Models (LLMs) and carefully crafted prompts to generate descriptions of all involved categories that carry meaningful common sense knowledge and follow a structured format. Second, we introduce a description embedding model preserving semantic correlation across descriptions and then cluster them into a set of descriptive properties (e.g., 256) using K-Means. These properties are based on interpretable common sense knowledge consistent with theories of human recognition. We empirically show that our approach makes segmentation models perform stronger on five classic benchmarks (e.g., ADE20K, COCO-Stuff, Pascal Context, Cityscapes, and BDD). Our method also shows better scalability with extended training steps than category-level supervision. Our interpretable segmentation framework also emerges with the generalization ability to segment out-of-domain or unknown categories using only in-domain descriptive properties. Code is available at https://github.com/lambert-x/ProLab. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.13764v3-abstract-full').style.display = 'none'; document.getElementById('2312.13764v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to ECCV 2024. Code is available at https://github.com/lambert-x/ProLab</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09481">arXiv:2312.09481</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09481">pdf</a>, <a href="https://arxiv.org/format/2312.09481">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Continual Adversarial Defense </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Q">Qian Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yaoyao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Ling%2C+H">Hefei Ling</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Y">Yingwei Li</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Q">Qihao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+P">Ping Li</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jiazhong Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+N">Ning Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09481v4-abstract-short" style="display: inline;"> In response to the rapidly evolving nature of adversarial attacks against visual classifiers on a monthly basis, numerous defenses have been proposed to generalize against as many known attacks as possible. However, designing a defense method that generalizes to all types of attacks is not realistic because the environment in which defense systems operate is dynamic and comprises various unique at&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09481v4-abstract-full').style.display = 'inline'; document.getElementById('2312.09481v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09481v4-abstract-full" style="display: none;"> In response to the rapidly evolving nature of adversarial attacks against visual classifiers on a monthly basis, numerous defenses have been proposed to generalize against as many known attacks as possible. However, designing a defense method that generalizes to all types of attacks is not realistic because the environment in which defense systems operate is dynamic and comprises various unique attacks that emerge as time goes on. A well-matched approach to the dynamic environment lies in a defense system that continuously collects adversarial data online to quickly improve itself. Therefore, we put forward a practical defense deployment against a challenging threat model and propose, for the first time, the Continual Adversarial Defense (CAD) framework that adapts to attack sequences under four principles: (1) continual adaptation to new attacks without catastrophic forgetting, (2) few-shot adaptation, (3) memory-efficient adaptation, and (4) high accuracy on both clean and adversarial data. We explore and integrate cutting-edge continual learning, few-shot learning, and ensemble learning techniques to qualify the principles. Extensive experiments validate the effectiveness of our approach against multiple stages of modern adversarial attacks and demonstrate significant improvements over numerous baseline methods. In particular, CAD is capable of quickly adapting with minimal budget and a low cost of defense failure while maintaining good performance against previous attacks. Our research sheds light on a brand-new paradigm for continual defense adaptation against dynamic and evolving attacks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09481v4-abstract-full').style.display = 'none'; document.getElementById('2312.09481v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06685">arXiv:2312.06685</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06685">pdf</a>, <a href="https://arxiv.org/format/2312.06685">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Causal-CoG: A Causal-Effect Look at Context Generation for Boosting Multi-modal Language Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Zhao%2C+S">Shitian Zhao</a>, <a href="/search/cs?searchtype=author&amp;query=Li%2C+Z">Zhuowan Li</a>, <a href="/search/cs?searchtype=author&amp;query=Lu%2C+Y">Yadong Lu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Y">Yan Wang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06685v1-abstract-short" style="display: inline;"> While Multi-modal Language Models (MLMs) demonstrate impressive multimodal ability, they still struggle on providing factual and precise responses for tasks like visual question answering (VQA). In this paper, we address this challenge from the perspective of contextual information. We propose Causal Context Generation, Causal-CoG, which is a prompting strategy that engages contextual information&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06685v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06685v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06685v1-abstract-full" style="display: none;"> While Multi-modal Language Models (MLMs) demonstrate impressive multimodal ability, they still struggle on providing factual and precise responses for tasks like visual question answering (VQA). In this paper, we address this challenge from the perspective of contextual information. We propose Causal Context Generation, Causal-CoG, which is a prompting strategy that engages contextual information to enhance precise VQA during inference. Specifically, we prompt MLMs to generate contexts, i.e, text description of an image, and engage the generated contexts for question answering. Moreover, we investigate the advantage of contexts on VQA from a causality perspective, introducing causality filtering to select samples for which contextual information is helpful. To show the effectiveness of Causal-CoG, we run extensive experiments on 10 multimodal benchmarks and show consistent improvements, e.g., +6.30% on POPE, +13.69% on Vizwiz and +6.43% on VQAv2 compared to direct decoding, surpassing existing methods. We hope Casual-CoG inspires explorations of context knowledge in multimodal models, and serves as a plug-and-play strategy for MLM decoding. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06685v1-abstract-full').style.display = 'none'; document.getElementById('2312.06685v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.02147">arXiv:2312.02147</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.02147">pdf</a>, <a href="https://arxiv.org/format/2312.02147">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Rejuvenating image-GPT as Strong Visual Representation Learners </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Ren%2C+S">Sucheng Ren</a>, <a href="/search/cs?searchtype=author&amp;query=Wang%2C+Z">Zeyu Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+H">Hongru Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+J">Junfei Xiao</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Xie%2C+C">Cihang Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.02147v2-abstract-short" style="display: inline;"> This paper enhances image-GPT (iGPT), one of the pioneering works that introduce autoregressive pretraining to predict the next pixels for visual representation learning. Two simple yet essential changes are made. First, we shift the prediction target from raw pixels to semantic tokens, enabling a higher-level understanding of visual content. Second, we supplement the autoregressive modeling by in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02147v2-abstract-full').style.display = 'inline'; document.getElementById('2312.02147v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.02147v2-abstract-full" style="display: none;"> This paper enhances image-GPT (iGPT), one of the pioneering works that introduce autoregressive pretraining to predict the next pixels for visual representation learning. Two simple yet essential changes are made. First, we shift the prediction target from raw pixels to semantic tokens, enabling a higher-level understanding of visual content. Second, we supplement the autoregressive modeling by instructing the model to predict not only the next tokens but also the visible tokens. This pipeline is particularly effective when semantic tokens are encoded by discriminatively trained models, such as CLIP. We introduce this novel approach as D-iGPT. Extensive experiments showcase that D-iGPT excels as a strong learner of visual representations: A notable achievement is its compelling performance on the ImageNet-1K dataset -- by training on publicly available datasets, D-iGPT unprecedentedly achieves \textbf{90.0\%} top-1 accuracy with a vanilla ViT-H. Additionally, D-iGPT shows strong generalization on the downstream task. Code is available at https://github.com/OliverRensu/D-iGPT. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.02147v2-abstract-full').style.display = 'none'; document.getElementById('2312.02147v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper is accepted by ICML2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.01597">arXiv:2312.01597</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.01597">pdf</a>, <a href="https://arxiv.org/format/2312.01597">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> SCLIP: Rethinking Self-Attention for Dense Vision-Language Inference </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Wang%2C+F">Feng Wang</a>, <a href="/search/cs?searchtype=author&amp;query=Mei%2C+J">Jieru Mei</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.01597v4-abstract-short" style="display: inline;"> Recent advances in contrastive language-image pretraining (CLIP) have demonstrated strong capabilities in zero-shot classification by aligning visual representations with target text embeddings in an image level. However, in dense prediction tasks, CLIP often struggles to localize visual features within an image and fails to give accurate pixel-level predictions, which prevents it from functioning&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01597v4-abstract-full').style.display = 'inline'; document.getElementById('2312.01597v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.01597v4-abstract-full" style="display: none;"> Recent advances in contrastive language-image pretraining (CLIP) have demonstrated strong capabilities in zero-shot classification by aligning visual representations with target text embeddings in an image level. However, in dense prediction tasks, CLIP often struggles to localize visual features within an image and fails to give accurate pixel-level predictions, which prevents it from functioning as a generalized visual foundation model. In this work, we aim to enhance CLIP&#39;s potential for semantic segmentation with minimal modifications to its pretrained models. By rethinking self-attention, we surprisingly find that CLIP can adapt to dense prediction tasks by simply introducing a novel Correlative Self-Attention (CSA) mechanism. Specifically, we replace the traditional self-attention block of CLIP vision encoder&#39;s last layer by our CSA module and reuse its pretrained projection matrices of query, key, and value, leading to a training-free adaptation approach for CLIP&#39;s zero-shot semantic segmentation. Extensive experiments show the advantage of CSA: we obtain a 38.2% average zero-shot mIoU across eight semantic segmentation benchmarks highlighted in this paper, significantly outperforming the existing SoTA&#39;s 33.9% and the vanilla CLIP&#39;s 14.1%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.01597v4-abstract-full').style.display = 'none'; document.getElementById('2312.01597v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">In ECCV 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00785">arXiv:2312.00785</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00785">pdf</a>, <a href="https://arxiv.org/format/2312.00785">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Sequential Modeling Enables Scalable Learning for Large Vision Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Bai%2C+Y">Yutong Bai</a>, <a href="/search/cs?searchtype=author&amp;query=Geng%2C+X">Xinyang Geng</a>, <a href="/search/cs?searchtype=author&amp;query=Mangalam%2C+K">Karttikeya Mangalam</a>, <a href="/search/cs?searchtype=author&amp;query=Bar%2C+A">Amir Bar</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Darrell%2C+T">Trevor Darrell</a>, <a href="/search/cs?searchtype=author&amp;query=Malik%2C+J">Jitendra Malik</a>, <a href="/search/cs?searchtype=author&amp;query=Efros%2C+A+A">Alexei A Efros</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00785v1-abstract-short" style="display: inline;"> We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data. To do this, we define a common format, &#34;visual sentences&#34;, in which we can represent raw images and videos as well as annotated data sources such as semantic segmentations and depth reconstructions without needing any meta-knowledge beyond the pixels. Once&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00785v1-abstract-full').style.display = 'inline'; document.getElementById('2312.00785v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00785v1-abstract-full" style="display: none;"> We introduce a novel sequential modeling approach which enables learning a Large Vision Model (LVM) without making use of any linguistic data. To do this, we define a common format, &#34;visual sentences&#34;, in which we can represent raw images and videos as well as annotated data sources such as semantic segmentations and depth reconstructions without needing any meta-knowledge beyond the pixels. Once this wide variety of visual data (comprising 420 billion tokens) is represented as sequences, the model can be trained to minimize a cross-entropy loss for next token prediction. By training across various scales of model architecture and data diversity, we provide empirical evidence that our models scale effectively. Many different vision tasks can be solved by designing suitable visual prompts at test time. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00785v1-abstract-full').style.display = 'none'; document.getElementById('2312.00785v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Website: https://yutongbai.com/lvm.html</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18661">arXiv:2311.18661</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18661">pdf</a>, <a href="https://arxiv.org/format/2311.18661">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Learning Part Segmentation from Synthetic Animals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Peng%2C+J">Jiawei Peng</a>, <a href="/search/cs?searchtype=author&amp;query=He%2C+J">Ju He</a>, <a href="/search/cs?searchtype=author&amp;query=Kaushik%2C+P">Prakhar Kaushik</a>, <a href="/search/cs?searchtype=author&amp;query=Xiao%2C+Z">Zihao Xiao</a>, <a href="/search/cs?searchtype=author&amp;query=Mu%2C+J">Jiteng Mu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18661v1-abstract-short" style="display: inline;"> Semantic part segmentation provides an intricate and interpretable understanding of an object, thereby benefiting numerous downstream tasks. However, the need for exhaustive annotations impedes its usage across diverse object types. This paper focuses on learning part segmentation from synthetic animals, leveraging the Skinned Multi-Animal Linear (SMAL) models to scale up existing synthetic data g&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18661v1-abstract-full').style.display = 'inline'; document.getElementById('2311.18661v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18661v1-abstract-full" style="display: none;"> Semantic part segmentation provides an intricate and interpretable understanding of an object, thereby benefiting numerous downstream tasks. However, the need for exhaustive annotations impedes its usage across diverse object types. This paper focuses on learning part segmentation from synthetic animals, leveraging the Skinned Multi-Animal Linear (SMAL) models to scale up existing synthetic data generated by computer-aided design (CAD) animal models. Compared to CAD models, SMAL models generate data with a wider range of poses observed in real-world scenarios. As a result, our first contribution is to construct a synthetic animal dataset of tigers and horses with more pose diversity, termed Synthetic Animal Parts (SAP). We then benchmark Syn-to-Real animal part segmentation from SAP to PartImageNet, namely SynRealPart, with existing semantic segmentation domain adaptation methods and further improve them as our second contribution. Concretely, we examine three Syn-to-Real adaptation methods but observe relative performance drop due to the innate difference between the two tasks. To address this, we propose a simple yet effective method called Class-Balanced Fourier Data Mixing (CB-FDM). Fourier Data Mixing aligns the spectral amplitudes of synthetic images with real images, thereby making the mixed images have more similar frequency content to real images. We further use Class-Balanced Pseudo-Label Re-Weighting to alleviate the imbalanced class distribution. We demonstrate the efficacy of CB-FDM on SynRealPart over previous methods with significant performance improvements. Remarkably, our third contribution is to reveal that the learned parts from synthetic tiger and horse are transferable across all quadrupeds in PartImageNet, further underscoring the utility and potential applications of animal part segmentation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18661v1-abstract-full').style.display = 'none'; document.getElementById('2311.18661v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18537">arXiv:2311.18537</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18537">pdf</a>, <a href="https://arxiv.org/format/2311.18537">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> A Simple Video Segmenter by Tracking Objects Along Axial Trajectories </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=He%2C+J">Ju He</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+Q">Qihang Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Shin%2C+I">Inkyu Shin</a>, <a href="/search/cs?searchtype=author&amp;query=Deng%2C+X">Xueqing Deng</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Shen%2C+X">Xiaohui Shen</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+L">Liang-Chieh Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18537v2-abstract-short" style="display: inline;"> Video segmentation requires consistently segmenting and tracking objects over time. Due to the quadratic dependency on input size, directly applying self-attention to video segmentation with high-resolution input features poses significant challenges, often leading to insufficient GPU memory capacity. Consequently, modern video segmenters either extend an image segmenter without incorporating any&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18537v2-abstract-full').style.display = 'inline'; document.getElementById('2311.18537v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18537v2-abstract-full" style="display: none;"> Video segmentation requires consistently segmenting and tracking objects over time. Due to the quadratic dependency on input size, directly applying self-attention to video segmentation with high-resolution input features poses significant challenges, often leading to insufficient GPU memory capacity. Consequently, modern video segmenters either extend an image segmenter without incorporating any temporal attention or resort to window space-time attention in a naive manner. In this work, we present Axial-VS, a general and simple framework that enhances video segmenters by tracking objects along axial trajectories. The framework tackles video segmentation through two sub-tasks: short-term within-clip segmentation and long-term cross-clip tracking. In the first step, Axial-VS augments an off-the-shelf clip-level video segmenter with the proposed axial-trajectory attention, sequentially tracking objects along the height- and width-trajectories within a clip, thereby enhancing temporal consistency by capturing motion trajectories. The axial decomposition significantly reduces the computational complexity for dense features, and outperforms the window space-time attention in segmentation quality. In the second step, we further employ axial-trajectory attention to the object queries in clip-level segmenters, which are learned to encode object information, thereby aiding object tracking across different clips and achieving consistent segmentation throughout the video. Without bells and whistles, Axial-VS showcases state-of-the-art results on video segmentation benchmarks, emphasizing its effectiveness in addressing the limitations of modern clip-level video segmenters. Code and models are available at https://github.com/TACJu/Axial-VS. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18537v2-abstract-full').style.display = 'none'; document.getElementById('2311.18537v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">The paper and model names have been updated to better reflect the methodological contributions</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.18266">arXiv:2311.18266</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.18266">pdf</a>, <a href="https://arxiv.org/format/2311.18266">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Prompt-Based Exemplar Super-Compression and Regeneration for Class-Incremental Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Duan%2C+R">Ruxiao Duan</a>, <a href="/search/cs?searchtype=author&amp;query=Liu%2C+Y">Yaoyao Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Chen%2C+J">Jieneng Chen</a>, <a href="/search/cs?searchtype=author&amp;query=Kortylewski%2C+A">Adam Kortylewski</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.18266v2-abstract-short" style="display: inline;"> Replay-based methods in class-incremental learning~(CIL) have attained remarkable success. Despite their effectiveness, the inherent memory restriction results in saving a limited number of exemplars with poor diversity. In this paper, we introduce PESCR, a novel approach that substantially increases the quantity and enhances the diversity of exemplars based on a pre-trained general-purpose diffus&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18266v2-abstract-full').style.display = 'inline'; document.getElementById('2311.18266v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.18266v2-abstract-full" style="display: none;"> Replay-based methods in class-incremental learning~(CIL) have attained remarkable success. Despite their effectiveness, the inherent memory restriction results in saving a limited number of exemplars with poor diversity. In this paper, we introduce PESCR, a novel approach that substantially increases the quantity and enhances the diversity of exemplars based on a pre-trained general-purpose diffusion model, without fine-tuning it on target datasets or storing it in the memory buffer. Images are compressed into visual and textual prompts, which are saved instead of the original images, decreasing memory consumption by a factor of 24. In subsequent phases, diverse exemplars are regenerated by the diffusion model. We further propose partial compression and diffusion-based data augmentation to minimize the domain gap between generated exemplars and real images. Comprehensive experiments demonstrate that PESCR significantly improves CIL performance across multiple benchmarks, e.g., 3.2% above the previous state-of-the-art on ImageNet-100. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.18266v2-abstract-full').style.display = 'none'; document.getElementById('2311.18266v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.17072">arXiv:2311.17072</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.17072">pdf</a>, <a href="https://arxiv.org/format/2311.17072">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Multimedia">cs.MM</span> </div> </div> <p class="title is-5 mathjax"> IG Captioner: Information Gain Captioners are Strong Zero-shot Classifiers </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Yang%2C+C">Chenglin Yang</a>, <a href="/search/cs?searchtype=author&amp;query=Qiao%2C+S">Siyuan Qiao</a>, <a href="/search/cs?searchtype=author&amp;query=Cao%2C+Y">Yuan Cao</a>, <a href="/search/cs?searchtype=author&amp;query=Zhang%2C+Y">Yu Zhang</a>, <a href="/search/cs?searchtype=author&amp;query=Zhu%2C+T">Tao Zhu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+J">Jiahui Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.17072v2-abstract-short" style="display: inline;"> Generative training has been demonstrated to be powerful for building visual-language models. However, on zero-shot discriminative benchmarks, there is still a performance gap between models trained with generative and discriminative objectives. In this paper, we aim to narrow this gap by improving the efficacy of generative training on classification tasks, without any finetuning processes or add&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17072v2-abstract-full').style.display = 'inline'; document.getElementById('2311.17072v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.17072v2-abstract-full" style="display: none;"> Generative training has been demonstrated to be powerful for building visual-language models. However, on zero-shot discriminative benchmarks, there is still a performance gap between models trained with generative and discriminative objectives. In this paper, we aim to narrow this gap by improving the efficacy of generative training on classification tasks, without any finetuning processes or additional modules. Specifically, we focus on narrowing the gap between the generative captioner and the CLIP classifier. We begin by analysing the predictions made by the captioner and classifier and observe that the caption generation inherits the distribution bias from the language model trained with pure text modality, making it less grounded on the visual signal. To tackle this problem, we redesign the scoring objective for the captioner to alleviate the distributional bias and focus on measuring the gain of information brought by the visual inputs. We further design a generative training objective to match the evaluation objective. We name our model trained and evaluated from the novel procedures as Information Gain (IG) captioner. We pretrain the models on the public Laion-5B dataset and perform a series of discriminative evaluations. For the zero-shot classification on ImageNet, IG captioner achieves $&gt; 18\%$ improvements over the standard captioner, achieving comparable performances with the CLIP classifier. IG captioner also demonstrated strong performance on zero-shot image-text retrieval tasks on MSCOCO and Flickr30K. We hope this paper inspires further research towards unifying generative and discriminative training procedures for visual-language models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.17072v2-abstract-full').style.display = 'none'; document.getElementById('2311.17072v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in ECCV 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.15551">arXiv:2311.15551</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.15551">pdf</a>, <a href="https://arxiv.org/format/2311.15551">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Image and Video Processing">eess.IV</span> </div> </div> <p class="title is-5 mathjax"> Instruct2Attack: Language-Guided Semantic Adversarial Attacks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&amp;query=Liu%2C+J">Jiang Liu</a>, <a href="/search/cs?searchtype=author&amp;query=Wei%2C+C">Chen Wei</a>, <a href="/search/cs?searchtype=author&amp;query=Guo%2C+Y">Yuxiang Guo</a>, <a href="/search/cs?searchtype=author&amp;query=Yu%2C+H">Heng Yu</a>, <a href="/search/cs?searchtype=author&amp;query=Yuille%2C+A">Alan Yuille</a>, <a href="/search/cs?searchtype=author&amp;query=Feizi%2C+S">Soheil Feizi</a>, <a href="/search/cs?searchtype=author&amp;query=Lau%2C+C+P">Chun Pong Lau</a>, <a href="/search/cs?searchtype=author&amp;query=Chellappa%2C+R">Rama Chellappa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.15551v1-abstract-short" style="display: inline;"> We propose Instruct2Attack (I2A), a language-guided semantic attack that generates semantically meaningful perturbations according to free-form language instructions. We make use of state-of-the-art latent diffusion models, where we adversarially guide the reverse diffusion process to search for an adversarial latent code conditioned on the input image and text instruction. Compared to existing no&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15551v1-abstract-full').style.display = 'inline'; document.getElementById('2311.15551v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.15551v1-abstract-full" style="display: none;"> We propose Instruct2Attack (I2A), a language-guided semantic attack that generates semantically meaningful perturbations according to free-form language instructions. We make use of state-of-the-art latent diffusion models, where we adversarially guide the reverse diffusion process to search for an adversarial latent code conditioned on the input image and text instruction. Compared to existing noise-based and semantic attacks, I2A generates more natural and diverse adversarial examples while providing better controllability and interpretability. We further automate the attack process with GPT-4 to generate diverse image-specific text instructions. We show that I2A can successfully break state-of-the-art deep neural networks even under strong adversarial defenses, and demonstrate great transferability among a variety of network architectures. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.15551v1-abstract-full').style.display = 'none'; document.getElementById('2311.15551v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">under submission, code coming soon</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Yuille%2C+A&amp;start=300" class="pagination-link " aria-label="Page 7" aria-current="page">7 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10