CINXE.COM

Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas - PMC

<!DOCTYPE html> <html lang="en" > <head > <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="HandheldFriendly" content="True" /> <meta name="MobileOptimized" content="320" /> <meta name="viewport" content="width=device-width, initial-scale=1.0" /> <link rel="stylesheet" href="/static/assets/style-70b9163a.css" /> <script type="module" crossorigin="" src="/static/assets/base_style-ec2bc71e.js"></script> <link rel="stylesheet" href="/static/assets/style-ef962842.css" /> <link rel="stylesheet" href="/static/assets/style-3ade8b5c.css" /> <script type="module" crossorigin="" src="/static/assets/article_style-d757a0dd.js"></script> <style> @media screen and (min-width: 64em) { div.pmc-wm { background: repeat-y; background-image: url("data:image/svg+xml,%3Csvg xmlns='http://www.w3.org/2000/svg' width='20' height='350' xmlns:xlink='http://www.w3.org/1999/xlink'%3E%3Cdefs%3E%3Cfilter x='-.02' y='0' width='1.05' height='1' id='c'%3E%3CfeFlood flood-color='%23FFF'/%3E%3CfeComposite in='SourceGraphic'/%3E%3C/filter%3E%3Ctext id='b' font-family='Helvetica' font-size='11pt' style='opacity:1;fill:%23005ea2;stroke:none;text-anchor:middle' x='175' y='14'%3E%3C/text%3E%3Cpath id='a' style='fill:%23005ea2' d='M0 8h350v3H0z'/%3E%3C/defs%3E%3Cuse xlink:href='%23a' transform='rotate(90 10 10)'/%3E%3Cuse xlink:href='%23b' transform='rotate(90 10 10)' filter='url(%23c)'/%3E%3C/svg%3E"); padding-left: 3rem; } } </style> <link rel="apple-touch-icon" sizes="180x180" href="/static/img/favicons/apple-touch-icon.png" /> <link rel="icon" type="image/png" sizes="48x48" href="/static/img/favicons/favicon-48x48.png" /> <link rel="icon" type="image/png" sizes="32x32" href="/static/img/favicons/favicon-32x32.png" /> <link rel="icon" type="image/png" sizes="16x16" href="/static/img/favicons/favicon-16x16.png" /> <link rel="manifest" href="/static/img/favicons/site.webmanifest" /> <link rel="mask-icon" href="/static/img/favicons/safari-pinned-tab.svg" color="#0071bc" /> <meta name="msapplication-config" content="/static/img/favicons/browserconfig.xml" /> <meta name="theme-color" content="#ffffff" /> <title> Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas - PMC </title> <!-- Logging params: Pinger defaults --> <meta name="ncbi_app" content="cloudpmc-viewer" /> <meta name="ncbi_db" content="pmc" /> <meta name="ncbi_phid" content="76C172DF74B3EC830872DF000D90216C.m_1" /> <!-- Logging params: Pinger custom --> <meta name="ncbi_pdid" content="article" /> <link rel="preconnect" href="https://www.google-analytics.com" /> <link rel="dns-prefetch" href="https://cdn.ncbi.nlm.nih.gov" /> <link rel="preconnect" href="https://code.jquery.com" /> <meta name="ncbi_domain" content="ncomms"> <meta name="ncbi_type" content="fulltext"> <meta name="ncbi_pcid" content="journal"> <meta name="ncbi_feature" content="associated_data"> <link rel="canonical" href="https://pmc.ncbi.nlm.nih.gov/articles/PMC7028933/"> <meta name="robots" content="INDEX,NOFOLLOW,NOARCHIVE"> <meta name="citation_journal_title" content="Nature Communications"> <meta name="citation_title" content="Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas"> <meta name="citation_author" content="Katrin Aslan"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author_institution" content="Faculty of Biosciences, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author_institution" content="Present Address: Immatics Biotechnologies GmbH, Tübingen, Germany"> <meta name="citation_author" content="Verena Turco"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Jens Blobner"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Jana K Sonner"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author_institution" content="Present Address: Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany"> <meta name="citation_author" content="Anna Rita Liuzzi"> <meta name="citation_author_institution" content="Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland"> <meta name="citation_author" content="Nicolás Gonzalo Núñez"> <meta name="citation_author_institution" content="Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland"> <meta name="citation_author" content="Donatella De Feo"> <meta name="citation_author_institution" content="Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland"> <meta name="citation_author" content="Philipp Kickingereder"> <meta name="citation_author_institution" content="Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Manuel Fischer"> <meta name="citation_author_institution" content="Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Ed Green"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Ahmed Sadik"> <meta name="citation_author_institution" content="Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author" content="Mirco Friedrich"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Khwab Sanghvi"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author_institution" content="Faculty of Biosciences, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Michael Kilian"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author_institution" content="Faculty of Biosciences, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Frederik Cichon"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author_institution" content="Faculty of Biosciences, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Lara Wolf"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Kristine Jähne"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Anna von Landenberg"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Lukas Bunse"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author" content="Felix Sahm"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Daniel Schrimpf"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Jochen Meyer"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Allen Alexander"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Faculty of Biosciences, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Gianluca Brugnara"> <meta name="citation_author_institution" content="Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Ralph Röth"> <meta name="citation_author_institution" content="nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany"> <meta name="citation_author" content="Kira Pfleiderer"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Beate Niesler"> <meta name="citation_author_institution" content="nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany"> <meta name="citation_author" content="Andreas von Deimling"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Christiane Opitz"> <meta name="citation_author_institution" content="Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author" content="Michael O Breckwoldt"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Sabine Heiland"> <meta name="citation_author_institution" content="Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Martin Bendszus"> <meta name="citation_author_institution" content="Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author" content="Wolfgang Wick"> <meta name="citation_author_institution" content="Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany"> <meta name="citation_author_institution" content="National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany"> <meta name="citation_author_institution" content="DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany"> <meta name="citation_author" content="Burkhard Becher"> <meta name="citation_author_institution" content="Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland"> <meta name="citation_author" content="Michael Platten"> <meta name="citation_author_institution" content="DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany"> <meta name="citation_author_institution" content="Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany"> <meta name="citation_author_institution" content="Helmholtz Institute for Tranlational Oncology (HI-TRON), Mainz, Germany"> <meta name="citation_publication_date" content="2020 Feb 18"> <meta name="citation_volume" content="11"> <meta name="citation_firstpage" content="931"> <meta name="citation_doi" content="10.1038/s41467-020-14642-0"> <meta name="citation_pmid" content="32071302"> <meta name="citation_abstract_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7028933/"> <meta name="citation_fulltext_html_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7028933/"> <meta name="citation_pdf_url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7028933/pdf/41467_2020_Article_14642.pdf"> <meta name="description" content="Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of ..."> <meta name="og:title" content="Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas"> <meta name="og:type" content="article"> <meta name="og:site_name" content="PubMed Central (PMC)"> <meta name="og:description" content="Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of ..."> <meta name="og:url" content="https://pmc.ncbi.nlm.nih.gov/articles/PMC7028933/"> <meta name="og:image" content="https://cdn.ncbi.nlm.nih.gov/pmc/cms/images/pmc-card-share.jpg?_=0"> <meta name="twitter:card" content="summary_large_image"> <meta name="twitter:site" content="@ncbi"> </head> <body > <a class="usa-skipnav " href="#main-content"> Skip to main content </a> <section class="usa-banner " aria-label="Official website of the United States government" > <div class="usa-accordion"> <header class="usa-banner__header"> <div class="usa-banner__inner"> <div class="grid-col-auto"> <img aria-hidden="true" class="usa-banner__header-flag" src="/static/img/us_flag.svg" alt="" /> </div> <div class="grid-col-fill tablet:grid-col-auto" aria-hidden="true"> <p class="usa-banner__header-text"> An official website of the United States government </p> <span class="usa-banner__header-action">Here's how you know</span> </div> <button type="button" class="usa-accordion__button usa-banner__button " aria-expanded="false" aria-controls="gov-banner-default" data-testid="storybook-django-banner" > <span class="usa-banner__button-text">Here's how you know</span> </button> </div> </header> <div class="usa-banner__content usa-accordion__content" id="gov-banner-default" hidden> <div class="grid-row grid-gap-lg"> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-dot-gov.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Official websites use .gov</strong> <br /> A <strong>.gov</strong> website belongs to an official government organization in the United States. </p> </div> </div> <div class="usa-banner__guidance tablet:grid-col-6"> <img class="usa-banner__icon usa-media-block__img" src="/static/img/icon-https.svg" alt="" aria-hidden="true" /> <div class="usa-media-block__body"> <p> <strong>Secure .gov websites use HTTPS</strong> <br /> A <strong>lock</strong> ( <span class="icon-lock"> <svg xmlns="http://www.w3.org/2000/svg" width="52" height="64" viewBox="0 0 52 64" class="usa-banner__lock-image" role="graphics-symbol" aria-labelledby="banner-lock-description" focusable="false"> <title id="banner-lock-title">Lock</title> <desc id="banner-lock-description"> Locked padlock icon </desc> <path fill="#000000" fill-rule="evenodd" d="M26 0c10.493 0 19 8.507 19 19v9h3a4 4 0 0 1 4 4v28a4 4 0 0 1-4 4H4a4 4 0 0 1-4-4V32a4 4 0 0 1 4-4h3v-9C7 8.507 15.507 0 26 0zm0 8c-5.979 0-10.843 4.77-10.996 10.712L15 19v9h22v-9c0-6.075-4.925-11-11-11z" /> </svg> </span>) or <strong>https://</strong> means you've safely connected to the .gov website. Share sensitive information only on official, secure websites. </p> </div> </div> </div> </div> </div> </section> <div class="usa-overlay"> </div> <header class="usa-header usa-header--extended usa-header--wide" data-testid="header" data-header > <div class="ncbi-header"> <div class="ncbi-header__container"> <a class="ncbi-header__logo-container" href="/"> <img alt=" PMC home page " class="ncbi-header__logo-image" src="/static/img/ncbi-logos/nih-nlm-ncbi--white.svg" /> </a> <!-- Mobile menu hamburger button --> <button type="button" class="usa-menu-btn ncbi-header__hamburger-button " aria-label="Show menu" data-testid="navMenuButton" > <svg aria-hidden="true" class="ncbi-hamburger-icon" fill="none" focusable="false" height="21" viewBox="0 0 31 21" width="31" xmlns="http://www.w3.org/2000/svg"> <path clip-rule="evenodd" d="M0.125 20.75H30.875V17.3333H0.125V20.75ZM0.125 12.2083H30.875V8.79167H0.125V12.2083ZM0.125 0.25V3.66667H30.875V0.25H0.125Z" fill="#F1F1F1" fill-rule="evenodd" /> </svg> </button> <!-- Desktop buttons--> <div class="ncbi-header__desktop-buttons"> <!-- Desktop search button --> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button " aria-expanded="false" aria-controls="search-field-desktop-navigation" aria-label="Show search overlay" data-testid="toggleSearchPanelButton" data-toggle-search-panel-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#search" /> </svg> Search </button> <!-- Desktop login dropdown --> <div class="ncbi-header__login-dropdown"> <button type="button" class="usa-button usa-button--unstyled ncbi-header__desktop-button ncbi-header__login-dropdown-button " aria-expanded="false" aria-controls="login-dropdown-menu" aria-label="Show login menu" data-testid="toggleLoginMenuDropdown" data-desktop-login-button > <svg class="usa-icon " role="graphics-symbol" aria-hidden="true" > <use xlink:href="/static/img/sprite.svg#person" /> </svg> <span data-login-dropdown-text>Log in</span> <!-- Dropdown icon pointing up --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-less ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-up-arrow> <use xlink:href="/static/img/sprite.svg#expand_less" /> </svg> <!-- Dropdown icon pointing down --> <svg class="usa-icon ncbi-header__login-dropdown-icon ncbi-header__login-dropdown-icon--expand-more ncbi-header__login-dropdown-icon--hidden" role="graphics-symbol" aria-hidden="true" data-login-dropdown-down-arrow> <use xlink:href="/static/img/sprite.svg#expand_more" /> </svg> </button> <!-- Login dropdown menu --> <ul class="usa-nav__submenu ncbi-header__login-dropdown-menu" id="login-dropdown-menu" data-desktop-login-menu-dropdown hidden> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__submenu-item"> <!-- Uses custom style overrides to render external and document links. --> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> <li class="usa-nav__submenu-item"> <button type="button" class="usa-button usa-button--outline ncbi-header__login-dropdown-logout-button " data-testid="desktopLogoutButton" data-desktop-logout-button > Log out </button> </li> </ul> </div> </div> </div> </div> <!-- Search panel --> <div class="ncbi-search-panel ncbi--show-only-at-desktop" data-testid="searchPanel" data-header-search-panel hidden> <div class="ncbi-search-panel__container"> <form action="https://www.ncbi.nlm.nih.gov/search/all/" aria-describedby="search-field-desktop-navigation-help-text" autocomplete="off" class="usa-search usa-search--big ncbi-search-panel__form" data-testid="form" method="GET" role="search"> <label class="usa-sr-only" data-testid="label" for="search-field-desktop-navigation"> Search… </label> <input class="usa-input" data-testid="textInput" id="search-field-desktop-navigation" name="term" placeholder="Search NCBI" type="search" value="" /> <button type="submit" class="usa-button " data-testid="button" > <span class="usa-search__submit-text"> Search NCBI </span> </button> </form> </div> </div> <nav aria-label="Primary navigation" class="usa-nav"> <p class="usa-sr-only" id="primary-navigation-sr-only-title"> Primary site navigation </p> <!-- Mobile menu close button --> <button type="button" class="usa-nav__close ncbi-nav__close-button " aria-label="Close navigation menu" data-testid="navCloseButton" > <img src="/static/img/usa-icons/close.svg" alt="Close" /> </button> <!-- Mobile search component --> <form class="usa-search usa-search--small ncbi--hide-at-desktop margin-top-6" role="search"> <label class="usa-sr-only" for="search-field"> Search </label> <input class="usa-input" id="search-field-mobile-navigation" type="search" placeholder="Search NCBI" name="search" /> <button type="submit" class="usa-button " > <!-- This SVG should be kept inline and not replaced with a link to the icon as otherwise it will render in the wrong color --> <img src="" class="usa-search__submit-icon" alt="Search" /> </button> </form> <!-- Primary navigation menu items --> <!-- This usa-nav__inner wrapper is required to correctly style the navigation items on Desktop --> <div class="ncbi-nav__mobile-login-menu ncbi--hide-at-desktop" data-mobile-login-menu hidden> <p class="ncbi-nav__mobile-login-menu-status"> Logged in as: <strong class="ncbi-nav__mobile-login-menu-email" data-mobile-login-email-text></strong> </p> <ul class="usa-nav__primary usa-accordion"> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/" class="usa-link " > Dashboard </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/myncbi/collections/bibliography/" class="usa-link " > Publications </a> </li> <li class="usa-nav__primary-item"> <a href="https://www.ncbi.nlm.nih.gov/account/settings/" class="usa-link " > Account settings </a> </li> </ul> </div> <button type="button" class="usa-button ncbi-nav__mobile-login-button ncbi--hide-at-desktop " data-testid="mobileLoginButton" data-mobile-login-button > Log in </button> </nav> </header> <section class="pmc-header pmc-header--basic" aria-label="PMC Header with search box"> <div class="pmc-nav-container"> <div class="pmc-header__bar"> <div class="pmc-header__logo"> <a href="/" title="Home" aria-label="PMC Home"></a> </div> <button type="button" class="usa-button usa-button--unstyled pmc-header__search__button" aria-label="Open search" data-ga-category="search" data-ga-action="PMC" data-ga-label="pmc_search_panel_mobile" > <svg class="usa-icon width-4 height-4 pmc-icon__open" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#search"></use> </svg> <svg class="usa-icon width-4 height-4 pmc-icon__close" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="pmc-header__search"> <form class="usa-search usa-search--extra usa-search--article-right-column pmc-header__search__form" autocomplete="off" role="search"> <label class="usa-sr-only" for="pmc-search">Search PMC Full-Text Archive</label> <span class="autoComplete_wrapper flex-1"> <input class="usa-input width-full maxw-none" required="required" placeholder="Search PMC Full-Text Archive" id="pmc-search" type="search" name="term" data-autocomplete-url="/search/autocomplete/"/> </span> <button class="usa-button" type="submit" formaction="https://www.ncbi.nlm.nih.gov/pmc/" data-ga-category="search" data-ga-action="PMC" data-ga-label="PMC_search_button" > <span class="usa-search__submit-text">Search in PMC</span> <img src="/static/img/usa-icons-bg/search--white.svg" class="usa-search__submit-icon" alt="Search" /> </button> </form> <ul class="pmc-header__search__menu"> <li> <a class="usa-link" href="https://www.ncbi.nlm.nih.gov/pmc/advanced/" data-ga-action="featured_link" data-ga-label="advanced_search"> Advanced Search </a> </li> <li> <a class="usa-link" href="/journals/" data-ga-action="featured_link" data-ga-label="journal list"> Journal List </a> </li> <li> <a class="usa-link" href="/about/userguide/" data-ga-action="featured_link" data-ga-label="user guide"> User Guide </a> </li> </ul> </div> </div> </section> <div class="usa-section padding-top-0 desktop:padding-top-6 pmc-article-section" data-article-db="pmc" data-article-id="7028933"> <div class="grid-container pmc-actions-bar" aria-label="Actions bar" role="complementary"> <div class="grid-row"> <div class="grid-col-fill display-flex"> <div class="display-flex"> <ul class="usa-list usa-list--unstyled usa-list--horizontal"> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open resources" data-extra-class="is-visible-resources" data-ga-category="resources_accordion" data-ga-action="click" data-ga-label="mobile_icon" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#more_vert"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex mob"> <a href="https://doi.org/10.1038/s41467-020-14642-0" class="usa-link display-flex" role="button" target="_blank" rel="noreferrer noopener" aria-label="View on publisher site" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#launch"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <a href="pdf/41467_2020_Article_14642.pdf" class="usa-link display-flex" role="button" aria-label="Download PDF" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> </a> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button class="usa-button usa-button--unstyled collections-dialog-trigger collections-button display-flex collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_mobile" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC7028933%2F%23open-collections-dialog" data-in-collections="false" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> </button> </li> <li class="margin-right-2 mobile-lg:margin-right-4 display-flex"> <button role="button" class="usa-button usa-button--unstyled citation-dialog-trigger display-flex" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_mobile" data-all-citations-url="/resources/citations/7028933/" data-citation-style="nlm" data-download-format-link="/resources/citations/7028933/export/" > <svg class="usa-icon width-4 height-4 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> </button> </li> <li class="pmc-permalink display-flex"> <button type="button" class="usa-button usa-button--unstyled display-flex" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC7028933/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </div> <button type="button" class="usa-button pmc-sidenav__container__open usa-button--unstyled width-auto display-flex" aria-label="Open article navigation" data-extra-class="is-visible-in-page" data-ga-category="actions" data-ga-action="open" data-ga-label="article_nav_mobile" > <svg class="usa-icon width-4 height-4" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#list"></use> </svg> </button> </div> </div> </div> <div class="grid-container desktop:padding-left-6"> <div id="article-container" class="grid-row grid-gap"> <div class="grid-col-12 desktop:grid-col-8 order-2 pmc-layout__content"> <div class="grid-container padding-left-0 padding-right-0"> <div class="grid-row desktop:margin-left-neg-6"> <div class="grid-col-12"> <div class="pmc-layout__disclaimer" role="complementary" aria-label="Disclaimer note"> As a library, NLM provides access to scientific literature. Inclusion in an NLM database does not imply endorsement of, or agreement with, the contents by NLM or the National Institutes of Health.<br/> Learn more: <a class="usa-link" data-ga-category="Link click" data-ga-action="Disclaimer" data-ga-label="New disclaimer box" href="/about/disclaimer/">PMC Disclaimer</a> | <a class="usa-link" data-ga-category="Link click" data-ga-action="PMC Copyright Notice" data-ga-label="New disclaimer box" href="/about/copyright/"> PMC Copyright Notice </a> </div> </div> </div> <div class="grid-row pmc-wm desktop:margin-left-neg-6"> <!-- Main content --> <main id="main-content" class="usa-layout-docs__main usa-layout-docs grid-col-12 pmc-layout pmc-prose padding-0" > <section class="pmc-journal-banner text-center line-height-none" aria-label="Journal banner"><img src="https://cdn.ncbi.nlm.nih.gov/pmc/banners/logo-ncomms.gif" alt="Nature Communications logo" usemap="#pmc-banner-imagemap" width="500" height="75"><map name="pmc-banner-imagemap"><area alt="Link to Nature Communications" title="Link to Nature Communications" shape="default" href="http://www.nature.com/ncomms/index.html" target="_blank" rel="noopener noreferrer"></map></section><article lang="en"><section aria-label="Article citation and metadata"><section class="pmc-layout__citation font-secondary font-xs"><div> <div class="display-inline-block"><button type="button" class="cursor-pointer text-no-underline bg-transparent border-0 padding-0 text-left margin-0 text-normal text-primary" aria-controls="journal_context_menu">Nat Commun</button></div>. 2020 Feb 18;11:931. doi: <a href="https://doi.org/10.1038/s41467-020-14642-0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">10.1038/s41467-020-14642-0</a> </div> <nav id="journal_context_menu" hidden="hidden"><ul class="menu-list font-family-ui" role="menu"> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/pmc/?term=%22Nat%20Commun%22%5Bjour%5D" class="usa-link" role="menuitem">Search in PMC</a></li> <li role="presentation"><a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Nat%20Commun%22%5Bjour%5D" lang="en" class="usa-link" role="menuitem">Search in PubMed</a></li> <li role="presentation"><a href="https://www.ncbi.nlm.nih.gov/nlmcatalog?term=%22Nat%20Commun%22%5BTitle%20Abbreviation%5D" class="usa-link" role="menuitem">View in NLM Catalog</a></li> <li role="presentation"><a href="?term=%22Nat%20Commun%22%5Bjour%5D" class="usa-link" role="menuitem" data-add-to-search="true">Add to search</a></li> </ul></nav></section><section class="front-matter"><div class="ameta p font-secondary font-xs"> <hgroup><h1>Heterogeneity of response to immune checkpoint blockade in hypermutated experimental gliomas</h1></hgroup><div class="cg p"> <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Aslan%20K%22%5BAuthor%5D" class="usa-link" aria-describedby="id1"><span class="name western">Katrin Aslan</span></a><div hidden="hidden" id="id1"> <h3><span class="name western">Katrin Aslan</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p"> <sup>3</sup>Faculty of Biosciences, Heidelberg University, Heidelberg, Germany </div> <div class="p"> <sup>14</sup>Present Address: Immatics Biotechnologies GmbH, Tübingen, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Aslan%20K%22%5BAuthor%5D" class="usa-link"><span class="name western">Katrin Aslan</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>3,</sup><sup>14</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Turco%20V%22%5BAuthor%5D" class="usa-link" aria-describedby="id2"><span class="name western">Verena Turco</span></a><div hidden="hidden" id="id2"> <h3><span class="name western">Verena Turco</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Turco%20V%22%5BAuthor%5D" class="usa-link"><span class="name western">Verena Turco</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Blobner%20J%22%5BAuthor%5D" class="usa-link" aria-describedby="id3"><span class="name western">Jens Blobner</span></a><div hidden="hidden" id="id3"> <h3><span class="name western">Jens Blobner</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Blobner%20J%22%5BAuthor%5D" class="usa-link"><span class="name western">Jens Blobner</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Sonner%20JK%22%5BAuthor%5D" class="usa-link" aria-describedby="id4"><span class="name western">Jana K Sonner</span></a><div hidden="hidden" id="id4"> <h3><span class="name western">Jana K Sonner</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p"> <sup>15</sup>Present Address: Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Sonner%20JK%22%5BAuthor%5D" class="usa-link"><span class="name western">Jana K Sonner</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>15</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Liuzzi%20AR%22%5BAuthor%5D" class="usa-link" aria-describedby="id5"><span class="name western">Anna Rita Liuzzi</span></a><div hidden="hidden" id="id5"> <h3><span class="name western">Anna Rita Liuzzi</span></h3> <div class="p"> <sup>4</sup>Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Liuzzi%20AR%22%5BAuthor%5D" class="usa-link"><span class="name western">Anna Rita Liuzzi</span></a> </div> </div> <sup>4,</sup><sup>#</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22N%C3%BA%C3%B1ez%20NG%22%5BAuthor%5D" class="usa-link" aria-describedby="id6"><span class="name western">Nicolás Gonzalo Núñez</span></a><div hidden="hidden" id="id6"> <h3><span class="name western">Nicolás Gonzalo Núñez</span></h3> <div class="p"> <sup>4</sup>Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22N%C3%BA%C3%B1ez%20NG%22%5BAuthor%5D" class="usa-link"><span class="name western">Nicolás Gonzalo Núñez</span></a> </div> </div> <sup>4,</sup><sup>#</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22De%20Feo%20D%22%5BAuthor%5D" class="usa-link" aria-describedby="id7"><span class="name western">Donatella De Feo</span></a><div hidden="hidden" id="id7"> <h3><span class="name western">Donatella De Feo</span></h3> <div class="p"> <sup>4</sup>Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22De%20Feo%20D%22%5BAuthor%5D" class="usa-link"><span class="name western">Donatella De Feo</span></a> </div> </div> <sup>4,</sup><sup>#</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kickingereder%20P%22%5BAuthor%5D" class="usa-link" aria-describedby="id8"><span class="name western">Philipp Kickingereder</span></a><div hidden="hidden" id="id8"> <h3><span class="name western">Philipp Kickingereder</span></h3> <div class="p"> <sup>5</sup>Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kickingereder%20P%22%5BAuthor%5D" class="usa-link"><span class="name western">Philipp Kickingereder</span></a> </div> </div> <sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Fischer%20M%22%5BAuthor%5D" class="usa-link" aria-describedby="id9"><span class="name western">Manuel Fischer</span></a><div hidden="hidden" id="id9"> <h3><span class="name western">Manuel Fischer</span></h3> <div class="p"> <sup>5</sup>Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Fischer%20M%22%5BAuthor%5D" class="usa-link"><span class="name western">Manuel Fischer</span></a> </div> </div> <sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Green%20E%22%5BAuthor%5D" class="usa-link" aria-describedby="id10"><span class="name western">Ed Green</span></a><div hidden="hidden" id="id10"> <h3><span class="name western">Ed Green</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Green%20E%22%5BAuthor%5D" class="usa-link"><span class="name western">Ed Green</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Sadik%20A%22%5BAuthor%5D" class="usa-link" aria-describedby="id11"><span class="name western">Ahmed Sadik</span></a><div hidden="hidden" id="id11"> <h3><span class="name western">Ahmed Sadik</span></h3> <div class="p"> <sup>6</sup>Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Sadik%20A%22%5BAuthor%5D" class="usa-link"><span class="name western">Ahmed Sadik</span></a> </div> </div> <sup>6</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Friedrich%20M%22%5BAuthor%5D" class="usa-link" aria-describedby="id12"><span class="name western">Mirco Friedrich</span></a><div hidden="hidden" id="id12"> <h3><span class="name western">Mirco Friedrich</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Friedrich%20M%22%5BAuthor%5D" class="usa-link"><span class="name western">Mirco Friedrich</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Sanghvi%20K%22%5BAuthor%5D" class="usa-link" aria-describedby="id13"><span class="name western">Khwab Sanghvi</span></a><div hidden="hidden" id="id13"> <h3><span class="name western">Khwab Sanghvi</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p"> <sup>3</sup>Faculty of Biosciences, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Sanghvi%20K%22%5BAuthor%5D" class="usa-link"><span class="name western">Khwab Sanghvi</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>3</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kilian%20M%22%5BAuthor%5D" class="usa-link" aria-describedby="id14"><span class="name western">Michael Kilian</span></a><div hidden="hidden" id="id14"> <h3><span class="name western">Michael Kilian</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p"> <sup>3</sup>Faculty of Biosciences, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Kilian%20M%22%5BAuthor%5D" class="usa-link"><span class="name western">Michael Kilian</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>3</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Cichon%20F%22%5BAuthor%5D" class="usa-link" aria-describedby="id15"><span class="name western">Frederik Cichon</span></a><div hidden="hidden" id="id15"> <h3><span class="name western">Frederik Cichon</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p"> <sup>3</sup>Faculty of Biosciences, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Cichon%20F%22%5BAuthor%5D" class="usa-link"><span class="name western">Frederik Cichon</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>3</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wolf%20L%22%5BAuthor%5D" class="usa-link" aria-describedby="id16"><span class="name western">Lara Wolf</span></a><div hidden="hidden" id="id16"> <h3><span class="name western">Lara Wolf</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wolf%20L%22%5BAuthor%5D" class="usa-link"><span class="name western">Lara Wolf</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22J%C3%A4hne%20K%22%5BAuthor%5D" class="usa-link" aria-describedby="id17"><span class="name western">Kristine Jähne</span></a><div hidden="hidden" id="id17"> <h3><span class="name western">Kristine Jähne</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22J%C3%A4hne%20K%22%5BAuthor%5D" class="usa-link"><span class="name western">Kristine Jähne</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22von%20Landenberg%20A%22%5BAuthor%5D" class="usa-link" aria-describedby="id18"><span class="name western">Anna von Landenberg</span></a><div hidden="hidden" id="id18"> <h3><span class="name western">Anna von Landenberg</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22von%20Landenberg%20A%22%5BAuthor%5D" class="usa-link"><span class="name western">Anna von Landenberg</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Bunse%20L%22%5BAuthor%5D" class="usa-link" aria-describedby="id19"><span class="name western">Lukas Bunse</span></a><div hidden="hidden" id="id19"> <h3><span class="name western">Lukas Bunse</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Bunse%20L%22%5BAuthor%5D" class="usa-link"><span class="name western">Lukas Bunse</span></a> </div> </div> <sup>1,</sup><sup>2</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Sahm%20F%22%5BAuthor%5D" class="usa-link" aria-describedby="id20"><span class="name western">Felix Sahm</span></a><div hidden="hidden" id="id20"> <h3><span class="name western">Felix Sahm</span></h3> <div class="p"> <sup>7</sup>DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>8</sup>Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Sahm%20F%22%5BAuthor%5D" class="usa-link"><span class="name western">Felix Sahm</span></a> </div> </div> <sup>7,</sup><sup>8</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Schrimpf%20D%22%5BAuthor%5D" class="usa-link" aria-describedby="id21"><span class="name western">Daniel Schrimpf</span></a><div hidden="hidden" id="id21"> <h3><span class="name western">Daniel Schrimpf</span></h3> <div class="p"> <sup>7</sup>DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>8</sup>Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Schrimpf%20D%22%5BAuthor%5D" class="usa-link"><span class="name western">Daniel Schrimpf</span></a> </div> </div> <sup>7,</sup><sup>8</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Meyer%20J%22%5BAuthor%5D" class="usa-link" aria-describedby="id22"><span class="name western">Jochen Meyer</span></a><div hidden="hidden" id="id22"> <h3><span class="name western">Jochen Meyer</span></h3> <div class="p"> <sup>7</sup>DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>8</sup>Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Meyer%20J%22%5BAuthor%5D" class="usa-link"><span class="name western">Jochen Meyer</span></a> </div> </div> <sup>7,</sup><sup>8</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Alexander%20A%22%5BAuthor%5D" class="usa-link" aria-describedby="id23"><span class="name western">Allen Alexander</span></a><div hidden="hidden" id="id23"> <h3><span class="name western">Allen Alexander</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>3</sup>Faculty of Biosciences, Heidelberg University, Heidelberg, Germany </div> <div class="p"> <sup>5</sup>Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Alexander%20A%22%5BAuthor%5D" class="usa-link"><span class="name western">Allen Alexander</span></a> </div> </div> <sup>1,</sup><sup>3,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Brugnara%20G%22%5BAuthor%5D" class="usa-link" aria-describedby="id24"><span class="name western">Gianluca Brugnara</span></a><div hidden="hidden" id="id24"> <h3><span class="name western">Gianluca Brugnara</span></h3> <div class="p"> <sup>5</sup>Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Brugnara%20G%22%5BAuthor%5D" class="usa-link"><span class="name western">Gianluca Brugnara</span></a> </div> </div> <sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22R%C3%B6th%20R%22%5BAuthor%5D" class="usa-link" aria-describedby="id25"><span class="name western">Ralph Röth</span></a><div hidden="hidden" id="id25"> <h3><span class="name western">Ralph Röth</span></h3> <div class="p"> <sup>9</sup>nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22R%C3%B6th%20R%22%5BAuthor%5D" class="usa-link"><span class="name western">Ralph Röth</span></a> </div> </div> <sup>9</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Pfleiderer%20K%22%5BAuthor%5D" class="usa-link" aria-describedby="id26"><span class="name western">Kira Pfleiderer</span></a><div hidden="hidden" id="id26"> <h3><span class="name western">Kira Pfleiderer</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>5</sup>Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Pfleiderer%20K%22%5BAuthor%5D" class="usa-link"><span class="name western">Kira Pfleiderer</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Niesler%20B%22%5BAuthor%5D" class="usa-link" aria-describedby="id27"><span class="name western">Beate Niesler</span></a><div hidden="hidden" id="id27"> <h3><span class="name western">Beate Niesler</span></h3> <div class="p"> <sup>9</sup>nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Niesler%20B%22%5BAuthor%5D" class="usa-link"><span class="name western">Beate Niesler</span></a> </div> </div> <sup>9</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22von%20Deimling%20A%22%5BAuthor%5D" class="usa-link" aria-describedby="id28"><span class="name western">Andreas von Deimling</span></a><div hidden="hidden" id="id28"> <h3><span class="name western">Andreas von Deimling</span></h3> <div class="p"> <sup>7</sup>DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>8</sup>Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22von%20Deimling%20A%22%5BAuthor%5D" class="usa-link"><span class="name western">Andreas von Deimling</span></a> </div> </div> <sup>7,</sup><sup>8</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Opitz%20C%22%5BAuthor%5D" class="usa-link" aria-describedby="id29"><span class="name western">Christiane Opitz</span></a><div hidden="hidden" id="id29"> <h3><span class="name western">Christiane Opitz</span></h3> <div class="p"> <sup>6</sup>Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Opitz%20C%22%5BAuthor%5D" class="usa-link"><span class="name western">Christiane Opitz</span></a> </div> </div> <sup>6</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Breckwoldt%20MO%22%5BAuthor%5D" class="usa-link" aria-describedby="id30"><span class="name western">Michael O Breckwoldt</span></a><div hidden="hidden" id="id30"> <h3><span class="name western">Michael O Breckwoldt</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>5</sup>Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Breckwoldt%20MO%22%5BAuthor%5D" class="usa-link"><span class="name western">Michael O Breckwoldt</span></a> </div> </div> <sup>1,</sup><sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Heiland%20S%22%5BAuthor%5D" class="usa-link" aria-describedby="id31"><span class="name western">Sabine Heiland</span></a><div hidden="hidden" id="id31"> <h3><span class="name western">Sabine Heiland</span></h3> <div class="p"> <sup>5</sup>Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Heiland%20S%22%5BAuthor%5D" class="usa-link"><span class="name western">Sabine Heiland</span></a> </div> </div> <sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Bendszus%20M%22%5BAuthor%5D" class="usa-link" aria-describedby="id32"><span class="name western">Martin Bendszus</span></a><div hidden="hidden" id="id32"> <h3><span class="name western">Martin Bendszus</span></h3> <div class="p"> <sup>5</sup>Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Bendszus%20M%22%5BAuthor%5D" class="usa-link"><span class="name western">Martin Bendszus</span></a> </div> </div> <sup>5</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wick%20W%22%5BAuthor%5D" class="usa-link" aria-describedby="id33"><span class="name western">Wolfgang Wick</span></a><div hidden="hidden" id="id33"> <h3><span class="name western">Wolfgang Wick</span></h3> <div class="p"> <sup>10</sup>Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div class="p"> <sup>11</sup>National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany </div> <div class="p"> <sup>12</sup>DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Wick%20W%22%5BAuthor%5D" class="usa-link"><span class="name western">Wolfgang Wick</span></a> </div> </div> <sup>10,</sup><sup>11,</sup><sup>12</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Becher%20B%22%5BAuthor%5D" class="usa-link" aria-describedby="id34"><span class="name western">Burkhard Becher</span></a><div hidden="hidden" id="id34"> <h3><span class="name western">Burkhard Becher</span></h3> <div class="p"> <sup>4</sup>Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Becher%20B%22%5BAuthor%5D" class="usa-link"><span class="name western">Burkhard Becher</span></a> </div> </div> <sup>4</sup>, <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Platten%20M%22%5BAuthor%5D" class="usa-link" aria-describedby="id35"><span class="name western">Michael Platten</span></a><div hidden="hidden" id="id35"> <h3><span class="name western">Michael Platten</span></h3> <div class="p"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div class="p"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div class="p"> <sup>13</sup>Helmholtz Institute for Tranlational Oncology (HI-TRON), Mainz, Germany </div> <div class="p">Find articles by <a href="https://pubmed.ncbi.nlm.nih.gov/?term=%22Platten%20M%22%5BAuthor%5D" class="usa-link"><span class="name western">Michael Platten</span></a> </div> </div> <sup>1,</sup><sup>2,</sup><sup>13,</sup><sup>✉</sup> </div> <ul class="d-buttons inline-list"> <li><button class="d-button" aria-controls="aip_a" aria-expanded="false">Author information</button></li> <li><button class="d-button" aria-controls="anp_a" aria-expanded="false">Article notes</button></li> <li><button class="d-button" aria-controls="clp_a" aria-expanded="false">Copyright and License information</button></li> </ul> <div class="d-panels font-secondary-light"> <div id="aip_a" class="d-panel p" style="display: none"> <div class="p" id="Aff1"> <sup>1</sup>DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div id="Aff2"> <sup>2</sup>Department of Neurology, Medical Faculty Mannheim, MCTN, Heidelberg University, Heidelberg, Germany </div> <div id="Aff3"> <sup>3</sup>Faculty of Biosciences, Heidelberg University, Heidelberg, Germany </div> <div id="Aff4"> <sup>4</sup>Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland </div> <div id="Aff5"> <sup>5</sup>Department of Neuroradiology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div id="Aff6"> <sup>6</sup>Brain Cancer Metabolism Group, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div id="Aff7"> <sup>7</sup>DKTK Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), Heidelberg, Germany </div> <div id="Aff8"> <sup>8</sup>Department of Neuropathology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div id="Aff9"> <sup>9</sup>nCounter Core Facility, Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany </div> <div id="Aff10"> <sup>10</sup>Department of Neurology, Heidelberg University Medical Center, Heidelberg, Germany </div> <div id="Aff11"> <sup>11</sup>National Center for Tumor Diseases Heidelberg, DKTK, Heidelberg, Germany </div> <div id="Aff12"> <sup>12</sup>DKTK CCU Neurooncology, DKFZ, Heidelberg, Germany </div> <div id="Aff13"> <sup>13</sup>Helmholtz Institute for Tranlational Oncology (HI-TRON), Mainz, Germany </div> <div id="Aff14"> <sup>14</sup>Present Address: Immatics Biotechnologies GmbH, Tübingen, Germany </div> <div id="Aff15"> <sup>15</sup>Present Address: Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany </div> <div class="author-notes p"> <div class="fn" id="_fncrsp93pmc__"> <sup>✉</sup><p class="display-inline">Corresponding author.</p> </div> <div class="fn" id="_eqcntrb93pmc__"> <sup>#</sup><p class="display-inline">Contributed equally.</p> </div> </div> </div> <div id="anp_a" class="d-panel p" style="display: none"><div class="notes p"><section id="historyarticle-meta1" class="history"><p>Received 2019 Nov 25; Accepted 2020 Jan 16; Collection date 2020.</p></section></div></div> <div id="clp_a" class="d-panel p" style="display: none"> <div>© The Author(s) 2020</div> <p><strong>Open Access</strong> This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit <a href="http://creativecommons.org/licenses/by/4.0/" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">http://creativecommons.org/licenses/by/4.0/</a>.</p> <div class="p"><a href="/about/copyright/" class="usa-link">PMC Copyright notice</a></div> </div> </div> <div>PMCID: PMC7028933  PMID: <a href="https://pubmed.ncbi.nlm.nih.gov/32071302/" class="usa-link">32071302</a> </div> </div></section></section><section aria-label="Article content"><section class="body main-article-body"><section class="abstract" id="Abs1"><h2>Abstract</h2> <p id="Par1">Intrinsic malignant brain tumors, such as glioblastomas are frequently resistant to immune checkpoint blockade (ICB) with few hypermutated glioblastomas showing response. Modeling patient-individual resistance is challenging due to the lack of predictive biomarkers and limited accessibility of tissue for serial biopsies. Here, we investigate resistance mechanisms to anti-PD-1 and anti-CTLA-4 therapy in syngeneic hypermutated experimental gliomas and show a clear dichotomy and acquired immune heterogeneity in ICB-responder and non-responder tumors. We made use of this dichotomy to establish a radiomic signature predicting tumor regression after pseudoprogression induced by ICB therapy based on serial magnetic resonance imaging. We provide evidence that macrophage-driven ICB resistance is established by CD4 T cell suppression and T<sub>reg</sub> expansion in the tumor microenvironment via the PD-L1/PD-1/CD80 axis. These findings uncover an unexpected heterogeneity of response to ICB in strictly syngeneic tumors and provide a rationale for targeting PD-L1-expressing tumor-associated macrophages to overcome resistance to ICB.</p> <section id="kwd-group1" class="kwd-group"><p><strong>Subject terms:</strong> Cancer models, Neuroimmunology, Immunosurveillance</p></section></section><section class="abstract" id="Abs2"><hr class="headless"> <p id="Par2">Modeling patient-individual resistance to immunotherapy is challenging. Here, the authors use a syngeneic experimental hypermutated orthotopic glioma model to define radiological and biological features that can predict or explain the mechanistic differences between responders and non-responders to immunotherapy.</p></section><section id="Sec1"><h2 class="pmc_sec_title">Introduction</h2> <p id="Par3">Blockade of immune-regulatory receptors, such as programmed cell death protein-1 (PD-1) and cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) mitigates T cell suppression, and restores T cell activation and proliferation, thereby reinvigorating antitumor immunity<sup><a href="#CR1" class="usa-link" aria-describedby="CR1">1</a></sup>. Immune checkpoint blockade (ICB) targeting PD-1 and CTLA-4 is now implemented into the standard therapies of an increasing number of tumor entities, resulting in durable responses and increased survival in a substantial number of patients<sup><a href="#CR2" class="usa-link" aria-describedby="CR2">2</a>,<a href="#CR3" class="usa-link" aria-describedby="CR3">3</a></sup>. While efficacy in metastatic disease to the brain indicates that the central nervous system (CNS) is not a general barrier for ICB-mediated stimulation of antitumor immunity<sup><a href="#CR4" class="usa-link" aria-describedby="CR4">4</a>,<a href="#CR5" class="usa-link" aria-describedby="CR5">5</a></sup>, evidence from randomized clinical trials suggest that primary malignant brain tumors, such as glioblastoma are largely resistant with few hypermutated glioblastoma, representing an exception<sup><a href="#CR6" class="usa-link" aria-describedby="CR6">6</a>,<a href="#CR7" class="usa-link" aria-describedby="CR7">7</a></sup>. Hypermutation in glioblastomas is not strictly associated with an increased intratumoral T cell response<sup><a href="#CR8" class="usa-link" aria-describedby="CR8">8</a>–<a href="#CR10" class="usa-link" aria-describedby="CR10">10</a></sup>, indicating that hypermutation per se is not sufficient for an effective antitumor immunity induced by ICB. Contrariwise, durable responses may occur in patients with glioblastoma (GBM) without hypermutation<sup><a href="#CR11" class="usa-link" aria-describedby="CR11">11</a></sup>. Due to the overall low response rate with very few patients responding, both the establishment of predictive biomarkers and the identification of resistance mechanisms is challenging. Syngeneic orthotopic glioblastoma models have been considered insufficient models to assess interindividual heterogeneity of immune responses. To evaluate mechanisms of response and resistance to ICB, we made use of a syngeneic experimental hypermutated orthotopic glioma model exceeding 100 non-synonymous mutations per tumor exome<sup><a href="#CR12" class="usa-link" aria-describedby="CR12">12</a>–<a href="#CR14" class="usa-link" aria-describedby="CR14">14</a></sup> to ensure sufficient immune recognition of neo-epitopes.</p> <p id="Par4">Here, we made use of the dichotomy of response and non-response to ICB in a hypermutated glioma model to develop a predictive radiomic imaging signature and to uncover cellular and molecular mechanisms of response and non-response in the glioma immune microenvironment, providing a rationale for targeting programmed death-ligand 1 (PD-L1)-expressing tumor-associated macrophages to overcome resistance to ICB.</p></section><section id="Sec2"><h2 class="pmc_sec_title">Results</h2> <section id="Sec3"><h3 class="pmc_sec_title">Preclinical MRI-based response evaluation for GBM immunotherapy</h3> <p id="Par5">Combination ICB therapy targeting PD-1 and CTLA-4 suppressed tumor growth of established syngeneic orthotopic mouse gliomas (Fig. <a href="#Fig1" class="usa-link">1a–d</a>). Despite strict syngeneity of the model, we observed a dichotomy in tumor growth upon ICB therapy in ICB responder (R) and non-responder (NR) mice as monitored by serial magnetic resonance imaging (MRI; Fig. <a href="#Fig1" class="usa-link">1b, d</a>). To evaluate the dynamics of response and resistance in individual mice, we defined preclinical MRI response criteria based on the established clinical RANO (response assessment in neuro-oncology) critera<sup><a href="#CR15" class="usa-link" aria-describedby="CR15">15</a></sup>. ICB response in the preclinical model was determined by the comparison of d13 baseline lesion volumes (MRI1) with d26 post therapy lesion volumes (MRI3) using T2-weighted MRI. Assessment of lesion volumes (<em>V</em>) and their relative increase between d13 and d26, as well as d19 (MRI2, during ICB therapy) and d26 strongly correlated with the assessment of the lesion bidimensional diameter product (area) used in RANO criteria (Supplementary Fig. <a href="#MOESM1" class="usa-link">1a, b</a>). We next aimed at translating planumetric RANO criteria to tridimensional (volumetric) response criteria by correcting for area–volume divergence (Supplementary Fig. <a href="#MOESM1" class="usa-link">1c</a>). For tridimensional response criteria, complete response (CR) was defined as relative change in lesion volume MRI3–MRI1 (%<em>V</em><sub>MRI3–MRI1</sub>) of −100%, partial response (PR) as %<em>V</em><sub>MRI3–MRI1</sub> ≤ −65.0% and/or %<em>V</em><sub>MRI3–MRI2</sub> ≤ −65.0%, stable disease (SD) as %<em>V</em><sub>MRI3–MRI1</sub> &gt; −65.5% and &lt; + 40%, and progressive disease (PD) as %<em>V</em><sub>MRI3–MRI1</sub> ≥ + 40%. Lesions with an unconfirmed progression, defined by a %<em>V</em><sub>MRI3–MRI1</sub> ≥ + 40% that showed a regression of at least −30% between MRI2 and MRI3 (%<em>V</em><sub>MRI3–MRI2</sub>) were classified as SD (Fig. <a href="#Fig1" class="usa-link">1e</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">1c</a>, right). Taking the rapid tumor progression of Gl261 tumors into account, mice with CR, PR, and SD were grouped as ICB R and mice with PD were defined as ICB NR. Response evaluation of a dataset of 212 ICB-treated (ICB) and 73 control-treated (C) mice revealed a response rate of 47.64% (ICB) compared to 5.48 % (C; Fig. <a href="#Fig1" class="usa-link">1f</a>, <em>p</em> &gt; 0.001). Monotherapy with PD-1 blockade showed a reduced response rate (33.33%, Supplementary Fig. <a href="#MOESM1" class="usa-link">1d–g</a>) compared to anti-PD-1 and anti-CTLA-1 combination therapy as previously described<sup><a href="#CR16" class="usa-link" aria-describedby="CR16">16</a></sup>. ICB response evaluation based on MRI data translated into a significantly enhanced survival in ICB R mice (Fig. <a href="#Fig1" class="usa-link">1g</a>). Mutanome analysis of ICB R and ICB NR tumors revealed no significant difference in the number and clonality of mutations with a sufficient number of putative neo-antigens to induce tumor immunity (Fig. <a href="#Fig1" class="usa-link">1h–j</a>). The mutanome of ICB R and ICB NR tumors was heterogeneous with 23.35% of all identified mutations enriched in ICB R tumors and 19.82% of all identified mutations enriched in ICB NR tumors (Fig. <a href="#Fig1" class="usa-link">1j</a>). Although initial tumor size weakly correlated with therapy response (Supplementary Fig. <a href="#MOESM1" class="usa-link">2a</a>), response was not restricted to small pretreatment tumor volumes and was independent of preexisting, environmental, and genetic factors, including housing or gender (Supplementary Fig. <a href="#MOESM1" class="usa-link">2b, c</a>). Notably, heterogeneity of response to ICB therapy was not restricted to experimental gliomas but also occurred in experimental syngeneic B16 melanomas (Supplementary Fig. <a href="#MOESM1" class="usa-link">3a</a>).</p> <figure class="fig xbox font-sm" id="Fig1"><h4 class="obj_head">Fig. 1. PD-1 and CTLA-4 blockade decreases Gl261 tumor growth in ICB R mice.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7028933_41467_2020_14642_Fig1_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be8d/7028933/292eebca6e3a/41467_2020_14642_Fig1_HTML.jpg" loading="lazy" id="d29e916" height="796" width="667" alt="Fig. 1"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig1/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>a</strong>–<strong>d</strong> C57Bl/6 J mice were treated with 250 µg anti-PD-1 and 100 µg anti-CTLA-4 (ICB+) or isotype control (C) on d13, d16, and d19. Tumor growth was monitored by MRI on d13 (MRI1), d19 (MRI2), and d26 (MRI3) post intracranial Gl261 injection (<em>n</em> = 19 vs. <em>n</em> = 7 animals). <strong>b</strong>, <strong>c</strong> Tumor growth and representative MR images of ICB+responder (R), non-responder (NR), and control-treated (C) mice. <strong>d</strong> Response assessed by % of tumor growth between d19 and d26, and between d13 and d26 post tumor inoculation. <strong>e</strong>, <strong>f</strong> Advanced response evaluation was performed on an extended dataset (ICB <em>n</em> = 212 vs. C <em>n</em> = 73 animals). Mice were grouped according to their response pattern with complete response (CR): %V<sub>MRI3–MRI1</sub> −100 %, partial response (PR): % V<sub>MRI3-MRI1</sub> ≤ −65.0 % or % V<sub>MRI3-MRI2</sub> ≤ −65.0 %, sfig disease (SD): %<em>V</em><sub>MRI3–MRI1</sub> &gt; −65.0% and &lt; + 40.0% or %<em>V</em><sub>MRI3–MRI1</sub> ≥ + 40.0% and %<em>V</em><sub>MRI3–MRI2 </sub>≤ −30% and progressive disease (PD): %<em>V</em><sub>MRI3–MRI1</sub> ≥ + 40.0%. <strong>e</strong> Relative increase in lesion volume MRI1–MRI3 (%<em>V</em><sub>MRI3–MRI1</sub>) vs. relative increase in lesion volume MRI2–MRI3 (%<em>V</em><sub>MRI3–MRI2</sub>). <strong>f</strong> Response pattern of ICB and C mice. <strong>g</strong> Survival of ICB R and ICB NR mice (<em>n</em> = 6 vs. <em>n</em> = 10 animals). Data of two independent experiments were pooled. <strong>h</strong> Tumors of ICB R and ICB NR mice were excised on d26 post tumor inoculation and exonic non-synonymous (n.s.) mutational load was assessed by exome sequencing (<em>n</em> = 3 vs. <em>n</em> = 3 animals). <strong>i</strong>, <strong>j</strong> Clonality of mutations in ICB R and ICB NR tumors <strong>i</strong> and mutations predominantly enriched in ICB R or ICB NR tumors, VAF, variant allele frequency. <strong>j</strong> Data are represented as mean ± SEM for <strong>b</strong>, <strong>h</strong> and <strong>i</strong>. Statistical significance was determined by two-tailed Student’s <em>t</em>-test for <strong>b</strong>, <strong>d</strong> and <strong>h</strong>, Fisher’s exact test for <strong>f</strong> or log-rank Mantel–Cox test for <strong>g</strong>. Source data are provided as a Source Data file.</p></figcaption></figure></section><section id="Sec4"><h3 class="pmc_sec_title">Radiomic evaluation of ICB response and pseudoprogression</h3> <p id="Par6">In serial MRI, we observed evidence of pseudoprogression, where ICB therapy induced an initial increase of the measurable MR lesion between MRI1 and MRI2 followed by a rapid regression between MRI2 and MRI3 in 77.23% of ICB R mice (growth pattern 2; G2), while only 19.80% of ICB R mice showed immediate lesion regression between MRI1 and MRI2 or response between MRI2 and MRI3 without pseudoprogression (G1; Fig. <a href="#Fig1" class="usa-link">1c</a>; Fig. <a href="#Fig2" class="usa-link">2a</a>). Delayed response of ICB-treated mice with pseudoprogression (G2 growth pattern) resulted in significant bigger tumor volumes on MRI3 compared to directly responding mice (G1 growth pattern; Fig. <a href="#Fig2" class="usa-link">2b</a>). However, no significant difference in response between MRI2 and MRT3 was present between G1 and G2 ICB R (Fig. <a href="#Fig2" class="usa-link">2c</a>), suggesting that direct response is not a prerequisite for optimal ICB response and methods to monitor pseudoprogression in ICB R are relevant to distinguish pseudoprogressing ICB R from ICB NR.</p> <figure class="fig xbox font-sm" id="Fig2"><h4 class="obj_head">Fig. 2. Radiomic prediction of therapy response to ICB therapy.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7028933_41467_2020_14642_Fig2_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be8d/7028933/517bd7785415/41467_2020_14642_Fig2_HTML.jpg" loading="lazy" id="d29e1075" height="818" width="794" alt="Fig. 2"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig2/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>a</strong>–<strong>c</strong> C57Bl/6 J mice were treated with 250 µg anti-PD-1 and 100 µg anti-CTLA-4 (ICB+) and tumor growth, therapy response and pseudoprogression were evaluated by MRI before (MRI1), during (MRI2), and after ICB therapy (MRI3). <strong>a</strong> Growth pattern analysis of ICB R (<em>n</em> = 101 animals). G1: %<em>V</em><sub>MRI2–MRI1</sub> &lt; 0% and %<em>V</em><sub>MRI3–MRI2</sub> &lt; 0%; G2: %<em>V</em><sub>MRI2–MRI1</sub> &gt; 0% and %<em>V</em><sub>MRI3–MRI2</sub> &lt; 0%; G3: %<em>V</em><sub>MRI2–MRI1</sub> &gt; 0% and %<em>V</em><sub>MRI3–MRI2</sub> &gt; 0%; and G4: %<em>V</em><sub>MRI2–MRI1</sub> &lt; 0% and %<em>V</em><sub>MRI3–MRI2</sub> &gt; 0%. <strong>b</strong> %<em>V</em><sub>MRI3–MRI1</sub> (left), <em>V</em><sub>MRI1</sub> (baseline tumor volume; middle), and <em>V</em><sub>MRI3</sub> (final tumor volume; right) of ICB R mice with growth pattern G1 and G2 (G1 <em>n</em> = 20 vs. G2 <em>n</em> = 78 animals). <strong>c</strong> %<em>V</em><sub>MRI3–MRI2</sub> of ICB R mice with growth pattern G1 and G2 (G1 <em>n</em> = 20 vs. G2 <em>n</em> = 78 animals). <strong>d</strong>–<strong>f</strong> Radiomic response prediction after ICB therapy based on radiomic features of MRI1 (baseline) and MRI2 (during ICB therapy) images (<em>n</em> = 148 animals). Boxplot with blocks showing the interquartile range (IQR) of data points and horizontal central line (red dot) corresponding to the median. The superimposed violin plot visualizes the distribution of the data and its probability density. Radiomic signature score <strong>d</strong>, heatmap of radiomic features <strong>e</strong>, and top predictive radiomic features <strong>f</strong> of R and NR tumors based on radiomic featur<strong>e</strong>s of MRI1 and MRI2. Data are presented as mean ± SEM for <strong>b</strong> and <strong>c</strong>. Statistical significance was determined by two-tailed Student’s <em>t</em>-test for <strong>b</strong>–<strong>d</strong>. Source data are provided as a Source Data file.</p></figcaption></figure><p id="Par7">To non-invasively predict treatment response (R vs. NR) and pseudoprogression in ICB-treated mice, we implemented an MRI-based radiomic approach. We calculated a set of 423 radiomic features from the T2-hyperintense tumor volume for each time point and incorporated features from MRI1 and the change in radiomic features between the MRI1 to MRI2 for radiomic signature discovery. By constructing a gradient boost classifier, we identified a radiomic signature that allowed to predict treatment response with an accuracy of 82.7% (95% confidence interval, 79.8–85.4%; sensitivity: 69.8%; and specificity: 89.9%). Predictive accuracy was significantly higher as compared to the null model (no information rate of 64.2%) (<em>P</em> &lt; 0.001; Fig. <a href="#Fig2" class="usa-link">2d, e</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">3b</a>). The top radiomic feature for prediction of therapy failure to ICB therapy was the shift in the volume to surface ratio between MRI1 and MRI2 (Fig. <a href="#Fig2" class="usa-link">2f</a>). As diagnosis, tumor imaging and response monitoring for glioblastoma patient is routinely performed with T1−weighted contrast-enhanced MRI, response evaluation by T2-weighted imaging was validated by simultaneous T1−weighted contrast-enhanced (CE) imaging. T2 and T1 CE tumor volumes strongly correlated (<em>R</em>² 0.96; Supplementary Fig. <a href="#MOESM1" class="usa-link">3c</a>), and T1 CE measurements did not provide an additional benefit for response prediction in pseudoprogressing ICB R (G2 R; Supplementary Fig. <a href="#MOESM1" class="usa-link">3d</a>).</p></section><section id="Sec5"><h3 class="pmc_sec_title">Impaired antitumor T cell immunity in ICB NR mice</h3> <p id="Par8">To unravel mechanisms of ICB treatment failure in ICB NR mice, we next examined intratumoral T cell infiltration and T cell cytotoxicity in ICB NR tumors. Although T cell infiltration in ICB NR tumors was significantly lower compared to ICB R tumors (Fig. <a href="#Fig3" class="usa-link">3a</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">4a</a>), no alterations in relative frequencies of CD8<sup>+</sup> and CD4<sup>+</sup> tumor-infiltrating lymphocytes (TILs) of ICB R compared to NR mice were observed (Supplementary Fig. <a href="#MOESM1" class="usa-link">4a</a>). Antitumor TIL responses of ICB NR TILs were diminished as TILs from ICB NR showed an impaired potency to lyse syngeneic glioma cells ex vivo compared to ICB R and control-treated TILs (Fig. <a href="#Fig3" class="usa-link">3b</a>). ICB NR CD8<sup>+</sup> TILs displayed a more polyclonal T cell receptor (TCRβ) repertoire compared to ICB R CD8<sup>+</sup> TILs, suggesting a failure of proliferation of tumor-reactive clones in NR tumors (Fig. <a href="#Fig3" class="usa-link">3c</a>). This was further supported by the identification of a shared CDR3 sequence motif (alterations of 1 or less AA between ICB R mice) in the CD8 TIL population of ICB R mice that was not present in ICB NR CD8 TILs (Supplementary Fig. <a href="#MOESM1" class="usa-link">4b</a>).  Additionally, ICB R tumors were characterized by significantly reduced frequencies of regulatory T cells (T<sub>regs</sub>; Fig. <a href="#Fig3" class="usa-link">3d</a>). No significant evidence of differential PD-1 surface expression or upregulation of immunosuppressive molecules (CD73 and CD38) on NR CD4<sup>+</sup> and CD8<sup>+</sup> TILs was observed (Supplementary Fig. <a href="#MOESM1" class="usa-link">4d</a>, gating strategy Supplementary Fig. <a href="#MOESM1" class="usa-link">5a, c</a>). In order to assess if responding mice developed long-term immunity against Gl261 cells, Gl261-bearing mice were treated with ICB as previously described, response was assessed by MRI between d21 and d29, and mice were followed up for 57 days after tumor inoculation until lesions regressed completely or showed stable, minimal lesion volumes. Responding mice were rechallenged with Gl261 cells by intracranial injection into the contralateral hemisphere at day 57 and were followed for 63 days. Here, rechallenged R mice did not develop Gl261 tumors as confirmed by MRI and survival analysis (Fig. <a href="#Fig3" class="usa-link">3e, f</a>), suggesting an efficient activation of tumor-reactive T cells and a protective long-term immunity in ICB R mice. Strikingly, depletion of CD8<sup>+</sup> T cells was not sufficient to abrogate response to ICB, while no tumor showed ICB-induced regression after depletion of CD4<sup>+</sup> T cells (Fig. <a href="#Fig3" class="usa-link">3g, h</a>; Supplementary Fig. <a href="#MOESM1" class="usa-link">4e-f</a>). This suggests an important role of effector CD4<sup>+</sup> T cells in driving the response to checkpoint blockade.</p> <figure class="fig xbox font-sm" id="Fig3"><h4 class="obj_head">Fig. 3. Impaired antitumor T cell immunity in ICB NR tumors.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7028933_41467_2020_14642_Fig3_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be8d/7028933/ac5ae62b25ce/41467_2020_14642_Fig3_HTML.jpg" loading="lazy" id="d29e1320" height="799" width="667" alt="Fig. 3"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig3/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>C57Bl/6 J mice were treated with 250 µg anti-PD-1 and 100 µg anti-CTLA-4 (ICB + ), or isotype control (C) on d13, d16, and d19 and tumor monitoring was performed on d13, d19, and d26 post tumor inoculation. <strong>a</strong> CD3<sup>+</sup> cell counts per mm² tumor area assessed by immunohistochemistry (ICB R <em>n</em> = 3, ICB NR <em>n</em> = 3 animals). <strong>b</strong> CD3<sup>+</sup> TILs were isolated by MACS from ICB R, ICB NR, and C tumors on d27 and incubated for 4 h with Gl261 cells ex vivo. Cytotoxicity was analyzed by LDH release relative to positive lysis control (ratio). Five samples per group were pooled. Values are corrected for spontaneous effector and target cell LDH release. <strong>c</strong> Representative ICB R and ICB NR CD8<sup>+</sup> TCRβ TIL repertoire and % of ten most frequent sequences. <strong>d</strong> Flow cytometry for frequency of CD25<sup>+</sup>FOXP3<sup>+</sup> T<sub>regs</sub> of CD4<sup>+</sup> TILs (ICB R <em>n</em> = 4, ICB NR <em>n</em> = 6, C <em>n</em> = 4 animals). <strong>e</strong>, <strong>f</strong> C57BL/6 J mice were treated with ICB on d14, d17, and d20 after Gl261 injection and tumors were measured on d14, d21, d29, d42, and d50. Gl261 rechallenge of ICB R was performed on d57 after first tumor injection. Tumor volumes on d14 and d21 after rechallenge <strong>e</strong> and survival <strong>f</strong> of Gl261 rechallenged ICB R and control-injected mice (<em>n</em> = 5 vs. <em>n</em> = 5 animals). <strong>g</strong>, <strong>h</strong> CD8<sup>+</sup> or CD4<sup>+</sup> T cells were depleted prior and during ICB using monoclonal depletion antibodies (4 × 500 µg 2.43 or 2 × 1000 µg GK1.5). <strong>g</strong> ICB response in CD8<sup>+</sup>-depleted or naive mice (ICB + CD8 naive <em>n</em> = 13, ICB + CD8 depl. <em>n</em> = 13 animals) and <strong>h</strong> in CD4 depleted or naive mice (ICB + CD4 naive <em>n</em> = 12, ICB + CD4 depl. <em>n</em> = 12 animals). Data are represented as mean ± SEM for <strong>a</strong>, <strong>d</strong> and <strong>e</strong>. Statistical significance was determined by one-way ANOVA with Tukey’s test for <strong>d</strong>, two-tailed Student’s <em>t</em>-test for <strong>a</strong>, <strong>e</strong>, <strong>g</strong> and <strong>h</strong> or log-rank Mantel–Cox test for <strong>f</strong>. Source data are provided as a Source Data file.</p></figcaption></figure></section><section id="Sec6"><h3 class="pmc_sec_title">Suppressive myeloid cell infiltrates mediate ICB failure</h3> <p id="Par9">Based on the importance of CD4<sup>+</sup> T cells for mediating response to ICB and their close interaction with myeloid cells, we reasoned that antitumor T cell responses are critically shaped by the intratumoral myeloid compartment interacting with CD4<sup>+</sup> T cells. Resistance to ICB therapy in other tumor types has previously been linked to tumor-associated macrophages (TAM) and myeloid-derived suppressor cells<sup><a href="#CR17" class="usa-link" aria-describedby="CR17">17</a>,<a href="#CR18" class="usa-link" aria-describedby="CR18">18</a></sup>. Therefore, we investigated the presence and phenotype of glioma-infiltrating myeloid cells in ICB R and NR mice. <em>t</em>SNE-guided (<em>t</em>-Distributed Stochastic Neighbor Embedding) immune cell subset identification by multiparameter flow cytometry analysis revealed markedly decreased frequencies of tumor-infiltrating myeloid cell subsets, including monocytes, monocyte-derived cells (MDCs), and macrophages in ICB R compared with NR animals (Fig. <a href="#Fig4" class="usa-link">4a</a>, gating strategy Supplementary Fig. <a href="#MOESM1" class="usa-link">5a-d</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">6a</a>). Of note, there was no evidence for enhanced apoptosis of CD45<sup>high</sup>CD11b<sup>+</sup> cells in ICB R tumors (Supplementary Fig. <a href="#MOESM1" class="usa-link">6b, c</a>). Despite decreased frequencies of tumor-infiltrating myeloid cells in ICB R tumors, we did not observe significant differences in the frequency of circulating blood CD11b<sup>+</sup> cells and their expression of the chemokine receptors CCR2, CCR4, CCR5, and CCR6 involved in myeloid cell recruitment to gliomas during ICB therapy (d15; Supplementary Fig. <a href="#MOESM1" class="usa-link">6d, e</a>) and response establishment (d21; Supplementary Fig. <a href="#MOESM1" class="usa-link">6f, g</a>). Moreover, cytokine/chemokine array analysis of ICB R, NR, and control-treated mice did not reveal enhanced plasma levels of myeloid cell-attractant chemokines and factors, such as CCL2, CCL3, CCL4, CCL5, CCL11, CCL17, Macrophage colony-stimulating factor (M-CSF) and granulocyte M-CSF in NR plasma during the early treatment phase (Supplementary Fig. <a href="#MOESM1" class="usa-link">6h</a>).</p> <figure class="fig xbox font-sm" id="Fig4"><h4 class="obj_head">Fig. 4. Enhanced frequencies of PD-L1-expressing macrophages in ICB NR tumors.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7028933_41467_2020_14642_Fig4_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be8d/7028933/353bd4fd1635/41467_2020_14642_Fig4_HTML.jpg" loading="lazy" id="d29e1469" height="880" width="799" alt="Fig. 4"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig4/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p>C57Bl/6 J mice were treated with 250 µg anti-PD-1 and 100 µg anti-CTLA-4 (ICB + ), or isotype control (C) on d13, d16, and d19 and tumors were monitored by MRI on d13, d19, and d26 post Gl261 injection. <strong>a</strong> Multiparameter flow cytometry analysis of CNS samples from ICB R, ICB NR, and C on d27. (ICB R <em>n</em> = 5, ICB NR <em>n</em> = 5, C <em>n</em> = 5 animals). <em>t</em>SNE-guided immune cell subset identification using <em>t</em>SNE composite dimensions by multiparameter flow cytometry analysis. Relative frequencies (left) and FlowSOM-guided meta-clustering on living and single cells (right) of ICB R, NR, and C CNS tissue. <strong>b</strong> CSF1R was targeted prior and during ICB therapy using monoclonal antibodies (AFS98; 6 × 250 µg). Response to ICB therapy in CSF1R-targeted and control mice (ICB + <em>n</em> = 12, ICB + CSF1R depleted <em>n</em> = 11 animals). <strong>c</strong> Multiparameter flow cytometry analysis of CNS samples from ICB R, ICB NR, and C mice on d27. (ICB R <em>n</em> = 5, ICB NR <em>n</em> = 5, C <em>n</em> = 5 animals). Heatmaps showing the median expression (value range 0–1, white–red) of pro- and anti-inflammatory markers in MDCs, classical monocytes, alternative monocytes, macrophages, and microglia clusters in ICB R, NR, and C CNS tissue. <strong>d</strong> PD-L1 and PD-L2 expression on identified CNS subsets from stochastically selected cells from ICB R, ICB NR, and C CNS tissue. <strong>e</strong>, <strong>f</strong> Pro- and anti-inflammatory gene signature score (geometric mean of pro- and anti-inflammatory genes) <strong>e</strong> and gene expression of pro- and anti-inflammatory genes <strong>f</strong> in tumor-associated CD45<sup>high</sup>CD11b<sup>+</sup> cells (macrophages) from ICB R and ICB NR assessed by NanoString analysis (ICB R <em>n</em> = 4, ICB NR <em>n</em> = 3 animals). Center line of the boxplot shows the mean and the whiskers represent the upper and lower most quartiles. Data are represented as mean ± SEM for <strong>a</strong>. Statistical significance was determined by two-tailed Student’s <em>t</em>-test for <strong>b</strong> and <strong>e</strong>. Source data are provided as a Source Data file.</p></figcaption></figure><p id="Par10">Targeting of myeloid cells by CSF1R inhibition has been investigated for the treatment of glioblastoma patients with the aim of (1) hindering myeloid cell infiltration into the tumor and (2) reprogramming suppressive myeloid cells to a pro-inflammatory phenotype<sup><a href="#CR19" class="usa-link" aria-describedby="CR19">19</a>,<a href="#CR20" class="usa-link" aria-describedby="CR20">20</a></sup>. Here, we reasoned that CSF1R-targeted therapy might elevate ICB response by releasing T cell suppression by intratumoral myeloid cells. CSF1R blockade by monoclonal antibodies increased therapy response from 33.33% (ICB) to 54.53% (ICB + CSF1R blockade) with only 2 out of 11 mice showing tumor progression of &gt;40% between MRI2 and MRI3 (compared to 6 out of 12 in the ICB cohort; Fig. <a href="#Fig4" class="usa-link">4b</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">7a, b</a>).</p> <p id="Par11">Glioma-associated myeloid cells have been reported to suppress antitumor T cell responses and promote tumor progression<sup><a href="#CR21" class="usa-link" aria-describedby="CR21">21</a></sup>. We hence sought to characterize the myeloid cell phenotype, and activation in ICB R and NR tumors in more detail. Intratumoral MDCs and macrophages from ICB R mice expressed higher levels of major histocompatibility complex (MHC) II, while the expression of the immunosuppressive molecules PD-L1 and the poliovirus receptor (CD155) was strongly reduced (Fig. <a href="#Fig4" class="usa-link">4c</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">8a, b</a>). Expression of PD-L2, the second ligand of PD-1, was not differentially regulated in MDCs and macrophages in ICB R compared to NR tumors (Supplementary Fig. <a href="#MOESM1" class="usa-link">8b</a>). PD-L1 in the tumor microenvironment was predominantly expressed on intratumoral monocytes, MDCs, and macrophages, while expression of PD-L2 was less restricted and present on other immune cell subsets as well as tumor and stroma cells (Fig. <a href="#Fig4" class="usa-link">4d</a>). Moreover, MDCs in ICB R tumors showed increased levels of tumor necrosis factor (Fig. <a href="#Fig4" class="usa-link">4c</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">8a</a>), suggesting a pro-inflammatory phenotype. In line with these findings, NanoString gene expression analysis of intratumoral CD45<sup>high</sup>CD11b<sup>+</sup> cells revealed that CD45<sup>high</sup>CD11b<sup>+</sup> cells from ICB NR tumors displayed an increased expression of anti-inflammatory genes involved in inhibition of IL1b- and IL1a-mediated inflammatory responses (<em>Il1rn</em>), IL4 signaling (<em>IL4ra</em>), and M2-associated genes, such as <em>PD-L1</em>, <em>TGFbi</em>, and the scavenger receptor <em>Msr1</em> (Fig. <a href="#Fig4" class="usa-link">4e, f</a>). Contrary, CD45<sup>high</sup>CD11b<sup>+</sup> cells from ICB R tumors upregulated pro-inflammatory genes known to induce Th1 T cell responses, including the cytokine <em>Il12</em> and genes involved in MHC II presentation (<em>H2-DMb2</em>). As PD-L1 was differently expressed on the majority of myeloid cell populations with the strongest differences on intratumoral macrophages (Fig. <a href="#Fig4" class="usa-link">4c</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">8a</a>), we sought to investigate the impact of PD-L1 expression on the effector functions of ICB R and NR tumor-associated myeloid cells. Interestingly, differences in PD-L1 expression between ICB R and NR were exclusively observed in myeloid cells in the tumor microenvironment and not present in the periphery (Supplementary Fig. <a href="#MOESM1" class="usa-link">8c</a>). Strikingly, PD-L1 expression on intratumoral CD11b<sup>+</sup> myeloid cells showed a strong negative correlation with response to ICB therapy (Supplementary Fig. <a href="#MOESM1" class="usa-link">9a</a>). The immunosuppressive molecule PD-L1 is known to inhibit T cell proliferation and effector function upon binding to its ligand PD-1 on T cells<sup><a href="#CR1" class="usa-link" aria-describedby="CR1">1</a></sup>. As PD-1 was blocked in ICB-treated mice, we investigated whether PD-L1/PD-1 signaling directly impacts macrophage activation and function, such as phagocytosis as previously proposed<sup><a href="#CR22" class="usa-link" aria-describedby="CR22">22</a>,<a href="#CR23" class="usa-link" aria-describedby="CR23">23</a></sup>. Here, we did not observe an increased phagocytotic activity of tumor-associated CD45<sup>high</sup>CD11b<sup>+</sup> cells isolated from ICB R compared to ICB NR mice (Supplementary Fig. <a href="#MOESM1" class="usa-link">9b</a>). Moreover, ex vivo PD-L1 inhibition during phagocytosis did not induce enhanced phagocytic activity of TAM (Supplementary Fig. <a href="#MOESM1" class="usa-link">9b</a>). Notably, CD11b<sup>+</sup> PD-L1<sup>−</sup> cells in the tumor microenvironment of ICB R mice showed increased expression of MHC II compared to NR PD-L1<sup>−</sup> myeloid cells, suggesting enhanced antigen presentation by this PD-L1<sup>−</sup> myeloid cell subset (Supplementary Fig. <a href="#MOESM1" class="usa-link">9c</a>). To rule out that increased frequencies of suppressive myeloid cells in ICB NR tumors are a result of increased tumor size independent of treatment rather than a mechanism of ICB resistance, we correlated MRI3 tumor volumes with frequencies of tumor-associated CD45<sup>high</sup>CD11b<sup>+</sup> cells and percentage of PD-L1<sup>+</sup> cells on tumor-associated CD45<sup>high</sup>CD11b<sup>+</sup> cells in ICB and C-treated mice. While MRI3 tumor volumes strongly correlated with both factors in ICB mice, no correlation was observed in C mice (Supplementary Fig. <a href="#MOESM1" class="usa-link">10a–c</a>, left panel). Moreover, frequencies of tumor-associated CD45<sup>high</sup>CD11b<sup>+</sup> cells and percentage of PD-L1<sup>+</sup> cells on tumor-associated CD45<sup>high</sup>CD11b<sup>+</sup> cells were significantly correlated with tumor growth (MRI1 to MRI3, and MRI2 to MRI3) in ICB but not C mice (Supplementary Fig. <a href="#MOESM1" class="usa-link">10a–c</a>, middle (MRI1 to MRI3) and right (MRI2 to MRI3) panel). Heterogeneity of tumor volumes in C mice does not reflect a heterogeneity in the suppressive CD11b compartment.</p></section><section id="Sec7"><h3 class="pmc_sec_title">CD4<sup>+</sup> TIL suppression by the PD-L1/PD-1/CD80 axis</h3> <p id="Par12">To address whether of PD-L1-expressing myeloid cells directly impact T cell activation and proliferation in the tumor microenvironment, we analyzed the ability of macrophages isolated from ICB R, NR, and control tumors to suppress T cell proliferation and effector function. Suppression of CD4<sup>+</sup>, but not CD8<sup>+</sup> T cell proliferation was more pronounced when T cells were co-cultured with tumor-associated myeloid cells from ICB NR compared to R (Fig. <a href="#Fig5" class="usa-link">5a</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">11a–c</a>). This was accompanied by an increased expansion of T<sub>regs</sub> after co-culture with tumor-associated myeloid cells from ICB NR (Supplementary Fig. <a href="#MOESM1" class="usa-link">11d</a>). Furthermore, CD4<sup>+</sup> T cell suppression and T<sub>reg</sub> expansion were reduced upon PD-L1 inhibition during co-culture with ICB NR tumor-associated myeloid cells (Fig. <a href="#Fig5" class="usa-link">5a</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">11c, d</a>). As PD-1 is blocked by the ICB regimen used here, we hypothesized that T cell suppression is established by an alternative binding partner of PD-L1 on T cells. Interestingly, CD80 has been proposed to act as an alternative binding partner of PD-L1 on T cells, thereby suppressing T cell proliferation and activation<sup><a href="#CR24" class="usa-link" aria-describedby="CR24">24</a></sup>. Indeed, we confirmed CD80 expression on CD4<sup>+</sup> and CD8<sup>+</sup> T cells of ICB-treated mice, with a predominant expression in the TIL compartment (Fig. <a href="#Fig5" class="usa-link">5b</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">11e</a>). Moreover, CD80 expression on naive, pre-activated T cells was induced upon co-culture with tumor-associated myeloid cells and levels of CD80 positive CD4 T cells after co-culture with tumor-associated myeloid cells was comparable to levels on CD4 TILs (Fig. <a href="#Fig5" class="usa-link">5c</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">11e</a>). To investigate if blockade of the PD-L1/CD80 interaction can restore response to anti-PD-1 + anti-CTLA-4 therapy, PD-L1 blocking antibodies were administered in addition to the anti-PD-1 and anti-CTLA-4 regimen. Triple ICB resulted in a decreased tumor growth and enhanced response (11/13 vs. 6/13) to ICB therapy when compared with ICB targeting PD-1 and CTLA-4 only (Fig. <a href="#Fig5" class="usa-link">5d</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">11f</a>). To confirm these preclinical findings, we evaluated macrophage frequencies in glioblastoma patients from a recently published clinical trial of anti-PD-1 treatment<sup><a href="#CR25" class="usa-link" aria-describedby="CR25">25</a></sup>. From this dataset, we applied CIBERSORT analysis of RNA sequencing data from GBM tissue of R (<em>n</em> = 4) and NR (<em>n</em> = 5) patients before anti-PD-1 therapy. In line with our findings, intratumoral M2 macrophage levels as well as myeloid cell infiltrate levels (monocytes, M0, M1, and M2 macrophages) showed a trend toward elevated levels in NR glioblastoma patients before anti-PD-1 therapy (Fig. <a href="#Fig5" class="usa-link">5e</a>), supporting the hypothesis that suppressive myeloid cell subsets impair the induction of antitumor T cell responses by ICB therapy. In summary, our findings suggest a distinct set of biomarkers associated with response to ICB in a hypermutated syngeneic glioma model that is dominated by innate (absence of intratumoral macrophages and absence of PD-L1 on intratumoral macrophages) rather than adaptive immune parameters (Fig. <a href="#Fig5" class="usa-link">5f</a>).</p> <figure class="fig xbox font-sm" id="Fig5"><h4 class="obj_head">Fig. 5. TAMs establish ICB resistance through PD-L1-CD80-mediated CD4<sup>+</sup> T cell suppression and T<sub>reg</sub> expansion.</h4> <p class="img-box line-height-none margin-x-neg-2 tablet:margin-x-0 text-center"><a class="tileshop" target="_blank" href="https://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click%20on%20image%20to%20zoom&amp;p=PMC3&amp;id=7028933_41467_2020_14642_Fig5_HTML.jpg"><img class="graphic zoom-in" src="https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be8d/7028933/8201d65f08d2/41467_2020_14642_Fig5_HTML.jpg" loading="lazy" id="d29e1897" height="611" width="667" alt="Fig. 5"></a></p> <div class="p text-right font-secondary"><a href="figure/Fig5/" class="usa-link" target="_blank" rel="noopener noreferrer">Open in a new tab</a></div> <figcaption><p><strong>a</strong>, <strong>c</strong> Ex vivo T cell suppression by tumor-associated myeloid cells. CD11b<sup>+</sup> cells were purified from ICB R, ICB NR, and C tumors on d27 by MACS and co-cultured for 72 h with pre-activated naive CD3<sup>+</sup> splenocytes with and without 20 µg ml<sup>−1</sup> anti-PD-L1 (10 F.9G2; ICB R <em>n</em> = 4, ICB NR <em>n</em> = 4, C <em>n</em> = 4 animals). <strong>a</strong> CD4<sup>+</sup> T cell proliferation after co-culture assessed by CFSE staining. <strong>b</strong> Frequency of CD80<sup>+</sup> cells of CD8<sup>+</sup> (left) and CD4<sup>+</sup> (right) TILs (ICB R <em>n</em> = 3, ICB NR <em>n</em> = 6, C <em>n</em> = 8 animals). <strong>c</strong> CD80 expression on pre-activated naive CD4<sup>+</sup> and CD8<sup>+</sup> T cells before and after co-culture with tumor-associated myeloid cells from ICB R, ICB NR, and C. <strong>d</strong> Tumor growth (left) and response (right) of C57BL/6 J mice treated with 250 µg anti-PD-1 and 100 µg anti-CTLA-4, and as combinatory therapy with additional 200 µg anti-PD-L1 on d13, d16, and d19 post Gl261 inoculation (aPD-1 + aCTLA-4 <em>n</em> = 13, aPD-1 + aCTLA-4 + aPD-L1 <em>n</em> = 13 animals). <strong>e</strong> CIBERSORT analysis of a GBM expression dataset of PD-1 inhibitor-treated patients before therapy (R <em>n</em> = 4, NR <em>n</em> = 5 biologically independent samples)—two-sided WRST. <strong>f</strong> Mediators of ICB response (<em>Z</em>-transformed log2 fold change R/NR). Data are represented as mean ± SEM for <strong>a</strong>, <strong>b</strong>, <strong>c</strong> and <strong>e</strong>. For <strong>a</strong>, statistical significance was determined by one-way ANOVA in combination with Dunnett’s test (CD3<sup>+</sup> cells + R, NR, or C CD11b<sup>+</sup> cells vs. T cells only) and Sidak’s test for multiple comparison (CD3<sup>+</sup> cells + R CD11b<sup>+</sup> cells vs. CD3<sup>+</sup> cells + NR CD11b<sup>+</sup> cells) or two-tailed paired Student’s <em>t</em>-test (− PD-L1 vs. + PD-L1). Statistical significance was analyzed by one-way ANOVA with Tukey’s test for multiple comparison for <strong>b</strong>, by one-way ANOVA in combination with Dunnett’s test (CD3<sup>+</sup> cells + R, NR, or C CD11b<sup>+</sup> cells vs. T cells only) for <strong>c</strong>, by unpaired two-tailed Student’s <em>t</em>-test for <strong>d</strong>, and WRST with Benjamini–Hochberg correction for <strong>e</strong>. Source data are provided as a Source Data file.</p></figcaption></figure></section></section><section id="Sec8"><h2 class="pmc_sec_title">Discussion</h2> <p id="Par13">Immune checkpoint inhibitors for glioma patients are now tested in clinical trials and first results point toward poor responses, although neo-adjuvant ICB therapy was recently shown to promote a survival benefit in glioblastoma patients<sup><a href="#CR6" class="usa-link" aria-describedby="CR6">6</a>,<a href="#CR26" class="usa-link" aria-describedby="CR26">26</a>,<a href="#CR27" class="usa-link" aria-describedby="CR27">27</a></sup>. These studies indicate that mechanism-driven response biomarkers and combination strategies are required, in order to define which patients benefit from checkpoint therapy and to simultaneously enhance therapy response.</p> <p id="Par14">Preclinical models have been notoriously problematic for the identification of biomarkers, not only as they incompletely reflect tumor biology but also because they seemingly lack interindividual heterogeneity. We have uncovered and mechanistically dissected the surprising finding that heterogeneity of response is not only observed in humans but also in syngeneic tumor models in inbred mice. This observation may offer the opportunity to not only elucidate novel mechanisms of response and resistance and, novel therapeutic targets suitable for combination therapies, but also identify potential predictive biomarkers potentially applicable to patients with gliomas (Fig. <a href="#Fig5" class="usa-link">5f</a>). We have utilized this robust heterogeneity of response and resistance with pseudoprogression, signifying an immune response in a syngeneic high-mutational load experimental glioma model to establish a radiomic-based MRI signature, predicting response with high accuracy. This signature may be useful for future clinical trials enriched for patients with hypermutated glioblastoma similar to the experimental model used here. Proposed signature might additionally be applied in combination with automated quantitative tumor response assessment of MRI, using artificial networks that will allow for improved clinical decision making<sup><a href="#CR28" class="usa-link" aria-describedby="CR28">28</a></sup>. The establishment and application of additional MR protocols to image immunotherapy-induced immune responses in the CNS will further facilitate therapy monitoring and response evaluation.</p> <p id="Par15">Heterogeneity of response allowed for the precise analysis of the glioma immune microenvironment associated with response and resistance in this model. We identified a PD-L1<sup>+</sup> macrophage subset that drives resistance to ICB by suppression of CD4<sup>+</sup> T cell activation and proliferation and T<sub>reg</sub> induction (Fig. <a href="#Fig5" class="usa-link">5a</a>, Supplementary Fig. <a href="#MOESM1" class="usa-link">11c, d</a>). PD-L1 expression of tumors has long been believed to be the major prerequisite for efficient PD-1 blockade. High PD-L1 expression in the initial tumor tissue was associated with poor response to nivolumab in the CheckMate 143 trial (<a href="https://clinicaltrials.gov/ct2/show/NCT03690193?term=NCT02017717" class="usa-link" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">NCT02017717</a>) for patients with recurrent glioblastoma<sup><a href="#CR6" class="usa-link" aria-describedby="CR6">6</a></sup>. Loss of <em>PTEN</em> has been associated with an increase of PD-L1 on glioblastoma cells and immune resistance<sup><a href="#CR29" class="usa-link" aria-describedby="CR29">29</a>–<a href="#CR31" class="usa-link" aria-describedby="CR31">31</a></sup> and in clinical trials resistance to PD-1 inhibitors is associated with genetic alterations in the <em>PTEN</em> gene<sup><a href="#CR25" class="usa-link" aria-describedby="CR25">25</a></sup>. However, PD-L1 is not only expressed on tumor cells but also infiltrating leukocytes in glioblastoma<sup><a href="#CR32" class="usa-link" aria-describedby="CR32">32</a>–<a href="#CR34" class="usa-link" aria-describedby="CR34">34</a></sup> and PD-L1 expression on macrophages has been associated with poor survival and resistance to immunotherapy for patients with glioblastoma<sup><a href="#CR35" class="usa-link" aria-describedby="CR35">35</a>,<a href="#CR36" class="usa-link" aria-describedby="CR36">36</a></sup>. Recent studies highlight the impact of tumor-derived factors on PD-L1 expression on macrophages<sup><a href="#CR37" class="usa-link" aria-describedby="CR37">37</a>–<a href="#CR39" class="usa-link" aria-describedby="CR39">39</a></sup>. These clinical studies and our data are in line with previous observations that macrophage infiltration and PD-L1 expression on infiltrating macrophages are critical determinants of resistance to ICB. It is a widely accepted view that signaling induced by PD-1/PD-L1 interaction impairs T cell effector function and proliferation that subsequently results in T cell exhaustion and decreased tumor immunity<sup><a href="#CR1" class="usa-link" aria-describedby="CR1">1</a></sup>. However, the impact of PD-1/PD-L1 binding on the phenotype, and function of PD-L1<sup>+</sup> antigen-presenting cells and tumor cells is still incompletely understood. Here, we have shown that PD-L1 expression on macrophages is accompanied by the expression of other immunosuppressive molecules such as CD155 (Supplementary Fig. <a href="#MOESM1" class="usa-link">8b</a>) and that frequency of PD-L1<sup>+</sup> myeloid cells is negatively correlated to therapy response to checkpoint blockade (Supplementary Fig. <a href="#MOESM1" class="usa-link">9a</a>). This data is supported by evidence that suggests an induction of a regulatory macrophage profile of PD-L1<sup>+</sup> macrophages upon PD-L1 signaling<sup><a href="#CR40" class="usa-link" aria-describedby="CR40">40</a></sup>. Binding of PD-1 on T cells to PD-L1 on macrophages hence decreases inflammatory mediators while increasing the production of anti-inflammatory cytokines<sup><a href="#CR40" class="usa-link" aria-describedby="CR40">40</a></sup>. It remains to be investigated, if this also holds true for the CD80/PD-L1 interaction. We further hypothesized that PD-1/PD-L1 signaling might interfere with macrophage effector function, such as phagocytosis. Interestingly, PD-1 expression on TAMs has been reported to increase during tumor progression in murine and human tumors, and to negatively correlate with phagocytic potency against tumor cells<sup><a href="#CR22" class="usa-link" aria-describedby="CR22">22</a></sup>. In our hands, glioma-associated macrophages did not induce phagocytosis upon PD-L1 inhibition, suggesting an alternative mechanism of immunosuppression by PD-L1<sup>+</sup> macrophages. Here, we show that combination of PD-1, CTLA-4, and PD-L1 enhances response rates and that PD-L1<sup>+</sup> macrophages suppress T cell proliferation under PD-1 and CTLA-4 blockade by a compensatory mechanism through CD80 binding.</p> <p id="Par16">As differences in PD-L1 expression were exclusively observed on intratumoral macrophages and were not present in the periphery, additional biomarkers will be required to monitor therapy response to ICB, especially in the context of glioblastoma patients. These biomarkers might address soluble factors of macrophage recruitment, polarization, and PD-L1-inducing factors in the blood. It moreover remains to be investigated if macrophage-mediated resistance to ICB is acquired or preexisting, as a preexisting mechanism might be exploited to stratify and select patients that benefit from checkpoint blockade therapy using tumor samples.</p> <p id="Par17">In conclusion, this evidence suggests an important role of intratumoral macrophages-expressing PD-L1 and other immunosuppressing molecules in the response to PD-1 and CTLA-4 blockade, thereby inhibiting the induction of proliferation and reactivation of tumor-reactive T cells. Strategies to enhance therapy response to ICB might thus involve the mechanism-driven combination of ICB and targeting of TAMs.</p></section><section id="Sec9"><h2 class="pmc_sec_title">Methods</h2> <section id="Sec10"><h3 class="pmc_sec_title">Mice</h3> <p id="Par18">C57Bl/6 J wild-type mice were purchased from Charles River or Janvier Laboratories at the age of 6–8 weeks. Animal procedures were performed in the accordance with all relevant ethical regulations for animal testing and research, and were approved by the governmental authorities (Regional Administrative Authority Karlsruhe, Germany). Sex- and age-matched mice were used for further experiments. If not stated otherwise, female mice were used for the experiments. All mice were 7–12 weeks of age at use. Mice were kept under specific-pathogen-free (SPF) conditions at the animal facility of the DKFZ Heidelberg.</p></section><section id="Sec11"><h3 class="pmc_sec_title">Cell culture</h3> <p id="Par19">Gl261 cells were purchased from the National Cancer Institute. Gl261 cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 10 % fetal bovine serum (FBS), 100 U ml<sup>−1</sup> penicillin, and 100 µg ml<sup>−1</sup> streptomycin (Sigma-Aldrich) at 37 °C, 5% CO<sub>2</sub>. Gl261 cells were routinely tested for viral, mycoplasma, and non-murine cell contamination by multiplex cell contamination test (Multiplexion GmbH)<sup><a href="#CR41" class="usa-link" aria-describedby="CR41">41</a></sup>. Primary murine T cells and myeloid cells were cultured in RPMI-1640 (Sigma-Aldrich) with 10% FBS, 100 U ml<sup>−1</sup> penicillin, 100 μg ml<sup>−1</sup> streptomycin, 25 mM Hepes pH 7.4, 1 mM sodium pyruvate, 5 × 10<sup>−5</sup> M 2-mercaptoethanol (Sigma-Aldrich), and 2 mM L-glutamine (Thermo Fisher) at 37 °C, 5% CO<sub>2</sub>.</p></section><section id="Sec12"><h3 class="pmc_sec_title">Gl261 tumor cell inoculation and tumor rechallenge</h3> <p id="Par20">A total of 1 × 10<sup>5</sup> Gl261 tumor cells were diluted in 2 µl sterile phosphate-buffered saline (PBS; Sigma-Aldrich) and stereotactically implanted into the right hemisphere of 7–9-week-old female C57Bl/6 J mice (coordinates: 2 mm right lateral of the bregma and 1 mm anterior to the coronal suture with an injection depth of 3 mm below the dural surface), using a 10 µl Hamilton micro-syringe driven by a fine step stereotactic device (Stoelting). Tumor cell inoculation was performed under anesthesia and mice received analgesics for 2 days post operation. Mice were checked daily for tumor-related symptoms and sacrificed when tumor burden and stop criteria were met or mice showed signs of neurological deficit. For tumor rechallenge experiments 7–9-week-old male C57Bl/6 J mice (Charles River) were intracranially injected with 100.000 Gl261 cells and mice were treated with anti-PD-1 + anti-CTLA-4 on day 14,17, and 20 post inoculation. Tumor growth was monitored by MRI on day 14, 21, 29, 42, 70, and 78 post inoculation. Responding mice were rechallenged with 1 × 10<sup>5</sup> Gl261 cells by intracranial injection into the contralateral hemisphere on day 57 post inoculation, as described above. In addition, 1 × 10<sup>5</sup> Gl261 cells were injected into a control group of five naive, age and sex-matched C57Bl/6 J mice. Mice were checked daily for tumor-related symptoms and sacrificed when tumor burden and stop criteria were met or mice showed signs of neurological deficit. Mice were followed for 63 days post tumor rechallenge (120 days after the first tumor injection) and survival was analyzed by Kaplan–Meier survival curves using log-rank Mantel–Cox test.</p></section><section id="Sec13"><h3 class="pmc_sec_title">In vivo antibodies</h3> <p id="Par21">For immune checkpoint therapy, 100 µg anti-CTLA-4 (9D9, BioXCell) per mouse and 250 µg anti-PD-1 (RMP1-14, BioXCell) per mouse or equivalent doses of isotype control antibodies (MCP-11 and 2A3, BioXCell) were administered by intraperitoneal (i.p.) injection in 200 µl PBS on day 13, 16, and 19 after tumor inoculation. PD-L1 blockade (200 µg per mouse 10 F.9G2 or LTF-2 isotype control, BioXCell) was performed by i.p. injection in combination with anti-PD-1 and anti-CTLA-4 therapy on day 13, 16, and 19 after tumor inoculation. For PD-1 monotherapy, C57Bl/6 J mice were treated with 250 µg anti-PD-1 or isotype control (C) on day 10, 13, and 16 and tumor growth was monitored by MR imaging on day 10, 17, and 24 post intracranial Gl261 tumor injection. For CD4 T cell blockade, 1000 µg GK1.5 or LTF-2 isotype antibody per mouse were administered by i.p. injection on day 13 and 20 after tumor injection. CD8 T cell blockade was performed using 500 µg anti-CD8 2.43 or LTF-2 isotype antibody per mouse on day 13, 17, 20, and 24 after tumor inoculation. In CD4 and CD8 blocking experiments, ICB with anti-PD-1 and anti-CTLA-4 was performed on day 15, 18, and 21 post inoculation to allow for T cell depletion before therapy start. Efficacy of CD4 and CD8 depletion was confirmed before and during immune checkpoint therapy (every third day) by flow cytometry analysis of peripheral blood lymphocytes and by terminal flow cytometry analysis of TILs. For CSF1R blockade, 250 µg AFS98 or 2A3 isotype antibody per mouse were administered by i.p. injection on day 11, 14, 17, 20, 23, and 25 after tumor injection. ICB with anti-PD-1 and anti-CTLA-4 in combination with CSF1R depletion was performed on day 13, 16, and 19 post inoculation.</p></section><section id="Sec14"><h3 class="pmc_sec_title">Survival experiments</h3> <p id="Par22">For survival experiments, 1 × 10<sup>5</sup> Gl261 tumor cells were implanted into the right hemisphere of 7–9-week-old female C57Bl/6 J mice as described above. Mice were treated with anti-PD-1 + anti-CTLA-4 or isotype control on day 13, 16, and 19 post inoculation and MRI was performed on day 13, 19, and 26 as described above. Mice were checked daily for tumor-related symptoms and sacrificed when tumor burden and stop criteria were met or mice showed signs of neurological deficit. For survival data, data of two independent experiments were combined.</p></section><section id="Sec15"><h3 class="pmc_sec_title">Tumor imaging and response criteria</h3> <p id="Par23">MRI of Gl261 tumors was performed on day 13, 19, and 26 post tumor inoculation on a 9.4 Tesla horizontal bore small animal NMR scanner (BioSpec 94/20 USR, Bruker BioSpin GmbH) with a four-channel phased-array surface receiver coil. MRI was performed under inhalation anesthesia with isoflurane. On day 13 post inoculation, mice were grouped according to tumor size. Tumor volumes and diameters were retrieved from standard T2-weighted sequences (TE: 33 ms; TR: 2500 ms) and tumor volume was manually segmented in the Osirix or ITKsnap imaging software in a blinded fashion regarding treatment condition. Treatment response was assessed analogous to the clinically established Immunotherapy Response Assessment in Neuro-Oncology (iRANO) criteria<sup><a href="#CR15" class="usa-link" aria-describedby="CR15">15</a></sup>. Specifically, CR was defined as relative increase in lesion volume MRI1–MRI3 (%<em>V</em><sub>MRI3–MRI1</sub>) of −100%, PR as %<em>V</em><sub>MRI3–MRI1</sub> ≤ −65.0% and/or %<em>V</em><sub>MRI3–MRI2</sub> ≤ −65.0%, SD as %<em>V</em><sub>MRI3–MRI1</sub> &gt; −65% and &lt; + 40%, and PD as %<em>V</em><sub>MRI3–MRI1</sub> ≥ + 40%. Mice with unconfirmed progression between MRI2 and MRI3 were defined as SD, if tumors regressed at least 30% between MRI2 and MRI3 (%<em>V</em><sub>MRI3–MRI2</sub> ≤ −30.0%). Criteria for PD (NR) were met if tumor volume increased by &gt;=40% between MRI1 and MRI3 (thereby corresponding the 25% increase in the biperpendicular diameter mandated by the iRANO criteria, assuming spherical configuration of the tumor). Mice with CR, PR, or SD were defined as R mice. For validation of T2-weighted MR-based response evaluation, T2-w imaging data of ICB- and control-treated mice was compared to T1-w monitoring (T1-w parameters: after iv administration of 0.01 mmol Gadoteric acid: RARE, coronal aquisition, matrix size 200 × 200, TE 6 ms, TR 1000 ms, two averages, flip angle 90°, refocusing angle 180°, resolution; 100 μm × 100μm, slice thickness 0.7 mm).</p></section><section id="Sec16"><h3 class="pmc_sec_title">Radiomic signature discovery and response prediction</h3> <p id="Par24">Radiomic analysis of MRI data was performed with an established workflow as described previously<sup><a href="#CR42" class="usa-link" aria-describedby="CR42">42</a>,<a href="#CR43" class="usa-link" aria-describedby="CR43">43</a></sup>. Briefly, radiomic features were calculated from the T2-hyperintense tumor volume from the first MRI and the change in features between the first and second MRI for radiomic signature discovery (Supplementary Data <a href="#MOESM1" class="usa-link">1</a>). Based on these radiomic features (<em>n</em> = 423 from each time point) gradient boosting machine-learning models were constructed to predict treatment failure at the third MRI. Model performance was evaluated using fivefold cross validation. In more detail, lesion volumes (MRI1 baseline lesion volumes, MRI2 during treatment lesion volumes, and MRI3 post treatment lesion volumes) were segmented on T2-weighted MR imaging using a region-growing segmentation algorithm implemented in ITK-SNAP (<a href="http://www.itksnap.org" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">www.itksnap.org</a>). Radiomic features were calculated from these tumor segmentation masks from T2-weighted MR imaging for each mouse from both time points using the medical imaging interaction toolkit (MITK, <a href="http://www.mitk.org" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">www.mitk.org</a>)<sup><a href="#CR44" class="usa-link" aria-describedby="CR44">44</a></sup>. This included (i) 146 first-order features (ii) 33 volume and shape features, (iii) 200 texture features, and 44 curvature features (CF). Next, a radiomic feature set consisting of all features from MRI1 as well as the absolute difference in each radiomic feature between time points MRI1 and MRI2 was used as an input for predictive modeling of treatment failure (i.e., prediction of response yes vs. no) at MRI3 (implemented using R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria) with the caret library<sup><a href="#CR45" class="usa-link" aria-describedby="CR45">45</a></sup>). All radiomic features were <em>z</em>-score normalized (i.e., transformed to a mean of 0 and a standard deviation equal to 1). Predictive modeling was performed using a gradient boosting machine-learning algorithm that iteratively constructs an ensemble of weak decision tree learners through boosting to form a single strong predictive model (the tuning parameters (boosting iterations, max tree depth, shrinkage, and min. terminal node size) were automatically optimized via resampling procedures). The performance of the gradient boosting classifier was assessed based on a two-times repeated fivefold cross validation resampling procedure. The held-out predictions in each of the resampling iterations were used to calculate the accuracy, area under the receiver operating charasteristic (ROC), sensitivity, specificity, no information rate (largest class percentage for each molecular parameter, i.e., the prediction or accuracy by chance), and a hypothesis test (using the binom.test function) to evaluate whether the accuracy rate is greater than the no information rate. <em>P</em> &lt; 0.05 were considered significant.</p></section><section id="Sec17"><h3 class="pmc_sec_title">Mutanome analysis Gl261 tumors</h3> <p id="Par25">DNA from Gl261 tumor tissue from R and NR mice was extracted using the INVISORB<sup>®</sup> DNA Tissue Mini Kit (STRATEC Biomedical AG) according to the manufacturer’s instruction. RNA contamination was eliminated by RNase digestion with 10 mg ml<sup>−1</sup> RNase at room temperature (RT) for 5 min (Sigma-Aldrich). Exome sequencing was performed on the Illumina NextSeq500 platform (Illumina Inc, San Diego, Calif.) using High output flow cell (75 nt reads paired end + 8 nt index). SureSelectXT Target Enrichment System (Agilent Technologies) was used for library generation according to the manufacturer’s instructions. To convert the vendor-specific sequencing data format generated by the Illumina NextSeq500 to a standard file format, the Illumina tool bcl2fastq (v2.15.0.4)<sup><a href="#CR46" class="usa-link" aria-describedby="CR46">46</a></sup> was used. To check the sequencing read quality, reports were generated with the tool fastqc (v0.10.1)<sup><a href="#CR47" class="usa-link" aria-describedby="CR47">47</a></sup>. After quality checks the alignment was performed with bwa mem (v0.7.5)<sup><a href="#CR48" class="usa-link" aria-describedby="CR48">48</a></sup> and the mouse reference genome GRCm38.68. The picard-tools (v1.105)<sup><a href="#CR49" class="usa-link" aria-describedby="CR49">49</a></sup> were used to remove duplicates from the alignment files. The sorting and indexing of these files was done with samtools (v0.1.19)<sup><a href="#CR50" class="usa-link" aria-describedby="CR50">50</a></sup>. Afterward the variants were called by samtools mpileup (v0.1.19) for single-nucleotide variants and platypus (v0.7.9.1)<sup><a href="#CR51" class="usa-link" aria-describedby="CR51">51</a></sup> for insertions and deletions. The basic annotations of the called variants was done with annovar (v2013-08-23)<sup><a href="#CR52" class="usa-link" aria-describedby="CR52">52</a></sup>.</p></section><section id="Sec18"><h3 class="pmc_sec_title">B16 tumor experiments</h3> <p id="Par26">B16 melanoma cells were kindly provided by Günther J. Hämmerling (Division of Molecular Immunology, DKFZ Heidelberg). B16 cells were cultured in DMEM supplemented with 10 % FBS, 100 U ml<sup>−1</sup> penicillin, and 100 µg ml<sup>−1</sup> streptomycin (Sigma-Aldrich) at 37 °C, 5% CO<sub>2</sub>. B16 cells were routinely tested for viral, mycoplasma, and non-murine cell contamination by multiplex cell contamination test (Multiplexion GmbH)<sup><a href="#CR41" class="usa-link" aria-describedby="CR41">41</a></sup>. For B16 tumor cell inoculation, cell suspension in PBS was mixed with an equal volume of Matrigel® Basement Membrane Matrix (Corning®) and 5 × 10<sup>4</sup> cells in 200 µl of cell-matrix suspension were injected subcutaneously into the right flank of C57BL/6 J mice. Tumor growth was monitored by two-dimensional measurements using a caliper (area: width × length). A total of 100 µg per mouse anti-CTLA-4 (9D9, BioXCell) and 250 µg per mouse anti-PD-1 (RMP1-14, BioXCell) or equivalent doses of isotype control antibodies (MCP-11 and 2A3, BioXCell) were i.p. injected in 200 µl PBS on day 7, 10, and 13 after tumor inoculation. Flow cytometry analysis of tumor-infiltrating and peripheral immune cells was performed on day 15 post inoculation.</p></section><section id="Sec19"><h3 class="pmc_sec_title">CD3 Immunohistochemistry</h3> <p id="Par27">Mice were sacrificed by cardial perfusion with PBS, excised brains were embedded in Tissue-Tek® O.C.T.TM (Sakura), and snap-frozen in cold 2-methylbutane (Sigma-Aldrich) on dry ice. Fresh-frozen sections were stained for CD3 with 1:100 rabbit anti-human/mouse CD3 (Dako; A 0452). In brief, cryo-sections were fixed with 4.5% paraformaldehyde and quenching of endogenous peroxidase was performed with 0.3% H<sub>2</sub>O<sub>2</sub>. Sections were further washed and blocked with 4% normal goat serum in PBS at RT for 1 h. CD3 was stained at 4 °C over night and secondary antibody incubation was performed with biotinylated goat anti-rabbit IgG (1:200; Vector; BA-1000) in 4% normal goat serum for 45 min at RT. After washing with PBS, the VECTASTAIN Elite ABC HRP Kit (Vector) was applied for 30 min at RT. Slides were washed with PBS and developed with 3,3′-Diaminobenzidine (DAB; Dako;). Reaction was stopped with dH<sub>2</sub>O. Cryo-sections were further counterstained with hematoxylin for 3 min at RT and developed in tap water for 10 min. Tissue sections were washed with dH<sub>2</sub>O followed by dehydration with 70% EtOH, 96% EtOH, and 100% EtOH. Slides were cleared thrice with Histo-Clear at RT for 3 min and mounted with histomount medium. Images were acquired on Zeiss Cell Observer using the ZEN software. Quantitative analysis of CD3<sup>+</sup> T cell numbers per mm² tumor area was performed with ImageJ.</p></section><section id="Sec20"><h3 class="pmc_sec_title">TCR sequencing and GLIPH analysis</h3> <p id="Par28">DNA from TIL samples was extracted by QIAamp DNA Micro Kit (Qiagen; 56304) according to the manufacturer’s instruction. TCRβ sequencing was performed using the TCRβ CDR3 Adaptive Biotechnologies® sequencing technology (immunoSEQTM Kit; Adaptive Biotechnologies; Seattle; WA)<sup><a href="#CR53" class="usa-link" aria-describedby="CR53">53</a>,<a href="#CR54" class="usa-link" aria-describedby="CR54">54</a></sup>. Samples were sequenced on the Illumina NextSeq500 platform (Illumina Inc, San Diego, Calif.) using MID output flow cell (156nt reads + 15nt Index). Data were analyzed with the ImmunoSEQ analyzer toolset and presented as productive amino acid sequences. Clonality was assessed by the percentage of the top ten frequent clones of all identified productive sequences, or productive clonality. Sequence similarity analysis was performed using R GLIPH analysis as adapted from Glanville et al.<sup><a href="#CR55" class="usa-link" aria-describedby="CR55">55</a></sup>. TCR sequences from healthy spleen and thymus from C57BL/6 J mice were used as reference database.</p></section><section id="Sec21"><h3 class="pmc_sec_title">Processing of spleen, blood and tumor tissue</h3> <p id="Par29">Spleens were excised and meshed twice through a 70 μm cell strainer to obtain a single-cell suspension and erythrocytes were lysed with ACK buffer containing 150 mM NH<sub>4</sub>Cl, 10 mM KHCO<sub>3</sub>, and 100 μM Na<sub>2</sub>EDTA. Blood samples were obtained by submandibular vein (immune cell monitoring during experiments) or cardial puncture in deep anesthesia (terminal immune cell analysis) and collected in syringes or tubes coated with 0.5 M EDTA. Erythrocytes were lysed with ACK buffer and cells were washed twice and further processed for flow cytometry analysis. For isolation of TILs, mice were cardially perfused in deep anesthesia. For Gl261 tumors, the right hemisphere was excised and the cerebellum removed. For B16 tumors, flank tumors were excised. B16 tumors and Gl261-bearing hemispheres were mechanically dissected and enzymatically digested in HBSS (Sigma-Aldrich, 11088866001) supplemented with 50 µg ml<sup>−1</sup> Liberase DL (Roche) under slow rotation at 37 °C for 30 min. Cells were subsequently meshed through a 100 μm and 70 µm cell strainer, stained, and analyzed by flow cytometry. For Gl261 cell suspensions, cells were purified using myelin removal beads II (Miltenyi Biotec; 130-096) according to the manufacturer’s instruction.</p></section><section id="Sec22"><h3 class="pmc_sec_title">Flow cytometry</h3> <p id="Par30">For intracellular cytokine staining, cells were incubated with 5 µg ml<sup>−1</sup> Brefeldin A (Sigma-Aldrich) for 5 h at 37 °C, 5% CO<sub>2</sub> to allow for intracellular enrichment of cytokines. Brain tumor and spleen cell suspensions were blocked with anti-CD16/CD32 (eBioscience; 93; 14-0161) and extracellular targets were stained at 4 °C for 30 min (Supplementary Data <a href="#MOESM1" class="usa-link">2</a>). Intracellular antigens were fixed, permeabilized, and stained using the FOXP3/transcription factor staining buffer set (eBioscience; 00-5523) and the antibodies listed in Supplementary Data <a href="#MOESM1" class="usa-link">2</a>. Staining of intracellular targets was performed for 45 min at 4 °C. Stained lymphocytes were analyzed on FACS Canto II (BD Biosciences; Germany) or on Attune NxT (Thermo Fisher; Germany). FlowJo V9 or V10 were used for data analysis. Multiparameter FACS data were generated on a FACSSymphony (BD Biosciences) using the antibodies described in Supplementary Data <a href="#MOESM1" class="usa-link">2</a>. Data were compensated, exported (FlowJo V10), uploaded, and normalized using Cyt3 (Matlab_R2018b). The new generated FCS files were uploaded in Rstudio (Version 1.1.463). <em>t</em>SNE (displaying stochastically selected events from all different conditions) and FlowSOM (events from each condition) were performed as described by Brumelman et al.<sup><a href="#CR56" class="usa-link" aria-describedby="CR56">56</a></sup>.</p></section><section id="Sec23"><h3 class="pmc_sec_title">Ex vivo phagocytosis</h3> <p id="Par31">For isolation of CD11b<sup>+</sup> cells of Gl261 tumors from ICB R, ICB NR, and C mice, myelin was removed of tumor single-cell suspension with myelin removal beads II (Miltenyi Biotec; 130-096) according to the manufacturer’s instruction. Subsequently, CD11b<sup>+</sup> cells were purified using MagniSort™ Mouse CD11b Positive Selection Kit (eBioscience; 8802-6860-74). Ex vivo phagocytosis of CD11b<sup>+</sup> cells was assessed as previously described<sup><a href="#CR22" class="usa-link" aria-describedby="CR22">22</a></sup>. In brief, CD11b<sup>+</sup> cells were plated onto ultra-low attachment 96-well plates (Corning) and incubated at 37 °C, 5% CO<sub>2</sub> for 20 min to allow for cell resting. CD11b<sup>+</sup> cells were subsequently cultured at 37 °C, 5% CO<sub>2</sub> for 2 h with pHrodo™-red <em>Staphylococcus</em> <em>aureus</em> BioParticles (Thermo Fisher) according to the manufacturer’s instruction. Phagocytosis was assessed by flow cytometry analysis for pHrodo-red<sup>+</sup> cells of macrophages (CD45<sup>high</sup>CD11b<sup>+</sup> cells) and microglia (CD45<sup>low</sup>CD11b<sup>+</sup> cells). PD-L1 was blocked during incubation with pHrodo™-red <em>S</em>. <em>aureus</em> BioParticles with 20 µg ml<sup>−1</sup> anti-PD-L1 (10 F.9G2; BioXCell).</p></section><section id="Sec24"><h3 class="pmc_sec_title">Apoptosis of intratumoral macrophages</h3> <p id="Par32">Macrophages (CD45<sup>high</sup>CD11b<sup>+</sup>) of ICB R and ICB NR were stained with annexin V-FITC (BioVision, 1:100) and DAPI (1:250, Invitrogen, Carlsbad, USA) in Annexin V binding buffer (eBioscience, Germany) at RT for 15 min, and analyzed using BD-FACS Canto II. Early apoptosis was defined by single annexin V positivity. Late apoptosis was defined as annexin V and DAPI double positivity.</p></section><section id="Sec25"><h3 class="pmc_sec_title">Blood immune cell monitoring</h3> <p id="Par33">Blood samples of ICB-treated mice were collected on day 15 and 21 after Gl261 inoculation using submandibular vein puncture and collected in tubes coated with 0.5 M EDTA. Erythrocytes were lysed with ACK buffer containing 150 mM NH<sub>4</sub>Cl, 10 mM KHCO<sub>3</sub>, and 100 μM Na<sub>2</sub>EDTA. Cells were washed twice with PBS and further processed for flow cytometry analysis.</p></section><section id="Sec26"><h3 class="pmc_sec_title">Plasma cytokine array</h3> <p id="Par34">Blood samples were collected by submandibular vein puncture and plasma was obtained by centrifugation at 2000×<em>g</em>, RT for 10 min. Plasma cytokine analysis was performed with pooled plasma samples at equal ratios for five mice per group according to the manufacturer’s instructions (Proteome Profiler™ Array Mouse Cytokine Array Panel A; R&amp;D Systems; ARY006). Samples were measured on the ChemiDocTM MP Blot reader system (BioRad; Hercules, Calif.). ImageJ 1.48 and the Gilles Carpentier’s Protein Array Analyzer for ImageJ toolset were used for data analysis.</p></section><section id="Sec27"><h3 class="pmc_sec_title">Ex vivo and in vitro T cell suppression</h3> <p id="Par35">For ex vivo and in vitro T cell suppression assays, T cells were purified from spleens of naive C57BL/6 J mice using the MagniSort™ Mouse T cell Enrichment Kit (eBioscience; 8802-6820), labeled with 5 µM carboxyfluorescein succinimidyl ester (CFSE; Thermo Fisher; <a href="https://www.ncbi.nlm.nih.gov/nuccore/C34570" class="usa-link" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">C34570</a>) and pre-activated prior to myeloid cell co-culture with plate-bound 0.1 µg ml<sup>−1</sup> anti-CD3 (145-2C11; eBioscience;) and 1 µg ml<sup>−1</sup> anti-CD28 (37.51; Biolegend) at 37 °C, 5% CO<sub>2</sub> for 16–18 h. Ex vivo T cell suppression assay with tumor-associated myeloid cells was adapted from De Henau et al.<sup><a href="#CR18" class="usa-link" aria-describedby="CR18">18</a></sup>. In brief, Gl261-associated myeloid cells were isolated of from ICB R, ICB NR, and C mice. To this end, single-cell suspensions of tumor-bearing hemispheres were subjected to myelin removal (Myelin removal beads II; Miltenyi Biotec; 130-096) and CD11b<sup>+</sup> cells were purified by MACS using the MagniSort™ Mouse CD11b Positive Selection Kit (eBioscience; 8802-6860). Gl261-associated CD11b<sup>+</sup> cells were co-cultured with pre-activated T cells at a ratio of 1:1 (2.5 × 10<sup>4</sup> CD3<sup>+</sup>T cells and 2.5 × 10<sup>4</sup> CD11b<sup>+</sup> myeloid cells) in murine T cell proliferation medium at 37 °C, 5% CO<sub>2</sub> for 72 h. T cell proliferation was examined by CFSE mean fluorescence intensity of living CD3<sup>+</sup> CD8<sup>+</sup> and living CD3<sup>+</sup> CD4<sup>+</sup> T cells, and percentage of cells per cell division.</p></section><section id="Sec28"><h3 class="pmc_sec_title">Ex vivo TIL cytotoxicity</h3> <p id="Par36">For ex vivo cytotoxicity analysis of ICB R, ICB NR, and C Gl261 TILs, a lactate dehydrogenase (LDH) release assay was applied (Promega; G1780). A total of 5 × 10<sup>3</sup> Gl261 cells were seeded onto 96-well flat bottom plates and incubated at 37 °C, 5% CO<sub>2</sub> over night to allow for tumor cell adherence. For isolation and purification of TILs from ICB R, ICB NR, and C-treated Gl261 tumors on day 27 post inoculation, tumor-bearing hemispheres were processed to single-cell suspensions, and TILs were purified with myelin removal beads II (Miltenyi Biotec; 130-096) and MagniSort™ Mouse CD3 Positive Selection Kit (eBioscience; 8802-6840) according to the manufacturer’s instruction. Purified TILs were co-cultured with Gl261 cells at a ratio of 10:1 (5 × 10<sup>4</sup> CD3<sup>+</sup>T − 5 × 10<sup>3</sup> Gl261 cells) at 37 °C, 5% CO<sub>2</sub> for 4 h. A total of 4–5 ICB R, ICB NR, and C TIL samples per group were pooled for cytotoxicity analysis. LDH release of TIL-mediated Gl261 killing was assessed with the CytoTox 96® Non-Radioactive Cytotoxicity Kit (Promega) according to the manufacturer’s instruction and OD was measured on a iMarkTM Microplate reader (BioRad; Hercules, Calif.) at 490 nm. Values were corrected for spontaneous effector and target cell LDH release and cell culture medium background. Data are represented as tumor cell lysis relative to positive Gl261 lysis control.</p></section><section id="Sec29"><h3 class="pmc_sec_title">NanoString analysis and inflammatory gene signatures</h3> <p id="Par37">RNA from FACS sorted macrophages (CD45<sup>high</sup>CD11b<sup>+</sup>) of Gl261 tumors of ICB R and ICB NR mice was extracted using the PicoPureTM RNA Isolation Kit (Arcturus; KIT0202) and gene expression analysis was performed using the nCounter Mouse Immunology Panel (NanoString; XT-CSO-MIM1-12) with the nCounter NanoString™ technology (NanoString Technologies; Seattle, WA)<sup><a href="#CR57" class="usa-link" aria-describedby="CR57">57</a></sup>. RNA input per sample was 25 ng. Data analysis were performed by nSolver 3.0. Marker for pro- and anti-inflammatory gene signatures were selected according to previously described marker. Gene signature scores were calculated as geometric mean of each gene expression. Controls and low count genes were removed from the NanoString count matrix, followed by a scalar normalization and variance modeling<sup><a href="#CR58" class="usa-link" aria-describedby="CR58">58</a>,<a href="#CR59" class="usa-link" aria-describedby="CR59">59</a></sup>. Differential gene expression analysis was performed by an eBayes adjusted moderated <em>t</em>-statistic linear regression model<sup><a href="#CR60" class="usa-link" aria-describedby="CR60">60</a></sup>. Pro- and anti-inflammatory metagene signatures were generated from previously reported markers (Supplementary Table <a href="#MOESM1" class="usa-link">1</a>) and the geometric mean was estimated in each sample for the different signatures.</p></section><section id="Sec30"><h3 class="pmc_sec_title">CIBERSORT analysis human glioblastoma</h3> <p id="Par38">CIBERSORT analysis was applied to expression data of pre-ICB (pembrolizumab/nivolumab) GBM tissue from Zhao et al.<sup><a href="#CR25" class="usa-link" aria-describedby="CR25">25</a></sup>. Expression data from GBM samples that were obtained more than 6.5 months prior to the first ICB therapy (pembrolizumab/nivolumab) were excluded. Response classification of patients was adapted from Zhao et al.<sup><a href="#CR25" class="usa-link" aria-describedby="CR25">25</a></sup>. In detail, response criteria were met when samples after PD-1 inhibitor therapy showed signs of pseudoprogression (inflammatory response with very few or no tumor cells detectable) or stable or continually shrinking tumor lesions over a minimum of 6 months as detected by MRI<sup><a href="#CR25" class="usa-link" aria-describedby="CR25">25</a></sup>. RNAseq *.fastq files for selected patients were downloaded from the ENA using the Aspera Connect client. Reads were aligned to the human genome (GRCh38) using STAR (2.7.0c), and a gene expression matrix (as TPM) was generated using RSEM. The gene expression matrix was analyzed by CIBERSORT using the LM22 signature gene file of 22 immune cell types<sup><a href="#CR61" class="usa-link" aria-describedby="CR61">61</a></sup>. Immune cell subtype proportions were compared using Wilcoxon rank-sum test (WRST) and false discovery rate adjustment was performed by Benjamini and Hochberg correction.</p></section><section id="Sec31"><h3 class="pmc_sec_title">Immunogram ICB response</h3> <p id="Par39">Fold changes (R/NR) of response features were log2 transformed and <em>z</em> transformation for all features was applied. Data are presented as a radar chart.</p></section><section id="Sec32"><h3 class="pmc_sec_title">Statistics</h3> <p id="Par40">Data are represented as individual values or as mean ± SEM. Group sizes (<em>n</em>) and applied statistical tests are indicated in figure legends. Significance was assessed by either unpaired <em>t</em>-test analysis, paired <em>t</em>-test analysis,or one-way analysis of variance (ANOVA) analysis with Tukey, Dunnett or Sidak post hoc testing as indicated in figure legends. Spearman correlation was applied for all correlation analysis and the Kaplan–Meier method was used to examine survival differences. Statistics were calculated using GraphPad Prism 7.0.</p></section><section id="Sec33"><h3 class="pmc_sec_title">Reporting summary</h3> <p id="Par41">Further information on research design is available in the <a href="#MOESM5" class="usa-link">Nature Research Reporting Summary</a> linked to this article.</p></section></section><section id="sec34"><h2 class="pmc_sec_title">Supplementary information</h2> <section id="Sec34"><section class="sm xbox font-sm" id="MOESM1"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM1_ESM.pdf" data-ga-action="click_feat_suppl" class="usa-link">Supplementary Information</a><sup> (2.9MB, pdf) </sup> </div></div></section><section class="sm xbox font-sm" id="MOESM2"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM2_ESM.docx" data-ga-action="click_feat_suppl" class="usa-link">41467_2020_14642_MOESM2_ESM.docx</a><sup> (12.9KB, docx) </sup><p>Description of Additional Supplementary Files</p> </div></div></section><section class="sm xbox font-sm" id="MOESM3"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM3_ESM.xlsx" data-ga-action="click_feat_suppl" class="usa-link">Supplementary Data 1</a><sup> (17.2KB, xlsx) </sup> </div></div></section><section class="sm xbox font-sm" id="MOESM4"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM4_ESM.xlsx" data-ga-action="click_feat_suppl" class="usa-link">Supplementary Data 2</a><sup> (15.2KB, xlsx) </sup> </div></div></section><section class="sm xbox font-sm" id="MOESM5"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM5_ESM.pdf" data-ga-action="click_feat_suppl" class="usa-link">Reporting Summary</a><sup> (283.3KB, pdf) </sup> </div></div></section></section></section><section id="ack1" class="ack"><h2 class="pmc_sec_title">Acknowledgements</h2> <p>We thank Katharina Rauschenbach, L.W., K.J., A.v.L., M.F., J.M., and Mirjam Lutz for expert technical assistance in MRI, tissue processing, and sequencing. We acknowledge the support by the Center for Preclinical Research, the Core Facility for Small Animal Imaging and Flow Cytometry at the German Cancer Research Center, and the Flow Cytometry Core Facility at the Medical Faculty Mannheim of the Heidelberg University. We thank the nCounter Core Facility Heidelberg for providing the nCounter system and related services. We acknowledge the support in biostatistics by Tim Holland-Letz. B16 melanoma cells were kindly provided by Günther J. Hämmerling (Division of Molecular Immunology, DKFZ Heidelberg). This work was supported by grants from the DKFZ-MOST program (project number 2526) and the Helmholtz Gemeinschaft, Zukunftsthema “Immunology and Infection” (ZT0027), the Dr. Rolf M. Schwiete Foundation and the Sonderförderlinie ‘Neuroinflammation’ of the Ministry of Science of Baden Württemberg and the German Ministry of Education and Science (National Center for Tumor Diseases Heidelberg NCT 3.0 program ‘Precision immunotherapy of brain tumors’ and the DKTK program) and by grants from the Deutsche Forschungsgemeinschaft (DFG; project C01 within CRC1366 “Vascular Control of Organ Function” (project number 39404578) and project B01 within CRC1389 “Understanding and targeting resistance in glioblastoma” (project number 404521405) to M.P., the Helmholtz International Graduate School for Cancer Research to J.K.S, M.K, and K.S., the German-Israeli Helmholtz Research School in Cancer Biology to K.A. and fellowships from the Mildred-Scheel doctoral program of the German Cancer Aid to J.B. and V.T. M.O.B. was supported by the Else Kröner Fresenius Stiftung (2017-A25). This work was further supported by grants from the Swiss Cancer league (BB), Swiss National Science Foundation (PP00P3_144781 to M.G. and 310030_146130, 316030_150768, and 310030_170320 to B.B.), the European Union FP7 Project ATECT (to B.B.), Forschungskredit Postdoc University of Zurich (to D.D.F.), and the University Research Priority Project Translational Cancer Research (to B.B., A.R.L., and N.G.N.).</p></section><section id="notes1"><h2 class="pmc_sec_title">Author Contributions</h2> <p>K.A., V.T., J.B., and M.P. designed the experiments and analyzed data. K.A., V.T., J.B., J.K.S., Mi.F., K.S., M.K., F.C., L.W., K.J., A.v.L., and L.B. performed in vivo and ex vivo experiments. Ma.F., A.A., K.P., and M.O.B. performed MRI and data analysis. A.R.L., N.G.N., and D.D.F performed and processed multiparameter flow cytometer analysis. F.S., D.S., J.M., E.G., and A.S. processed and analyzed sequencing data. R.R. performed NanoString expression analysis. P.K. and G.B. established the radiomic signature and performed radiomic response prediction. B.N., A.v.D., C.O., S.H., M.B., W.W., and B.B. were involved in data interpretation. K.A. and M.P. wrote the manuscript with input from all co-authors.</p></section><section id="notes2"><h2 class="pmc_sec_title">Data availability</h2> <p>RNA-seq data that support the findings of this study has been deposited in the GEO repository (<a href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129877" class="usa-link" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">GSE129877</a>) and will be made available prior to publication. All additional data sets generated or analyzed during this study are included in this published article and supplementary information files. Data underlying CIBERSORT analysis was published by Zhao J et al.<sup><a href="#CR25" class="usa-link" aria-describedby="CR25">25</a></sup>. (Nat. Med., 2019) and was accessed via the GEO repository (<a href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121810" class="usa-link" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">GSE121810</a>). The source data underlying Figs. <a href="#Fig1" class="usa-link">1</a>b–j, <a href="#Fig2" class="usa-link">2a–f</a>, 3a–h, 4a–c, 4e, f, 5a–f, and Supplementary Figs. <a href="#MOESM1" class="usa-link">1</a>a–g, <a href="#MOESM1" class="usa-link">2</a>a–c, <a href="#MOESM1" class="usa-link">3</a>a, <a href="#MOESM1" class="usa-link">3</a>c, d, <a href="#MOESM1" class="usa-link">4</a>a, <a href="#MOESM1" class="usa-link">4</a>c–f, <a href="#MOESM1" class="usa-link">6</a>a–g, <a href="#MOESM1" class="usa-link">7</a>a, b, <a href="#MOESM1" class="usa-link">8</a>a–c, <a href="#MOESM1" class="usa-link">9</a>a–c, <a href="#MOESM1" class="usa-link">10a–d</a>, and <a href="#MOESM1" class="usa-link">11b–f</a> are provided as a Source Data file.</p></section><section id="notes3"><h2 class="pmc_sec_title">Code availability</h2> <p>The full codes of all scripts are available on reasonable request. For further information on software package versions please refer to the Nature Research Reporting Summary linked to this article.</p></section><section id="notes4"><h2 class="pmc_sec_title">Competing interests</h2> <p id="Par42">The authors declare no competing interests.</p></section><section id="fn-group1" class="fn-group"><h2 class="pmc_sec_title">Footnotes</h2> <div class="fn-group p font-secondary-light font-sm"> <div class="fn p" id="fn1"><p><strong>Peer review information</strong> <em>Nature Communications</em> thanks the anonymous reviewer(s) for their contribution to the peer review of this work.</p></div> <div class="fn p" id="fn2"><p><strong>Publisher’s note</strong> Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p></div> <div class="fn p" id="fn3"><p>These authors contributed equally: Anna Rita Liuzzi, Nicolás Gonzalo Núñez, Donatella De Feo.</p></div> </div></section><section id="sec36"><h2 class="pmc_sec_title">Supplementary information</h2> <p><strong>Supplementary information</strong> is available for this paper at 10.1038/s41467-020-14642-0.</p></section><section id="Bib1" class="ref-list"><h2 class="pmc_sec_title">References</h2> <section id="Bib1_sec2"><ul class="ref-list font-sm" style="list-style-type:none"> <li id="CR1"> <span class="label">1.</span><cite>Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. doi: 10.1038/nrc3239.</cite> [<a href="https://doi.org/10.1038/nrc3239" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4856023/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/22437870/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Rev.%20Cancer&amp;title=The%20blockade%20of%20immune%20checkpoints%20in%20cancer%20immunotherapy&amp;author=DM%20Pardoll&amp;volume=12&amp;publication_year=2012&amp;pages=252-264&amp;pmid=22437870&amp;doi=10.1038/nrc3239&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR2"> <span class="label">2.</span><cite>Larkin J, et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 2015;373:23–34. doi: 10.1056/NEJMoa1504030.</cite> [<a href="https://doi.org/10.1056/NEJMoa1504030" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5698905/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26027431/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=N.%20Engl.%20J.%20Med.&amp;title=Combined%20nivolumab%20and%20ipilimumab%20or%20monotherapy%20in%20untreated%20melanoma&amp;author=J%20Larkin&amp;volume=373&amp;publication_year=2015&amp;pages=23-34&amp;pmid=26027431&amp;doi=10.1056/NEJMoa1504030&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR3"> <span class="label">3.</span><cite>Gettinger S, et al. Nivolumab monotherapy for first-line treatment of advanced non–small-cell lung cancer. J. Clin. Oncol. 2016;34:2980–2987. doi: 10.1200/JCO.2016.66.9929.</cite> [<a href="https://doi.org/10.1200/JCO.2016.66.9929" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5569692/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27354485/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Clin.%20Oncol.&amp;title=Nivolumab%20monotherapy%20for%20first-line%20treatment%20of%20advanced%20non%E2%80%93small-cell%20lung%20cancer&amp;author=S%20Gettinger&amp;volume=34&amp;publication_year=2016&amp;pages=2980-2987&amp;pmid=27354485&amp;doi=10.1200/JCO.2016.66.9929&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR4"> <span class="label">4.</span><cite>Goldberg SB, et al. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 2016;17:976–983. doi: 10.1016/S1470-2045(16)30053-5.</cite> [<a href="https://doi.org/10.1016/S1470-2045(16)30053-5" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5526047/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27267608/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet%20Oncol.&amp;title=Pembrolizumab%20for%20patients%20with%20melanoma%20or%20non-small-cell%20lung%20cancer%20and%20untreated%20brain%20metastases:%20early%20analysis%20of%20a%20non-randomised,%20open-label,%20phase%202%20trial&amp;author=SB%20Goldberg&amp;volume=17&amp;publication_year=2016&amp;pages=976-983&amp;pmid=27267608&amp;doi=10.1016/S1470-2045(16)30053-5&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR5"> <span class="label">5.</span><cite>Tawbi HA, et al. Combined nivolumab and ipilimumab in melanoma metastatic to the brain. N. Engl. J. Med. 2018;379:722–730. doi: 10.1056/NEJMoa1805453.</cite> [<a href="https://doi.org/10.1056/NEJMoa1805453" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC8011001/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30134131/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=N.%20Engl.%20J.%20Med.&amp;title=Combined%20nivolumab%20and%20ipilimumab%20in%20melanoma%20metastatic%20to%20the%20brain&amp;author=HA%20Tawbi&amp;volume=379&amp;publication_year=2018&amp;pages=722-730&amp;pmid=30134131&amp;doi=10.1056/NEJMoa1805453&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR6"> <span class="label">6.</span><cite>Reardon DA, et al. OS10.3 randomized phase 3 study evaluating the efficacy and safety of nivolumab vs bevacizumab in patients with recurrent glioblastoma: CheckMate 143. Neuro Oncol. 2017;19:iii21–iii21. doi: 10.1093/neuonc/nox036.071.</cite> [<a href="https://doi.org/10.1093/neuonc/nox036.071" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuro%20Oncol.&amp;title=OS10.3%20randomized%20phase%203%20study%20evaluating%20the%20efficacy%20and%20safety%20of%20nivolumab%20vs%20bevacizumab%20in%20patients%20with%20recurrent%20glioblastoma:%20CheckMate%20143&amp;author=DA%20Reardon&amp;volume=19&amp;publication_year=2017&amp;pages=iii21-iii21&amp;doi=10.1093/neuonc/nox036.071&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR7"> <span class="label">7.</span><cite>Johanns T. M., Miller C. A., Dorward I. G., Tsien C., Chang E., Perry A., Uppaluri R., Ferguson C., Schmidt R. E., Dahiya S., Ansstas G., Mardis E. R., Dunn G. P. Immunogenomics of Hypermutated Glioblastoma: A Patient with Germline POLE Deficiency Treated with Checkpoint Blockade Immunotherapy. Cancer Discovery. 2016;6(11):1230–1236. doi: 10.1158/2159-8290.CD-16-0575.</cite> [<a href="https://doi.org/10.1158/2159-8290.CD-16-0575" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5140283/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27683556/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cancer%20Discovery&amp;title=Immunogenomics%20of%20Hypermutated%20Glioblastoma:%20A%20Patient%20with%20Germline%20POLE%20Deficiency%20Treated%20with%20Checkpoint%20Blockade%20Immunotherapy&amp;author=T.%20M.%20Johanns&amp;author=C.%20A.%20Miller&amp;author=I.%20G.%20Dorward&amp;author=C.%20Tsien&amp;author=E.%20Chang&amp;volume=6&amp;issue=11&amp;publication_year=2016&amp;pages=1230-1236&amp;pmid=27683556&amp;doi=10.1158/2159-8290.CD-16-0575&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR8"> <span class="label">8.</span><cite>Hodges TR, et al. Mutational burden, immune checkpoint expression, and mismatch repair in glioma: implications for immune checkpoint immunotherapy. Neuro Oncol. 2017;19:1047–1057. doi: 10.1093/neuonc/nox026.</cite> [<a href="https://doi.org/10.1093/neuonc/nox026" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5570198/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28371827/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuro%20Oncol.&amp;title=Mutational%20burden,%20immune%20checkpoint%20expression,%20and%20mismatch%20repair%20in%20glioma:%20implications%20for%20immune%20checkpoint%20immunotherapy&amp;author=TR%20Hodges&amp;volume=19&amp;publication_year=2017&amp;pages=1047-1057&amp;pmid=28371827&amp;doi=10.1093/neuonc/nox026&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR9"> <span class="label">9.</span><cite>Wang Q, et al. Tumor evolution of glioma-intrinsic gene expression subtypes associates with immunological changes in the microenvironment. Cancer Cell. 2018;33:152. doi: 10.1016/j.ccell.2017.12.012.</cite> [<a href="https://doi.org/10.1016/j.ccell.2017.12.012" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5892424/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29316430/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cancer%20Cell&amp;title=Tumor%20evolution%20of%20glioma-intrinsic%20gene%20expression%20subtypes%20associates%20with%20immunological%20changes%20in%20the%20microenvironment&amp;author=Q%20Wang&amp;volume=33&amp;publication_year=2018&amp;pages=152&amp;pmid=29316430&amp;doi=10.1016/j.ccell.2017.12.012&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR10"> <span class="label">10.</span><cite>Thorsson V, et al. The immune landscape of cancer. Immunity. 2018;48:812–830.e14. doi: 10.1016/j.immuni.2018.03.023.</cite> [<a href="https://doi.org/10.1016/j.immuni.2018.03.023" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5982584/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29628290/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&amp;title=The%20immune%20landscape%20of%20cancer&amp;author=V%20Thorsson&amp;volume=48&amp;publication_year=2018&amp;pages=812-830.e14&amp;pmid=29628290&amp;doi=10.1016/j.immuni.2018.03.023&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR11"> <span class="label">11.</span><cite>Roth P, Valavanis A, Weller M. Long-term control and partial remission after initial pseudoprogression of glioblastoma by anti–PD-1 treatment with nivolumab. Neuro Oncol. 2017;19:454–456. doi: 10.1093/neuonc/nox168.272.</cite> [<a href="https://doi.org/10.1093/neuonc/nox168.272" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5464329/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28039369/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuro%20Oncol.&amp;title=Long-term%20control%20and%20partial%20remission%20after%20initial%20pseudoprogression%20of%20glioblastoma%20by%20anti%E2%80%93PD-1%20treatment%20with%20nivolumab&amp;author=P%20Roth&amp;author=A%20Valavanis&amp;author=M%20Weller&amp;volume=19&amp;publication_year=2017&amp;pages=454-456&amp;pmid=28039369&amp;doi=10.1093/neuonc/nox168.272&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR12"> <span class="label">12.</span><cite>Bouffet E, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J. Clin. Oncol. 2016;34:2206–2211. doi: 10.1200/JCO.2016.66.6552.</cite> [<a href="https://doi.org/10.1200/JCO.2016.66.6552" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27001570/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Clin.%20Oncol.&amp;title=Immune%20checkpoint%20inhibition%20for%20hypermutant%20glioblastoma%20multiforme%20resulting%20from%20germline%20biallelic%20mismatch%20repair%20deficiency&amp;author=E%20Bouffet&amp;volume=34&amp;publication_year=2016&amp;pages=2206-2211&amp;pmid=27001570&amp;doi=10.1200/JCO.2016.66.6552&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR13"> <span class="label">13.</span><cite>Johanns TM, et al. Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol. Res. 2016;4:1007–1015. doi: 10.1158/2326-6066.CIR-16-0156.</cite> [<a href="https://doi.org/10.1158/2326-6066.CIR-16-0156" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5215735/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27799140/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cancer%20Immunol.%20Res.&amp;title=Endogenous%20neoantigen-specific%20CD8%20T%20cells%20identified%20in%20two%20glioblastoma%20models%20using%20a%20cancer%20immunogenomics%20approach&amp;author=TM%20Johanns&amp;volume=4&amp;publication_year=2016&amp;pages=1007-1015&amp;pmid=27799140&amp;doi=10.1158/2326-6066.CIR-16-0156&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR14"> <span class="label">14.</span><cite>Genoud V, et al. Responsiveness to anti-PD-1 and anti-CTLA-4 immune checkpoint blockade in SB28 and GL261 mouse glioma models. OncoImmunology. 2018;7:e1501137. doi: 10.1080/2162402X.2018.1501137.</cite> [<a href="https://doi.org/10.1080/2162402X.2018.1501137" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6279422/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30524896/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=OncoImmunology&amp;title=Responsiveness%20to%20anti-PD-1%20and%20anti-CTLA-4%20immune%20checkpoint%20blockade%20in%20SB28%20and%20GL261%20mouse%20glioma%20models&amp;author=V%20Genoud&amp;volume=7&amp;publication_year=2018&amp;pages=e1501137&amp;pmid=30524896&amp;doi=10.1080/2162402X.2018.1501137&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR15"> <span class="label">15.</span><cite>Okada H, et al. Immunotherapy Response Assessment in Neuro-Oncology (iRANO): a report of the RANO working group. Lancet Oncol. 2015;16:e534–e542. doi: 10.1016/S1470-2045(15)00088-1.</cite> [<a href="https://doi.org/10.1016/S1470-2045(15)00088-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4638131/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26545842/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Lancet%20Oncol.&amp;title=Immunotherapy%20Response%20Assessment%20in%20Neuro-Oncology%20(iRANO):%20a%20report%20of%20the%20RANO%20working%20group&amp;author=H%20Okada&amp;volume=16&amp;publication_year=2015&amp;pages=e534-e542&amp;pmid=26545842&amp;doi=10.1016/S1470-2045(15)00088-1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR16"> <span class="label">16.</span><cite>Reardon DA, et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol. Res. 2016;4:124–135. doi: 10.1158/2326-6066.CIR-15-0151.</cite> [<a href="https://doi.org/10.1158/2326-6066.CIR-15-0151" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26546453/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cancer%20Immunol.%20Res.&amp;title=Glioblastoma%20eradication%20following%20immune%20checkpoint%20blockade%20in%20an%20orthotopic,%20immunocompetent%20model&amp;author=DA%20Reardon&amp;volume=4&amp;publication_year=2016&amp;pages=124-135&amp;pmid=26546453&amp;doi=10.1158/2326-6066.CIR-15-0151&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR17"> <span class="label">17.</span><cite>Arlauckas SP, et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci. Transl. Med. 2017;9:eaal3604. doi: 10.1126/scitranslmed.aal3604.</cite> [<a href="https://doi.org/10.1126/scitranslmed.aal3604" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5734617/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28490665/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Transl.%20Med&amp;title=In%20vivo%20imaging%20reveals%20a%20tumor-associated%20macrophage-mediated%20resistance%20pathway%20in%20anti-PD-1%20therapy&amp;author=SP%20Arlauckas&amp;volume=9&amp;publication_year=2017&amp;pages=eaal3604&amp;pmid=28490665&amp;doi=10.1126/scitranslmed.aal3604&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR18"> <span class="label">18.</span><cite>De Henau O, et al. Overcoming resistance to checkpoint blockade therapy by targeting PI3Kγ in myeloid cells. Nature. 2016;539:443–447. doi: 10.1038/nature20554.</cite> [<a href="https://doi.org/10.1038/nature20554" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5634331/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27828943/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Overcoming%20resistance%20to%20checkpoint%20blockade%20therapy%20by%20targeting%20PI3K%CE%B3%20in%20myeloid%20cells&amp;author=O%20De%20Henau&amp;volume=539&amp;publication_year=2016&amp;pages=443-447&amp;pmid=27828943&amp;doi=10.1038/nature20554&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR19"> <span class="label">19.</span><cite>Butowski N, et al. Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. Neuro Oncol. 2016;18:557–564. doi: 10.1093/neuonc/nov245.</cite> [<a href="https://doi.org/10.1093/neuonc/nov245" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4799682/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26449250/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuro%20Oncol.&amp;title=Orally%20administered%20colony%20stimulating%20factor%201%20receptor%20inhibitor%20PLX3397%20in%20recurrent%20glioblastoma:%20an%20Ivy%20Foundation%20Early%20Phase%20Clinical%20Trials%20Consortium%20phase%20II%20study&amp;author=N%20Butowski&amp;volume=18&amp;publication_year=2016&amp;pages=557-564&amp;pmid=26449250&amp;doi=10.1093/neuonc/nov245&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR20"> <span class="label">20.</span><cite>Pyonteck SM, et al. CSF-1R inhibition alters macrophage polarization and blocks glioma progression. Nat. Med. 2013;19:1264–1272. doi: 10.1038/nm.3337.</cite> [<a href="https://doi.org/10.1038/nm.3337" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC3840724/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24056773/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Med.&amp;title=CSF-1R%20inhibition%20alters%20macrophage%20polarization%20and%20blocks%20glioma%20progression&amp;author=SM%20Pyonteck&amp;volume=19&amp;publication_year=2013&amp;pages=1264-1272&amp;pmid=24056773&amp;doi=10.1038/nm.3337&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR21"> <span class="label">21.</span><cite>Wurdinger T, Deumelandt K, van der Vliet HJ, Wesseling P, de Gruijl TD. Mechanisms of intimate and long-distance cross-talk between glioma and myeloid cells: How to break a vicious cycle. Biochim. Biophys. Acta. 2014;1846:560–575. doi: 10.1016/j.bbcan.2014.10.003.</cite> [<a href="https://doi.org/10.1016/j.bbcan.2014.10.003" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25453365/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Biochim.%20Biophys.%20Acta&amp;title=Mechanisms%20of%20intimate%20and%20long-distance%20cross-talk%20between%20glioma%20and%20myeloid%20cells:%20How%20to%20break%20a%20vicious%20cycle&amp;author=T%20Wurdinger&amp;author=K%20Deumelandt&amp;author=HJ%20van%20der%20Vliet&amp;author=P%20Wesseling&amp;author=TD%20de%20Gruijl&amp;volume=1846&amp;publication_year=2014&amp;pages=560-575&amp;pmid=25453365&amp;doi=10.1016/j.bbcan.2014.10.003&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR22"> <span class="label">22.</span><cite>Gordon SR, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–499. doi: 10.1038/nature22396.</cite> [<a href="https://doi.org/10.1038/nature22396" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5931375/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28514441/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=PD-1%20expression%20by%20tumour-associated%20macrophages%20inhibits%20phagocytosis%20and%20tumour%20immunity&amp;author=SR%20Gordon&amp;volume=545&amp;publication_year=2017&amp;pages=495-499&amp;pmid=28514441&amp;doi=10.1038/nature22396&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR23"> <span class="label">23.</span><cite>Shen L, et al. PD-1/PD-L pathway inhibits M.tb-specific CD4(+) T-cell functions and phagocytosis of macrophages in active tuberculosis. Sci. Rep. 2016;6:38362. doi: 10.1038/srep38362.</cite> [<a href="https://doi.org/10.1038/srep38362" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5141449/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27924827/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Rep.&amp;title=PD-1/PD-L%20pathway%20inhibits%20M.tb-specific%20CD4(+)%20T-cell%20functions%20and%20phagocytosis%20of%20macrophages%20in%20active%20tuberculosis&amp;author=L%20Shen&amp;volume=6&amp;publication_year=2016&amp;pages=38362&amp;pmid=27924827&amp;doi=10.1038/srep38362&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR24"> <span class="label">24.</span><cite>Butte MJ, Keir ME, Phamduy TB, Freeman GJ, Sharpe AH. PD-L1 interacts specifically with B7-1 to inhibit T cell proliferation. Immunity. 2007;27:111–122. doi: 10.1016/j.immuni.2007.05.016.</cite> [<a href="https://doi.org/10.1016/j.immuni.2007.05.016" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2707944/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17629517/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Immunity&amp;title=PD-L1%20interacts%20specifically%20with%20B7-1%20to%20inhibit%20T%20cell%20proliferation&amp;author=MJ%20Butte&amp;author=ME%20Keir&amp;author=TB%20Phamduy&amp;author=GJ%20Freeman&amp;author=AH%20Sharpe&amp;volume=27&amp;publication_year=2007&amp;pages=111-122&amp;pmid=17629517&amp;doi=10.1016/j.immuni.2007.05.016&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR25"> <span class="label">25.</span><cite>Zhao J, et al. Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat. Med. 2019;25:462–469. doi: 10.1038/s41591-019-0349-y.</cite> [<a href="https://doi.org/10.1038/s41591-019-0349-y" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6810613/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30742119/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Med.&amp;title=Immune%20and%20genomic%20correlates%20of%20response%20to%20anti-PD-1%20immunotherapy%20in%20glioblastoma&amp;author=J%20Zhao&amp;volume=25&amp;publication_year=2019&amp;pages=462-469&amp;pmid=30742119&amp;doi=10.1038/s41591-019-0349-y&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR26"> <span class="label">26.</span><cite>Cloughesy TF, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 2019;25:477–486. doi: 10.1038/s41591-018-0337-7.</cite> [<a href="https://doi.org/10.1038/s41591-018-0337-7" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6408961/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30742122/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Med.&amp;title=Neoadjuvant%20anti-PD-1%20immunotherapy%20promotes%20a%20survival%20benefit%20with%20intratumoral%20and%20systemic%20immune%20responses%20in%20recurrent%20glioblastoma&amp;author=TF%20Cloughesy&amp;volume=25&amp;publication_year=2019&amp;pages=477-486&amp;pmid=30742122&amp;doi=10.1038/s41591-018-0337-7&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR27"> <span class="label">27.</span><cite>Schalper KA, et al. Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat. Med. 2019;25:470–476. doi: 10.1038/s41591-018-0339-5.</cite> [<a href="https://doi.org/10.1038/s41591-018-0339-5" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30742120/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Med.&amp;title=Neoadjuvant%20nivolumab%20modifies%20the%20tumor%20immune%20microenvironment%20in%20resectable%20glioblastoma&amp;author=KA%20Schalper&amp;volume=25&amp;publication_year=2019&amp;pages=470-476&amp;pmid=30742120&amp;doi=10.1038/s41591-018-0339-5&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR28"> <span class="label">28.</span><cite>Kickingereder Philipp, Isensee Fabian, Tursunova Irada, Petersen Jens, Neuberger Ulf, Bonekamp David, Brugnara Gianluca, Schell Marianne, Kessler Tobias, Foltyn Martha, Harting Inga, Sahm Felix, Prager Marcel, Nowosielski Martha, Wick Antje, Nolden Marco, Radbruch Alexander, Debus Jürgen, Schlemmer Heinz-Peter, Heiland Sabine, Platten Michael, von Deimling Andreas, van den Bent Martin J, Gorlia Thierry, Wick Wolfgang, Bendszus Martin, Maier-Hein Klaus H. Automated quantitative tumour response assessment of MRI in neuro-oncology with artificial neural networks: a multicentre, retrospective study. The Lancet Oncology. 2019;20(5):728–740. doi: 10.1016/S1470-2045(19)30098-1.</cite> [<a href="https://doi.org/10.1016/S1470-2045(19)30098-1" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30952559/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=The%20Lancet%20Oncology&amp;title=Automated%20quantitative%20tumour%20response%20assessment%20of%20MRI%20in%20neuro-oncology%20with%20artificial%20neural%20networks:%20a%20multicentre,%20retrospective%20study&amp;author=Philipp%20Kickingereder&amp;author=Fabian%20Isensee&amp;author=Irada%20Tursunova&amp;author=Jens%20Petersen&amp;author=Ulf%20Neuberger&amp;volume=20&amp;issue=5&amp;publication_year=2019&amp;pages=728-740&amp;pmid=30952559&amp;doi=10.1016/S1470-2045(19)30098-1&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR29"> <span class="label">29.</span><cite>Parsa AT, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat. Med. 2007;13:84–88. doi: 10.1038/nm1517.</cite> [<a href="https://doi.org/10.1038/nm1517" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/17159987/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Med.&amp;title=Loss%20of%20tumor%20suppressor%20PTEN%20function%20increases%20B7-H1%20expression%20and%20immunoresistance%20in%20glioma&amp;author=AT%20Parsa&amp;volume=13&amp;publication_year=2007&amp;pages=84-88&amp;pmid=17159987&amp;doi=10.1038/nm1517&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR30"> <span class="label">30.</span><cite>Wintterle S, et al. Expression of the B7-related molecule B7-H1 by glioma cells: a potential mechanism of immune paralysis. Cancer Res. 2003;63:7462–7467.</cite> [<a href="https://pubmed.ncbi.nlm.nih.gov/14612546/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cancer%20Res.&amp;title=Expression%20of%20the%20B7-related%20molecule%20B7-H1%20by%20glioma%20cells:%20a%20potential%20mechanism%20of%20immune%20paralysis&amp;author=S%20Wintterle&amp;volume=63&amp;publication_year=2003&amp;pages=7462-7467&amp;pmid=14612546&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR31"> <span class="label">31.</span><cite>Ricklefs FL, et al. Immune evasion mediated by PD-L1 on glioblastoma-derived extracellular vesicles. Sci. Adv. 2018;4:eaar2766. doi: 10.1126/sciadv.aar2766.</cite> [<a href="https://doi.org/10.1126/sciadv.aar2766" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5842038/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29532035/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Adv.&amp;title=Immune%20evasion%20mediated%20by%20PD-L1%20on%20glioblastoma-derived%20extracellular%20vesicles&amp;author=FL%20Ricklefs&amp;volume=4&amp;publication_year=2018&amp;pages=eaar2766&amp;pmid=29532035&amp;doi=10.1126/sciadv.aar2766&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR32"> <span class="label">32.</span><cite>Berghoff AS, et al. Programmed death ligand 1 expression and tumor-infiltrating lymphocytes in glioblastoma. Neuro Oncol. 2015;17:1064–1075. doi: 10.1093/neuonc/nou307.</cite> [<a href="https://doi.org/10.1093/neuonc/nou307" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4490866/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25355681/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuro%20Oncol.&amp;title=Programmed%20death%20ligand%201%20expression%20and%20tumor-infiltrating%20lymphocytes%20in%20glioblastoma&amp;author=AS%20Berghoff&amp;volume=17&amp;publication_year=2015&amp;pages=1064-1075&amp;pmid=25355681&amp;doi=10.1093/neuonc/nou307&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR33"> <span class="label">33.</span><cite>Garber ST, et al. Immune checkpoint blockade as a potential therapeutic target: surveying CNS malignancies. Neuro Oncol. 2016;18:1357–1366. doi: 10.1093/neuonc/now132.</cite> [<a href="https://doi.org/10.1093/neuonc/now132" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5035527/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27370400/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuro%20Oncol.&amp;title=Immune%20checkpoint%20blockade%20as%20a%20potential%20therapeutic%20target:%20surveying%20CNS%20malignancies&amp;author=ST%20Garber&amp;volume=18&amp;publication_year=2016&amp;pages=1357-1366&amp;pmid=27370400&amp;doi=10.1093/neuonc/now132&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR34"> <span class="label">34.</span><cite>Nduom EK, et al. PD-L1 expression and prognostic impact in glioblastoma. Neuro Oncol. 2016;18:195–205. doi: 10.1093/neuonc/nov172.</cite> [<a href="https://doi.org/10.1093/neuonc/nov172" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4724183/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/26323609/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuro%20Oncol.&amp;title=PD-L1%20expression%20and%20prognostic%20impact%20in%20glioblastoma&amp;author=EK%20Nduom&amp;volume=18&amp;publication_year=2016&amp;pages=195-205&amp;pmid=26323609&amp;doi=10.1093/neuonc/nov172&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR35"> <span class="label">35.</span><cite>Antonios JP, et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol. 2017;19:796–807. doi: 10.1093/neuonc/now287.</cite> [<a href="https://doi.org/10.1093/neuonc/now287" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5464463/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28115578/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuro%20Oncol.&amp;title=Immunosuppressive%20tumor-infiltrating%20myeloid%20cells%20mediate%20adaptive%20immune%20resistance%20via%20a%20PD-1/PD-L1%20mechanism%20in%20glioblastoma&amp;author=JP%20Antonios&amp;volume=19&amp;publication_year=2017&amp;pages=796-807&amp;pmid=28115578&amp;doi=10.1093/neuonc/now287&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR36"> <span class="label">36.</span><cite>Bloch O, et al. Autologous heat shock protein peptide vaccination for newly diagnosed glioblastoma: impact of peripheral pd-l1 expression on response to therapy. Clin. Cancer Res. 2017;23:3575–3584. doi: 10.1158/1078-0432.CCR-16-1369.</cite> [<a href="https://doi.org/10.1158/1078-0432.CCR-16-1369" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5511566/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28193626/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Cancer%20Res.&amp;title=Autologous%20heat%20shock%20protein%20peptide%20vaccination%20for%20newly%20diagnosed%20glioblastoma:%20impact%20of%20peripheral%20pd-l1%20expression%20on%20response%20to%20therapy&amp;author=O%20Bloch&amp;volume=23&amp;publication_year=2017&amp;pages=3575-3584&amp;pmid=28193626&amp;doi=10.1158/1078-0432.CCR-16-1369&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR37"> <span class="label">37.</span><cite>Patel SJ, et al. Identification of essential genes for cancer immunotherapy. Nature. 2017;548:537–542. doi: 10.1038/nature23477.</cite> [<a href="https://doi.org/10.1038/nature23477" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5870757/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28783722/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Identification%20of%20essential%20genes%20for%20cancer%20immunotherapy&amp;author=SJ%20Patel&amp;volume=548&amp;publication_year=2017&amp;pages=537-542&amp;pmid=28783722&amp;doi=10.1038/nature23477&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR38"> <span class="label">38.</span><cite>Gabrusiewicz K, et al. Glioblastoma stem cell-derived exosomes induce M2 macrophages and PD-L1 expression on human monocytes. Oncoimmunology. 2018;7:e1412909. doi: 10.1080/2162402X.2017.1412909.</cite> [<a href="https://doi.org/10.1080/2162402X.2017.1412909" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5889290/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29632728/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Oncoimmunology&amp;title=Glioblastoma%20stem%20cell-derived%20exosomes%20induce%20M2%20macrophages%20and%20PD-L1%20expression%20on%20human%20monocytes&amp;author=K%20Gabrusiewicz&amp;volume=7&amp;publication_year=2018&amp;pages=e1412909&amp;pmid=29632728&amp;doi=10.1080/2162402X.2017.1412909&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR39"> <span class="label">39.</span><cite>Lamano Jonathan B., Lamano Jason Balquidera, Li Yuping D., DiDomenico Joseph D., Choy Winward, Veliceasa Dorina, Oyon Daniel E., Fakurnejad Shayan, Ampie Leonel, Kesavabhotla Kartik, Kaur Rajwant, Kaur Gurvinder, Biyashev Dauren, Unruh Dusten J., Horbinski Craig M., James C. David, Parsa Andrew T., Bloch Orin. Glioblastoma-Derived IL6 Induces Immunosuppressive Peripheral Myeloid Cell PD-L1 and Promotes Tumor Growth. Clinical Cancer Research. 2019;25(12):3643–3657. doi: 10.1158/1078-0432.CCR-18-2402.</cite> [<a href="https://doi.org/10.1158/1078-0432.CCR-18-2402" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC6571046/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/30824583/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clinical%20Cancer%20Research&amp;title=Glioblastoma-Derived%20IL6%20Induces%20Immunosuppressive%20Peripheral%20Myeloid%20Cell%20PD-L1%20and%20Promotes%20Tumor%20Growth&amp;author=Jonathan%20B.%20Lamano&amp;author=Jason%20Balquidera%20Lamano&amp;author=Yuping%20D.%20Li&amp;author=Joseph%20D.%20DiDomenico&amp;author=Winward%20Choy&amp;volume=25&amp;issue=12&amp;publication_year=2019&amp;pages=3643-3657&amp;pmid=30824583&amp;doi=10.1158/1078-0432.CCR-18-2402&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR40"> <span class="label">40.</span><cite>Lee Y-J, et al. Macrophage PD-L1 strikes back: PD-1/PD-L1 interaction drives macrophages toward regulatory subsets. Adv. Biosci. Biotechnol. 2013;04:19. doi: 10.4236/abb.2013.48A3003.</cite> [<a href="https://doi.org/10.4236/abb.2013.48A3003" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Adv.%20Biosci.%20Biotechnol.&amp;title=Macrophage%20PD-L1%20strikes%20back:%20PD-1/PD-L1%20interaction%20drives%20macrophages%20toward%20regulatory%20subsets&amp;author=Y-J%20Lee&amp;volume=04&amp;publication_year=2013&amp;pages=19&amp;doi=10.4236/abb.2013.48A3003&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR41"> <span class="label">41.</span><cite>Schmitt M, Pawlita M. High-throughput detection and multiplex identification of cell contaminations. Nucleic Acids Res. 2009;37:e119. doi: 10.1093/nar/gkp581.</cite> [<a href="https://doi.org/10.1093/nar/gkp581" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2764421/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19589807/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nucleic%20Acids%20Res.&amp;title=High-throughput%20detection%20and%20multiplex%20identification%20of%20cell%20contaminations&amp;author=M%20Schmitt&amp;author=M%20Pawlita&amp;volume=37&amp;publication_year=2009&amp;pages=e119&amp;pmid=19589807&amp;doi=10.1093/nar/gkp581&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR42"> <span class="label">42.</span><cite>Kickingereder P, et al. Large-scale radiomic profiling of recurrent glioblastoma identifies an imaging predictor for stratifying anti-angiogenic treatment response. Clin. Cancer Res. 2016;22:5765–5771. doi: 10.1158/1078-0432.CCR-16-0702.</cite> [<a href="https://doi.org/10.1158/1078-0432.CCR-16-0702" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5503450/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/27803067/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Clin.%20Cancer%20Res.&amp;title=Large-scale%20radiomic%20profiling%20of%20recurrent%20glioblastoma%20identifies%20an%20imaging%20predictor%20for%20stratifying%20anti-angiogenic%20treatment%20response&amp;author=P%20Kickingereder&amp;volume=22&amp;publication_year=2016&amp;pages=5765-5771&amp;pmid=27803067&amp;doi=10.1158/1078-0432.CCR-16-0702&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR43"> <span class="label">43.</span><cite>Kickingereder P, et al. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma. Neuro Oncol. 2018;20:848–857. doi: 10.1093/neuonc/nox188.</cite> [<a href="https://doi.org/10.1093/neuonc/nox188" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5961168/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29036412/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Neuro%20Oncol.&amp;title=Radiomic%20subtyping%20improves%20disease%20stratification%20beyond%20key%20molecular,%20clinical,%20and%20standard%20imaging%20characteristics%20in%20patients%20with%20glioblastoma&amp;author=P%20Kickingereder&amp;volume=20&amp;publication_year=2018&amp;pages=848-857&amp;pmid=29036412&amp;doi=10.1093/neuonc/nox188&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR44"> <span class="label">44.</span><cite>Nolden M, et al. The Medical Imaging Interaction Toolkit: challenges and advances: 10 years of open-source development. Int. J. Comput. Assist. Radiol. Surg. 2013;8:607–620. doi: 10.1007/s11548-013-0840-8.</cite> [<a href="https://doi.org/10.1007/s11548-013-0840-8" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/23588509/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Int.%20J.%20Comput.%20Assist.%20Radiol.%20Surg.&amp;title=The%20Medical%20Imaging%20Interaction%20Toolkit:%20challenges%20and%20advances:%2010%20years%20of%20open-source%20development&amp;author=M%20Nolden&amp;volume=8&amp;publication_year=2013&amp;pages=607-620&amp;pmid=23588509&amp;doi=10.1007/s11548-013-0840-8&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR45"> <span class="label">45.</span><cite>Kuhn M. Building predictive models in R using the caret package. J. Stat. Softw. 2008;28:1–26. doi: 10.18637/jss.v028.i05.</cite> [<a href="https://doi.org/10.18637/jss.v028.i05" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=J.%20Stat.%20Softw.&amp;title=Building%20predictive%20models%20in%20R%20using%20the%20caret%20package&amp;author=M%20Kuhn&amp;volume=28&amp;publication_year=2008&amp;pages=1-26&amp;doi=10.18637/jss.v028.i05&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR46"> <span class="label">46.</span><cite>Illumina, “bcl2fastq.” <a href="https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://support.illumina.com/sequencing/sequencing_software/bcl2fastq-conversion-software.html</a> (2019).</cite> </li> <li id="CR47"> <span class="label">47.</span><cite>Andrew S. “FastQC: a quality control tool for high throughput sequence data.” <a href="http://www.bioinformatics.babraham.ac.uk/projects/fastqc" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">http://www.bioinformatics.babraham.ac.uk/projects/fastqc</a> (2019).</cite> </li> <li id="CR48"> <span class="label">48.</span><cite>Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. <a href="https://arxiv.org/abs/1303.3997" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://arxiv.org/abs/1303.3997</a> (2013).</cite> </li> <li id="CR49"> <span class="label">49.</span><cite>GitHub Repository. Broad Institute, “Picard Toolkit.” <a href="http://broadinstitute.github.io/picard/" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">http://broadinstitute.github.io/picard/</a> (2018).</cite> </li> <li id="CR50"> <span class="label">50.</span><cite>Li H, et al. The Sequence Alignment/Map format and SAMtools. Bioinform. Oxf. Engl. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352.</cite> [<a href="https://doi.org/10.1093/bioinformatics/btp352" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2723002/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/19505943/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Bioinform.%20Oxf.%20Engl.&amp;title=The%20Sequence%20Alignment/Map%20format%20and%20SAMtools&amp;author=H%20Li&amp;volume=25&amp;publication_year=2009&amp;pages=2078-2079&amp;pmid=19505943&amp;doi=10.1093/bioinformatics/btp352&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR51"> <span class="label">51.</span><cite>GitHub Repository. Rimmer A. “Platypus.” <a href="https://github.com/andyrimmer/Platypus" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">https://github.com/andyrimmer/Platypus</a>.</cite> </li> <li id="CR52"> <span class="label">52.</span><cite>Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164. doi: 10.1093/nar/gkq603.</cite> [<a href="https://doi.org/10.1093/nar/gkq603" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2938201/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20601685/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nucleic%20Acids%20Res.&amp;title=ANNOVAR:%20functional%20annotation%20of%20genetic%20variants%20from%20high-throughput%20sequencing%20data&amp;author=K%20Wang&amp;author=M%20Li&amp;author=H%20Hakonarson&amp;volume=38&amp;publication_year=2010&amp;pages=e164&amp;pmid=20601685&amp;doi=10.1093/nar/gkq603&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR53"> <span class="label">53.</span><cite>Carlson CS, et al. Using synthetic templates to design an unbiased multiplex PCR assay. Nat. Commun. 2013;4:2680. doi: 10.1038/ncomms3680.</cite> [<a href="https://doi.org/10.1038/ncomms3680" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24157944/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Commun.&amp;title=Using%20synthetic%20templates%20to%20design%20an%20unbiased%20multiplex%20PCR%20assay&amp;author=CS%20Carlson&amp;volume=4&amp;publication_year=2013&amp;pages=2680&amp;pmid=24157944&amp;doi=10.1038/ncomms3680&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR54"> <span class="label">54.</span><cite>Pollack Seth M, et al. T‐cell infiltration and clonality correlate with programmed cell death protein 1 and programmed death‐ligand 1 expression in patients with soft tissue sarcomas. Cancer. 2017;123:3291–3304. doi: 10.1002/cncr.30726.</cite> [<a href="https://doi.org/10.1002/cncr.30726" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5568958/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28463396/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Cancer&amp;title=T%E2%80%90cell%20infiltration%20and%20clonality%20correlate%20with%20programmed%20cell%20death%20protein%201%20and%20programmed%20death%E2%80%90ligand%201%20expression%20in%20patients%20with%20soft%20tissue%20sarcomas&amp;author=M%20Pollack%20Seth&amp;volume=123&amp;publication_year=2017&amp;pages=3291-3304&amp;pmid=28463396&amp;doi=10.1002/cncr.30726&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR55"> <span class="label">55.</span><cite>Glanville J, et al. Identifying specificity groups in the T cell receptor repertoire. Nature. 2017;547:94–98. doi: 10.1038/nature22976.</cite> [<a href="https://doi.org/10.1038/nature22976" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5794212/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/28636589/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nature&amp;title=Identifying%20specificity%20groups%20in%20the%20T%20cell%20receptor%20repertoire&amp;author=J%20Glanville&amp;volume=547&amp;publication_year=2017&amp;pages=94-98&amp;pmid=28636589&amp;doi=10.1038/nature22976&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR56"> <span class="label">56.</span><cite>Brummelman J, et al. Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry. Nat. Protoc. 2019;14:1946–1969. doi: 10.1038/s41596-019-0166-2.</cite> [<a href="https://doi.org/10.1038/s41596-019-0166-2" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/31160786/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Protoc.&amp;title=Development,%20application%20and%20computational%20analysis%20of%20high-dimensional%20fluorescent%20antibody%20panels%20for%20single-cell%20flow%20cytometry&amp;author=J%20Brummelman&amp;volume=14&amp;publication_year=2019&amp;pages=1946-1969&amp;pmid=31160786&amp;doi=10.1038/s41596-019-0166-2&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR57"> <span class="label">57.</span><cite>Wohlfarth C, et al. miR-16 and miR-103 impact 5-HT 4 receptor signalling and correlate with symptom profile in irritable bowel syndrome. Sci. Rep. 2017;7:14680. doi: 10.1038/s41598-017-13982-0.</cite> [<a href="https://doi.org/10.1038/s41598-017-13982-0" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC5665867/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/29089619/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Sci.%20Rep.&amp;title=miR-16%20and%20miR-103%20impact%205-HT%204%20receptor%20signalling%20and%20correlate%20with%20symptom%20profile%20in%20irritable%20bowel%20syndrome&amp;author=C%20Wohlfarth&amp;volume=7&amp;publication_year=2017&amp;pages=14680&amp;pmid=29089619&amp;doi=10.1038/s41598-017-13982-0&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR58"> <span class="label">58.</span><cite>Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11:R25. doi: 10.1186/gb-2010-11-3-r25.</cite> [<a href="https://doi.org/10.1186/gb-2010-11-3-r25" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC2864565/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/20196867/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Genome%20Biol.&amp;title=A%20scaling%20normalization%20method%20for%20differential%20expression%20analysis%20of%20RNA-seq%20data&amp;author=MD%20Robinson&amp;author=A%20Oshlack&amp;volume=11&amp;publication_year=2010&amp;pages=R25&amp;pmid=20196867&amp;doi=10.1186/gb-2010-11-3-r25&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR59"> <span class="label">59.</span><cite>Law CW, Chen Y, Shi W, Smyth G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29. doi: 10.1186/gb-2014-15-2-r29.</cite> [<a href="https://doi.org/10.1186/gb-2014-15-2-r29" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4053721/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/24485249/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Genome%20Biol.&amp;title=K.%20voom:%20precision%20weights%20unlock%20linear%20model%20analysis%20tools%20for%20RNA-seq%20read%20counts&amp;author=CW%20Law&amp;author=Y%20Chen&amp;author=W%20Shi&amp;author=G%20Smyth&amp;volume=15&amp;publication_year=2014&amp;pages=R29&amp;pmid=24485249&amp;doi=10.1186/gb-2014-15-2-r29&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR60"> <span class="label">60.</span><cite>Ritchie ME, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. doi: 10.1093/nar/gkv007.</cite> [<a href="https://doi.org/10.1093/nar/gkv007" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4402510/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25605792/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nucleic%20Acids%20Res.&amp;title=limma%20powers%20differential%20expression%20analyses%20for%20RNA-sequencing%20and%20microarray%20studies&amp;author=ME%20Ritchie&amp;volume=43&amp;publication_year=2015&amp;pages=e47&amp;pmid=25605792&amp;doi=10.1093/nar/gkv007&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> <li id="CR61"> <span class="label">61.</span><cite>Newman AM, et al. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods. 2015;12:453. doi: 10.1038/nmeth.3337.</cite> [<a href="https://doi.org/10.1038/nmeth.3337" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">DOI</a>] [<a href="/articles/PMC4739640/" class="usa-link">PMC free article</a>] [<a href="https://pubmed.ncbi.nlm.nih.gov/25822800/" class="usa-link">PubMed</a>] [<a href="https://scholar.google.com/scholar_lookup?journal=Nat.%20Methods&amp;title=Robust%20enumeration%20of%20cell%20subsets%20from%20tissue%20expression%20profiles&amp;author=AM%20Newman&amp;volume=12&amp;publication_year=2015&amp;pages=453&amp;pmid=25822800&amp;doi=10.1038/nmeth.3337&amp;" class="usa-link usa-link--external" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">Google Scholar</a>]</li> </ul></section></section><section id="_ad93_" lang="en" class="associated-data"><h2 class="pmc_sec_title">Associated Data</h2> <p class="font-secondary"><em>This section collects any data citations, data availability statements, or supplementary materials included in this article.</em></p> <section id="_adsm93_" lang="en" class="supplementary-materials"><h3 class="pmc_sec_title">Supplementary Materials</h3> <section class="sm xbox font-sm" id="db_ds_supplementary-material1_reqid_"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM1_ESM.pdf" data-ga-action="click_feat_suppl" class="usa-link">Supplementary Information</a><sup> (2.9MB, pdf) </sup> </div></div></section><section class="sm xbox font-sm" id="db_ds_supplementary-material2_reqid_"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM2_ESM.docx" data-ga-action="click_feat_suppl" class="usa-link">41467_2020_14642_MOESM2_ESM.docx</a><sup> (12.9KB, docx) </sup><p>Description of Additional Supplementary Files</p> </div></div></section><section class="sm xbox font-sm" id="db_ds_supplementary-material3_reqid_"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM3_ESM.xlsx" data-ga-action="click_feat_suppl" class="usa-link">Supplementary Data 1</a><sup> (17.2KB, xlsx) </sup> </div></div></section><section class="sm xbox font-sm" id="db_ds_supplementary-material4_reqid_"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM4_ESM.xlsx" data-ga-action="click_feat_suppl" class="usa-link">Supplementary Data 2</a><sup> (15.2KB, xlsx) </sup> </div></div></section><section class="sm xbox font-sm" id="db_ds_supplementary-material5_reqid_"><div class="media p"><div class="caption"> <a href="/articles/instance/7028933/bin/41467_2020_14642_MOESM5_ESM.pdf" data-ga-action="click_feat_suppl" class="usa-link">Reporting Summary</a><sup> (283.3KB, pdf) </sup> </div></div></section></section><section id="_adda93_" lang="en" class="data-availability-statement"><h3 class="pmc_sec_title">Data Availability Statement</h3> <p>RNA-seq data that support the findings of this study has been deposited in the GEO repository (<a href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE129877" class="usa-link" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">GSE129877</a>) and will be made available prior to publication. All additional data sets generated or analyzed during this study are included in this published article and supplementary information files. Data underlying CIBERSORT analysis was published by Zhao J et al.<sup><a href="#CR25" class="usa-link" aria-describedby="CR25">25</a></sup>. (Nat. Med., 2019) and was accessed via the GEO repository (<a href="https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE121810" class="usa-link" data-ga-action="click_feat_suppl" target="_blank" rel="noopener noreferrer">GSE121810</a>). The source data underlying Figs. <a href="#Fig1" class="usa-link">1</a>b–j, <a href="#Fig2" class="usa-link">2a–f</a>, 3a–h, 4a–c, 4e, f, 5a–f, and Supplementary Figs. <a href="#MOESM1" class="usa-link">1</a>a–g, <a href="#MOESM1" class="usa-link">2</a>a–c, <a href="#MOESM1" class="usa-link">3</a>a, <a href="#MOESM1" class="usa-link">3</a>c, d, <a href="#MOESM1" class="usa-link">4</a>a, <a href="#MOESM1" class="usa-link">4</a>c–f, <a href="#MOESM1" class="usa-link">6</a>a–g, <a href="#MOESM1" class="usa-link">7</a>a, b, <a href="#MOESM1" class="usa-link">8</a>a–c, <a href="#MOESM1" class="usa-link">9</a>a–c, <a href="#MOESM1" class="usa-link">10a–d</a>, and <a href="#MOESM1" class="usa-link">11b–f</a> are provided as a Source Data file.</p> <p>The full codes of all scripts are available on reasonable request. For further information on software package versions please refer to the Nature Research Reporting Summary linked to this article.</p></section></section></section><footer class="p courtesy-note font-secondary font-sm text-center"><hr class="headless"> <p>Articles from Nature Communications are provided here courtesy of <strong>Nature Publishing Group</strong></p></footer></section></article> </main> </div> </div> </div> <!-- Secondary navigation placeholder --> <div class="pmc-sidenav desktop:grid-col-4 display-flex"> <section class="pmc-sidenav__container" aria-label="Article resources and navigation"> <button type="button" class="usa-button pmc-sidenav__container__close usa-button--unstyled"> <img src="/static/img/usa-icons/close.svg" role="img" alt="Close" /> </button> <div class="display-none desktop:display-block"> <section class="margin-top-4 desktop:margin-top-0"> <h2 class="margin-top-0">ACTIONS</h2> <ul class="usa-list usa-list--unstyled usa-list--actions"> <li> <a href="https://doi.org/10.1038/s41467-020-14642-0" class="usa-button usa-button--outline width-24 font-xs usa-link--external padding-left-0 padding-right-0" target="_blank" rel="noreferrer noopener" data-ga-category="actions" data-ga-action="click" data-ga-label="publisher_link_desktop" > <span class="height-3 display-inline-flex flex-align-center">View on publisher site</span> </a> </li> <li> <a href="pdf/41467_2020_Article_14642.pdf" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify-start padding-left-1" data-ga-category="actions" data-ga-action="click" data-ga-label="pdf_download_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">PDF (3.5 MB)</span> </a> </li> <li> <button role="button" class="usa-button width-24 citation-dialog-trigger display-inline-flex flex-align-center flex-justify-start padding-left-1" aria-label="Open dialog with citation text in different styles" data-ga-category="actions" data-ga-action="open" data-ga-label="cite_desktop" data-all-citations-url="/resources/citations/7028933/" data-citation-style="nlm" data-download-format-link="/resources/citations/7028933/export/" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#format_quote"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Cite</span> </button> </li> <li> <button class="usa-button width-24 collections-dialog-trigger collections-button display-inline-flex flex-align-center flex-justify-start padding-left-1 collections-button-empty" aria-label="Save article in MyNCBI collections." data-ga-category="actions" data-ga-action="click" data-ga-label="collections_button_desktop" data-collections-open-dialog-enabled="false" data-collections-open-dialog-url="https://account.ncbi.nlm.nih.gov/?back_url=https%3A%2F%2Fpmc.ncbi.nlm.nih.gov%2Farticles%2FPMC7028933%2F%23open-collections-dialog" data-in-collections="false"> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-full" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-full.svg#icon"></use> </svg> <svg class="usa-icon width-3 height-3 usa-icon--bookmark-empty" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/action-bookmark-empty.svg#icon"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1">Collections</span> </button> </li> <li class="pmc-permalink"> <button type="button" class="usa-button usa-button--outline width-24 display-inline-flex flex-align-center flex-justify padding-left-1 shadow-none" aria-label="Show article permalink" aria-expanded="false" aria-haspopup="true" data-ga-category="actions" data-ga-action="open" data-ga-label="permalink_desktop" > <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img" hidden> <use xlink:href="/static/img/sprite.svg#share"></use> </svg> <span class="display-inline-flex flex-justify-center flex-1 button-label">Permalink</span> </button> <div class="pmc-permalink__dropdown" hidden> <div class="pmc-permalink__dropdown__container"> <h2 class="usa-modal__heading margin-top-0 margin-bottom-2">PERMALINK</h2> <div class="pmc-permalink__dropdown__content"> <input type="text" class="usa-input" value="https://pmc.ncbi.nlm.nih.gov/articles/PMC7028933/" aria-label="Article permalink"> <button class="usa-button display-inline-flex pmc-permalink__dropdown__copy__btn margin-right-0" title="Copy article permalink" data-ga-category="save_share" data-ga-action="link" data-ga-label="copy_link"> <svg class="usa-icon" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span class="margin-left-1">Copy</span> </button> </div> </div> </div> </li> </ul> </section> </div> <section class="pmc-resources margin-top-6 desktop:margin-top-4" data-page-path="/articles/PMC7028933/"> <h2 class="margin-top-0">RESOURCES</h2> <div class="usa-accordion usa-accordion--multiselectable" data-allow-multiple> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-similar-articles" data-ga-category="resources_accordion" data-ga-action="open_similar_articles" data-ga-label="/articles/PMC7028933/" data-action-open="open_similar_articles" data-action-close="close_similar_articles" > Similar articles </button> </h3> <div id="resources-similar-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/similar-article-links/32071302/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-cited-by-other-articles" data-ga-category="resources_accordion" data-ga-action="open_cited_by" data-ga-label="/articles/PMC7028933/" data-action-open="open_cited_by" data-action-close="close_cited_by" > Cited by other articles </button> </h3> <div id="resources-cited-by-other-articles" class="usa-accordion__content usa-prose" data-source-url="/resources/cited-by-links/32071302/" > </div> <h3 class="usa-accordion__heading"> <button type="button" class="usa-accordion__button" aria-expanded="false" aria-controls="resources-links-to-ncbi-databases" data-ga-category="resources_accordion" data-ga-action="open_NCBI_links" data-ga-label="/articles/PMC7028933/" data-action-open="open_NCBI_links" data-action-close="close_NCBI_link" > Links to NCBI Databases </button> </h3> <div id="resources-links-to-ncbi-databases" class="usa-accordion__content usa-prose" data-source-url="/resources/db-links/7028933/" > </div> </div> </section> <section class="usa-in-page-nav usa-in-page-nav--wide margin-top-6 desktop:margin-top-4" data-title-text="On this page" data-title-heading-level="h2" data-scroll-offset="0" data-root-margin="-10% 0px -80% 0px" data-main-content-selector="main" data-threshold="1" hidden ></section> </section> </div> <div class="overlay" role="dialog" aria-label="Citation Dialog" hidden> <div class="dialog citation-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Cite</h2> <button type="button" class="usa-button usa-button--unstyled close-overlay text-black width-auto" tabindex="1"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#close"></use> </svg> </button> </div> <div class="citation-text-block"> <div class="citation-text margin-bottom-2"></div> <ul class="usa-list usa-list--unstyled display-inline-flex flex-justify width-full flex-align-center"> <li> <button class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center copy-button dialog-focus" data-ga-category="save_share" data-ga-action="cite" data-ga-label="copy" tabindex="2"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#content_copy"></use> </svg> <span>Copy</span> </button> </li> <li> <a href="#" role="button" class="usa-button usa-button--unstyled text-no-underline display-flex flex-align-center export-button" data-ga-category="save_share" data-ga-action="cite" data-ga-label="download" title="Download a file for external citation management software" tabindex="3"> <svg class="usa-icon width-3 height-3" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#file_download"></use> </svg> <span class="display-none mobile-lg:display-inline">Download .nbib</span> <span class="display-inline mobile-lg:display-none">.nbib</span> </a> </li> <li> <div class="display-inline-flex flex-align-center"> <label class="usa-label margin-top-0">Format:</label> <select aria-label="Format" class="usa-select citation-style-selector padding-1 margin-top-0 border-0 padding-right-4" tabindex="4" > <option data-style-url-name="ama" value="AMA" > AMA </option> <option data-style-url-name="apa" value="APA" > APA </option> <option data-style-url-name="mla" value="MLA" > MLA </option> <option data-style-url-name="nlm" value="NLM" selected="selected"> NLM </option> </select> </div> </li> </ul> </div> </div> </div> <div class="overlay" role="dialog" hidden> <div id="collections-action-dialog" class="dialog collections-dialog" aria-hidden="true"> <div class="display-inline-flex flex-align-center flex-justify width-full margin-bottom-2"> <h2 class="usa-modal__heading margin-0">Add to Collections</h2> </div> <div class="collections-action-panel action-panel"> <form id="collections-action-dialog-form" class="usa-form maxw-full collections-action-panel-form action-panel-content action-form action-panel-smaller-selectors" data-existing-collections-url="/list-existing-collections/" data-add-to-existing-collection-url="/add-to-existing-collection/" data-create-and-add-to-new-collection-url="/create-and-add-to-new-collection/" data-myncbi-max-collection-name-length="100" data-collections-root-url="https://www.ncbi.nlm.nih.gov/myncbi/collections/"> <input type="hidden" name="csrfmiddlewaretoken" value="6bHuFKYEFbhXAVYwrn4ZoM7gJ5w7A5Tb1ifBtqYr0IyzgEMSTnaKq5aRfcr3seLn"> <fieldset class="usa-fieldset margin-bottom-2"> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-new" class="usa-radio__input usa-radio__input--tile collections-new margin-top-0" name="collections" value="new" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_new" /> <label class="usa-radio__label" for="collections-action-dialog-new">Create a new collection</label> </div> <div class="usa-radio"> <input type="radio" id="collections-action-dialog-existing" class="usa-radio__input usa-radio__input--tile collections-existing" name="collections" value="existing" checked="true" data-ga-category="collections_button" data-ga-action="click" data-ga-label="collections_radio_existing" /> <label class="usa-radio__label" for="collections-action-dialog-existing">Add to an existing collection</label> </div> </fieldset> <fieldset class="usa-fieldset margin-bottom-2"> <div class="action-panel-control-wrap new-collections-controls"> <label for="collections-action-dialog-add-to-new" class="usa-label margin-top-0"> Name your collection <abbr title="required" class="usa-hint usa-hint--required text-no-underline">*</abbr> </label> <input type="text" name="add-to-new-collection" id="collections-action-dialog-add-to-new" class="usa-input collections-action-add-to-new" pattern="[^&quot;&amp;=&lt;&gt;/]*" title="The following characters are not allowed in the Name field: &quot;&amp;=&lt;&gt;/" maxlength="" data-ga-category="collections_button" data-ga-action="create_collection" data-ga-label="non_favorties_collection" required /> </div> <div class="action-panel-control-wrap existing-collections-controls"> <label for="collections-action-dialog-add-to-existing" class="usa-label margin-top-0"> Choose a collection </label> <select id="collections-action-dialog-add-to-existing" class="usa-select collections-action-add-to-existing" data-ga-category="collections_button" data-ga-action="select_collection" data-ga-label="($('.collections-action-add-to-existing').val() === 'Favorites') ? 'Favorites' : 'non_favorites_collection'"> </select> <div class="collections-retry-load-on-error usa-input-error-message selection-validation-message"> Unable to load your collection due to an error<br> <a href="#">Please try again</a> </div> </div> </fieldset> <div class="display-inline-flex"> <button class="usa-button margin-top-0 action-panel-submit" type="submit" data-loading-label="Adding..." data-pinger-ignore data-ga-category="collections_button" data-ga-action="click" data-ga-label="add"> Add </button> <button class="usa-button usa-button--outline margin-top-0 action-panel-cancel" aria-label="Close 'Add to Collections' panel" ref="linksrc=close_collections_panel" data-ga-category="collections_button" data-ga-action="click" data-ga-label="cancel"> Cancel </button> </div> </form> </div> </div> </div> </div> </div> </div> <footer class="ncbi-footer ncbi-dark-background " > <div class="ncbi-footer__icon-section"> <div class="ncbi-footer__social-header"> Follow NCBI </div> <div class="grid-container ncbi-footer__ncbi-social-icons-container"> <a href="https://twitter.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="40" height="40" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NCBI on X (formerly known as Twitter)</span> </a> <a href="https://www.facebook.com/ncbi.nlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="16" height="29" focusable="false" aria-hidden="true" viewBox="0 0 16 29" fill="none" xmlns="http://www.w3.org/2000/svg"> <path d="M3.8809 21.4002C3.8809 19.0932 3.8809 16.7876 3.8809 14.478C3.8809 14.2117 3.80103 14.1452 3.54278 14.1492C2.53372 14.1638 1.52334 14.1492 0.514288 14.1598C0.302626 14.1598 0.248047 14.0972 0.248047 13.8936C0.256034 12.4585 0.256034 11.0239 0.248047 9.58978C0.248047 9.37013 0.302626 9.30224 0.528931 9.3049C1.53798 9.31688 2.54837 9.3049 3.55742 9.31555C3.80103 9.31555 3.8809 9.26097 3.87957 9.00272C3.87158 8.00565 3.85428 7.00592 3.90753 6.00884C3.97142 4.83339 4.31487 3.73115 5.04437 2.78467C5.93095 1.63318 7.15699 1.09005 8.56141 0.967577C10.5582 0.79319 12.555 0.982221 14.5518 0.927641C14.7102 0.927641 14.7462 0.99287 14.7449 1.13664C14.7449 2.581 14.7449 4.02668 14.7449 5.47104C14.7449 5.67604 14.6517 5.68669 14.4946 5.68669C13.4523 5.68669 12.4113 5.68669 11.3703 5.68669C10.3506 5.68669 9.92057 6.10868 9.90593 7.13904C9.89661 7.7647 9.91525 8.39303 9.89794 9.01869C9.88995 9.26364 9.96583 9.31822 10.2015 9.31688C11.7204 9.30623 13.2393 9.31688 14.7595 9.3049C15.0257 9.3049 15.0723 9.3728 15.0444 9.62439C14.89 10.9849 14.7515 12.3467 14.6144 13.7085C14.5691 14.1571 14.5785 14.1585 14.1458 14.1585C12.8386 14.1585 11.5313 14.1665 10.2254 14.1518C9.95119 14.1518 9.89794 14.2317 9.89794 14.4899C9.90593 19.0799 9.89794 23.6752 9.91125 28.2612C9.91125 28.5674 9.8407 28.646 9.53186 28.6433C7.77866 28.6273 6.02414 28.6366 4.27094 28.634C3.82499 28.634 3.87158 28.6992 3.87158 28.22C3.87602 25.9472 3.87913 23.6739 3.8809 21.4002Z"> </path> </svg> <span class="usa-sr-only">NCBI on Facebook</span> </a> <a href="https://www.linkedin.com/company/ncbinlm" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="25" height="23" viewBox="0 0 26 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M14.6983 9.98423C15.6302 9.24808 16.5926 8.74754 17.6762 8.51991C19.673 8.09126 21.554 8.30824 23.1262 9.7526C24.2351 10.7723 24.7529 12.1115 25.0165 13.5612C25.1486 14.3363 25.2105 15.1218 25.2015 15.9081C25.2015 18.3043 25.2015 20.6898 25.2082 23.0806C25.2082 23.3468 25.1549 23.444 24.8621 23.4414C23.1297 23.4272 21.3992 23.4272 19.6704 23.4414C19.4041 23.4414 19.3429 23.3588 19.3442 23.1019C19.3535 20.5194 19.3442 17.9368 19.3442 15.3543C19.3442 14.0005 18.3258 12.9448 17.0266 12.9488C15.7273 12.9528 14.6983 14.0071 14.6983 15.361C14.6983 17.9328 14.6917 20.5047 14.6983 23.0753C14.6983 23.3708 14.6198 23.444 14.3296 23.4427C12.6185 23.4294 10.9079 23.4294 9.19779 23.4427C8.93155 23.4427 8.86099 23.3735 8.86232 23.1086C8.8783 19.7619 8.88628 16.4144 8.88628 13.066C8.88628 11.5688 8.87874 10.0708 8.86365 8.57182C8.86365 8.3575 8.90758 8.27896 9.14054 8.28029C10.9048 8.29094 12.6687 8.29094 14.4321 8.28029C14.6464 8.28029 14.6983 8.34818 14.6983 8.54653C14.6903 9.00047 14.6983 9.45441 14.6983 9.98423Z"> </path> <path d="M6.55316 15.8443C6.55316 18.2564 6.55316 20.6699 6.55316 23.082C6.55316 23.3629 6.48127 23.4388 6.19906 23.4374C4.47737 23.4241 2.75568 23.4241 1.03399 23.4374C0.767751 23.4374 0.69986 23.3629 0.701191 23.1006C0.709178 18.2648 0.709178 13.4281 0.701191 8.59053C0.701191 8.34026 0.765089 8.27237 1.01669 8.2737C2.74991 8.28435 4.48048 8.28435 6.20838 8.2737C6.47462 8.2737 6.5465 8.33627 6.54517 8.6065C6.54783 11.0186 6.55316 13.4308 6.55316 15.8443Z"> </path> <path d="M3.65878 0.243898C5.36804 0.243898 6.58743 1.45529 6.58743 3.1406C6.58743 4.75801 5.32145 5.95742 3.60819 5.96807C3.22177 5.97614 2.83768 5.90639 2.47877 5.76299C2.11985 5.61959 1.79344 5.40546 1.51897 5.13334C1.24449 4.86123 1.02755 4.53668 0.881058 4.17902C0.734563 3.82136 0.661505 3.43788 0.666231 3.05141C0.67555 1.42601 1.9362 0.242566 3.65878 0.243898Z"> </path> </svg> <span class="usa-sr-only">NCBI on LinkedIn</span> </a> <a href="https://github.com/ncbi" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="28" height="27" viewBox="0 0 28 28" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M16.7228 20.6334C17.5057 20.5527 18.2786 20.3944 19.0301 20.1608C21.3108 19.4193 22.5822 17.8259 22.963 15.4909C23.1228 14.5112 23.1814 13.5287 22.9883 12.5437C22.8106 11.6423 22.4013 10.8028 21.8007 10.1076C21.7526 10.0605 21.7197 10 21.7064 9.934C21.6931 9.86799 21.7 9.79952 21.7262 9.73748C22.0856 8.6206 21.9711 7.51969 21.601 6.42677C21.582 6.3497 21.5345 6.2827 21.468 6.23923C21.4016 6.19577 21.3211 6.17906 21.2429 6.19248C20.7329 6.21649 20.2313 6.33051 19.7611 6.52928C19.1103 6.7908 18.4899 7.12198 17.9104 7.51703C17.84 7.56996 17.7581 7.60551 17.6713 7.62078C17.5846 7.63605 17.4954 7.6306 17.4112 7.60489C15.2596 7.05882 13.0054 7.06203 10.8554 7.61421C10.7806 7.63586 10.7018 7.63967 10.6253 7.62534C10.5487 7.611 10.4766 7.57892 10.4148 7.53167C9.64788 7.03247 8.85171 6.58918 7.96368 6.33359C7.65781 6.24338 7.34123 6.19458 7.02239 6.18849C6.94879 6.17986 6.87462 6.19893 6.81432 6.242C6.75402 6.28507 6.71191 6.34904 6.69621 6.42145C6.32342 7.51437 6.2209 8.61527 6.56307 9.73348C6.59635 9.84264 6.64694 9.93316 6.54177 10.0516C5.47666 11.2604 5.09988 12.6834 5.19574 14.2676C5.2663 15.4244 5.46201 16.5466 6.01454 17.5769C6.84399 19.1171 8.21664 19.9119 9.85158 20.3352C10.3938 20.4706 10.9444 20.5698 11.4998 20.632C11.5384 20.7492 11.4506 20.7798 11.408 20.8291C11.1734 21.1179 10.9894 21.4441 10.8634 21.7942C10.7622 22.0458 10.8315 22.4039 10.6065 22.5516C10.263 22.7766 9.83827 22.8485 9.42421 22.8871C8.17936 23.0056 7.26471 22.4877 6.6283 21.4348C6.25552 20.8184 5.76956 20.3325 5.08523 20.0663C4.76981 19.9325 4.42139 19.8967 4.08537 19.9638C3.7898 20.029 3.73788 20.1901 3.93891 20.4111C4.03639 20.5234 4.14989 20.6207 4.27575 20.6999C4.9796 21.1318 5.51717 21.7884 5.80152 22.5636C6.37002 23.9973 7.48039 24.5697 8.93825 24.6323C9.43741 24.6575 9.93768 24.615 10.4254 24.5058C10.5892 24.4672 10.6531 24.4872 10.6517 24.6762C10.6451 25.4936 10.6637 26.3123 10.6517 27.131C10.6517 27.6635 10.1684 27.9297 9.58663 27.7393C8.17396 27.2671 6.84977 26.5631 5.66838 25.656C2.59555 23.2891 0.720966 20.1861 0.217704 16.3376C-0.357453 11.9127 0.911353 8.00824 3.98551 4.73881C6.11909 2.42656 8.99932 0.939975 12.1203 0.540191C16.5351 -0.0601815 20.4347 1.14323 23.7232 4.16373C26.2449 6.47869 27.724 9.37672 28.1048 12.7726C28.5828 17.0325 27.3686 20.7945 24.4768 23.9827C22.9762 25.6323 21.0956 26.8908 18.9982 27.6488C18.8783 27.6927 18.7585 27.738 18.636 27.7726C18.0356 27.9404 17.6189 27.6395 17.6189 27.0098C17.6189 25.7452 17.6308 24.4806 17.6295 23.2159C17.6329 22.9506 17.6128 22.6856 17.5696 22.4238C17.4325 21.6664 17.3419 21.484 16.7228 20.6334Z"> </path> </svg> <span class="usa-sr-only">NCBI on GitHub</span> </a> <a href="https://ncbiinsights.ncbi.nlm.nih.gov/" class="ncbi-footer__social-icon ncbi-footer__social-icon--gray" target="_blank" rel="noreferrer noopener"> <svg width="26" height="26" viewBox="0 0 27 27" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M23.7778 26.4574C23.1354 26.3913 22.0856 26.8024 21.636 26.3087C21.212 25.8444 21.4359 24.8111 21.324 24.0347C19.9933 14.8323 14.8727 8.80132 6.09057 5.85008C4.37689 5.28406 2.58381 4.99533 0.779072 4.99481C0.202773 4.99481 -0.0229751 4.83146 0.00455514 4.21479C0.0660406 3.08627 0.0660406 1.95525 0.00455514 0.826734C-0.0413285 0.0815827 0.259669 -0.0193618 0.896534 0.00266238C6.96236 0.222904 12.3693 2.24179 16.9889 6.16209C22.9794 11.2478 26.1271 17.7688 26.4372 25.648C26.4629 26.294 26.3179 26.5271 25.6609 26.4684C25.0827 26.417 24.4991 26.4574 23.7778 26.4574Z"> </path> <path d="M14.8265 26.441C14.0924 26.441 13.2371 26.6795 12.6626 26.3786C12.0092 26.0372 12.3781 25.0644 12.246 24.378C11.1154 18.5324 6.6849 14.5497 0.74755 14.1001C0.217135 14.0615 -0.0104482 13.9422 0.0134113 13.3659C0.0519536 12.1454 0.0482829 10.9213 0.0134113 9.69524C-0.00127145 9.14464 0.196946 9.03268 0.703502 9.04736C9.21217 9.27128 16.5994 16.2511 17.2804 24.7231C17.418 26.4446 17.418 26.4446 15.6579 26.4446H14.832L14.8265 26.441Z"> </path> <path d="M3.58928 26.4555C2.64447 26.4618 1.73584 26.0925 1.06329 25.4289C0.39073 24.7653 0.00933763 23.8617 0.0030097 22.9169C-0.00331824 21.9721 0.365937 21.0635 1.02954 20.3909C1.69315 19.7184 2.59675 19.337 3.54156 19.3306C4.48637 19.3243 5.39499 19.6936 6.06755 20.3572C6.7401 21.0208 7.1215 21.9244 7.12782 22.8692C7.13415 23.814 6.7649 24.7226 6.10129 25.3952C5.43768 26.0677 4.53409 26.4491 3.58928 26.4555Z"> </path> </svg> <span class="usa-sr-only">NCBI RSS feed</span> </a> </div> </div> <div data-testid="gridContainer" class="grid-container ncbi-footer__container"> <div class="grid-row ncbi-footer__main-content-container" data-testid="grid"> <div class="ncbi-footer__column"> <p class="ncbi-footer__circled-icons-heading"> Connect with NLM </p> <div class="ncbi-footer__circled-icons-list"> <a href=https://twitter.com/nlm_nih class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="32" height="32" viewBox="0 0 40 40" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="m6.067 8 10.81 13.9L6 33.2h4.2l8.4-9.1 7.068 9.1H34L22.8 18.5 31.9 8h-3.5l-7.7 8.4L14.401 8H6.067Zm3.6 1.734h3.266l16.8 21.732H26.57L9.668 9.734Z"> </path> </svg> <span class="usa-sr-only">NLM on X (formerly known as Twitter)</span> </a> <a href=https://www.facebook.com/nationallibraryofmedicine class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="13" height="24" viewBox="0 0 13 24" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M4.11371 23.1369C4.11371 23.082 4.11371 23.0294 4.11371 22.9745V12.9411H0.817305C0.6709 12.9411 0.670898 12.9411 0.670898 12.8016C0.670898 11.564 0.670898 10.3287 0.670898 9.09341C0.670898 8.97903 0.705213 8.95158 0.815017 8.95158C1.8673 8.95158 2.91959 8.95158 3.97417 8.95158H4.12057V8.83263C4.12057 7.8055 4.12057 6.7738 4.12057 5.74897C4.1264 4.92595 4.31387 4.11437 4.66959 3.37217C5.12916 2.38246 5.94651 1.60353 6.95717 1.1921C7.64827 0.905008 8.3913 0.764035 9.13953 0.778051C10.0019 0.791777 10.8644 0.830666 11.7268 0.860404C11.8869 0.860404 12.047 0.894717 12.2072 0.90158C12.2964 0.90158 12.3261 0.940469 12.3261 1.02968C12.3261 1.5421 12.3261 2.05452 12.3261 2.56465C12.3261 3.16857 12.3261 3.7725 12.3261 4.37642C12.3261 4.48165 12.2964 4.51367 12.1912 4.51138C11.5369 4.51138 10.8804 4.51138 10.2261 4.51138C9.92772 4.51814 9.63058 4.5526 9.33855 4.61433C9.08125 4.6617 8.84537 4.78881 8.66431 4.97766C8.48326 5.16652 8.3662 5.40755 8.32972 5.66661C8.28476 5.89271 8.26027 6.1224 8.25652 6.35289C8.25652 7.19014 8.25652 8.02969 8.25652 8.86923C8.25652 8.89439 8.25652 8.91955 8.25652 8.95615H12.0219C12.1797 8.95615 12.182 8.95616 12.1614 9.10714C12.0768 9.76596 11.9876 10.4248 11.9029 11.0813C11.8312 11.6319 11.7626 12.1824 11.697 12.733C11.6719 12.9434 11.6787 12.9434 11.4683 12.9434H8.26338V22.899C8.26338 22.979 8.26338 23.0591 8.26338 23.1392L4.11371 23.1369Z"> </path> </svg> <span class="usa-sr-only">NLM on Facebook</span> </a> <a href=https://www.youtube.com/user/NLMNIH class="ncbi-footer__social-icon ncbi-footer__social-icon--circled" target="_blank" rel="noreferrer noopener"> <svg width="21" height="15" viewBox="0 0 21 15" fill="none" xmlns="http://www.w3.org/2000/svg" focusable="false" aria-hidden="true"> <path d="M19.2561 1.47914C18.9016 1.15888 18.5699 0.957569 17.2271 0.834039C15.5503 0.678484 13.2787 0.655608 11.563 0.65332H9.43556C7.71987 0.65332 5.4483 0.678484 3.77151 0.834039C2.43098 0.957569 2.097 1.15888 1.74242 1.47914C0.813665 2.32097 0.619221 4.62685 0.598633 6.89384C0.598633 7.31781 0.598633 7.74101 0.598633 8.16345C0.626084 10.4121 0.827391 12.686 1.74242 13.521C2.097 13.8412 2.4287 14.0425 3.77151 14.1661C5.4483 14.3216 7.71987 14.3445 9.43556 14.3468H11.563C13.2787 14.3468 15.5503 14.3216 17.2271 14.1661C18.5676 14.0425 18.9016 13.8412 19.2561 13.521C20.1712 12.6929 20.3725 10.451 20.3999 8.22064C20.3999 7.74025 20.3999 7.25986 20.3999 6.77946C20.3725 4.54907 20.1689 2.30724 19.2561 1.47914ZM8.55942 10.5311V4.65201L13.5601 7.50005L8.55942 10.5311Z" fill="white" /> </svg> <span class="usa-sr-only">NLM on YouTube</span> </a> </div> </div> <address class="ncbi-footer__address ncbi-footer__column"> <p> <a class="usa-link usa-link--external" href="https://www.google.com/maps/place/8600+Rockville+Pike,+Bethesda,+MD+20894/%4038.9959508, -77.101021,17z/data%3D!3m1!4b1!4m5!3m4!1s0x89b7c95e25765ddb%3A0x19156f88b27635b8!8m2!3d38.9959508! 4d-77.0988323" rel="noopener noreferrer" target="_blank">National Library of Medicine <br/> 8600 Rockville Pike<br/> Bethesda, MD 20894</a> </p> </address> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/web_policies.html" class="usa-link usa-link--alt ncbi-footer__link" > Web Policies </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nih.gov/institutes-nih/nih-office-director/office-communications-public-liaison/freedom-information-act-office" class="usa-link usa-link--alt ncbi-footer__link" > FOIA </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.hhs.gov/vulnerability-disclosure-policy/index.html" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS Vulnerability Disclosure </a> </li> </ul> <ul class="usa-list usa-list--unstyled ncbi-footer__vertical-list ncbi-footer__column"> <li class="ncbi-footer__vertical-list-item"> <a href="https://support.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > Help </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/accessibility.html" class="usa-link usa-link--alt ncbi-footer__link" > Accessibility </a> </li> <li class="ncbi-footer__vertical-list-item"> <a href="https://www.nlm.nih.gov/careers/careers.html" class="usa-link usa-link--alt ncbi-footer__link" > Careers </a> </li> </ul> </div> <div class="grid-row grid-col-12" data-testid="grid"> <ul class="ncbi-footer__bottom-links-list"> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nlm.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NLM </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.nih.gov/" class="usa-link usa-link--alt ncbi-footer__link" > NIH </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.hhs.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > HHS </a> </li> <li class="ncbi-footer__bottom-list-item"> <a href="https://www.usa.gov/" class="usa-link usa-link--external usa-link--alt ncbi-footer__link" rel="noreferrer noopener" target='_blank' > USA.gov </a> </li> </ul> </div> </div> </footer> <script type="text/javascript" src="https://cdn.ncbi.nlm.nih.gov/core/pinger/pinger.js"> </script> <button class="back-to-top" data-ga-category="pagination" data-ga-action="back_to_top"> <label>Back to Top</label> <svg class="usa-icon order-0" aria-hidden="true" focusable="false" role="img"> <use xlink:href="/static/img/sprite.svg#arrow_upward"></use> </svg> </button> <script src="https://code.jquery.com/jquery-3.5.0.min.js" integrity="sha256-xNzN2a4ltkB44Mc/Jz3pT4iU1cmeR0FkXs4pru/JxaQ=" crossorigin="anonymous"> </script> <script type="text/javascript">var exports = {};</script> <script src="/static/CACHE/js/output.13b077bc3ffd.js"></script> <script type="application/javascript"> window.ncbi = window.ncbi || {}; window.ncbi.pmc = window.ncbi.pmc || {}; window.ncbi.pmc.options = { logLevel: 'INFO', staticEndpoint: '/static/', citeCookieName: 'pmc-cf', }; </script> <script type="module" crossorigin="" src="/static/assets/base-9bea7450.js"></script> <script type="module" crossorigin="" src="/static/assets/article-722d91a2.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10