CINXE.COM
Search results for: Sergei V. Bochenkov
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Sergei V. Bochenkov</title> <meta name="description" content="Search results for: Sergei V. Bochenkov"> <meta name="keywords" content="Sergei V. Bochenkov"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Sergei V. Bochenkov" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Sergei V. Bochenkov"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 21</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Sergei V. Bochenkov</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Sergei Prokofiev and Ukraine: The Influence of the Ukrainian Musical Tradition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khrystyna%20Zai">Khrystyna Zai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research delves into the profound impact of Ukrainian musical traditions on the life and works of the renowned composer Sergei Prokofiev. Sergei Prokofiev's formative years in Ukraine, particularly in Sontsivka(Eastern Ukraine), allowed him to immerse himself in the local music. He encountered Ukrainian folk songs and dances, which left an indelible mark on his musical sensibilities. With a focus on the early 20th century, a period of significant cultural transformation in both Ukraine and Europe, this study examines how Prokofiev's exposure to Ukrainian folk music, its melodic motifs, and rhythmic patterns influenced his compositions. Prokofiev’s works showcase his deliberate efforts to fuse Ukrainian elements with his distinctive modernist style. This study analyzes Prokofiev's engagement with Ukrainian themes in his music, such as the "Semen Kotko”, “The Love of Three Oranges”, “On the Dnieper”, “Scythian Suite”, “Sinfonia Concertante" for cello and orchestra, "Sonata No. 9,", “Partisans in the steppes of Ukraine” (where Prokofiev uses texts in Ukrainian). The scientific work mentions his interactions and collaborations with Ukrainian musicians and cultural figures during Prokofiev’s career. Notably, his association with Ukrainian pianist Sviatoslav Richter and conductor Kirill Karabits led to interpretations of his compositions with a Ukrainian perspective. This research illuminates the nuances of cross-cultural influences in Prokofiev's oeuvre, contributing to a deeper understanding of the interplay between national identities and artistic expression during a pivotal period in history, based on the fact that the composer himself considered Ukraine to be his homeland, calling himself “steppe boy”. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=florida%20atlantic%20university" title="florida atlantic university">florida atlantic university</a>, <a href="https://publications.waset.org/abstracts/search?q=ukrainian%20music" title=" ukrainian music"> ukrainian music</a>, <a href="https://publications.waset.org/abstracts/search?q=ukrainian%20composer" title=" ukrainian composer"> ukrainian composer</a>, <a href="https://publications.waset.org/abstracts/search?q=sergei%20prokofiev" title=" sergei prokofiev"> sergei prokofiev</a> </p> <a href="https://publications.waset.org/abstracts/173426/sergei-prokofiev-and-ukraine-the-influence-of-the-ukrainian-musical-tradition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173426.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">62</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Previously Undescribed Cardiac Abnormalities in Two Unrelated Autistic Males with Causative Variants in CHD8</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mariia%20A.%20Parfenenko">Mariia A. Parfenenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Ilya%20S.%20Dantsev"> Ilya S. Dantsev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20V.%20Bochenkov"> Sergei V. Bochenkov</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalia%20V.%20Vinogradova"> Natalia V. Vinogradova</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20S.%20Groznova"> Olga S. Groznova</a>, <a href="https://publications.waset.org/abstracts/search?q=Victoria%20Yu.%20Voinova"> Victoria Yu. Voinova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Autism is the most common neurodevelopmental disorder. Autism is characterized by difficulties in social interaction and adherence to stereotypic behavioral patterns and frequently co-occurs with epilepsy, intellectual disabilities, connective tissue disorders, and other conditions. CHD8 codes for chromodomain-helicase-DNA-binding protein 8 - a chromatin remodeler that regulates cellular proliferation and neurodevelopment in embryogenesis. CHD8 is one of the genes most frequently involved in autism. Patients and methods: 2 unrelated male patients, P3 and P12, aged 3 and 12 years old, underwent whole genome sequencing, which determined that they both had different likely pathogenic variants, both previously undescribed in literature. Sanger sequencing later determined that P12 inherited the variant from his affected mother. Results: P3 and P12 presented with autism, a developmental delay, ataxia, sleep disorders, overgrowth, and macrocephaly, as well as other clinical features typically present in patients with causative variants in CHD8. The mother of P12 also has autistic traits, as well as ataxia, hypotonia, sleep disorders, and other symptoms. However, P3 and P12 also have different cardiac abnormalities. P3 had signs of a repolarization disorder: a flattened T wave in the III and aVF derivations and a negative T wave in the V1-V2 derivations. He also had structural valve anomalies with associated regurgitation, local contractility impairment of the left ventricular, and diastolic dysfunction of the right ventricle. Meanwhile, P12 had Wolff-Parkinson-White syndrome and underwent radiofrequency ablation at the age of 2 years. At the time of observation, P12 had mild sinus arrhythmia and an incomplete right bundle branch block, as well as arterial hypertension. Discussion: Cardiac abnormalities were not previously reported in patients with causative variants in CHD8. The underlying mechanism for the formation of those abnormalities is currently unknown. However, the two hypotheses are either a disordered interaction with CHD7 – another chromodomain remodeler known to be directly involved in the cardiophenotype of CHARGE syndrome – a rare condition characterized by coloboma, heart defects and growth abnormalities, or the disrupted functioning of CHD8 as an A-Kinase Anchoring Protein, which are known to modulate cardiac function. Conclusion: We observed 2 unrelated autistic males with likely pathogenic variants in CHD8 that presented with typical symptoms of CHD8-related neurodevelopmental disorder, as well as cardiac abnormalities. Cardiac abnormalities have, until now, been considered uncharacteristic for patients with causative variants in CHD8. Further accumulation of data, including experimental evidence of the involvement of CHD8 in heart formation, will elucidate the mechanism underlying the cardiophenotype of those patients. Acknowledgements: Molecular genetic testing of the patients was made possible by the Charity Fund for medical and social genetic aid projects «Life Genome.» <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autism%20spectrum%20disorders" title="autism spectrum disorders">autism spectrum disorders</a>, <a href="https://publications.waset.org/abstracts/search?q=chromodomain-helicase-DNA-binding%20protein%208" title=" chromodomain-helicase-DNA-binding protein 8"> chromodomain-helicase-DNA-binding protein 8</a>, <a href="https://publications.waset.org/abstracts/search?q=neurodevelopmental%20disorder" title=" neurodevelopmental disorder"> neurodevelopmental disorder</a>, <a href="https://publications.waset.org/abstracts/search?q=cardio%20phenotype" title=" cardio phenotype"> cardio phenotype</a> </p> <a href="https://publications.waset.org/abstracts/173758/previously-undescribed-cardiac-abnormalities-in-two-unrelated-autistic-males-with-causative-variants-in-chd8" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173758.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">86</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Detection of Clipped Fragments in Speech Signals</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Aleinik">Sergei Aleinik</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Matveev"> Yuri Matveev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper a novel method for the detection of clipping in speech signals is described. It is shown that the new method has better performance than known clipping detection methods, is easy to implement, and is robust to changes in signal amplitude, size of data, etc. Statistical simulation results are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clipping" title="clipping">clipping</a>, <a href="https://publications.waset.org/abstracts/search?q=clipped%20signal" title=" clipped signal"> clipped signal</a>, <a href="https://publications.waset.org/abstracts/search?q=speech%20signal%20processing" title=" speech signal processing"> speech signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20signal%20processing" title=" digital signal processing"> digital signal processing</a> </p> <a href="https://publications.waset.org/abstracts/4816/detection-of-clipped-fragments-in-speech-signals" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/4816.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">392</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Signs-Only Compressed Row Storage Format for Exact Diagonalization Study of Quantum Fermionic Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20Danilov">Michael Danilov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Iskakov"> Sergei Iskakov</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20Mazurenko"> Vladimir Mazurenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper describes a high-performance parallel realization of an exact diagonalization solver for quantum-electron models in a shared memory computing system. The proposed algorithm contains a storage format for efficient computing eigenvalues and eigenvectors of a quantum electron Hamiltonian matrix. The results of the test calculations carried out for 15 sites Hubbard model demonstrate reduction in the required memory and good multiprocessor scalability, while maintaining performance of the same order as compressed row storage. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sparse%20matrix" title="sparse matrix">sparse matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=compressed%20format" title=" compressed format"> compressed format</a>, <a href="https://publications.waset.org/abstracts/search?q=Hubbard%20model" title=" Hubbard model"> Hubbard model</a>, <a href="https://publications.waset.org/abstracts/search?q=Anderson%20model" title=" Anderson model"> Anderson model</a> </p> <a href="https://publications.waset.org/abstracts/48308/signs-only-compressed-row-storage-format-for-exact-diagonalization-study-of-quantum-fermionic-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Influence of the Popular Literature on Consciousness of the Person</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alua%20Temirbolat">Alua Temirbolat</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Kibalnik"> Sergei Kibalnik</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhuldyz%20Essimova"> Zhuldyz Essimova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article is devoted to research of influence of the modern literature on the consciousness of the person. Tendencies and features of the progress of the historical-cultural and artistic process at the end of XX–the beginning of XXI centuries are considered. The object of the analysis is the popular literature which has found last decades greater popularity among readers of different generations. In the article, such genres, as melodramas, female, espionage, criminal, pink, costume-historical novels, thrillers, elements, a fantasy are considered. During research, specific features of the popular literature, its difference from works of classics is revealed. On specific examples, its negative and positive influence on consciousness, psychology of the reader is shown, its role and value in a modern society are defined. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20popular%20literature" title="the popular literature">the popular literature</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20person" title=" the person"> the person</a>, <a href="https://publications.waset.org/abstracts/search?q=consciousness" title=" consciousness"> consciousness</a>, <a href="https://publications.waset.org/abstracts/search?q=a%20genre" title=" a genre"> a genre</a>, <a href="https://publications.waset.org/abstracts/search?q=psychology" title=" psychology"> psychology</a> </p> <a href="https://publications.waset.org/abstracts/34025/influence-of-the-popular-literature-on-consciousness-of-the-person" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Aleinik">Sergei Aleinik</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Stolbov"> Mikhail Stolbov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cross-correlation" title="cross-correlation">cross-correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=delay%20estimation" title=" delay estimation"> delay estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20envelope" title=" signal envelope"> signal envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/2280/time-delay-estimation-using-signal-envelopes-for-synchronisation-of-recordings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Simulation for the Magnetized Plasma Compression Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Victor%20V.%20Kuzenov">Victor V. Kuzenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20V.%20Ryzhkov"> Sergei V. Ryzhkov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ongoing experimental and theoretical studies on magneto-inertial confinement fusion (Angara, C-2, CJS-100, General Fusion, MagLIF, MAGPIE, MC-1, YG-1, Omega) and new constructing facilities (Baikal, C-2W, Z300 and Z800) require adequate modeling and description of the physical processes occurring in high-temperature dense plasma in a strong magnetic field. This paper presents a mathematical model, numerical method, and results of the computer analysis of the compression process and the energy transfer in the target plasma, used in magneto-inertial fusion (MIF). The computer simulation of the compression process of the magnetized target by the high-power laser pulse and the high-speed plasma jets is presented. The characteristic patterns of the two methods of the target compression are being analysed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetized%20target" title="magnetized target">magnetized target</a>, <a href="https://publications.waset.org/abstracts/search?q=magneto-inertial%20fusion" title=" magneto-inertial fusion"> magneto-inertial fusion</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20model" title=" mathematical model"> mathematical model</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20and%20laser%20beams" title=" plasma and laser beams"> plasma and laser beams</a> </p> <a href="https://publications.waset.org/abstracts/66035/simulation-for-the-magnetized-plasma-compression-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">296</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Modelling of Heating and Evaporation of Biodiesel Fuel Droplets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mansour%20Al%20Qubeissi">Mansour Al Qubeissi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20S.%20Sazhin"> Sergei S. Sazhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cyril%20Crua"> Cyril Crua</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20R.%20Heikal"> Morgan R. Heikal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=heat%2Fmass%20transfer" title="heat/mass transfer">heat/mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiesel" title=" biodiesel"> biodiesel</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-component%20fuel" title=" multi-component fuel"> multi-component fuel</a>, <a href="https://publications.waset.org/abstracts/search?q=droplet" title=" droplet"> droplet</a> </p> <a href="https://publications.waset.org/abstracts/19140/modelling-of-heating-and-evaporation-of-biodiesel-fuel-droplets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">567</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Sport-Related Hand and Wrist Injuries Treatment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Kosarev">Sergei Kosarev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wrong treatment tactics for hand and wrist sport-related injuries can lead to the inability to play sports in the future. It is especially important for professional athletes. The members of the Russian Olympic Team are treated in our hospital -Federal Clinical Research Center (Moscow). For their treatment, we use minimally invasive methods such as wrist arthroscopy and also orthobiologics procedures. In 2022 we had cases with scaphoid fracture and TFCC injuries. In all the cases, we were using the arthroscopy technic for treatment. The scaphoid fracture was fixed by K-wires with free bone grafting. For TFCC injures we used transossal sutures. Rehabilitation started the next day after surgery. Rehabilitation included hand therapy and physiotherapy. All athletes returned to the sport after 8-12 weeks after surgery. One of them had pain in the wrist after 12 weeks after surgery, not more than 4 point VAS. Pain syndrome was blocked after 2 PRP injections in the ulnar side of the wrist. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sport%20trauma" title="sport trauma">sport trauma</a>, <a href="https://publications.waset.org/abstracts/search?q=wrist%20arthroscopy" title=" wrist arthroscopy"> wrist arthroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=wrist%20pain" title=" wrist pain"> wrist pain</a>, <a href="https://publications.waset.org/abstracts/search?q=scaphoid%20fracture" title=" scaphoid fracture"> scaphoid fracture</a> </p> <a href="https://publications.waset.org/abstracts/152967/sport-related-hand-and-wrist-injuries-treatment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Ab Initio Studies of Organic Electrodes for Li and Na Ion Batteries Based on Tetracyanoethylene </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yingqian%20Chen">Yingqian Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Manzhos"> Sergei Manzhos</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic electrodes are a way to achieve high rate (high power) and environment-friendly batteries. We present a computational density functional theory study of Li and Na storage in tetracyanoethylene based molecular and crystalline materials. Up to five Li and Na atoms can be stored on TCNE chemisorbed on doped graphene (corresponding to ~1000 mAh/gTCNE), with binding energies stronger than cohesive energies of the Li and Na metals by 1-2 eV. TCNE has been experimentally shown to form a crystalline material with Li with stoichiometry Li-TCNE. We confirm this computationally and also predict that a similar crystal based of Na-TCNE is also stable. These crystalline materials have well defined channels for facile Li or Na ion insertion and diffusion. Specifically, Li and Na binding energies in Li-TCNE and Na-TCNE crystals are about 1.5 eV and stronger than the cohesive energy of Li and Na, respectively. TCNE immobilized on conducting graphene-based substrates and Li/Na-TCNE crystals could therefore become efficient anode materials for organic Li and Na ion batteries, with which it should also be possible to avoid reduction of common battery electrolytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=organic%20ion%20batteries" title="organic ion batteries">organic ion batteries</a>, <a href="https://publications.waset.org/abstracts/search?q=tetracyanoethylene" title=" tetracyanoethylene"> tetracyanoethylene</a>, <a href="https://publications.waset.org/abstracts/search?q=cohesive%20energies" title=" cohesive energies"> cohesive energies</a>, <a href="https://publications.waset.org/abstracts/search?q=electrolytes" title=" electrolytes"> electrolytes</a> </p> <a href="https://publications.waset.org/abstracts/18520/ab-initio-studies-of-organic-electrodes-for-li-and-na-ion-batteries-based-on-tetracyanoethylene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">640</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Relation of the Anomalous Magnetic Moment of Electron with the Proton and Neutron Masses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20P.%20Efimov">Sergei P. Efimov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The anomalous magnetic moment of the electron is calculated by introducing the effective mass of the virtual part of the electron structure. In this case, the anomalous moment is inversely proportional to the effective mass Meff, which is shown to be a linear combination of the neutron, proton, and electrostatic electron field masses. The spin of a rotating structure is assumed to be equal to 3/2, while the spin of a 'bare' electron is equal to unity, the resultant spin being 1/2. A simple analysis gives the coefficients for a linear combination of proton and electron masses, the approximation precision giving here nine significant digits after the decimal point. The summand proportional to α² adds four more digits. Thus, the conception of the effective mass Meff leads to the formula for the total magnetic moment of the electron, which is accurate to fourteen digits. Association with the virtual beta-decay reaction and possible reasons for simplicity of the derived formula are discussed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anomalous%20magnetic%20moment%20of%20electron" title="anomalous magnetic moment of electron">anomalous magnetic moment of electron</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison%20with%20quantum%20electrodynamics.%20effective%20%20mass" title=" comparison with quantum electrodynamics. effective mass"> comparison with quantum electrodynamics. effective mass</a>, <a href="https://publications.waset.org/abstracts/search?q=fifteen%20significant%20figures" title=" fifteen significant figures"> fifteen significant figures</a>, <a href="https://publications.waset.org/abstracts/search?q=proton%20and%20neutron%20masses" title=" proton and neutron masses"> proton and neutron masses</a> </p> <a href="https://publications.waset.org/abstracts/131423/relation-of-the-anomalous-magnetic-moment-of-electron-with-the-proton-and-neutron-masses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Formation of In-Situ Composite during Reactive Wetting and Imbibition Ta by Cu(B) Melt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Zhevnenko">Sergei Zhevnenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Сontinuous layer of tantalum boride is formed on the surface as a result of reactive wetting of oxidized tantalum by copper melt with boron at a temperatures above 1150 °C. An increase in the wetting temperature above 1400 °C leads to a change in the formation mechanism of tantalum borides, they are formed in the nanosized flakes. In the presented work, we studied the process of copper-based in-situ composite formation, strengthened by the particles of tantalum borides. We investigated the structure of the formed particles, the conditions, and the kinetics of their formation. Dissolving boride particles do not have time to mix uniformly in the melt upon sufficiently rapid cooling and form a macrostructure, partly repeating the shape of the metallic tantalum. This allows to set different gradient structures in the copper alloy. Such macrostructures have been obtained. Boride particles and microstructures were studied by scanning and transmission electron microscopy, and regions with particles were investigated by nanoindentation. In this work, we also measured the kinetics of impregnation of porous tantalum with copper-boron melt and studied the structures of the composite, in which the melt filling the interpore space is saturated with boride particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=tantalum%20borides" title=" tantalum borides"> tantalum borides</a>, <a href="https://publications.waset.org/abstracts/search?q=in-situ%20composites" title=" in-situ composites"> in-situ composites</a>, <a href="https://publications.waset.org/abstracts/search?q=wetting" title=" wetting"> wetting</a>, <a href="https://publications.waset.org/abstracts/search?q=imbibition" title=" imbibition"> imbibition</a> </p> <a href="https://publications.waset.org/abstracts/162812/formation-of-in-situ-composite-during-reactive-wetting-and-imbibition-ta-by-cub-melt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162812.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">103</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Awareness about HIV-Infection among HIV-Infected Individuals Attending Medical Moscow Center, Russia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Nosik">Marina Nosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Irina%20Rymanova"> Irina Rymanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Sevostyanihin"> Sergei Sevostyanihin</a>, <a href="https://publications.waset.org/abstracts/search?q=Natalya%20Sergeeva"> Natalya Sergeeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Sobkin"> Alexander Sobkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents results of the survey regarding the awareness about HIV/AIDS among HIV-infected individuals. A questionnaire covering various aspects of HIV-infection was conducted among 110 HIV-infected individuals who attended the G.A. Zaharyan Moscow Tuberculosis Clinic, Department for the treatment of TB patients with HIV. The questionnaire included questions about modes of HIV transmission and preventive measures against HIV/AIDS, as well as questions about age, gender, education, and employment status. The survey revealed that the respondents in the whole had a good knowledge regarding modes of HIV transmission and preventive measures against HIV/AIDS: about 83,6% male respondents and 85,7% female respondents gave accurate answers regarding the HIV-infection. However, the overwhelming majority of the study participants, that is, 88,5% men and 98% women, was quite ignorant about the risk of acquiring HIV through saliva and toothbrush of HIV-infected individual. Though that risk is rather insignificant, it is still biologically possible. And this gap in knowledge needs to be filled. As the study showed another point of concern was the fact, that despite the knowledge of HIV transmission risk through unprotected sex about 40% percent of HIV-positive men and 25% of HIV-positive women did not insist on using condoms with their sexual partners. These findings indicate that there are still some aspects about HIV-infection which needed to be clarified and explained through more detailed and specific educational programmes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AIDS" title="AIDS">AIDS</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV%20transmission%20risks" title=" HIV transmission risks"> HIV transmission risks</a>, <a href="https://publications.waset.org/abstracts/search?q=HIV%20misconceptions" title=" HIV misconceptions"> HIV misconceptions</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20behavior" title=" risk behavior"> risk behavior</a> </p> <a href="https://publications.waset.org/abstracts/29605/awareness-about-hiv-infection-among-hiv-infected-individuals-attending-medical-moscow-center-russia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29605.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Thermolysin Entrapment in a Gold Nanoparticles/Polymer Composite: Construction of an Efficient Biosensor for Ochratoxin a Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fatma%20Dridi">Fatma Dridi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mouna%20Marrakchi"> Mouna Marrakchi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Gargouri"> Mohammed Gargouri</a>, <a href="https://publications.waset.org/abstracts/search?q=Alvaro%20Garcia%20Cruz"> Alvaro Garcia Cruz</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20V.%20Dzyadevych"> Sergei V. Dzyadevych</a>, <a href="https://publications.waset.org/abstracts/search?q=Francis%20Vocanson"> Francis Vocanson</a>, <a href="https://publications.waset.org/abstracts/search?q=Jo%C3%ABlle%20Saulnier"> Joëlle Saulnier</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicole%20Jaffrezic-Renault"> Nicole Jaffrezic-Renault</a>, <a href="https://publications.waset.org/abstracts/search?q=Florence%20Lagarde"> Florence Lagarde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An original method has been successfully developed for the immobilization of thermolysin onto gold interdigitated electrodes for the detection of ochratoxin A (OTA) in olive oil samples. A mix of polyvinyl alcohol (PVA), polyethylenimine (PEI) and gold nanoparticles (AuNPs) was used. Cross-linking sensors chip was made by using a saturated glutaraldehyde (GA) vapor atmosphere in order to render the two polymers water stable. Performance of AuNPs/ (PVA/PEI) modified electrode was compared to a traditional immobilized enzymatic method using bovine serum albumin (BSA). Atomic force microscopy (AFM) experiments were employed to provide a useful insight into the structure and morphology of the immobilized thermolysin composite membranes. The enzyme immobilization method influence the topography and the texture of the deposited layer. Biosensors optimization and analytical characteristics properties were studied. Under optimal conditions AuNPs/ (PVA/PEI) modified electrode showed a higher increment in sensitivity. A 700 enhancement factor could be achieved with a detection limit of 1 nM. The newly designed OTA biosensors showed a long-term stability and good reproducibility. The relevance of the method was evaluated using commercial doped olive oil samples. No pretreatment of the sample was needed for testing and no matrix effect was observed. Recovery values were close to 100% demonstrating the suitability of the proposed method for OTA screening in olive oil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermolysin" title="thermolysin">thermolysin</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20ochratoxin" title=" A. ochratoxin "> A. ochratoxin </a>, <a href="https://publications.waset.org/abstracts/search?q=polyvinyl%20alcohol" title=" polyvinyl alcohol"> polyvinyl alcohol</a>, <a href="https://publications.waset.org/abstracts/search?q=polyethylenimine" title=" polyethylenimine"> polyethylenimine</a>, <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoparticles" title=" gold nanoparticles"> gold nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=olive%20oil" title=" olive oil"> olive oil</a> </p> <a href="https://publications.waset.org/abstracts/26044/thermolysin-entrapment-in-a-gold-nanoparticlespolymer-composite-construction-of-an-efficient-biosensor-for-ochratoxin-a-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26044.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">590</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Inactivation Kinetics of DNA and RNA Viruses by Ozone-Air Mixture in a Flow Mixer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20Nosik">Nikolai Nosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladislav%20Podmasterjev"> Vladislav Podmasterjev</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Kondrashina"> Nina Kondrashina</a>, <a href="https://publications.waset.org/abstracts/search?q=Marina%20Chataeva"> Marina Chataeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Lobach"> Olga Lobach</a>, <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Noosik"> Dmitry Noosik</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Razumovskii"> Sergei Razumovskii</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Virucidal activity of ozone is well known: dissolved in water it kill viruses very fast. The virucidal capacity of ozone in ozone-air mixture is less known. The goal of the study was to investigate the virucidal potentials of the ozone–air mixture and kinetics of virus inactivation. Materials and methods. Ozone (O3 ) was generated from oxygen with ozonizer ( 1.0 – 75.0 mg\l). The ozone concentration was determined by the spectrophotometric methods. Virus contaminated samples were placed into the flowing reactor. Viruses: poliovirus type 1, vaccine strain (Sabin) and adenovirus, type 5, were obtained from the State virus collection. Titrations of viruses were carried out in appropriate cell cultures. CxT value ( mg\l x min) was calculated. Results. Metallic, polycarbonic and fiber “Kevlar” samples were contaminated with virus, dried and treated with ozone-air mixture in the flowing reactor. Kinetics of poliovirus inactivation: in 15 min at 5.0 mg\l -2.0 lg TCID50 inhibition , in 15 min at 10 mg\l – 2.5 lg TCID50 , 4.0 lg TCID50 inactivation of poliovirus was achieved after 75min at ozone concentration 20.0mg\l (99.99%). ( CxT = 75, 150 and 1500 mg\l x min on all three types of surfaces). It was found that the inactivation of poliovirus was more effective when the virus contaminated samples were wet (in 15 min at 20mg\l inhibition of virus in dry samples was 2.0 TCID50 , in wet samples – 4.0 TCID50). Adenovirus was less resistant to ozone treatment then poliovirus: 4.0 lg TCID50 inhibition was observed after 30 min of the treatment with ozone at 20mg\l ( CxT mg\l x min = 300 for adenovirus as for poliovirus it was 1500). Conclusion. It was found that ozone-air mixture inactivates viruses at rather high concentrations (compared to the reported effect of ozone dissolved in water). Despite of that there is a difference in the resistance to ozone action between viruses – poliovirus is more resistant then adenovirus-ozone-air mixture can be used for disinfection of large rooms. The maintaining of the virus-contaminated surfaces in wet condition allow to decrease the ozone load for virus inactivation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adenovirus" title="adenovirus">adenovirus</a>, <a href="https://publications.waset.org/abstracts/search?q=disinfection" title=" disinfection"> disinfection</a>, <a href="https://publications.waset.org/abstracts/search?q=ozone" title=" ozone"> ozone</a>, <a href="https://publications.waset.org/abstracts/search?q=poliovirus" title=" poliovirus"> poliovirus</a> </p> <a href="https://publications.waset.org/abstracts/68910/inactivation-kinetics-of-dna-and-rna-viruses-by-ozone-air-mixture-in-a-flow-mixer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">355</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Induction of Adaptive Response in Yeast Cells under Influence of Extremely High Frequency Electromagnetic Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Voychuk">Sergei Voychuk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: Adaptive response (AR) is a manifestation of radiation hormesis, which deal with the radiation resistance that may be increased with the pretreatment with small doses of radiation. In the current study, we evaluated the potency of radiofrequency EMF to induce the AR mechanisms and to increase a resistance to UV light. Methods: Saccharomyces cerevisiae yeast strains, which were created to study induction of mutagenesis and recombination, were used in the study. The strains have mutations in rad2 and rad54 genes, responsible for DNA repair: nucleotide excision repair (PG-61), postreplication repair (PG-80) and mitotic (crossover) recombination (T2). An induction of mutation and recombination are revealed due to the formation of red colonies on agar plates. The PG-61 and T2 are UV sensitive strains, while PG-80 is sensitive to ionizing radiation. Extremely high frequency electromagnetic field (EHF-EMF) was used. The irradiation was performed in floating mode and frequency changed during exposure from 57 GHz to 62 GHz. The power of irradiation was 100 mkW, and duration of exposure was 10 and 30 min. Treatment was performed at RT and then cells were stored at 28° C during 1 h without any exposure but after that they were treated with UV light (254nm) for 20 sec (strain T2) and 120 sec (strain PG-61 and PG-80). Cell viability and quantity of red colonies were determined after 5 days of cultivation on agar plates. Results: It was determined that EHF-EMF caused 10-20% decrease of viability of T2 and PG-61 strains, while UV showed twice stronger effect (30-70%). EHF-EMF pretreatment increased T2 resistance to UV, and decreased it in PG-61. The PG-80 strain was insensitive to EHF-EMF and no AR effect was determined for this strain. It was not marked any induction of red colonies formation in T2 and PG-80 strain after EHF or UV exposure. The quantity of red colonies was 2 times more in PG-61 strain after EHF-EMF treatment and at least 300 times more after UV exposure. The pretreatment of PG-61 with EHF-EMF caused at least twice increase of viability and consequent decrease of amount of red colonies. Conclusion: EHF-EMF may induce AR in yeast cells and increase their viability under UV treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saccharomyces%20cerevisiae" title="Saccharomyces cerevisiae">Saccharomyces cerevisiae</a>, <a href="https://publications.waset.org/abstracts/search?q=EHF-EMF" title=" EHF-EMF"> EHF-EMF</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20light" title=" UV light"> UV light</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptive%20response" title=" adaptive response"> adaptive response</a> </p> <a href="https://publications.waset.org/abstracts/67763/induction-of-adaptive-response-in-yeast-cells-under-influence-of-extremely-high-frequency-electromagnetic-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67763.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Intrastromal Donor Limbal Segments Implantation as a Surgical Treatment of Progressive Keratoconus: Clinical and Functional Results</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20Panes">Mikhail Panes</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Pozniak"> Sergei Pozniak</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20Pozniak"> Nikolai Pozniak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To evaluate the effectiveness of intrastromal donor limbal segments implantation for treatment of progressive keratoconus considering on main characteristics of corneal endothelial cells. Setting: Outpatient ophthalmic clinic. Methods: Twenty patients (20 eyes) with progressive keratoconus II-III of Amsler classification were recruited. The worst eye was treated with the transplantation of donor limbal segments in the recipient corneal stroma, while the fellow eye was left untreated as a control of functional and morphological changes. Furthermore, twenty patients (20 eyes) without progressive keratoconus was used as a control of corneal endothelial cells changes. All patients underwent a complete ocular examination including uncorrected and corrected distance visual acuity (UDVA, CDVA), slit lamp examination fundus examination, corneal topography and pachymetry, auto-keratometry, Anterior Segment Optical Coherence Tomography and Corneal Endothelial Specular Microscopy. Results: After two years, statistically significant improvement in the UDVA and CDVA (on the average on two lines for UDVA and three-four lines for CDVA) were noted. Besides corneal astigmatism decreased from 5.82 ± 2.64 to 1.92 ± 1.4 D. Moreover there were no statistically significant differences in the changes of mean spherical equivalent, keratometry and pachymetry indicators. It should be noted that after two years there were no significant differences in the changes of the number and form of corneal endothelial cells. It can be regarded as a process stabilization. In untreated control eyes, there was a general trend towards worsening of UDVA, CDVA and corneal thickness, while corneal astigmatism was increased. Conclusion: Intrastromal donor segments implantation is a safe technique for keratoconus treatment. Intrastromal donor segments implantation is an efficient procedure to stabilize and improve progressive keratoconus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corneal%20endothelial%20cells" title="corneal endothelial cells">corneal endothelial cells</a>, <a href="https://publications.waset.org/abstracts/search?q=intrastromal%20donor%20limbal%20segments" title=" intrastromal donor limbal segments"> intrastromal donor limbal segments</a>, <a href="https://publications.waset.org/abstracts/search?q=progressive%20keratoconus" title=" progressive keratoconus"> progressive keratoconus</a>, <a href="https://publications.waset.org/abstracts/search?q=surgical%20treatment%20of%20keratoconus" title=" surgical treatment of keratoconus"> surgical treatment of keratoconus</a> </p> <a href="https://publications.waset.org/abstracts/50386/intrastromal-donor-limbal-segments-implantation-as-a-surgical-treatment-of-progressive-keratoconus-clinical-and-functional-results" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50386.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Temperature Dependence of the Optoelectronic Properties of InAs(Sb)-Based LED Heterostructures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Antonina%20Semakova">Antonina Semakova</a>, <a href="https://publications.waset.org/abstracts/search?q=Karim%20Mynbaev"> Karim Mynbaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20Bazhenov"> Nikolai Bazhenov</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%20Chernyaev"> Anton Chernyaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Kizhaev"> Sergei Kizhaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolai%20Stoyanov"> Nikolai Stoyanov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, heterostructures are used for fabrication of almost all types of optoelectronic devices. Our research focuses on the optoelectronic properties of InAs(Sb) solid solutions that are widely used in fabrication of light emitting diodes (LEDs) operating in middle wavelength infrared range (MWIR). This spectral range (2-6 μm) is relevant for laser diode spectroscopy of gases and molecules, for systems for the detection of explosive substances, medical applications, and for environmental monitoring. The fabrication of MWIR LEDs that operate efficiently at room temperature is mainly hindered by the predominance of non-radiative Auger recombination of charge carriers over the process of radiative recombination, which makes practical application of LEDs difficult. However, non-radiative recombination can be partly suppressed in quantum-well structures. In this regard, studies of such structures are quite topical. In this work, electroluminescence (EL) of LED heterostructures based on InAs(Sb) epitaxial films with the molar fraction of InSb ranging from 0 to 0.09 and multi quantum-well (MQW) structures was studied in the temperature range 4.2-300 K. The growth of the heterostructures was performed by metal-organic chemical vapour deposition on InAs substrates. On top of the active layer, a wide-bandgap InAsSb(Ga,P) barrier was formed. At low temperatures (4.2-100 K) stimulated emission was observed. As the temperature increased, the emission became spontaneous. The transition from stimulated emission to spontaneous one occurred at different temperatures for structures with different InSb contents in the active region. The temperature-dependent carrier lifetime, limited by radiative recombination and the most probable Auger processes (for the materials under consideration, CHHS and CHCC), were calculated within the framework of the Kane model. The effect of various recombination processes on the carrier lifetime was studied, and the dominant role of Auger processes was established. For MQW structures quantization energies for electrons, light and heavy holes were calculated. A characteristic feature of the experimental EL spectra of these structures was the presence of peaks with energy different from that of calculated optical transitions between the first quantization levels for electrons and heavy holes. The obtained results showed strong effect of the specific electronic structure of InAsSb on the energy and intensity of optical transitions in nanostructures based on this material. For the structure with MQWs in the active layer, a very weak temperature dependence of EL peak was observed at high temperatures (>150 K), which makes it attractive for fabricating temperature-resistant gas sensors operating in the middle-infrared range. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Electroluminescence" title="Electroluminescence">Electroluminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=InAsSb" title=" InAsSb"> InAsSb</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20emitting%20diode" title=" light emitting diode"> light emitting diode</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20wells" title=" quantum wells"> quantum wells</a> </p> <a href="https://publications.waset.org/abstracts/122314/temperature-dependence-of-the-optoelectronic-properties-of-inassb-based-led-heterostructures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/122314.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Integrative-Cyclical Approach to the Study of Quality Control of Resource Saving by the Use of Innovation Factors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anatoliy%20A.%20Alabugin">Anatoliy A. Alabugin</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20K.%20Topuzov"> Nikolay K. Topuzov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20V.%20Aliukov"> Sergei V. Aliukov </a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known, that while we do a quantitative evaluation of the quality control of some economic processes (in particular, resource saving) with help innovation factors, there are three groups of problems: high uncertainty of indicators of the quality management, their considerable ambiguity, and high costs to provide a large-scale research. These problems are defined by the use of contradictory objectives of enhancing of the quality control in accordance with innovation factors and preservation of economic stability of the enterprise. The most acutely, such factors are felt in the countries lagging behind developed economies of the world according to criteria of innovativeness and effectiveness of management of the resource saving. In our opinion, the following two methods for reconciling of the above-mentioned objectives and reducing of conflictness of the problems are to solve this task most effectively: 1) the use of paradigms and concepts of evolutionary improvement of quality of resource-saving management in the cycle "from the project of an innovative product (technology) - to its commercialization and update parameters of customer value"; 2) the application of the so-called integrative-cyclical approach which consistent with complexity and type of the concept, to studies allowing to get quantitative assessment of the stages of achieving of the consistency of these objectives (from baseline of imbalance, their compromise to achievement of positive synergies). For implementation, the following mathematical tools are included in the integrative-cyclical approach: index-factor analysis (to identify the most relevant factors); regression analysis of relationship between the quality control and the factors; the use of results of the analysis in the model of fuzzy sets (to adjust the feature space); method of non-parametric statistics (for a decision on the completion or repetition of the cycle in the approach in depending on the focus and the closeness of the connection of indicator ranks of disbalance of purposes). The repetition is performed after partial substitution of technical and technological factors ("hard") by management factors ("soft") in accordance with our proposed methodology. Testing of the proposed approach has shown that in comparison with the world practice there are opportunities to improve the quality of resource-saving management using innovation factors. We believe that the implementation of this promising research, to provide consistent management decisions for reducing the severity of the above-mentioned contradictions and increasing the validity of the choice of resource-development strategies in terms of parameters of quality management and sustainability of enterprise, is perspective. Our existing experience in the field of quality resource-saving management and the achieved level of scientific competence of the authors allow us to hope that the use of the integrative-cyclical approach to the study and evaluation of the resulting and factor indicators will help raise the level of resource-saving characteristics up to the value existing in the developed economies of post-industrial type. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=integrative-cyclical%20approach" title="integrative-cyclical approach">integrative-cyclical approach</a>, <a href="https://publications.waset.org/abstracts/search?q=quality%20control" title=" quality control"> quality control</a>, <a href="https://publications.waset.org/abstracts/search?q=evaluation" title=" evaluation"> evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20factors.%20economic%20sustainability" title=" innovation factors. economic sustainability"> innovation factors. economic sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=innovation%20cycle%20of%20management" title=" innovation cycle of management"> innovation cycle of management</a>, <a href="https://publications.waset.org/abstracts/search?q=disbalance%20of%20goals%20of%20development" title=" disbalance of goals of development"> disbalance of goals of development</a> </p> <a href="https://publications.waset.org/abstracts/14972/integrative-cyclical-approach-to-the-study-of-quality-control-of-resource-saving-by-the-use-of-innovation-factors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Concentration of Droplets in a Transient Gas Flow</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Timur%20S.%20Zaripov">Timur S. Zaripov</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20K.%20Gilfanov"> Artur K. Gilfanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20S.%20Sazhin"> Sergei S. Sazhin</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20M.%20Begg"> Steven M. Begg</a>, <a href="https://publications.waset.org/abstracts/search?q=Morgan%20R.%20Heikal"> Morgan R. Heikal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The calculation of the concentration of inertial droplets in complex flows is encountered in the modelling of numerous engineering and environmental phenomena; for example, fuel droplets in internal combustion engines and airborne pollutant particles. The results of recent research, focused on the development of methods for calculating concentration and their implementation in the commercial CFD code, ANSYS Fluent, is presented here. The study is motivated by the investigation of the mixture preparation processes in internal combustion engines with direct injection of fuel sprays. Two methods are used in our analysis; the Fully Lagrangian method (also known as the Osiptsov method) and the Eulerian approach. The Osiptsov method predicts droplet concentrations along path lines by solving the equations for the components of the Jacobian of the Eulerian-Lagrangian transformation. This method significantly decreases the computational requirements as it does not require counting of large numbers of tracked droplets as in the case of the conventional Lagrangian approach. In the Eulerian approach the average droplet velocity is expressed as a function of the carrier phase velocity as an expansion over the droplet response time and transport equation can be solved in the Eulerian form. The advantage of the method is that droplet velocity can be found without solving additional partial differential equations for the droplet velocity field. The predictions from the two approaches were compared in the analysis of the problem of a dilute gas-droplet flow around an infinitely long, circular cylinder. The concentrations of inertial droplets, with Stokes numbers of 0.05, 0.1, 0.2, in steady-state and transient laminar flow conditions, were determined at various Reynolds numbers. In the steady-state case, flows with Reynolds numbers of 1, 10, and 100 were investigated. It has been shown that the results predicted using both methods are almost identical at small Reynolds and Stokes numbers. For larger values of these numbers (Stokes — 0.1, 0.2; Reynolds — 10, 100) the Eulerian approach predicted a wider spread in concentration in the perturbations caused by the cylinder that can be attributed to the averaged droplet velocity field. The transient droplet flow case was investigated for a Reynolds number of 200. Both methods predicted a high droplet concentration in the zones of high strain rate and low concentrations in zones of high vorticity. The maxima of droplet concentration predicted by the Osiptsov method was up to two orders of magnitude greater than that predicted by the Eulerian method; a significant variation for an approach widely used in engineering applications. Based on the results of these comparisons, the Osiptsov method has resulted in a more precise description of the local properties of the inertial droplet flow. The method has been applied to the analysis of the results of experimental observations of a liquid gasoline spray at representative fuel injection pressure conditions. The preliminary results show good qualitative agreement between the predictions of the model and experimental data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20combustion%20engines" title="internal combustion engines">internal combustion engines</a>, <a href="https://publications.waset.org/abstracts/search?q=Eulerian%20approach" title=" Eulerian approach"> Eulerian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=fully%20Lagrangian%20approach" title=" fully Lagrangian approach"> fully Lagrangian approach</a>, <a href="https://publications.waset.org/abstracts/search?q=gasoline%20fuel%20sprays" title=" gasoline fuel sprays"> gasoline fuel sprays</a>, <a href="https://publications.waset.org/abstracts/search?q=droplets%20and%20particle%20concentrations" title=" droplets and particle concentrations"> droplets and particle concentrations</a> </p> <a href="https://publications.waset.org/abstracts/40358/concentration-of-droplets-in-a-transient-gas-flow" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40358.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Multiaxial Stress Based High Cycle Fatigue Model for Adhesive Joint Interfaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Alexander%20Eder">Martin Alexander Eder</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergei%20Semenov"> Sergei Semenov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Many glass-epoxy composite structures, such as large utility wind turbine rotor blades (WTBs), comprise of adhesive joints with typically thick bond lines used to connect the different components during assembly. Performance optimization of rotor blades to increase power output by simultaneously maintaining high stiffness-to-low-mass ratios entails intricate geometries in conjunction with complex anisotropic material behavior. Consequently, adhesive joints in WTBs are subject to multiaxial stress states with significant stress gradients depending on the local joint geometry. Moreover, the dynamic aero-elastic interaction of the WTB with the airflow generates non-proportional, variable amplitude stress histories in the material. Empiricism shows that a prominent failure type in WTBs is high cycle fatigue failure of adhesive bond line interfaces, which in fact over time developed into a design driver as WTB sizes increase rapidly. Structural optimization employed at an early design stage, therefore, sets high demands on computationally efficient interface fatigue models capable of predicting the critical locations prone for interface failure. The numerical stress-based interface fatigue model presented in this work uses the Drucker-Prager criterion to compute three different damage indices corresponding to the two interface shear tractions and the outward normal traction. The two-parameter Drucker-Prager model was chosen because of its ability to consider shear strength enhancement under compression and shear strength reduction under tension. The governing interface damage index is taken as the maximum of the triple. The damage indices are computed through the well-known linear Palmgren-Miner rule after separate rain flow-counting of the equivalent shear stress history and the equivalent pure normal stress history. The equivalent stress signals are obtained by self-similar scaling of the Drucker-Prager surface whose shape is defined by the uniaxial tensile strength and the shear strength such that it intersects with the stress point at every time step. This approach implicitly assumes that the damage caused by the prevailing multiaxial stress state is the same as the damage caused by an amplified equivalent uniaxial stress state in the three interface directions. The model was implemented as Python plug-in for the commercially available finite element code Abaqus for its use with solid elements. The model was used to predict the interface damage of an adhesively bonded, tapered glass-epoxy composite cantilever I-beam tested by LM Wind Power under constant amplitude compression-compression tip load in the high cycle fatigue regime. Results show that the model was able to predict the location of debonding in the adhesive interface between the webfoot and the cap. Moreover, with a set of two different constant life diagrams namely in shear and tension, it was possible to predict both the fatigue lifetime and the failure mode of the sub-component with reasonable accuracy. It can be concluded that the fidelity, robustness and computational efficiency of the proposed model make it especially suitable for rapid fatigue damage screening of large 3D finite element models subject to complex dynamic load histories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adhesive" title="adhesive">adhesive</a>, <a href="https://publications.waset.org/abstracts/search?q=fatigue" title=" fatigue"> fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=interface" title=" interface"> interface</a>, <a href="https://publications.waset.org/abstracts/search?q=multiaxial%20stress" title=" multiaxial stress"> multiaxial stress</a> </p> <a href="https://publications.waset.org/abstracts/100342/multiaxial-stress-based-high-cycle-fatigue-model-for-adhesive-joint-interfaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>