CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 206 results for author: <span class="mathjax">Das, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/hep-ph" aria-role="search"> Searching in archive <strong>hep-ph</strong>. <a href="/search/?searchtype=author&amp;query=Das%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Das, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Das%2C+A&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Das, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.21956">arXiv:2410.21956</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.21956">pdf</a>, <a href="https://arxiv.org/format/2410.21956">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Testing tree level TeV scale tyep-I and type-II seesaw scenarios in $渭$TRISTAN </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+J">Jinmian Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nomura%2C+T">Takaaki Nomura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+R">Rao Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.21956v1-abstract-short" style="display: inline;"> We investigate TeV scale type-I and type-II seesaw scenarios at the tree level at the $渭^+ e^-$ and $渭^+ 渭^+$ colliders in the $渭$TRISTAN experiment. In minimal type-I seesaw scenario we consider two generations of Standard Model (SM) singlet heavy Majorana type Right Handed Neutrinos (RHNs) which couples with SM gauge boson through light-heavy neutrino mixing. We consider a minimal scenario where&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21956v1-abstract-full').style.display = 'inline'; document.getElementById('2410.21956v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.21956v1-abstract-full" style="display: none;"> We investigate TeV scale type-I and type-II seesaw scenarios at the tree level at the $渭^+ e^-$ and $渭^+ 渭^+$ colliders in the $渭$TRISTAN experiment. In minimal type-I seesaw scenario we consider two generations of Standard Model (SM) singlet heavy Majorana type Right Handed Neutrinos (RHNs) which couples with SM gauge boson through light-heavy neutrino mixing. We consider a minimal scenario where one (other) generation of the RHN dominantly couples with electron (muon). Generating events for the signal and generic SM backgrounds for the final states $e^- 谓jj$ and $渭^+ 谓jj$ from $渭^+ e^-$ collision at $\sqrt{s}=346$ GeV and 1 ab$^{-1}$ luminosity, we estimate limits on the light-heavy neutrino mixing angles with respect to heavy neutrino mass for two generations of the heavy neutrinos. Comparing with the existing limits we find such limits could be two orders of magnitude stronger than electroweak precision data. Further, we study the effect of doubly charged scalar boson $(H^{++})$ from the type-II seesaw scenario in $渭^+ 渭^+$ collision at $\sqrt{s}=2$ TeV. In this case we consider $渭^+ 渭^+ \to \ell_i^+ \ell_j^+$ and $渭^+ 渭^+ \to H^{++} Z/ 纬$ processes followed by the same sign dilepton decay of $H^{++}$. We find that events involving $e^+ e^+$ among these final states could provide significant difference between the normal and inverted orderings of the neutrino mass which could be probed in $渭$TRISTAN collider at 5$蟽$ significance in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.21956v1-abstract-full').style.display = 'none'; document.getElementById('2410.21956v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 11 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.04141">arXiv:2410.04141</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.04141">pdf</a>, <a href="https://arxiv.org/ps/2410.04141">ps</a>, <a href="https://arxiv.org/format/2410.04141">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> Kubo formula for spin hydrodynamics: spin chemical potential as leading order in gradient expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Dey%2C+S">Sourav Dey</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.04141v1-abstract-short" style="display: inline;"> We present a first-order dissipative spin hydrodynamic framework, where the spin chemical potential $蠅^{渭谓}$ is treated as the leading term in the hydrodynamic gradient expansion, i.e., $蠅^{渭谓}\sim \mathcal{O}(1)$. We argue that for the consistency of the theoretical framework, the energy-momentum tensor needs to be symmetric at least up to order $\mathcal{O}(\partial)$. We consider the phenomenol&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04141v1-abstract-full').style.display = 'inline'; document.getElementById('2410.04141v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.04141v1-abstract-full" style="display: none;"> We present a first-order dissipative spin hydrodynamic framework, where the spin chemical potential $蠅^{渭谓}$ is treated as the leading term in the hydrodynamic gradient expansion, i.e., $蠅^{渭谓}\sim \mathcal{O}(1)$. We argue that for the consistency of the theoretical framework, the energy-momentum tensor needs to be symmetric at least up to order $\mathcal{O}(\partial)$. We consider the phenomenological form of the spin tensor, where it is anti-symmetric in the last two indices only. A comprehensive analysis of spin hydrodynamics is conducted using both macroscopic entropy current analysis and microscopic Kubo formalism, establishing consistency between the two approaches. A key finding is the entropy production resulting from spin-orbit coupling, which alters the traditional equivalence between the Landau and Eckart fluid frames. Additionally, we identify cross-diffusion effects, where vector dissipative currents are influenced by gradients of both spin chemical potential and chemical potential corresponding to the conserved charge through off-diagonal transport coefficients. Two distinct methods for decomposing the spin tensor are proposed, and their equivalence is demonstrated through Kubo relations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.04141v1-abstract-full').style.display = 'none'; document.getElementById('2410.04141v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, No figures, Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.09489">arXiv:2409.09489</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.09489">pdf</a>, <a href="https://arxiv.org/ps/2409.09489">ps</a>, <a href="https://arxiv.org/format/2409.09489">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> </div> </div> <p class="title is-5 mathjax"> $n-\overline{n}$ Oscillation in $S^1/Z_2\times Z_2&#39;$ Orbifold $SU(5)$ GUT </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Ankit Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Duary%2C+S">Sarthak Duary</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sarkar%2C+U">Utpal Sarkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.09489v1-abstract-short" style="display: inline;"> We explore the possibility of $B$ and $B-L$ violating processes, specifically proton decay and neutron-antineutron oscillation, using explicit realization of operators in the $SU(5)$ grand unified theory with an $S^1/Z_2 \times Z_2&#39;$ orbifold space. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.09489v1-abstract-full" style="display: none;"> We explore the possibility of $B$ and $B-L$ violating processes, specifically proton decay and neutron-antineutron oscillation, using explicit realization of operators in the $SU(5)$ grand unified theory with an $S^1/Z_2 \times Z_2&#39;$ orbifold space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.09489v1-abstract-full').style.display = 'none'; document.getElementById('2409.09489v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03780">arXiv:2408.03780</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03780">pdf</a>, <a href="https://arxiv.org/format/2408.03780">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Feasibility of dark matter admixed neutron star based on recent observational constraints </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Thakur%2C+P">Prashant Thakur</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Malik%2C+T">Tuhin Malik</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jha%2C+T+K">T. K. Jha</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sharma%2C+B+K">B. K. Sharma</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Provid%C3%AAncia%2C+C">Constan莽a Provid锚ncia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03780v1-abstract-short" style="display: inline;"> The equation of state (EOS) for neutron stars is modeled using the Relativistic Mean Field (RMF) approach with a mesonic nonlinear (NL) interaction, a modified sigma cut potential (NL-$蟽$ cut), and the influences of dark matter in the NL (NL DM). Using a Bayesian analysis framework, we evaluate the plausibility and impact of each scenario. Experimental constraints on the general properties of fini&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03780v1-abstract-full').style.display = 'inline'; document.getElementById('2408.03780v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03780v1-abstract-full" style="display: none;"> The equation of state (EOS) for neutron stars is modeled using the Relativistic Mean Field (RMF) approach with a mesonic nonlinear (NL) interaction, a modified sigma cut potential (NL-$蟽$ cut), and the influences of dark matter in the NL (NL DM). Using a Bayesian analysis framework, we evaluate the plausibility and impact of each scenario. Experimental constraints on the general properties of finite nuclei and heavy ion collisions, along with astrophysical observational data on neutron star radii and tidal deformation, have been taken into account. It was shown that all models, including the PREX-II data, were less favored, indicating that this experimental data seemed to be in tension with the other constraints included in the inference procedure, and were incompatible with chiral effective field theoretical calculations of pure neutron matter. Considering the models with no PREX-II constraints, we find the model NL-$蟽$ cut with the largest Bayes evidence, indicating that the constraints considered favor the stiffening of the EOS at large densities. Conversely, the neutron star with a dark matter component is the least favorable case in light of recent observational constraints, among different scenarios considered here. The $f$ and $p$ modes were calculated within the Cowling approximation, and it can be seen that $f$ modes are sensitive to the EOS. An analysis of the slopes of the mass-radius curves and $f$-mode mass curves has indicated that these quantities may help distinguish the different scenarios.We also analyzed the impact of new PSR J0437-4715 measurements on neutron star mass-radius estimates, noting a $\sim$ 0.2 km reduction in the 90\% CI upper boundary across all models and a significant Bayes evidence decrease, indicating potential conflicts with previous data or the necessity for more adaptable models. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03780v1-abstract-full').style.display = 'none'; document.getElementById('2408.03780v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages, 10 figures and 6 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.07073">arXiv:2407.07073</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.07073">pdf</a>, <a href="https://arxiv.org/ps/2407.07073">ps</a>, <a href="https://arxiv.org/format/2407.07073">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Enhanced $蠄^{\prime}$ yield and $蠄^{\prime}/(J/蠄)$ yield ratio as a possible signature of QGP formation in high multiplicity $p+p$ collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bagchi%2C+P">Partha Bagchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mishra%2C+A+P">Ananta P. Mishra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Panda%2C+A+K">Ankit Kumar Panda</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.07073v1-abstract-short" style="display: inline;"> Suppression in the yield of quarkonia (heavy quark-antiquark bound states) has been considered one of the important signatures of the formation of the thermalized deconfined partonic matter, also known as the Quark Gluon Plasma (QGP), in Relativistic Heavy Ion Collision Experiments (RHICE). Traditionally, the in-medium dissociation of quarkonium states has been presented by implicitly assuming an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07073v1-abstract-full').style.display = 'inline'; document.getElementById('2407.07073v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.07073v1-abstract-full" style="display: none;"> Suppression in the yield of quarkonia (heavy quark-antiquark bound states) has been considered one of the important signatures of the formation of the thermalized deconfined partonic matter, also known as the Quark Gluon Plasma (QGP), in Relativistic Heavy Ion Collision Experiments (RHICE). Traditionally, the in-medium dissociation of quarkonium states has been presented by implicitly assuming an adiabatic approximation, which considers that the heavy quark Hamiltonian changes slowly over time owing to change in the medium. However, in high multiplicity smaller systems, such as in $p+p$ collisions, the early development of transverse flow resulting from the finite transverse size of the locally thermalized medium may cause the quarkonium states to undergo a non-adiabatic evolution. It has been argued that in the presence of such a non-adiabatic evolution, the suppression of heavy quark-antiquark bound state yields may not reliably indicate QGP formation~\cite{Bagchi:2023vfv}. We propose that, rather than concentrating on the suppression of $J/蠄$ yields, the enhancement in the yield ratio of $蠄^{\prime}$ to $J/蠄$ (i.e., $蠄^{\prime} / (J/蠄)$), along with an increase in $蠄^{\prime}$ yield, should be considered as a probe of QGP formation for small systems. Our findings, based on realistic modeling of the time evolution of small systems, suggest that the yield ratio $蠄^{\prime} / (J/蠄)$ and the yield of $蠄^{\prime}$ increase as a function of hydrodynamization temperature incorporating the non-adiabatic transitions in high multiplicity $p+p$ collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.07073v1-abstract-full').style.display = 'none'; document.getElementById('2407.07073v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05644">arXiv:2407.05644</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05644">pdf</a>, <a href="https://arxiv.org/format/2407.05644">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Resonant leptogenesis in minimal $U(1)_X$ extensions of the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Orikasa%2C+Y">Yuta Orikasa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05644v1-abstract-short" style="display: inline;"> We investigate a general $U(1)_X$ scenario where we introduce three generations of Standard Model (SM) singlet Right Handed Neutrinos (RHNs) to generate the light neutrino mass through the seesaw mechanism after the breaking of $U(1)_X$ and electroweak symmetries. In addition to that, a general $U(1)_X$ scenario involves an SM-singlet scalar field and due to the $U(1)_X$ symmetry breaking the mass&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05644v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05644v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05644v1-abstract-full" style="display: none;"> We investigate a general $U(1)_X$ scenario where we introduce three generations of Standard Model (SM) singlet Right Handed Neutrinos (RHNs) to generate the light neutrino mass through the seesaw mechanism after the breaking of $U(1)_X$ and electroweak symmetries. In addition to that, a general $U(1)_X$ scenario involves an SM-singlet scalar field and due to the $U(1)_X$ symmetry breaking the mass of a neutral beyond the SM (BSM) gauge boson $Z^\prime$ is evolved. The RHNs, being charged under $U(1)_X$ scenario, can explain the origin of observed baryon asymmetry through the resonant leptogenesis process. Applying observed neutrino oscillation data we study $Z^\prime$ and BSM scalar induced processes to reproduce the observed baryon asymmetry. Hence we estimate bounds on the $U(1)_X$ gauge coupling $(g_X)$ and the mass of the $Z^\prime$ $(M_{Z^\prime})$ for different $U(1)_X$ charges and benchmark masses of RHN and SM-singlet scalar. Finally we compare our results with limits obtained from the existing limits from LEP-II and LHC. We find that depending on the $U(1)_X$ charges, the masses of RHNs and SM-singlet scalar resonant leptogenesis could provide stronger limit on $g_X$ for $M_{Z^\prime} &gt; 5.8$ TeV which could be probed by high energy scattering experiment in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05644v1-abstract-full').style.display = 'none'; document.getElementById('2407.05644v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, two figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00969">arXiv:2407.00969</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00969">pdf</a>, <a href="https://arxiv.org/format/2407.00969">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Dark matter-electron scattering and freeze-in scenarios in the light of $Z^\prime$ mediation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Barman%2C+B">Basabendu Barman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00969v2-abstract-short" style="display: inline;"> We investigate dark matter (DM)-electron scattering in a minimal $U(1)_X$ extension of the Standard Model (SM), where the DM can appear as a Majorana fermion, a complex singlet scalar or a Dirac fermion. To study bounds on the $U(1)_X$ gauge coupling $(g_X)$ and new gauge boson mass $(M_{Z^\prime})$, from DM-electron scattering, we consider several direct search experiments like CDMS, DAMIC, SENSE&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00969v2-abstract-full').style.display = 'inline'; document.getElementById('2407.00969v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00969v2-abstract-full" style="display: none;"> We investigate dark matter (DM)-electron scattering in a minimal $U(1)_X$ extension of the Standard Model (SM), where the DM can appear as a Majorana fermion, a complex singlet scalar or a Dirac fermion. To study bounds on the $U(1)_X$ gauge coupling $(g_X)$ and new gauge boson mass $(M_{Z^\prime})$, from DM-electron scattering, we consider several direct search experiments like CDMS, DAMIC, SENSEI, PandaX-II, DarkSide-50 and XENON1T-S2 for different $U(1)_X$ charges. In this set-up we consider DM production via freeze-in both in radiation dominated and modified cosmological background to project sensitivities on $g_X-M_{Z^\prime}$ plane satisfying observed relic abundance. DM-electron scattering could provide comparable, or even stronger bounds than those obtained from the electron/ muon $(g-2)$, low energy scattering and intensity frontier experiments within 0.01 GeV $\lesssim M_{Z^\prime} \lesssim$ 0.1 GeV. Constrains from freeze-in could provide stronger sensitivities for $M_{Z^\prime}\gtrsim \mathcal{O}(1)$ GeV, however, these limits are comparable to those obtained from LHCb, LEP experiments for $\mathcal{O}(10)$ GeV $\lesssim M_{Z^\prime} \lesssim 150$ GeV. In future, electron-muon scattering (MUonE), proton (FASER, DUNE) and electron/positron (ILC) beam dump experiments could probe these parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00969v2-abstract-full').style.display = 'none'; document.getElementById('2407.00969v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 6 figures, version accepted for publication in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11820">arXiv:2405.11820</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.11820">pdf</a>, <a href="https://arxiv.org/format/2405.11820">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Testing neutrino mass hierarchy under type-II seesaw scenario in $U(1)_X$ from colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+P">Puja Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Okada%2C+N">Nobuchika Okada</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11820v2-abstract-short" style="display: inline;"> The origin of tiny neutrino mass is a long standing unsolved puzzle of the Standard Model (SM), which allows us to consider scenarios beyond the Standard Model (BSM) in a variety of ways. One of them being a gauge extension of the SM may be realized as in the form of an anomaly free, general $U(1)_X$ extension of the SM, where an $SU(2)_L$ triplet scalar with a $U(1)_X$ charge is introduced to hav&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11820v2-abstract-full').style.display = 'inline'; document.getElementById('2405.11820v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11820v2-abstract-full" style="display: none;"> The origin of tiny neutrino mass is a long standing unsolved puzzle of the Standard Model (SM), which allows us to consider scenarios beyond the Standard Model (BSM) in a variety of ways. One of them being a gauge extension of the SM may be realized as in the form of an anomaly free, general $U(1)_X$ extension of the SM, where an $SU(2)_L$ triplet scalar with a $U(1)_X$ charge is introduced to have Dirac Yukawa couplings with the SM lepton doublets. Once the triplet scalar developes a Vacuum Expectation Value (VEV), light neutrinos acquire their tiny Majorana masses. Hence, the decay modes of the triplet scalar has a direct connection to the neutrino oscillation data for different neutrino mass hierarchies. After the breaking of the $U(1)_X$ gauge symmetry, a neutral $U(1)_X$ gauge boson $(Z^\prime)$ acquires mass, which interacts differently with the left and right handed SM fermions. Satisfying the recent LHC bounds on the triplet scalar and $Z^\prime$ boson productions, we study the pair production of the triplet scalar at LHC, 100 TeV proton proton collider FCC, $e^-e^+$ and $渭^-渭^+$ colliders followed by its decay into dominant dilepton modes whose flavor structure depend on the neutrino mass hierarchy. Generating the SM backgrounds, we study the possible signal significance of four lepton final states from the triplet scalar pair production. We also compare our results with the purely SM gauge mediated triplet scalar pair production followed by four lepton final states, which could be significant only in $渭^- 渭^+$ collider. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11820v2-abstract-full').style.display = 'none'; document.getElementById('2405.11820v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 7 figures, extended analysis and muon collider corrected</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.09332">arXiv:2405.09332</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.09332">pdf</a>, <a href="https://arxiv.org/format/2405.09332">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad5a04">10.3847/1538-4357/ad5a04 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Revealing the Production Mechanism of High-Energy Neutrinos from NGC 1068 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Abhishek Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Zhang%2C+B+T">B. Theodore Zhang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Murase%2C+K">Kohta Murase</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.09332v2-abstract-short" style="display: inline;"> The detection of high-energy neutrino signals from the nearby Seyfert galaxy NGC 1068 provides us with an opportunity to study nonthermal processes near the center of supermassive black holes. Using the IceCube and latest Fermi-LAT data, we present general multimessenger constraints on the energetics of cosmic rays and the size of neutrino emission regions. In the photohadronic scenario, the requi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09332v2-abstract-full').style.display = 'inline'; document.getElementById('2405.09332v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.09332v2-abstract-full" style="display: none;"> The detection of high-energy neutrino signals from the nearby Seyfert galaxy NGC 1068 provides us with an opportunity to study nonthermal processes near the center of supermassive black holes. Using the IceCube and latest Fermi-LAT data, we present general multimessenger constraints on the energetics of cosmic rays and the size of neutrino emission regions. In the photohadronic scenario, the required cosmic-ray luminosity should be larger than about 1-10 percent of the Eddington luminosity, and the emission radius should be less than about 15 Schwarzschild radii in low-beta plasma and less than about 3 Schwarzschild radii in high-beta plasma. The leptonic scenario overshoots the NuSTAR or Fermi-LAT data for any emission radii we consider, and the required gamma-ray luminosity is much larger than the Eddington luminosity. The beta decay scenario also violates not only the energetics requirement but also gamma-ray constraints especially when the Bethe-Heitler and photomeson production processes are consistently considered. Our results rule out the leptonic and beta decay scenarios in a nearly model-independent manner, and support hadronic mechanisms in magnetically-powered coronae if NGC 1068 is a source of high-energy neutrinos. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.09332v2-abstract-full').style.display = 'none'; document.getElementById('2405.09332v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 7 figures, accepted for publication in ApJ, minor changes</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophys.J. 972 (2024) 44 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.00112">arXiv:2405.00112</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.00112">pdf</a>, <a href="https://arxiv.org/format/2405.00112">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Transmon Qubit Constraints on Dark Matter-Nucleon Scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Anirban Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kurinsky%2C+N">Noah Kurinsky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leane%2C+R+K">Rebecca K. Leane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.00112v2-abstract-short" style="display: inline;"> We recently pointed out that power measurements of single quasiparticle devices can be used to detect dark matter. These devices have the lowest known energy thresholds, far surpassing standard direct detection experiments, requiring energy deposition above only about an meV. We calculate dark matter induced quasiparticle densities in transmon qubits, and use the latest transmon qubit measurements&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00112v2-abstract-full').style.display = 'inline'; document.getElementById('2405.00112v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.00112v2-abstract-full" style="display: none;"> We recently pointed out that power measurements of single quasiparticle devices can be used to detect dark matter. These devices have the lowest known energy thresholds, far surpassing standard direct detection experiments, requiring energy deposition above only about an meV. We calculate dark matter induced quasiparticle densities in transmon qubits, and use the latest transmon qubit measurements that provide one of the strongest existing lab-based bounds on dark matter-nucleon scattering below about 100 MeV. We strongly constrain sub-component dark matter, using both a dark matter population thermalized in the Earth as well as the dark matter wind from the Galactic halo. We demonstrate future potential sensitivities using devices with low quasiparticle densities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.00112v2-abstract-full').style.display = 'none'; document.getElementById('2405.00112v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(v2) 11 pages, 5 figures, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SLAC-PUB-17769 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16957">arXiv:2403.16957</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.16957">pdf</a>, <a href="https://arxiv.org/format/2403.16957">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.17.2.042">10.21468/SciPostPhys.17.2.042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Hydrodynamic fluctuations and topological susceptibility in chiral magnetohydrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpit Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Iqbal%2C+N">Nabil Iqbal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Poovuttikul%2C+N">Napat Poovuttikul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16957v1-abstract-short" style="display: inline;"> Chiral magnetohydrodynamics is devoted to understanding the late-time and long-distance behavior of a system with an Adler-Bell-Jackiw anomaly at finite temperatures. The non-conservation of the axial charge is determined by the topological density $\vec{E} \cdot \vec{B}$; in a classical hydrodynamic description this decay rate can be suppressed by tuning the background magnetic field to zero. How&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16957v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16957v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16957v1-abstract-full" style="display: none;"> Chiral magnetohydrodynamics is devoted to understanding the late-time and long-distance behavior of a system with an Adler-Bell-Jackiw anomaly at finite temperatures. The non-conservation of the axial charge is determined by the topological density $\vec{E} \cdot \vec{B}$; in a classical hydrodynamic description this decay rate can be suppressed by tuning the background magnetic field to zero. However it is in principle possible for thermal fluctuations of $\vec{E} \cdot \vec{B}$ to result in a non-conservation of the charge even at vanishing $B$-field; this would invalidate the classical hydrodynamic effective theory. We investigate this by computing the real-time susceptibility of the topological density at one-loop level in magnetohydrodynamic fluctuations, relating its low-frequency limit to the decay rate of the axial charge. We find that the frequency-dependence of this susceptibility is sufficiently soft as to leave the axial decay rate unaffected, validating the classical hydrodynamic description. We show that the susceptibility contains non-analytic frequency-dependence which is universally determined by hydrodynamic data. We comment briefly on possible connections to the recent formulation of the ABJ anomaly in terms of non-invertible symmetry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16957v1-abstract-full').style.display = 'none'; document.getElementById('2403.16957v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revtex, 21+3 pages and 1 figure</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 17, 042 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.15367">arXiv:2403.15367</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2403.15367">pdf</a>, <a href="https://arxiv.org/format/2403.15367">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Energy-dependent Boosted Dark Matter from Diffuse Supernova Neutrino Background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Anirban Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Herbermann%2C+T">Tim Herbermann</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sen%2C+M">Manibrata Sen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">Volodymyr Takhistov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.15367v1-abstract-short" style="display: inline;"> Diffuse neutrinos from past supernovae in the Universe present us with a unique opportunity to test dark matter (DM) interactions. These neutrinos can scatter and boost the DM particles in the Milky Way halo to relativistic energies allowing us to detect them in terrestrial laboratories. Focusing on generic models of DM-neutrino and electron interactions, mediated by a vector or a scalar boson, we&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15367v1-abstract-full').style.display = 'inline'; document.getElementById('2403.15367v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.15367v1-abstract-full" style="display: none;"> Diffuse neutrinos from past supernovae in the Universe present us with a unique opportunity to test dark matter (DM) interactions. These neutrinos can scatter and boost the DM particles in the Milky Way halo to relativistic energies allowing us to detect them in terrestrial laboratories. Focusing on generic models of DM-neutrino and electron interactions, mediated by a vector or a scalar boson, we implement energy-dependent scattering cross-sections and perform detailed numerical analysis of DM attenuation due to electron scattering in-medium while propagating towards terrestrial experiments. We set new limits on DM-neutrino and electron interactions for DM with masses in the range $\sim (0.1, 10^4)~$MeV, using recent data from XENONnT, LUX-ZEPLIN, and PandaX-4T direct detection experiments. We demonstrate that consideration of energy-dependent cross-sections for DM interactions can significantly affect constraints previously derived under the assumption of constant cross-sections, modifying them by multiple orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.15367v1-abstract-full').style.display = 'none'; document.getElementById('2403.15367v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 7 figures, comments welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.00392">arXiv:2402.00392</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.00392">pdf</a>, <a href="https://arxiv.org/format/2402.00392">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138843">10.1016/j.physletb.2024.138843 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Enhancement of the Higgs decay into a $Z^\prime$ pair in models with $U(1)_X$ gauge symmetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=A.%2C+S+K">ShivaSankar K. A.</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yagyu%2C+K">Kei Yagyu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.00392v2-abstract-short" style="display: inline;"> We discuss the Higgs phenomenology in models with a new $U(1)_X$ gauge symmetry including the $U(1)_{B-L}$ scenario, where three right-handed neutrinos are inevitably introduced due to the gauge anomaly cancellations. We find that the decay branching ratio of the discovered Higgs boson into a pair of new massive gauge bosons ($Z&#39;$) can significantly be enhanced in the Dirac neutrino case as compar&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00392v2-abstract-full').style.display = 'inline'; document.getElementById('2402.00392v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.00392v2-abstract-full" style="display: none;"> We discuss the Higgs phenomenology in models with a new $U(1)_X$ gauge symmetry including the $U(1)_{B-L}$ scenario, where three right-handed neutrinos are inevitably introduced due to the gauge anomaly cancellations. We find that the decay branching ratio of the discovered Higgs boson into a pair of new massive gauge bosons ($Z&#39;$) can significantly be enhanced in the Dirac neutrino case as compared with the Majorana case for a fixed value of the new gauge coupling and the mass of $Z&#39;$ under constraints from current experimental data. Because of such an enhancement, the Dirac case can indirectly be discriminated from the Majorana case via the Higgs decay. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.00392v2-abstract-full').style.display = 'none'; document.getElementById('2402.00392v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures. Version accepted for publication in Phys. Lett. B</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> OU-HET-1202 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physics Letters B, Volume 855, 2024, 138843 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.00696">arXiv:2401.00696</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.00696">pdf</a>, <a href="https://arxiv.org/format/2401.00696">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138577">10.1016/j.physletb.2024.138577 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $Z^\prime$ induced forward dominant processes in $渭$TRISTAN experiment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Orikasa%2C+Y">Yuta Orikasa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.00696v2-abstract-short" style="display: inline;"> General $U(1)$ extension of the Standard Model (SM) is a well motivated beyond the Standard Model(BSM) scenario where three generations of right handed neutrinos (RHNs) are introduced to cancel gauge and mixed gauge-gravity anomalies. After the $U(1)_X$ is broken, RHNs participate in the seesaw mechanism to generate light neutrino masses satisfying neutrino oscillation data. In addition to that, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00696v2-abstract-full').style.display = 'inline'; document.getElementById('2401.00696v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.00696v2-abstract-full" style="display: none;"> General $U(1)$ extension of the Standard Model (SM) is a well motivated beyond the Standard Model(BSM) scenario where three generations of right handed neutrinos (RHNs) are introduced to cancel gauge and mixed gauge-gravity anomalies. After the $U(1)_X$ is broken, RHNs participate in the seesaw mechanism to generate light neutrino masses satisfying neutrino oscillation data. In addition to that, a neutral gauge boson $Z^\prime$ is evolved which interacts with the left and right handed fermions differently manifesting chiral nature of the model which could be probed in future collider experiments. As a result, if we consider $渭^+ e^-$ and $渭^+ 渭^+$ collisions in $渭$TRISTAN experiment $Z^\prime$ mediated $2\to2$ scattering will appear in $t-$ and $u-$channels depending on the initial and final states being accompanied by the photon and $Z$ mediated interactions. This will result well motivated resulting forward dominant scenarios giving rise to sizable left-right asymmetry. Estimating constrains on general $U(1)$ coupling from LEP-II and LHC for different $U(1)_X$ charges, we calculate differential and integrated scattering cross section and left-right asymmetry for $渭^+ e^- \to 渭^+ e^-$ and $渭^+ 渭^+ \to 渭^+ 渭^+$ processes which could be probed at $渭$TRISTAN experiment further enlightening the interaction between $Z^\prime$ and charged leptons and the $U(1)_X$ breaking scale. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.00696v2-abstract-full').style.display = 'none'; document.getElementById('2401.00696v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys.Lett.B 851 (2024) 138577 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.16509">arXiv:2312.16509</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.16509">pdf</a>, <a href="https://arxiv.org/format/2312.16509">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Novel Instabilities in Counter-Streaming Nonabelian Fluids </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=N%2C+S+B+K">Subramanya Bhat K N</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Amita Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ravishankar%2C+V">V Ravishankar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Paradkar%2C+B">Bhooshan Paradkar</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.16509v1-abstract-short" style="display: inline;"> The dynamics of strongly interacting particles are governed by Yang-Mills (Y-M) theory, which is a natural generalization of Maxwell Electrodynamics (ED). Its quantized version is known as quantum chromodynamics (QCD) and has been very well studied. Classical Y-M theory is proving to be equally interesting because of the central role it plays in describing the physics of quark-gluon plasma (QGP)-w&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16509v1-abstract-full').style.display = 'inline'; document.getElementById('2312.16509v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.16509v1-abstract-full" style="display: none;"> The dynamics of strongly interacting particles are governed by Yang-Mills (Y-M) theory, which is a natural generalization of Maxwell Electrodynamics (ED). Its quantized version is known as quantum chromodynamics (QCD) and has been very well studied. Classical Y-M theory is proving to be equally interesting because of the central role it plays in describing the physics of quark-gluon plasma (QGP)-which was prevalent in the early universe and is also produced in relativistic heavy ion collision experiments. This calls for a systematic study of classical Y-M theories. A good insight into classical Y-M dynamics would be best obtained by comparing and contrasting the Y-M results with their ED counterparts. In this article, a beginning has been made by considering streaming instabilities in Y-M fluids. We find that in addition to analogues of ED instabilities, novel nonabelian modes arise, reflecting the inherent nonabelian nature of the interaction. The new modes exhibit propagation/ growth, with growth rates that can be larger than what we find in ED. Interestingly, we also find a mode that propagates without getting affected by the medium. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.16509v1-abstract-full').style.display = 'none'; document.getElementById('2312.16509v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19pages, 11figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.09855">arXiv:2312.09855</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.09855">pdf</a>, <a href="https://arxiv.org/format/2312.09855">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.055018">10.1103/PhysRevD.109.055018 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fresh look at the LHC limits on scalar leptoquarks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bhaskar%2C+A">Arvind Bhaskar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arijit Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+T">Tanumoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mitra%2C+S">Subhadip Mitra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sharma%2C+R">Rachit Sharma</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.09855v2-abstract-short" style="display: inline;"> The scalar-leptoquark (sLQ) parameter space is well explored experimentally. The direct pair production searches at the LHC have excluded light sLQs almost model agnostically, and the high-$p_{\rm T}$ dilepton tail data have put strong bounds on the leptoquark-quark-lepton Yukawa couplings for a wide range of sLQ masses. However, these do not show the complete picture. Previously, Mandal \emph{et&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09855v2-abstract-full').style.display = 'inline'; document.getElementById('2312.09855v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.09855v2-abstract-full" style="display: none;"> The scalar-leptoquark (sLQ) parameter space is well explored experimentally. The direct pair production searches at the LHC have excluded light sLQs almost model agnostically, and the high-$p_{\rm T}$ dilepton tail data have put strong bounds on the leptoquark-quark-lepton Yukawa couplings for a wide range of sLQ masses. However, these do not show the complete picture. Previously, Mandal \emph{et al.} [Single productions of colored particles at the LHC: An example with scalar leptoquarks, \href{https://doi.org/10.1007/JHEP07(2015)028}{J. High Energy Phys. 07 (2015) 028}] showed how the dilepton-dijet data from the pair production searches could give strong limits on these couplings. This was possible by including the single-production contribution to the dilepton-dijet signal. In this paper, we take a fresh look at the LHC limits on all sLQs by following the same principle and combine all significant contributions -- from pair and single productions, $t$-channel sLQ exchange and its interference with the Standard Model background -- to the $渭渭jj$ final state and recast the limits. We notice that the sLQ exchange and its interference with the background processes play significant roles in the limits. The $渭渭jj$-recast limits are comparable to or, in some cases, significantly better than the currently known limits (from high-$p_{\rm T}$ dilepton data and direct searches), i.e., the LHC data rules out more parameter space than what is considered in the current literature. For the first time, we also show how including the QED processes can noticeably improve the sLQ mass exclusion limits from the QCD-only limits. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.09855v2-abstract-full').style.display = 'none'; document.getElementById('2312.09855v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures and 4 tables. The models are available at https://github.com/rsrchtsm/LQ_Models. Same as the journal version</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.00866">arXiv:2312.00866</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.00866">pdf</a>, <a href="https://arxiv.org/format/2312.00866">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> </div> </div> <p class="title is-5 mathjax"> Sub-MeV Dark Matter Detection with Bilayer Graphene </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Anirban Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jang%2C+J">Jiho Jang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Min%2C+H">Hongki Min</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.00866v2-abstract-short" style="display: inline;"> The light dark matter mass regime has emerged as the next frontier in the direct detection experiment due to the lack of any detection signal in the higher mass range. In this paper, we propose a new detector material, a bilayer stack of graphene to detect sub-MeV dark matter. Its voltage-tunable low energy sub-eV electronic band gap makes it an excellent choice for the detector material of a ligh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00866v2-abstract-full').style.display = 'inline'; document.getElementById('2312.00866v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.00866v2-abstract-full" style="display: none;"> The light dark matter mass regime has emerged as the next frontier in the direct detection experiment due to the lack of any detection signal in the higher mass range. In this paper, we propose a new detector material, a bilayer stack of graphene to detect sub-MeV dark matter. Its voltage-tunable low energy sub-eV electronic band gap makes it an excellent choice for the detector material of a light dark matter search experiment. We compute its dielectric function using the random phase approximation and estimate the projected sensitivity for sub-MeV dark matter-electron scattering and sub-eV dark matter absorption. We show that a bilayer graphene dark matter detector can have competitive sensitivity as other candidate target materials, like a superconductor, but with a tunable threshold energy in this mass regime. The dark matter scattering rate in bilayer graphene is also characterized by a daily modulation from the rotation of the Earth which may help us mitigate the backgrounds in a future experiment. We also outline a detector design concept and provide noise estimates that can be followed to setup an experiment in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.00866v2-abstract-full').style.display = 'none'; document.getElementById('2312.00866v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(v2) 14 pages, 7 figures, minor corrections, added experimental design section, improved text, matches published version in PRD</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13557">arXiv:2311.13557</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13557">pdf</a>, <a href="https://arxiv.org/format/2311.13557">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.064087">10.1103/PhysRevD.109.064087 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Horizon brightened accelerated radiation in the background of braneworld black holes </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Ashmita Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sen%2C+S">Soham Sen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gangopadhyay%2C+S">Sunandan Gangopadhyay</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13557v1-abstract-short" style="display: inline;"> The concept of horizon brightened acceleration radiation (HBAR) has brought to us a distinct mechanism of particle production in curved spacetime. In this manuscript we examine the HBAR phenomena for a braneworld black hole (BBH) which emerges as an effective theory in our $(3+1)$ dimensional universe due to the higher dimensional gravitational effects. Despite being somewhat similar to the Reissn&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13557v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13557v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13557v1-abstract-full" style="display: none;"> The concept of horizon brightened acceleration radiation (HBAR) has brought to us a distinct mechanism of particle production in curved spacetime. In this manuscript we examine the HBAR phenomena for a braneworld black hole (BBH) which emerges as an effective theory in our $(3+1)$ dimensional universe due to the higher dimensional gravitational effects. Despite being somewhat similar to the Reissner-Nordstr$\ddot{\rm o}$m solution in general relativity, the BBH is unique with respect to its charge term which is rather the tidal charge. In this background, we study the transition probability of the atom due to the atom-field interaction and the associated HBAR entropy. Both the quantities acquire modifications over the standard Schwarzschild results and turn out to be the function of the tidal charge. This modifications appear solely due to the bulk gravitational effects as induced on the 3-brane. Studying the Wien&#39;s displacement, we observe an important feature that the wavelengths of HBAR corresponding to the Schwarzschild and the BBH, deviate from each other depending on their masses. This deviation is found to be more pronounced for the mass values slightly greater or comparable to the Planck mass. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13557v1-abstract-full').style.display = 'none'; document.getElementById('2311.13557v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 109 (2024) 064087 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.07857">arXiv:2311.07857</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.07857">pdf</a>, <a href="https://arxiv.org/format/2311.07857">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> </div> </div> <p class="title is-5 mathjax"> Detecting Dark Matter Induced Power in Quantum Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Anirban Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kurinsky%2C+N">Noah Kurinsky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leane%2C+R+K">Rebecca K. Leane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.07857v1-abstract-short" style="display: inline;"> In the past few years, many mesoscale systems have been proposed as possible detectors of sub-GeV dark matter particles. In this work, we point out the feasibility of probing dark matter-nucleon scattering cross section using superconductor-based quantum devices with meV-scale energy threshold. We compute new limits on spin-independent dark matter scattering cross section using the existing power&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07857v1-abstract-full').style.display = 'inline'; document.getElementById('2311.07857v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.07857v1-abstract-full" style="display: none;"> In the past few years, many mesoscale systems have been proposed as possible detectors of sub-GeV dark matter particles. In this work, we point out the feasibility of probing dark matter-nucleon scattering cross section using superconductor-based quantum devices with meV-scale energy threshold. We compute new limits on spin-independent dark matter scattering cross section using the existing power measurement data from three different experiments for MeV to 10 GeV mass. We derive the limits for both halo and thermalized dark matter populations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.07857v1-abstract-full').style.display = 'none'; document.getElementById('2311.07857v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contribution to TAUP 2023, University of Vienna</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.00934">arXiv:2311.00934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.00934">pdf</a>, <a href="https://arxiv.org/format/2311.00934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138966">10.1016/j.physletb.2024.138966 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurements of charged-particle multiplicity dependence of higher-order net-proton cumulants in $p$+$p$ collisions at $\sqrt{s} =$ 200 GeV from STAR at RHIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abdulhamid%2C+M+I">M. I. Abdulhamid</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aboona%2C+B+E">B. E. Aboona</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adam%2C+J">J. Adam</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adamczyk%2C+L">L. Adamczyk</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adams%2C+J+R">J. R. Adams</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aggarwal%2C+I">I. Aggarwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aslam%2C+S">S. Aslam</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Atchison%2C+J">J. Atchison</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bairathi%2C+V">V. Bairathi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cap%2C+J+G+B">J. G. Ball Cap</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barish%2C+K">K. Barish</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhagat%2C+P">P. Bhagat</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhatta%2C+S">S. Bhatta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhosale%2C+S+R">S. R. Bhosale</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brandenburg%2C+J+D">J. D. Brandenburg</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Broodo%2C+C">C. Broodo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cai%2C+X+Z">X. Z. Cai</a> , et al. (338 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.00934v2-abstract-short" style="display: inline;"> We report on the charged-particle multiplicity dependence of net-proton cumulant ratios up to sixth order from $\sqrt{s}=200$ GeV $p$+$p$ collisions at the Relativistic Heavy Ion Collider (RHIC). The measured ratios $C_{4}/C_{2}$, $C_{5}/C_{1}$, and $C_{6}/C_{2}$ decrease with increased charged-particle multiplicity and rapidity acceptance. Neither the Skellam baselines nor PYTHIA8 calculations ac&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00934v2-abstract-full').style.display = 'inline'; document.getElementById('2311.00934v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.00934v2-abstract-full" style="display: none;"> We report on the charged-particle multiplicity dependence of net-proton cumulant ratios up to sixth order from $\sqrt{s}=200$ GeV $p$+$p$ collisions at the Relativistic Heavy Ion Collider (RHIC). The measured ratios $C_{4}/C_{2}$, $C_{5}/C_{1}$, and $C_{6}/C_{2}$ decrease with increased charged-particle multiplicity and rapidity acceptance. Neither the Skellam baselines nor PYTHIA8 calculations account for the observed multiplicity dependence. In addition, the ratios $C_{5}/C_{1}$ and $C_{6}/C_{2}$ approach negative values in the highest-multiplicity events, which implies that thermalized QCD matter may be formed in $p$+$p$ collisions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.00934v2-abstract-full').style.display = 'none'; document.getElementById('2311.00934v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 6 figures, accepted version by PLB</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.12267">arXiv:2310.12267</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.12267">pdf</a>, <a href="https://arxiv.org/ps/2310.12267">ps</a>, <a href="https://arxiv.org/format/2310.12267">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.110.014017">10.1103/PhysRevD.110.014017 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Does Quarkonia Suppression serve as a probe for the deconfinement in small systems? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bagchi%2C+P">Partha Bagchi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mishra%2C+A+P">Ananta P. Mishra</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.12267v1-abstract-short" style="display: inline;"> In high multiplicity proton-proton $(p-p)$ collisions, the formation of a deconfined state of quarks and gluons akin to Heavy Ion Collisions (HIC) has been a subject of significant interest. In proton-proton ($p-p$) collisions, the transverse size of the system is comparable to the longitudinal (Lorentz contracted) dimension, unlike the case in Nucleus-Nucleus ($A-A$) collision, leading to a hithe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12267v1-abstract-full').style.display = 'inline'; document.getElementById('2310.12267v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.12267v1-abstract-full" style="display: none;"> In high multiplicity proton-proton $(p-p)$ collisions, the formation of a deconfined state of quarks and gluons akin to Heavy Ion Collisions (HIC) has been a subject of significant interest. In proton-proton ($p-p$) collisions, the transverse size of the system is comparable to the longitudinal (Lorentz contracted) dimension, unlike the case in Nucleus-Nucleus ($A-A$) collision, leading to a hitherto unexplored effect of rapid decrease of temperature of the medium on quark-antiquark bound states. This allows us to probe a unique possibility of hadronization occurring before quarkonia dissociation within the medium. In small systems, a rapid change in temperature also introduces sudden changes in the Hamiltonian. This scenario prompts consideration of non-adiabatic evolution, challenging the traditional adiabatic framework. We demonstrate that non-adiabatic evolution may extend the longevity of quark-anti-quark bound states in $p-p$ collisions, even at higher multiplicities, offering new insights into the dynamics of strongly interacting matter produced in smaller collision systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.12267v1-abstract-full').style.display = 'none'; document.getElementById('2310.12267v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 4 figures, comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.11869">arXiv:2310.11869</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.11869">pdf</a>, <a href="https://arxiv.org/format/2310.11869">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Quark propagator and di-lepton production rate in a hot, dense and very strongly magnetized rotating Quark-Gluon Plasma </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Aritra Das</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.11869v1-abstract-short" style="display: inline;"> In this paper, a theoretical calculation of thermal di-lepton production rate (DPR) is reported from a hot and dense, unbounded rotating quark gluon plasma in the presence of very strong uniform background magnetic field typically generated at heavy-ion collision experiments. In this extreme magnetic field, the quarks as well as anti-quarks are approximated to be confined in the lowest Landau leve&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11869v1-abstract-full').style.display = 'inline'; document.getElementById('2310.11869v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.11869v1-abstract-full" style="display: none;"> In this paper, a theoretical calculation of thermal di-lepton production rate (DPR) is reported from a hot and dense, unbounded rotating quark gluon plasma in the presence of very strong uniform background magnetic field typically generated at heavy-ion collision experiments. In this extreme magnetic field, the quarks as well as anti-quarks are approximated to be confined in the lowest Landau level (LLL). Firstly, I have converted the expression of the quark propagator in LLL approximation to the momentum space representation. After that, using the derived quark propagator, the di-lepton production rate is calculated from the photon polarization tensor (PPT) with the help of the framework of thermal field theory. The system is first confined in a cylinder of radius $R_{\perp}$ and then $R_{\perp}$ is taken to be very large in order to consider the situation of unbounded system. Depending on the charge of participating quarks, the role of rotation is to alter the chemical potential. The DPR is suppressed prominently for low invariant mass with respect to the LLL-approximated non-rotating case that was reported earlier. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.11869v1-abstract-full').style.display = 'none'; document.getElementById('2310.11869v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 6 figures, 3 tables; Comments are welcome and highly appreciated</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.14438">arXiv:2309.14438</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.14438">pdf</a>, <a href="https://arxiv.org/format/2309.14438">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.21468/SciPostPhys.17.3.085">10.21468/SciPostPhys.17.3.085 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Higher-form symmetry and chiral transport in real-time Abelian lattice gauge theory </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpit Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Florio%2C+A">Adrien Florio</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Iqbal%2C+N">Nabil Iqbal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Poovuttikul%2C+N">Napat Poovuttikul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.14438v3-abstract-short" style="display: inline;"> We study classical lattice simulations of theories of electrodynamics coupled to charged matter at finite temperature, interpreting them using the higher-form symmetry formulation of magnetohydrodynamics (MHD). We compute transport coefficients using classical Kubo formulas on the lattice and show that the properties of the simulated plasma are in complete agreement with the predictions from effec&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14438v3-abstract-full').style.display = 'inline'; document.getElementById('2309.14438v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.14438v3-abstract-full" style="display: none;"> We study classical lattice simulations of theories of electrodynamics coupled to charged matter at finite temperature, interpreting them using the higher-form symmetry formulation of magnetohydrodynamics (MHD). We compute transport coefficients using classical Kubo formulas on the lattice and show that the properties of the simulated plasma are in complete agreement with the predictions from effective field theories. In particular, the higher-form formulation allows us to understand from hydrodynamic considerations the relaxation rate of axial charge in the chiral plasma observed in previous simulations. A key point is that the resistivity of the plasma -- defined in terms of Kubo formulas for the electric field in the 1-form formulation of MHD -- remains a well-defined and predictive quantity at strong electromagnetic coupling. However, the Kubo formulas used to define the conventional conductivity vanish at low frequencies due to electrodynamic fluctuations, and thus the concept of the conductivity of a gauged electric current must be interpreted with care. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.14438v3-abstract-full').style.display = 'none'; document.getElementById('2309.14438v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages + appendix, 9 figures. Clarifications added. Comments are welcomed. Version published in SciPost</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> SciPost Phys. 17, 085 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.14483">arXiv:2308.14483</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.14483">pdf</a>, <a href="https://arxiv.org/format/2308.14483">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-024-13530-x">10.1140/epjc/s10052-024-13530-x <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing chiral and flavored $Z^\prime$ from cosmic bursts through neutrino interactions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=A.%2C+S+K">ShivaSankar K. A.</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lambiase%2C+G">Gaetano Lambiase</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nomura%2C+T">Takaaki Nomura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Orikasa%2C+Y">Yuta Orikasa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.14483v2-abstract-short" style="display: inline;"> The origin of tiny neutrino mass is an unsolved puzzle leading to a variety of phenomenological aspects beyond the Standard Model (BSM). We consider $U(1)$ gauge extension of the Standard Model (SM) where so-called seesaw mechanism is incarnated with the help of thee generations of Majorana type right-handed neutrinos followed by the breaking of $U(1)$ and electroweak gauge symmetries providing an&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14483v2-abstract-full').style.display = 'inline'; document.getElementById('2308.14483v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.14483v2-abstract-full" style="display: none;"> The origin of tiny neutrino mass is an unsolved puzzle leading to a variety of phenomenological aspects beyond the Standard Model (BSM). We consider $U(1)$ gauge extension of the Standard Model (SM) where so-called seesaw mechanism is incarnated with the help of thee generations of Majorana type right-handed neutrinos followed by the breaking of $U(1)$ and electroweak gauge symmetries providing anomaly free structure. In this framework, a neutral BSM gauge boson $Z^\prime$ is evolved. To explore the properties of its interactions we consider chiral (flavored) frameworks where $Z^\prime$ interactions depend on the handedness (generations) of the fermions. In this paper we focus on $Z^\prime-$neutrino interactions which could be probed from cosmic explosions. We consider $谓\overline谓 \to e^+ e^-$ process which can energize gamma-ray burst (GRB221009A, so far the highest energy) through energy deposition. Hence estimating these rates we constrain $U(1)$ gauge coupling $(g_X)$ and $Z^\prime$ mass $(M_{Z^\prime})$ under Schwarzchild (Sc) and Hartle-Thorne (HT) scenarios. We also study $谓-$DM scattering through $Z^\prime$ to constrain $g_X-M_{Z^\prime}$ plane using IceCube data considering high energy neutrinos from cosmic blazar (TXS0506+056), active galaxy (NGC1068), the Cosmic Microwave Background (CMB) and the Lyman-$伪$ data, respectively. Finally highlighting complementarity we compare our results with current and prospective bounds on $g_X-M_{Z^\prime}$ plane from scattering, beam-dump and $g-2$ experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.14483v2-abstract-full').style.display = 'none'; document.getElementById('2308.14483v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">47 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C (2024) 84:1224 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.00650">arXiv:2308.00650</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2308.00650">pdf</a>, <a href="https://arxiv.org/format/2308.00650">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> </div> <p class="title is-5 mathjax"> Exploring robust correlations between fermionic dark matter model parameters and neutron star properties: A two-fluid perspective </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Thakur%2C+P">Prashant Thakur</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Malik%2C+T">Tuhin Malik</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jha%2C+T+K">T. K. Jha</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Provid%C3%AAncia%2C+C">Constan莽a Provid锚ncia</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.00650v1-abstract-short" style="display: inline;"> The current observational properties of neutron stars have not definitively ruled out the possibility of dark matter. In this study, we primarily focus on exploring correlations between the dark matter model parameters and different neutron star properties using a rich set of EOSs. We adopt a two-fluid approach to calculate the properties of neutron stars. For the nuclear matter EOS, we employ sev&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00650v1-abstract-full').style.display = 'inline'; document.getElementById('2308.00650v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.00650v1-abstract-full" style="display: none;"> The current observational properties of neutron stars have not definitively ruled out the possibility of dark matter. In this study, we primarily focus on exploring correlations between the dark matter model parameters and different neutron star properties using a rich set of EOSs. We adopt a two-fluid approach to calculate the properties of neutron stars. For the nuclear matter EOS, we employ several realistic EOS derived from the relativistic mean field model (RMF), each exhibiting varying stiffness and composition. In parallel, we look into the dark matter EOS, considering fermionic matter with repulsive interaction described by a relativistic mean field Lagrangian. A reasonable range of parameters is sampled meticulously. Interestingly, our results reveal a promising correlation between the dark matter model parameters and stellar properties, particularly when we ignore the uncertainties in the nuclear matter EOS. However, when introducing uncertainties in the nuclear sector, the correlation weakens, suggesting that the task of conclusively constraining any particular dark matter model might be challenging using global properties alone, such as mass, radius, and tidal deformability. Notably, we find that dark-matter admixed stars tend to have higher central baryonic density, potentially allowing for non-nucleonic degrees of freedom or direct Urca processes in stars with lower masses. There is also a tantalizing hint regarding the detection of stars with the same mass but different surface temperatures, which may indicate the presence of dark matter. With our robust and extensive dataset, we delve deeper and demonstrate that even in the presence of dark matter, the semi-universal C-Love relation remains intact. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.00650v1-abstract-full').style.display = 'none'; document.getElementById('2308.00650v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 Pages, 12 figures, 4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12436">arXiv:2307.12436</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12436">pdf</a>, <a href="https://arxiv.org/format/2307.12436">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2024.138464">10.1016/j.physletb.2024.138464 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Polarization of spin-1/2 particles with effective spacetime dependent masses </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bhadury%2C+S">Samapan Bhadury</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Florkowski%2C+W">Wojciech Florkowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=K.%2C+G+K">Gowthama K. K.</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ryblewski%2C+R">Radoslaw Ryblewski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12436v2-abstract-short" style="display: inline;"> Semiclassical expansion of the Wigner function for spin-1/2 fermions having an effective spacetime-dependent mass is used to analyze spin-polarization effects. The existing framework is reformulated to obtain a differential equation directly connecting the particle spin tensor with the effective mass. It reflects the conservation of the total angular momentum in a system. In general, we find that&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12436v2-abstract-full').style.display = 'inline'; document.getElementById('2307.12436v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12436v2-abstract-full" style="display: none;"> Semiclassical expansion of the Wigner function for spin-1/2 fermions having an effective spacetime-dependent mass is used to analyze spin-polarization effects. The existing framework is reformulated to obtain a differential equation directly connecting the particle spin tensor with the effective mass. It reflects the conservation of the total angular momentum in a system. In general, we find that the gradients of mass act as a source of the spin polarization. Although this effect is absent for simple boost-invariant dynamics, an extension to non-boost-invariant systems displays a non-trivial dependence of the spin density on the mass indicating that the spin polarization effects may be intertwined with the phenomenon of chiral restoration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12436v2-abstract-full').style.display = 'none'; document.getElementById('2307.12436v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 2 figures, matches with the published version Phys. Lett. B 849 (2024) 138464</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Lett. B 849 (2024) 138464 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09737">arXiv:2307.09737</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.09737">pdf</a>, <a href="https://arxiv.org/format/2307.09737">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.109.075026">10.1103/PhysRevD.109.075026 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing for chiral $Z^\prime$ gauge boson through scattering measurement experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Asai%2C+K">Kento Asai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+J">Jinmian Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nomura%2C+T">Takaaki Nomura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Seto%2C+O">Osamu Seto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09737v2-abstract-short" style="display: inline;"> Motivated by the observation of tiny neutrino mass can not be explained within the framework of Standard Model (SM), we consider extra gauge extended scenarios in which tiny neutrino masses are generated through seesaw mechanism. These scenarios are equipped with beyond the standard model (BSM) neutral gauge boson called $Z^\prime$ in the general $U(1)_X$ symmetry which is a linear combination of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09737v2-abstract-full').style.display = 'inline'; document.getElementById('2307.09737v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09737v2-abstract-full" style="display: none;"> Motivated by the observation of tiny neutrino mass can not be explained within the framework of Standard Model (SM), we consider extra gauge extended scenarios in which tiny neutrino masses are generated through seesaw mechanism. These scenarios are equipped with beyond the standard model (BSM) neutral gauge boson called $Z^\prime$ in the general $U(1)_X$ symmetry which is a linear combination of $U(1)_Y$ and $U(1)_{B-L}$. In this case, left and right handed fermions interact differently with the $Z^\prime$. The $Z^\prime$ gives rise to different processes involving neutrino-nucleon, neutrino-electron, electron-nucleus and electron-muon scattering processes. By comparing with proton, electron beam-dump experiments data, recast data from searches for the long-lived and dark photon at BaBaR, LHCb and CMS experiments, the electron and muon $g-2$ data, and the data of the dilepton and dijet searches at the LEP experiment, we derive bounds on the gauge coupling and the corresponding gauge boson mass for different $U(1)_X$ charges and evaluate the prospective limits from the future beam-dump scenarios at DUNE, FASER(2) and ILC. We conclude that large parameter regions could be probed by scattering, beam-dump and collider experiments in future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09737v2-abstract-full').style.display = 'none'; document.getElementById('2307.09737v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> EPHOU-23-013 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review D 109, 075026 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.06298">arXiv:2304.06298</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.06298">pdf</a>, <a href="https://arxiv.org/format/2304.06298">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.015022">10.1103/PhysRevD.108.015022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Testing electroweak scale seesaw models at $e^{-} 纬$ and $纬纬$ colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mandal%2C+S">Sanjoy Mandal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shil%2C+S">Sujay Shil</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.06298v2-abstract-short" style="display: inline;"> We investigate the possibilities of probing the electroweak scale seesaw scenarios such as type-I, type-II and type-III seesaw at $e^-纬$ and $纬纬$ colliders. For the case of type-I seesaw, the heavy neutrinos can be produced at $e^{-}纬$ colliders in association with a $W$ boson. We study a variety of final states in this case including single and multilepton modes in association with jets to estima&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06298v2-abstract-full').style.display = 'inline'; document.getElementById('2304.06298v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.06298v2-abstract-full" style="display: none;"> We investigate the possibilities of probing the electroweak scale seesaw scenarios such as type-I, type-II and type-III seesaw at $e^-纬$ and $纬纬$ colliders. For the case of type-I seesaw, the heavy neutrinos can be produced at $e^{-}纬$ colliders in association with a $W$ boson. We study a variety of final states in this case including single and multilepton modes in association with jets to estimate bounds on the light-heavy neutrino mixing angle. In case of type-II seesaw, doubly charged multiplets of the SU$(2)_L$ triplet scalar can be produced in pair at $纬纬$ collider. We study the multi-leptonic decay modes coming from this pair production of doubly charged Higgs and show how one can probe neutrino mass hierarchy. We also study same sign $W$ boson production from the doubly charged Higgs to study multilepton modes in association with missing energy. From the type-III seesaw, we study same sign dilepton+jets and trilepton+jets modes at $e^-纬$ collider which are coming from the neutral and charged component of the triplet fermion in association with a $W$ boson and $Z$ boson, respectively. Due to the existing limits on the triplet fermions from the LHC we choose heavier mass so that the gauge boson originated from the decay of a neutral multiplet can be sufficiently boosted producing a fat-jet signature in association with same sign dilepton and trilepton. Finally we estimate bounds on the light neutrino-heavy triplet fermion mixing angle and compare with the existing bounds. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.06298v2-abstract-full').style.display = 'none'; document.getElementById('2304.06298v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 13 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 30 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> EPHOU-22-017 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108, 015022 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.01009">arXiv:2304.01009</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2304.01009">pdf</a>, <a href="https://arxiv.org/ps/2304.01009">ps</a>, <a href="https://arxiv.org/format/2304.01009">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.014024">10.1103/PhysRevD.108.014024 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Relativistic second-order spin hydrodynamics: an entropy-current analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Biswas%2C+R">Rajesh Biswas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Daher%2C+A">Asaad Daher</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Florkowski%2C+W">Wojciech Florkowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ryblewski%2C+R">Radoslaw Ryblewski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.01009v1-abstract-short" style="display: inline;"> We present a new derivation of Israel-Stewart-like relativistic second-order dissipative spin hydrodynamic equations using the entropy current approach. In our analysis, we consider a general energy-momentum tensor with symmetric and anti-symmetric parts. Moreover, the spin tensor, which is not separately conserved, has a simple phenomenological form that is antisymmetric only in the last two indi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01009v1-abstract-full').style.display = 'inline'; document.getElementById('2304.01009v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.01009v1-abstract-full" style="display: none;"> We present a new derivation of Israel-Stewart-like relativistic second-order dissipative spin hydrodynamic equations using the entropy current approach. In our analysis, we consider a general energy-momentum tensor with symmetric and anti-symmetric parts. Moreover, the spin tensor, which is not separately conserved, has a simple phenomenological form that is antisymmetric only in the last two indices. Apart from the evolution equations for energy density, fluid flow, and spin density, we also find relaxation-type dynamical equations for various dissipative currents. The latter are consistently derived within the second-order theory as gradient corrections to the energy-momentum and spin tensors. We argue that this approach correctly reproduces the corresponding Navier-Stokes limit of spin hydrodynamic equations. Throughout our analysis, the spin chemical potential is considered a $\mathcal{O}(\partial)$ quantity in the hydrodynamic gradient expansion and reduces to thermal vorticity in the global equilibrium. New coefficients appearing in the generalized spin hydrodynamic equations are undetermined and can only be evaluated within a proper underlying microscopic theory of a given system. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.01009v1-abstract-full').style.display = 'none'; document.getElementById('2304.01009v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">18 pages with no figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.17947">arXiv:2303.17947</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.17947">pdf</a>, <a href="https://arxiv.org/format/2303.17947">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Mass varying dark matter and its cosmological signature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Anirban Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+S">Subinoy Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sethi%2C+S+K">Shiv K. Sethi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.17947v2-abstract-short" style="display: inline;"> Nontrivial dark sector physics continues to be an interesting avenue in our quest to the nature of dark matter. In this paper, we study the cosmological signatures of mass-varying dark matter where its mass changes from zero to a nonzero value in the early Universe. We compute the changes in various observables, such as, the linear matter power spectrum and the cosmic microwave background anisotro&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17947v2-abstract-full').style.display = 'inline'; document.getElementById('2303.17947v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.17947v2-abstract-full" style="display: none;"> Nontrivial dark sector physics continues to be an interesting avenue in our quest to the nature of dark matter. In this paper, we study the cosmological signatures of mass-varying dark matter where its mass changes from zero to a nonzero value in the early Universe. We compute the changes in various observables, such as, the linear matter power spectrum and the cosmic microwave background anisotropy power spectrum. We explain the origin of the effects and point out a qualitative similarity between this model and a warm dark matter cosmology with no sudden mass transition. Finally, we do a simple analytical study to estimate the constraint on the parameters of this model from the Lyman-$伪$ forest data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.17947v2-abstract-full').style.display = 'none'; document.getElementById('2303.17947v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 31 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(v2) 8 pages, 4 figures, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SLAC-PUB-17709 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2303.08843">arXiv:2303.08843</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2303.08843">pdf</a>, <a href="https://arxiv.org/format/2303.08843">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The magnificent ACT of flavor-specific neutrino self-interaction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Anirban Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ghosh%2C+S">Subhajit Ghosh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2303.08843v2-abstract-short" style="display: inline;"> We revisit the cosmology of neutrino self-interaction and use the latest cosmic microwave background data from the Atacama Cosmology Telescope (ACT) and the Planck experiment to constrain the interaction strength. In both flavor-universal and nonuniversal coupling scenarios, we find that the ACT data prefers strong neutrino self-interaction that delays neutrino free streaming until just before the&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08843v2-abstract-full').style.display = 'inline'; document.getElementById('2303.08843v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2303.08843v2-abstract-full" style="display: none;"> We revisit the cosmology of neutrino self-interaction and use the latest cosmic microwave background data from the Atacama Cosmology Telescope (ACT) and the Planck experiment to constrain the interaction strength. In both flavor-universal and nonuniversal coupling scenarios, we find that the ACT data prefers strong neutrino self-interaction that delays neutrino free streaming until just before the matter-radiation equality. When combined with the Planck 2018 data, the preference for strong interaction decreases due to the Planck polarization data. For the combined dataset, the flavor-specific interaction still provides a better fit to the CMB data than $螞$CDM. This trend persists even when neutrino mass is taken into account and extra radiation is added. We also study the prospect of constraining such strong interaction by future terrestrial and space telescopes, and find that the upcoming CMB-S4 experiment will improve the upper limit on neutrino self-interaction by about a factor of three. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2303.08843v2-abstract-full').style.display = 'none'; document.getElementById('2303.08843v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">(v2) 35 pages, 18 figures, 10 tables, carbon footprint estimation included, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SLAC-PUB-17708 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.13814">arXiv:2212.13814</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.13814">pdf</a>, <a href="https://arxiv.org/format/2212.13814">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Lattice">hep-lat</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.108.054008">10.1103/PhysRevD.108.054008 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutral pion mass in warm magnetized medium within Linear Sigma Model coupled to Quarks $\left(\text{LSM}_q\right)$ framework </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Aritra Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Haque%2C+N">Najmul Haque</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.13814v1-abstract-short" style="display: inline;"> We study the neutral pion mass in the presence of an external arbitrary magnetic field in the framework of the linear sigma model coupled to quark (LSMq) at finite temperature. In doing so, we have calculated the pion self-energy, constructed the dispersion equation via re-summation, and solved the dispersion relation at zero three momentum limit. In calculating the pion mass, we have included mes&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13814v1-abstract-full').style.display = 'inline'; document.getElementById('2212.13814v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.13814v1-abstract-full" style="display: none;"> We study the neutral pion mass in the presence of an external arbitrary magnetic field in the framework of the linear sigma model coupled to quark (LSMq) at finite temperature. In doing so, we have calculated the pion self-energy, constructed the dispersion equation via re-summation, and solved the dispersion relation at zero three momentum limit. In calculating the pion mass, we have included meson self-coupling&#39;s thermal and magnetic contribution and approximate chiral order parameter $v_0$. We report that the $蟺^0$ mass decreases with the magnetic field and increases with temperature. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.13814v1-abstract-full').style.display = 'none'; document.getElementById('2212.13814v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 7 captioned figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 108 (2023) 054008 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.11674">arXiv:2212.11674</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.11674">pdf</a>, <a href="https://arxiv.org/format/2212.11674">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Multi muon/anti-muon signals via productions of gauge and scalar bosons in a $U(1)_{L_渭-L_蟿}$ model at muonic colliders </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nomura%2C+T">Takaaki Nomura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shimomura%2C+T">Takashi Shimomura</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.11674v2-abstract-short" style="display: inline;"> We discuss the discovery potential of a promising signals, $3 \times 渭^+ 渭^-$ at a $渭^+ 渭^-$ collider and $渭^+ 渭^+ 渭^+ 渭^+ 渭^- 渭^- $ at a $渭^+ 渭^+$ collider, that are obtained via production of $Z&#39;$ and a new scalar boson $蠁$ in a spontaneously broken local $U(1)_{L_渭- L_蟿}$ model. We consider the $Z&#39;$ associated production from the process $渭^+ 渭^- \to 蠁Z&#39;$ in addition to a muonphilic $Z&#39;$ fusion&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11674v2-abstract-full').style.display = 'inline'; document.getElementById('2212.11674v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.11674v2-abstract-full" style="display: none;"> We discuss the discovery potential of a promising signals, $3 \times 渭^+ 渭^-$ at a $渭^+ 渭^-$ collider and $渭^+ 渭^+ 渭^+ 渭^+ 渭^- 渭^- $ at a $渭^+ 渭^+$ collider, that are obtained via production of $Z&#39;$ and a new scalar boson $蠁$ in a spontaneously broken local $U(1)_{L_渭- L_蟿}$ model. We consider the $Z&#39;$ associated production from the process $渭^+ 渭^- \to 蠁Z&#39;$ in addition to a muonphilic $Z&#39;$ fusion process $渭^+ 渭^\pm \to 蠁渭^+ 渭^\pm$. The scalar boson is associated with $U(1)_{L_渭- L_蟿}$ symmetry breaking and dominantly decays into $Z&#39; Z&#39;$ mode. We carry out numerical simulation analysis for signal and background processes to estimate a discovery significance for different benchmark points. It is shown that our signal can be observed with integrated luminosity less than $\mathcal{O}(100)$ fb$^{-1}$ for both $渭^+ 渭^-$ and $渭^+ 渭^+$ colliders with more than 5-$蟽$ significance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.11674v2-abstract-full').style.display = 'none'; document.getElementById('2212.11674v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, minor corrections are made</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> UME-PP-024, KYUSHU-HET-252 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.09787">arXiv:2212.09787</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.09787">pdf</a>, <a href="https://arxiv.org/ps/2212.09787">ps</a>, <a href="https://arxiv.org/format/2212.09787">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Towards an effective action for chiral magnetohydrodynamics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpit Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Iqbal%2C+N">Nabil Iqbal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Poovuttikul%2C+N">Napat Poovuttikul</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.09787v1-abstract-short" style="display: inline;"> We consider chiral magnetohydrodynamics, i.e. a finite-temperature system where an axial $U(1)$ current is not conserved due to an Adler-Bell-Jackiw anomaly saturated by the dynamical operator $F_{渭谓} \tilde{F}^{渭谓}$. We express this anomaly in terms of the 1-form symmetry associated with magnetic flux conservation and study its realization at finite temperature. We present Euclidean generating fu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09787v1-abstract-full').style.display = 'inline'; document.getElementById('2212.09787v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.09787v1-abstract-full" style="display: none;"> We consider chiral magnetohydrodynamics, i.e. a finite-temperature system where an axial $U(1)$ current is not conserved due to an Adler-Bell-Jackiw anomaly saturated by the dynamical operator $F_{渭谓} \tilde{F}^{渭谓}$. We express this anomaly in terms of the 1-form symmetry associated with magnetic flux conservation and study its realization at finite temperature. We present Euclidean generating functional and dissipative action approaches to the dynamics and reproduce some aspects of chiral MHD phenomenology from an effective theory viewpoint, including the chiral separation and magnetic effects. We also discuss the construction of non-invertible axial symmetry defect operators in our formalism. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.09787v1-abstract-full').style.display = 'none'; document.getElementById('2212.09787v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">revtex, 29+6 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.10616">arXiv:2211.10616</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.10616">pdf</a>, <a href="https://arxiv.org/format/2211.10616">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.106.055806">10.1103/PhysRevC.106.055806 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effect of the $蟽$-cut potential on the properties of neutron stars with or without a hyperonic core </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Patra%2C+N+K">N. K. Patra</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sharma%2C+B+K">B. K. Sharma</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Reghunath%2C+A">A. Reghunath</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A+K+H">A. K. H. Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jha%2C+T+K">T. K. Jha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.10616v1-abstract-short" style="display: inline;"> Motivated by the recent observation of high-mass pulsars ($M \simeq 2 M_{\odot}$), we employ the $蟽$-cut potential on the equation of state (EOS) of high-density matter and the properties of neutron stars within the relativistic mean-field (RMF) model using TM1$^{*}$ parameter set. The $蟽$-cut potential is known to reduce the contributions of the $蟽$ field, resulting in a stiffer EOS at high densi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10616v1-abstract-full').style.display = 'inline'; document.getElementById('2211.10616v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.10616v1-abstract-full" style="display: none;"> Motivated by the recent observation of high-mass pulsars ($M \simeq 2 M_{\odot}$), we employ the $蟽$-cut potential on the equation of state (EOS) of high-density matter and the properties of neutron stars within the relativistic mean-field (RMF) model using TM1$^{*}$ parameter set. The $蟽$-cut potential is known to reduce the contributions of the $蟽$ field, resulting in a stiffer EOS at high densities and hence leading to larger neutron star masses without affecting the properties of nuclear matter at normal saturation density. We also analyzed the effect of the same on pure neutron matter and also on the neutron star matter with and without hyperonic core and compared it with the available theoretical, experimental, and observational data. The corresponding tidal deformability ($螞_{1.4}$) is also calculated. With the choice of meson-hyperon coupling fixed to hypernuclear potentials, we obtain $\approx 10~\%$ increase in mass by employing the $蟽$-cut potential for $f_{s} = 0.6$. Our results are in good agreement with various experimental constraints and observational data, particularly with the GW170817 data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.10616v1-abstract-full').style.display = 'none'; document.getElementById('2211.10616v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 Pages, 6 Figures and 1 Table (Accepted in Phys. Rev. C)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02934">arXiv:2211.02934</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2211.02934">pdf</a>, <a href="https://arxiv.org/ps/2211.02934">ps</a>, <a href="https://arxiv.org/format/2211.02934">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.094022">10.1103/PhysRevD.107.094022 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Boost invariant spin hydrodynamics within the first order in derivative expansion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Biswas%2C+R">Rajesh Biswas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Daher%2C+A">Asaad Daher</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Florkowski%2C+W">Wojciech Florkowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ryblewski%2C+R">Radoslaw Ryblewski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02934v1-abstract-short" style="display: inline;"> Boost-invariant equations of spin hydrodynamics confined to the first-order terms in gradients are numerically solved. The spin equation of state, relating the spin density tensor to the spin chemical potential, is consistently included in the first order. Depending on its form and the structure of the spin transport coefficients, we find solutions which are both stable and unstable within the con&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02934v1-abstract-full').style.display = 'inline'; document.getElementById('2211.02934v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02934v1-abstract-full" style="display: none;"> Boost-invariant equations of spin hydrodynamics confined to the first-order terms in gradients are numerically solved. The spin equation of state, relating the spin density tensor to the spin chemical potential, is consistently included in the first order. Depending on its form and the structure of the spin transport coefficients, we find solutions which are both stable and unstable within the considered evolution times of 10 fm/c. These findings are complementary to the recent identification of stable and unstable modes for perturbed uniform spin systems described by similar hydrodynamic frameworks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02934v1-abstract-full').style.display = 'none'; document.getElementById('2211.02934v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 3 figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.09313">arXiv:2210.09313</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.09313">pdf</a>, <a href="https://arxiv.org/format/2210.09313">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.132.121801">10.1103/PhysRevLett.132.121801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dark Matter Induced Power in Quantum Devices </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Anirban Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kurinsky%2C+N">Noah Kurinsky</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Leane%2C+R+K">Rebecca K. Leane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.09313v2-abstract-short" style="display: inline;"> We point out that power measurements of single quasiparticle devices open a new avenue to detect dark matter (DM). The threshold of these devices is set by the Cooper pair binding energy, and is therefore so low that they can detect DM as light as about an MeV incoming from the Galactic halo, as well as the low-velocity thermalized DM component potentially present in the Earth. Using existing powe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09313v2-abstract-full').style.display = 'inline'; document.getElementById('2210.09313v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.09313v2-abstract-full" style="display: none;"> We point out that power measurements of single quasiparticle devices open a new avenue to detect dark matter (DM). The threshold of these devices is set by the Cooper pair binding energy, and is therefore so low that they can detect DM as light as about an MeV incoming from the Galactic halo, as well as the low-velocity thermalized DM component potentially present in the Earth. Using existing power measurements with these new devices, as well as power measurements with SuperCDMS-CPD, we set new constraints on the spin-independent DM scattering cross section for DM masses from about 10 MeV to 10 GeV. We outline future directions to improve sensitivity to both halo DM and a thermalized DM population in the Earth using power deposition in quantum devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.09313v2-abstract-full').style.display = 'none'; document.getElementById('2210.09313v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 17 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v2: version published in PRL</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SLAC-PUB-17691 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 132, 121801 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.13128">arXiv:2209.13128</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.13128">pdf</a>, <a href="https://arxiv.org/format/2209.13128">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Report of the Topical Group on Physics Beyond the Standard Model at Energy Frontier for Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Bose%2C+T">Tulika Bose</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Boveia%2C+A">Antonio Boveia</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Doglioni%2C+C">Caterina Doglioni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Griso%2C+S+P">Simone Pagan Griso</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hirschauer%2C+J">James Hirschauer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lipeles%2C+E">Elliot Lipeles</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Shah%2C+N+R">Nausheen R. Shah</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Wang%2C+L">Lian-Tao Wang</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agashe%2C+K">Kaustubh Agashe</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alimena%2C+J">Juliette Alimena</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baum%2C+S">Sebastian Baum</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berkat%2C+M">Mohamed Berkat</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Black%2C+K">Kevin Black</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gardner%2C+G">Gwen Gardner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gherghetta%2C+T">Tony Gherghetta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Greaves%2C+J">Josh Greaves</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Haehn%2C+M">Maxx Haehn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harris%2C+P+C">Phil C. Harris</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Harris%2C+R">Robert Harris</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Hogan%2C+J">Julie Hogan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jayawardana%2C+S">Suneth Jayawardana</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kahn%2C+A">Abraham Kahn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kalinowski%2C+J">Jan Kalinowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Knapen%2C+S">Simon Knapen</a> , et al. (297 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.13128v2-abstract-short" style="display: inline;"> This is the Snowmass2021 Energy Frontier (EF) Beyond the Standard Model (BSM) report. It combines the EF topical group reports of EF08 (Model-specific explorations), EF09 (More general explorations), and EF10 (Dark Matter at Colliders). The report includes a general introduction to BSM motivations and the comparative prospects for proposed future experiments for a broad range of potential BSM mode&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13128v2-abstract-full').style.display = 'inline'; document.getElementById('2209.13128v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.13128v2-abstract-full" style="display: none;"> This is the Snowmass2021 Energy Frontier (EF) Beyond the Standard Model (BSM) report. It combines the EF topical group reports of EF08 (Model-specific explorations), EF09 (More general explorations), and EF10 (Dark Matter at Colliders). The report includes a general introduction to BSM motivations and the comparative prospects for proposed future experiments for a broad range of potential BSM models and signatures, including compositeness, SUSY, leptoquarks, more general new bosons and fermions, long-lived particles, dark matter, charged-lepton flavor violation, and anomaly detection. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.13128v2-abstract-full').style.display = 'none'; document.getElementById('2209.13128v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">108 pages + 38 pages references and appendix, 37 figures, Report of the Topical Group on Beyond the Standard Model Physics at Energy Frontier for Snowmass 2021. The first nine authors are the Conveners, with Contributions from the other authors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.10460">arXiv:2209.10460</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.10460">pdf</a>, <a href="https://arxiv.org/ps/2209.10460">ps</a>, <a href="https://arxiv.org/format/2209.10460">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.107.054043">10.1103/PhysRevD.107.054043 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Stability studies of first order spin-hydrodynamic frameworks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Daher%2C+A">Asaad Daher</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ryblewski%2C+R">Radoslaw Ryblewski</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.10460v1-abstract-short" style="display: inline;"> We study the stability of first-order dissipative spin-hydrodynamic frameworks. We considered two different first-order dissipative spin-hydrodynamic frameworks. The first one considers the spin chemical potential ($蠅^{伪尾}$) to be first order ($\mathcal{O}(\partial)$) in the hydrodynamic gradient expansion. The hydrodynamic gradient ordering of the spin chemical potential is a debatable issue with&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10460v1-abstract-full').style.display = 'inline'; document.getElementById('2209.10460v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.10460v1-abstract-full" style="display: none;"> We study the stability of first-order dissipative spin-hydrodynamic frameworks. We considered two different first-order dissipative spin-hydrodynamic frameworks. The first one considers the spin chemical potential ($蠅^{伪尾}$) to be first order ($\mathcal{O}(\partial)$) in the hydrodynamic gradient expansion. The hydrodynamic gradient ordering of the spin chemical potential is a debatable issue within the frameworks of spin hydrodynamics. Therefore as a second choice, we also consider the spin hydrodynamic equations with $蠅^{伪尾}\sim\mathcal{O}(1)$. We find that for both frameworks, at the level of linear perturbations some spin modes can be unstable. To remove these generic instabilities we consider the Frenkel condition. We argue that Frenkel condition helps get rid of the unstable solutions in both cases, but with a physical drawback for the case where $蠅^{渭谓}\sim\mathcal{O}(\partial)$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.10460v1-abstract-full').style.display = 'none'; document.getElementById('2209.10460v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages. No figures. Comments are welcome</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.08058">arXiv:2209.08058</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.08058">pdf</a>, <a href="https://arxiv.org/format/2209.08058">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevLett.130.202301">10.1103/PhysRevLett.130.202301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Beam Energy Dependence of Triton Production and Yield Ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$) in Au+Au Collisions at RHIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Abdulhamid%2C+M+I">M. I. Abdulhamid</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aboona%2C+B+E">B. E. Aboona</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adam%2C+J">J. Adam</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adams%2C+J+R">J. R. Adams</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Agakishiev%2C+G">G. Agakishiev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aggarwal%2C+I">I. Aggarwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aitbaev%2C+A">A. Aitbaev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Alekseev%2C+I">I. Alekseev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anderson%2C+D+M">D. M. Anderson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aparin%2C+A">A. Aparin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aslam%2C+S">S. Aslam</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Atchison%2C+J">J. Atchison</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bairathi%2C+V">V. Bairathi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baker%2C+W">W. Baker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cap%2C+J+G+B">J. G. Ball Cap</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barish%2C+K">K. Barish</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhagat%2C+P">P. Bhagat</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhatta%2C+S">S. Bhatta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bordyuzhin%2C+I+G">I. G. Bordyuzhin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brandenburg%2C+J+D">J. D. Brandenburg</a> , et al. (333 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.08058v2-abstract-short" style="display: inline;"> We report the triton ($t$) production in mid-rapidity ($|y| &lt;$ 0.5) Au+Au collisions at $\sqrt{s_\mathrm{NN}}$= 7.7--200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The nuclear compound yield ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$), which is predicted to be sensitive to the fluctuation of local ne&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08058v2-abstract-full').style.display = 'inline'; document.getElementById('2209.08058v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.08058v2-abstract-full" style="display: none;"> We report the triton ($t$) production in mid-rapidity ($|y| &lt;$ 0.5) Au+Au collisions at $\sqrt{s_\mathrm{NN}}$= 7.7--200 GeV measured by the STAR experiment from the first phase of the beam energy scan at the Relativistic Heavy Ion Collider (RHIC). The nuclear compound yield ratio ($\mathrm{N}_t \times \mathrm{N}_p/\mathrm{N}_d^2$), which is predicted to be sensitive to the fluctuation of local neutron density, is observed to decrease monotonically with increasing charged-particle multiplicity ($dN_{ch}/d畏$) and follows a scaling behavior. The $dN_{ch}/d畏$ dependence of the yield ratio is compared to calculations from coalescence and thermal models. Enhancements in the yield ratios relative to the coalescence baseline are observed in the 0\%-10\% most central collisions at 19.6 and 27 GeV, with a significance of 2.3$蟽$ and 3.4$蟽$, respectively, giving a combined significance of 4.1$蟽$. The enhancements are not observed in peripheral collisions or model calculations without critical fluctuation, and decreases with a smaller $p_{T}$ acceptance. The physics implications of these results on the QCD phase structure and the production mechanism of light nuclei in heavy-ion collisions are discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.08058v2-abstract-full').style.display = 'none'; document.getElementById('2209.08058v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures, Supplemental Material: http://link.aps.org/supplemental/10.1103/PhysRevLett.130.202301</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. Lett. 130, 202301 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.03467">arXiv:2209.03467</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.03467">pdf</a>, <a href="https://arxiv.org/ps/2209.03467">ps</a>, <a href="https://arxiv.org/format/2209.03467">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.physletb.2023.137779">10.1016/j.physletb.2023.137779 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for the Chiral Magnetic Effect in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV with the STAR forward Event Plane Detectors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=STAR+Collaboration"> STAR Collaboration</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aboona%2C+B+E">B. E. Aboona</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adam%2C+J">J. Adam</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adamczyk%2C+L">L. Adamczyk</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Adams%2C+J+R">J. R. Adams</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aggarwal%2C+I">I. Aggarwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aggarwal%2C+M+M">M. M. Aggarwal</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ahammed%2C+Z">Z. Ahammed</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anderson%2C+D+M">D. M. Anderson</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Atchison%2C+J">J. Atchison</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bairathi%2C+V">V. Bairathi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Baker%2C+W">W. Baker</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cap%2C+J+G+B">J. G. Ball Cap</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barish%2C+K">K. Barish</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhagat%2C+P">P. Bhagat</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhasin%2C+A">A. Bhasin</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bhatta%2C+S">S. Bhatta</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bielcik%2C+J">J. Bielcik</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bielcikova%2C+J">J. Bielcikova</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brandenburg%2C+J+D">J. D. Brandenburg</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cai%2C+X+Z">X. Z. Cai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Caines%2C+H">H. Caines</a>, <a href="/search/hep-ph?searchtype=author&amp;query=S%C3%A1nchez%2C+M+C+d+l+B">M. Calder贸n de la Barca S谩nchez</a> , et al. (347 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.03467v3-abstract-short" style="display: inline;"> A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be s&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03467v3-abstract-full').style.display = 'inline'; document.getElementById('2209.03467v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.03467v3-abstract-full" style="display: none;"> A decisive experimental test of the Chiral Magnetic Effect (CME) is considered one of the major scientific goals at the Relativistic Heavy-Ion Collider (RHIC) towards understanding the nontrivial topological fluctuations of the Quantum Chromodynamics vacuum. In heavy-ion collisions, the CME is expected to result in a charge separation phenomenon across the reaction plane, whose strength could be strongly energy dependent. The previous CME searches have been focused on top RHIC energy collisions. In this Letter, we present a low energy search for the CME in Au+Au collisions at $\sqrt{s_{_{\rm{NN}}}}=27$ GeV. We measure elliptic flow scaled charge-dependent correlators relative to the event planes that are defined at both mid-rapidity $|畏|&lt;1.0$ and at forward rapidity $2.1 &lt; |畏|&lt;5.1$. We compare the results based on the directed flow plane ($唯_1$) at forward rapidity and the elliptic flow plane ($唯_2$) at both central and forward rapidity. The CME scenario is expected to result in a larger correlation relative to $唯_1$ than to $唯_2$, while a flow driven background scenario would lead to a consistent result for both event planes. In 10-50\% centrality, results using three different event planes are found to be consistent within experimental uncertainties, suggesting a flow driven background scenario dominating the measurement. We obtain an upper limit on the deviation from a flow driven background scenario at the 95\% confidence level. This work opens up a possible road map towards future CME search with the high statistics data from the RHIC Beam Energy Scan Phase-II. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.03467v3-abstract-full').style.display = 'none'; document.getElementById('2209.03467v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">main: 16 pages, 5 figures; supplementary material: 2 pages, 1 figure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.13372">arXiv:2207.13372</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.13372">pdf</a>, <a href="https://arxiv.org/format/2207.13372">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-023-11656-y">10.1140/epjc/s10052-023-11656-y <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Charged Higgs induced 5 and 6 lepton signatures from heavy neutrinos at the LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kanemura%2C+S">Shinya Kanemura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sanyal%2C+P">Prasenjit Sanyal</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.13372v4-abstract-short" style="display: inline;"> We propose an anomaly free gauged U$(1)$ extension of the SM where three right handed heavy neutrinos, being charged under the general U$(1)$ gauge group, are introduced to explain the origin of the tiny neutrino mass through the seesaw mechanism after the general U$(1)$ symmetry is broken. Due to the breaking of the general U$(1)$ symmetry a neutral beyond the standard model gauge boson&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13372v4-abstract-full').style.display = 'inline'; document.getElementById('2207.13372v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.13372v4-abstract-full" style="display: none;"> We propose an anomaly free gauged U$(1)$ extension of the SM where three right handed heavy neutrinos, being charged under the general U$(1)$ gauge group, are introduced to explain the origin of the tiny neutrino mass through the seesaw mechanism after the general U$(1)$ symmetry is broken. Due to the breaking of the general U$(1)$ symmetry a neutral beyond the standard model gauge boson $Z^\prime$ acquires mass. There are two Higgs doublets in this model where one interacts with the SM fermions and the other one interacts with the right handed heavy neutrinos and charged leptons. The charged multiplet of the second Higgs can completely decay into the heavy neutrinos and charged lepton in the neutrinophilic limit of the model parameters. The charged Higgs pair production can be influenced due to presence of the $Z^\prime$ boson at the High Luminosity LHC (HL-LHC) in addition to the neutral SM gauge bosons. The pair produced charged Higgs bosons decay into SM charged leptons and heavy neutrinos. Following the leading decay modes of the heavy neutrinos into charged leptons and $W$ boson we study the 5 and 6 lepton final states after the leptonic and hadronic decay of the $W$ bosons considering solely muons and electrons in the final state. Combining the electron and muon final states we estimate the significance of the 5 and 6 charged lepton processes in the $m_{H^\pm}-m_N$ plane for different benchmark points of $m_{Z^\prime}$. It is found that the 5 (6) charged lepton processes could be probed at the High Luminosity LHC (HL-LHC) with at least 5 (3) $蟽$ significance and there are parameter regions where the significance could be larger. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.13372v4-abstract-full').style.display = 'none'; document.getElementById('2207.13372v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published version in European Journal of Physics C</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> EPHOU-22-015, OU-HET 1151, APCTP Pre2022-019 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. C 83, 454 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.02882">arXiv:2207.02882</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2207.02882">pdf</a>, <a href="https://arxiv.org/format/2207.02882">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 White Paper: Cosmogenic Dark Matter and Exotic Particle Searches in Neutrino Experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Berger%2C+J">J. Berger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brailsford%2C+D">D. Brailsford</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Choi%2C+K">K. Choi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Crespo-Anad%C3%B3n%2C+J+I">J. I. Crespo-Anad贸n</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Cui%2C+Y">Y. Cui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">A. Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Dror%2C+J+A">J. A. Dror</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Habig%2C+A">A. Habig</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Itow%2C+Y">Y. Itow</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kearns%2C+E">E. Kearns</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kim%2C+D">D. Kim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Park%2C+J+-">J. -C. Park</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Petrillo%2C+G">G. Petrillo</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Rott%2C+C">C. Rott</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sen%2C+M">M. Sen</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Takhistov%2C+V">V. Takhistov</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tsai%2C+Y+-">Y. -T. Tsai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yu%2C+J">J. Yu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.02882v2-abstract-short" style="display: inline;"> The signals from outer space and their detection have been playing an important role in particle physics, especially in discoveries of and searches for physics beyond the Standard Model (BSM); beyond the evidence of dark matter (DM), for example, the neutrinos produced from the dark matter annihilation is important for the indirect DM searches. Moreover, a wide range of new, well-motivated physics&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02882v2-abstract-full').style.display = 'inline'; document.getElementById('2207.02882v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.02882v2-abstract-full" style="display: none;"> The signals from outer space and their detection have been playing an important role in particle physics, especially in discoveries of and searches for physics beyond the Standard Model (BSM); beyond the evidence of dark matter (DM), for example, the neutrinos produced from the dark matter annihilation is important for the indirect DM searches. Moreover, a wide range of new, well-motivated physics models and dark-sector scenarios have been proposed in the last decade, predicting cosmogenic signals complementary to those in the conventional direct detection of particle-like dark matter. Most notably, various mechanisms to produce (semi-)relativistic DM particles in the present universe (e.g. boosted dark matter) have been put forward, while being consistent with current observational and experimental constraints on DM. The resulting signals often have less intense and more energetic fluxes, to which underground, kiloton-scale neutrino detectors can be readily sensitive. In addition, the scattering of slow-moving DM can give rise to a sizable energy deposit if the underlying dark-sector model allows for a large mass difference between the initial and final state particles, and the neutrino experiments with large volume detectors are well suited for exploring these opportunities. This White Paper is devoted to discussing the scientific importance of the cosmogenic dark matter and exotic particle searches, not only overviewing the recent efforts in both the theory and the experiment communities but also providing future perspectives and directions on this research branch. A landscape of technologies used in neutrino detectors and their complementarity is discussed, and the current and developing analysis strategies are outlined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.02882v2-abstract-full').style.display = 'none'; document.getElementById('2207.02882v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Add a reference to the snowmass white paper</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2206.12676">arXiv:2206.12676</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2206.12676">pdf</a>, <a href="https://arxiv.org/format/2206.12676">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.095033">10.1103/PhysRevD.106.095033 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chiral $Z^\prime$ in FASER, FASER2, DUNE, and ILC beam dump experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Asai%2C+K">Kento Asai</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Li%2C+J">Jinmian Li</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nomura%2C+T">Takaaki Nomura</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Seto%2C+O">Osamu Seto</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2206.12676v2-abstract-short" style="display: inline;"> The origin of neutrino mass is a big unsolved problem of the Standard Model (SM) that motivate us to consider beyond the SM (BSM) scenarios where SM-singlet right-handed neutrinos (RHNs) are introduced to explain the origin of the light neutrino masses through the seesaw mechanism. There is a variety of ways which could lead us to this goal and one of them is a general U$(1)$ extension of the SM.&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.12676v2-abstract-full').style.display = 'inline'; document.getElementById('2206.12676v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2206.12676v2-abstract-full" style="display: none;"> The origin of neutrino mass is a big unsolved problem of the Standard Model (SM) that motivate us to consider beyond the SM (BSM) scenarios where SM-singlet right-handed neutrinos (RHNs) are introduced to explain the origin of the light neutrino masses through the seesaw mechanism. There is a variety of ways which could lead us to this goal and one of them is a general U$(1)$ extension of the SM. In this scenario, three SM-singlet RHNs are introduced to cancel the gauge and mixed gauge gravity anomalies. After anomaly cancellation, we notice that the left- and right-handed charged fermions are differently charged under the general U$(1)$ gauge group evolving a chiral scenario. After the breaking of the general U$(1)$ symmetry, a neutral BSM gauge boson $(Z^\prime)$ acquires mass and it is a free parameter. Such $Z^\prime$, being lighter than $5$ GeV, could be probed at the intensity and lifetime frontiers like FASER, FASER2, DUNE, and ILC beam dump experiments. The estimated bounds are needed to be compared with the existing bounds. We find that existing constraints from Orsay, Nomad, PS191, KEK, LSND, CHARM experiments, and cosmological scenario like SN1987A can be compared in our case once estimated for chiral scenarios. Finally, we compare the parameter spaces showing viable ones that could be probed by FASER, FASER2, DUNE, and ILC beam dump experiments and already excluded regions from Orsay, Nomad, PS191, KEK, LSND, CHARM, and SN1987A for a chiral scenario. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2206.12676v2-abstract-full').style.display = 'none'; document.getElementById('2206.12676v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 June, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 page, 7 figures; v2: typos corrected, references updated, figures modified, matches with the version published in Phys. Rev. D</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> EPHOU-22-010 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 106 (2022) 095033 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.01699">arXiv:2205.01699</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2205.01699">pdf</a>, <a href="https://arxiv.org/format/2205.01699">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> New $W$-Boson mass in the light of doubly warped braneworld model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Barman%2C+B">Basabendu Barman</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Ashmita Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sengupta%2C+S">Soumitra Sengupta</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.01699v1-abstract-short" style="display: inline;"> The recent observation by CDF collaboration has disclosed a modification in the mass of the $W$ boson. In this regard we show that this modification in the mass of the $W$ boson can be well explained in the background of a 6-dimensional warped geometry model, where the double warping is associated with the two extra spatial dimensions. We consider that all the Standard Model fields are residing in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01699v1-abstract-full').style.display = 'inline'; document.getElementById('2205.01699v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.01699v1-abstract-full" style="display: none;"> The recent observation by CDF collaboration has disclosed a modification in the mass of the $W$ boson. In this regard we show that this modification in the mass of the $W$ boson can be well explained in the background of a 6-dimensional warped geometry model, where the double warping is associated with the two extra spatial dimensions. We consider that all the Standard Model fields are residing in the bulk, where the bulk Higgs field gives rise to the spontaneous symmetry breaking in the 6-dimensional spacetime. Allowing a little hierarchy between the two moduli we exactly obtain the observed mass for the $W$ boson, which is identified as the lowest lying Kaluza-Klein mass mode of the bulk $W$ boson on the $(3+1)$ dimensional visible brane. The essential feature of the 5-dimensional Randall-Sundrum scenario such as the resolution of the gauge hierarchy problem without introducing any intermediate scale between the Planck and the TeV scale, remains intact. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.01699v1-abstract-full').style.display = 'none'; document.getElementById('2205.01699v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 2 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> PI-UAN-2022-715FT </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11885">arXiv:2204.11885</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2204.11885">pdf</a>, <a href="https://arxiv.org/format/2204.11885">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.095042">10.1103/PhysRevD.106.095042 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Neutrino secret self-interactions: a booster shot for the cosmic neutrino background </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Anirban Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Perez-Gonzalez%2C+Y+F">Yuber F. Perez-Gonzalez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Sen%2C+M">Manibrata Sen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11885v3-abstract-short" style="display: inline;"> Neutrinos might interact among themselves through forces that have so far remained hidden. Throughout the history of the Universe, such \emph{secret} interactions could lead to scatterings between the neutrinos from supernova explosions and the non-relativistic relic neutrinos left over from the Big Bang. Such scatterings can boost the cosmic neutrino background (C$谓$B) to energies of ${\cal O}$(M&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11885v3-abstract-full').style.display = 'inline'; document.getElementById('2204.11885v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11885v3-abstract-full" style="display: none;"> Neutrinos might interact among themselves through forces that have so far remained hidden. Throughout the history of the Universe, such \emph{secret} interactions could lead to scatterings between the neutrinos from supernova explosions and the non-relativistic relic neutrinos left over from the Big Bang. Such scatterings can boost the cosmic neutrino background (C$谓$B) to energies of ${\cal O}$(MeV), making it, in principle, observable in experiments searching for the diffuse supernova neutrino background. Assuming a model-independent, but flavor universal, four-Fermi interaction, we determine the upscattered cosmic neutrino flux, and derive constraints on such secret interactions from the latest results from Super-Kamiokande. Furthermore, we also study prospects for detection of the boosted flux in future lead-based coherent elastic neutrino-nucleus scattering experiments. Nevertheless, given current constraints on flavor universal self-interactions, we find that the upscattered C$谓$B~contribution to the total DSNB flux is negligible, making a possible measurement of the boosted C$谓$B insurmountable. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11885v3-abstract-full').style.display = 'none'; document.getElementById('2204.11885v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">v1: 9 pages, 6 figures, v2: Figures improved, references added, v3: Text improved, matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> SLAC-PUB-17673, IPPP/22/24 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.15562">arXiv:2203.15562</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.15562">pdf</a>, <a href="https://arxiv.org/ps/2203.15562">ps</a>, <a href="https://arxiv.org/format/2203.15562">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5506/APhysPolB.54.8-A4">10.5506/APhysPolB.54.8-A4 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Semi-classical kinetic theory for massive spin-half fermions with leading-order spin effects </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arpan Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Florkowski%2C+W">Wojciech Florkowski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kumar%2C+A">Avdhesh Kumar</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ryblewski%2C+R">Radoslaw Ryblewski</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Singh%2C+R">Rajeev Singh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.15562v2-abstract-short" style="display: inline;"> We consider the quantum kinetic-theory description for interacting massive spin-half fermions using the Wigner function formalism. We derive a general kinetic theory description assuming that the spin effects appear at the classical and quantum level. To track the effect of such different contributions we use the semi-classical expansion method to obtain the generalized dynamical equations includi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15562v2-abstract-full').style.display = 'inline'; document.getElementById('2203.15562v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.15562v2-abstract-full" style="display: none;"> We consider the quantum kinetic-theory description for interacting massive spin-half fermions using the Wigner function formalism. We derive a general kinetic theory description assuming that the spin effects appear at the classical and quantum level. To track the effect of such different contributions we use the semi-classical expansion method to obtain the generalized dynamical equations including spin, analogous to classical Boltzmann equation. This approach can be used to obtain a collision kernel involving local as well as non-local collisions among the microscopic constituent of the system and eventually, a framework of spin hydrodynamics ensuring the conservation of the energy-momentum tensor and total angular momentum tensor. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.15562v2-abstract-full').style.display = 'none'; document.getElementById('2203.15562v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Revised version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> INT-PUB-23-032 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Acta Physica Polonica B vol. 54, article 8-A4 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.10811">arXiv:2203.10811</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.10811">pdf</a>, <a href="https://arxiv.org/format/2203.10811">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epjc/s10052-022-11049-7">10.1140/epjc/s10052-022-11049-7 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Snowmass White Paper: Beyond the Standard Model effects on Neutrino Flavor </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Arg%C3%BCelles%2C+C+A">C. A. Arg眉elles</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Barenboim%2C+G">G. Barenboim</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Bustamante%2C+M">M. Bustamante</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Coloma%2C+P">P. Coloma</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Denton%2C+P+B">P. B. Denton</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Esteban%2C+I">I. Esteban</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Farzan%2C+Y">Y. Farzan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Mart%C3%ADnez%2C+E+F">E. Fern谩ndez Mart铆nez</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Forero%2C+D+V">D. V. Forero</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gago%2C+A+M">A. M. Gago</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Katori%2C+T">T. Katori</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Lehnert%2C+R">R. Lehnert</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Ross-Lonergan%2C+M">M. Ross-Lonergan</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Suliga%2C+A+M">A. M. Suliga</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tabrizi%2C+Z">Z. Tabrizi</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Anchordoqui%2C+L">L. Anchordoqui</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Chakraborty%2C+K">K. Chakraborty</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Conrad%2C+J">J. Conrad</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">A. Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fong%2C+C+S">C. S. Fong</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Littlejohn%2C+B+R">B. R. Littlejohn</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Maltoni%2C+M">M. Maltoni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Parno%2C+D">D. Parno</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Spitz%2C+J">J. Spitz</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Tang%2C+J">J. Tang</a> , et al. (1 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.10811v2-abstract-short" style="display: inline;"> Neutrinos are one of the most promising messengers for signals of new physics Beyond the Standard Model (BSM). On the theoretical side, their elusive nature, combined with their unknown mass mechanism, seems to indicate that the neutrino sector is indeed opening a window to new physics. On the experimental side, several long-standing anomalies have been reported in the past decades, providing a st&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10811v2-abstract-full').style.display = 'inline'; document.getElementById('2203.10811v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.10811v2-abstract-full" style="display: none;"> Neutrinos are one of the most promising messengers for signals of new physics Beyond the Standard Model (BSM). On the theoretical side, their elusive nature, combined with their unknown mass mechanism, seems to indicate that the neutrino sector is indeed opening a window to new physics. On the experimental side, several long-standing anomalies have been reported in the past decades, providing a strong motivation to thoroughly test the standard three-neutrino oscillation paradigm. In this Snowmass21 white paper, we explore the potential of current and future neutrino experiments to explore BSM effects on neutrino flavor during the next decade. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.10811v2-abstract-full').style.display = 'none'; document.getElementById('2203.10811v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">54 pages plus references. Contact authors: P. Coloma, D. V. Forero and T. Katori. Comments welcome. Contribution to Snowmass 2021. v2 incorporates community feedback</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.07622">arXiv:2203.07622</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.07622">pdf</a>, <a href="https://arxiv.org/format/2203.07622">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> The International Linear Collider: Report to Snowmass 2021 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Aryshev%2C+A">Alexander Aryshev</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Behnke%2C+T">Ties Behnke</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Berggren%2C+M">Mikael Berggren</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Brau%2C+J">James Brau</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Craig%2C+N">Nathaniel Craig</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Freitas%2C+A">Ayres Freitas</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gaede%2C+F">Frank Gaede</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gessner%2C+S">Spencer Gessner</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Gori%2C+S">Stefania Gori</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Grojean%2C+C">Christophe Grojean</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Heinemeyer%2C+S">Sven Heinemeyer</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jeans%2C+D">Daniel Jeans</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Kruger%2C+K">Katja Kruger</a>, <a href="/search/hep-ph?searchtype=author&amp;query=List%2C+B">Benno List</a>, <a href="/search/hep-ph?searchtype=author&amp;query=List%2C+J">Jenny List</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Liu%2C+Z">Zhen Liu</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Michizono%2C+S">Shinichiro Michizono</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Miller%2C+D+W">David W. Miller</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Moult%2C+I">Ian Moult</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Murayama%2C+H">Hitoshi Murayama</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nakada%2C+T">Tatsuya Nakada</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nanni%2C+E">Emilio Nanni</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Nojiri%2C+M">Mihoko Nojiri</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Padamsee%2C+H">Hasan Padamsee</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Perelstein%2C+M">Maxim Perelstein</a> , et al. (487 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.07622v3-abstract-short" style="display: inline;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This docu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'inline'; document.getElementById('2203.07622v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.07622v3-abstract-full" style="display: none;"> The International Linear Collider (ILC) is on the table now as a new global energy-frontier accelerator laboratory taking data in the 2030s. The ILC addresses key questions for our current understanding of particle physics. It is based on a proven accelerator technology. Its experiments will challenge the Standard Model of particle physics and will provide a new window to look beyond it. This document brings the story of the ILC up to date, emphasizing its strong physics motivation, its readiness for construction, and the opportunity it presents to the US and the global particle physics community. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.07622v3-abstract-full').style.display = 'none'; document.getElementById('2203.07622v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">356 pages, Large pdf file (40 MB) submitted to Snowmass 2021; v2 references to Snowmass contributions added, additional authors; v3 references added, some updates, additional authors</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> DESY-22-045, IFT--UAM/CSIC--22-028, KEK Preprint 2021-61, PNNL-SA-160884, SLAC-PUB-17662 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2203.06929">arXiv:2203.06929</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2203.06929">pdf</a>, <a href="https://arxiv.org/format/2203.06929">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> </div> </div> <p class="title is-5 mathjax"> Probing heavy Majorana neutrino pair production at ILC in a $U(1)_{\rm B-L}$ extension of the Standard Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/hep-ph?searchtype=author&amp;query=Nakajima%2C+J">Jurina Nakajima</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Das%2C+A">Arindam Das</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Fujii%2C+K">Keisuke Fujii</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Jeans%2C+D">Daniel Jeans</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Okada%2C+N">Nobuchika Okada</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Okada%2C+S">Satomi Okada</a>, <a href="/search/hep-ph?searchtype=author&amp;query=Yonamine%2C+R">Ryo Yonamine</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2203.06929v2-abstract-short" style="display: inline;"> We consider a gauged B$-$L (Baryon number minus Lepton number) extension of the Standard Model (SM), which is anomaly free in the presence of three SM singlet Right Handed Neutrinos (RHNs). Associated with the $U(1)_{\rm B-L}$ gauge symmetry breaking, the RHNs acquire Majorana masses and then with the electroweak symmetry breaking, tiny Majorana masses for the SM(-like) neutrinos are naturally gen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06929v2-abstract-full').style.display = 'inline'; document.getElementById('2203.06929v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2203.06929v2-abstract-full" style="display: none;"> We consider a gauged B$-$L (Baryon number minus Lepton number) extension of the Standard Model (SM), which is anomaly free in the presence of three SM singlet Right Handed Neutrinos (RHNs). Associated with the $U(1)_{\rm B-L}$ gauge symmetry breaking, the RHNs acquire Majorana masses and then with the electroweak symmetry breaking, tiny Majorana masses for the SM(-like) neutrinos are naturally generated by the seesaw mechanism. As a result of the seesaw mechanism, the heavy mass eigenstates which are mainly composed of the SM-singlet RHNs obtain suppressed electroweak interactions through small mixings with the SM neutrinos. To investigate the seesaw mechanism, we study the pair production of heavy Majorana neutrinos through the $U(1)_{\rm B-L}$ gauge boson $Z^\prime$ at the 250 GeV and 500 GeV International Linear Collider (ILC). Considering the current and prospective future bounds on the B$-$L model parameters from the search for a resonant $Z^\prime$ boson production at the Large Hadron Collider (LHC), we focus on a &#34;smoking-gun&#34; signature of the Majorana nature of the heavy neutrinos: a final state with a pair of same-sign, same-flavor leptons, small missing momentum, and four hadronic jets. We estimate the projected significance of the signature at the ILC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2203.06929v2-abstract-full').style.display = 'none'; document.getElementById('2203.06929v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 March, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">contribution to Snowmass 2021</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Das%2C+A&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10