CINXE.COM
Search results for: isotropic hardening
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: isotropic hardening</title> <meta name="description" content="Search results for: isotropic hardening"> <meta name="keywords" content="isotropic hardening"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="isotropic hardening" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="isotropic hardening"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 363</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: isotropic hardening</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Experimental Determination of Aluminum 7075-T6 Parameters Using Stabilized Cycle Tests to Predict Thermal Ratcheting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Rahmatfam">Armin Rahmatfam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Zehsaz"> Mohammad Zehsaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Farid%20Vakili%20Tahami"> Farid Vakili Tahami</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasser%20Ghassembaglou"> Nasser Ghassembaglou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper the thermal ratcheting, kinematic hardening parameters C, γ, isotropic hardening parameters and also k, b, Q combined isotropic/kinematic hardening parameters have been obtained experimentally from the monotonic, strain controlled cyclic tests at room and elevated temperatures of 20°C, 100°C, and 400°C. These parameters are used in nonlinear combined isotropic/kinematic hardening model to predict better description of the loading and reloading cycles in the cyclic indentation as well as thermal ratcheting. For this purpose, three groups of specimens made of Aluminum 7075-T6 have been investigated. After each test and using stable hysteretic cycles, material parameters have been obtained for using in combined nonlinear isotropic/kinematic hardening models. Also the methodology of obtaining the correct kinematic/isotropic hardening parameters is presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combined%20hardening%20model" title="combined hardening model">combined hardening model</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20hardening" title=" kinematic hardening"> kinematic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening" title=" isotropic hardening"> isotropic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20tests" title=" cyclic tests"> cyclic tests</a> </p> <a href="https://publications.waset.org/abstracts/18280/experimental-determination-of-aluminum-7075-t6-parameters-using-stabilized-cycle-tests-to-predict-thermal-ratcheting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18280.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> A TFETI Domain Decompositon Solver for von Mises Elastoplasticity Model with Combination of Linear Isotropic-Kinematic Hardening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Martin%20Cermak">Martin Cermak</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20Sysala"> Stanislav Sysala</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we present the efficient parallel implementation of elastoplastic problems based on the TFETI (Total Finite Element Tearing and Interconnecting) domain decomposition method. This approach allow us to use parallel solution and compute this nonlinear problem on the supercomputers and decrease the solution time and compute problems with millions of DOFs. In our approach we consider an associated elastoplastic model with the von Mises plastic criterion and the combination of linear isotropic-kinematic hardening law. This model is discretized by the implicit Euler method in time and by the finite element method in space. We consider the system of nonlinear equations with a strongly semismooth and strongly monotone operator. The semismooth Newton method is applied to solve this nonlinear system. Corresponding linearized problems arising in the Newton iterations are solved in parallel by the above mentioned TFETI. The implementation of this problem is realized in our in-house MatSol packages developed in MATLAB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=isotropic-kinematic%20hardening" title="isotropic-kinematic hardening">isotropic-kinematic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=TFETI" title=" TFETI"> TFETI</a>, <a href="https://publications.waset.org/abstracts/search?q=domain%20decomposition" title=" domain decomposition"> domain decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=parallel%20solution" title=" parallel solution"> parallel solution</a> </p> <a href="https://publications.waset.org/abstracts/20197/a-tfeti-domain-decompositon-solver-for-von-mises-elastoplasticity-model-with-combination-of-linear-isotropic-kinematic-hardening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> Topology Optimization of Composite Structures with Material Nonlinearity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mengxiao%20Li">Mengxiao Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Johnson%20Zhang"> Johnson Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, topology optimization technique is widely used to define the layout design of structures that are presented as truss-like topologies. However, due to the difficulty in combining optimization technique with more realistic material models where their nonlinear properties should be considered, the achieved optimized topologies are commonly unable to apply straight towards the practical design problems. This study presented an optimization procedure of composite structures where different elastic stiffness, yield criteria, and hardening models are assumed for the candidate materials. From the results, it can be concluded that a more explicit modeling has the significant influence on the resulting topologies. Also, the isotropic or kinematic hardening is important for elastoplastic structural optimization design. The capability of the proposed optimization procedure is shown through several cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=topology%20optimization" title="topology optimization">topology optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20composition" title=" material composition"> material composition</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20%20modeling" title=" nonlinear modeling"> nonlinear modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening%20rules" title=" hardening rules"> hardening rules</a> </p> <a href="https://publications.waset.org/abstracts/63520/topology-optimization-of-composite-structures-with-material-nonlinearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">482</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Precipitation and Age Hardening in Al-Mg-Si-(Cu) Alloys for Automotive Body Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahar%20Abid">Tahar Abid</a>, <a href="https://publications.waset.org/abstracts/search?q=Haoues%20Ghouss"> Haoues Ghouss</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelhamid%20Boubertakh"> Abdelhamid Boubertakh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This present work is focused on the hardening precipitation in two AlMgSi(Cu) automotive body sheets. The effect of pre-aging, aging treatment and 0.10 wt % copper addition on the hardening response was investigated using scanning calorimetry (DSC), transmission electron microscopy (TEM), and Vickers microhardness measurements (Hv). The results reveal the apparition of α-AlFeSi, α-AlFe(Mn)Si type precipitates frequently present and witch remain stable at high temperature in Al-Mg-Si alloys. Indeed, the hardening response in both sheets is certainly due to the predominance of very fine typical phases β' and β'' as rods and needles developed during aging with and without pre-aging. The effect of pre ageing just after homogenization and quenching is to correct the undesirable effect of aging at ambient temperature by making faster alloy hardening during artificial aging.The addition of 0.10 wt % copper has allowed to refine and to enhance the precipitation hardening after quenching. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AlMgSi%20alloys" title="AlMgSi alloys">AlMgSi alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=precipitation" title=" precipitation"> precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=activation%20energy" title=" activation energy"> activation energy</a> </p> <a href="https://publications.waset.org/abstracts/166964/precipitation-and-age-hardening-in-al-mg-si-cu-alloys-for-automotive-body-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166964.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">89</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> Cantilever Secant Pile Constructed in Sand: Numerical Comparative Study and Design Aids – Part II</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaled%20R.%20Khater">Khaled R. Khater</a> </p> <p class="card-text"><strong>Abstract:</strong></p> All civil engineering projects include excavation work and therefore need some retaining structures. Cantilever secant pile walls are an economical supporting system up to 5.0-m depths. The parameters controlling wall tip displacement are the focus of this paper. So, two analysis techniques have been investigated and arbitrated. They are the conventional method and finite element analysis. Accordingly, two computer programs have been used, Excel sheet and Plaxis-2D. Two soil models have been used throughout this study. They are Mohr-Coulomb soil model and Isotropic Hardening soil models. During this study, two soil densities have been considered, i.e. loose and dense sand. Ten wall rigidities have been analyzed covering ranges of perfectly flexible to completely rigid walls. Three excavation depths, i.e. 3.0-m, 4.0-m and 5.0-m were tested to cover the practical range of secant piles. This work submits beneficial hints about secant piles to assist designers and specification committees. Also, finite element analysis, isotropic hardening, is recommended to be the fair judge when two designs conflict. A rational procedure using empirical equations has been suggested to upgrade the conventional method to predict wall tip displacement ‘δ’. Also, a reasonable limitation of ‘δ’ as a function of excavation depth, ‘h’ has been suggested. Also, it has been found that, after a certain penetration depth any further increase of it does not positively affect the wall tip displacement, i.e. over design and uneconomic. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design%20aids" title="design aids">design aids</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=secant%20pile" title=" secant pile"> secant pile</a>, <a href="https://publications.waset.org/abstracts/search?q=Wall%20tip%20displacement" title=" Wall tip displacement "> Wall tip displacement </a> </p> <a href="https://publications.waset.org/abstracts/133608/cantilever-secant-pile-constructed-in-sand-numerical-comparative-study-and-design-aids-part-ii" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/133608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Prediction of the Behavior of 304L Stainless Steel under Uniaxial and Biaxial Cyclic Loading</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aboussalih%20Amira">Aboussalih Amira</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarza%20Tahar"> Zarza Tahar</a>, <a href="https://publications.waset.org/abstracts/search?q=Fedaoui%20Kamel"> Fedaoui Kamel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hammoudi%20Saleh"> Hammoudi Saleh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work focuses on the simulation of the prediction of the behaviour of austenitic stainless steel (SS) 304L under complex loading in stress and imposed strain. The Chaboche model is a cable to describe the response of the material by the combination of two isotropic and nonlinear kinematic work hardening, the model is implemented in the ZébuLon computer code. First, we represent the evolution of the axial stress as a function of the plastic strain through hysteresis loops revealing a hardening behaviour caused by the increase in stress by stress in the direction of tension/compression. In a second step, the study of the ratcheting phenomenon takes a key place in this work by the appearance of the average stress. In addition to the solicitation of the material in the biaxial direction in traction / torsion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=304L" title=" 304L"> 304L</a>, <a href="https://publications.waset.org/abstracts/search?q=Ratcheting" title=" Ratcheting"> Ratcheting</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20strain" title=" plastic strain"> plastic strain</a> </p> <a href="https://publications.waset.org/abstracts/181848/prediction-of-the-behavior-of-304l-stainless-steel-under-uniaxial-and-biaxial-cyclic-loading" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/181848.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Simulation of Hamming Coding and Decoding for Microcontroller Radiation Hardening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rehab%20I.%20Abdul%20Rahman">Rehab I. Abdul Rahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Mazhar%20B.%20Tayel"> Mazhar B. Tayel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method of hardening the 8051 microcontroller, that able to assure reliable operation in the presence of bit flips caused by radiation. Aiming at avoiding such faults in the 8051 microcontroller, Hamming code protection was used in its SRAM memory and registers. A VHDL code and its simulation have been used for this hamming code protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radiation" title="radiation">radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=bitflip" title=" bitflip"> bitflip</a>, <a href="https://publications.waset.org/abstracts/search?q=hamming" title=" hamming"> hamming</a> </p> <a href="https://publications.waset.org/abstracts/20963/simulation-of-hamming-coding-and-decoding-for-microcontroller-radiation-hardening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">499</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Hyperelastic Formulation for Orthotropic Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20O%27Shea">Daniel O'Shea</a>, <a href="https://publications.waset.org/abstracts/search?q=Mario%20M.%20Attard"> Mario M. Attard</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20C.%20Kellermann"> David C. Kellermann</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20strain" title="finite strain">finite strain</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperelastic" title=" hyperelastic"> hyperelastic</a>, <a href="https://publications.waset.org/abstracts/search?q=invariants" title=" invariants"> invariants</a>, <a href="https://publications.waset.org/abstracts/search?q=orthotropic" title=" orthotropic"> orthotropic</a> </p> <a href="https://publications.waset.org/abstracts/79452/hyperelastic-formulation-for-orthotropic-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79452.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> New Dynamic Constitutive Model for OFHC Copper Film</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jin%20Sung%20Kim">Jin Sung Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Huh"> Hoon Huh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The material properties of OFHC copper film was investigated with the High-Speed Material Micro Testing Machine (HSMMTM) at the high strain rates. The rate-dependent stress-strain curves from the experiment and the Johnson-Cook curve fitting showed large discrepancies as the plastic strain increases since the constitutive model implies no rate-dependent strain hardening effect. A new constitutive model was proposed in consideration of rate-dependent strain hardening effect. The strain rate hardening term in the new constitutive model consists of the strain rate sensitivity coefficients of the yield strength and strain hardening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rate%20dependent%20material%20properties" title="rate dependent material properties">rate dependent material properties</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20constitutive%20model" title=" dynamic constitutive model"> dynamic constitutive model</a>, <a href="https://publications.waset.org/abstracts/search?q=OFHC%20copper%20film" title=" OFHC copper film"> OFHC copper film</a>, <a href="https://publications.waset.org/abstracts/search?q=strain%20rate" title=" strain rate"> strain rate</a> </p> <a href="https://publications.waset.org/abstracts/3721/new-dynamic-constitutive-model-for-ofhc-copper-film" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3721.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> Bake Hardening Behavior of Ultrafine Grained and Nano-Grained AA6061 Aluminum Alloy </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Alihosseini">Hamid Alihosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Kamran%20Dehghani"> Kamran Dehghani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effects of grain size of AA6061 aluminum on the bake hardening have been investigated. The grains of sample sheets refined by applying 4, 8, and 12 passes of ECAP and their microstructures and mechanical properties were investigated. EBSD and TEM studies of the sheets showed grain refinement, and the EBSD micrograph of the alloy ECAPed for 12 passes showed nano-grained (NG) ∼95nm in size. Then, the bake hardenability of processed sheet was compared by pre-straining to 6% followed by baking at 200°C for 20 min. The results show that in case of baking at 200°C, there was an increase about 108%, 93%, and 72% in the bake hardening for 12, 8, and 4 passes, respectively. The maximum in bake hardenability (120 MPa) and final yield stress (583 MPa) were pertaining to the ultra-fine grain specimen pre-strained 6% followed by baking at 200◦C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bake%20hardening" title="bake hardening">bake hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrafine%20grain" title=" ultrafine grain"> ultrafine grain</a>, <a href="https://publications.waset.org/abstracts/search?q=nano%20grain" title=" nano grain"> nano grain</a>, <a href="https://publications.waset.org/abstracts/search?q=AA6061%20aluminum" title=" AA6061 aluminum"> AA6061 aluminum</a>, <a href="https://publications.waset.org/abstracts/search?q=" title=" "> </a> </p> <a href="https://publications.waset.org/abstracts/33963/bake-hardening-behavior-of-ultrafine-grained-and-nano-grained-aa6061-aluminum-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Improvement of Wear Resistance of 356 Aluminum Alloy by High Energy Electron Beam Irradiation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Farnush">M. Farnush</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study is concerned with the microstructural analysis and improvement of wear resistance of 356 aluminum alloy by a high energy electron beam. Shock hardening on material by high energy electron beam improved wear resistance. Particularly, in the surface of material by shock hardening, the wear resistance was greatly enhanced to 29% higher than that of the 356 aluminum alloy substrate. These findings suggested that surface shock hardening using high energy electron beam irradiation was economical and useful for the development of surface shock hardening with improved wear resistance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al356%20alloy" title="Al356 alloy">Al356 alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=HEEB" title=" HEEB"> HEEB</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20resistance" title=" wear resistance"> wear resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=frictional%20characteristics" title=" frictional characteristics"> frictional characteristics</a> </p> <a href="https://publications.waset.org/abstracts/47963/improvement-of-wear-resistance-of-356-aluminum-alloy-by-high-energy-electron-beam-irradiation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">317</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Substitution of Natural Aggregates by Crushed Concrete Waste in Concrete Products Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Junak">Jozef Junak</a>, <a href="https://publications.waset.org/abstracts/search?q=Nadezda%20Stevulova"> Nadezda Stevulova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper is aimed to the use of different types of industrial wastes in concrete production. From examined waste (crushed concrete waste) our tested concrete samples with dimension 150 mm were prepared. In these samples, fractions 4/8 mm and 8/16 mm by recycled concrete aggregate with a range of variation from 0 to 100% were replaced. Experiment samples were tested for compressive strength after 2, 7, 14 and 28 days of hardening. From obtained results it is evident that all samples prepared with washed recycled concrete aggregates met the requirement of standard for compressive strength of 20 MPa already after 14 days of hardening. Sample prepared with recycled concrete aggregates (4/8 mm: 100% and 8/16 mm: 60%) reached 101% of compressive strength value (34.7 MPa) after 28 days of hardening in comparison with the reference sample (34.4 MPa). The lowest strength after 28 days of hardening (27.42 MPa) was obtained for sample consisting of recycled concrete in proportion of 40% for 4/8 fraction and 100% for 8/16 fraction of recycled concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20concrete%20aggregate" title="recycled concrete aggregate">recycled concrete aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=re-use" title=" re-use"> re-use</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a> </p> <a href="https://publications.waset.org/abstracts/28665/substitution-of-natural-aggregates-by-crushed-concrete-waste-in-concrete-products-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28665.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">371</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> Active Part of the Burnishing Tool Effect on the Physico-Geometric Aspect of the Superficial Layer of 100C6 and 16NC6 Steels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tarek%20Litim">Tarek Litim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ouahiba%20Taamallah"> Ouahiba Taamallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Burnishing is a mechanical surface treatment that combines several beneficial effects on the two steel grades studied. The application of burnishing to the ball or to the tip favors a better roughness compared to turning. In addition, it allows the consolidation of the surface layers through work hardening phenomena. The optimal effects are closely related to the treatment parameters and the active part of the device. With an improvement of 78% on the roughness, burnishing can be defined as a finishing operation in the machining range. With a 44% gain in consolidation rate, this treatment is an effective process for material consolidation. These effects are affected by several factors. The factors V, f, P, r, and i have the most significant effects on both roughness and hardness. Ball or tip burnishing leads to the consolidation of the surface layers of both grades 100C6 and 16NC6 steels by work hardening. For each steel grade and its mechanical treatment, the rational tensile curve has been drawn. Lüdwick's law is used to better plot the work hardening curve. For both grades, a material hardening law is established. For 100C6 steel, these results show a work hardening coefficient and a consolidation rate of 0.513 and 44, respectively, compared to the surface layers processed by turning. When 16NC6 steel is processed, the work hardening coefficient is about 0.29. Hardness tests characterize well the burnished depth. The layer affected by work hardening can reach up to 0.4 mm. Simulation of the tests is of great importance to provide the details at the local scale of the material. Conventional tensile curves provide a satisfactory indication of the toughness of 100C6 and 16NC6 materials. A simulation of the tensile curves revealed good agreement between the experimental and simulation results for both steels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=100C6%20steel" title="100C6 steel">100C6 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=16NC6%20steel" title=" 16NC6 steel"> 16NC6 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=burnishing" title=" burnishing"> burnishing</a>, <a href="https://publications.waset.org/abstracts/search?q=work%20hardening" title=" work hardening"> work hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/141194/active-part-of-the-burnishing-tool-effect-on-the-physico-geometric-aspect-of-the-superficial-layer-of-100c6-and-16nc6-steels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141194.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Analysis of Cyclic Elastic-Plastic Loading of Shaft Based on Kinematic Hardening Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isa%20Ahmadi">Isa Ahmadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Khamedi"> Ramin Khamedi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20loading" title="cyclic loading">cyclic loading</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=Prager%20kinematic%20hardening%20model" title=" Prager kinematic hardening model"> Prager kinematic hardening model</a>, <a href="https://publications.waset.org/abstracts/search?q=torsion%20of%20shaft" title=" torsion of shaft"> torsion of shaft</a> </p> <a href="https://publications.waset.org/abstracts/10130/analysis-of-cyclic-elastic-plastic-loading-of-shaft-based-on-kinematic-hardening-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">408</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Modeling of Age Hardening Process Using Adaptive Neuro-Fuzzy Inference System: Results from Aluminum Alloy A356/Cow Horn Particulate Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chidozie%20C.%20Nwobi-Okoye">Chidozie C. Nwobi-Okoye</a>, <a href="https://publications.waset.org/abstracts/search?q=Basil%20Q.%20Ochieze"> Basil Q. Ochieze</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanley%20Okiy"> Stanley Okiy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research reports on the modeling of age hardening process using adaptive neuro-fuzzy inference system (ANFIS). The age hardening output (Hardness) was predicted using ANFIS. The input parameters were ageing time, temperature and percentage composition of cow horn particles (CHp%). The results show the correlation coefficient (R) of the predicted hardness values versus the measured values was of 0.9985. Subsequently, values outside the experimental data points were predicted. When the temperature was kept constant, and other input parameters were varied, the average relative error of the predicted values was 0.0931%. When the temperature was varied, and other input parameters kept constant, the average relative error of the hardness values predictions was 80%. The results show that ANFIS with coarse experimental data points for learning is not very effective in predicting process outputs in the age hardening operation of A356 alloy/CHp particulate composite. The fine experimental data requirements by ANFIS make it more expensive in modeling and optimization of age hardening operations of A356 alloy/CHp particulate composite. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptive%20neuro-fuzzy%20inference%20system%20%28ANFIS%29" title="adaptive neuro-fuzzy inference system (ANFIS)">adaptive neuro-fuzzy inference system (ANFIS)</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20hardening" title=" age hardening"> age hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy" title=" aluminum alloy"> aluminum alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composite" title=" metal matrix composite"> metal matrix composite</a> </p> <a href="https://publications.waset.org/abstracts/83874/modeling-of-age-hardening-process-using-adaptive-neuro-fuzzy-inference-system-results-from-aluminum-alloy-a356cow-horn-particulate-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/83874.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Effect of Treated Peat Soil on the Plasticity Index and Hardening Time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Siti%20Nur%20Aida%20Mario">Siti Nur Aida Mario</a>, <a href="https://publications.waset.org/abstracts/search?q=Farah%20Hafifee%20Ahmad"> Farah Hafifee Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Rudy%20Tawie"> Rudy Tawie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil Stabilization has been widely implemented in the construction industry nowadays. Peat soil is well known as one of the most problematic soil among the engineers. The procedures need to take into account both physical and engineering properties of the stabilized peat soil. This paper presents a result of plasticity index and hardening of treated peat soil with various dosage of additives. In order to determine plasticity of the treated peat soil, atterberg limit test which comprises plastic limit and liquid limit test has been conducted. Determination of liquid limit in this experimental study is by using cone penetrometer. Vicat testing apparatus has been used in the hardening test which the penetration of the plunger is recorded every one hour for 24 hours. The results show that the plasticity index of peat soil stabilized with 80% FAAC and 20% OPC has the lowest plasticity index and recorded the fastest initial setting time. The significant of this study is to promote greener solution for future soil stabilization industry. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additives" title="additives">additives</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=peat%20soil" title=" peat soil"> peat soil</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20index" title=" plasticity index"> plasticity index</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20stabilization" title=" soil stabilization"> soil stabilization</a> </p> <a href="https://publications.waset.org/abstracts/44907/effect-of-treated-peat-soil-on-the-plasticity-index-and-hardening-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> The French, the Yoruba, and the H-Thing: Sharing and Realising Same Phenomenon Differently</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rose-Juliet%20Anyanwu">Rose-Juliet Anyanwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The principal objective of this paper is to investigate whether some sort of phonological processes, such as elision, aspiration, glottalisation, and hardening can be used to account for the behaviour of the glottal fricative (or approximant, as the case may be) ‘h’ in both French and Yoruba. French and Yoruba speakers generally tend to say, for instance ‘ockey’ and ‘amburger’, instead of ‘hockey’ and ‘hamburger’, respectively. Whereas the Yoruba conversely say, for instance ‘hadd’ for ‘add’, ‘heat’ for ‘eat’ on the one hand and ‘ard’ for ‘hard’, ‘eat’ for ‘heat’ on the other hand, on a similar note, it is not quite clear whether the French, however, if not at least in rare instances, would tend to force themselves to pronounce (in any form whatsoever) the h-sound. Recorded sentences containing h-initial as well as vowel-initial words will be used for the investigation. The present paper is meant to contribute to work on aspiration, compensation, elision, and glottalisation, as well as hardening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aspiration" title="aspiration">aspiration</a>, <a href="https://publications.waset.org/abstracts/search?q=compensation" title=" compensation"> compensation</a>, <a href="https://publications.waset.org/abstracts/search?q=glottalisation" title=" glottalisation"> glottalisation</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a> </p> <a href="https://publications.waset.org/abstracts/101431/the-french-the-yoruba-and-the-h-thing-sharing-and-realising-same-phenomenon-differently" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">170</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">346</span> A Crystal Plasticity Approach to Model Dynamic Strain Aging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Burak%20Bal">Burak Bal</a>, <a href="https://publications.waset.org/abstracts/search?q=Demircan%20Canadinc"> Demircan Canadinc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dynamic strain aging (DSA), resulting from the reorientation of C-Mn clusters in the core of dislocations, can provide a strain hardening mechanism. In addition, in Hadfield steel, negative strain rate sensitivity is observed due to the DSA. In our study, we incorporated dynamic strain aging onto crystal plasticity computations to predict the local instabilities and corresponding negative strain rate sensitivity. Specifically, the material response of Hadfield steel was obtained from monotonic and strain-rate jump experiments under tensile loading. The strain rate range was adjusted from 10⁻⁴ to 10⁻¹s ⁻¹. The crystal plasticity modeling of the material response was carried out based on Voce-type hardening law and corresponding Voce hardening parameters were determined. The solute pinning effect of carbon atom was incorporated to crystal plasticity simulations at microscale level by computing the shear stress contribution imposed on an arrested dislocation by carbon atom. After crystal plasticity simulations with modifying hardening rule, which takes into account the contribution of DSA, it was seen that the model successfully predicts both the role of DSA and corresponding strain rate sensitivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crystal%20plasticity" title="crystal plasticity">crystal plasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20strain%20aging" title=" dynamic strain aging"> dynamic strain aging</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadfield%20steel" title=" Hadfield steel"> Hadfield steel</a>, <a href="https://publications.waset.org/abstracts/search?q=negative%20strain%20rate%20sensitivity" title=" negative strain rate sensitivity"> negative strain rate sensitivity</a> </p> <a href="https://publications.waset.org/abstracts/76918/a-crystal-plasticity-approach-to-model-dynamic-strain-aging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76918.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">260</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">345</span> Minimization of the Abrasion Effect of Fiber Reinforced Polymer Matrix on Stainless Steel Injection Nozzle through the Application of Laser Hardening Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amessalu%20Atenafu%20Gelaw">Amessalu Atenafu Gelaw</a>, <a href="https://publications.waset.org/abstracts/search?q=Nele%20Rath"> Nele Rath</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, laser hardening process is becoming among the most efficient and effective hardening technique due to its significant advantages. The source where heat is generated, the absence of cooling media, self-quenching property, less distortion nature due to localized heat input, environmental friendly behavior and less time to finish the operation are among the main benefits to adopt this technology. This day, a variety of injection machines are used in plastic, textile, electrical and mechanical industries. Due to the fast growing of composite technology, fiber reinforced polymer matrix becoming optional solution to use in these industries. Due, to the abrasion nature of fiber reinforced polymer matrix composite on the injection components, many parts are outdated before the design period. Niko, a company specialized in injection molded products, suffers from the short lifetime of the injection nozzles of the molds, due to the use of fiber reinforced and, therefore, more abrasive polymer matrix. To prolong the lifetime of these molds, hardening the susceptible component like the injecting nozzles was a must. In this paper, the laser hardening process is investigated on Unimax, a type of stainless steel. The investigation to get optimal results for the nozzle-case was performed in three steps. First, the optimal parameters for maximum possible hardenability for the investigated nozzle material is investigated on a flat sample, using experimental testing as well as thermal simulation. Next, the effect of an inclination on the maximum temperature is analyzed both by experimental testing and validation through simulation. Finally, the data combined and applied for the nozzle. This paper describes possible strategies and methods for laser hardening of the nozzle to reach hardness of at least 720 HV for the material investigated. It has been proven, that the nozzle can be laser hardened to over 900 HV with the option of even higher results when more precise positioning of the laser can be assured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorptivity" title="absorptivity">absorptivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber%20reinforced%20matrix" title=" fiber reinforced matrix"> fiber reinforced matrix</a>, <a href="https://publications.waset.org/abstracts/search?q=laser%20hardening" title=" laser hardening"> laser hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=Nd%3AYAG%20laser" title=" Nd:YAG laser"> Nd:YAG laser</a> </p> <a href="https://publications.waset.org/abstracts/96315/minimization-of-the-abrasion-effect-of-fiber-reinforced-polymer-matrix-on-stainless-steel-injection-nozzle-through-the-application-of-laser-hardening-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">344</span> Effects of Pre-Storage Invigoration Treatments on Ageing Dendrocalamus hamiltonii Seeds</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Geetika%20Richa">Geetika Richa</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L.%20Sharma"> M. L. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bamboo as an ancient herbal medicine has been used for thousands of years in Asia and goes by many names such as tabashir, banslochan etc. It is often used for its tonic and astringent properties. Modern analysis of bamboos show high amount of vitamins and minerals which makes them valuable as a curative. Bamboo leaf decoction and young shoots are known as remedy for intestinal worms, healing of ulcers and stomach disorders. Bamboos are known to be propagated by large scale plantations but propagation through seeds occurs very limited as they have very short viability of few months. Seeds loses viability over a period of time even under controlled conditions and important factors that affect seed viability is the decline in reserve food material, decrease in membrane integrity and fall in endogenous level of growth hormones. Invigoration treatments that include hydration, dehydration, incorporation of bioactive chemicals such as growth regulators, nutrients and antioxidants etc. improve the seed performance. Our studies were aimed to determine the most effective invigoration treatments to enhance vigour and viability of seeds by following invigoration treatments, i.e., hardening. Treated seeds were stored at controlled temperature and humidity (in desiccators at 4°C). In hardening, chemicals were applied in 3 different concentrations to three replicates of 10 seeds. Hardening was done withGA3, IAA, (each with concentrations of 10 ppm, 20 ppm and 50 ppm), calcium oxychloride, neem leaf powder and clay (each with concentrations of 2%, 5% and 10%). Statistically all the hardening materials were effective but GA3 50 ppm was the most effective one in maintaining germination percentage and vigour index. Hardening treatments increased the germination percentage of seeds, i.e. 86.2%, over control which showed germination percentage of 80.2%. It was concluded that in order to maintain seed viability during storage for longer period of time, invigoration treatments have been found to be very effective. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=invigoration" title="invigoration">invigoration</a>, <a href="https://publications.waset.org/abstracts/search?q=seed%20quality" title=" seed quality"> seed quality</a>, <a href="https://publications.waset.org/abstracts/search?q=viability" title=" viability"> viability</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=membrane%20integrity" title=" membrane integrity"> membrane integrity</a>, <a href="https://publications.waset.org/abstracts/search?q=decoction" title=" decoction "> decoction </a> </p> <a href="https://publications.waset.org/abstracts/38105/effects-of-pre-storage-invigoration-treatments-on-ageing-dendrocalamus-hamiltonii-seeds" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38105.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">321</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">343</span> Cyclic Plastic Deformation of 20MN-MO-NI 55 Steel in Dynamic Strain Ageing Regime</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ashok%20Kumar">Ashok Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarita%20Sahu"> Sarita Sahu</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20N.%20Bar"> H. N. Bar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Low cycle fatigue behavior of a ferritic, martensitic pressure vessel steel at dynamic strain ageing regime of 250°C to 280°C has been investigated. Dynamic strain ageing is a mechanism that has attracted interests of researchers due to its fascinating inexplicable repetitive nature for quite a long time. The interaction of dynamic strain ageing and cyclic plasticity has been studied from the mechanistic point of view. Dynamic strain ageing gives rise to identical serrated flow behavior in tensile and compressive halves of hysteresis loops and this has been found to gives rise to initial cyclic hardening followed by softening behavior, where as in non-DSA regime continuous cyclic softening has been found to be the dominant mechanism. An appreciable sensitivity towards nature of serrations has been observed due to degree of hardening of stable loop. The increase in degree of hardening with strain amplitude in the regime where only A type serrations are present and it decreases with strain amplitude where A+B type of serrations are present. Masing type of locus has been found in the behavior of metal at 280°C. Cyclic Stress Strain curve and Master curve has been constructed to decipher among the fatigue strength and ductility coefficients. Fractographic examinations have also shown a competition between progression of striations and secondary cracking. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20strain%20ageing" title="dynamic strain ageing">dynamic strain ageing</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20cycle%20fatigue" title=" low cycle fatigue"> low cycle fatigue</a>, <a href="https://publications.waset.org/abstracts/search?q=softening" title=" softening"> softening</a> </p> <a href="https://publications.waset.org/abstracts/79210/cyclic-plastic-deformation-of-20mn-mo-ni-55-steel-in-dynamic-strain-ageing-regime" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79210.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">301</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">342</span> Effect of Irradiation on Nano-Indentation Properties and Microstructure of X-750 Ni-Based Superalloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pooyan%20Changizian">Pooyan Changizian</a>, <a href="https://publications.waset.org/abstracts/search?q=Zhongwen%20Yao"> Zhongwen Yao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of current study is to make an excellent correlation between mechanical properties and microstructures of ion irradiated X-750 Ni-based superalloy. Towards this end, two different irradiation procedures were carried out, including single Ni ion irradiation and pre-helium implantation with subsequent Ni ion irradiation. Nano-indentation technique was employed to evaluate the mechanical properties of irradiated material. The nano-hardness measurements depict highly different results for two irradiation procedures. Single ion irradiated X-750 shows softening behavior; however, pre-helium implanted specimens present significant hardening compared to the un-irradiated material. Cross-section TEM examination demonstrates that softening is attributed to the γ׳-precipitate instability (disordering/dissolution) which overcomes the hardening effect of irradiation-induced defects. In contrast, the presence of cavities or helium bubbles is probably the main cause for irradiation-induced hardening of helium implanted samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Inconel%20X-750" title="Inconel X-750">Inconel X-750</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoindentation" title=" nanoindentation"> nanoindentation</a>, <a href="https://publications.waset.org/abstracts/search?q=helium%20bubbles" title=" helium bubbles"> helium bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=defects" title=" defects"> defects</a> </p> <a href="https://publications.waset.org/abstracts/59555/effect-of-irradiation-on-nano-indentation-properties-and-microstructure-of-x-750-ni-based-superalloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59555.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">341</span> An Implementation of Meshless Method for Modeling an Elastoplasticity Coupled to Damage</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sendi%20Zohra">Sendi Zohra</a>, <a href="https://publications.waset.org/abstracts/search?q=Belhadjsalah%20Hedi"> Belhadjsalah Hedi</a>, <a href="https://publications.waset.org/abstracts/search?q=Labergere%20Carl"> Labergere Carl</a>, <a href="https://publications.waset.org/abstracts/search?q=Saanouni%20Khemais"> Saanouni Khemais</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The modeling of mechanical problems including both material and geometric nonlinearities with Finite Element Method (FEM) remains challenging. Meshless methods offer special properties to get rid of well-known drawbacks of the FEM. The main objective of Meshless Methods is to eliminate the difficulty of meshing and remeshing the entire structure by simply insertion or deletion of nodes, and alleviate other problems associated with the FEM, such as element distortion, locking and others. In this study, a robust numerical implementation of an Element Free Galerkin Method for an elastoplastic coupled to damage problem is presented. Several results issued from the numerical simulations by a DynamicExplicit resolution scheme are analyzed and critically compared with Element Finite Method results. Finally, different numerical examples are carried out to demonstrate the efficiency of this method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=damage" title="damage">damage</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20explicit" title=" dynamic explicit"> dynamic explicit</a>, <a href="https://publications.waset.org/abstracts/search?q=elastoplasticity" title=" elastoplasticity"> elastoplasticity</a>, <a href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening" title=" isotropic hardening"> isotropic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=meshless" title=" meshless"> meshless</a> </p> <a href="https://publications.waset.org/abstracts/46273/an-implementation-of-meshless-method-for-modeling-an-elastoplasticity-coupled-to-damage" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">340</span> Mechanical Behavior of 16NC6 Steel Hardened by Burnishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Litim%20Tarek">Litim Tarek</a>, <a href="https://publications.waset.org/abstracts/search?q=Taamallah%20Ouahiba"> Taamallah Ouahiba</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work relates to the physico-geometrical aspect of the surface layers of 16NC6 steel having undergone the burnishing treatment by hard steel ball. The results show that the optimal effects of burnishing are closely linked to the shape and the material of the active part of the device as well as to the surface plastic deformation ability of the material to be treated. Thus the roughness is improved by more than 70%, and the consolidation rate is increased by 30%. In addition, modeling of the rational traction curves provides a work hardening coefficient of up to 0.3 in the presence of burnishing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=16NC6%20steel" title="16NC6 steel">16NC6 steel</a>, <a href="https://publications.waset.org/abstracts/search?q=burnishing" title=" burnishing"> burnishing</a>, <a href="https://publications.waset.org/abstracts/search?q=hardening" title=" hardening"> hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a> </p> <a href="https://publications.waset.org/abstracts/128582/mechanical-behavior-of-16nc6-steel-hardened-by-burnishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128582.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">339</span> Performances of Two-Segment Crash Box with Holes under Oblique Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Moch%20Agus%20Choiron">Moch Agus Choiron</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Crash box design has been developed to obtain optimum energy absorption. In this study, two-segment crash box design with holes is investigated under oblique load. The deformation behavior and crash energy absorption are observed. The analysis was performed using finite element method. The crash test components were impactor, crash box, and fixed rigid base. Impactor and the fixed base material are modelled as a rigid, and crash box material as bilinear isotropic hardening. The models consist of 2 and 4 holes laid within ¼, ½ and ¾ from first segment length. 100 mm aluminum crash box and frontal crash velocity of 16 km/jam were selected. Based on simulation results, it can be concluded that 2 holes located at ¾ has the largest crash energy absorption. This behavior associated with deformation pattern, which produces higher number of folding than other models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crash%20Box" title="crash Box">crash Box</a>, <a href="https://publications.waset.org/abstracts/search?q=two-segments" title=" two-segments"> two-segments</a>, <a href="https://publications.waset.org/abstracts/search?q=holes%20configuration" title=" holes configuration"> holes configuration</a>, <a href="https://publications.waset.org/abstracts/search?q=oblique%20load" title=" oblique load"> oblique load</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation%20pattern" title=" deformation pattern"> deformation pattern</a> </p> <a href="https://publications.waset.org/abstracts/40085/performances-of-two-segment-crash-box-with-holes-under-oblique-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40085.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">338</span> An Investigation of the Strength Deterioration of Forged Aluminum 6082 (T6) Alloy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajveer">Rajveer</a>, <a href="https://publications.waset.org/abstracts/search?q=Abhinav%20Saxena"> Abhinav Saxena</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Das"> Sanjeev Das</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study is focused on the strength of forged aluminum alloy (AA) 6082 (T6). Aluminum alloy 6082 belongs to Al-Mg-Si family which has a wide range of automotive applications. A decrease in the strength of AA 6082 alloy was observed after T6 treatment. The as-received (extruded), forged, and forged + heat treated samples were examined to understand the reason. These examinations were accomplished by optical (OM) and scanning electron microscope (SEM) and X-ray diffraction (XRD) studies. It was observed that the defects had an insignificant effect on the alloy strength. The alloy samples were subjected to age hardening treatment and the time to achieve peak hardening was acquired. Standard tensile specimens were prepared from as-received (extruded), forged, forged + solutionized and forged + solutionized + age hardened. Tensile tests were conducted by Instron universal testing machine. It was observed that there was a significant drop in tensile strength in the case of solutionized sample. The detailed study of the fracture samples showed that the solutionizing after forging was not the best way to increase the strength of Al 6082 alloy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%206082" title="aluminum alloy 6082">aluminum alloy 6082</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a>, <a href="https://publications.waset.org/abstracts/search?q=forging" title=" forging"> forging</a>, <a href="https://publications.waset.org/abstracts/search?q=age%20hardening" title=" age hardening"> age hardening</a> </p> <a href="https://publications.waset.org/abstracts/82119/an-investigation-of-the-strength-deterioration-of-forged-aluminum-6082-t6-alloy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82119.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">337</span> Effect of Linear Thermal Gradient on Steady-State Creep Behavior of Isotropic Rotating Disc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minto%20Rattan">Minto Rattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tania%20Bose"> Tania Bose</a>, <a href="https://publications.waset.org/abstracts/search?q=Neeraj%20Chamoli"> Neeraj Chamoli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present paper investigates the effect of linear thermal gradient on the steady-state creep behavior of rotating isotropic disc using threshold stress based Sherby’s creep law. The composite discs made of aluminum matrix reinforced with silicon carbide particulate has been taken for analysis. The stress and strain rate distributions have been calculated for discs rotating at linear thermal gradation using von Mises’ yield criterion. The material parameters have been estimated by regression fit of the available experimental data. The results are displayed and compared graphically in designer friendly format for the above said temperature profile with the disc operating under uniform temperature profile. It is observed that radial and tangential stresses show minor variation and the strain rates vary significantly in the presence of thermal gradation as compared to disc having uniform temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=creep" title="creep">creep</a>, <a href="https://publications.waset.org/abstracts/search?q=isotropic" title=" isotropic"> isotropic</a>, <a href="https://publications.waset.org/abstracts/search?q=steady-state" title=" steady-state"> steady-state</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20gradient" title=" thermal gradient"> thermal gradient</a> </p> <a href="https://publications.waset.org/abstracts/59198/effect-of-linear-thermal-gradient-on-steady-state-creep-behavior-of-isotropic-rotating-disc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59198.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">336</span> Alternative Coating Compositions by Thermal Arc Spraying to Improve the Contact Heat Treatment in Press Hardening</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Philipp%20Burger">Philipp Burger</a>, <a href="https://publications.waset.org/abstracts/search?q=Jonas%20Sommer"> Jonas Sommer</a>, <a href="https://publications.waset.org/abstracts/search?q=Haneen%20Daoud"> Haneen Daoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Franz%20Hilmer"> Franz Hilmer</a>, <a href="https://publications.waset.org/abstracts/search?q=Uwe%20Glatzel"> Uwe Glatzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Press-hardened structural components made of coated high-strength steel are an essential part of the automotive industry when it comes to weight reduction, safety, and durability. Alternative heat treatment processes, such as contact heating, have been developed to improve the efficiency of this process. However, contact heating of the steel sheets often results in cracking within the Al-Si-coated layer. Therefore, this paper will address the development of alternative coating compositions based on Al-Si-X, suitable for contact heating. For this purpose, robot-assisted thermal arc spray was applied to coat the high-strength steel sheets. This ensured high reproducibility as well as effectiveness. The influence of the coating parameters and the variation of the nozzle geometry on the microstructure of the developed coatings will be discussed. Finally, the surface and mechanical properties after contact heating and press hardening will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=press%20hardening" title="press hardening">press hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=hot%20stamping" title=" hot stamping"> hot stamping</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20spraying" title=" thermal spraying"> thermal spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=arc%20spraying" title=" arc spraying"> arc spraying</a>, <a href="https://publications.waset.org/abstracts/search?q=coating%20compositions" title=" coating compositions"> coating compositions</a> </p> <a href="https://publications.waset.org/abstracts/159998/alternative-coating-compositions-by-thermal-arc-spraying-to-improve-the-contact-heat-treatment-in-press-hardening" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">335</span> Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Carla%20M.%20Machado">Carla M. Machado</a>, <a href="https://publications.waset.org/abstracts/search?q=Andr%C3%A9%20A.%20Silva"> André A. Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Armando%20Bastos"> Armando Bastos</a>, <a href="https://publications.waset.org/abstracts/search?q=Telmo%20G.%20Santos"> Telmo G. Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Pamies%20Teixeira"> J. Pamies Teixeira</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=advanced%20high%20strength%20steel" title="advanced high strength steel">advanced high strength steel</a>, <a href="https://publications.waset.org/abstracts/search?q=Bauschinger%20effect" title=" Bauschinger effect"> Bauschinger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=sheet%20metal%20forming" title=" sheet metal forming"> sheet metal forming</a>, <a href="https://publications.waset.org/abstracts/search?q=springback" title=" springback"> springback</a> </p> <a href="https://publications.waset.org/abstracts/65694/destructive-and-nondestructive-characterization-of-advanced-high-strength-steels-dp10001200" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">227</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">334</span> Kinematic Hardening Parameters Identification with Respect to Objective Function</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marina%20Franulovic">Marina Franulovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20Basan"> Robert Basan</a>, <a href="https://publications.waset.org/abstracts/search?q=Bozidar%20Krizan"> Bozidar Krizan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Constitutive modelling of material behaviour is becoming increasingly important in prediction of possible failures in highly loaded engineering components, and consequently, optimization of their design. In order to account for large number of phenomena that occur in the material during operation, such as kinematic hardening effect in low cycle fatigue behaviour of steels, complex nonlinear material models are used ever more frequently, despite of the complexity of determination of their parameters. As a method for the determination of these parameters, genetic algorithm is good choice because of its capability to provide very good approximation of the solution in systems with large number of unknown variables. For the application of genetic algorithm to parameter identification, inverse analysis must be primarily defined. It is used as a tool to fine-tune calculated stress-strain values with experimental ones. In order to choose proper objective function for inverse analysis among already existent and newly developed functions, the research is performed to investigate its influence on material behaviour modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=genetic%20algorithm" title="genetic algorithm">genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=kinematic%20hardening" title=" kinematic hardening"> kinematic hardening</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20model" title=" material model"> material model</a>, <a href="https://publications.waset.org/abstracts/search?q=objective%20function" title=" objective function"> objective function</a> </p> <a href="https://publications.waset.org/abstracts/3561/kinematic-hardening-parameters-identification-with-respect-to-objective-function" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3561.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=10">10</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=11">11</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=12">12</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=isotropic%20hardening&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>