CINXE.COM
Search results for: manufacturing systems
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: manufacturing systems</title> <meta name="description" content="Search results for: manufacturing systems"> <meta name="keywords" content="manufacturing systems"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="manufacturing systems" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="manufacturing systems"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10981</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: manufacturing systems</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10981</span> Productivity and Structural Design of Manufacturing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryspek%20Usubamatov">Ryspek Usubamatov</a>, <a href="https://publications.waset.org/abstracts/search?q=Tan%20San%20Chin"> Tan San Chin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarken%20Kapaeva"> Sarken Kapaeva</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Productivity of the manufacturing systems depends on technological processes, a technical data of machines and a structure of systems. Technology is presented by the machining mode and data, a technical data presents reliability parameters and auxiliary time for discrete production processes. The term structure of manufacturing systems includes the number of serial and parallel production machines and links between them. Structures of manufacturing systems depend on the complexity of technological processes. Mathematical models of productivity rate for manufacturing systems are important attributes that enable to define best structure by criterion of a productivity rate. These models are important tool in evaluation of the economical efficiency for production systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=productivity" title="productivity">productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=structure" title=" structure"> structure</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems" title=" manufacturing systems"> manufacturing systems</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20design" title=" structural design"> structural design</a> </p> <a href="https://publications.waset.org/abstracts/3403/productivity-and-structural-design-of-manufacturing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3403.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">583</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10980</span> An Evaluation Model for Enhancing Flexibility in Production Systems through Additive Manufacturing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Angela%20Luft">Angela Luft</a>, <a href="https://publications.waset.org/abstracts/search?q=Sebastian%20Bremen"> Sebastian Bremen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolae%20Balc"> Nicolae Balc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing processes have entered large parts of the industry and their range of application have progressed and grown significantly in the course of time. A major advantage of additive manufacturing is the innate flexibility of the machines. This corelates with the ongoing demand of creating highly flexible production environments. However, the potential of additive manufacturing technologies to enhance the flexibility of production systems has not yet been truly considered and quantified in a systematic way. In order to determine the potential of additive manufacturing technologies with regards to the strategic flexibility design in production systems, an integrated evaluation model has been developed, that allows for the simultaneous consideration of both conventional as well as additive production resources. With the described model, an operational scope of action can be identified and quantified in terms of mix and volume flexibility, process complexity, and machine capacity that goes beyond the current cost-oriented approaches and offers a much broader and more holistic view on the potential of additive manufacturing. A respective evaluation model is presented this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20planning" title=" capacity planning"> capacity planning</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20systems" title=" production systems"> production systems</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20production%20planning" title=" strategic production planning"> strategic production planning</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility%20enhancement" title=" flexibility enhancement"> flexibility enhancement</a> </p> <a href="https://publications.waset.org/abstracts/149112/an-evaluation-model-for-enhancing-flexibility-in-production-systems-through-additive-manufacturing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10979</span> Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yas%20Barzegaar">Yas Barzegaar</a>, <a href="https://publications.waset.org/abstracts/search?q=Atrin%20Barzegar"> Atrin Barzegar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert鈥檚 opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20modes" title="failure modes">failure modes</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20rules" title=" fuzzy rules"> fuzzy rules</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title=" fuzzy inference system"> fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/169565/fuzzy-inference-system-for-risk-assessment-evaluation-of-wheat-flour-product-manufacturing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">102</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10978</span> Fuzzy Inference System for Risk Assessment Evaluation of Wheat Flour Product Manufacturing Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atrin%20Barzegar">Atrin Barzegar</a>, <a href="https://publications.waset.org/abstracts/search?q=Yas%20Barzegar"> Yas Barzegar</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefano%20Marrone"> Stefano Marrone</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesco%20Bellini"> Francesco Bellini</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Verde"> Laura Verde</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this research is to develop an intelligent system to analyze the risk level of wheat flour product manufacturing system. The model consists of five Fuzzy Inference Systems in two different layers to analyse the risk of a wheat flour product manufacturing system. The first layer of the model consists of four Fuzzy Inference Systems with three criteria. The output of each one of the Physical, Chemical, Biological and Environmental Failures will be the input of the final manufacturing systems. The proposed model based on Mamdani Fuzzy Inference Systems gives a performance ranking of wheat flour products manufacturing systems. The first step is obtaining data to identify the failure modes from expert鈥檚 opinions. The second step is the fuzzification process to convert crisp input to a fuzzy set., then the IF-then fuzzy rule applied through inference engine, and in the final step, the defuzzification process is applied to convert the fuzzy output into real numbers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=failure%20modes" title="failure modes">failure modes</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20rules" title=" fuzzy rules"> fuzzy rules</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference%20system" title=" fuzzy inference system"> fuzzy inference system</a>, <a href="https://publications.waset.org/abstracts/search?q=risk%20assessment" title=" risk assessment"> risk assessment</a> </p> <a href="https://publications.waset.org/abstracts/170997/fuzzy-inference-system-for-risk-assessment-evaluation-of-wheat-flour-product-manufacturing-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170997.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">75</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10977</span> The Interoperability between CNC Machine Tools and Robot Handling Systems Based on an Object-Oriented Framework</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pouyan%20Jahanbin">Pouyan Jahanbin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20Houshmand"> Mahmoud Houshmand</a>, <a href="https://publications.waset.org/abstracts/search?q=Omid%20Fatahi%20Valilai"> Omid Fatahi Valilai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flexible manufacturing system (FMS) is a manufacturing system having the capability of handling the variations of products features that is the result of ever-changing customer demands. The flexibility of the manufacturing systems help to utilize the resources in a more effective manner. However, the control of such systems would be complicated and challenging. FMS needs CNC machines and robots and other resources for establishing the flexibility and enhancing the efficiency of the whole system. Also it needs to integrate the resources to reach required efficiency and flexibility. In order to reach this goal, an integrator framework is proposed in which the machining data of CNC machine tools is received through a STEP-NC file. The interoperability of the system is achieved by the information system. This paper proposes an information system that its data model is designed based on object oriented approach and is implemented through a knowledge-based system. The framework is connected to a database which is filled with robot鈥檚 control commands. The framework programs the robots by rules embedded in its knowledge based system. It also controls the interactions of CNC machine tools for loading and unloading actions by robot. As a result, the proposed framework improves the integration of manufacturing resources in Flexible Manufacturing Systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CNC%20machine%20tools" title="CNC machine tools">CNC machine tools</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20robots" title=" industrial robots"> industrial robots</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge-based%20systems" title=" knowledge-based systems"> knowledge-based systems</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20recourses%20integration" title=" manufacturing recourses integration"> manufacturing recourses integration</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20manufacturing%20system%20%28FMS%29" title=" flexible manufacturing system (FMS)"> flexible manufacturing system (FMS)</a>, <a href="https://publications.waset.org/abstracts/search?q=object-oriented%20data%20model" title=" object-oriented data model"> object-oriented data model</a> </p> <a href="https://publications.waset.org/abstracts/27404/the-interoperability-between-cnc-machine-tools-and-robot-handling-systems-based-on-an-object-oriented-framework" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27404.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">455</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10976</span> A Framework for Embedding Industry 4.0 in the UAE Defence Manufacturing Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalifa%20Al%20Baloushi">Khalifa Al Baloushi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongwei%20Zhang"> Hongwei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Terrence%20Perera"> Terrence Perera</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Over the last few decades, the government of the UAE has been taking actions to consolidate defense manufacturing entities with the view to build a coherent and modern defense manufacturing base. Whilst these actions have significantly improved the overall capabilities of defense manufacturing; further opportunities exist to radically transform the sector. A comprehensive literature review and data collected from a survey identified three potential areas of improvements, (a) integration of Industry 4.0 technologies and other smart technologies, (b) stronger engagement of small and Medium-sized defense manufacturing companies and (c) Enhancing the national defense policies by embedding best practices from other nations. This research paper presents the design and development of a conceptual framework for the UAE defense industrial ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=industry%204.0" title="industry 4.0">industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=defense%20manufacturing" title=" defense manufacturing"> defense manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=eco-systems" title=" eco-systems"> eco-systems</a>, <a href="https://publications.waset.org/abstracts/search?q=integration" title=" integration"> integration</a> </p> <a href="https://publications.waset.org/abstracts/145808/a-framework-for-embedding-industry-40-in-the-uae-defence-manufacturing-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/145808.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10975</span> Biomimetic Adhesive Pads for Precision Manufacturing Robots</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Yi">Hoon Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minho%20Sung"> Minho Sung</a>, <a href="https://publications.waset.org/abstracts/search?q=Hangil%20Ko"> Hangil Ko</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon%20Kyu%20Kwak"> Moon Kyu Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Hoon%20Eui%20Jeong"> Hoon Eui Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inspired by the remarkable adhesion properties of gecko lizards, bio-inspired dry adhesives with smart adhesion properties have been developed in the last decade. Compared to earlier dry adhesives, the recently developed ones exhibit excellent adhesion strength, smart directional adhesion, and structural robustness. With these unique adhesion properties, bio-inspired dry adhesive pads have strong potential for use in precision industries such as semiconductor or display manufacturing. In this communication, we present a new manufacturing technology based on advanced dry adhesive systems that enable precise manipulation of large-area substrates over repeating cycles without any requirement for external force application. This new manufacturing technique is also highly accurate and environment-friendly, and thus has strong potential as a next-generation clean manufacturing technology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gecko" title="gecko">gecko</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20robot" title=" manufacturing robot"> manufacturing robot</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20manufacturing" title=" precision manufacturing"> precision manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/38058/biomimetic-adhesive-pads-for-precision-manufacturing-robots" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38058.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10974</span> Barriers Facing the Implementation of Lean Manufacturing in Libyan Manufacturing Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abduelmula">Mohamed Abduelmula</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Birkett"> Martin Birkett</a>, <a href="https://publications.waset.org/abstracts/search?q=Chris%20Connor"> Chris Connor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lean Manufacturing has developed from being a set of tools and methods to becoming a management philosophy which can be used to remove or reduce waste in manufacturing processes and so enhance the operational productivity of an enterprise. Several enterprises around the world have applied the lean manufacturing system and gained great improvements. This paper investigates the barriers and obstacles that face Libyan manufacturing companies to implement lean manufacturing. A mixed-method approach is suggested, starting with conducting a questionnaire to get quantitative data then using this to develop semi-structured interviews to collect qualitative data. The findings of the questionnaire results and how these can be used further develop the semi-structured interviews are then discussed. The survey was distributed to 65 manufacturing companies in Libya, and a response rate of 64.6% was obtained. The results showed that these are five main barriers to implementing lean in Libya, namely organizational culture, skills and expertise, and training program, financial capability, top management, and communication. These barriers were also identified from the literature as being significant obstacles to implementing Lean in other countries industries. Having an understanding of the difficulties that face the implementation of lean manufacturing systems, as a new and modern system and using this to develop a suitable framework will help to improve the manufacturing sector in Libya. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=barriers" title=" barriers"> barriers</a>, <a href="https://publications.waset.org/abstracts/search?q=questionnaire" title=" questionnaire"> questionnaire</a>, <a href="https://publications.waset.org/abstracts/search?q=Libyan%20manufacturing%20companies" title=" Libyan manufacturing companies"> Libyan manufacturing companies</a> </p> <a href="https://publications.waset.org/abstracts/75278/barriers-facing-the-implementation-of-lean-manufacturing-in-libyan-manufacturing-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/75278.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10973</span> Advanced Digital Manufacturing: Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdelrahman%20Abdelazim">Abdelrahman Abdelazim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most industries are looking for technologies that are easy to use, efficient and fast to accomplish. To implement these, factories tend to use advanced systems that could alter complicity to simplicity and rudimentary to advancement. Cloud Manufacturing is a new movement that aims to mirror and integrate cloud computing into manufacturing. Amongst cloud manufacturing various advantages are decreasing the human involvements and increasing the dependency on automated machines, which in turns decreases human errors and increases efficiency. A reliable and extraordinary performance processes with minimum errors are highly desired factors of today鈥檚 manufacturers. At the glance it seems to be the best alternative, however, the implementation of a cloud system can be very challenging. This work investigates cloud manufacturing in details, it outlines its advantages and disadvantages by converting a local factory in Kuwait to a cloud-ready system. Initially the flow of the factory鈥檚 manufacturing process has been analyzed identifying the bottlenecks and illustrating how cloud manufacturing can eliminate them. Following this an automation process has been analyzed and implemented. A comparison between the process before and after the adaptation has been carried out showing the effects on the cost, the output and the efficiency of the process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloud%20manufacturing" title="cloud manufacturing">cloud manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuwait%20industrial%20sector" title=" Kuwait industrial sector"> Kuwait industrial sector</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20digital%20manufacturing" title=" advanced digital manufacturing"> advanced digital manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/16143/advanced-digital-manufacturing-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">771</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10972</span> To Study the Performance of FMS under Different Manufacturing Strategies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Ali">Mohammed Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flexible manufacturing system has been studied under different manufacturing strategies. The aim of this paper is to test the impact of number of pallets and routing flexibility (design strategy) on system performance operating at different sequencing and dispatching rules (control strategies) at unbalanced load condition (planning strategies). A computer simulation model is developed to evaluate the effects of aforementioned strategies on the make-span time, which is taken as the system performance measure. The impact of number of pallets is shown with the different levels of routing flexibility. In this paper, the same manufacturing system is modeled under different combination of sequencing and dispatching rules. The result of the simulation shows that there is definite range of pallets for each level of routing flexibility at which the systems performs satisfactorily. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20manufacturing%20system" title="flexible manufacturing system">flexible manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=makespan" title=" makespan"> makespan</a> </p> <a href="https://publications.waset.org/abstracts/44004/to-study-the-performance-of-fms-under-different-manufacturing-strategies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">668</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10971</span> Internal Product Management: The Key to Achieving Digital Maturity and Business Agility for Manufacturing IT Organizations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frederick%20Johnson">Frederick Johnson</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Product management has a long and well-established history within the consumer goods industry, despite being one of the most obscure aspects of brand management. Many global manufacturing organizations are now opting for external cloud-based Manufacturing Execution Systems (MES) to replace costly and outdated monolithic MES solutions. Other global manufacturing leaders are restructuring their organizations to support human-centered values, agile methodologies, and fluid operating principles. Still, industry-leading organizations struggle to apply the appropriate framework for managing evolving external MES solutions as internal "digital products." Product management complements these current trends in technology and philosophical thinking in the market. This paper discusses the central problems associated with adopting product management processes by analyzing its traditional theories and characteristics. Considering these ideas, the article then constructs a translated internal digital product management framework by combining new and existing approaches and principles. The report concludes by demonstrating the framework's capabilities and potential effectiveness in achieving digital maturity and business agility within a manufacturing environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=internal%20product%20management" title="internal product management">internal product management</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20transformation" title=" digital transformation"> digital transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20information%20technology" title=" manufacturing information technology"> manufacturing information technology</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20execution%20systems" title=" manufacturing execution systems"> manufacturing execution systems</a> </p> <a href="https://publications.waset.org/abstracts/135214/internal-product-management-the-key-to-achieving-digital-maturity-and-business-agility-for-manufacturing-it-organizations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10970</span> Framework for Improving Manufacturing "Implicit Competitiveness" by Enhancing Monozukuri Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Togawa">Takahiro Togawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Huu%20Phuc"> Nguyen Huu Phuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Oke%20Oktavianty"> Oke Oktavianty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our research focuses on a framework which analyses the relationship between product/process architecture, manufacturing organizational capability and manufacturing "implicit competitiveness" in order to improve manufacturing implicit competitiveness. We found that 1) there is a relationship between architecture-based manufacturing organizational capability and manufacturing implicit competitiveness, and 2) analysis and measures conducted in manufacturing organizational capability proved effective to improve manufacturing implicit competitiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=implicit%20competitiveness" title="implicit competitiveness">implicit competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=QCD" title=" QCD"> QCD</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20capacity" title=" organizational capacity"> organizational capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20strategy" title=" architectural strategy"> architectural strategy</a> </p> <a href="https://publications.waset.org/abstracts/64771/framework-for-improving-manufacturing-implicit-competitiveness-by-enhancing-monozukuri-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10969</span> A Review of the Run to Run (R to R) Control in the Manufacturing Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Aghapouramin">Khalil Aghapouramin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Ranjbar"> Mostafa Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Run- to- Run (R2 R) control was developed in order to monitor and control different semiconductor manufacturing processes based upon the fundamental engineering frameworks. This technology allows rectification in the optimum direction. This control always had a significant potency in which was appeared in a variety of processes. The term run to run refers to the case where the act of control would take with the aim of getting batches of silicon wafers which produced in a manufacturing process. In the present work, a brief review about run-to-run control investigated which mainly is effective in the manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Run-to-Run%20%28R2R%29%20control" title="Run-to-Run (R2R) control">Run-to-Run (R2R) control</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20in%20engineering" title=" process in engineering"> process in engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20controls" title=" manufacturing controls"> manufacturing controls</a> </p> <a href="https://publications.waset.org/abstracts/48352/a-review-of-the-run-to-run-r-to-r-control-in-the-manufacturing-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10968</span> Development of Gamma Configuration Stirling Engine Using Polymeric and Metallic Additive Manufacturing for Education</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Otegui">J. Otegui</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Agirre"> M. Agirre</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Cestau"> M. A. Cestau</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Erauskin"> H. Erauskin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The increasing accessibility of mid-priced additive manufacturing (AM) systems offers a chance to incorporate this technology into engineering instruction. Furthermore, AM facilitates the creation of manufacturing designs, enhancing the efficiency of various machines. One example of these machines is the Stirling cycle engine. It encompasses complex thermodynamic machinery, revealing various aspects of mechanical engineering expertise upon closer inspection. In this publication, the application of Stirling Engines fabricated via additive manufacturing techniques will be showcased for the purpose of instructive design and product enhancement. The performance of a Stirling engine's conventional displacer and piston is contrasted. The outcomes of utilizing this instructional tool in teaching are demonstrated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=3D%20printing" title="3D printing">3D printing</a>, <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title=" additive manufacturing"> additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20design" title=" mechanical design"> mechanical design</a>, <a href="https://publications.waset.org/abstracts/search?q=stirling%20engine." title=" stirling engine."> stirling engine.</a> </p> <a href="https://publications.waset.org/abstracts/185276/development-of-gamma-configuration-stirling-engine-using-polymeric-and-metallic-additive-manufacturing-for-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/185276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">51</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10967</span> A Comparison of Neural Network and DOE-Regression Analysis for Predicting Resource Consumption of Manufacturing Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Frank%20Kuebler">Frank Kuebler</a>, <a href="https://publications.waset.org/abstracts/search?q=Rolf%20Steinhilper"> Rolf Steinhilper</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Artificial neural networks (ANN) as well as Design of Experiments (DOE) based regression analysis (RA) are mainly used for modeling of complex systems. Both methodologies are commonly applied in process and quality control of manufacturing processes. Due to the fact that resource efficiency has become a critical concern for manufacturing companies, these models needs to be extended to predict resource-consumption of manufacturing processes. This paper describes an approach to use neural networks as well as DOE based regression analysis for predicting resource consumption of manufacturing processes and gives a comparison of the achievable results based on an industrial case study of a turning process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20neural%20network" title="artificial neural network">artificial neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20of%20experiments" title=" design of experiments"> design of experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=regression%20analysis" title=" regression analysis"> regression analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20efficiency" title=" resource efficiency"> resource efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20process" title=" manufacturing process"> manufacturing process</a> </p> <a href="https://publications.waset.org/abstracts/8140/a-comparison-of-neural-network-and-doe-regression-analysis-for-predicting-resource-consumption-of-manufacturing-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/8140.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">524</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10966</span> Industrial Applications of Additive Manufacturing and 3D Printing Technology: A Review from South Africa Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Micheal%20O.%20Alabi">Micheal O. Alabi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing (AM) is the official industry standard term (ASTM F2792) for all applications of the technology which is also known as 3D printing technology. It is defined as the process of joining materials to make objects from 3D model data, and it is usually layer upon layer, as opposed to subtractive manufacturing methodologies. This technology has gained significant interest within the academic, research institute and industry because of its ability to create complex geometries with customizable material properties. Despite the late adoption of the technology, additive manufacturing has been active in South Africa for past 21 years and it is predicted that additive manufacturing technology will play a significant and game-changing role in the fourth industrial revolution and in particular it promises to play an ever-growing role in efforts to re-industrialize the economy of South Africa. At the end of 2006, there are approximately ninety 3D printers in South Africa and in 2015 it was estimated that there are 3500 additive manufacturing systems and 3D printers in circulation in South Africa. A reasonable number of these additive manufacturing machines are in the high end of the market, in science councils and higher education institutions and this shows that the future of additive manufacturing in South Africa is very brighter compared to other African countries. This paper reviews the past and current industrial applications of additive manufacturing in South Africa from the academic research and industry perspective and what are the benefits of this technology to manufacturing companies and industrial sectors in the country. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=3D%20printing%20technology" title=" 3D printing technology"> 3D printing technology</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20applications" title=" industrial applications"> industrial applications</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/62748/industrial-applications-of-additive-manufacturing-and-3d-printing-technology-a-review-from-south-africa-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/62748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10965</span> Sustainable Manufacturing Framework for Small and Medium Enterprises</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rajan%20Deglurkar">Rajan Deglurkar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research carried out in this piece of work is on 'Framework of Sustainable Manufacturing for Small and Medium Enterprises'. It consists of elucidation of concepts about sustainable manufacturing and sustainable product development with critical review performed on seven techniques of sustainable manufacturing. The work also covers the survey about critical review of awareness in the market with respect to the manufacturers and the consumers. The factors and challenges for sustainable manufacturing implementation are reviewed and simple framework is constructed for the small and medium enterprise for successful implementation of sustainable manufacturing and sustainable product. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title="sustainable development">sustainable development</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20manufacturing" title=" sustainable manufacturing"> sustainable manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20efficiency" title=" resource efficiency"> resource efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=framework%20for%20sustainable%20manufacturing" title=" framework for sustainable manufacturing"> framework for sustainable manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/11856/sustainable-manufacturing-framework-for-small-and-medium-enterprises" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11856.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10964</span> Knowledge and Ontology Engineering in Continuous Monitoring of Production Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maciej%20Zar%C4%99ba">Maciej Zar臋ba</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C5%82awomir%20Lasota"> S艂awomir Lasota</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The monitoring of manufacturing processes is an important issue in nowadays ERP systems. The identification and analysis of appropriate data for the units that take part in the production process are ones of the most crucial problems. In this paper, the authors introduce a new approach towards modelling the relation between production units, signals, and factors possible to obtain from the production system. The main idea for the system is based on the ontology of production units. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20operation%20management" title="manufacturing operation management">manufacturing operation management</a>, <a href="https://publications.waset.org/abstracts/search?q=OWL" title=" OWL"> OWL</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology%20implementation" title=" ontology implementation"> ontology implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=ontology%20modeling" title=" ontology modeling"> ontology modeling</a> </p> <a href="https://publications.waset.org/abstracts/155251/knowledge-and-ontology-engineering-in-continuous-monitoring-of-production-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/155251.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10963</span> Practical Application of Business Processes Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Gregu%C5%A1ov%C3%A1">M. Gregu拧ov谩</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Schindlerov%C3%A1"> V. Schindlerov谩</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20%C5%A0ajdlerov%C3%A1"> I. 艩ajdlerov谩</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Mohyla"> P. Mohyla</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Kedro%C5%88"> J. Kedro艌</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Company managers are always looking for more and more opportunities to succeed in today's fiercely competitive market. Maintain your place among the successful companies on the market today or come up with a revolutionary business idea; it is much more difficult than before. Each new or improved method, tools, or the approach that can improve the functioning of business processes or even the entire system is worth checking and verification. The use of simulation in the design of manufacturing systems and their management in practice is one of the ways without increased risk to find the optimal parameters of manufacturing processes and systems. The paper presents an example of using simulation to solve the bottleneck problem in concrete company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=practical%20applications" title="practical applications">practical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20processes" title=" business processes"> business processes</a>, <a href="https://publications.waset.org/abstracts/search?q=systems" title=" systems"> systems</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/6408/practical-application-of-business-processes-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6408.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">637</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10962</span> Testing a Flexible Manufacturing System Facility Production Capacity through Discrete Event Simulation: Automotive Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justyna%20Rybicka">Justyna Rybicka</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Tiwari"> Ashutosh Tiwari</a>, <a href="https://publications.waset.org/abstracts/search?q=Shane%20Enticott"> Shane Enticott</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the age of automation and computation aiding manufacturing, it is clear that manufacturing systems have become more complex than ever before. Although technological advances provide the capability to gain more value with fewer resources, sometimes utilisation of the manufacturing capabilities available to organisations is difficult to achieve. Flexible manufacturing systems (FMS) provide a unique capability to manufacturing organisations where there is a need for product range diversification by providing line efficiency through production flexibility. This is very valuable in trend driven production set-ups or niche volume production requirements. Although FMS provides flexible and efficient facilities, its optimal set-up is key in achieving production performance. As many variables are interlinked due to the flexibility provided by the FMS, analytical calculations are not always sufficient to predict the FMS’ performance. Simulation modelling is capable of capturing the complexity and constraints associated with FMS. This paper demonstrates how discrete event simulation (DES) can address complexity in an FMS to optimise the production line performance. A case study of an automotive FMS is presented. The DES model demonstrates different configuration options depending on prioritising objectives: utilisation and throughput. Additionally, this paper provides insight into understanding the impact of system set-up constraints on the FMS performance and demonstrates the exploration into the optimal production set-up. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=discrete%20event%20simulation" title="discrete event simulation">discrete event simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20manufacturing%20system" title=" flexible manufacturing system"> flexible manufacturing system</a>, <a href="https://publications.waset.org/abstracts/search?q=capacity%20performance" title=" capacity performance"> capacity performance</a>, <a href="https://publications.waset.org/abstracts/search?q=automotive" title=" automotive"> automotive</a> </p> <a href="https://publications.waset.org/abstracts/43018/testing-a-flexible-manufacturing-system-facility-production-capacity-through-discrete-event-simulation-automotive-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">327</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10961</span> Designing of Tooling Solution for Material Handling in Highly Automated Manufacturing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Umair">Muhammad Umair</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20%20Nikolaev"> Yuri Nikolaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Denis%20Artemov"> Denis Artemov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ighor%20Uzhinsky"> Ighor Uzhinsky</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A flexible manufacturing system is an integral part of a smart factory of industry 4.0 in which every machine is interconnected and works autonomously. Robots are in the process of replacing humans in every industrial sector. As the cyber-physical-system (CPS) and artificial intelligence (AI) are advancing, the manufacturing industry is getting more dependent on computers than human brains. This modernization has boosted the production with high quality and accuracy and shifted from classic production to smart manufacturing systems. However, material handling for such automated productions is a challenge and needs to be addressed with the best possible solution. Conventional clamping systems are designed for manual work and not suitable for highly automated production systems. Researchers and engineers are trying to find the most economical solution for loading/unloading and transportation workpieces from a warehouse to a machine shop for machining operations and back to the warehouse without human involvement. This work aims to propose an advanced multi-shape tooling solution for highly automated manufacturing systems. The currently obtained result shows that it could function well with automated guided vehicles (AGVs) and modern conveyor belts. The proposed solution is following requirements to be automation-friendly, universal for different part geometry and production operations. We used a bottom-up approach in this work, starting with studying different case scenarios and their limitations and finishing with the general solution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber%20physics%20system" title=" cyber physics system"> cyber physics system</a>, <a href="https://publications.waset.org/abstracts/search?q=Industry%204.0" title=" Industry 4.0"> Industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20handling" title=" material handling"> material handling</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20factory" title=" smart factory"> smart factory</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20manufacturing%20system" title=" flexible manufacturing system"> flexible manufacturing system</a> </p> <a href="https://publications.waset.org/abstracts/135520/designing-of-tooling-solution-for-material-handling-in-highly-automated-manufacturing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">131</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10960</span> Manufacturing Facility Location Selection: A Numercal Taxonomy Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seifoddini%20Hamid">Seifoddini Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Mardikoraeem%20Mahsa"> Mardikoraeem Mahsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghorayshi%20Roya"> Ghorayshi Roya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing facility location selection is an important strategic decision for many industrial corporations. In this paper, a new approach to the manufacturing location selection problem is proposed. In this approach, cluster analysis is employed to identify suitable manufacturing locations based on economic, social, environmental, and political factors. These factors are quantified using the existing real world data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20facility" title="manufacturing facility">manufacturing facility</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20sites" title=" manufacturing sites"> manufacturing sites</a>, <a href="https://publications.waset.org/abstracts/search?q=real%20world%20data" title=" real world data"> real world data</a> </p> <a href="https://publications.waset.org/abstracts/25361/manufacturing-facility-location-selection-a-numercal-taxonomy-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25361.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">563</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10959</span> Potentials of Additive Manufacturing: An Approach to Increase the Flexibility of Production Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Luft">A. Luft</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bremen"> S. Bremen</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Balc"> N. Balc</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The task of flexibility planning and design, just like factory planning, for example, is to create the long-term systemic framework that constitutes the restriction for short-term operational management. This is a strategic challenge since, due to the decision defect character of the underlying flexibility problem, multiple types of flexibility need to be considered over the course of various scenarios, production programs, and production system configurations. In this context, an evaluation model has been developed that integrates both conventional and additive resources on a basic task level and allows the quantification of flexibility enhancement in terms of mix and volume flexibility, complexity reduction, and machine capacity. The model helps companies to decide in early decision-making processes about the potential gains of implementing additive manufacturing technologies on a strategic level. For companies, it is essential to consider both additive and conventional manufacturing beyond pure unit costs. It is necessary to achieve an integrative view of manufacturing that incorporates both additive and conventional manufacturing resources and quantifies their potential with regard to flexibility and manufacturing complexity. This also requires a structured process for the strategic production systems design that spans the design of various scenarios and allows for multi-dimensional and comparative analysis. A respective guideline for the planning of additive resources on a strategic level is being laid out in this paper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20system%20design" title=" production system design"> production system design</a>, <a href="https://publications.waset.org/abstracts/search?q=flexibility%20enhancement" title=" flexibility enhancement"> flexibility enhancement</a>, <a href="https://publications.waset.org/abstracts/search?q=strategic%20guideline" title=" strategic guideline"> strategic guideline</a> </p> <a href="https://publications.waset.org/abstracts/149117/potentials-of-additive-manufacturing-an-approach-to-increase-the-flexibility-of-production-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10958</span> A Classical Method of Optimizing Manufacturing Systems Using a Number of Industrial Engineering Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20M.%20Ikome">John M. Ikome</a>, <a href="https://publications.waset.org/abstracts/search?q=Martha%20E.%20Ikome"> Martha E. Ikome</a>, <a href="https://publications.waset.org/abstracts/search?q=Therese%20Van%20Wyk"> Therese Van Wyk</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Productivity optimization of a company can significantly increase the company’s output and productivity which can be in the form of corrective actions of ineffective activities, process simplification, and reduction of variations, responsiveness, and reduction of set-up-time which are all under the classification of waste within the manufacturing environment. Deriving a means to eliminate a number of these issues has a key importance for manufacturing organization. This paper focused on a number of industrial engineering techniques which include a cause and effect diagram, to identify and optimize the method or systems being used. Based on our results, it shows that there are a number of variations within the production processes that can significantly disrupt the expected output. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=optimization" title="optimization">optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=fishbone" title=" fishbone"> fishbone</a>, <a href="https://publications.waset.org/abstracts/search?q=diagram" title=" diagram"> diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/77025/a-classical-method-of-optimizing-manufacturing-systems-using-a-number-of-industrial-engineering-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77025.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10957</span> Stochastic Modeling and Productivity Analysis of a Flexible Manufacturing System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Savsar">Mehmet Savsar</a>, <a href="https://publications.waset.org/abstracts/search?q=Majid%20Aldaihani"> Majid Aldaihani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flexible Manufacturing Systems (FMS) are used to produce a variety of parts on the same equipment. Therefore, their utilization is higher than traditional machining systems. Higher utilization, on the other hand, results in more frequent equipment failures and additional need for maintenance. Therefore, it is necessary to carefully analyze operational characteristics and productivity of FMS or Flexible Manufacturing Cells (FMC), which are smaller configuration of FMS, before installation or during their operation. Appropriate models should be developed to determine production rates based on operational conditions, including equipment reliability, availability, and repair capacity. In this paper, a stochastic model is developed for an automated FMC system, which consists of two machines served by two robots and a single repairman. The model is used to determine system productivity and equipment utilization under different operational conditions, including random machine failures, random repairs, and limited repair capacity. The results are compared to previous study results for FMC system with sufficient repair capacity assigned to each machine. The results show that the model will be useful for design engineers and operational managers to analyze performance of manufacturing systems at the design or operational stages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flexible%20manufacturing" title="flexible manufacturing">flexible manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=FMS" title=" FMS"> FMS</a>, <a href="https://publications.waset.org/abstracts/search?q=FMC" title=" FMC"> FMC</a>, <a href="https://publications.waset.org/abstracts/search?q=stochastic%20modeling" title=" stochastic modeling"> stochastic modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=production%20rate" title=" production rate"> production rate</a>, <a href="https://publications.waset.org/abstracts/search?q=reliability" title=" reliability"> reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=availability" title=" availability"> availability</a> </p> <a href="https://publications.waset.org/abstracts/22157/stochastic-modeling-and-productivity-analysis-of-a-flexible-manufacturing-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22157.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">516</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10956</span> Smart Lean Manufacturing in the Context of Industry 4.0: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Ramadan">M. Ramadan</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Salah"> B. Salah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper introduces a framework to digitalize lean manufacturing tools to enhance smart lean-based manufacturing environments or Lean 4.0 manufacturing systems. The paper discusses the integration between lean tools and the powerful features of recent real-time data capturing systems with the help of Information and Communication Technologies (ICT) to develop an intelligent real-time monitoring and controlling system of production operations concerning lean targets. This integration is represented in the Lean 4.0 system called Dynamic Value Stream Mapping (DVSM). Moreover, the paper introduces the practice of Radio Frequency Identification (RFID) and ICT to smartly support lean tools and practices during daily production runs to keep the lean system alive and effective. This work introduces a practical description of how the lean method tools 5S, standardized work, and poka-yoke can be digitalized and smartly monitored and controlled through DVSM. A framework of the three tools has been discussed and put into practice in a German switchgear manufacturer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Industry%204.0" title=" Industry 4.0"> Industry 4.0</a>, <a href="https://publications.waset.org/abstracts/search?q=radio%20frequency%20identification" title=" radio frequency identification"> radio frequency identification</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20stream%20mapping" title=" value stream mapping"> value stream mapping</a> </p> <a href="https://publications.waset.org/abstracts/103104/smart-lean-manufacturing-in-the-context-of-industry-40-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10955</span> A Construct to Perform in Situ Deformation Measurement of Material Extrusion-Fabricated Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Nelson">Daniel Nelson</a>, <a href="https://publications.waset.org/abstracts/search?q=Valeria%20La%20Saponara"> Valeria La Saponara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Material extrusion is an additive manufacturing modality that continues to show great promise in the ability to create low-cost, highly intricate, and exceedingly useful structural elements. As more capable and versatile filament materials are devised, and the resolution of manufacturing systems continues to increase, the need to understand and predict manufacturing-induced warping will gain ever greater importance. The following study presents an in situ remote sensing and data analysis construct that allows for the in situ mapping and quantification of surface displacements induced by residual stresses on a specified test structure. This proof-of-concept experimental process shows that it is possible to provide designers and manufacturers with insight into the manufacturing parameters that lead to the manifestation of these deformations and a greater understanding of the behavior of these warping events over the course of the manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=deformation" title=" deformation"> deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20image%20correlation" title=" digital image correlation"> digital image correlation</a>, <a href="https://publications.waset.org/abstracts/search?q=fused%20filament%20fabrication" title=" fused filament fabrication"> fused filament fabrication</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=warping" title=" warping"> warping</a> </p> <a href="https://publications.waset.org/abstracts/173237/a-construct-to-perform-in-situ-deformation-measurement-of-material-extrusion-fabricated-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173237.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">88</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10954</span> Practical Application of Simulation of Business Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%C3%A9ta%20Gregu%C5%A1ov%C3%A1">Mark茅ta Gregu拧ov谩</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladim%C3%ADra%20Schindlerov%C3%A1"> Vladim铆ra Schindlerov谩</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20%C5%A0ajdlerov%C3%A1"> Ivana 艩ajdlerov谩</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Mohyla"> Petr Mohyla</a>, <a href="https://publications.waset.org/abstracts/search?q=Jan%20Kedro%C5%88"> Jan Kedro艌</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Company managers are always looking for more and more opportunities to succeed in today's fiercely competitive market. To maintain your place among the successful companies on the market today or to come up with a revolutionary business idea is much more difficult than before. Each new or improved method, tool, or approach that can improve the functioning of business processes or even of the entire system is worth checking and verification. The use of simulation in the design of manufacturing systems and their management in practice is one of the ways without increased risk, which makes it possible to find the optimal parameters of manufacturing processes and systems. The paper presents an example of use of simulation for solution of the bottleneck problem in the concrete company. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=practical%20applications" title="practical applications">practical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20processes" title=" business processes"> business processes</a>, <a href="https://publications.waset.org/abstracts/search?q=systems" title=" systems"> systems</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/2631/practical-application-of-simulation-of-business-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2631.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10953</span> Distributed Manufacturing (DM)- Smart Units and Collaborative Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hermann%20Kuehnle">Hermann Kuehnle</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Developments in ICT totally reshape manufacturing as machines, objects and equipment on the shop floors will be smart and online. Interactions with virtualizations and models of a manufacturing unit will appear exactly as interactions with the unit itself. These virtualizations may be driven by providers with novel ICT services on demand that might jeopardize even well established business models. Context aware equipment, autonomous orders, scalable machine capacity or networkable manufacturing unit will be the terminology to get familiar with in manufacturing and manufacturing management. Such newly appearing smart abilities with impact on network behavior, collaboration procedures and human resource development will make distributed manufacturing a preferred model to produce. Computing miniaturization and smart devices revolutionize manufacturing set ups, as virtualizations and atomization of resources unwrap novel manufacturing principles. Processes and resources obey novel specific laws and have strategic impact on manufacturing and major operational implications. Mechanisms from distributed manufacturing engaging interacting smart manufacturing units and decentralized planning and decision procedures already demonstrate important effects from this shift of focus towards collaboration and interoperability. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=autonomous%20unit" title="autonomous unit">autonomous unit</a>, <a href="https://publications.waset.org/abstracts/search?q=networkability" title=" networkability"> networkability</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20manufacturing%20unit" title=" smart manufacturing unit"> smart manufacturing unit</a>, <a href="https://publications.waset.org/abstracts/search?q=virtualization" title=" virtualization"> virtualization</a> </p> <a href="https://publications.waset.org/abstracts/19770/distributed-manufacturing-dm-smart-units-and-collaborative-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10952</span> An Advanced Method of Minimizing Unforeseen Disruptions within a Manufacturing System: A Case Study of Amico, South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Max%20Moleke">Max Moleke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing industries are faced with different types of problems. One of the most important role of controlling and monitoring a production process is to actually determine how to deal with unforeseen disruption when they arise. A majority of manufacturing tern to spend huge amount of money in order to meet up with their customers requirements and demand but due to instabilities within the manufacturing process, this objectives and goals are difficult to be achieved. In this research, we have developed a feedback control system that can minimize instability within the manufacturing system in order to boost the system output and productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disruption" title="disruption">disruption</a>, <a href="https://publications.waset.org/abstracts/search?q=scheduling" title=" scheduling"> scheduling</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=instability" title=" instability"> instability</a> </p> <a href="https://publications.waset.org/abstracts/51225/an-advanced-method-of-minimizing-unforeseen-disruptions-within-a-manufacturing-system-a-case-study-of-amico-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51225.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">328</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=366">366</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=367">367</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20systems&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>