CINXE.COM
KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake | SpringerLink
<!DOCTYPE html> <html lang="en" class="no-js"> <head> <meta charset="UTF-8"> <meta http-equiv="X-UA-Compatible" content="IE=edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <meta name="applicable-device" content="pc,mobile"> <meta name="access" content="Yes"> <meta name="twitter:site" content="SpringerLink"/> <meta name="twitter:card" content="summary"/> <meta name="twitter:image:alt" content="Content cover image"/> <meta name="twitter:title" content="KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake"/> <meta name="twitter:description" content="A data lake is a loosely-structured collection of data at large scale that is usually fed with almost no requirement of data quality. This approach aims at eliminating any human effort before the actual exploitation of data, but the problem is only delayed since..."/> <meta name="twitter:image" content="https://static-content.springer.com/cover/book/978-3-319-91563-0.jpg"/> <meta name="dc.identifier" content="10.1007/978-3-319-91563-0_29"/> <meta name="DOI" content="10.1007/978-3-319-91563-0_29"/> <meta name="dc.description" content="A data lake is a loosely-structured collection of data at large scale that is usually fed with almost no requirement of data quality. This approach aims at eliminating any human effort before the actual exploitation of data, but the problem is only delayed since..."/> <meta name="citation_pdf_url" content="https://link.springer.com/content/pdf/10.1007/978-3-319-91563-0_29.pdf"/> <meta name="citation_fulltext_html_url" content="https://link.springer.com/chapter/10.1007/978-3-319-91563-0_29"/> <meta name="citation_abstract_html_url" content="https://link.springer.com/chapter/10.1007/978-3-319-91563-0_29"/> <meta name="citation_inbook_title" content="Advanced Information Systems Engineering"/> <meta name="citation_title" content="KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake"/> <meta name="citation_publication_date" content="2018"/> <meta name="citation_firstpage" content="474"/> <meta name="citation_lastpage" content="489"/> <meta name="citation_language" content="en"/> <meta name="citation_doi" content="10.1007/978-3-319-91563-0_29"/> <meta name="citation_issn" content="1611-3349"/> <meta name="citation_isbn" content="978-3-319-91563-0"/> <meta name="citation_conference_series_id" content="springer/caise, dblp/caise"/> <meta name="citation_conference_title" content="International Conference on Advanced Information Systems Engineering"/> <meta name="citation_conference_abbrev" content="CAiSE"/> <meta name="size" content="185011"/> <meta name="description" content="A data lake is a loosely-structured collection of data at large scale that is usually fed with almost no requirement of data quality. This approach aims at eliminating any human effort before the actual exploitation of data, but the problem is only delayed since..."/> <meta name="citation_author" content="Maccioni, Antonio"/> <meta name="citation_author_email" content="amaccioni@collectivei.com"/> <meta name="citation_author_institution" content="Collective[i]"/> <meta name="citation_author" content="Torlone, Riccardo"/> <meta name="citation_author_email" content="torlone@dia.uniroma3.it"/> <meta name="citation_author_institution" content="Università Roma Tre"/> <meta name="citation_publisher" content="Springer, Cham"/> <meta name="citation_springer_api_url" content="http://api.springer.com/xmldata/jats?q=doi:10.1007/978-3-319-91563-0_29&api_key="/> <meta name="format-detection" content="telephone=no"/> <meta property="og:url" content="https://link.springer.com/chapter/10.1007/978-3-319-91563-0_29"/> <meta property="og:type" content="Paper"/> <meta property="og:site_name" content="SpringerLink"/> <meta property="og:title" content="KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake"/> <meta property="og:description" content="A data lake is a loosely-structured collection of data at large scale that is usually fed with almost no requirement of data quality. This approach aims at eliminating any human effort before the actual exploitation of data, but the problem is only delayed since..."/> <meta property="og:image" content="https://static-content.springer.com/cover/book/978-3-319-91563-0.jpg"/> <title>KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake | SpringerLink</title> <link rel="apple-touch-icon" sizes="180x180" href=/oscar-static/img/favicons/darwin/apple-touch-icon-92e819bf8a.png> <link rel="icon" type="image/png" sizes="192x192" href=/oscar-static/img/favicons/darwin/android-chrome-192x192-6f081ca7e5.png> <link rel="icon" type="image/png" sizes="32x32" href=/oscar-static/img/favicons/darwin/favicon-32x32-1435da3e82.png> <link rel="icon" type="image/png" sizes="16x16" href=/oscar-static/img/favicons/darwin/favicon-16x16-ed57f42bd2.png> <link rel="shortcut icon" data-test="shortcut-icon" href=/oscar-static/img/favicons/darwin/favicon-c6d59aafac.ico> <meta name="theme-color" content="#e6e6e6"> <script>(function(H){H.className=H.className.replace(/\bno-js\b/,'js')})(document.documentElement)</script> <!-- Please see discussion: https://github.com/springernature/frontend-open-space/issues/316--> <!--TODO: Implement alternative to CTM in here if the discussion concludes we do not continue with CTM as a practice--> <link rel="stylesheet" media="print" href=/oscar-static/app-springerlink/css/print-b8af42253b.css> <style> html{text-size-adjust:100%;line-height:1.15}body{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;margin:0}details,main{display:block}h1{font-size:2em;margin:.67em 0}a{background-color:transparent;color:#025e8d}sub{bottom:-.25em;font-size:75%;line-height:0;position:relative;vertical-align:baseline}img{border:0;height:auto;max-width:100%;vertical-align:middle}button,input{font-family:inherit;font-size:100%;line-height:1.15;margin:0;overflow:visible}button{text-transform:none}[type=button],[type=submit],button{-webkit-appearance:button}[type=search]{-webkit-appearance:textfield;outline-offset:-2px}summary{display:list-item}[hidden]{display:none}button{cursor:pointer}svg{height:1rem;width:1rem} </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { body{background:#fff;color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;line-height:1.8;min-height:100%}a{color:#025e8d;text-decoration:underline;text-decoration-skip-ink:auto}button{cursor:pointer}img{border:0;height:auto;max-width:100%;vertical-align:middle}html{box-sizing:border-box;font-size:100%;height:100%;overflow-y:scroll}h1{font-size:2.25rem}h2{font-size:1.75rem}h1,h2,h4{font-weight:700;line-height:1.2}h4{font-size:1.25rem}body{font-size:1.125rem}*{box-sizing:inherit}p{margin-bottom:2rem;margin-top:0}p:last-of-type{margin-bottom:0}.c-ad{text-align:center}@media only screen and (min-width:480px){.c-ad{padding:8px}}.c-ad--728x90{display:none}.c-ad--728x90 .c-ad__inner{min-height:calc(1.5em + 94px)}@media only screen and (min-width:876px){.js .c-ad--728x90{display:none}}.c-ad__label{color:#333;font-size:.875rem;font-weight:400;line-height:1.5;margin-bottom:4px}.c-ad__label,.c-status-message{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-status-message{align-items:center;box-sizing:border-box;display:flex;position:relative;width:100%}.c-status-message :last-child{margin-bottom:0}.c-status-message--boxed{background-color:#fff;border:1px solid #ccc;line-height:1.4;padding:16px}.c-status-message__heading{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700}.c-status-message__icon{fill:currentcolor;display:inline-block;flex:0 0 auto;height:1.5em;margin-right:8px;transform:translate(0);vertical-align:text-top;width:1.5em}.c-status-message__icon--top{align-self:flex-start}.c-status-message--info .c-status-message__icon{color:#003f8d}.c-status-message--boxed.c-status-message--info{border-bottom:4px solid #003f8d}.c-status-message--error .c-status-message__icon{color:#c40606}.c-status-message--boxed.c-status-message--error{border-bottom:4px solid #c40606}.c-status-message--success .c-status-message__icon{color:#00b8b0}.c-status-message--boxed.c-status-message--success{border-bottom:4px solid #00b8b0}.c-status-message--warning .c-status-message__icon{color:#edbc53}.c-status-message--boxed.c-status-message--warning{border-bottom:4px solid #edbc53}.eds-c-header{background-color:#fff;border-bottom:2px solid #01324b;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;line-height:1.5;padding:8px 0 0}.eds-c-header__container{align-items:center;display:flex;flex-wrap:nowrap;gap:8px 16px;justify-content:space-between;margin:0 auto 8px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav{border-top:2px solid #c5e0f4;padding-top:4px;position:relative}.eds-c-header__nav-container{align-items:center;display:flex;flex-wrap:wrap;margin:0 auto 4px;max-width:1280px;padding:0 8px;position:relative}.eds-c-header__nav-container>:not(:last-child){margin-right:32px}.eds-c-header__link-container{align-items:center;display:flex;flex:1 0 auto;gap:8px 16px;justify-content:space-between}.eds-c-header__list{list-style:none;margin:0;padding:0}.eds-c-header__list-item{font-weight:700;margin:0 auto;max-width:1280px;padding:8px}.eds-c-header__list-item:not(:last-child){border-bottom:2px solid #c5e0f4}.eds-c-header__item{color:inherit}@media only screen and (min-width:768px){.eds-c-header__item--menu{display:none;visibility:hidden}.eds-c-header__item--menu:first-child+*{margin-block-start:0}}.eds-c-header__item--inline-links{display:none;visibility:hidden}@media only screen and (min-width:768px){.eds-c-header__item--inline-links{display:flex;gap:16px 16px;visibility:visible}}.eds-c-header__item--divider:before{border-left:2px solid #c5e0f4;content:"";height:calc(100% - 16px);margin-left:-15px;position:absolute;top:8px}.eds-c-header__brand{padding:16px 8px}.eds-c-header__brand a{display:block;line-height:1;text-decoration:none}.eds-c-header__brand img{height:1.5rem;width:auto}.eds-c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.eds-c-header__icon{fill:currentcolor;display:inline-block;font-size:1.5rem;height:1em;transform:translate(0);vertical-align:bottom;width:1em}.eds-c-header__icon+*{margin-left:8px}.eds-c-header__expander{background-color:#f0f7fc}.eds-c-header__search{display:block;padding:24px 0}@media only screen and (min-width:768px){.eds-c-header__search{max-width:70%}}.eds-c-header__search-container{position:relative}.eds-c-header__search-label{color:inherit;display:inline-block;font-weight:700;margin-bottom:8px}.eds-c-header__search-input{background-color:#fff;border:1px solid #000;padding:8px 48px 8px 8px;width:100%}.eds-c-header__search-button{background-color:transparent;border:0;color:inherit;height:100%;padding:0 8px;position:absolute;right:0}.has-tethered.eds-c-header__expander{border-bottom:2px solid #01324b;left:0;margin-top:-2px;top:100%;width:100%;z-index:10}@media only screen and (min-width:768px){.has-tethered.eds-c-header__expander--menu{display:none;visibility:hidden}}.has-tethered .eds-c-header__heading{display:none;visibility:hidden}.has-tethered .eds-c-header__heading:first-child+*{margin-block-start:0}.has-tethered .eds-c-header__search{margin:auto}.eds-c-header__heading{margin:0 auto;max-width:1280px;padding:16px 16px 0}.eds-c-pagination{align-items:center;display:flex;flex-wrap:wrap;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;gap:16px 0;justify-content:center;line-height:1.4;list-style:none;margin:0;padding:32px 0}@media only screen and (min-width:480px){.eds-c-pagination{padding:32px 16px}}.eds-c-pagination__item{margin-right:8px}.eds-c-pagination__item--prev{margin-right:16px}.eds-c-pagination__item--next .eds-c-pagination__link,.eds-c-pagination__item--prev .eds-c-pagination__link{padding:16px 8px}.eds-c-pagination__item--next{margin-left:8px}.eds-c-pagination__item:last-child{margin-right:0}.eds-c-pagination__link{align-items:center;color:#222;cursor:pointer;display:inline-block;font-size:1rem;margin:0;padding:16px 24px;position:relative;text-align:center;transition:all .2s ease 0s}.eds-c-pagination__link:visited{color:#222}.eds-c-pagination__link--disabled{border-color:#555;color:#555;cursor:default}.eds-c-pagination__link--active{background-color:#01324b;background-image:none;border-radius:8px;color:#fff}.eds-c-pagination__link--active:focus,.eds-c-pagination__link--active:hover,.eds-c-pagination__link--active:visited{color:#fff}.eds-c-pagination__link-container{align-items:center;display:flex}.eds-c-pagination__icon{fill:#222;height:1.5rem;width:1.5rem}.eds-c-pagination__icon--disabled{fill:#555}.eds-c-pagination__visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.c-breadcrumbs{color:#333;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;list-style:none;margin:0;padding:0}.c-breadcrumbs>li{display:inline}svg.c-breadcrumbs__chevron{fill:#333;height:10px;margin:0 .25rem;width:10px}.c-breadcrumbs--contrast,.c-breadcrumbs--contrast .c-breadcrumbs__link{color:#fff}.c-breadcrumbs--contrast svg.c-breadcrumbs__chevron{fill:#fff}@media only screen and (max-width:479px){.c-breadcrumbs .c-breadcrumbs__item{display:none}.c-breadcrumbs .c-breadcrumbs__item:last-child,.c-breadcrumbs .c-breadcrumbs__item:nth-last-child(2){display:inline}}.c-skip-link{background:#01324b;bottom:auto;color:#fff;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;padding:8px;position:absolute;text-align:center;transform:translateY(-100%);width:100%;z-index:9999}@media (prefers-reduced-motion:reduce){.c-skip-link{transition:top .3s ease-in-out 0s}}@media print{.c-skip-link{display:none}}.c-skip-link:active,.c-skip-link:hover,.c-skip-link:link,.c-skip-link:visited{color:#fff}.c-skip-link:focus{transform:translateY(0)}.l-with-sidebar{display:flex;flex-wrap:wrap}.l-with-sidebar>*{margin:0}.l-with-sidebar__sidebar{flex-basis:var(--with-sidebar--basis,400px);flex-grow:1}.l-with-sidebar>:not(.l-with-sidebar__sidebar){flex-basis:0px;flex-grow:999;min-width:var(--with-sidebar--min,53%)}.l-with-sidebar>:first-child{padding-right:4rem}@supports (gap:1em){.l-with-sidebar>:first-child{padding-right:0}.l-with-sidebar{gap:var(--with-sidebar--gap,4rem)}}.c-header__link{color:inherit;display:inline-block;font-weight:700;padding:16px 8px;position:relative;text-decoration-color:transparent;white-space:nowrap;word-break:normal}.app-masthead__colour-4{--background-color:#ff9500;--gradient-light:rgba(0,0,0,.5);--gradient-dark:rgba(0,0,0,.8)}.app-masthead{background:var(--background-color,#0070a8);position:relative}.app-masthead:after{background:radial-gradient(circle at top right,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)));bottom:0;content:"";left:0;position:absolute;right:0;top:0}@media only screen and (max-width:479px){.app-masthead:after{background:linear-gradient(225deg,var(--gradient-light,rgba(0,0,0,.4)),var(--gradient-dark,rgba(0,0,0,.7)))}}.app-masthead__container{color:var(--masthead-color,#fff);margin:0 auto;max-width:1280px;padding:0 16px;position:relative;z-index:1}.u-button{align-items:center;background-color:#01324b;background-image:none;border:4px solid transparent;border-radius:32px;cursor:pointer;display:inline-flex;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;font-weight:700;justify-content:center;line-height:1.3;margin:0;padding:16px 32px;position:relative;transition:all .2s ease 0s;width:auto}.u-button svg,.u-button--contrast svg,.u-button--primary svg,.u-button--secondary svg,.u-button--tertiary svg{fill:currentcolor}.u-button,.u-button:visited{color:#fff}.u-button,.u-button:hover{box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button:hover{border:4px solid #fff}.u-button:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button:focus,.u-button:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--primary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover svg path,.u-button--primary:focus svg path,.u-button--primary:hover svg path,.u-button:focus svg path,.u-button:hover svg path{fill:#01324b}.u-button--primary{background-color:#01324b;background-image:none;border:4px solid transparent;box-shadow:0 0 0 1px #01324b;color:#fff;font-weight:700}.u-button--primary:visited{color:#fff}.u-button--primary:hover{border:4px solid #fff;box-shadow:0 0 0 1px #01324b;text-decoration:none}.u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.u-button--primary:focus,.u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.u-button--secondary{background-color:#fff;border:4px solid #fff;color:#01324b;font-weight:700}.u-button--secondary:visited{color:#01324b}.u-button--secondary:hover{border:4px solid #01324b;box-shadow:none}.u-button--secondary:focus,.u-button--secondary:hover{background-color:#01324b;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus svg path,.app-masthead--pastel .c-pdf-download .u-button--secondary:hover svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus svg path,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover svg path,.u-button--secondary:focus svg path,.u-button--secondary:hover svg path,.u-button--tertiary:focus svg path,.u-button--tertiary:hover svg path{fill:#fff}.u-button--tertiary{background-color:#ebf1f5;border:4px solid transparent;box-shadow:none;color:#666;font-weight:700}.u-button--tertiary:visited{color:#666}.u-button--tertiary:hover{border:4px solid #01324b;box-shadow:none}.u-button--tertiary:focus,.u-button--tertiary:hover{background-color:#01324b;color:#fff}.u-button--contrast{background-color:transparent;background-image:none;color:#fff;font-weight:400}.u-button--contrast:visited{color:#fff}.u-button--contrast,.u-button--contrast:focus,.u-button--contrast:hover{border:4px solid #fff}.u-button--contrast:focus,.u-button--contrast:hover{background-color:#fff;background-image:none;color:#000}.u-button--contrast:focus svg path,.u-button--contrast:hover svg path{fill:#000}.u-button--disabled,.u-button:disabled{background-color:transparent;background-image:none;border:4px solid #ccc;color:#000;cursor:default;font-weight:400;opacity:.7}.u-button--disabled svg,.u-button:disabled svg{fill:currentcolor}.u-button--disabled:visited,.u-button:disabled:visited{color:#000}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{border:4px solid #ccc;text-decoration:none}.u-button--disabled:focus,.u-button--disabled:hover,.u-button:disabled:focus,.u-button:disabled:hover{background-color:transparent;background-image:none;color:#000}.u-button--disabled:focus svg path,.u-button--disabled:hover svg path,.u-button:disabled:focus svg path,.u-button:disabled:hover svg path{fill:#000}.u-button--small,.u-button--xsmall{font-size:.875rem;padding:2px 8px}.u-button--small{padding:8px 16px}.u-button--large{font-size:1.125rem;padding:10px 35px}.u-button--full-width{display:flex;width:100%}.u-button--icon-left svg{margin-right:8px}.u-button--icon-right svg{margin-left:8px}.u-clear-both{clear:both}.u-container{margin:0 auto;max-width:1280px;padding:0 16px}.u-justify-content-space-between{justify-content:space-between}.u-display-none{display:none}.js .u-js-hide,.u-hide{display:none;visibility:hidden}.u-visually-hidden{clip:rect(0,0,0,0);border:0;clip-path:inset(50%);height:1px;overflow:hidden;padding:0;position:absolute!important;white-space:nowrap;width:1px}.u-icon{fill:currentcolor;display:inline-block;height:1em;transform:translate(0);vertical-align:text-top;width:1em}.u-list-reset{list-style:none;margin:0;padding:0}.u-ma-16{margin:16px}.u-mt-0{margin-top:0}.u-mt-24{margin-top:24px}.u-mt-32{margin-top:32px}.u-mb-8{margin-bottom:8px}.u-mb-32{margin-bottom:32px}.u-button-reset{background-color:transparent;border:0;padding:0}.u-sans-serif{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.u-serif{font-family:Merriweather,serif}h1,h2,h4{-webkit-font-smoothing:antialiased}p{overflow-wrap:break-word;word-break:break-word}.u-h4{font-size:1.25rem;font-weight:700;line-height:1.2}.u-mbs-0{margin-block-start:0!important}.c-article-header{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-identifiers{color:#6f6f6f;display:flex;flex-wrap:wrap;font-size:1rem;line-height:1.3;list-style:none;margin:0 0 8px;padding:0}.c-article-identifiers__item{border-right:1px solid #6f6f6f;list-style:none;margin-right:8px;padding-right:8px}.c-article-identifiers__item:last-child{border-right:0;margin-right:0;padding-right:0}@media only screen and (min-width:876px){.c-article-title{font-size:1.875rem;line-height:1.2}}.c-article-author-list{display:inline;font-size:1rem;list-style:none;margin:0 8px 0 0;padding:0;width:100%}.c-article-author-list__item{display:inline;padding-right:0}.c-article-author-list__show-more{display:none;margin-right:4px}.c-article-author-list__button,.js .c-article-author-list__item--hide,.js .c-article-author-list__show-more{display:none}.js .c-article-author-list--long .c-article-author-list__show-more,.js .c-article-author-list--long+.c-article-author-list__button{display:inline}@media only screen and (max-width:767px){.js .c-article-author-list__item--hide-small-screen{display:none}.js .c-article-author-list--short .c-article-author-list__show-more,.js .c-article-author-list--short+.c-article-author-list__button{display:inline}}#uptodate-client,.js .c-article-author-list--expanded .c-article-author-list__show-more{display:none!important}.js .c-article-author-list--expanded .c-article-author-list__item--hide-small-screen{display:inline!important}.c-article-author-list__button,.c-button-author-list{background:#ebf1f5;border:4px solid #ebf1f5;border-radius:20px;color:#666;font-size:.875rem;line-height:1.4;padding:2px 11px 2px 8px;text-decoration:none}.c-article-author-list__button svg,.c-button-author-list svg{margin:1px 4px 0 0}.c-article-author-list__button:hover,.c-button-author-list:hover{background:#025e8d;border-color:transparent;color:#fff}.c-article-body .c-article-access-provider{padding:8px 16px}.c-article-body .c-article-access-provider,.c-notes{border:1px solid #d5d5d5;border-image:initial;border-left:none;border-right:none;margin:24px 0}.c-article-body .c-article-access-provider__text{color:#555}.c-article-body .c-article-access-provider__text,.c-notes__text{font-size:1rem;margin-bottom:0;padding-bottom:2px;padding-top:2px;text-align:center}.c-article-body .c-article-author-affiliation__address{color:inherit;font-weight:700;margin:0}.c-article-body .c-article-author-affiliation__authors-list{list-style:none;margin:0;padding:0}.c-article-body .c-article-author-affiliation__authors-item{display:inline;margin-left:0}.c-article-authors-search{margin-bottom:24px;margin-top:0}.c-article-authors-search__item,.c-article-authors-search__title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-article-authors-search__title{color:#626262;font-size:1.05rem;font-weight:700;margin:0;padding:0}.c-article-authors-search__item{font-size:1rem}.c-article-authors-search__text{margin:0}.c-code-block{border:1px solid #fff;font-family:monospace;margin:0 0 24px;padding:20px}.c-code-block__heading{font-weight:400;margin-bottom:16px}.c-code-block__line{display:block;overflow-wrap:break-word;white-space:pre-wrap}.c-article-share-box{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;margin-bottom:24px}.c-article-share-box__description{font-size:1rem;margin-bottom:8px}.c-article-share-box__no-sharelink-info{font-size:.813rem;font-weight:700;margin-bottom:24px;padding-top:4px}.c-article-share-box__only-read-input{border:1px solid #d5d5d5;box-sizing:content-box;display:inline-block;font-size:.875rem;font-weight:700;height:24px;margin-bottom:8px;padding:8px 10px}.c-article-share-box__additional-info{color:#626262;font-size:.813rem}.c-article-share-box__button{background:#fff;box-sizing:content-box;text-align:center}.c-article-share-box__button--link-like{background-color:transparent;border:0;color:#025e8d;cursor:pointer;font-size:.875rem;margin-bottom:8px;margin-left:10px}.c-article-associated-content__container .c-article-associated-content__collection-label{font-size:.875rem;line-height:1.4}.c-article-associated-content__container .c-article-associated-content__collection-title{line-height:1.3}.c-reading-companion{clear:both;min-height:389px}.c-reading-companion__figures-list,.c-reading-companion__references-list{list-style:none;min-height:389px;padding:0}.c-reading-companion__references-list--numeric{list-style:decimal inside}.c-reading-companion__figure-item{border-top:1px solid #d5d5d5;font-size:1rem;padding:16px 8px 16px 0}.c-reading-companion__figure-item:first-child{border-top:none;padding-top:8px}.c-reading-companion__reference-item{font-size:1rem}.c-reading-companion__reference-item:first-child{border-top:none}.c-reading-companion__reference-item a{word-break:break-word}.c-reading-companion__reference-citation{display:inline}.c-reading-companion__reference-links{font-size:.813rem;font-weight:700;list-style:none;margin:8px 0 0;padding:0;text-align:right}.c-reading-companion__reference-links>a{display:inline-block;padding-left:8px}.c-reading-companion__reference-links>a:first-child{display:inline-block;padding-left:0}.c-reading-companion__figure-title{display:block;font-size:1.25rem;font-weight:700;line-height:1.2;margin:0 0 8px}.c-reading-companion__figure-links{display:flex;justify-content:space-between;margin:8px 0 0}.c-reading-companion__figure-links>a{align-items:center;display:flex}.c-article-section__figure-caption{display:block;margin-bottom:8px;word-break:break-word}.c-article-section__figure .video,p.app-article-masthead__access--above-download{margin:0 0 16px}.c-article-section__figure-description{font-size:1rem}.c-article-section__figure-description>*{margin-bottom:0}.c-cod{display:block;font-size:1rem;width:100%}.c-cod__form{background:#ebf0f3}.c-cod__prompt{font-size:1.125rem;line-height:1.3;margin:0 0 24px}.c-cod__label{display:block;margin:0 0 4px}.c-cod__row{display:flex;margin:0 0 16px}.c-cod__row:last-child{margin:0}.c-cod__input{border:1px solid #d5d5d5;border-radius:2px;flex-shrink:0;margin:0;padding:13px}.c-cod__input--submit{background-color:#025e8d;border:1px solid #025e8d;color:#fff;flex-shrink:1;margin-left:8px;transition:background-color .2s ease-out 0s,color .2s ease-out 0s}.c-cod__input--submit-single{flex-basis:100%;flex-shrink:0;margin:0}.c-cod__input--submit:focus,.c-cod__input--submit:hover{background-color:#fff;color:#025e8d}.save-data .c-article-author-institutional-author__sub-division,.save-data .c-article-equation__number,.save-data .c-article-figure-description,.save-data .c-article-fullwidth-content,.save-data .c-article-main-column,.save-data .c-article-satellite-article-link,.save-data .c-article-satellite-subtitle,.save-data .c-article-table-container,.save-data .c-blockquote__body,.save-data .c-code-block__heading,.save-data .c-reading-companion__figure-title,.save-data .c-reading-companion__reference-citation,.save-data .c-site-messages--nature-briefing-email-variant .serif,.save-data .c-site-messages--nature-briefing-email-variant.serif,.save-data .serif,.save-data .u-serif,.save-data h1,.save-data h2,.save-data h3{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-pdf-download__link{display:flex;flex:1 1 0%;padding:13px 24px}.c-pdf-download__link:hover{text-decoration:none}@media only screen and (min-width:768px){.c-context-bar--sticky .c-pdf-download__link{align-items:center;flex:1 1 183px}}@media only screen and (max-width:320px){.c-context-bar--sticky .c-pdf-download__link{padding:16px}}.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{display:flex;flex-direction:row;gap:16px 16px;margin:0;max-width:100%;padding:16px 0 0}.c-article-body .c-article-recommendations-list__item,.c-book-body .c-article-recommendations-list__item{flex:1 1 0%}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-list,.c-book-body .c-article-recommendations-list{flex-direction:column}}.c-article-body .c-article-recommendations-card__authors{display:none;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:.875rem;line-height:1.5;margin:0 0 8px}@media only screen and (max-width:767px){.c-article-body .c-article-recommendations-card__authors{display:block;margin:0}}.c-article-body .c-article-history{margin-top:24px}.app-article-metrics-bar p{margin:0}.app-article-masthead{display:flex;flex-direction:column;gap:16px 16px;padding:16px 0 24px}.app-article-masthead__info{display:flex;flex-direction:column;flex-grow:1}.app-article-masthead__brand{border-top:1px solid hsla(0,0%,100%,.8);display:flex;flex-direction:column;flex-shrink:0;gap:8px 8px;min-height:96px;padding:16px 0 0}.app-article-masthead__brand img{border:1px solid #fff;border-radius:8px;box-shadow:0 4px 15px 0 hsla(0,0%,50%,.25);height:auto;left:0;position:absolute;width:72px}.app-article-masthead__journal-link{display:block;font-size:1.125rem;font-weight:700;margin:0 0 8px;max-width:400px;padding:0 0 0 88px;position:relative}.app-article-masthead__journal-title{-webkit-box-orient:vertical;-webkit-line-clamp:3;display:-webkit-box;overflow:hidden}.app-article-masthead__submission-link{align-items:center;display:flex;font-size:1rem;gap:4px 4px;margin:0 0 0 88px}.app-article-masthead__access{align-items:center;display:flex;flex-wrap:wrap;font-size:.875rem;font-weight:300;gap:4px 4px;margin:0}.app-article-masthead__buttons{display:flex;flex-flow:column wrap;gap:16px 16px}.app-article-masthead__access svg,.app-masthead--pastel .c-pdf-download .u-button--primary svg,.app-masthead--pastel .c-pdf-download .u-button--secondary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary svg,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary svg{fill:currentcolor}.app-article-masthead a{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary{background-color:#025e8d;background-image:none;border:2px solid transparent;box-shadow:none;color:#fff;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--primary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:visited{color:#fff}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus{border:4px solid #fc0;box-shadow:none;outline:0;text-decoration:none}.app-masthead--pastel .c-pdf-download .u-button--primary:focus,.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background-color:#fff;background-image:none;color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--primary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--primary:hover{background:0 0;border:2px solid #025e8d;box-shadow:none;color:#025e8d}.app-masthead--pastel .c-pdf-download .u-button--secondary,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary{background:0 0;border:2px solid #025e8d;color:#025e8d;font-weight:700}.app-masthead--pastel .c-pdf-download .u-button--secondary:visited,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:visited{color:#01324b}.app-masthead--pastel .c-pdf-download .u-button--secondary:hover,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:hover{background-color:#01324b;background-color:#025e8d;border:2px solid transparent;box-shadow:none;color:#fff}.app-masthead--pastel .c-pdf-download .u-button--secondary:focus,.c-context-bar--sticky .c-context-bar__container .c-pdf-download .u-button--secondary:focus{background-color:#fff;background-image:none;border:4px solid #fc0;color:#01324b}@media only screen and (min-width:768px){.app-article-masthead{flex-direction:row;gap:64px 64px;padding:24px 0}.app-article-masthead__brand{border:0;padding:0}.app-article-masthead__brand img{height:auto;position:static;width:auto}.app-article-masthead__buttons{align-items:center;flex-direction:row;margin-top:auto}.app-article-masthead__journal-link{display:flex;flex-direction:column;gap:24px 24px;margin:0 0 8px;padding:0}.app-article-masthead__submission-link{margin:0}}@media only screen and (min-width:1024px){.app-article-masthead__brand{flex-basis:400px}}.app-article-masthead .c-article-identifiers{font-size:.875rem;font-weight:300;line-height:1;margin:0 0 8px;overflow:hidden;padding:0}.app-article-masthead .c-article-identifiers--cite-list{margin:0 0 16px}.app-article-masthead .c-article-identifiers *{color:#fff}.app-article-masthead .c-cod{display:none}.app-article-masthead .c-article-identifiers__item{border-left:1px solid #fff;border-right:0;margin:0 17px 8px -9px;padding:0 0 0 8px}.app-article-masthead .c-article-identifiers__item--cite{border-left:0}.app-article-metrics-bar{display:flex;flex-wrap:wrap;font-size:1rem;padding:16px 0 0;row-gap:24px}.app-article-metrics-bar__item{padding:0 16px 0 0}.app-article-metrics-bar__count{font-weight:700}.app-article-metrics-bar__label{font-weight:400;padding-left:4px}.app-article-metrics-bar__icon{height:auto;margin-right:4px;margin-top:-4px;width:auto}.app-article-metrics-bar__arrow-icon{margin:4px 0 0 4px}.app-article-metrics-bar a{color:#000}.app-article-metrics-bar .app-article-metrics-bar__item--metrics{padding-right:0}.app-overview-section .c-article-author-list,.app-overview-section__authors{line-height:2}.app-article-metrics-bar{margin-top:8px}.c-book-toc-pagination+.c-book-section__back-to-top{margin-top:0}.c-article-body .c-article-access-provider__text--chapter{color:#222;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;padding:20px 0}.c-article-body .c-article-access-provider__text--chapter svg.c-status-message__icon{fill:#003f8d;vertical-align:middle}.c-article-body-section__content--separator{padding-top:40px}.c-pdf-download__link{max-height:44px}.app-article-access .u-button--primary,.app-article-access .u-button--primary:visited{color:#fff}.c-article-sidebar{display:none}@media only screen and (min-width:1024px){.c-article-sidebar{display:block}}.c-cod__form{border-radius:12px}.c-cod__label{font-size:.875rem}.c-cod .c-status-message{align-items:center;justify-content:center;margin-bottom:16px;padding-bottom:16px}@media only screen and (min-width:1024px){.c-cod .c-status-message{align-items:inherit}}.c-cod .c-status-message__icon{margin-top:4px}.c-cod .c-cod__prompt{font-size:1rem;margin-bottom:16px}.c-article-body .app-article-access,.c-book-body .app-article-access{display:block}@media only screen and (min-width:1024px){.c-article-body .app-article-access,.c-book-body .app-article-access{display:none}}.c-article-body .app-card-service{margin-bottom:32px}@media only screen and (min-width:1024px){.c-article-body .app-card-service{display:none}}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary,.c-cod__row .u-button--primary{background-color:#025e8d;border:2px solid #025e8d;box-shadow:none;font-size:1rem;font-weight:700;gap:8px 8px;justify-content:center;line-height:1.5;padding:8px 24px}.app-article-access .buybox__buy .u-button--secondary,.app-article-access .u-button--primary:hover,.c-cod__row .u-button--primary:hover{background-color:#fff;color:#025e8d}.app-article-access .buybox__buy .u-button--secondary:hover{background-color:#025e8d;color:#fff}.buybox__buy .c-notes__text{color:#666;font-size:.875rem;padding:0 16px 8px}.c-cod__input{flex-basis:auto;width:100%}.c-article-title{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:2.25rem;font-weight:700;line-height:1.2;margin:12px 0}.c-reading-companion__figure-item figure{margin:0}@media only screen and (min-width:768px){.c-article-title{margin:16px 0}}.app-article-access{border:1px solid #c5e0f4;border-radius:12px}.app-article-access__heading{border-bottom:1px solid #c5e0f4;font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1.125rem;font-weight:700;margin:0;padding:16px;text-align:center}.app-article-access .buybox__info svg{vertical-align:middle}.c-article-body .app-article-access p{margin-bottom:0}.app-article-access .buybox__info{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif;font-size:1rem;margin:0}.app-article-access{margin:0 0 32px}@media only screen and (min-width:1024px){.app-article-access{margin:0 0 24px}}.c-status-message{font-size:1rem}.c-article-body{font-size:1.125rem}.c-article-body dl,.c-article-body ol,.c-article-body p,.c-article-body ul{margin-bottom:32px;margin-top:0}.c-article-access-provider__text:last-of-type,.c-article-body .c-notes__text:last-of-type{margin-bottom:0}.c-article-body ol p,.c-article-body ul p{margin-bottom:16px}.c-article-section__figure-caption{font-family:Merriweather Sans,Helvetica Neue,Helvetica,Arial,sans-serif}.c-reading-companion__figure-item{border-top-color:#c5e0f4}.c-reading-companion__sticky{max-width:400px}.c-article-section .c-article-section__figure-description>*{font-size:1rem;margin-bottom:16px}.c-reading-companion__reference-item{border-top:1px solid #d5d5d5;padding:16px 0}.c-reading-companion__reference-item:first-child{padding-top:0}.c-article-share-box__button,.js .c-article-authors-search__item .c-article-button{background:0 0;border:2px solid #025e8d;border-radius:32px;box-shadow:none;color:#025e8d;font-size:1rem;font-weight:700;line-height:1.5;margin:0;padding:8px 24px;transition:all .2s ease 0s}.c-article-authors-search__item .c-article-button{width:100%}.c-pdf-download .u-button{background-color:#fff;border:2px solid #fff;color:#01324b;justify-content:center}.c-context-bar__container .c-pdf-download .u-button svg,.c-pdf-download .u-button svg{fill:currentcolor}.c-pdf-download .u-button:visited{color:#01324b}.c-pdf-download .u-button:hover{border:4px solid #01324b;box-shadow:none}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background-color:#01324b}.c-pdf-download .u-button:focus svg path,.c-pdf-download .u-button:hover svg path{fill:#fff}.c-context-bar__container .c-pdf-download .u-button{background-image:none;border:2px solid;color:#fff}.c-context-bar__container .c-pdf-download .u-button:visited{color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus{box-shadow:none;outline:0;text-decoration:none}.c-context-bar__container .c-pdf-download .u-button:focus,.c-context-bar__container .c-pdf-download .u-button:hover{background-color:#fff;background-image:none;color:#01324b}.c-context-bar__container .c-pdf-download .u-button:focus svg path,.c-context-bar__container .c-pdf-download .u-button:hover svg path{fill:#01324b}.c-context-bar__container .c-pdf-download .u-button,.c-pdf-download .u-button{box-shadow:none;font-size:1rem;font-weight:700;line-height:1.5;padding:8px 24px}.c-context-bar__container .c-pdf-download .u-button{background-color:#025e8d}.c-pdf-download .u-button:hover{border:2px solid #fff}.c-pdf-download .u-button:focus,.c-pdf-download .u-button:hover{background:0 0;box-shadow:none;color:#fff}.c-context-bar__container .c-pdf-download .u-button:hover{border:2px solid #025e8d;box-shadow:none;color:#025e8d}.c-context-bar__container .c-pdf-download .u-button:focus,.c-pdf-download .u-button:focus{border:2px solid #025e8d}.c-article-share-box__button:focus:focus,.c-article__pill-button:focus:focus,.c-context-bar__container .c-pdf-download .u-button:focus:focus,.c-pdf-download .u-button:focus:focus{outline:3px solid #08c;will-change:transform}.c-pdf-download__link .u-icon{padding-top:0}.c-bibliographic-information__column button{margin-bottom:16px}.c-article-body .c-article-author-affiliation__list p,.c-article-body .c-article-author-information__list p,figure{margin:0}.c-article-share-box__button{margin-right:16px}.c-status-message--boxed{border-radius:12px}.c-article-associated-content__collection-title{font-size:1rem}.app-card-service__description,.c-article-body .app-card-service__description{color:#222;margin-bottom:0;margin-top:8px}.app-article-access__subscriptions a,.app-article-access__subscriptions a:visited,.app-book-series-listing__item a,.app-book-series-listing__item a:hover,.app-book-series-listing__item a:visited,.c-article-author-list a,.c-article-author-list a:visited,.c-article-buy-box a,.c-article-buy-box a:visited,.c-article-peer-review a,.c-article-peer-review a:visited,.c-article-satellite-subtitle a,.c-article-satellite-subtitle a:visited,.c-breadcrumbs__link,.c-breadcrumbs__link:hover,.c-breadcrumbs__link:visited{color:#000}.c-article-author-list svg{height:24px;margin:0 0 0 6px;width:24px}.c-article-header{margin-bottom:32px}@media only screen and (min-width:876px){.js .c-ad--conditional{display:block}}.u-lazy-ad-wrapper{background-color:#fff;display:none;min-height:149px}@media only screen and (min-width:876px){.u-lazy-ad-wrapper{display:block}}p.c-ad__label{margin-bottom:4px}.c-ad--728x90{background-color:#fff;border-bottom:2px solid #cedbe0} } </style> <style>@media only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark) { .eds-c-header__brand img{height:24px;width:203px}.app-article-masthead__journal-link img{height:93px;width:72px}@media only screen and (min-width:769px){.app-article-masthead__journal-link img{height:161px;width:122px}} } </style> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href=/oscar-static/app-springerlink/css/core-darwin-3c86549cfc.css media="print" onload="this.media='all';this.onload=null"> <link rel="stylesheet" data-test="critical-css-handler" data-inline-css-source="critical-css" href="/oscar-static/app-springerlink/css/enhanced-darwin-article-72ba046d97.css" media="print" onload="this.media='only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)';this.onload=null"> <script> window.dataLayer = [{"GA Key":"UA-26408784-1","DOI":"10.1007/978-3-319-91563-0_29","Page":"chapter","page":{"attributes":{"environment":"live"}},"Country":"HK","japan":false,"doi":"10.1007-978-3-319-91563-0_29","Keywords":"Data lake, Data preparation, Big data, Schema-on-read","kwrd":["Data_lake","Data_preparation","Big_data","Schema-on-read"],"Labs":"Y","ksg":"Krux.segments","kuid":"Krux.uid","Has Body":"Y","Features":[],"Open Access":"N","hasAccess":"Y","bypassPaywall":"N","user":{"license":{"businessPartnerID":[],"businessPartnerIDString":""}},"Access Type":"permanently-free","Bpids":"","Bpnames":"","BPID":["1"],"VG Wort Identifier":"pw-vgzm.415900-10.1007-978-3-319-91563-0","Full HTML":"Y","session":{"authentication":{"loginStatus":"N"},"attributes":{"edition":"academic"}},"content":{"serial":{"eissn":"1611-3349","pissn":"0302-9743"},"book":{"doi":"10.1007/978-3-319-91563-0","title":"Advanced Information Systems Engineering","pisbn":"978-3-319-91562-3","eisbn":"978-3-319-91563-0","bookProductType":"Proceedings","seriesTitle":"Lecture Notes in Computer Science","seriesId":"558"},"chapter":{"doi":"10.1007/978-3-319-91563-0_29"},"type":"ConferencePaper","category":{"pmc":{"primarySubject":"Computer Science","primarySubjectCode":"SCI","secondarySubjects":{"1":"Information Systems Applications (incl. Internet)","2":"Data Mining and Knowledge Discovery","3":"Database Management","4":"Software Engineering","5":"System Performance and Evaluation","6":"User Interfaces and Human Computer Interaction"},"secondarySubjectCodes":{"1":"SCI18040","2":"SCI18030","3":"SCI18024","4":"SCI14029","5":"SCI13049","6":"SCI18067"}},"sucode":"SUCO11645"},"attributes":{"deliveryPlatform":"oscar"},"country":"HK","Has Preview":"N","subjectCodes":"SCI,SCI18040,SCI18030,SCI18024,SCI14029,SCI13049,SCI18067","PMC":["SCI","SCI18040","SCI18030","SCI18024","SCI14029","SCI13049","SCI18067"]},"Event Category":"Conference Paper","ConferenceSeriesId":"caise, caise","productId":"9783319915630"}]; </script> <script> window.dataLayer.push({ ga4MeasurementId: 'G-B3E4QL2TPR', ga360TrackingId: 'UA-26408784-1', twitterId: 'o47a7', baiduId: 'aef3043f025ccf2305af8a194652d70b', ga4ServerUrl: 'https://collect.springer.com', imprint: 'springerlink', page: { attributes:{ featureFlags: [{ name: 'darwin-orion', active: true }, { name: 'chapter-books-recs', active: true }, { name: 'darwin-books', active: true }], darwinAvailable: true } } }); </script> <script data-test="gtm-head"> window.initGTM = function() { if (window.config.mustardcut) { (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({'gtm.start': new Date().getTime(), event: 'gtm.js'}); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-MRVXSHQ'); } } </script> <script> (function (w, d, t) { function cc() { var h = w.location.hostname; var e = d.createElement(t), s = d.getElementsByTagName(t)[0]; if (h.indexOf('springer.com') > -1 && h.indexOf('biomedcentral.com') === -1 && h.indexOf('springeropen.com') === -1) { if (h.indexOf('link-qa.springer.com') > -1 || h.indexOf('test-www.springer.com') > -1) { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springer.com/production_live/en/consent-bundle-17-52.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('biomedcentral.com') > -1) { if (h.indexOf('biomedcentral.com.qa') > -1) { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.biomedcentral.com/production_live/en/consent-bundle-15-36.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springeropen.com') > -1) { if (h.indexOf('springeropen.com.qa') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-16-34.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-MRVXSHQ')"); } } else if (h.indexOf('springernature.com') > -1) { if (h.indexOf('beta-qa.springernature.com') > -1) { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } else { e.src = 'https://cmp.springernature.com/production_live/en/consent-bundle-49-43.js'; e.setAttribute('onload', "initGTM(window,document,'script','dataLayer','GTM-NK22KLS')"); } } else { e.src = '/oscar-static/js/cookie-consent-es5-bundle-cb57c2c98a.js'; e.setAttribute('data-consent', h); } s.insertAdjacentElement('afterend', e); } cc(); })(window, document, 'script'); </script> <script> (function(w, d) { w.config = w.config || {}; w.config.mustardcut = false; if (w.matchMedia && w.matchMedia('only print, only all and (prefers-color-scheme: no-preference), only all and (prefers-color-scheme: light), only all and (prefers-color-scheme: dark)').matches) { w.config.mustardcut = true; d.classList.add('js'); d.classList.remove('grade-c'); d.classList.remove('no-js'); } })(window, document.documentElement); </script> <script> (function () { if ( typeof window.CustomEvent === "function" ) return false; function CustomEvent ( event, params ) { params = params || { bubbles: false, cancelable: false, detail: null }; var evt = document.createEvent( 'CustomEvent' ); evt.initCustomEvent( event, params.bubbles, params.cancelable, params.detail ); return evt; } CustomEvent.prototype = window.Event.prototype; window.CustomEvent = CustomEvent; })(); </script> <script class="js-entry"> if (window.config.mustardcut) { (function(w, d) { window.Component = {}; window.suppressShareButton = false; window.onArticlePage = true; var currentScript = d.currentScript || d.head.querySelector('script.js-entry'); function catchNoModuleSupport() { var scriptEl = d.createElement('script'); return (!('noModule' in scriptEl) && 'onbeforeload' in scriptEl) } var headScripts = [ {'src': '/oscar-static/js/polyfill-es5-bundle-572d4fec60.js', 'async': false} ]; var bodyScripts = [ {'src': '/oscar-static/js/global-article-es5-bundle-dad1690b0d.js', 'async': false, 'module': false}, {'src': '/oscar-static/js/global-article-es6-bundle-e7d03c4cb3.js', 'async': false, 'module': true} ]; function createScript(script) { var scriptEl = d.createElement('script'); scriptEl.src = script.src; scriptEl.async = script.async; if (script.module === true) { scriptEl.type = "module"; if (catchNoModuleSupport()) { scriptEl.src = ''; } } else if (script.module === false) { scriptEl.setAttribute('nomodule', true) } if (script.charset) { scriptEl.setAttribute('charset', script.charset); } return scriptEl; } for (var i = 0; i < headScripts.length; ++i) { var scriptEl = createScript(headScripts[i]); currentScript.parentNode.insertBefore(scriptEl, currentScript.nextSibling); } d.addEventListener('DOMContentLoaded', function() { for (var i = 0; i < bodyScripts.length; ++i) { var scriptEl = createScript(bodyScripts[i]); d.body.appendChild(scriptEl); } }); // Webfont repeat view var config = w.config; if (config && config.publisherBrand && sessionStorage.fontsLoaded === 'true') { d.documentElement.className += ' webfonts-loaded'; } })(window, document); } </script> <script data-src="https://cdn.optimizely.com/js/27195530232.js" data-cc-script="C03"></script> <link rel="canonical" href="https://link.springer.com/chapter/10.1007/978-3-319-91563-0_29"/> <script type="application/ld+json">{"headline":"KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake","pageEnd":"489","pageStart":"474","image":"https://media.springernature.com/w153/springer-static/cover/book/978-3-319-91563-0.jpg","genre":["Computer Science","Computer Science (R0)"],"isPartOf":{"name":"Advanced Information Systems Engineering","isbn":["978-3-319-91563-0","978-3-319-91562-3"],"@type":"Book"},"publisher":{"name":"Springer International Publishing","logo":{"url":"https://www.springernature.com/app-sn/public/images/logo-springernature.png","@type":"ImageObject"},"@type":"Organization"},"author":[{"name":"Antonio Maccioni","affiliation":[{"name":"Collective[i]","address":{"name":"Collective[i], New York City, USA","@type":"PostalAddress"},"@type":"Organization"}],"email":"amaccioni@collectivei.com","@type":"Person"},{"name":"Riccardo Torlone","affiliation":[{"name":"Università Roma Tre","address":{"name":"Università Roma Tre, Rome, Italy","@type":"PostalAddress"},"@type":"Organization"}],"@type":"Person"}],"keywords":"Data lake, Data preparation, Big data, Schema-on-read","description":"A data lake is a loosely-structured collection of data at large scale that is usually fed with almost no requirement of data quality. This approach aims at eliminating any human effort before the actual exploitation of data, but the problem is only delayed since preparing and querying a data lake is usually a hard task. We address this problem by introducing Kayak, a framework that helps data scientists in the definition and optimization of pipelines of data preparation. Since in many cases approximations of the results, which can be computed rapidly, are enough informative, Kayak allows the users to specify their needs in terms of accuracy over performance and produces previews of the outputs satisfying such requirement. In this way, the pipeline is executed much faster and the process of data preparation is shortened. We discuss the design choices of Kayak including execution strategies, optimization techniques, scheduling of operations, and metadata management. With a set of preliminary experiments, we show that the approach is effective and scales well with the number of datasets in the data lake.","datePublished":"2018","isAccessibleForFree":true,"@type":"ScholarlyArticle","@context":"https://schema.org"}</script> </head> <body class="shared-article-renderer"> <!-- Google Tag Manager (noscript) --> <noscript data-test="gtm-body"> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-MRVXSHQ" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <!-- End Google Tag Manager (noscript) --> <div class="u-vh-full"> <a class="c-skip-link" href="#main-content">Skip to main content</a> <div class="u-hide u-show-following-ad"></div> <aside class="c-ad c-ad--728x90" data-test="springer-doubleclick-ad"> <div class="c-ad__inner"> <p class="c-ad__label">Advertisement</p> <div id="div-gpt-ad-LB1" data-pa11y-ignore data-gpt data-test="LB1-ad" data-gpt-unitpath="/270604982/springerlink/book/chapter" data-gpt-sizes="728x90" style="min-width:728px;min-height:90px" data-gpt-targeting="pos=LB1;"></div> </div> </aside> <div class="app-elements"> <header class="eds-c-header" data-eds-c-header> <div class="eds-c-header__container" data-eds-c-header-expander-anchor> <div class="eds-c-header__brand"> <a href="https://link.springer.com" data-test=springerlink-logo data-track="click_imprint_logo" data-track-context="unified header" data-track-action="click logo link" data-track-category="unified header" data-track-label="link" > <img src="/oscar-static/images/darwin/header/img/logo-springer-nature-link-3149409f62.svg" alt="Springer Nature Link"> </a> </div> <a class="c-header__link eds-c-header__link" id="identity-account-widget" href='https://idp.springer.com/auth/personal/springernature?redirect_uri=https://link.springer.com/chapter/10.1007/978-3-319-91563-0_29?'><span class="eds-c-header__widget-fragment-title">Log in</span></a> </div> <nav class="eds-c-header__nav" aria-label="header navigation"> <div class="eds-c-header__nav-container"> <div class="eds-c-header__item eds-c-header__item--menu"> <a href="#eds-c-header-nav" class="eds-c-header__link" data-eds-c-header-expander> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-menu-medium"></use> </svg><span>Menu</span> </a> </div> <div class="eds-c-header__item eds-c-header__item--inline-links"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </div> <div class="eds-c-header__link-container"> <div class="eds-c-header__item eds-c-header__item--divider"> <a href="#eds-c-header-popup-search" class="eds-c-header__link" data-eds-c-header-expander data-eds-c-header-test-search-btn> <svg class="eds-c-header__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg><span>Search</span> </a> </div> <div id="ecommerce-header-cart-icon-link" class="eds-c-header__item ecommerce-cart" style="display:inline-block"> <a class="eds-c-header__link" href="https://order.springer.com/public/cart" style="appearance:none;border:none;background:none;color:inherit;position:relative"> <svg id="eds-i-cart" class="eds-c-header__icon" xmlns="http://www.w3.org/2000/svg" height="24" width="24" viewBox="0 0 24 24" aria-hidden="true" focusable="false"> <path fill="currentColor" fill-rule="nonzero" d="M2 1a1 1 0 0 0 0 2l1.659.001 2.257 12.808a2.599 2.599 0 0 0 2.435 2.185l.167.004 9.976-.001a2.613 2.613 0 0 0 2.61-1.748l.03-.106 1.755-7.82.032-.107a2.546 2.546 0 0 0-.311-1.986l-.108-.157a2.604 2.604 0 0 0-2.197-1.076L6.042 5l-.56-3.17a1 1 0 0 0-.864-.82l-.12-.007L2.001 1ZM20.35 6.996a.63.63 0 0 1 .54.26.55.55 0 0 1 .082.505l-.028.1L19.2 15.63l-.022.05c-.094.177-.282.299-.526.317l-10.145.002a.61.61 0 0 1-.618-.515L6.394 6.999l13.955-.003ZM18 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4ZM8 19a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"></path> </svg><span>Cart</span><span class="cart-info" style="display:none;position:absolute;top:10px;right:45px;background-color:#C65301;color:#fff;width:18px;height:18px;font-size:11px;border-radius:50%;line-height:17.5px;text-align:center"></span></a> <script>(function () { var exports = {}; if (window.fetch) { "use strict"; Object.defineProperty(exports, "__esModule", { value: true }); exports.headerWidgetClientInit = void 0; var headerWidgetClientInit = function (getCartInfo) { document.body.addEventListener("updatedCart", function () { updateCartIcon(); }, false); return updateCartIcon(); function updateCartIcon() { return getCartInfo() .then(function (res) { return res.json(); }) .then(refreshCartState) .catch(function (_) { }); } function refreshCartState(json) { var indicator = document.querySelector("#ecommerce-header-cart-icon-link .cart-info"); /* istanbul ignore else */ if (indicator && json.itemCount) { indicator.style.display = 'block'; indicator.textContent = json.itemCount > 9 ? '9+' : json.itemCount.toString(); var moreThanOneItem = json.itemCount > 1; indicator.setAttribute('title', "there ".concat(moreThanOneItem ? "are" : "is", " ").concat(json.itemCount, " item").concat(moreThanOneItem ? "s" : "", " in your cart")); } return json; } }; exports.headerWidgetClientInit = headerWidgetClientInit; headerWidgetClientInit( function () { return window.fetch("https://cart.springer.com/cart-info", { credentials: "include", headers: { Accept: "application/json" } }) } ) }})()</script> </div> </div> </div> </nav> </header> </div> <div class="app-masthead__colour-31--pastel app-masthead--pastel" id="main" data-track-component="chapter" data-test="masthead-component"> <section class="app-masthead " aria-label="book chapter masthead"> <div class="app-masthead__container"> <div class="app-article-masthead app-article-masthead--chapter u-sans-serif js-context-bar-sticky-point-masthead" data-track-component="chapter" data-test="masthead-component"> <div class="app-article-masthead__info"> <nav aria-label="breadcrumbs" data-test="breadcrumbs"> <ol class="c-breadcrumbs" itemscope itemtype="https://schema.org/BreadcrumbList"> <li class="c-breadcrumbs__item" id="breadcrumb0" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="chapter page" data-track-category="Conference paper" data-track-action="breadcrumbs" data-track-label="breadcrumb1"><span itemprop="name">Home</span></a><meta itemprop="position" content="1"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb1" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <a href="/book/10.1007/978-3-319-91563-0" class="c-breadcrumbs__link" itemprop="item" data-track="click_breadcrumb" data-track-context="chapter page" data-track-category="Conference paper" data-track-action="breadcrumbs" data-track-label="breadcrumb2"><span itemprop="name">Advanced Information Systems Engineering</span></a><meta itemprop="position" content="2"> <svg class="c-breadcrumbs__chevron" role="img" aria-hidden="true" focusable="false" width="10" height="10" viewBox="0 0 10 10"> <path d="m5.96738168 4.70639573 2.39518594-2.41447274c.37913917-.38219212.98637524-.38972225 1.35419292-.01894278.37750606.38054586.37784436.99719163-.00013556 1.37821513l-4.03074001 4.06319683c-.37758093.38062133-.98937525.38100976-1.367372-.00003075l-4.03091981-4.06337806c-.37759778-.38063832-.38381821-.99150444-.01600053-1.3622839.37750607-.38054587.98772445-.38240057 1.37006824.00302197l2.39538588 2.4146743.96295325.98624457z" fill-rule="evenodd" transform="matrix(0 -1 1 0 0 10)"/> </svg> </li> <li class="c-breadcrumbs__item" id="breadcrumb2" itemprop="itemListElement" itemscope="" itemtype="https://schema.org/ListItem"> <span itemprop="name">Conference paper</span><meta itemprop="position" content="3"> </li> </ol> </nav> <h1 class="c-article-title" data-test="chapter-title" data-chapter-title="">KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake</h1> <ul class="c-article-identifiers"> <li class="c-article-identifiers__item" data-test="article-category">Conference paper</li> <li class="c-article-identifiers__item">First Online: <time datetime="2018-05-17">17 May 2018</time></li> </ul> <ul class="c-article-identifiers c-article-identifiers--cite-list"> <li class="c-article-identifiers__item"> <span class="c-chapter-book-details__meta"> pp 474–489</span> </li> <li class="c-article-identifiers__item c-article-identifiers__item--cite"> <a href="#citeas" data-track="click" data-track-action="cite this chapter" data-track-category="chapter body" data-track-label="link">Cite this conference paper</a> </li> </ul> <div class="app-article-masthead__buttons" data-track-context="masthead"> </div> </div> <div class="app-article-masthead__brand app-article-masthead__brand--no-border app-article-masthead__conference-link"> <a href="/book/10.1007/978-3-319-91563-0" class="app-article-masthead__conference-link app-article-masthead__journal-link" data-track="click" data-track-action="book homepage" data-track-label="link"> <picture> <source type="image/webp" media="(min-width: 768px)" width="120" height="182" srcset="https://media.springernature.com/w120/springer-static/cover-hires/book/978-3-319-91563-0?as=webp, https://media.springernature.com/w316/springer-static/cover-hires/book/978-3-319-91563-0?as=webp 2x"> <img width="72" height="109" src="https://media.springernature.com/w72/springer-static/cover-hires/book/978-3-319-91563-0?as=webp" srcset="https://media.springernature.com/w144/springer-static/cover-hires/book/978-3-319-91563-0?as=webp 2x" alt=""> </picture> <span class="app-article-masthead__journal-title ">Advanced Information Systems Engineering</span> </a> <span class="app-article-masthead__conference-info">(CAiSE 2018) </span> </div> </div> </div> </section> </div> <div class="c-article-main u-container u-mt-24 u-mb-32 l-with-sidebar" id="main-content" data-component="article-container"> <main class="js-main-column u-serif c-chapter-body" data-track-component="chapter"> <div class="c-context-bar u-hide" data-test="context-bar" data-context-bar aria-hidden="true"> <div class="c-context-bar__container u-container" data-track-context="sticky banner"> <div class="c-context-bar__title"> KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake </div> </div> </div> <article lang="en"> <div class="c-article-header"> <header> <div class="app-overview-section"> <ul class="c-article-author-list c-article-author-list--short" data-test="authors-list" data-component-authors-activator="authors-list"><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Antonio-Maccioni" data-author-popup="auth-Antonio-Maccioni" data-corresp-id="c1">Antonio Maccioni<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-mail-medium"></use></svg></a><sup class="u-js-hide"><a href="#Aff15">15</a></sup> & </li><li class="c-article-author-list__item"><a data-test="author-name" data-track="click" data-track-action="open author" data-track-label="link" href="#auth-Riccardo-Torlone" data-author-popup="auth-Riccardo-Torlone">Riccardo Torlone</a><sup class="u-js-hide"><a href="#Aff16">16</a></sup> </li></ul> <div class="app-overview-section__separator app-overview-section__book-series"> <div class="app-book-series-listing"> <div> <svg class="app-book-series-listing__icon" width="24" height="24" aria-hidden="true" focusable="false"><use href="#icon-eds-i-book-series-medium"></use></svg> </div> <div> <p data-test="series-link"> <span class="app-book-series-listing__description">Part of the book series:</span> <a href="https://www.springer.com/series/558" data-track="click" data-track-action="open book series" data-track-label="link">Lecture Notes in Computer Science</a> ((LNISA,volume 10816)) </p> </div> </div> </div> <div class="app-book-series-listing app-overview-section__conf-series"> <div> <svg class="app-book-series-listing__icon" width="24" height="24" aria-hidden="true" focusable="false"><use href="#icon-eds-i-conference-series-medium"></use></svg> </div> <div> <p class="app-book-series-listing__description" data-test="conference-series-link">Included in the following conference series:</p> <ul class="app-book-series-listing__list" data-component="data-book-show-more"> <li class="app-book-series-listing__item"><a href="https://link.springer.com/conference/caise" data-test="conference-series-link" data-track="click" data-track-action="open conference" data-track-label="link">International Conference on Advanced Information Systems Engineering</a></li> </ul> </div> </div> <div class="app-overview-section__separator" data-test="article-metrics"> <div id="altmetric-container"> <ul class="app-article-metrics-bar u-list-reset" data-test="article-metrics"> <li class="app-article-metrics-bar__item" data-test="access-count"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-accesses-medium"></use> </svg>3340 <span class="app-article-metrics-bar__label">Accesses</span></p> </li> <li class="app-article-metrics-bar__item" data-test="citation-count"> <p class="app-article-metrics-bar__count"><svg class="u-icon app-article-metrics-bar__icon" width="24" height="24" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-citations-medium"></use> </svg>27 <span class="app-article-metrics-bar__label"> <a href="http://citations.springer.com/item?doi=10.1007/978-3-319-91563-0_29" target="_blank" rel="noopener" title="Visit Springer Citations for full citation details" data-track="click" data-track-action="Citation count" data-track-label="link">Citations</a> </span></p> </li> </ul> </div> </div> </div> </header> </div> <div data-article-body="true" data-track-component="chapter body" class="c-article-body"> <section aria-labelledby="Abs1" data-title="Abstract" lang="en"><div class="c-article-section" id="Abs1-section"><h2 id="Abs1" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Abstract</h2><div class="c-article-section__content" id="Abs1-content"><p>A data lake is a loosely-structured collection of data at large scale that is usually fed with almost no requirement of data quality. This approach aims at eliminating any human effort before the actual exploitation of data, but the problem is only delayed since preparing and querying a data lake is usually a hard task. We address this problem by introducing <span class="u-small-caps">Kayak</span>, a framework that helps data scientists in the definition and optimization of pipelines of data preparation. Since in many cases approximations of the results, which can be computed rapidly, are enough informative, <span class="u-small-caps">Kayak</span> allows the users to specify their needs in terms of accuracy over performance and produces previews of the outputs satisfying such requirement. In this way, the pipeline is executed much faster and the process of data preparation is shortened. We discuss the design choices of <span class="u-small-caps">Kayak</span> including execution strategies, optimization techniques, scheduling of operations, and metadata management. With a set of preliminary experiments, we show that the approach is effective and scales well with the number of datasets in the data lake.</p></div></div></section><div class="c-article-section__content c-article-section__content--separator"><p>This work has been supported by the European Commission under the grant agreement number 774571 – Project PANTHEON.</p></div> <div data-test="cobranding-download"> <div class="note test-pdf-link" id="cobranding-and-download-availability-text"> <div class="c-article-access-provider" data-component="provided-by-box"> <p class="c-article-access-provider__text c-article-access-provider__text--chapter"> You have full access to this open access chapter, <a href="/content/pdf/10.1007/978-3-319-91563-0_29.pdf?pdf=inline%20link" class="c-pdf-download__link" id="js-body-chapter-download" style="display: inline; padding:0px!important;" target="_blank" rel="noopener" data-track="content_download" data-track-context="article body" data-track-type="conference paper PDF download" data-track-action="Pdf download" data-track-label="inline link" download>Download conference paper PDF</a> <svg width="24" height="24" focusable="false" role="img" aria-hidden="true" class="c-download-pdf-icon-large"> <use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use> </svg> </p> </div> </div> </div> <section aria-labelledby="inline-recommendations" data-title="Inline Recommendations" class="c-article-recommendations" data-track-component="inline-recommendations"> <h3 class="c-article-recommendations-title" id="inline-recommendations">Similar content being viewed by others</h3> <div class="c-article-recommendations-list"> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-319-67262-5?as=webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-319-67262-5_10?fromPaywallRec=false" data-track="select_recommendations_1" data-track-context="inline recommendations" data-track-action="click recommendations inline - 1" data-track-label="10.1007/978-3-319-67262-5_10">Data Preparation as a Service Based on Apache Spark </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2017</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-3-031-15191-0?as=webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-3-031-15191-0_20?fromPaywallRec=false" data-track="select_recommendations_2" data-track-context="inline recommendations" data-track-action="click recommendations inline - 2" data-track-label="10.1007/978-3-031-15191-0_20">DLDB-Service: An Extensible Data Lake System </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2023</span> </div> </div> </article> </div> <div class="c-article-recommendations-list__item"> <article class="c-article-recommendations-card" itemscope itemtype="http://schema.org/ScholarlyArticle"> <div class="c-article-recommendations-card__img"><img src="https://media.springernature.com/w92h120/springer-static/cover-hires/book/978-1-4842-8233-5?as=webp" loading="lazy" alt=""></div> <div class="c-article-recommendations-card__main"> <h3 class="c-article-recommendations-card__heading" itemprop="name headline"> <a class="c-article-recommendations-card__link" itemprop="url" href="https://link.springer.com/10.1007/978-1-4842-8233-5_14?fromPaywallRec=false" data-track="select_recommendations_3" data-track-context="inline recommendations" data-track-action="click recommendations inline - 3" data-track-label="10.1007/978-1-4842-8233-5_14">Adaptive Query Execution </a> </h3> <div class="c-article-meta-recommendations" data-test="recommendation-info"> <span class="c-article-meta-recommendations__item-type">Chapter</span> <span class="c-article-meta-recommendations__date">© 2022</span> </div> </div> </article> </div> </div> </section> <script> window.dataLayer = window.dataLayer || []; window.dataLayer.push({ recommendations: { recommender: 'semantic', model: 'specter', policy_id: 'NA', timestamp: 1732351409, embedded_user: 'null' } }); </script> <div class="main-content"> <h2 class="c-article-section__title js-section-title js-c-reading-companion-sections-item" id="keywords">Keywords</h2><ul class="c-article-subject-list"><li class="c-article-subject-list__subject"><span><a href="/search?query=Data%20lake&facet-discipline="Computer%20Science"" data-track="click" data-track-action="view keyword" data-track-label="link">Data lake</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Data%20preparation&facet-discipline="Computer%20Science"" data-track="click" data-track-action="view keyword" data-track-label="link">Data preparation</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Big%20data&facet-discipline="Computer%20Science"" data-track="click" data-track-action="view keyword" data-track-label="link">Big data</a></span></li><li class="c-article-subject-list__subject"><span><a href="/search?query=Schema-on-read&facet-discipline="Computer%20Science"" data-track="click" data-track-action="view keyword" data-track-label="link">Schema-on-read</a></span></li></ul> <section data-title="Introduction"><div class="c-article-section" id="Sec1-section"><h2 id="Sec1" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">1 </span>Introduction</h2><div class="c-article-section__content" id="Sec1-content"><p>In traditional business intelligence, activities such as modeling, extracting, cleaning, and transforming data are necessary but they also make the data analysis an endless process. In response to that, big data-driven organizations are adopting an agile strategy that dismisses any pre-processing before the actual exploitation of data. This is done by maintaining a repository, called “data lake”, for storing any kind of raw data in its native format. A dataset in the lake is a file, either collected from internal applications (e.g., logs or user-generated data) or from external sources (e.g., open data), that is directly stored on a (distributed) file system without going through an ETL process.</p><p>Unfortunately, reducing the engineering effort upfront just delays the traditional issues of data management since this approach does not eliminate the need of, e.g., data quality and schema understanding. Therefore, a long process of <i>data-preparation</i> (a.k.a. <i>data wrangling</i>) is required before any meaningful analysis can be performed [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Deng, D., Fernandez, R.C., Abedjan, Z., Wang, S., Stonebraker, M., Elmagarmid, A.K., Ilyas, I.F., Madden, S., Ouzzani, M., Tang, N.: The data civilizer system. In: CIDR (2017)" href="#ref-CR6" id="ref-link-section-d20310988e865">6</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 13" title="Heudecker, N., White, A.: The data lake fallacy: all water and little substance. Gartner Report G 264950 (2014)" href="#ref-CR13" id="ref-link-section-d20310988e868">13</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Terrizzano, I., Schwarz, P.M., Roth, M., Colino, J.E.: Data wrangling: the challenging journey from the wild to the lake. In: CIDR (2015)" href="#ref-CR23" id="ref-link-section-d20310988e871">23</a>]. This process typically consists of pipelines of operations such as: source and feature selection, exploratory analysis, data profiling, data summarization, and data curation. A number of state-of-the-art applications can support these activities, including: (i) data and metadata catalogs, for selecting the appropriate datasets [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="CKAN: The open source data portal software. 
 http://ckan.org/
 
 . Accessed Nov 2017" href="#ref-CR1" id="ref-link-section-d20310988e875">1</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Bhardwaj, A.P., Deshpande, A., Elmore, A.J., Karger, D.R., Madden, S., Parameswaran, A.G., Subramanyam, H., Wu, E., Zhang, R.: Collaborative data analytics with DataHub. PVLDB 8(12), 1916–1927 (2015)" href="#ref-CR5" id="ref-link-section-d20310988e878">5</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.: Goods: organizing Google’s datasets. In: SIGMOD (2016)" href="#ref-CR10" id="ref-link-section-d20310988e881">10</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Hellerstein, J.M., Sreekanti, V., Gonzalez, J.E., Dalton, J., Dey, A., Nag, S., Ramachandran, K., Arora, S., Bhattacharyya, A., Das, S., Donsky, M., Fierro, G., She, C., Steinbach, C., Subramanian, V., Sun, E.: Ground: a data context service. In: CIDR (2017)" href="#ref-CR12" id="ref-link-section-d20310988e884">12</a>]; (ii) tools for full-text indexing, for providing keyword search and other advanced search capabilities [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: SIGMOD, pp. 2097–2100 (2016)" href="#ref-CR9" id="ref-link-section-d20310988e887">9</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.: Goods: organizing Google’s datasets. In: SIGMOD (2016)" href="#ref-CR10" id="ref-link-section-d20310988e890">10</a>]; (iii) data profilers, for collecting meta-information from datasets [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 6" title="Deng, D., Fernandez, R.C., Abedjan, Z., Wang, S., Stonebraker, M., Elmagarmid, A.K., Ilyas, I.F., Madden, S., Ouzzani, M., Tang, N.: The data civilizer system. In: CIDR (2017)" href="#ref-CR6" id="ref-link-section-d20310988e894">6</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 9" title="Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: SIGMOD, pp. 2097–2100 (2016)" href="#ref-CR9" id="ref-link-section-d20310988e897">9</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling with metanome. PVLDB 8(12), 1860–1863 (2015)" href="#ref-CR16" id="ref-link-section-d20310988e900">16</a>]; (iv) processing engines like Spark [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)" href="#ref-CR24" id="ref-link-section-d20310988e903">24</a>] in conjunction with data science notebooks such as Jupyter<sup><a href="#Fn1"><span class="u-visually-hidden">Footnote </span>1</a></sup> or Zeppelin<sup><a href="#Fn2"><span class="u-visually-hidden">Footnote </span>2</a></sup>, for executing the analysis and visualize the results. In such scenario, data preparation is an involved, fragmented and time-consuming process, thus preventing analysis on-the-fly over the lake.</p><p>In this framework, we propose a system, called <span class="u-small-caps">Kayak</span>, supporting data scientists in the definition, execution and, most importantly, optimization of data preparation pipelines in a data lake<sup><a href="#Fn3"><span class="u-visually-hidden">Footnote </span>3</a></sup>. With <span class="u-small-caps">Kayak</span> data scientists can: (i) define pipelines composed by <i>primitives</i> implementing common data preparation activities and (ii) specify, for each primitive, their time <i>tolerance</i> in waiting for the result. This represents a mechanism to trade-off between performance and accuracy of primitives’ results. Indeed, these primitives involve hard-to-scale algorithms that prevent analysis on-the-fly over new datasets [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: CORDS: automatic discovery of correlations and soft functional dependencies. In: SIGMOD, pp. 647–658 (2004)" href="#ref-CR14" id="ref-link-section-d20310988e958">14</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling with metanome. PVLDB 8(12), 1860–1863 (2015)" href="#ref-CR16" id="ref-link-section-d20310988e961">16</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" title="Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J., Schönberg, M., Zwiener, J., Naumann, F.: Functional dependency discovery: an experimental evaluation of seven algorithms. PVLDB 8(10), 1082–1093 (2015)" href="#ref-CR17" id="ref-link-section-d20310988e961_1">17</a>,<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency discovery. In: SIGMOD, pp. 821–833 (2016)" href="#ref-CR18" id="ref-link-section-d20310988e964">18</a>], but often an approximate result is informative enough to move forward to the next action in the pipeline, with no need to wait for an exact result. <span class="u-small-caps">Kayak</span> takes into account the tolerances by producing quick <i>previews</i> of primitive’s results, when necessary. In this way, the pipelines are executed much faster and the time for data preparation is shortened.</p><p>On the practical side, each primitive in a pipeline is made of a series of tasks implementing built-in, atomic operations of data preparation. Each task can be computed incrementally via a number of steps, each of which can return previews to the user. <span class="u-small-caps">Kayak</span> orchestrates the overall execution process by scheduling and computing the various steps of a pipeline according to several optimization strategies that balance the accuracy of results with the given time constraints. Another important feature of <span class="u-small-caps">Kayak</span> is its ability to collect automatically, in a metadata catalog, different relationships among datasets, which can be used later to implement advanced analytics. The catalog also keeps the profile of each dataset and provides a high-level view of the content of the data lake.</p><p>We have verified the effectiveness of our approach with the first implementation of <span class="u-small-caps">Kayak</span> and tested its scalability when the number and size of datasets in the lake increase.</p><p>Currently, the system is used in operation within the PANTHEON project whose aim is supporting precision farming: it is charge of collecting and managing heterogeneous data coming from terrestrial and aerial robots moving in plantations, as well as from ground sensors and weather stations located nearby.</p><p>The rest of the paper is organized as follows. In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="#Sec2">2</a> we provide an overview of our approach. In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="#Sec3">3</a> we illustrate how <span class="u-small-caps">Kayak</span> models data and, in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="#Sec4">4</a>, we describe our strategy for executing primitives. In Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="#Sec5">5</a> we discuss our experimental results and, in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="#Sec8">6</a>, some related works. Finally, in Sect. <a data-track="click" data-track-label="link" data-track-action="section anchor" href="#Sec9">7</a>, we draw some conclusions and sketch future works.</p></div></div></section><section data-title="Overview of the Approach"><div class="c-article-section" id="Sec2-section"><h2 id="Sec2" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">2 </span>Overview of the Approach</h2><div class="c-article-section__content" id="Sec2-content"><p>This section provides an overview, from a high-level perspective, of the main features of the system.</p><p><b>Pipelines, Primitives and Tasks.</b> <span class="u-small-caps">Kayak</span> is a framework that lies between users/applications and the file system where data is stored. It exposes a series of <i>primitives</i> for data preparation, some of which are reported in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="#Tab1">1</a>. For example, a data scientist can use primitive P<span class="mathjax-tex">\(_5\)</span> to find interesting ways to access a dataset. Each primitive is composed of a sequence of <i>tasks</i> that are reused across primitives (e.g., P<span class="mathjax-tex">\(_6\)</span> is split into T<span class="mathjax-tex">\(_b\)</span>, T<span class="mathjax-tex">\(_c\)</span>, T<span class="mathjax-tex">\(_w\)</span>, while primitive P<span class="mathjax-tex">\(_7\)</span> uses T<span class="mathjax-tex">\(_c\)</span> only). A task is atomic and consists of operations that can be executed either directly within <span class="u-small-caps">Kayak</span> or involving external tools [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling with metanome. PVLDB 8(12), 1860–1863 (2015)" href="#ref-CR16" id="ref-link-section-d20310988e1124">16</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 24" title="Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache spark: a unified engine for big data processing. Commun. ACM 59(11), 56–65 (2016)" href="#ref-CR24" id="ref-link-section-d20310988e1127">24</a>], as shown in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="#Tab2">2</a>.</p><div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-1"><figure><figcaption class="c-article-table__figcaption"><b id="Tab1" data-test="table-caption">Table 1. Example of primitives in <span class="u-small-caps">Kayak</span>.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/chapter/10.1007/978-3-319-91563-0_29/tables/1" aria-label="Full size table 1"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-table" data-test="inline-table" data-container-section="table" id="table-2"><figure><figcaption class="c-article-table__figcaption"><b id="Tab2" data-test="table-caption">Table 2. Example of tasks in <span class="u-small-caps">Kayak</span>.</b></figcaption><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="table-link" data-track="click" data-track-action="view table" data-track-label="button" rel="nofollow" href="/chapter/10.1007/978-3-319-91563-0_29/tables/2" aria-label="Full size table 2"><span>Full size table</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>A <i>pipeline</i> is a composition of primitives that is representable as a DAG (direct acyclic graph). As an example, Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">1</a> shows a pipeline composed by six primitives: P<span class="mathjax-tex">\(_1\)</span> inserts a new dataset in the lake and P<span class="mathjax-tex">\(_4\)</span> generates a profiles for it; then P<span class="mathjax-tex">\(_8\)</span> processes the dataset with a machine learning algorithm while P<span class="mathjax-tex">\(_7\)</span> identifies possible relationships with another dataset. Eventually, P<span class="mathjax-tex">\(_5\)</span> produces a query recommendation. Users can mark the primitives in the pipeline with a <i>watchpoint</i> to inspect some intermediate result. For example, in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">1</a> we have defined a watchpoint on P<span class="mathjax-tex">\(_7\)</span>, P<span class="mathjax-tex">\(_5\)</span>, P<span class="mathjax-tex">\(_3\)</span>, and P<span class="mathjax-tex">\(_8\)</span>.</p><p>Note that, we assume here that the output of a primitive is not directly used as input of the following primitive; they rather communicate indirectly by storing data in the lake or metadata in a catalog. Primitives can be <i>synchronous</i> when they do not allow the execution of a subsequent primitive before its completion, or <i>asynchronous</i>, when can be invoked and executed concurrently.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-1" data-title="Fig. 1."><figure><figcaption><b id="Fig1" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 1.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/1" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig1_HTML.gif?as=webp"><img aria-describedby="Fig1" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig1_HTML.gif" alt="figure 1" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-1-desc"><p>Example of a data preparation pipeline.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/1" data-track-dest="link:Figure1 Full size image" aria-label="Full size image figure 1" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p><b>Metadata Management.</b> <span class="u-small-caps">Kayak</span> extracts metadata from datasets explicitly, with ad-hoc primitives (e.g., <span class="mathjax-tex">\(P_4\)</span>), or implicitly, when a primitive needs some metadata and uses the corresponding profiling task (e.g., <span class="mathjax-tex">\(T_a\)</span> in <span class="mathjax-tex">\(P_1\)</span>). Metadata are organized in a set of predefined attributes and are stored in a catalog so that they can be accessed by any task.</p><p>Specifically, <span class="u-small-caps">Kayak</span> collects <i>intra-dataset</i> and <i>inter-dataset</i> metadata. Intra-dataset metadata form the profile associated with each single dataset, which includes descriptive, statistical, structural and usage metadata attributes. Inter-dataset metadata specify relationships between different datasets or between attributes belonging to different datasets. They include integrity constraints (e.g., inclusion dependencies) and other properties proposed by ourselves, such as <i>joinability</i> (<span class="mathjax-tex">\(\varOmega \)</span>) and <i>affinity</i> (<span class="mathjax-tex">\(\varPsi \)</span>) between datasets. Inter-dataset metadata are represented graphically, as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig2">2</a>(a) and (b). Intuitively, joinability measures the mutual percentage of common values between attributes of two datasets, whereas affinity measures the semantic strength of a relationship according to some external knowledge. The <i>affinity</i> is an adaptation, to data lakes, of the entity complement proposed by Sarma et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Sarma, A.D., Fang, L., Gupta, N., Halevy, A.Y., Lee, H., Wu, F., Xin, R., Yu, C.: Finding related tables. In: SIGMOD (2012)" href="#ref-CR21" id="ref-link-section-d20310988e2229">21</a>].</p><p><b>Time-to-Action and Tolerance of the User.</b> Let us call <i>time-to-action</i> the amount of time elapsing between the submission of a primitive in a pipeline and the instant in which a data scientist is able to take an informed decision on how to move forward to the next step of the pipeline. To shorten primitive computation when unnecessarily long, we let the data scientist specify a <i>tolerance</i>. A high tolerance is set by the data scientist who does not want to wait for long and believes that an approximate result is enough informative. On the contrary, a low tolerance is specified when the priority is on accuracy. For instance, in the pipeline of Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig1">1</a>, primitives <span class="mathjax-tex">\(P_4\)</span> and <span class="mathjax-tex">\(P_7\)</span> have been specified with a tolerance of 60% and 35%, respectively.</p><p><b>Incremental Execution for Reducing Time-to-Action.</b> In <span class="u-small-caps">Kayak</span>, primitives can be executed incrementally and produce a sequence of <i>previews</i> along their computation. A primitive is decomposed into a series of tasks. Each task can be computed as a sequence of steps that returns the previews. A preview is an approximation of the exact result of the task and it is, therefore, computed much faster. Two strategies of incremental execution exist. A <i>greedy</i> strategy aims at reducing the time-to-action by producing a quick preview first, and then updating the user with refined previews within her tolerance. Alternatively, a <i>best-fit</i> strategy aims at giving the best accuracy according to the given tolerance. It generates only the most accurate preview that fits the tolerance of the user.</p><p><b>Confidence of Previews.</b> Each preview comes with a <i>confidence</i> indicating the uncertainty on the correctness of the result with a value between 0 and 1. A confidence is 0 when the result is random and it is 1 when it is exact. A sequence of previews is always produced with an increasing confidence so that the user is always updated with more accurate results and metadata are updated with increasingly valuable information.</p><p><b>Extensibility.</b> <span class="u-small-caps">Kayak</span> provides a set of built-in, atomic tasks that can be easily extended for implementing new functionalities. Specifically, tasks implementing common activities of data preparation and therefore can be used by different primitives. For instance, referring to Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="#Tab2">2</a>, task T<span class="mathjax-tex">\(_b\)</span> is used by three primitives. In addition, a new task can be defined by the users, who needs to specify also the cost model for the computation of the task and all the possible ways to approximate it, as we will show next.</p></div></div></section><section data-title="Modeling a Data Lake"><div class="c-article-section" id="Sec3-section"><h2 id="Sec3" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">3 </span>Modeling a Data Lake</h2><div class="c-article-section__content" id="Sec3-content"><p>In this section, we discuss on how data and metadata are represented and managed in our framework. Let us start with some basic notions.</p> <h3 class="c-article__sub-heading" id="FPar1">Definition 1</h3> <p><b>(Dataset).</b> A dataset <i>D</i>(<i>X</i>, <i>C</i>, <i>R</i>) has a name <i>D</i>, and is composed by a set <i>X</i> of <i>attributes</i>, a set <i>C</i> of <i>data objects</i>, and a <i>profile</i> <i>R</i>. Each data object in <i>C</i> is a set of attribute-value pairs, with attributes taken from <i>X</i>. The profile <i>R</i> is a set of attribute-value pairs, with attributes taken from a predefined set <i>M</i> of <i>metadata attributes</i>.</p> <p>A metadata attribute of a dataset <i>D</i> can refer to either the whole dataset or to an attribute of <i>D</i>. We use the dot notation to distinguish between the two cases. For instance, if <i>D</i> is a dataset involving an attribute <span class="mathjax-tex">\( ZipCode\)</span>, the profile of <i>D</i> can include the pairs <span class="mathjax-tex">\( \langle D{.}CreationDate:11/11/2016\rangle \)</span> and <span class="mathjax-tex">\( \langle ZipCode{.}unique:true\rangle \)</span>. For simplicity, we assume that each dataset is stored in a file and therefore we often blur the distinction between dataset and file.</p> <h3 class="c-article__sub-heading" id="FPar2">Definition 2</h3> <p><b>(Data Lake).</b> A data lake <span class="mathjax-tex">\(\mathcal {D}\)</span> is a collection of datasets having distinct names.</p> <p>Differently from a profile of a dataset, inter-dataset metadata capture relationships between different datasets and between attributes of different datasets. They are represented as graphs and are introduced next.</p><p><b>Affinity.</b> In the affinity graph of a data lake <span class="mathjax-tex">\(\mathcal {D}\)</span>, the nodes represent the attributes of the datasets in <span class="mathjax-tex">\(\mathcal {D}\)</span> and an edge between two attributes represents the presence of some time-independent relationship between them (e.g., the fact that they refer to the same real-world entity). Edges can have weights that measure the “strength” of the relationship.</p><p>Specifically, we consider a <i>domain-knowledge</i> affinity <span class="mathjax-tex">\(\varOmega (D_1.A_i, D_2.A_j)\)</span> that measures the “semantic” affinity between attributes <span class="mathjax-tex">\(D_1.A_i\)</span> and <span class="mathjax-tex">\(D_2.A_j\)</span>, which is computed by taking advantage of some existing external knowledge base (such as a domain ontology). The value assigned by <span class="mathjax-tex">\(\varOmega (D_1.A_i, D_2.A_j)\)</span> ranges in [0, 1] (i.e. 0 when there is no affinity and 1 when the affinity is maximum). Here, we take inspiration from the notion of <i>entity complement</i> proposed by Sarma et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 21" title="Sarma, A.D., Fang, L., Gupta, N., Halevy, A.Y., Lee, H., Wu, F., Xin, R., Yu, C.: Finding related tables. In: SIGMOD (2012)" href="#ref-CR21" id="ref-link-section-d20310988e2538">21</a>]. However, different kinds of affinity can be used such as those based on text classification.</p><p>We can now define the graph representing the affinity of the attributes <span class="mathjax-tex">\(\mathcal {A}\)</span> of the datasets in the data lake <span class="mathjax-tex">\(\mathcal {D}\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar3">Definition 3</h3> <p><b>(Affinity Graph of Attributes).</b> The affinity graph of attributes in <span class="mathjax-tex">\(\mathcal {D}\)</span> is an undirected and weighted graph <span class="mathjax-tex">\(G_\mathcal {A}^{\varOmega } = (N_{\mathcal {A}}, E_{\mathcal {A}}^{\varOmega })\)</span> where <span class="mathjax-tex">\(N_{\mathcal {A}}\)</span> contains a node for each attribute <i>A</i> in <span class="mathjax-tex">\(\mathcal {A}\)</span> and <span class="mathjax-tex">\(E_{\mathcal {A}}^{\varOmega }\)</span> contains an edge <span class="mathjax-tex">\((A_1, A_2, \varOmega (A_1,A_2))\)</span> for each pair of attributes <span class="mathjax-tex">\(A_1\)</span> and <span class="mathjax-tex">\(A_2\)</span> in <span class="mathjax-tex">\(\mathcal {A}\)</span> such that <span class="mathjax-tex">\(\varOmega (A_1, A_2)>0\)</span>.</p> <p>The notion of affinity between attributes can be used to define the affinity between two datasets <span class="mathjax-tex">\(D_1\)</span> and <span class="mathjax-tex">\(D_2\)</span>.</p> <h3 class="c-article__sub-heading" id="FPar4">Definition 4</h3> <p><b>(Affinity of Datasets).</b> Let <span class="mathjax-tex">\(X_1\)</span> and <span class="mathjax-tex">\(X_2\)</span> be the set of attributes of the datasets <span class="mathjax-tex">\(D_1\)</span> and <span class="mathjax-tex">\(D_2\)</span>, respectively, and let <span class="mathjax-tex">\(\hat{X}=X_1\times X_2\)</span>. The affinity between <span class="mathjax-tex">\(D_1\)</span> and <span class="mathjax-tex">\(D_2\)</span>, denoted by <span class="mathjax-tex">\(\varOmega (D_1, D_2)\)</span>, is defined as follows:</p><div id="Equ1" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\varOmega (D_1, D_2) = \sum _{(A_j, A_k)\in \hat{X}}{\varOmega (A_j, A_k)}$$</span></div></div> <p>Analogously, we can define an affinity graph of datasets.</p> <h3 class="c-article__sub-heading" id="FPar5">Definition 5</h3> <p><b>(Affinity Graph of Datasets).</b> The affinity graph of datasets for <span class="mathjax-tex">\(\mathcal {D}\)</span> is an undirected and weighted graph <span class="mathjax-tex">\(G_\mathcal {D}^{\varOmega } = (N_{\mathcal {D}}, E_{\mathcal {D}}^{\varOmega })\)</span> where <span class="mathjax-tex">\(N_{\mathcal {D}}\)</span> contains a node for each dataset <i>D</i> in <span class="mathjax-tex">\(\mathcal {D}\)</span> and <span class="mathjax-tex">\(E_{\mathcal {D}}\)</span> contains an edge <span class="mathjax-tex">\((D_1, D_2, \varOmega (D_1, D_2) )\)</span> for each pair of dataset <span class="mathjax-tex">\(D_1\)</span> and <span class="mathjax-tex">\(D_2\)</span> in <span class="mathjax-tex">\(\mathcal {D}\)</span> such that <span class="mathjax-tex">\(\varOmega (D_1, D_2)>0\)</span>.</p> <p>We are clearly interested in highly affine relationships. Therefore, we consider a simplified version of the graph where the edges have weights higher than a threshold <span class="mathjax-tex">\(\tau \)</span>, defined by the user. This is equivalent to consider irrelevant affinities below <span class="mathjax-tex">\(\tau _{\varOmega }\)</span>. An example of affinity graph of attributes is reported in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig2">2</a>(a).</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-2" data-title="Fig. 2."><figure><figcaption><b id="Fig2" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 2.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/2" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig2_HTML.gif?as=webp"><img aria-describedby="Fig2" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig2_HTML.gif" alt="figure 2" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-2-desc"><p>Inter-dataset metadata.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/2" data-track-dest="link:Figure2 Full size image" aria-label="Full size image figure 2" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p><b>Joinability.</b> Another way to relate attributes and dataset is simply based on the existence of common values. We introduce the concept of <i>joinability</i> for this purpose.</p> <h3 class="c-article__sub-heading" id="FPar6">Definition 6</h3> <p><b>(Joinability).</b> Given two attributes <span class="mathjax-tex">\(A_i\)</span> and <span class="mathjax-tex">\(A_j\)</span> belonging to the datasets <span class="mathjax-tex">\(D_1\)</span> and <span class="mathjax-tex">\(D_2\)</span>, respectively, their joinability <span class="mathjax-tex">\(\varPsi \)</span> is defined as</p><div id="Equ2" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$\varPsi (D_{1}.A_i, D_{2}.A_j)=\frac{2\cdot |\pi _{A_{i}}(D_1 \bowtie _{A_{i}=A_{j}} D_2)|}{(|\pi _{A_{i}}(D_1)| + |\pi _{A_{j}}(D_2)|)}$$</span></div></div> <p>The joinability measures the mutual percentage of tuples of <span class="mathjax-tex">\(D_1\)</span> that join with tuples of <span class="mathjax-tex">\(D_2\)</span> on <span class="mathjax-tex">\(D_1.A_i\)</span> and <span class="mathjax-tex">\(D_2.A_j\)</span>, and vice versa. This notion enjoys interesting properties, which we can discuss by considering the example in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig3">3</a>.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-3" data-title="Fig. 3."><figure><figcaption><b id="Fig3" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 3.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/3" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig3_HTML.gif?as=webp"><img aria-describedby="Fig3" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig3_HTML.gif" alt="figure 3" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-3-desc"><p>Tabular datasets.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/3" data-track-dest="link:Figure3 Full size image" aria-label="Full size image figure 3" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-4" data-title="Fig. 4."><figure><figcaption><b id="Fig4" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 4.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/4" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig4_HTML.gif?as=webp"><img aria-describedby="Fig4" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig4_HTML.gif" alt="figure 4" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-4-desc"><p>Business logic of the framework.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/4" data-track-dest="link:Figure4 Full size image" aria-label="Full size image figure 4" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>The maximum joinability, (e.g., <span class="mathjax-tex">\(\varPsi (D_{1}.A_1, D_{2}.A_2)=1\)</span>), is when each value of one attribute matches a value of the other attribute. If the result of the join between the two attributes is empty, the joinability is 0 (e.g., <span class="mathjax-tex">\(\varPsi (D_{2}.A_2, D_{4}.A_4)=0\)</span>). A joinability in (0, 1) means that there are several matching values. The joinability takes also into account, for both attributes, the number of distinct values that do not match. For the dataset in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig3">3</a> we have: <span class="mathjax-tex">\(\varPsi (D_{1}.A_1, D_{2}.A_2)>\varPsi (D_{1}.A_1, D_{3}.A_3) > \varPsi (D_{1}.A_1, D_{4}.A_4)\)</span>.</p><p>Similarly to the property of affinity, we can build a joinability graph of attributes and a joinability graph of datasets, where we represent only those edges whose joinability is higher or equal than a threshold parameter <span class="mathjax-tex">\(\tau _{\varPsi }\)</span>. An example of a joinability graph is reported in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig2">2</a>(b).</p></div></div></section><section data-title="Incremental Execution of Primitives"><div class="c-article-section" id="Sec4-section"><h2 id="Sec4" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">4 </span>Incremental Execution of Primitives</h2><div class="c-article-section__content" id="Sec4-content"><p>In this section, we describe the incremental execution of primitives, a mechanism that allows users to obtain previews of a result at an increasing level of accuracy.</p><p><b>Basic Idea.</b> Users submit a primitive over an input <i>I</i>, which is typically a set of datasets. As we can see from Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig4">4</a>, a primitive is composed of one or more tasks of type <i>T</i>. Each task type is associated with one or more <i>steps</i>. A step is an operation that is able to return a result for <i>T</i> over <i>I</i>. The result of a step can be either exact or approximate. We use <i>t</i> for indicating the step that computes the exact result <i>r</i> for <i>t</i> for <i>T</i> over <i>I</i> (i.e., <span class="mathjax-tex">\(r = t(I)\)</span>). We use <span class="mathjax-tex">\(s_i^{T}\)</span> for indicating the <i>i</i>-th approximate step of <i>T</i>, which returns a preview <span class="mathjax-tex">\(p_i = s_i^T(I)\)</span>. Therefore, a preview <span class="mathjax-tex">\(p_i\)</span> is an approximation of <i>r</i>.</p><p>We have several types of approximate steps, corresponding to different ways to approximate a task. For instance, some step reduces the input <i>I</i> (e.g., sampling), while other steps apply heuristics over <i>I</i>. In our framework, we have components that support the approximate steps, as shown in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig4">4</a>. The list of steps <span class="mathjax-tex">\(S_T\)</span> for a task type <i>T</i> is declared in the definition of <i>T</i>. For simplicity, the following discussion considers a primitive with a single task type <i>T</i>, but this generalizes easily to primitives with many tasks. The incremental execution of a task type <i>T</i> over <i>I</i> is a sequence of <i>m</i> steps <span class="mathjax-tex">\(s_1^T, \ldots , s_m^T \)</span>, where possibly the last step is the exact task <i>t</i> (i.e. <span class="mathjax-tex">\(t=s_m^T\)</span>).</p><p>Each preview comes with a <i>confidence</i>, indicating the uncertainty on the correctness of the result with a number between 0 and 1. A confidence is 0 when the result is random and it is 1 when the result is exact. <span class="u-small-caps">Kayak</span> computes the confidence executing a function embedded in the step definition. This function considers the confidence associated with the input of the step, e.g., the confidence of a metadata attribute. Note that, since previews are produced with an increasing confidence, metadata are stored with increasingly precise information and the user is always updated with more accurate primitive results.</p><p>In addition, each step is associated with a cost function that estimates its computational time over an input <i>I</i>, i.e. <span class="mathjax-tex">\(cost(s_i^T, I)\)</span>. We have defined the cost functions using the Big-<span class="mathjax-tex">\(\varTheta \)</span> time complexity. All other time-based measures like the load of the system and the tolerance have to be comparable with the cost and are therefore expressed in terms of the same virtual time. Moreover, we want to underline that there is no formal relationship between the cost of a step and the confidence of the preview it produces.</p><p><b>Optimization.</b> <span class="u-small-caps">Kayak</span> needs to find a suitable incremental execution for a primitive, that is the order of the execution of steps. To this aim, <span class="u-small-caps">Kayak</span> takes into account the tolerance of the user and the current workload. The tolerance is fixed by the user for each of the primitives in the pipeline. The workload is given by the sum of the costs of the steps of the primitives to be executed.</p><p>In our framework, we devised several incremental execution strategies and further strategies can be defined. For example, we have a so-called <i>best-fit</i> strategy that tries to generate only the most accurate preview that fits within the tolerance. This tends to limit the overall delay while still reducing the time-to-action according to the user’s tolerance. Another strategy is the so-called <i>greedy</i> strategy that aims at minimizing the time-to-action and to update the user with subsequent previews. However, due to lack of space, we do not detail any strategy.</p><p><b>Step Dependency.</b> At the end of the step generation, we set dependencies to enforce a correct execution of primitives composed of many tasks. Since we allow for a parallel execution of steps, a DAG of dependencies is considered. In the DAG, each node <span class="mathjax-tex">\(T_i\)</span> is a task type and each edge <span class="mathjax-tex">\((T_i, T_j)\)</span> represents a dependency of a task <span class="mathjax-tex">\(T_j\)</span> (the destination node) from another task <span class="mathjax-tex">\(T_i\)</span> (the source node). A dependency indicates that <span class="mathjax-tex">\(T_j\)</span> can start its execution only after <span class="mathjax-tex">\(T_i\)</span> is completed.</p><p>In <span class="u-small-caps">Kayak</span>, we do not have a centralized representation of the DAG, but dependencies are set within each task. For example, in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig5">5</a>(a) we have the DAG for the primitive <span class="mathjax-tex">\(P_5\)</span> that is composed of four tasks <span class="mathjax-tex">\(T_b, T_c, T_d\)</span> and <span class="mathjax-tex">\(T_q\)</span>, as in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="#Tab2">2</a>. The task <span class="mathjax-tex">\(T_q\)</span> is the last task of the primitive and uses metadata provided by <span class="mathjax-tex">\(T_b, T_c\)</span> and <span class="mathjax-tex">\(T_d\)</span>. For this reason, <span class="mathjax-tex">\(T_q\)</span> has a dependency with every other task. In addition, there is a dependency between <span class="mathjax-tex">\(T_d\)</span> and <span class="mathjax-tex">\(T_b\)</span>. This means that <span class="mathjax-tex">\(T_b\)</span> and <span class="mathjax-tex">\(T_c\)</span> can execute before the others, possibly in parallel.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-5" data-title="Fig. 5."><figure><figcaption><b id="Fig5" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 5.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/5" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig5_HTML.gif?as=webp"><img aria-describedby="Fig5" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig5_HTML.gif" alt="figure 5" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-5-desc"><p>Dependencies among tasks of a primitive.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/5" data-track-dest="link:Figure5 Full size image" aria-label="Full size image figure 5" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p>When a primitive is executed in incremental mode, the step generation phase produces a DAG that considers every single step. Let us suppose that <span class="mathjax-tex">\(T_b, T_c\)</span> and <span class="mathjax-tex">\(T_q\)</span> are executed incrementally in two steps each, while <span class="mathjax-tex">\(T_d\)</span> is executed in a single step. Figure <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig5">5</a>(b) shows the resulting DAG for this primitive execution. We set a dependency between two subsequent steps of the same task, such as <span class="mathjax-tex">\((s_1^b,s_2^b)\)</span>, to preserve the increase of the confidence of results. If this dependency is not set, then a preview might overwrite another preview with higher confidence.</p><p>We also need to set the inter-task dependencies. In this case, we set a dependency between the first generated steps of the two tasks. Using the example of <span class="mathjax-tex">\(P_5\)</span>, the dependency <span class="mathjax-tex">\((T_c, T_q)\)</span> is established by the dependency <span class="mathjax-tex">\((s_1^c,t_1^q)\)</span>. No inter-task dependency between following steps is considered. The reason behind this decision is, again, aimed at reducing the time-to-action.</p><p>There are two side effects that motivate this decision. The former is when, for example, <span class="mathjax-tex">\(t_1^c\)</span> and <span class="mathjax-tex">\(t_2^c\)</span> terminate before <span class="mathjax-tex">\(t_1^q\)</span> has started. It follows that <span class="mathjax-tex">\(t_1^q\)</span> will use metadata produced by <span class="mathjax-tex">\(t_2^c\)</span>, resulting in a higher confidence. The latter side effect is when <span class="mathjax-tex">\(t_1^q\)</span> is computed between <span class="mathjax-tex">\(t_1^c\)</span> and <span class="mathjax-tex">\(t_2^c\)</span>. The final result of <span class="mathjax-tex">\(t_1^q\)</span> will be less accurate but the time-to-action is minimized. However, the user is notified of the fact that more accurate metadata is present for, possibly, refining the result of the primitive she just launched.</p><p><b>Scheduling of Steps.</b> Dependencies are used for guaranteeing the consistency of primitives’ results but they do not suffice to reduce the time-to-action of tasks coming from different primitives. To avoid a random order of execution, we use a step scheduling mechanism where the order of execution is done with respect to a priority assigned to each step. Steps with higher priority are executed first, while low priority steps are treated like processes to execute in background when the system is inactive. The priority function is defined as follows:</p><div id="Equ3" class="c-article-equation"><div class="c-article-equation__content"><span class="mathjax-tex">$$ priority(s) = \frac{1}{cost(s)} + freshness(s) + completeness(s)$$</span></div></div><p>where:</p><ul class="u-list-style-dash"> <li> <p>The <i>cost</i> is used to favor shorter steps, with the aim of reducing the time-to-action. It is given by the same function used in the previous sections.</p> </li> <li> <p>The <i>freshness</i> is used to avoid starvation. It uses the creation time of steps (with older steps having higher freshness). Let us explain the motivation behind this factor with an example. Let us consider the submission of a heavy task of type T<span class="mathjax-tex">\(_c\)</span> followed by the submission of many shorter tasks of type T<span class="mathjax-tex">\(_a\)</span>. If we consider only the cost factor, the task T<span class="mathjax-tex">\(_c\)</span> will never be executed and it will starve in the queue.</p> </li> <li> <p>The <i>completeness</i> is used to balance the time-to-action across different primitives. It considers how many steps have already been instantiated for the task type. For instance, the completeness gives an advantage to the first step of task T<span class="mathjax-tex">\(_c\)</span> over the second step of another task T<span class="mathjax-tex">\(_a\)</span>. In fact, if we use only cost and freshness some step for T<span class="mathjax-tex">\(_c\)</span> might not fulfill its time-to-action objective.</p> </li> </ul> <p>Note that our scheduling mechanisms do not conflict with mechanisms of cluster resource managers (e.g., Apache Mesos or Apache Yarn) used by data processing engines. We decide when a step can start its execution, while they schedule jobs of data processing only once their corresponding step has already started.</p><p><b>Use Case: Incremental Computation of Joinability.</b> We now show the incremental execution of the task type T<span class="mathjax-tex">\(_c\)</span> that computes the joinability of a dataset against the rest of the datasets in the lake (see Definition <a data-track="click" data-track-label="link" data-track-action="subsection anchor" href="#FPar6">6</a>). Since the data lake <span class="mathjax-tex">\(\mathcal {D}\)</span> can have a large number of datasets with many attributes, this task is computationally expensive and does not scale with the size of <span class="mathjax-tex">\(\mathcal {D}\)</span>. Since this task is used by many primitives, it is often convenient to execute incrementally. Below we list the techniques used to generate previews of T<span class="mathjax-tex">\(_c\)</span>.</p> <ol class="u-list-style-none"> <li> <span class="u-custom-list-number">1.</span> <p><i>Joinability over frequent items.</i> Our least accurate step for T<span class="mathjax-tex">\(_c\)</span> is given by a heuristic that takes the most frequent items present in the domain of two attributes along with the number of occurrences. This information is present in our metadata catalog and it is collected by other profiling tasks. We then compute the intersection between the two sets that allows us to determine the joinability of a small portion of the two attribute’s domains in a constant time. The confidence is computed by considering the percentage of the coverage that the frequent items have over the entire domain.</p> </li> <li> <span class="u-custom-list-number">2.</span> <p><i>Joinability over a subset of attributes and sampled datasets.</i> This step uses some heuristics that aim at selecting those attributes that are likely to have higher values of joinability against the input dataset. It specifically selects a subset of attributes <span class="mathjax-tex">\(Z_i\)</span> of the lake to be used in the computation of the joinability against attributes of <span class="mathjax-tex">\(D_i\)</span>. Then, the datasets which the attributes of <span class="mathjax-tex">\(Z_i\)</span> belong from are sampled to further reduce the cost of the operation. The approximation of joinability is similar to compute approximate joins [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB: queries with bounded errors and bounded response times on very large data. In: EuroSys, pp. 29–42 (2013)" href="#ref-CR4" id="ref-link-section-d20310988e4110">4</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: SIGMOD, pp. 171–182 (1997)" href="#ref-CR11" id="ref-link-section-d20310988e4113">11</a>]. The sample rate is chosen dynamically according to the size of the dataset, with lower sample rate for higher dataset size. The selected attributes <span class="mathjax-tex">\(Z_i\)</span> are those having: (a) overlapping among the most frequent items of the attributes, (b) an inclusion dependency with <span class="mathjax-tex">\(D_i\)</span> (we check from available metadata without computing T<span class="mathjax-tex">\(_e\)</span> of Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="#Tab2">2</a>), (c) high affinity with the attributes of <span class="mathjax-tex">\(D_i\)</span> as taken from the <i>affinity graph of attributes</i>. The confidence of this level is given by the used sample ratios and the number of attributes that have been selected.</p> </li> <li> <span class="u-custom-list-number">3.</span> <p><i>Joinability over a subset of attributes.</i> This step selects the attributes of the previous case but does not apply any sampling over the datasets.</p> </li> <li> <span class="u-custom-list-number">4.</span> <p><i>Joinability over a subset of sampled datasets.</i> This step selects a set <span class="mathjax-tex">\(Y_i\)</span> of datasets in <span class="mathjax-tex">\(\mathcal {D}\)</span> having high affinity with <span class="mathjax-tex">\(D_i\)</span> by checking the <i>affinity graph of datasets</i>. Then, it computes the joinability between attributes of <span class="mathjax-tex">\(D_i\)</span> and attributes of datasets in <span class="mathjax-tex">\(Y_i\)</span>.</p> </li> <li> <span class="u-custom-list-number">5.</span> <p><i>Joinability over a subset of datasets.</i> This step selects the same set <span class="mathjax-tex">\(Y_i\)</span> of datasets of the previous case but, differently from it, sampling is not applied.</p> </li> <li> <span class="u-custom-list-number">6.</span> <p><i>Joinability over a sampled data lake.</i> This step selects a sample from each of the datasets in <span class="mathjax-tex">\(\mathcal {D}\)</span> and then it applies the joinability between the attributes of <span class="mathjax-tex">\(D_i\)</span> and any other attribute in <span class="mathjax-tex">\(\mathcal {D}\)</span>.</p> </li> </ol> <p>We have described here the steps of the joinability task. The implementation of these steps makes use of other optimizations such as those in presence of inclusion dependencies or those that return zero when data types are different or domain ranges do not overlap. However, we do not discuss them in detail here because they do not deal with the approximation of the exact results.</p></div></div></section><section data-title="Experimental Results"><div class="c-article-section" id="Sec5-section"><h2 id="Sec5" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">5 </span>Experimental Results</h2><div class="c-article-section__content" id="Sec5-content"><h3 class="c-article__sub-heading" id="Sec6"><span class="c-article-section__title-number">5.1 </span>Set-Up</h3><p>The architecture of <span class="u-small-caps">Kayak</span> is discussed in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Maccioni, A., Torlone, R.: Crossing the finish line faster when paddling the data lake with KAYAK. PVLDB 10(12), 1853–1856 (2017)" href="#ref-CR15" id="ref-link-section-d20310988e4346">15</a>]. <span class="u-small-caps">Kayak</span> is implemented in Java 8 and exploits <i>java.util.concurrent</i> library for the concurrent execution of tasks. The current version limits the use to <i>json</i> and to <i>csv</i> files only. The Metadata Catalog relies on two different database systems, namely MongoDB for the intra-dataset catalog and Neo4j for the inter-dataset catalog. The Queue Manager uses RabbitMQ as a messaging queue system. The User Interface is implemented using JSP pages and servlets on the web application server Tomcat 8. We also rely on external tools such as Spark 2.1 with MLib and SparkSQL add-ons for parallelizing operations on large datasets, and on Metanome<sup><a href="#Fn4"><span class="u-visually-hidden">Footnote </span>4</a></sup> for some of the tasks for which the Metadata Collector is in charge.</p><h3 class="c-article__sub-heading" id="Sec7"><span class="c-article-section__title-number">5.2 </span>Results</h3><p>This section presents the experimentation that was conducted on a cluster of <i>m4.4xlarge</i> machines on Amazon EC2. Each machine is equipped with 16 vCPU, 64 GB and running a 2,3 GHz Intel Xeon with 18 cores. We created a data lake with 200 datasets ranging from hundreds of MBs to few TBs. We have taken datasets from the U.S. open data catalog<sup><a href="#Fn5"><span class="u-visually-hidden">Footnote </span>5</a></sup> and from the NYC Taxi trips<sup><a href="#Fn6"><span class="u-visually-hidden">Footnote </span>6</a></sup>. We have also generated synthetic datasets to create uses cases that were not covered with downloaded datasets.</p><div class="c-article-section__figure js-c-reading-companion-figures-item" data-test="figure" data-container-section="figure" id="figure-6" data-title="Fig. 6."><figure><figcaption><b id="Fig6" class="c-article-section__figure-caption" data-test="figure-caption-text">Fig. 6.</b></figcaption><div class="c-article-section__figure-content"><div class="c-article-section__figure-item"><a class="c-article-section__figure-link" data-test="img-link" data-track="click" data-track-label="image" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/6" rel="nofollow"><picture><source type="image/webp" srcset="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig6_HTML.gif?as=webp"><img aria-describedby="Fig6" src="//media.springernature.com/lw685/springer-static/image/chp%3A10.1007%2F978-3-319-91563-0_29/MediaObjects/454396_1_En_29_Fig6_HTML.gif" alt="figure 6" loading="lazy"></picture></a></div><div class="c-article-section__figure-description" data-test="bottom-caption" id="figure-6-desc"><p>Incremental step generation at work.</p></div></div><div class="u-text-right u-hide-print"><a class="c-article__pill-button" data-test="chapter-link" data-track="click" data-track-label="button" data-track-action="view figure" href="/chapter/10.1007/978-3-319-91563-0_29/figures/6" data-track-dest="link:Figure6 Full size image" aria-label="Full size image figure 6" rel="nofollow"><span>Full size image</span><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-chevron-right-small"></use></svg></a></div></figure></div> <p><b>Effectiveness.</b> In this campaign, we have measured the trade-off between accuracy and time-to-action for the joinability task. It is a fundamental task in our framework that is used by many primitives. The results are in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig6">6</a>(a). We have divided the tests in three sections according to the range of the joinability value <span class="mathjax-tex">\(\varPsi \)</span>: <i>low</i> (0.0 <span class="mathjax-tex">\(\le \varPsi \le \)</span> 0.35), <i>medium</i> (0.35 <span class="mathjax-tex">\( < \varPsi \le \)</span> 0.70) and <i>high</i> (0.70 <span class="mathjax-tex">\(< \varPsi \le \)</span> 1.0). The time-to-action is represented in terms of percentage of the time for the exact step. Each point of the graph represents the average of six joinability computations (we have six different tests for each of the sections). As we can see, the accuracy is constantly high for low values of joinability. This is due to the fact that a reduced input is already able to show that two attributes do not join well. A similar behavior is for medium values, although accuracy slightly degrades for low time-to-action. High values of joinability are more difficult to approximate with shorter time-to-action than previous sections, but we consider this accuracy still good for many practical situations.</p><p><b>Strategies Comparison.</b> In this campaign, we test the differences between two incremental strategies, that we have briefly mentioned above. Again, we consider the joinability task. Let us consider the delay as the extra time spent on the incremental execution with respect to the non-incremental counterpart. We measure how the time-to-action and the delay vary with respect to the tolerance. Both the measures are taken in percentage with respect to the duration of the exact step. As we can see from the results in Fig. <a data-track="click" data-track-label="link" data-track-action="figure anchor" href="#Fig6">6</a>(b), the time-to-action for the greedy strategy is constant because the same short level is executed independently of the user’s tolerance, while for the best-fit strategy the time-to-action increases linearly with the tolerance. However, the time-to-action is always lower than the tolerance due to a fragmentation effect that makes it hard to have the cost of a step that perfectly fits the tolerance. The delay of the greedy strategy is always greater than the delay of the best-fit strategy, because of all the short steps executed at the beginning. The delay for both strategies tends to diminish as the tolerance increases. The delay of the best-fit strategy has an opposite behavior w.r.t. the time-to-action. Indeed, the delay is inversely proportional to the tolerance. This is because as the tolerance increases, the best-fit strategy tends to schedule fewer and fewer steps.</p></div></div></section><section data-title="Related Work"><div class="c-article-section" id="Sec8-section"><h2 id="Sec8" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">6 </span>Related Work</h2><div class="c-article-section__content" id="Sec8-content"><p>We divide related work of <span class="u-small-caps">Kayak</span> into categories discussed separately.</p><p><b>Data Catalogs.</b> There are several tools that are used for building repositories of datasets [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="CKAN: The open source data portal software. 
 http://ckan.org/
 
 . Accessed Nov 2017" href="#ref-CR1" id="ref-link-section-d20310988e4515">1</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Trifacta. 
 https://www.trifacta.com/
 
 . Accessed Nov 2017" href="#ref-CR3" id="ref-link-section-d20310988e4518">3</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Bhardwaj, A.P., Deshpande, A., Elmore, A.J., Karger, D.R., Madden, S., Parameswaran, A.G., Subramanyam, H., Wu, E., Zhang, R.: Collaborative data analytics with DataHub. PVLDB 8(12), 1916–1927 (2015)" href="#ref-CR5" id="ref-link-section-d20310988e4521">5</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.: Goods: organizing Google’s datasets. In: SIGMOD (2016)" href="#ref-CR10" id="ref-link-section-d20310988e4524">10</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 12" title="Hellerstein, J.M., Sreekanti, V., Gonzalez, J.E., Dalton, J., Dey, A., Nag, S., Ramachandran, K., Arora, S., Bhattacharyya, A., Das, S., Donsky, M., Fierro, G., She, C., Steinbach, C., Subramanian, V., Sun, E.: Ground: a data context service. In: CIDR (2017)" href="#ref-CR12" id="ref-link-section-d20310988e4527">12</a>]. Basic catalogs like CKAN [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 1" title="CKAN: The open source data portal software. 
 http://ckan.org/
 
 . Accessed Nov 2017" href="#ref-CR1" id="ref-link-section-d20310988e4531">1</a>] do not consider relationships among datasets and metadata are mostly inserted manually. DataHub [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 5" title="Bhardwaj, A.P., Deshpande, A., Elmore, A.J., Karger, D.R., Madden, S., Parameswaran, A.G., Subramanyam, H., Wu, E., Zhang, R.: Collaborative data analytics with DataHub. PVLDB 8(12), 1916–1927 (2015)" href="#ref-CR5" id="ref-link-section-d20310988e4534">5</a>] is a catalog that enables collaborative use and analysis of datasets. It includes features like versioning, merging and branching for datasets, similarly to version control systems in the context of software engineering. <span class="u-small-caps">Goods</span> is an enterprise search system for a data lake that is in use at Google [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 10" title="Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.: Goods: organizing Google’s datasets. In: SIGMOD (2016)" href="#ref-CR10" id="ref-link-section-d20310988e4540">10</a>]. It proposes, among the others, a solution with the semi-automatic realization of a metadata catalog, an annotation service, an efficient tracking of the provenance and advanced search features based on full-text indexing. All above catalogs use basic ways to understand relationships among datasets and give little support to users who are unaware of the content of the datasets, though they are not explicitly designed for data preparation and exploration purposes.</p><p><b>Profiling Tools.</b> In data science, tools such as R<sup><a href="#Fn7"><span class="u-visually-hidden">Footnote </span>7</a></sup>, IPython [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 19" title="Pérez, F., Granger, B.E.: IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9(3), 21–29 (2007)" href="#ref-CR19" id="ref-link-section-d20310988e4560">19</a>], Pandas-profiling<sup><a href="#Fn8"><span class="u-visually-hidden">Footnote </span>8</a></sup> and notebook technologies<sup><a href="#Fn9"><span class="u-visually-hidden">Footnote </span>9</a></sup> are extensively used for data exploration. They mainly compute statistical summaries integrated with some plotting features. More advanced data profiling consists on the discovery of constraints in the data [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Ehrlich, J., Roick, M., Schulze, L., Zwiener, J., Papenbrock, T., Naumann, F.: Holistic data profiling: simultaneous discovery of various metadata. In: EDBT, pp. 305–316 (2016)" href="#ref-CR7" id="ref-link-section-d20310988e4587">7</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: CORDS: automatic discovery of correlations and soft functional dependencies. In: SIGMOD, pp. 647–658 (2004)" href="#ref-CR14" id="ref-link-section-d20310988e4591">14</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling with metanome. PVLDB 8(12), 1860–1863 (2015)" href="#ref-CR16" id="ref-link-section-d20310988e4594">16</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency discovery. In: SIGMOD, pp. 821–833 (2016)" href="#ref-CR18" id="ref-link-section-d20310988e4597">18</a>]. Metanome, for instance, offers a suite of different algorithms for data profiling [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 16" title="Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling with metanome. PVLDB 8(12), 1860–1863 (2015)" href="#ref-CR16" id="ref-link-section-d20310988e4600">16</a>]. Some of these algorithms run by sharing pieces of computation [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 7" title="Ehrlich, J., Roick, M., Schulze, L., Zwiener, J., Papenbrock, T., Naumann, F.: Holistic data profiling: simultaneous discovery of various metadata. In: EDBT, pp. 305–316 (2016)" href="#ref-CR7" id="ref-link-section-d20310988e4603">7</a>] or by the aid of approximate techniques [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 14" title="Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: CORDS: automatic discovery of correlations and soft functional dependencies. In: SIGMOD, pp. 647–658 (2004)" href="#ref-CR14" id="ref-link-section-d20310988e4606">14</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 18" title="Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency discovery. In: SIGMOD, pp. 821–833 (2016)" href="#ref-CR18" id="ref-link-section-d20310988e4610">18</a>]. In <span class="u-small-caps">Kayak</span> we have tasks that make use of these algorithms such as for example T<span class="mathjax-tex">\(_c\)</span> in Table <a data-track="click" data-track-label="link" data-track-action="table anchor" href="#Tab2">2</a>.</p><p><b>Data Wranglers.</b> Schema-on-read data access has opened severe challenges in data wrangling [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 8" title="Furche, T., Gottlob, G., Libkin, L., Orsi, G., Paton, N.W.: Data wrangling for big data: challenges and opportunities. In: EDBT, pp. 473–478 (2016)" href="#ref-CR8" id="ref-link-section-d20310988e4635">8</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 23" title="Terrizzano, I., Schwarz, P.M., Roth, M., Colino, J.E.: Data wrangling: the challenging journey from the wild to the lake. In: CIDR (2015)" href="#ref-CR23" id="ref-link-section-d20310988e4638">23</a>] and specific tools are aimed at solving this problem [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Tamr. 
 http://www.tamr.com/
 
 . Accessed Nov 2017" href="#ref-CR2" id="ref-link-section-d20310988e4641">2</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Trifacta. 
 https://www.trifacta.com/
 
 . Accessed Nov 2017" href="#ref-CR3" id="ref-link-section-d20310988e4644">3</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Stonebraker, M., Bruckner, D., Ilyas, I.F., Beskales, G., Cherniack, M., Zdonik, S.B., Pagan, A., Xu, S.: Data curation at scale: the data tamer system. In: CIDR (2013)" href="#ref-CR22" id="ref-link-section-d20310988e4647">22</a>]. Data TamR helps in finding insights thanks to novel approaches of data curation and data unification [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 2" title="Tamr. 
 http://www.tamr.com/
 
 . Accessed Nov 2017" href="#ref-CR2" id="ref-link-section-d20310988e4651">2</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 22" title="Stonebraker, M., Bruckner, D., Ilyas, I.F., Beskales, G., Cherniack, M., Zdonik, S.B., Pagan, A., Xu, S.: Data curation at scale: the data tamer system. In: CIDR (2013)" href="#ref-CR22" id="ref-link-section-d20310988e4654">22</a>]. Trifacta is an application for self-service data wrangling providing several tools to the user [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 3" title="Trifacta. 
 https://www.trifacta.com/
 
 . Accessed Nov 2017" href="#ref-CR3" id="ref-link-section-d20310988e4657">3</a>]. All these systems provide features that can be embedded in <span class="u-small-caps">Kayak</span> to be executed incrementally for minimizing the time-to-action.</p><p><b>Approximate Querying Systems.</b> Another branch of work specifically focuses on approximating analytical query results [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB: queries with bounded errors and bounded response times on very large data. In: EuroSys, pp. 29–42 (2013)" href="#ref-CR4" id="ref-link-section-d20310988e4669">4</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: SIGMOD, pp. 171–182 (1997)" href="#ref-CR11" id="ref-link-section-d20310988e4672">11</a>, <a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Potti, N., Patel, J.M.: DAQ: a new paradigm for approximate query processing. PVLDB 8(9), 898–909 (2015)" href="#ref-CR20" id="ref-link-section-d20310988e4675">20</a>]. Hellerstein et al. [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 11" title="Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: SIGMOD, pp. 171–182 (1997)" href="#ref-CR11" id="ref-link-section-d20310988e4678">11</a>] propose an incremental strategy that aggregates tuples online so that the temporary result of the query is shown to the user, who can decide to interrupt the process anytime. Differently, when computing analytical queries with BlinkDB [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 4" title="Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB: queries with bounded errors and bounded response times on very large data. In: EuroSys, pp. 29–42 (2013)" href="#ref-CR4" id="ref-link-section-d20310988e4681">4</a>], users are asked the trade-off between time and accuracy in advance, and the system dynamically selects the best sample that allows replying the query under the user’s constraints. This is similar to our best-fit strategy but we do not apply only sampling and we do not consider analytical queries. A critical aspect in all these works is the estimation of the error. To overcome these problems, DAQ [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 20" title="Potti, N., Patel, J.M.: DAQ: a new paradigm for approximate query processing. PVLDB 8(9), 898–909 (2015)" href="#ref-CR20" id="ref-link-section-d20310988e4685">20</a>] has recently introduced a deterministic approach to approximating analytic queries, where the user is initially provided with an interval that is guaranteed to contain the query result. Then, the interval shrinks as the query answering proceeds, until the convergence to the final answer. All these techniques work well on OLAP queries but since they require the workload in advance, they cannot be applied in our context where the user has usually not accessed the data yet and sampling cannot be the only technique for reducing the workload.</p></div></div></section><section data-title="Conclusion and Future Work"><div class="c-article-section" id="Sec9-section"><h2 id="Sec9" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number">7 </span>Conclusion and Future Work</h2><div class="c-article-section__content" id="Sec9-content"><p>In this paper, we have presented <span class="u-small-caps">Kayak</span>, a end-to-end framework for data management with a data lake approach. <span class="u-small-caps">Kayak</span> addresses data preparation, a crucial aspect for helping data-driven businesses in their analytics processes. <span class="u-small-caps">Kayak</span> provides a series of primitives for data preparation that can be executed by specifying a tolerance when the user prefers a quick result instead of an exact result. The framework also allows to define pipelines of primitives.</p><p>We have several future work directions in mind. We want to integrate the framework with components for supporting unstructured data, query expansion, and data visualization. We want to introduce a dynamic scheduling for the tasks and the possibility to set a tolerance for an entire pipeline. Finally, we would like to define a declarative language for designing primitives data preparation.</p></div></div></section> </div> <section data-title="Notes" lang="en"><div class="c-article-section" id="notes-section"><h2 id="notes" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Notes</h2><div class="c-article-section__content" id="notes-content"><ol class="c-article-footnote c-article-footnote--listed"><li class="c-article-footnote--listed__item" id="Fn1"><span class="c-article-footnote--listed__index">1.</span><div class="c-article-footnote--listed__content"><p><a href="http://jupyter.org/">http://jupyter.org/</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn2"><span class="c-article-footnote--listed__index">2.</span><div class="c-article-footnote--listed__content"><p><a href="https://zeppelin.apache.org/">https://zeppelin.apache.org/</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn3"><span class="c-article-footnote--listed__index">3.</span><div class="c-article-footnote--listed__content"><p>A demo of <span class="u-small-caps">Kayak</span> has been shown in [<a data-track="click" data-track-action="reference anchor" data-track-label="link" data-test="citation-ref" aria-label="Reference 15" title="Maccioni, A., Torlone, R.: Crossing the finish line faster when paddling the data lake with KAYAK. PVLDB 10(12), 1853–1856 (2017)" href="#ref-CR15" id="ref-link-section-d20310988e943">15</a>].</p></div></li><li class="c-article-footnote--listed__item" id="Fn4"><span class="c-article-footnote--listed__index">4.</span><div class="c-article-footnote--listed__content"><p><a href="https://github.com/HPI-Information-Systems/Metanome">https://github.com/HPI-Information-Systems/Metanome</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn5"><span class="c-article-footnote--listed__index">5.</span><div class="c-article-footnote--listed__content"><p><a href="https://www.data.gov/">https://www.data.gov/</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn6"><span class="c-article-footnote--listed__index">6.</span><div class="c-article-footnote--listed__content"><p><a href="http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml">http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn7"><span class="c-article-footnote--listed__index">7.</span><div class="c-article-footnote--listed__content"><p><a href="https://www.r-project.org/">https://www.r-project.org/</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn8"><span class="c-article-footnote--listed__index">8.</span><div class="c-article-footnote--listed__content"><p><a href="https://github.com/JosPolfliet/pandas-profiling">https://github.com/JosPolfliet/pandas-profiling</a>.</p></div></li><li class="c-article-footnote--listed__item" id="Fn9"><span class="c-article-footnote--listed__index">9.</span><div class="c-article-footnote--listed__content"><p><a href="http://zeppelin-project.org/">http://zeppelin-project.org/</a>.</p></div></li></ol></div></div></section><div id="MagazineFulltextChapterBodySuffix"><section aria-labelledby="Bib1" data-title="References"><div class="c-article-section" id="Bib1-section"><h2 id="Bib1" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>References</h2><div class="c-article-section__content" id="Bib1-content"><div data-container-section="references"><ol class="c-article-references" data-track-component="outbound reference" data-track-context="references section"><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="1."><p class="c-article-references__text" id="ref-CR1">CKAN: The open source data portal software. <a href="http://ckan.org/" data-track="click" data-track-action="external reference" data-track-label="http://ckan.org/">http://ckan.org/</a>. Accessed Nov 2017</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="2."><p class="c-article-references__text" id="ref-CR2">Tamr. <a href="http://www.tamr.com/" data-track="click" data-track-action="external reference" data-track-label="http://www.tamr.com/">http://www.tamr.com/</a>. Accessed Nov 2017</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="3."><p class="c-article-references__text" id="ref-CR3">Trifacta. <a href="https://www.trifacta.com/" data-track="click" data-track-action="external reference" data-track-label="https://www.trifacta.com/">https://www.trifacta.com/</a>. Accessed Nov 2017</p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="4."><p class="c-article-references__text" id="ref-CR4">Agarwal, S., Mozafari, B., Panda, A., Milner, H., Madden, S., Stoica, I.: BlinkDB: queries with bounded errors and bounded response times on very large data. In: EuroSys, pp. 29–42 (2013)</p><p class="c-article-references__links u-hide-print" id="ref-CR4-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Agarwal%2C%20S.%2C%20Mozafari%2C%20B.%2C%20Panda%2C%20A.%2C%20Milner%2C%20H.%2C%20Madden%2C%20S.%2C%20Stoica%2C%20I.%3A%20BlinkDB%3A%20queries%20with%20bounded%20errors%20and%20bounded%20response%20times%20on%20very%20large%20data.%20In%3A%20EuroSys%2C%20pp.%2029%E2%80%9342%20%282013%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="5."><p class="c-article-references__text" id="ref-CR5">Bhardwaj, A.P., Deshpande, A., Elmore, A.J., Karger, D.R., Madden, S., Parameswaran, A.G., Subramanyam, H., Wu, E., Zhang, R.: Collaborative data analytics with DataHub. PVLDB <b>8</b>(12), 1916–1927 (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR5-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 5" href="https://scholar.google.com/scholar_lookup?&title=Collaborative%20data%20analytics%20with%20DataHub&journal=PVLDB&volume=8&issue=12&pages=1916-1927&publication_year=2015&author=Bhardwaj%2CAP&author=Deshpande%2CA&author=Elmore%2CAJ&author=Karger%2CDR&author=Madden%2CS&author=Parameswaran%2CAG&author=Subramanyam%2CH&author=Wu%2CE&author=Zhang%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="6."><p class="c-article-references__text" id="ref-CR6">Deng, D., Fernandez, R.C., Abedjan, Z., Wang, S., Stonebraker, M., Elmagarmid, A.K., Ilyas, I.F., Madden, S., Ouzzani, M., Tang, N.: The data civilizer system. In: CIDR (2017)</p><p class="c-article-references__links u-hide-print" id="ref-CR6-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Deng%2C%20D.%2C%20Fernandez%2C%20R.C.%2C%20Abedjan%2C%20Z.%2C%20Wang%2C%20S.%2C%20Stonebraker%2C%20M.%2C%20Elmagarmid%2C%20A.K.%2C%20Ilyas%2C%20I.F.%2C%20Madden%2C%20S.%2C%20Ouzzani%2C%20M.%2C%20Tang%2C%20N.%3A%20The%20data%20civilizer%20system.%20In%3A%20CIDR%20%282017%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="7."><p class="c-article-references__text" id="ref-CR7">Ehrlich, J., Roick, M., Schulze, L., Zwiener, J., Papenbrock, T., Naumann, F.: Holistic data profiling: simultaneous discovery of various metadata. In: EDBT, pp. 305–316 (2016)</p><p class="c-article-references__links u-hide-print" id="ref-CR7-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Ehrlich%2C%20J.%2C%20Roick%2C%20M.%2C%20Schulze%2C%20L.%2C%20Zwiener%2C%20J.%2C%20Papenbrock%2C%20T.%2C%20Naumann%2C%20F.%3A%20Holistic%20data%20profiling%3A%20simultaneous%20discovery%20of%20various%20metadata.%20In%3A%20EDBT%2C%20pp.%20305%E2%80%93316%20%282016%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="8."><p class="c-article-references__text" id="ref-CR8">Furche, T., Gottlob, G., Libkin, L., Orsi, G., Paton, N.W.: Data wrangling for big data: challenges and opportunities. In: EDBT, pp. 473–478 (2016)</p><p class="c-article-references__links u-hide-print" id="ref-CR8-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Furche%2C%20T.%2C%20Gottlob%2C%20G.%2C%20Libkin%2C%20L.%2C%20Orsi%2C%20G.%2C%20Paton%2C%20N.W.%3A%20Data%20wrangling%20for%20big%20data%3A%20challenges%20and%20opportunities.%20In%3A%20EDBT%2C%20pp.%20473%E2%80%93478%20%282016%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="9."><p class="c-article-references__text" id="ref-CR9">Hai, R., Geisler, S., Quix, C.: Constance: an intelligent data lake system. In: SIGMOD, pp. 2097–2100 (2016)</p><p class="c-article-references__links u-hide-print" id="ref-CR9-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Hai%2C%20R.%2C%20Geisler%2C%20S.%2C%20Quix%2C%20C.%3A%20Constance%3A%20an%20intelligent%20data%20lake%20system.%20In%3A%20SIGMOD%2C%20pp.%202097%E2%80%932100%20%282016%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="10."><p class="c-article-references__text" id="ref-CR10">Halevy, A.Y., Korn, F., Noy, N.F., Olston, C., Polyzotis, N., Roy, S., Whang, S.E.: Goods: organizing Google’s datasets. In: SIGMOD (2016)</p><p class="c-article-references__links u-hide-print" id="ref-CR10-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Halevy%2C%20A.Y.%2C%20Korn%2C%20F.%2C%20Noy%2C%20N.F.%2C%20Olston%2C%20C.%2C%20Polyzotis%2C%20N.%2C%20Roy%2C%20S.%2C%20Whang%2C%20S.E.%3A%20Goods%3A%20organizing%20Google%E2%80%99s%20datasets.%20In%3A%20SIGMOD%20%282016%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="11."><p class="c-article-references__text" id="ref-CR11">Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online aggregation. In: SIGMOD, pp. 171–182 (1997)</p><p class="c-article-references__links u-hide-print" id="ref-CR11-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1145/253262.253291" data-track-item_id="10.1145/253262.253291" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1145%2F253262.253291" aria-label="Article reference 11" data-doi="10.1145/253262.253291">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 11" href="https://scholar.google.com/scholar_lookup?&title=Online%20aggregation&journal=ACM%20SIGMOD%20Record&volume=26&issue=2&pages=171-182&publication_year=1997&author=Hellerstein%2CJoseph%20M.&author=Haas%2CPeter%20J.&author=Wang%2CHelen%20J."> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="12."><p class="c-article-references__text" id="ref-CR12">Hellerstein, J.M., Sreekanti, V., Gonzalez, J.E., Dalton, J., Dey, A., Nag, S., Ramachandran, K., Arora, S., Bhattacharyya, A., Das, S., Donsky, M., Fierro, G., She, C., Steinbach, C., Subramanian, V., Sun, E.: Ground: a data context service. In: CIDR (2017)</p><p class="c-article-references__links u-hide-print" id="ref-CR12-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Hellerstein%2C%20J.M.%2C%20Sreekanti%2C%20V.%2C%20Gonzalez%2C%20J.E.%2C%20Dalton%2C%20J.%2C%20Dey%2C%20A.%2C%20Nag%2C%20S.%2C%20Ramachandran%2C%20K.%2C%20Arora%2C%20S.%2C%20Bhattacharyya%2C%20A.%2C%20Das%2C%20S.%2C%20Donsky%2C%20M.%2C%20Fierro%2C%20G.%2C%20She%2C%20C.%2C%20Steinbach%2C%20C.%2C%20Subramanian%2C%20V.%2C%20Sun%2C%20E.%3A%20Ground%3A%20a%20data%20context%20service.%20In%3A%20CIDR%20%282017%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="13."><p class="c-article-references__text" id="ref-CR13">Heudecker, N., White, A.: The data lake fallacy: all water and little substance. Gartner Report G 264950 (2014)</p><p class="c-article-references__links u-hide-print" id="ref-CR13-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Heudecker%2C%20N.%2C%20White%2C%20A.%3A%20The%20data%20lake%20fallacy%3A%20all%20water%20and%20little%20substance.%20Gartner%20Report%20G%20264950%20%282014%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="14."><p class="c-article-references__text" id="ref-CR14">Ilyas, I.F., Markl, V., Haas, P.J., Brown, P., Aboulnaga, A.: CORDS: automatic discovery of correlations and soft functional dependencies. In: SIGMOD, pp. 647–658 (2004)</p><p class="c-article-references__links u-hide-print" id="ref-CR14-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Ilyas%2C%20I.F.%2C%20Markl%2C%20V.%2C%20Haas%2C%20P.J.%2C%20Brown%2C%20P.%2C%20Aboulnaga%2C%20A.%3A%20CORDS%3A%20automatic%20discovery%20of%20correlations%20and%20soft%20functional%20dependencies.%20In%3A%20SIGMOD%2C%20pp.%20647%E2%80%93658%20%282004%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="15."><p class="c-article-references__text" id="ref-CR15">Maccioni, A., Torlone, R.: Crossing the finish line faster when paddling the data lake with KAYAK. PVLDB <b>10</b>(12), 1853–1856 (2017)</p><p class="c-article-references__links u-hide-print" id="ref-CR15-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 15" href="https://scholar.google.com/scholar_lookup?&title=Crossing%20the%20finish%20line%20faster%20when%20paddling%20the%20data%20lake%20with%20KAYAK&journal=PVLDB&volume=10&issue=12&pages=1853-1856&publication_year=2017&author=Maccioni%2CA&author=Torlone%2CR"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="16."><p class="c-article-references__text" id="ref-CR16">Papenbrock, T., Bergmann, T., Finke, M., Zwiener, J., Naumann, F.: Data profiling with metanome. PVLDB <b>8</b>(12), 1860–1863 (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR16-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 16" href="https://scholar.google.com/scholar_lookup?&title=Data%20profiling%20with%20metanome&journal=PVLDB&volume=8&issue=12&pages=1860-1863&publication_year=2015&author=Papenbrock%2CT&author=Bergmann%2CT&author=Finke%2CM&author=Zwiener%2CJ&author=Naumann%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="17."><p class="c-article-references__text" id="ref-CR17">Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J., Schönberg, M., Zwiener, J., Naumann, F.: Functional dependency discovery: an experimental evaluation of seven algorithms. PVLDB <b>8</b>(10), 1082–1093 (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR17-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 17" href="https://scholar.google.com/scholar_lookup?&title=Functional%20dependency%20discovery%3A%20an%20experimental%20evaluation%20of%20seven%20algorithms&journal=PVLDB&volume=8&issue=10&pages=1082-1093&publication_year=2015&author=Papenbrock%2CT&author=Ehrlich%2CJ&author=Marten%2CJ&author=Neubert%2CT&author=Rudolph%2CJ&author=Sch%C3%B6nberg%2CM&author=Zwiener%2CJ&author=Naumann%2CF"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="18."><p class="c-article-references__text" id="ref-CR18">Papenbrock, T., Naumann, F.: A hybrid approach to functional dependency discovery. In: SIGMOD, pp. 821–833 (2016)</p><p class="c-article-references__links u-hide-print" id="ref-CR18-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Papenbrock%2C%20T.%2C%20Naumann%2C%20F.%3A%20A%20hybrid%20approach%20to%20functional%20dependency%20discovery.%20In%3A%20SIGMOD%2C%20pp.%20821%E2%80%93833%20%282016%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="19."><p class="c-article-references__text" id="ref-CR19">Pérez, F., Granger, B.E.: IPython: a system for interactive scientific computing. Comput. Sci. Eng. <b>9</b>(3), 21–29 (2007)</p><p class="c-article-references__links u-hide-print" id="ref-CR19-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1109/MCSE.2007.53" data-track-item_id="10.1109/MCSE.2007.53" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1109%2FMCSE.2007.53" aria-label="Article reference 19" data-doi="10.1109/MCSE.2007.53">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 19" href="https://scholar.google.com/scholar_lookup?&title=IPython%3A%20a%20system%20for%20interactive%20scientific%20computing&journal=Comput.%20Sci.%20Eng.&volume=9&issue=3&pages=21-29&publication_year=2007&author=P%C3%A9rez%2CF&author=Granger%2CBE"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="20."><p class="c-article-references__text" id="ref-CR20">Potti, N., Patel, J.M.: DAQ: a new paradigm for approximate query processing. PVLDB <b>8</b>(9), 898–909 (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR20-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 20" href="https://scholar.google.com/scholar_lookup?&title=DAQ%3A%20a%20new%20paradigm%20for%20approximate%20query%20processing&journal=PVLDB&volume=8&issue=9&pages=898-909&publication_year=2015&author=Potti%2CN&author=Patel%2CJM"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="21."><p class="c-article-references__text" id="ref-CR21">Sarma, A.D., Fang, L., Gupta, N., Halevy, A.Y., Lee, H., Wu, F., Xin, R., Yu, C.: Finding related tables. In: SIGMOD (2012)</p><p class="c-article-references__links u-hide-print" id="ref-CR21-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Sarma%2C%20A.D.%2C%20Fang%2C%20L.%2C%20Gupta%2C%20N.%2C%20Halevy%2C%20A.Y.%2C%20Lee%2C%20H.%2C%20Wu%2C%20F.%2C%20Xin%2C%20R.%2C%20Yu%2C%20C.%3A%20Finding%20related%20tables.%20In%3A%20SIGMOD%20%282012%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="22."><p class="c-article-references__text" id="ref-CR22">Stonebraker, M., Bruckner, D., Ilyas, I.F., Beskales, G., Cherniack, M., Zdonik, S.B., Pagan, A., Xu, S.: Data curation at scale: the data tamer system. In: CIDR (2013)</p><p class="c-article-references__links u-hide-print" id="ref-CR22-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Stonebraker%2C%20M.%2C%20Bruckner%2C%20D.%2C%20Ilyas%2C%20I.F.%2C%20Beskales%2C%20G.%2C%20Cherniack%2C%20M.%2C%20Zdonik%2C%20S.B.%2C%20Pagan%2C%20A.%2C%20Xu%2C%20S.%3A%20Data%20curation%20at%20scale%3A%20the%20data%20tamer%20system.%20In%3A%20CIDR%20%282013%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="23."><p class="c-article-references__text" id="ref-CR23">Terrizzano, I., Schwarz, P.M., Roth, M., Colino, J.E.: Data wrangling: the challenging journey from the wild to the lake. In: CIDR (2015)</p><p class="c-article-references__links u-hide-print" id="ref-CR23-links"><a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" href="https://scholar.google.com/scholar?&q=Terrizzano%2C%20I.%2C%20Schwarz%2C%20P.M.%2C%20Roth%2C%20M.%2C%20Colino%2C%20J.E.%3A%20Data%20wrangling%3A%20the%20challenging%20journey%20from%20the%20wild%20to%20the%20lake.%20In%3A%20CIDR%20%282015%29"> Google Scholar</a> </p></li><li class="c-article-references__item js-c-reading-companion-references-item" data-counter="24."><p class="c-article-references__text" id="ref-CR24">Zaharia, M., Xin, R.S., Wendell, P., Das, T., Armbrust, M., Dave, A., Meng, X., Rosen, J., Venkataraman, S., Franklin, M.J., Ghodsi, A., Gonzalez, J., Shenker, S., Stoica, I.: Apache spark: a unified engine for big data processing. Commun. ACM <b>59</b>(11), 56–65 (2016)</p><p class="c-article-references__links u-hide-print" id="ref-CR24-links"><a data-track="click_references" rel="nofollow noopener" data-track-label="10.1145/2934664" data-track-item_id="10.1145/2934664" data-track-action="Article reference" data-track-value="Article reference" href="https://doi.org/10.1145%2F2934664" aria-label="Article reference 24" data-doi="10.1145/2934664">Article</a> <a data-track="click_references" data-track-action="google scholar reference" data-track-value="google scholar reference" data-track-label="link" data-track-item_id="link" rel="nofollow noopener" aria-label="Google Scholar reference 24" href="https://scholar.google.com/scholar_lookup?&title=Apache%20spark%3A%20a%20unified%20engine%20for%20big%20data%20processing&journal=Commun.%20ACM&volume=59&issue=11&pages=56-65&publication_year=2016&author=Zaharia%2CM&author=Xin%2CRS&author=Wendell%2CP&author=Das%2CT&author=Armbrust%2CM&author=Dave%2CA&author=Meng%2CX&author=Rosen%2CJ&author=Venkataraman%2CS&author=Franklin%2CMJ&author=Ghodsi%2CA&author=Gonzalez%2CJ&author=Shenker%2CS&author=Stoica%2CI"> Google Scholar</a> </p></li></ol><p class="c-article-references__download u-hide-print"><a data-track="click" data-track-action="download citation references" data-track-label="link" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-319-91563-0_29?format=refman&flavour=references">Download references<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></p></div></div></div></section></div><section aria-labelledby="author-information" data-title="Author information"><div class="c-article-section" id="author-information-section"><h2 id="author-information" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Author information</h2><div class="c-article-section__content" id="author-information-content"><h3 class="c-article__sub-heading" id="affiliations">Authors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff15"><p class="c-article-author-affiliation__address">Collective[i], New York City, USA</p><p class="c-article-author-affiliation__authors-list">Antonio Maccioni</p></li><li id="Aff16"><p class="c-article-author-affiliation__address">Università Roma Tre, Rome, Italy</p><p class="c-article-author-affiliation__authors-list">Riccardo Torlone</p></li></ol><div class="u-js-hide u-hide-print" data-test="author-info"><span class="c-article__sub-heading">Authors</span><ol class="c-article-authors-search u-list-reset"><li id="auth-Antonio-Maccioni"><span class="c-article-authors-search__title u-h3 js-search-name">Antonio Maccioni</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Antonio%20Maccioni" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Antonio%20Maccioni" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Antonio%20Maccioni%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li><li id="auth-Riccardo-Torlone"><span class="c-article-authors-search__title u-h3 js-search-name">Riccardo Torlone</span><div class="c-article-authors-search__list"><div class="c-article-authors-search__item c-article-authors-search__list-item--left"><a href="/search?dc.creator=Riccardo%20Torlone" class="c-article-button" data-track="click" data-track-action="author link - publication" data-track-label="link" rel="nofollow">View author publications</a></div><div class="c-article-authors-search__item c-article-authors-search__list-item--right"><p class="search-in-title-js c-article-authors-search__text">You can also search for this author in <span class="c-article-identifiers"><a class="c-article-identifiers__item" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&term=Riccardo%20Torlone" data-track="click" data-track-action="author link - pubmed" data-track-label="link" rel="nofollow">PubMed</a><span class="u-hide"> </span><a class="c-article-identifiers__item" href="http://scholar.google.co.uk/scholar?as_q=&num=10&btnG=Search+Scholar&as_epq=&as_oq=&as_eq=&as_occt=any&as_sauthors=%22Riccardo%20Torlone%22&as_publication=&as_ylo=&as_yhi=&as_allsubj=all&hl=en" data-track="click" data-track-action="author link - scholar" data-track-label="link" rel="nofollow">Google Scholar</a></span></p></div></div></li></ol></div><h3 class="c-article__sub-heading" id="corresponding-author">Corresponding author</h3><p id="corresponding-author-list">Correspondence to <a id="corresp-c1" href="mailto:amaccioni@collectivei.com">Antonio Maccioni </a>.</p></div></div></section><section aria-labelledby="editor-information" data-title="Editor information"><div class="c-article-section" id="editor-information-section"><h2 id="editor-information" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Editor information</h2><div class="c-article-section__content" id="editor-information-content"><h3 class="c-article__sub-heading" id="editor-affiliations">Editors and Affiliations</h3><ol class="c-article-author-affiliation__list"><li id="Aff13"><p class="c-article-author-affiliation__address">Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway</p><p class="c-article-author-affiliation__authors-list">John Krogstie </p></li><li id="Aff14"><p class="c-article-author-affiliation__address">Vrije Universiteit Amsterdam, Amsterdam, The Netherlands</p><p class="c-article-author-affiliation__authors-list">Hajo A. Reijers </p></li></ol></div></div></section><section data-title="Rights and permissions" lang="en"><div class="c-article-section" id="rightslink-section"><h2 id="rightslink" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Rights and permissions</h2><div class="c-article-section__content" id="rightslink-content"><p class="c-article-rights" data-test="rightslink-content"><a data-track="click" data-track-action="view rights and permissions" data-track-label="link" href="https://s100.copyright.com/AppDispatchServlet?publisherName=SpringerNature&orderBeanReset=true&orderSource=SpringerLink&title=KAYAK%3A%20A%20Framework%20for%20Just-in-Time%20Data%20Preparation%20in%20a%20Data%20Lake&author=Antonio%20Maccioni%2C%20Riccardo%20Torlone&contentID=10.1007%2F978-3-319-91563-0_29&copyright=Springer%20International%20Publishing%20AG%2C%20part%20of%20Springer%20Nature&publication=eBook&publicationDate=2018&startPage=474&endPage=489&imprint=Springer%20International%20Publishing%20AG%2C%20part%20of%20Springer%20Nature">Reprints and permissions</a></p></div></div></section><section data-title="Copyright information"><div class="c-article-section" id="copyright-information-section"><h2 id="copyright-information" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Copyright information</h2><div class="c-article-section__content" id="copyright-information-content"><p>© 2018 Springer International Publishing AG, part of Springer Nature</p></div></div></section><section aria-labelledby="chapter-info" data-title="About this paper" lang="en"><div class="c-article-section" id="chapter-info-section"><h2 id="chapter-info" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>About this paper</h2><div class="c-article-section__content" id="chapter-info-content"><div class="c-bibliographic-information"><div class="u-hide-print c-bibliographic-information__column c-bibliographic-information__column--border"><a data-crossmark="10.1007/978-3-319-91563-0_29" target="_blank" rel="noopener" href="https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91563-0_29" data-track="click" data-track-action="Click Crossmark" data-track-label="link" data-test="crossmark"><img loading="lazy" width="57" height="81" alt="Check for updates. Verify currency and authenticity via CrossMark" src=""></a></div><div class="c-bibliographic-information__column"><h3 class="c-article__sub-heading" id="citeas">Cite this paper</h3><p class="c-bibliographic-information__citation" data-test="bibliographic-information__cite_this_chapter">Maccioni, A., Torlone, R. (2018). KAYAK: A Framework for Just-in-Time Data Preparation in a Data Lake. In: Krogstie, J., Reijers, H. (eds) Advanced Information Systems Engineering. CAiSE 2018. Lecture Notes in Computer Science(), vol 10816. Springer, Cham. https://doi.org/10.1007/978-3-319-91563-0_29</p><h3 class="c-bibliographic-information__download-citation u-mb-8 u-mt-16 u-hide-print">Download citation</h3><ul class="c-bibliographic-information__download-citation-list"><li class="c-bibliographic-information__download-citation-item"><a data-test="citation-link" data-track="click" data-track-action="download chapter citation" data-track-label="link" data-track-external="" title="Download this article's citation as a .RIS file" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-319-91563-0_29?format=refman&flavour=citation">.RIS<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></li><li class="c-bibliographic-information__download-citation-item"><a data-test="citation-link" data-track="click" data-track-action="download chapter citation" data-track-label="link" data-track-external="" title="Download this article's citation as a .ENW file" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-319-91563-0_29?format=endnote&flavour=citation">.ENW<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></li><li class="c-bibliographic-information__download-citation-item"><a data-test="citation-link" data-track="click" data-track-action="download chapter citation" data-track-label="link" data-track-external="" title="Download this article's citation as a .BIB file" rel="nofollow" href="https://citation-needed.springer.com/v2/references/10.1007/978-3-319-91563-0_29?format=bibtex&flavour=citation">.BIB<svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-download-medium"></use></svg></a></li></ul><ul class="c-bibliographic-information__list u-mb-24" data-test="publication-history"><li class="c-bibliographic-information__list-item c-bibliographic-information__list-item--chapter-doi"><p data-test="bibliographic-information__doi"><abbr title="Digital Object Identifier">DOI</abbr><span class="u-hide">: </span><span class="c-bibliographic-information__value">https://doi.org/10.1007/978-3-319-91563-0_29</span></p></li><li class="c-bibliographic-information__list-item"><p>Published<span class="u-hide">: </span><span class="c-bibliographic-information__value"><time datetime="2018-05-17">17 May 2018</time></span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__publisher-name"> Publisher Name<span class="u-hide">: </span><span class="c-bibliographic-information__value">Springer, Cham</span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__pisbn"> Print ISBN<span class="u-hide">: </span><span class="c-bibliographic-information__value">978-3-319-91562-3</span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__eisbn"> Online ISBN<span class="u-hide">: </span><span class="c-bibliographic-information__value">978-3-319-91563-0</span></p></li><li class="c-bibliographic-information__list-item"><p data-test="bibliographic-information__package">eBook Packages<span class="u-hide">: </span><span class="c-bibliographic-information__multi-value"><a href="/search?facet-content-type=%22Book%22&package=11645&facet-start-year=2018&facet-end-year=2018">Computer Science</a></span><span class="c-bibliographic-information__multi-value"><a href="/search?facet-content-type=%22Book%22&package=43710&facet-start-year=2018&facet-end-year=2018">Computer Science (R0)</a></span></p></li></ul><div data-component="share-box"><div class="c-article-share-box u-display-none" hidden=""><h3 class="c-article__sub-heading">Share this paper</h3><p class="c-article-share-box__description">Anyone you share the following link with will be able to read this content:</p><button class="js-get-share-url c-article-share-box__button" id="get-share-url" data-track="click" data-track-label="button" data-track-external="" data-track-action="get shareable link">Get shareable link</button><div class="js-no-share-url-container u-display-none" hidden=""><p class="js-c-article-share-box__no-sharelink-info c-article-share-box__no-sharelink-info">Sorry, a shareable link is not currently available for this article.</p></div><div class="js-share-url-container u-display-none" hidden=""><p class="js-share-url c-article-share-box__only-read-input" id="share-url" data-track="click" data-track-label="button" data-track-action="select share url"></p><button class="js-copy-share-url c-article-share-box__button--link-like" id="copy-share-url" data-track="click" data-track-label="button" data-track-action="copy share url" data-track-external="">Copy to clipboard</button></div><p class="js-c-article-share-box__additional-info c-article-share-box__additional-info"> Provided by the Springer Nature SharedIt content-sharing initiative </p></div></div><div data-component="chapter-info-list"></div></div></div></div></div></section><section aria-labelledby="publish-with-us" data-title="Publish with us" lang="en"><div class="c-article-section" id="publish-with-us-section"><h2 id="publish-with-us" class="c-article-section__title js-section-title js-c-reading-companion-sections-item"><span class="c-article-section__title-number"> </span>Publish with us</h2><div class="c-article-section__content" id="publish-with-us-content"><p><a class="app-article-policy-section-external-link" href="https://www.springernature.com/gp/policies/book-publishing-policies" data-track="click" data-track-action="publishing policies" data-track-label="link">Policies and ethics</a><svg width="16" height="16" focusable="false" role="img" aria-hidden="true" class="u-icon app-article-policy-section-external-link-icon"><use xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="#icon-eds-i-external-link-small"></use></svg></p></div></div></section> </div> </article> </main> <div class="c-article-sidebar u-text-sm u-hide-print l-with-sidebar__sidebar" id="sidebar" data-container-type="reading-companion" data-track-component="reading companion"> <aside> <div data-test="editorial-summary"> </div> <div class="c-reading-companion"> <div class="c-reading-companion__sticky" data-component="reading-companion-sticky" data-test="reading-companion-sticky"> <div class="c-reading-companion__panel c-reading-companion__sections c-reading-companion__panel--active" id="tabpanel-sections"></div> <div class="c-reading-companion__panel c-reading-companion__figures c-reading-companion__panel--full-width" id="tabpanel-figures"></div> <div class="c-reading-companion__panel c-reading-companion__references c-reading-companion__panel--full-width" id="tabpanel-references"></div> </div> </div> </aside> </div> </div> <div class="app-elements"> <div class="eds-c-header__expander eds-c-header__expander--search" id="eds-c-header-popup-search"> <h2 class="eds-c-header__heading">Search</h2> <div class="u-container"> <search class="eds-c-header__search" role="search" aria-label="Search from the header"> <form method="GET" action="//link.springer.com/search" data-test="header-search" data-track="search" data-track-context="search from header" data-track-action="submit search form" data-track-category="unified header" data-track-label="form" > <label for="eds-c-header-search" class="eds-c-header__search-label">Search by keyword or author</label> <div class="eds-c-header__search-container"> <input id="eds-c-header-search" class="eds-c-header__search-input" autocomplete="off" name="query" type="search" value="" required> <button class="eds-c-header__search-button" type="submit"> <svg class="eds-c-header__icon" aria-hidden="true" focusable="false"> <use xlink:href="#icon-eds-i-search-medium"></use> </svg> <span class="u-visually-hidden">Search</span> </button> </div> </form> </search> </div> </div> <div class="eds-c-header__expander eds-c-header__expander--menu" id="eds-c-header-nav"> <h2 class="eds-c-header__heading">Navigation</h2> <ul class="eds-c-header__list"> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springer.com/journals/" data-track="nav_find_a_journal" data-track-context="unified header" data-track-action="click find a journal" data-track-category="unified header" data-track-label="link" > Find a journal </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://www.springernature.com/gp/authors" data-track="nav_how_to_publish" data-track-context="unified header" data-track-action="click publish with us link" data-track-category="unified header" data-track-label="link" > Publish with us </a> </li> <li class="eds-c-header__list-item"> <a class="eds-c-header__link" href="https://link.springernature.com/home/" data-track="nav_track_your_research" data-track-context="unified header" data-track-action="click track your research" data-track-category="unified header" data-track-label="link" > Track your research </a> </li> </ul> </div> <footer > <div class="eds-c-footer" > <div class="eds-c-footer__container"> <div class="eds-c-footer__grid eds-c-footer__group--separator"> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Discover content</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals/a/1" data-track="nav_journals_a_z" data-track-action="journals a-z" data-track-context="unified footer" data-track-label="link">Journals A-Z</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/books/a/1" data-track="nav_books_a_z" data-track-action="books a-z" data-track-context="unified footer" data-track-label="link">Books A-Z</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Publish with us</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://link.springer.com/journals" data-track="nav_journal_finder" data-track-action="journal finder" data-track-context="unified footer" data-track-label="link">Journal finder</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/authors" data-track="nav_publish_your_research" data-track-action="publish your research" data-track-context="unified footer" data-track-label="link">Publish your research</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/open-research/about/the-fundamentals-of-open-access-and-open-research" data-track="nav_open_access_publishing" data-track-action="open access publishing" data-track-context="unified footer" data-track-label="link">Open access publishing</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Products and services</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/products" data-track="nav_our_products" data-track-action="our products" data-track-context="unified footer" data-track-label="link">Our products</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/librarians" data-track="nav_librarians" data-track-action="librarians" data-track-context="unified footer" data-track-label="link">Librarians</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/societies" data-track="nav_societies" data-track-action="societies" data-track-context="unified footer" data-track-label="link">Societies</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springernature.com/gp/partners" data-track="nav_partners_and_advertisers" data-track-action="partners and advertisers" data-track-context="unified footer" data-track-label="link">Partners and advertisers</a></li> </ul> </div> <div class="eds-c-footer__group"> <h3 class="eds-c-footer__heading">Our imprints</h3> <ul class="eds-c-footer__list"> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.springer.com/" data-track="nav_imprint_Springer" data-track-action="Springer" data-track-context="unified footer" data-track-label="link">Springer</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.nature.com/" data-track="nav_imprint_Nature_Portfolio" data-track-action="Nature Portfolio" data-track-context="unified footer" data-track-label="link">Nature Portfolio</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.biomedcentral.com/" data-track="nav_imprint_BMC" data-track-action="BMC" data-track-context="unified footer" data-track-label="link">BMC</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.palgrave.com/" data-track="nav_imprint_Palgrave_Macmillan" data-track-action="Palgrave Macmillan" data-track-context="unified footer" data-track-label="link">Palgrave Macmillan</a></li> <li class="eds-c-footer__item"><a class="eds-c-footer__link" href="https://www.apress.com/" data-track="nav_imprint_Apress" data-track-action="Apress" data-track-context="unified footer" data-track-label="link">Apress</a></li> </ul> </div> </div> </div> <div class="eds-c-footer__container"> <nav aria-label="footer navigation"> <ul class="eds-c-footer__links"> <li class="eds-c-footer__item"> <button class="eds-c-footer__link" data-cc-action="preferences" data-track="dialog_manage_cookies" data-track-action="Manage cookies" data-track-context="unified footer" data-track-label="link"><span class="eds-c-footer__button-text">Your privacy choices/Manage cookies</span></button> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/legal/ccpa" data-track="nav_california_privacy_statement" data-track-action="california privacy statement" data-track-context="unified footer" data-track-label="link">Your US state privacy rights</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://www.springernature.com/gp/info/accessibility" data-track="nav_accessibility_statement" data-track-action="accessibility statement" data-track-context="unified footer" data-track-label="link">Accessibility statement</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/termsandconditions" data-track="nav_terms_and_conditions" data-track-action="terms and conditions" data-track-context="unified footer" data-track-label="link">Terms and conditions</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://link.springer.com/privacystatement" data-track="nav_privacy_policy" data-track-action="privacy policy" data-track-context="unified footer" data-track-label="link">Privacy policy</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/home" data-track="nav_help_and_support" data-track-action="help and support" data-track-context="unified footer" data-track-label="link">Help and support</a> </li> <li class="eds-c-footer__item"> <a class="eds-c-footer__link" href="https://support.springernature.com/en/support/solutions/articles/6000255911-subscription-cancellations" data-track-action="cancel contracts here">Cancel contracts here</a> </li> </ul> </nav> <div class="eds-c-footer__user"> <p class="eds-c-footer__user-info"> <span data-test="footer-user-ip">8.222.208.146</span> </p> <p class="eds-c-footer__user-info" data-test="footer-business-partners">Not affiliated</p> </div> <a href="https://www.springernature.com/" class="eds-c-footer__link"> <img src="/oscar-static/images/logo-springernature-white-19dd4ba190.svg" alt="Springer Nature" loading="lazy" width="200" height="20"/> </a> <p class="eds-c-footer__legal" data-test="copyright">© 2024 Springer Nature</p> </div> </div> </footer> </div> </div> <div class="u-visually-hidden" aria-hidden="true" data-test="darwin-icons"> <?xml version="1.0" encoding="UTF-8"?><!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd"><svg xmlns="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink"><symbol id="icon-eds-i-accesses-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H15a1 1 0 0 1 0-2h4.455a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM8 13c2.052 0 4.66 1.61 6.36 3.4l.124.141c.333.41.516.925.516 1.459 0 .6-.232 1.178-.64 1.599C12.666 21.388 10.054 23 8 23c-2.052 0-4.66-1.61-6.353-3.393A2.31 2.31 0 0 1 1 18c0-.6.232-1.178.64-1.6C3.34 14.61 5.948 13 8 13Zm0 2c-1.369 0-3.552 1.348-4.917 2.785A.31.31 0 0 0 3 18c0 .083.031.161.09.222C4.447 19.652 6.631 21 8 21c1.37 0 3.556-1.35 4.917-2.785A.31.31 0 0 0 13 18a.32.32 0 0 0-.048-.17l-.042-.052C11.553 16.348 9.369 15 8 15Zm0 1a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-altmetric-medium" viewBox="0 0 24 24"><path d="M12 1c5.978 0 10.843 4.77 10.996 10.712l.004.306-.002.022-.002.248C22.843 18.23 17.978 23 12 23 5.925 23 1 18.075 1 12S5.925 1 12 1Zm-1.726 9.246L8.848 12.53a1 1 0 0 1-.718.461L8.003 13l-4.947.014a9.001 9.001 0 0 0 17.887-.001L16.553 13l-2.205 3.53a1 1 0 0 1-1.735-.068l-.05-.11-2.289-6.106ZM12 3a9.001 9.001 0 0 0-8.947 8.013l4.391-.012L9.652 7.47a1 1 0 0 1 1.784.179l2.288 6.104 1.428-2.283a1 1 0 0 1 .722-.462l.129-.008 4.943.012A9.001 9.001 0 0 0 12 3Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-medium" viewBox="0 0 24 24"><path d="m11.852 20.989.058.007L12 21l.075-.003.126-.017.111-.03.111-.044.098-.052.104-.074.082-.073 6-6a1 1 0 0 0-1.414-1.414L13 17.585v-12.2C13 4.075 11.964 3 10.667 3H4a1 1 0 1 0 0 2h6.667c.175 0 .333.164.333.385v12.2l-4.293-4.292a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l6 6c.035.036.073.068.112.097l.11.071.114.054.105.035.118.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-down-small" viewBox="0 0 16 16"><path d="M1 2a1 1 0 0 0 1 1h5v8.585L3.707 8.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414l5 5 .063.059.093.069.081.048.105.048.104.035.105.022.096.01h.136l.122-.018.113-.03.103-.04.1-.053.102-.07.052-.043 5.04-5.037a1 1 0 1 0-1.415-1.414L9 11.583V3a2 2 0 0 0-2-2H2a1 1 0 0 0-1 1Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-medium" viewBox="0 0 24 24"><path d="m11.852 3.011.058-.007L12 3l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 6 6a1 1 0 1 1-1.414 1.414L13 6.415v12.2C13 19.925 11.964 21 10.667 21H4a1 1 0 0 1 0-2h6.667c.175 0 .333-.164.333-.385v-12.2l-4.293 4.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l6-6c.035-.036.073-.068.112-.097l.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-arrow-bend-up-small" viewBox="0 0 16 16"><path d="M1 13.998a1 1 0 0 1 1-1h5V4.413L3.707 7.705a1 1 0 0 1-1.32.084l-.094-.084a1 1 0 0 1 0-1.414l5-5 .063-.059.093-.068.081-.05.105-.047.104-.035.105-.022L7.94 1l.136.001.122.017.113.03.103.04.1.053.102.07.052.043 5.04 5.037a1 1 0 1 1-1.415 1.414L9 4.415v8.583a2 2 0 0 1-2 2H2a1 1 0 0 1-1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-medium" viewBox="0 0 24 24"><path d="M14 3h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L21 4v6a1 1 0 0 1-2 0V6.414l-4.293 4.293a1 1 0 0 1-1.414-1.414L17.584 5H14a1 1 0 0 1-.993-.883L13 4a1 1 0 0 1 1-1ZM4 13a1 1 0 0 1 1 1v3.584l4.293-4.291a1 1 0 1 1 1.414 1.414L6.414 19H10a1 1 0 0 1 .993.883L11 20a1 1 0 0 1-1 1l-6.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.01 1.01 0 0 1-.097-.112l-.071-.11-.054-.114-.035-.105-.025-.118-.007-.058L3 20v-6a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-arrow-diagonal-small" viewBox="0 0 16 16"><path d="m2 15-.082-.004-.119-.016-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08a1.008 1.008 0 0 1-.097-.112l-.071-.11-.031-.062-.034-.081-.024-.076-.025-.118-.007-.058L1 14.02V9a1 1 0 1 1 2 0v2.584l2.793-2.791a1 1 0 1 1 1.414 1.414L4.414 13H7a1 1 0 0 1 .993.883L8 14a1 1 0 0 1-1 1H2ZM14 1l.081.003.12.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.031.062.034.081.024.076.03.148L15 2v5a1 1 0 0 1-2 0V4.414l-2.96 2.96A1 1 0 1 1 8.626 5.96L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1h5Z"/></symbol><symbol id="icon-eds-i-arrow-down-medium" viewBox="0 0 24 24"><path d="m20.707 12.728-7.99 7.98a.996.996 0 0 1-.561.281l-.157.011a.998.998 0 0 1-.788-.384l-7.918-7.908a1 1 0 0 1 1.414-1.416L11 17.576V4a1 1 0 0 1 2 0v13.598l6.293-6.285a1 1 0 0 1 1.32-.082l.095.083a1 1 0 0 1-.001 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-down-small" viewBox="0 0 16 16"><path d="m1.293 8.707 6 6 .063.059.093.069.081.048.105.049.104.034.056.013.118.017L8 15l.076-.003.122-.017.113-.03.085-.032.063-.03.098-.058.06-.043.05-.043 6.04-6.037a1 1 0 0 0-1.414-1.414L9 11.583V2a1 1 0 1 0-2 0v9.585L2.707 7.293a1 1 0 0 0-1.32-.083l-.094.083a1 1 0 0 0 0 1.414Z"/></symbol><symbol id="icon-eds-i-arrow-left-medium" viewBox="0 0 24 24"><path d="m11.272 3.293-7.98 7.99a.996.996 0 0 0-.281.561L3 12.001c0 .32.15.605.384.788l7.908 7.918a1 1 0 0 0 1.416-1.414L6.424 13H20a1 1 0 0 0 0-2H6.402l6.285-6.293a1 1 0 0 0 .082-1.32l-.083-.095a1 1 0 0 0-1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-left-small" viewBox="0 0 16 16"><path d="m7.293 1.293-6 6-.059.063-.069.093-.048.081-.049.105-.034.104-.013.056-.017.118L1 8l.003.076.017.122.03.113.032.085.03.063.058.098.043.06.043.05 6.037 6.04a1 1 0 0 0 1.414-1.414L4.417 9H14a1 1 0 0 0 0-2H4.415l4.292-4.293a1 1 0 0 0 .083-1.32l-.083-.094a1 1 0 0 0-1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-right-medium" viewBox="0 0 24 24"><path d="m12.728 3.293 7.98 7.99a.996.996 0 0 1 .281.561l.011.157c0 .32-.15.605-.384.788l-7.908 7.918a1 1 0 0 1-1.416-1.414L17.576 13H4a1 1 0 0 1 0-2h13.598l-6.285-6.293a1 1 0 0 1-.082-1.32l.083-.095a1 1 0 0 1 1.414.001Z"/></symbol><symbol id="icon-eds-i-arrow-right-small" viewBox="0 0 16 16"><path d="m8.707 1.293 6 6 .059.063.069.093.048.081.049.105.034.104.013.056.017.118L15 8l-.003.076-.017.122-.03.113-.032.085-.03.063-.058.098-.043.06-.043.05-6.037 6.04a1 1 0 0 1-1.414-1.414L11.583 9H2a1 1 0 1 1 0-2h9.585L7.293 2.707a1 1 0 0 1-.083-1.32l.083-.094a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-arrow-up-medium" viewBox="0 0 24 24"><path d="m3.293 11.272 7.99-7.98a.996.996 0 0 1 .561-.281L12.001 3c.32 0 .605.15.788.384l7.918 7.908a1 1 0 0 1-1.414 1.416L13 6.424V20a1 1 0 0 1-2 0V6.402l-6.293 6.285a1 1 0 0 1-1.32.082l-.095-.083a1 1 0 0 1 .001-1.414Z"/></symbol><symbol id="icon-eds-i-arrow-up-small" viewBox="0 0 16 16"><path d="m1.293 7.293 6-6 .063-.059.093-.069.081-.048.105-.049.104-.034.056-.013.118-.017L8 1l.076.003.122.017.113.03.085.032.063.03.098.058.06.043.05.043 6.04 6.037a1 1 0 0 1-1.414 1.414L9 4.417V14a1 1 0 0 1-2 0V4.415L2.707 8.707a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414Z"/></symbol><symbol id="icon-eds-i-article-medium" viewBox="0 0 24 24"><path d="M8 7a1 1 0 0 0 0 2h4a1 1 0 1 0 0-2H8ZM8 11a1 1 0 1 0 0 2h8a1 1 0 1 0 0-2H8ZM7 16a1 1 0 0 1 1-1h8a1 1 0 1 1 0 2H8a1 1 0 0 1-1-1Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V3.5A2.5 2.5 0 0 0 18.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3H18.5a.5.5 0 0 1 .5.5v16.962c0 .293-.24.538-.546.538H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-book-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v12c0 1.16-.79 2.135-1.86 2.418l-.14.031V21h1a1 1 0 0 1 .993.883L21 22a1 1 0 0 1-1 1H6.5A3.5 3.5 0 0 1 3 19.5v-15A3.5 3.5 0 0 1 6.5 1h12ZM17 18H6.5a1.5 1.5 0 0 0-1.493 1.356L5 19.5A1.5 1.5 0 0 0 6.5 21H17v-3Zm1.5-15h-12A1.5 1.5 0 0 0 5 4.5v11.837l.054-.025a3.481 3.481 0 0 1 1.254-.307L6.5 16h12a.5.5 0 0 0 .492-.41L19 15.5v-12a.5.5 0 0 0-.5-.5ZM15 6a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-book-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M1 3.786C1 2.759 1.857 2 2.82 2H6.18c.964 0 1.82.759 1.82 1.786V4h3.168c.668 0 1.298.364 1.616.938.158-.109.333-.195.523-.252l3.216-.965c.923-.277 1.962.204 2.257 1.187l4.146 13.82c.296.984-.307 1.957-1.23 2.234l-3.217.965c-.923.277-1.962-.203-2.257-1.187L13 10.005v10.21c0 1.04-.878 1.785-1.834 1.785H7.833c-.291 0-.575-.07-.83-.195A1.849 1.849 0 0 1 6.18 22H2.821C1.857 22 1 21.241 1 20.214V3.786ZM3 4v11h3V4H3Zm0 16v-3h3v3H3Zm15.075-.04-.814-2.712 2.874-.862.813 2.712-2.873.862Zm1.485-5.49-2.874.862-2.634-8.782 2.873-.862 2.635 8.782ZM8 20V6h3v14H8Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-calendar-acceptance-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-.534 7.747a1 1 0 0 1 .094 1.412l-4.846 5.538a1 1 0 0 1-1.352.141l-2.77-2.076a1 1 0 0 1 1.2-1.6l2.027 1.519 4.236-4.84a1 1 0 0 1 1.411-.094ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-date-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1ZM8 15a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm-4-4a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2Zm4 0a1 1 0 1 1 0 2 1 1 0 0 1 0-2ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-decision-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-2.935 8.246 2.686 2.645c.34.335.34.883 0 1.218l-2.686 2.645a.858.858 0 0 1-1.213-.009.854.854 0 0 1 .009-1.21l1.05-1.035H7.984a.992.992 0 0 1-.984-1c0-.552.44-1 .984-1h5.928l-1.051-1.036a.854.854 0 0 1-.085-1.121l.076-.088a.858.858 0 0 1 1.213-.009ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-calendar-impact-factor-medium" viewBox="0 0 24 24"><path d="M17 2a1 1 0 0 1 1 1v1h1.5C20.817 4 22 5.183 22 6.5v13c0 1.317-1.183 2.5-2.5 2.5h-15C3.183 22 2 20.817 2 19.5v-13C2 5.183 3.183 4 4.5 4a1 1 0 1 1 0 2c-.212 0-.5.288-.5.5v13c0 .212.288.5.5.5h15c.212 0 .5-.288.5-.5v-13c0-.212-.288-.5-.5-.5H18v1a1 1 0 0 1-2 0V3a1 1 0 0 1 1-1Zm-3.2 6.924a.48.48 0 0 1 .125.544l-1.52 3.283h2.304c.27 0 .491.215.491.483a.477.477 0 0 1-.13.327l-4.18 4.484a.498.498 0 0 1-.69.031.48.48 0 0 1-.125-.544l1.52-3.284H9.291a.487.487 0 0 1-.491-.482c0-.121.047-.238.13-.327l4.18-4.484a.498.498 0 0 1 .69-.031ZM7.5 2a1 1 0 0 1 1 1v1H14a1 1 0 0 1 0 2H8.5v1a1 1 0 1 1-2 0V3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-call-papers-medium" viewBox="0 0 24 24"><g><path d="m20.707 2.883-1.414 1.414a1 1 0 0 0 1.414 1.414l1.414-1.414a1 1 0 0 0-1.414-1.414Z"/><path d="M6 16.054c0 2.026 1.052 2.943 3 2.943a1 1 0 1 1 0 2c-2.996 0-5-1.746-5-4.943v-1.227a4.068 4.068 0 0 1-1.83-1.189 4.553 4.553 0 0 1-.87-1.455 4.868 4.868 0 0 1-.3-1.686c0-1.17.417-2.298 1.17-3.14.38-.426.834-.767 1.338-1 .51-.237 1.06-.36 1.617-.36L6.632 6H7l7.932-2.895A2.363 2.363 0 0 1 18 5.36v9.28a2.36 2.36 0 0 1-3.069 2.25l.084.03L7 14.997H6v1.057Zm9.637-11.057a.415.415 0 0 0-.083.008L8 7.638v5.536l7.424 1.786.104.02c.035.01.072.02.109.02.2 0 .363-.16.363-.36V5.36c0-.2-.163-.363-.363-.363Zm-9.638 3h-.874a1.82 1.82 0 0 0-.625.111l-.15.063a2.128 2.128 0 0 0-.689.517c-.42.47-.661 1.123-.661 1.81 0 .34.06.678.176.992.114.308.28.585.485.816.4.447.925.691 1.464.691h.874v-5Z" clip-rule="evenodd"/><path d="M20 8.997h2a1 1 0 1 1 0 2h-2a1 1 0 1 1 0-2ZM20.707 14.293l1.414 1.414a1 1 0 0 1-1.414 1.414l-1.414-1.414a1 1 0 0 1 1.414-1.414Z"/></g></symbol><symbol id="icon-eds-i-card-medium" viewBox="0 0 24 24"><path d="M19.615 2c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23Zm0 2H4.385c-.213 0-.265.034-.317.14A.71.71 0 0 0 4 4.385v15.23c0 .213.034.265.14.317a.71.71 0 0 0 .245.068h15.23c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM17 16a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm0-3a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h10Zm-.5-7A1.5 1.5 0 0 1 18 7.5v3a1.5 1.5 0 0 1-1.5 1.5h-9A1.5 1.5 0 0 1 6 10.5v-3A1.5 1.5 0 0 1 7.5 6h9ZM16 8H8v2h8V8Z"/></symbol><symbol id="icon-eds-i-cart-medium" viewBox="0 0 24 24"><path d="M5.76 1a1 1 0 0 1 .994.902L7.155 6h13.34c.18 0 .358.02.532.057l.174.045a2.5 2.5 0 0 1 1.693 3.103l-2.069 7.03c-.36 1.099-1.398 1.823-2.49 1.763H8.65c-1.272.015-2.352-.927-2.546-2.244L4.852 3H2a1 1 0 0 1-.993-.883L1 2a1 1 0 0 1 1-1h3.76Zm2.328 14.51a.555.555 0 0 0 .55.488l9.751.001a.533.533 0 0 0 .527-.357l2.059-7a.5.5 0 0 0-.48-.642H7.351l.737 7.51ZM18 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4ZM8 19a2 2 0 1 1 0 4 2 2 0 0 1 0-4Z"/></symbol><symbol id="icon-eds-i-check-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm5.125 4.72a1 1 0 0 1 .156 1.405l-6 7.5a1 1 0 0 1-1.421.143l-3-2.5a1 1 0 0 1 1.28-1.536l2.217 1.846 5.362-6.703a1 1 0 0 1 1.406-.156Z"/></symbol><symbol id="icon-eds-i-check-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm5.125 6.72a1 1 0 0 0-1.406.155l-5.362 6.703-2.217-1.846a1 1 0 1 0-1.28 1.536l3 2.5a1 1 0 0 0 1.42-.143l6-7.5a1 1 0 0 0-.155-1.406Z"/></symbol><symbol id="icon-eds-i-chevron-down-medium" viewBox="0 0 24 24"><path d="M3.305 8.28a1 1 0 0 0-.024 1.415l7.495 7.762c.314.345.757.543 1.224.543.467 0 .91-.198 1.204-.522l7.515-7.783a1 1 0 1 0-1.438-1.39L12 15.845l-7.28-7.54A1 1 0 0 0 3.4 8.2l-.096.082Z"/></symbol><symbol id="icon-eds-i-chevron-down-small" viewBox="0 0 16 16"><path d="M13.692 5.278a1 1 0 0 1 .03 1.414L9.103 11.51a1.491 1.491 0 0 1-2.188.019L2.278 6.692a1 1 0 0 1 1.444-1.384L8 9.771l4.278-4.463a1 1 0 0 1 1.318-.111l.096.081Z"/></symbol><symbol id="icon-eds-i-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.72 3.305a1 1 0 0 0-1.415-.024l-7.762 7.495A1.655 1.655 0 0 0 6 12c0 .467.198.91.522 1.204l7.783 7.515a1 1 0 1 0 1.39-1.438L8.155 12l7.54-7.28A1 1 0 0 0 15.8 3.4l-.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-left-small" viewBox="0 0 16 16"><path d="M10.722 2.308a1 1 0 0 0-1.414-.03L4.49 6.897a1.491 1.491 0 0 0-.019 2.188l4.838 4.637a1 1 0 1 0 1.384-1.444L6.229 8l4.463-4.278a1 1 0 0 0 .111-1.318l-.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28 3.305a1 1 0 0 1 1.415-.024l7.762 7.495c.345.314.543.757.543 1.224 0 .467-.198.91-.522 1.204l-7.783 7.515a1 1 0 1 1-1.39-1.438L15.845 12l-7.54-7.28A1 1 0 0 1 8.2 3.4l.082-.096Z"/></symbol><symbol id="icon-eds-i-chevron-right-small" viewBox="0 0 16 16"><path d="M5.278 2.308a1 1 0 0 1 1.414-.03l4.819 4.619a1.491 1.491 0 0 1 .019 2.188l-4.838 4.637a1 1 0 1 1-1.384-1.444L9.771 8 5.308 3.722a1 1 0 0 1-.111-1.318l.081-.096Z"/></symbol><symbol id="icon-eds-i-chevron-up-medium" viewBox="0 0 24 24"><path d="M20.695 15.72a1 1 0 0 0 .024-1.415l-7.495-7.762A1.655 1.655 0 0 0 12 6c-.467 0-.91.198-1.204.522l-7.515 7.783a1 1 0 1 0 1.438 1.39L12 8.155l7.28 7.54a1 1 0 0 0 1.319.106l.096-.082Z"/></symbol><symbol id="icon-eds-i-chevron-up-small" viewBox="0 0 16 16"><path d="M13.692 10.722a1 1 0 0 0 .03-1.414L9.103 4.49a1.491 1.491 0 0 0-2.188-.019L2.278 9.308a1 1 0 0 0 1.444 1.384L8 6.229l4.278 4.463a1 1 0 0 0 1.318.111l.096-.081Z"/></symbol><symbol id="icon-eds-i-citations-medium" viewBox="0 0 24 24"><path d="M15.59 1a1 1 0 0 1 .706.291l5.41 5.385a1 1 0 0 1 .294.709v13.077c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742h-5.843a1 1 0 1 1 0-2h5.843a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.8L15.178 3H5.545a.543.543 0 0 0-.538.451L5 3.538v8.607a1 1 0 0 1-2 0V3.538A2.542 2.542 0 0 1 5.545 1h10.046ZM5.483 14.35c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Zm5 0c.197.26.17.62-.049.848l-.095.083-.016.011c-.36.24-.628.45-.804.634-.393.409-.59.93-.59 1.562.077-.019.192-.028.345-.028.442 0 .84.158 1.195.474.355.316.532.716.532 1.2 0 .501-.173.9-.518 1.198-.345.298-.767.446-1.266.446-.672 0-1.209-.195-1.612-.585-.403-.39-.604-.976-.604-1.757 0-.744.11-1.39.33-1.938.222-.549.49-1.009.807-1.38a4.28 4.28 0 0 1 .992-.88c.07-.043.148-.087.232-.133a.881.881 0 0 1 1.121.245Z"/></symbol><symbol id="icon-eds-i-clipboard-check-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-1.909 4.205a1 1 0 0 1 .19 1.401l-5.334 7a1 1 0 0 1-1.344.23l-2.667-1.75a1 1 0 1 1 1.098-1.672l1.887 1.238 4.769-6.258a1 1 0 0 1 1.401-.19ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-clipboard-report-medium" viewBox="0 0 24 24"><path d="M14.4 1c1.238 0 2.274.865 2.536 2.024L18.5 3C19.886 3 21 4.14 21 5.535v14.93C21 21.86 19.886 23 18.5 23h-13C4.114 23 3 21.86 3 20.465V5.535C3 4.14 4.114 3 5.5 3h1.57c.27-1.147 1.3-2 2.53-2h4.8Zm4.115 4-1.59.024A2.601 2.601 0 0 1 14.4 7H9.6c-1.23 0-2.26-.853-2.53-2H5.5c-.27 0-.5.234-.5.535v14.93c0 .3.23.535.5.535h13c.27 0 .5-.234.5-.535V5.535c0-.3-.23-.535-.485-.535Zm-2.658 10.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857Zm0-3.929a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h7.857ZM14.4 3H9.6a.6.6 0 0 0-.6.6v.8a.6.6 0 0 0 .6.6h4.8a.6.6 0 0 0 .6-.6v-.8a.6.6 0 0 0-.6-.6Z"/></symbol><symbol id="icon-eds-i-close-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM8.707 7.293 12 10.585l3.293-3.292a1 1 0 0 1 1.414 1.414L13.415 12l3.292 3.293a1 1 0 0 1-1.414 1.414L12 13.415l-3.293 3.292a1 1 0 1 1-1.414-1.414L10.585 12 7.293 8.707a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-cloud-upload-medium" viewBox="0 0 24 24"><path d="m12.852 10.011.028-.004L13 10l.075.003.126.017.086.022.136.052.098.052.104.074.082.073 3 3a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L14 13.416V20a1 1 0 0 1-2 0v-6.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l3-3 .112-.097.11-.071.114-.054.105-.035.118-.025Zm.587-7.962c3.065.362 5.497 2.662 5.992 5.562l.013.085.207.073c2.117.782 3.496 2.845 3.337 5.097l-.022.226c-.297 2.561-2.503 4.491-5.124 4.502a1 1 0 1 1-.009-2c1.619-.007 2.967-1.186 3.147-2.733.179-1.542-.86-2.979-2.487-3.353-.512-.149-.894-.579-.981-1.165-.21-2.237-2-4.035-4.308-4.308-2.31-.273-4.497 1.06-5.25 3.19l-.049.113c-.234.468-.718.756-1.176.743-1.418.057-2.689.857-3.32 2.084a3.668 3.668 0 0 0 .262 3.798c.796 1.136 2.169 1.764 3.583 1.635a1 1 0 1 1 .182 1.992c-2.125.194-4.193-.753-5.403-2.48a5.668 5.668 0 0 1-.403-5.86c.85-1.652 2.449-2.79 4.323-3.092l.287-.039.013-.028c1.207-2.741 4.125-4.404 7.186-4.042Z"/></symbol><symbol id="icon-eds-i-collection-medium" viewBox="0 0 24 24"><path d="M21 7a1 1 0 0 1 1 1v12.5a2.5 2.5 0 0 1-2.5 2.5H8a1 1 0 0 1 0-2h11.5a.5.5 0 0 0 .5-.5V8a1 1 0 0 1 1-1Zm-5.5-5A2.5 2.5 0 0 1 18 4.5v12a2.5 2.5 0 0 1-2.5 2.5h-11A2.5 2.5 0 0 1 2 16.5v-12A2.5 2.5 0 0 1 4.5 2h11Zm0 2h-11a.5.5 0 0 0-.5.5v12a.5.5 0 0 0 .5.5h11a.5.5 0 0 0 .5-.5v-12a.5.5 0 0 0-.5-.5ZM13 13a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6Zm0-3.5a1 1 0 0 1 0 2H7a1 1 0 0 1 0-2h6ZM13 6a1 1 0 0 1 0 2H7a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-conference-series-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M4.5 2A2.5 2.5 0 0 0 2 4.5v11A2.5 2.5 0 0 0 4.5 18h2.37l-2.534 2.253a1 1 0 0 0 1.328 1.494L9.88 18H11v3a1 1 0 1 0 2 0v-3h1.12l4.216 3.747a1 1 0 0 0 1.328-1.494L17.13 18h2.37a2.5 2.5 0 0 0 2.5-2.5v-11A2.5 2.5 0 0 0 19.5 2h-15ZM20 6V4.5a.5.5 0 0 0-.5-.5h-15a.5.5 0 0 0-.5.5V6h16ZM4 8v7.5a.5.5 0 0 0 .5.5h15a.5.5 0 0 0 .5-.5V8H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-delivery-medium" viewBox="0 0 24 24"><path d="M8.51 20.598a3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 4.161 19L3.5 19A2.5 2.5 0 0 1 1 16.5v-11A2.5 2.5 0 0 1 3.5 3h10a2.5 2.5 0 0 1 2.45 2.004L16 5h2.527c.976 0 1.855.585 2.27 1.49l2.112 4.62a1 1 0 0 1 .091.416v4.856C23 17.814 21.889 19 20.484 19h-.523a1.01 1.01 0 0 1-.121-.007 2.96 2.96 0 0 1-1.33 1.605 3.037 3.037 0 0 1-3.02 0A2.968 2.968 0 0 1 14.161 19H9.838a2.968 2.968 0 0 1-1.327 1.597Zm-2.024-3.462a.955.955 0 0 0-.481.73L5.999 18l.001.022a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0A.97.97 0 0 0 8 17.978a.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0Zm10 0a.955.955 0 0 0-.481.73l-.005.156a.944.944 0 0 0 .388.777l.098.065c.316.181.712.181 1.028 0a.97.97 0 0 0 .486-.886.95.95 0 0 0-.486-.842 1.037 1.037 0 0 0-1.028 0ZM21 12h-5v3.17a3.038 3.038 0 0 1 2.51.232 2.993 2.993 0 0 1 1.277 1.45l.058.155.058-.005.581-.002c.27 0 .516-.263.516-.618V12Zm-7.5-7h-10a.5.5 0 0 0-.5.5v11a.5.5 0 0 0 .5.5h.662a2.964 2.964 0 0 1 1.155-1.491l.172-.107a3.037 3.037 0 0 1 3.022 0A2.987 2.987 0 0 1 9.843 17H13.5a.5.5 0 0 0 .5-.5v-11a.5.5 0 0 0-.5-.5Zm5.027 2H16v3h4.203l-1.224-2.677a.532.532 0 0 0-.375-.316L18.527 7Z"/></symbol><symbol id="icon-eds-i-download-medium" viewBox="0 0 24 24"><path d="M22 18.5a3.5 3.5 0 0 1-3.5 3.5h-13A3.5 3.5 0 0 1 2 18.5V18a1 1 0 0 1 2 0v.5A1.5 1.5 0 0 0 5.5 20h13a1.5 1.5 0 0 0 1.5-1.5V18a1 1 0 0 1 2 0v.5Zm-3.293-7.793-6 6-.063.059-.093.069-.081.048-.105.049-.104.034-.056.013-.118.017L12 17l-.076-.003-.122-.017-.113-.03-.085-.032-.063-.03-.098-.058-.06-.043-.05-.043-6.04-6.037a1 1 0 0 1 1.414-1.414l4.294 4.29L11 3a1 1 0 0 1 2 0l.001 10.585 4.292-4.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414Z"/></symbol><symbol id="icon-eds-i-edit-medium" viewBox="0 0 24 24"><path d="M17.149 2a2.38 2.38 0 0 1 1.699.711l2.446 2.46a2.384 2.384 0 0 1 .005 3.38L10.01 19.906a1 1 0 0 1-.434.257l-6.3 1.8a1 1 0 0 1-1.237-1.237l1.8-6.3a1 1 0 0 1 .257-.434L15.443 2.718A2.385 2.385 0 0 1 17.15 2Zm-3.874 5.689-7.586 7.536-1.234 4.319 4.318-1.234 7.54-7.582-3.038-3.039ZM17.149 4a.395.395 0 0 0-.286.126L14.695 6.28l3.029 3.029 2.162-2.173a.384.384 0 0 0 .106-.197L20 6.864c0-.103-.04-.2-.119-.278l-2.457-2.47A.385.385 0 0 0 17.149 4Z"/></symbol><symbol id="icon-eds-i-education-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M12.41 2.088a1 1 0 0 0-.82 0l-10 4.5a1 1 0 0 0 0 1.824L3 9.047v7.124A3.001 3.001 0 0 0 4 22a3 3 0 0 0 1-5.83V9.948l1 .45V14.5a1 1 0 0 0 .087.408L7 14.5c-.913.408-.912.41-.912.41l.001.003.003.006.007.015a1.988 1.988 0 0 0 .083.16c.054.097.131.225.236.373.21.297.53.68.993 1.057C8.351 17.292 9.824 18 12 18c2.176 0 3.65-.707 4.589-1.476.463-.378.783-.76.993-1.057a4.162 4.162 0 0 0 .319-.533l.007-.015.003-.006v-.003h.002s0-.002-.913-.41l.913.408A1 1 0 0 0 18 14.5v-4.103l4.41-1.985a1 1 0 0 0 0-1.824l-10-4.5ZM16 11.297l-3.59 1.615a1 1 0 0 1-.82 0L8 11.297v2.94a3.388 3.388 0 0 0 .677.739C9.267 15.457 10.294 16 12 16s2.734-.543 3.323-1.024a3.388 3.388 0 0 0 .677-.739v-2.94ZM4.437 7.5 12 4.097 19.563 7.5 12 10.903 4.437 7.5ZM3 19a1 1 0 1 1 2 0 1 1 0 0 1-2 0Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-error-diamond-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008Zm0 2a.646.646 0 0 0-.38.123l-.093.08-8.34 8.34a.646.646 0 0 0-.18.355L3 12c0 .171.068.336.19.457l8.353 8.354a.646.646 0 0 0 .914 0l8.354-8.354a.646.646 0 0 0-.001-.914l-8.351-8.354A.646.646 0 0 0 12.002 3ZM12 14.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-error-filled-medium" viewBox="0 0 24 24"><path d="M12.002 1c.702 0 1.375.279 1.871.775l8.35 8.353a2.646 2.646 0 0 1 .001 3.744l-8.353 8.353a2.646 2.646 0 0 1-3.742 0l-8.353-8.353a2.646 2.646 0 0 1 0-3.744l8.353-8.353.156-.142c.424-.362.952-.58 1.507-.625l.21-.008ZM12 14.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-eds-i-external-link-medium" viewBox="0 0 24 24"><path d="M9 2a1 1 0 1 1 0 2H4.6c-.371 0-.6.209-.6.5v15c0 .291.229.5.6.5h14.8c.371 0 .6-.209.6-.5V15a1 1 0 0 1 2 0v4.5c0 1.438-1.162 2.5-2.6 2.5H4.6C3.162 22 2 20.938 2 19.5v-15C2 3.062 3.162 2 4.6 2H9Zm6 0h6l.075.003.126.017.111.03.111.044.098.052.096.067.09.08c.036.035.068.073.097.112l.071.11.054.114.035.105.03.148L22 3v6a1 1 0 0 1-2 0V5.414l-6.693 6.693a1 1 0 0 1-1.414-1.414L18.584 4H15a1 1 0 0 1-.993-.883L14 3a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-external-link-small" viewBox="0 0 16 16"><path d="M5 1a1 1 0 1 1 0 2l-2-.001V13L13 13v-2a1 1 0 0 1 2 0v2c0 1.15-.93 2-2.067 2H3.067C1.93 15 1 14.15 1 13V3c0-1.15.93-2 2.067-2H5Zm4 0h5l.075.003.126.017.111.03.111.044.098.052.096.067.09.08.044.047.073.093.051.083.054.113.035.105.03.148L15 2v5a1 1 0 0 1-2 0V4.414L9.107 8.307a1 1 0 0 1-1.414-1.414L11.584 3H9a1 1 0 0 1-.993-.883L8 2a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-download-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM12 7a1 1 0 0 1 1 1v6.585l2.293-2.292a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-4 4a1.008 1.008 0 0 1-.112.097l-.11.071-.114.054-.105.035-.149.03L12 18l-.075-.003-.126-.017-.111-.03-.111-.044-.098-.052-.096-.067-.09-.08-4-4a1 1 0 0 1 1.414-1.414L11 14.585V8a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-file-report-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962c0 .674-.269 1.32-.747 1.796a2.549 2.549 0 0 1-1.798.742H5.545c-.674 0-1.32-.267-1.798-.742A2.535 2.535 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .142.057.278.158.379.102.102.242.159.387.159h12.91a.549.549 0 0 0 .387-.16.535.535 0 0 0 .158-.378V7.915L14.085 3ZM16 17a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-3a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-4.793-6.207L13 9.585l1.793-1.792a1 1 0 0 1 1.32-.083l.094.083a1 1 0 0 1 0 1.414l-2.5 2.5a1 1 0 0 1-1.414 0L10.5 9.915l-1.793 1.792a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l2.5-2.5a1 1 0 0 1 1.414 0Z"/></symbol><symbol id="icon-eds-i-file-text-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3ZM16 15a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm0-4a1 1 0 0 1 0 2H8a1 1 0 0 1 0-2h8Zm-5-4a1 1 0 0 1 0 2H8a1 1 0 1 1 0-2h3Z"/></symbol><symbol id="icon-eds-i-file-upload-medium" viewBox="0 0 24 24"><path d="M14.5 1a1 1 0 0 1 .707.293l5.5 5.5A1 1 0 0 1 21 7.5v12.962A2.542 2.542 0 0 1 18.455 23H5.545A2.542 2.542 0 0 1 3 20.462V3.538A2.542 2.542 0 0 1 5.545 1H14.5Zm-.415 2h-8.54A.542.542 0 0 0 5 3.538v16.924c0 .296.243.538.545.538h12.91a.542.542 0 0 0 .545-.538V7.915L14.085 3Zm-2.233 4.011.058-.007L12 7l.075.003.126.017.111.03.111.044.098.052.104.074.082.073 4 4a1 1 0 0 1 0 1.414l-.094.083a1 1 0 0 1-1.32-.083L13 10.415V17a1 1 0 0 1-2 0v-6.585l-2.293 2.292a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l4-4 .112-.097.11-.071.114-.054.105-.035.118-.025Z"/></symbol><symbol id="icon-eds-i-filter-medium" viewBox="0 0 24 24"><path d="M21 2a1 1 0 0 1 .82 1.573L15 13.314V18a1 1 0 0 1-.31.724l-.09.076-4 3A1 1 0 0 1 9 21v-7.684L2.18 3.573a1 1 0 0 1 .707-1.567L3 2h18Zm-1.921 2H4.92l5.9 8.427a1 1 0 0 1 .172.45L11 13v6l2-1.5V13a1 1 0 0 1 .117-.469l.064-.104L19.079 4Z"/></symbol><symbol id="icon-eds-i-funding-medium" viewBox="0 0 24 24"><path fill-rule="evenodd" d="M23 8A7 7 0 1 0 9 8a7 7 0 0 0 14 0ZM9.006 12.225A4.07 4.07 0 0 0 6.12 11.02H2a.979.979 0 1 0 0 1.958h4.12c.558 0 1.094.222 1.489.617l2.207 2.288c.27.27.27.687.012.944a.656.656 0 0 1-.928 0L7.744 15.67a.98.98 0 0 0-1.386 1.384l1.157 1.158c.535.536 1.244.791 1.946.765l.041.002h6.922c.874 0 1.597.748 1.597 1.688 0 .203-.146.354-.309.354H7.755c-.487 0-.96-.178-1.339-.504L2.64 17.259a.979.979 0 0 0-1.28 1.482L5.137 22c.733.631 1.66.979 2.618.979h9.957c1.26 0 2.267-1.043 2.267-2.312 0-2.006-1.584-3.646-3.555-3.646h-4.529a2.617 2.617 0 0 0-.681-2.509l-2.208-2.287ZM16 3a5 5 0 1 0 0 10 5 5 0 0 0 0-10Zm.979 3.5a.979.979 0 1 0-1.958 0v3a.979.979 0 1 0 1.958 0v-3Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-hashtag-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18ZM9.52 18.189a1 1 0 1 1-1.964-.378l.437-2.274H6a1 1 0 1 1 0-2h2.378l.592-3.076H6a1 1 0 0 1 0-2h3.354l.51-2.65a1 1 0 1 1 1.964.378l-.437 2.272h3.04l.51-2.65a1 1 0 1 1 1.964.378l-.438 2.272H18a1 1 0 0 1 0 2h-1.917l-.592 3.076H18a1 1 0 0 1 0 2h-2.893l-.51 2.652a1 1 0 1 1-1.964-.378l.437-2.274h-3.04l-.51 2.652Zm.895-4.652h3.04l.591-3.076h-3.04l-.591 3.076Z"/></symbol><symbol id="icon-eds-i-home-medium" viewBox="0 0 24 24"><path d="M5 22a1 1 0 0 1-1-1v-8.586l-1.293 1.293a1 1 0 0 1-1.32.083l-.094-.083a1 1 0 0 1 0-1.414l10-10a1 1 0 0 1 1.414 0l10 10a1 1 0 0 1-1.414 1.414L20 12.415V21a1 1 0 0 1-1 1H5Zm7-17.585-6 5.999V20h5v-4a1 1 0 0 1 2 0v4h5v-9.585l-6-6Z"/></symbol><symbol id="icon-eds-i-image-medium" viewBox="0 0 24 24"><path d="M19.615 2A2.385 2.385 0 0 1 22 4.385v15.23A2.385 2.385 0 0 1 19.615 22H4.385A2.385 2.385 0 0 1 2 19.615V4.385A2.385 2.385 0 0 1 4.385 2h15.23Zm0 2H4.385A.385.385 0 0 0 4 4.385v15.23c0 .213.172.385.385.385h1.244l10.228-8.76a1 1 0 0 1 1.254-.037L20 13.392V4.385A.385.385 0 0 0 19.615 4Zm-3.07 9.283L8.703 20h10.912a.385.385 0 0 0 .385-.385v-3.713l-3.455-2.619ZM9.5 6a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-impact-factor-medium" viewBox="0 0 24 24"><path d="M16.49 2.672c.74.694.986 1.765.632 2.712l-.04.1-1.549 3.54h1.477a2.496 2.496 0 0 1 2.485 2.34l.005.163c0 .618-.23 1.21-.642 1.675l-7.147 7.961a2.48 2.48 0 0 1-3.554.165 2.512 2.512 0 0 1-.633-2.712l.042-.103L9.108 15H7.46c-1.393 0-2.379-1.11-2.455-2.369L5 12.473c0-.593.142-1.145.628-1.692l7.307-7.944a2.48 2.48 0 0 1 3.555-.165ZM14.43 4.164l-7.33 7.97c-.083.093-.101.214-.101.34 0 .277.19.526.46.526h4.163l.097-.009c.015 0 .03.003.046.009.181.078.264.32.186.5l-2.554 5.817a.512.512 0 0 0 .127.552.48.48 0 0 0 .69-.033l7.155-7.97a.513.513 0 0 0 .13-.34.497.497 0 0 0-.49-.502h-3.988a.355.355 0 0 1-.328-.497l2.555-5.844a.512.512 0 0 0-.127-.552.48.48 0 0 0-.69.033Z"/></symbol><symbol id="icon-eds-i-info-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 7a1 1 0 0 1 1 1v5h1.5a1 1 0 0 1 0 2h-5a1 1 0 0 1 0-2H11v-4h-.5a1 1 0 0 1-.993-.883L9.5 11a1 1 0 0 1 1-1H12Zm0-4.5a1.5 1.5 0 0 1 .144 2.993L12 8.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-info-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 9h-1.5a1 1 0 0 0-1 1l.007.117A1 1 0 0 0 10.5 12h.5v4H9.5a1 1 0 0 0 0 2h5a1 1 0 0 0 0-2H13v-5a1 1 0 0 0-1-1Zm0-4.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 5.5Z"/></symbol><symbol id="icon-eds-i-journal-medium" viewBox="0 0 24 24"><path d="M18.5 1A2.5 2.5 0 0 1 21 3.5v14a2.5 2.5 0 0 1-2.5 2.5h-13a.5.5 0 1 0 0 1H20a1 1 0 0 1 0 2H5.5A2.5 2.5 0 0 1 3 20.5v-17A2.5 2.5 0 0 1 5.5 1h13ZM7 3H5.5a.5.5 0 0 0-.5.5v14.549l.016-.002c.104-.02.211-.035.32-.042L5.5 18H7V3Zm11.5 0H9v15h9.5a.5.5 0 0 0 .5-.5v-14a.5.5 0 0 0-.5-.5ZM16 5a1 1 0 0 1 1 1v4a1 1 0 0 1-1 1h-5a1 1 0 0 1-1-1V6a1 1 0 0 1 1-1h5Zm-1 2h-3v2h3V7Z"/></symbol><symbol id="icon-eds-i-mail-medium" viewBox="0 0 24 24"><path d="M20.462 3C21.875 3 23 4.184 23 5.619v12.762C23 19.816 21.875 21 20.462 21H3.538C2.125 21 1 19.816 1 18.381V5.619C1 4.184 2.125 3 3.538 3h16.924ZM21 8.158l-7.378 6.258a2.549 2.549 0 0 1-3.253-.008L3 8.16v10.222c0 .353.253.619.538.619h16.924c.285 0 .538-.266.538-.619V8.158ZM20.462 5H3.538c-.264 0-.5.228-.534.542l8.65 7.334c.2.165.492.165.684.007l8.656-7.342-.001-.025c-.044-.3-.274-.516-.531-.516Z"/></symbol><symbol id="icon-eds-i-mail-send-medium" viewBox="0 0 24 24"><path d="M20.444 5a2.562 2.562 0 0 1 2.548 2.37l.007.078.001.123v7.858A2.564 2.564 0 0 1 20.444 18H9.556A2.564 2.564 0 0 1 7 15.429l.001-7.977.007-.082A2.561 2.561 0 0 1 9.556 5h10.888ZM21 9.331l-5.46 3.51a1 1 0 0 1-1.08 0L9 9.332v6.097c0 .317.251.571.556.571h10.888a.564.564 0 0 0 .556-.571V9.33ZM20.444 7H9.556a.543.543 0 0 0-.32.105l5.763 3.706 5.766-3.706a.543.543 0 0 0-.32-.105ZM4.308 5a1 1 0 1 1 0 2H2a1 1 0 1 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Zm0 5.5a1 1 0 0 1 0 2H2a1 1 0 0 1 0-2h2.308Z"/></symbol><symbol id="icon-eds-i-mentions-medium" viewBox="0 0 24 24"><path d="m9.452 1.293 5.92 5.92 2.92-2.92a1 1 0 0 1 1.415 1.414l-2.92 2.92 5.92 5.92a1 1 0 0 1 0 1.415 10.371 10.371 0 0 1-10.378 2.584l.652 3.258A1 1 0 0 1 12 23H2a1 1 0 0 1-.874-1.486l4.789-8.62C4.194 9.074 4.9 4.43 8.038 1.292a1 1 0 0 1 1.414 0Zm-2.355 13.59L3.699 21h7.081l-.689-3.442a10.392 10.392 0 0 1-2.775-2.396l-.22-.28Zm1.69-11.427-.07.09a8.374 8.374 0 0 0 11.737 11.737l.089-.071L8.787 3.456Z"/></symbol><symbol id="icon-eds-i-menu-medium" viewBox="0 0 24 24"><path d="M21 4a1 1 0 0 1 0 2H3a1 1 0 1 1 0-2h18Zm-4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h14Zm4 7a1 1 0 0 1 0 2H3a1 1 0 0 1 0-2h18Z"/></symbol><symbol id="icon-eds-i-metrics-medium" viewBox="0 0 24 24"><path d="M3 22a1 1 0 0 1-1-1V3a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v7h4V8a1 1 0 0 1 1-1h6a1 1 0 0 1 1 1v13a1 1 0 0 1-.883.993L21 22H3Zm17-2V9h-4v11h4Zm-6-8h-4v8h4v-8ZM8 4H4v16h4V4Z"/></symbol><symbol id="icon-eds-i-news-medium" viewBox="0 0 24 24"><path d="M17.384 3c.975 0 1.77.787 1.77 1.762v13.333c0 .462.354.846.815.899l.107.006.109-.006a.915.915 0 0 0 .809-.794l.006-.105V8.19a1 1 0 0 1 2 0v9.905A2.914 2.914 0 0 1 20.077 21H3.538a2.547 2.547 0 0 1-1.644-.601l-.147-.135A2.516 2.516 0 0 1 1 18.476V4.762C1 3.787 1.794 3 2.77 3h14.614Zm-.231 2H3v13.476c0 .11.035.216.1.304l.054.063c.101.1.24.157.384.157l13.761-.001-.026-.078a2.88 2.88 0 0 1-.115-.655l-.004-.17L17.153 5ZM14 15.021a.979.979 0 1 1 0 1.958H6a.979.979 0 1 1 0-1.958h8Zm0-8c.54 0 .979.438.979.979v4c0 .54-.438.979-.979.979H6A.979.979 0 0 1 5.021 12V8c0-.54.438-.979.979-.979h8Zm-.98 1.958H6.979v2.041h6.041V8.979Z"/></symbol><symbol id="icon-eds-i-newsletter-medium" viewBox="0 0 24 24"><path d="M21 10a1 1 0 0 1 1 1v9.5a2.5 2.5 0 0 1-2.5 2.5h-15A2.5 2.5 0 0 1 2 20.5V11a1 1 0 0 1 2 0v.439l8 4.888 8-4.889V11a1 1 0 0 1 1-1Zm-1 3.783-7.479 4.57a1 1 0 0 1-1.042 0l-7.48-4.57V20.5a.5.5 0 0 0 .501.5h15a.5.5 0 0 0 .5-.5v-6.717ZM15 9a1 1 0 0 1 0 2H9a1 1 0 0 1 0-2h6Zm2.5-8A2.5 2.5 0 0 1 20 3.5V9a1 1 0 0 1-2 0V3.5a.5.5 0 0 0-.5-.5h-11a.5.5 0 0 0-.5.5V9a1 1 0 1 1-2 0V3.5A2.5 2.5 0 0 1 6.5 1h11ZM15 5a1 1 0 0 1 0 2H9a1 1 0 1 1 0-2h6Z"/></symbol><symbol id="icon-eds-i-notifcation-medium" viewBox="0 0 24 24"><path d="M14 20a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM3 18l-.133-.007c-1.156-.124-1.156-1.862 0-1.986l.3-.012C4.32 15.923 5 15.107 5 14V9.5C5 5.368 8.014 2 12 2s7 3.368 7 7.5V14c0 1.107.68 1.923 1.832 1.995l.301.012c1.156.124 1.156 1.862 0 1.986L21 18H3Zm9-14C9.17 4 7 6.426 7 9.5V14c0 .671-.146 1.303-.416 1.858L6.51 16h10.979l-.073-.142a4.192 4.192 0 0 1-.412-1.658L17 14V9.5C17 6.426 14.83 4 12 4Z"/></symbol><symbol id="icon-eds-i-publish-medium" viewBox="0 0 24 24"><g><path d="M16.296 1.291A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V13a1 1 0 1 0 2 0V3.538l.007-.087A.543.543 0 0 1 5.545 3h9.633L20 7.8v12.662a.534.534 0 0 1-.158.379.548.548 0 0 1-.387.159H11a1 1 0 1 0 0 2h8.455c.674 0 1.32-.267 1.798-.742A2.534 2.534 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385Z"/><path d="M10.762 16.647a1 1 0 0 0-1.525-1.294l-4.472 5.271-2.153-1.665a1 1 0 1 0-1.224 1.582l2.91 2.25a1 1 0 0 0 1.374-.144l5.09-6ZM16 10a1 1 0 1 1 0 2H8a1 1 0 1 1 0-2h8ZM12 7a1 1 0 0 0-1-1H8a1 1 0 1 0 0 2h3a1 1 0 0 0 1-1Z"/></g></symbol><symbol id="icon-eds-i-refresh-medium" viewBox="0 0 24 24"><g><path d="M7.831 5.636H6.032A8.76 8.76 0 0 1 9 3.631 8.549 8.549 0 0 1 12.232 3c.603 0 1.192.063 1.76.182C17.979 4.017 21 7.632 21 12a1 1 0 1 0 2 0c0-5.296-3.674-9.746-8.591-10.776A10.61 10.61 0 0 0 5 3.851V2.805a1 1 0 0 0-.987-1H4a1 1 0 0 0-1 1v3.831a1 1 0 0 0 1 1h3.831a1 1 0 0 0 .013-2h-.013ZM17.968 18.364c-1.59 1.632-3.784 2.636-6.2 2.636C6.948 21 3 16.993 3 12a1 1 0 1 0-2 0c0 6.053 4.799 11 10.768 11 2.788 0 5.324-1.082 7.232-2.85v1.045a1 1 0 1 0 2 0v-3.831a1 1 0 0 0-1-1h-3.831a1 1 0 0 0 0 2h1.799Z"/></g></symbol><symbol id="icon-eds-i-search-medium" viewBox="0 0 24 24"><path d="M11 1c5.523 0 10 4.477 10 10 0 2.4-.846 4.604-2.256 6.328l3.963 3.965a1 1 0 0 1-1.414 1.414l-3.965-3.963A9.959 9.959 0 0 1 11 21C5.477 21 1 16.523 1 11S5.477 1 11 1Zm0 2a8 8 0 1 0 0 16 8 8 0 0 0 0-16Z"/></symbol><symbol id="icon-eds-i-settings-medium" viewBox="0 0 24 24"><path d="M11.382 1h1.24a2.508 2.508 0 0 1 2.334 1.63l.523 1.378 1.59.933 1.444-.224c.954-.132 1.89.3 2.422 1.101l.095.155.598 1.066a2.56 2.56 0 0 1-.195 2.848l-.894 1.161v1.896l.92 1.163c.6.768.707 1.812.295 2.674l-.09.17-.606 1.08a2.504 2.504 0 0 1-2.531 1.25l-1.428-.223-1.589.932-.523 1.378a2.512 2.512 0 0 1-2.155 1.625L12.65 23h-1.27a2.508 2.508 0 0 1-2.334-1.63l-.524-1.379-1.59-.933-1.443.225c-.954.132-1.89-.3-2.422-1.101l-.095-.155-.598-1.066a2.56 2.56 0 0 1 .195-2.847l.891-1.161v-1.898l-.919-1.162a2.562 2.562 0 0 1-.295-2.674l.09-.17.606-1.08a2.504 2.504 0 0 1 2.531-1.25l1.43.223 1.618-.938.524-1.375.07-.167A2.507 2.507 0 0 1 11.382 1Zm.003 2a.509.509 0 0 0-.47.338l-.65 1.71a1 1 0 0 1-.434.51L7.6 6.85a1 1 0 0 1-.655.123l-1.762-.275a.497.497 0 0 0-.498.252l-.61 1.088a.562.562 0 0 0 .04.619l1.13 1.43a1 1 0 0 1 .216.62v2.585a1 1 0 0 1-.207.61L4.15 15.339a.568.568 0 0 0-.036.634l.601 1.072a.494.494 0 0 0 .484.26l1.78-.278a1 1 0 0 1 .66.126l2.2 1.292a1 1 0 0 1 .43.507l.648 1.71a.508.508 0 0 0 .467.338h1.263a.51.51 0 0 0 .47-.34l.65-1.708a1 1 0 0 1 .428-.507l2.201-1.292a1 1 0 0 1 .66-.126l1.763.275a.497.497 0 0 0 .498-.252l.61-1.088a.562.562 0 0 0-.04-.619l-1.13-1.43a1 1 0 0 1-.216-.62v-2.585a1 1 0 0 1 .207-.61l1.105-1.437a.568.568 0 0 0 .037-.634l-.601-1.072a.494.494 0 0 0-.484-.26l-1.78.278a1 1 0 0 1-.66-.126l-2.2-1.292a1 1 0 0 1-.43-.507l-.649-1.71A.508.508 0 0 0 12.62 3h-1.234ZM12 8a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-shipping-medium" viewBox="0 0 24 24"><path d="M16.515 2c1.406 0 2.706.728 3.352 1.902l2.02 3.635.02.042.036.089.031.105.012.058.01.073.004.075v11.577c0 .64-.244 1.255-.683 1.713a2.356 2.356 0 0 1-1.701.731H4.386a2.356 2.356 0 0 1-1.702-.731 2.476 2.476 0 0 1-.683-1.713V7.948c.01-.217.083-.43.22-.6L4.2 3.905C4.833 2.755 6.089 2.032 7.486 2h9.029ZM20 9H4v10.556a.49.49 0 0 0 .075.26l.053.07a.356.356 0 0 0 .257.114h15.23c.094 0 .186-.04.258-.115a.477.477 0 0 0 .127-.33V9Zm-2 7.5a1 1 0 0 1 0 2h-4a1 1 0 0 1 0-2h4ZM16.514 4H13v3h6.3l-1.183-2.13c-.288-.522-.908-.87-1.603-.87ZM11 3.999H7.51c-.679.017-1.277.36-1.566.887L4.728 7H11V3.999Z"/></symbol><symbol id="icon-eds-i-step-guide-medium" viewBox="0 0 24 24"><path d="M11.394 9.447a1 1 0 1 0-1.788-.894l-.88 1.759-.019-.02a1 1 0 1 0-1.414 1.415l1 1a1 1 0 0 0 1.601-.26l1.5-3ZM12 11a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM12 17a1 1 0 0 1 1-1h3a1 1 0 1 1 0 2h-3a1 1 0 0 1-1-1ZM10.947 14.105a1 1 0 0 1 .447 1.342l-1.5 3a1 1 0 0 1-1.601.26l-1-1a1 1 0 1 1 1.414-1.414l.02.019.879-1.76a1 1 0 0 1 1.341-.447Z"/><path d="M5.545 1A2.542 2.542 0 0 0 3 3.538v16.924A2.542 2.542 0 0 0 5.545 23h12.91A2.542 2.542 0 0 0 21 20.462V7.5a1 1 0 0 0-.293-.707l-5.5-5.5A1 1 0 0 0 14.5 1H5.545ZM5 3.538C5 3.245 5.24 3 5.545 3h8.54L19 7.914v12.547c0 .294-.24.539-.546.539H5.545A.542.542 0 0 1 5 20.462V3.538Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-submission-medium" viewBox="0 0 24 24"><g><path d="M5 3.538C5 3.245 5.24 3 5.545 3h9.633L20 7.8v12.662a.535.535 0 0 1-.158.379.549.549 0 0 1-.387.159H6a1 1 0 0 1-1-1v-2.5a1 1 0 1 0-2 0V20a3 3 0 0 0 3 3h13.455c.673 0 1.32-.266 1.798-.742A2.535 2.535 0 0 0 22 20.462V7.385a1 1 0 0 0-.294-.709l-5.41-5.385A1 1 0 0 0 15.591 1H5.545A2.542 2.542 0 0 0 3 3.538V7a1 1 0 0 0 2 0V3.538Z"/><path d="m13.707 13.707-4 4a1 1 0 0 1-1.414 0l-.083-.094a1 1 0 0 1 .083-1.32L10.585 14 2 14a1 1 0 1 1 0-2l8.583.001-2.29-2.294a1 1 0 0 1 1.414-1.414l4.037 4.04.043.05.043.06.059.098.03.063.031.085.03.113.017.122L14 13l-.004.087-.017.118-.013.056-.034.104-.049.105-.048.081-.07.093-.058.063Z"/></g></symbol><symbol id="icon-eds-i-table-1-medium" viewBox="0 0 24 24"><path d="M4.385 22a2.56 2.56 0 0 1-1.14-.279C2.485 21.341 2 20.614 2 19.615V4.385c0-.315.067-.716.279-1.14C2.659 2.485 3.386 2 4.385 2h15.23c.315 0 .716.067 1.14.279.76.38 1.245 1.107 1.245 2.106v15.23c0 .315-.067.716-.279 1.14-.38.76-1.107 1.245-2.106 1.245H4.385ZM4 19.615c0 .213.034.265.14.317a.71.71 0 0 0 .245.068H8v-4H4v3.615ZM20 16H10v4h9.615c.213 0 .265-.034.317-.14a.71.71 0 0 0 .068-.245V16Zm0-2v-4H10v4h10ZM4 14h4v-4H4v4ZM19.615 4H10v4h10V4.385c0-.213-.034-.265-.14-.317A.71.71 0 0 0 19.615 4ZM8 4H4.385l-.082.002c-.146.01-.19.047-.235.138A.71.71 0 0 0 4 4.385V8h4V4Z"/></symbol><symbol id="icon-eds-i-table-2-medium" viewBox="0 0 24 24"><path d="M4.384 22A2.384 2.384 0 0 1 2 19.616V4.384A2.384 2.384 0 0 1 4.384 2h15.232A2.384 2.384 0 0 1 22 4.384v15.232A2.384 2.384 0 0 1 19.616 22H4.384ZM10 15H4v4.616c0 .212.172.384.384.384H10v-5Zm5 0h-3v5h3v-5Zm5 0h-3v5h2.616a.384.384 0 0 0 .384-.384V15ZM10 9H4v4h6V9Zm5 0h-3v4h3V9Zm5 0h-3v4h3V9Zm-.384-5H4.384A.384.384 0 0 0 4 4.384V7h16V4.384A.384.384 0 0 0 19.616 4Z"/></symbol><symbol id="icon-eds-i-tag-medium" viewBox="0 0 24 24"><path d="m12.621 1.998.127.004L20.496 2a1.5 1.5 0 0 1 1.497 1.355L22 3.5l-.005 7.669c.038.456-.133.905-.447 1.206l-9.02 9.018a2.075 2.075 0 0 1-2.932 0l-6.99-6.99a2.075 2.075 0 0 1 .001-2.933L11.61 2.47c.246-.258.573-.418.881-.46l.131-.011Zm.286 2-8.885 8.886a.075.075 0 0 0 0 .106l6.987 6.988c.03.03.077.03.106 0l8.883-8.883L19.999 4l-7.092-.002ZM16 6.5a1.5 1.5 0 0 1 .144 2.993L16 9.5a1.5 1.5 0 0 1 0-3Z"/></symbol><symbol id="icon-eds-i-trash-medium" viewBox="0 0 24 24"><path d="M12 1c2.717 0 4.913 2.232 4.997 5H21a1 1 0 0 1 0 2h-1v12.5c0 1.389-1.152 2.5-2.556 2.5H6.556C5.152 23 4 21.889 4 20.5V8H3a1 1 0 1 1 0-2h4.003l.001-.051C7.114 3.205 9.3 1 12 1Zm6 7H6v12.5c0 .238.19.448.454.492l.102.008h10.888c.315 0 .556-.232.556-.5V8Zm-4 3a1 1 0 0 1 1 1v6.005a1 1 0 0 1-2 0V12a1 1 0 0 1 1-1Zm-4 0a1 1 0 0 1 1 1v6a1 1 0 0 1-2 0v-6a1 1 0 0 1 1-1Zm2-8c-1.595 0-2.914 1.32-2.996 3h5.991v-.02C14.903 4.31 13.589 3 12 3Z"/></symbol><symbol id="icon-eds-i-user-account-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 16c-1.806 0-3.52.994-4.664 2.698A8.947 8.947 0 0 0 12 21a8.958 8.958 0 0 0 4.664-1.301C15.52 17.994 13.806 17 12 17Zm0-14a9 9 0 0 0-6.25 15.476C7.253 16.304 9.54 15 12 15s4.747 1.304 6.25 3.475A9 9 0 0 0 12 3Zm0 3a4 4 0 1 1 0 8 4 4 0 0 1 0-8Zm0 2a2 2 0 1 0 0 4 2 2 0 0 0 0-4Z"/></symbol><symbol id="icon-eds-i-user-add-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a1 1 0 0 1 1 1v3h3a1 1 0 0 1 0 2h-3v3a1 1 0 0 1-2 0v-3h-3a1 1 0 0 1 0-2h3v-3a1 1 0 0 1 1-1Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Z"/></symbol><symbol id="icon-eds-i-user-assign-medium" viewBox="0 0 24 24"><path d="M16.226 13.298a1 1 0 0 1 1.414-.01l.084.093a1 1 0 0 1-.073 1.32L15.39 17H22a1 1 0 0 1 0 2h-6.611l2.262 2.298a1 1 0 0 1-1.425 1.404l-3.939-4a1 1 0 0 1 0-1.404l3.94-4Zm-3.771-.449a1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 10.5 20a1 1 0 0 1 .993.883L11.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-block-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm9 10a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm-5.545-.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM15 18a3 3 0 0 0 4.294 2.707l-4.001-4c-.188.391-.293.83-.293 1.293Zm3-3c-.463 0-.902.105-1.294.293l4.001 4A3 3 0 0 0 18 15Z"/></symbol><symbol id="icon-eds-i-user-check-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm13.647 12.237a1 1 0 0 1 .116 1.41l-5.091 6a1 1 0 0 1-1.375.144l-2.909-2.25a1 1 0 1 1 1.224-1.582l2.153 1.665 4.472-5.271a1 1 0 0 1 1.41-.116Zm-8.139-.977c.22.214.428.44.622.678a1 1 0 1 1-1.548 1.266 6.025 6.025 0 0 0-1.795-1.49.86.86 0 0 1-.163-.048l-.079-.036a5.721 5.721 0 0 0-2.62-.63l-.194.006c-2.76.134-5.022 2.177-5.592 4.864l-.035.175-.035.213c-.03.201-.05.405-.06.61L3.003 20 10 20a1 1 0 0 1 .993.883L11 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876l.005-.223.02-.356.02-.222.03-.248.022-.15c.02-.133.044-.265.071-.397.44-2.178 1.725-4.105 3.595-5.301a7.75 7.75 0 0 1 3.755-1.215l.12-.004a7.908 7.908 0 0 1 5.87 2.252Z"/></symbol><symbol id="icon-eds-i-user-delete-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6ZM4.763 13.227a7.713 7.713 0 0 1 7.692-.378 1 1 0 1 1-.91 1.781 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20H11.5a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897Zm11.421 1.543 2.554 2.553 2.555-2.553a1 1 0 0 1 1.414 1.414l-2.554 2.554 2.554 2.555a1 1 0 0 1-1.414 1.414l-2.555-2.554-2.554 2.554a1 1 0 0 1-1.414-1.414l2.553-2.555-2.553-2.554a1 1 0 0 1 1.414-1.414Z"/></symbol><symbol id="icon-eds-i-user-edit-medium" viewBox="0 0 24 24"><path d="m19.876 10.77 2.831 2.83a1 1 0 0 1 0 1.415l-7.246 7.246a1 1 0 0 1-.572.284l-3.277.446a1 1 0 0 1-1.125-1.13l.461-3.277a1 1 0 0 1 .283-.567l7.23-7.246a1 1 0 0 1 1.415-.001Zm-7.421 2.08a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 7.5 20a1 1 0 0 1 .993.883L8.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378Zm6.715.042-6.29 6.3-.23 1.639 1.633-.222 6.302-6.302-1.415-1.415ZM9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Z"/></symbol><symbol id="icon-eds-i-user-linked-medium" viewBox="0 0 24 24"><path d="M15.65 6c.31 0 .706.066 1.122.274C17.522 6.65 18 7.366 18 8.35v12.3c0 .31-.066.706-.274 1.122-.375.75-1.092 1.228-2.076 1.228H3.35a2.52 2.52 0 0 1-1.122-.274C1.478 22.35 1 21.634 1 20.65V8.35c0-.31.066-.706.274-1.122C1.65 6.478 2.366 6 3.35 6h12.3Zm0 2-12.376.002c-.134.007-.17.04-.21.12A.672.672 0 0 0 3 8.35v12.3c0 .198.028.24.122.287.09.044.2.063.228.063h.887c.788-2.269 2.814-3.5 5.263-3.5 2.45 0 4.475 1.231 5.263 3.5h.887c.198 0 .24-.028.287-.122.044-.09.063-.2.063-.228V8.35c0-.198-.028-.24-.122-.287A.672.672 0 0 0 15.65 8ZM9.5 19.5c-1.36 0-2.447.51-3.06 1.5h6.12c-.613-.99-1.7-1.5-3.06-1.5ZM20.65 1A2.35 2.35 0 0 1 23 3.348V15.65A2.35 2.35 0 0 1 20.65 18H20a1 1 0 0 1 0-2h.65a.35.35 0 0 0 .35-.35V3.348A.35.35 0 0 0 20.65 3H8.35a.35.35 0 0 0-.35.348V4a1 1 0 1 1-2 0v-.652A2.35 2.35 0 0 1 8.35 1h12.3ZM9.5 10a3.5 3.5 0 1 1 0 7 3.5 3.5 0 0 1 0-7Zm0 2a1.5 1.5 0 1 0 0 3 1.5 1.5 0 0 0 0-3Z"/></symbol><symbol id="icon-eds-i-user-multiple-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm6 0a5 5 0 0 1 0 10 1 1 0 0 1-.117-1.993L15 9a3 3 0 0 0 0-6 1 1 0 0 1 0-2ZM9 3a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm8.857 9.545a7.99 7.99 0 0 1 2.651 1.715A8.31 8.31 0 0 1 23 20.134V21a1 1 0 0 1-1 1h-3a1 1 0 0 1 0-2h1.995l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209a5.99 5.99 0 0 0-1.988-1.287 1 1 0 1 1 .732-1.861Zm-3.349 1.715A8.31 8.31 0 0 1 17 20.134V21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.877c.044-4.343 3.387-7.908 7.638-8.115a7.908 7.908 0 0 1 5.87 2.252ZM9.016 14l-.285.006c-3.104.15-5.58 2.718-5.725 5.9L3.004 20h11.991l-.005-.153a6.307 6.307 0 0 0-1.673-3.945l-.204-.209A5.924 5.924 0 0 0 9.3 14.008L9.016 14Z"/></symbol><symbol id="icon-eds-i-user-notify-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm10 18v1a1 1 0 0 1-2 0v-1h-3a1 1 0 0 1 0-2v-2.818C14 13.885 15.777 12 18 12s4 1.885 4 4.182V19a1 1 0 0 1 0 2h-3Zm-6.545-8.15a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM18 14c-1.091 0-2 .964-2 2.182V19h4v-2.818c0-1.165-.832-2.098-1.859-2.177L18 14Z"/></symbol><symbol id="icon-eds-i-user-remove-medium" viewBox="0 0 24 24"><path d="M9 1a5 5 0 1 1 0 10A5 5 0 0 1 9 1Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm3.455 9.85a1 1 0 1 1-.91 1.78 5.713 5.713 0 0 0-5.705.282c-1.67 1.068-2.728 2.927-2.832 4.956L3.004 20 11.5 20a1 1 0 0 1 .993.883L12.5 21a1 1 0 0 1-1 1H2a1 1 0 0 1-1-1v-.876c.028-2.812 1.446-5.416 3.763-6.897a7.713 7.713 0 0 1 7.692-.378ZM22 17a1 1 0 0 1 0 2h-8a1 1 0 0 1 0-2h8Z"/></symbol><symbol id="icon-eds-i-user-single-medium" viewBox="0 0 24 24"><path d="M12 1a5 5 0 1 1 0 10 5 5 0 0 1 0-10Zm0 2a3 3 0 1 0 0 6 3 3 0 0 0 0-6Zm-.406 9.008a8.965 8.965 0 0 1 6.596 2.494A9.161 9.161 0 0 1 21 21.025V22a1 1 0 0 1-1 1H4a1 1 0 0 1-1-1v-.985c.05-4.825 3.815-8.777 8.594-9.007Zm.39 1.992-.299.006c-3.63.175-6.518 3.127-6.678 6.775L5 21h13.998l-.009-.268a7.157 7.157 0 0 0-1.97-4.573l-.214-.213A6.967 6.967 0 0 0 11.984 14Z"/></symbol><symbol id="icon-eds-i-warning-circle-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 2a9 9 0 1 0 0 18 9 9 0 0 0 0-18Zm0 11.5a1.5 1.5 0 0 1 .144 2.993L12 17.5a1.5 1.5 0 0 1 0-3ZM12 6a1 1 0 0 1 1 1v5a1 1 0 0 1-2 0V7a1 1 0 0 1 1-1Z"/></symbol><symbol id="icon-eds-i-warning-filled-medium" viewBox="0 0 24 24"><path d="M12 1c6.075 0 11 4.925 11 11s-4.925 11-11 11S1 18.075 1 12 5.925 1 12 1Zm0 13.5a1.5 1.5 0 0 0 0 3l.144-.007A1.5 1.5 0 0 0 12 14.5ZM12 6a1 1 0 0 0-1 1v5a1 1 0 0 0 2 0V7a1 1 0 0 0-1-1Z"/></symbol><symbol id="icon-chevron-left-medium" viewBox="0 0 24 24"><path d="M15.7194 3.3054C15.3358 2.90809 14.7027 2.89699 14.3054 3.28061L6.54342 10.7757C6.19804 11.09 6 11.5335 6 12C6 12.4665 6.19804 12.91 6.5218 13.204L14.3054 20.7194C14.7027 21.103 15.3358 21.0919 15.7194 20.6946C16.103 20.2973 16.0919 19.6642 15.6946 19.2806L8.155 12L15.6946 4.71939C16.0614 4.36528 16.099 3.79863 15.8009 3.40105L15.7194 3.3054Z"/></symbol><symbol id="icon-chevron-right-medium" viewBox="0 0 24 24"><path d="M8.28061 3.3054C8.66423 2.90809 9.29729 2.89699 9.6946 3.28061L17.4566 10.7757C17.802 11.09 18 11.5335 18 12C18 12.4665 17.802 12.91 17.4782 13.204L9.6946 20.7194C9.29729 21.103 8.66423 21.0919 8.28061 20.6946C7.89699 20.2973 7.90809 19.6642 8.3054 19.2806L15.845 12L8.3054 4.71939C7.93865 4.36528 7.90098 3.79863 8.19908 3.40105L8.28061 3.3054Z"/></symbol><symbol id="icon-eds-alerts" viewBox="0 0 32 32"><path d="M28 12.667c.736 0 1.333.597 1.333 1.333v13.333A3.333 3.333 0 0 1 26 30.667H6a3.333 3.333 0 0 1-3.333-3.334V14a1.333 1.333 0 1 1 2.666 0v1.252L16 21.769l10.667-6.518V14c0-.736.597-1.333 1.333-1.333Zm-1.333 5.71-9.972 6.094c-.427.26-.963.26-1.39 0l-9.972-6.094v8.956c0 .368.299.667.667.667h20a.667.667 0 0 0 .667-.667v-8.956ZM19.333 12a1.333 1.333 0 1 1 0 2.667h-6.666a1.333 1.333 0 1 1 0-2.667h6.666Zm4-10.667a3.333 3.333 0 0 1 3.334 3.334v6.666a1.333 1.333 0 1 1-2.667 0V4.667A.667.667 0 0 0 23.333 4H8.667A.667.667 0 0 0 8 4.667v6.666a1.333 1.333 0 1 1-2.667 0V4.667a3.333 3.333 0 0 1 3.334-3.334h14.666Zm-4 5.334a1.333 1.333 0 0 1 0 2.666h-6.666a1.333 1.333 0 1 1 0-2.666h6.666Z"/></symbol><symbol id="icon-eds-arrow-up" viewBox="0 0 24 24"><path fill-rule="evenodd" d="m13.002 7.408 4.88 4.88a.99.99 0 0 0 1.32.08l.09-.08c.39-.39.39-1.03 0-1.42l-6.58-6.58a1.01 1.01 0 0 0-1.42 0l-6.58 6.58a1 1 0 0 0-.09 1.32l.08.1a1 1 0 0 0 1.42-.01l4.88-4.87v11.59a.99.99 0 0 0 .88.99l.12.01c.55 0 1-.45 1-1V7.408z" class="layer"/></symbol><symbol id="icon-eds-checklist" viewBox="0 0 32 32"><path d="M19.2 1.333a3.468 3.468 0 0 1 3.381 2.699L24.667 4C26.515 4 28 5.52 28 7.38v19.906c0 1.86-1.485 3.38-3.333 3.38H7.333c-1.848 0-3.333-1.52-3.333-3.38V7.38C4 5.52 5.485 4 7.333 4h2.093A3.468 3.468 0 0 1 12.8 1.333h6.4ZM9.426 6.667H7.333c-.36 0-.666.312-.666.713v19.906c0 .401.305.714.666.714h17.334c.36 0 .666-.313.666-.714V7.38c0-.4-.305-.713-.646-.714l-2.121.033A3.468 3.468 0 0 1 19.2 9.333h-6.4a3.468 3.468 0 0 1-3.374-2.666Zm12.715 5.606c.586.446.7 1.283.253 1.868l-7.111 9.334a1.333 1.333 0 0 1-1.792.306l-3.556-2.333a1.333 1.333 0 1 1 1.463-2.23l2.517 1.651 6.358-8.344a1.333 1.333 0 0 1 1.868-.252ZM19.2 4h-6.4a.8.8 0 0 0-.8.8v1.067a.8.8 0 0 0 .8.8h6.4a.8.8 0 0 0 .8-.8V4.8a.8.8 0 0 0-.8-.8Z"/></symbol><symbol id="icon-eds-citation" viewBox="0 0 36 36"><path d="M23.25 1.5a1.5 1.5 0 0 1 1.06.44l8.25 8.25a1.5 1.5 0 0 1 .44 1.06v19.5c0 2.105-1.645 3.75-3.75 3.75H18a1.5 1.5 0 0 1 0-3h11.25c.448 0 .75-.302.75-.75V11.873L22.628 4.5H8.31a.811.811 0 0 0-.8.68l-.011.13V16.5a1.5 1.5 0 0 1-3 0V5.31A3.81 3.81 0 0 1 8.31 1.5h14.94ZM8.223 20.358a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878C3.302 28.536 3 27.657 3 26.486c0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Zm7.5 0a.984.984 0 0 1-.192 1.378l-.048.034c-.54.36-.942.676-1.206.951-.59.614-.885 1.395-.885 2.343.115-.028.288-.042.518-.042.662 0 1.26.237 1.791.711.533.474.799 1.074.799 1.799 0 .753-.259 1.352-.777 1.799-.518.446-1.151.669-1.9.669-1.006 0-1.812-.293-2.417-.878-.604-.586-.906-1.465-.906-2.636 0-1.115.165-2.085.496-2.907.331-.823.734-1.513 1.209-2.071.475-.558.971-.997 1.49-1.318a6.01 6.01 0 0 1 .347-.2 1.321 1.321 0 0 1 1.681.368Z"/></symbol><symbol id="icon-eds-i-access-indicator" viewBox="0 0 16 16"><circle cx="4.5" cy="11.5" r="3.5" style="fill:currentColor"/><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702v7.846c0 .505-.197.993-.554 1.354a1.902 1.902 0 0 1-1.355.569H10a1 1 0 1 1 0-2h2V5.64L9.4 3H4Z" clip-rule="evenodd" style="fill:#222"/></symbol><symbol id="icon-eds-i-github-medium" viewBox="0 0 24 24"><path d="M 11.964844 0 C 5.347656 0 0 5.269531 0 11.792969 C 0 17.003906 3.425781 21.417969 8.179688 22.976562 C 8.773438 23.09375 8.992188 22.722656 8.992188 22.410156 C 8.992188 22.136719 8.972656 21.203125 8.972656 20.226562 C 5.644531 20.929688 4.953125 18.820312 4.953125 18.820312 C 4.417969 17.453125 3.625 17.101562 3.625 17.101562 C 2.535156 16.378906 3.703125 16.378906 3.703125 16.378906 C 4.914062 16.457031 5.546875 17.589844 5.546875 17.589844 C 6.617188 19.386719 8.339844 18.878906 9.03125 18.566406 C 9.132812 17.804688 9.449219 17.277344 9.785156 16.984375 C 7.132812 16.710938 4.339844 15.695312 4.339844 11.167969 C 4.339844 9.878906 4.8125 8.824219 5.566406 8.003906 C 5.445312 7.710938 5.03125 6.5 5.683594 4.878906 C 5.683594 4.878906 6.695312 4.566406 8.972656 6.089844 C 9.949219 5.832031 10.953125 5.703125 11.964844 5.699219 C 12.972656 5.699219 14.003906 5.835938 14.957031 6.089844 C 17.234375 4.566406 18.242188 4.878906 18.242188 4.878906 C 18.898438 6.5 18.480469 7.710938 18.363281 8.003906 C 19.136719 8.824219 19.589844 9.878906 19.589844 11.167969 C 19.589844 15.695312 16.796875 16.691406 14.125 16.984375 C 14.558594 17.355469 14.933594 18.058594 14.933594 19.171875 C 14.933594 20.753906 14.914062 22.019531 14.914062 22.410156 C 14.914062 22.722656 15.132812 23.09375 15.726562 22.976562 C 20.480469 21.414062 23.910156 17.003906 23.910156 11.792969 C 23.929688 5.269531 18.558594 0 11.964844 0 Z M 11.964844 0 "/></symbol><symbol id="icon-eds-i-limited-access" viewBox="0 0 16 16"><path fill-rule="evenodd" d="M4 3v3a1 1 0 0 1-2 0V2.923C2 1.875 2.84 1 3.909 1h5.909a1 1 0 0 1 .713.298l3.181 3.231a1 1 0 0 1 .288.702V6a1 1 0 1 1-2 0v-.36L9.4 3H4ZM3 8a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm10 0a1 1 0 0 1 1 1v1a1 1 0 1 1-2 0V9a1 1 0 0 1 1-1Zm-3.5 6a1 1 0 0 1-1 1h-1a1 1 0 1 1 0-2h1a1 1 0 0 1 1 1Zm2.441-1a1 1 0 0 1 2 0c0 .73-.246 1.306-.706 1.664a1.61 1.61 0 0 1-.876.334l-.032.002H11.5a1 1 0 1 1 0-2h.441ZM4 13a1 1 0 0 0-2 0c0 .73.247 1.306.706 1.664a1.609 1.609 0 0 0 .876.334l.032.002H4.5a1 1 0 1 0 0-2H4Z" clip-rule="evenodd"/></symbol><symbol id="icon-eds-i-subjects-medium" viewBox="0 0 24 24"><g id="icon-subjects-copy" stroke="none" stroke-width="1" fill-rule="evenodd"><path d="M13.3846154,2 C14.7015971,2 15.7692308,3.06762994 15.7692308,4.38461538 L15.7692308,7.15384615 C15.7692308,8.47082629 14.7015955,9.53846154 13.3846154,9.53846154 L13.1038388,9.53925278 C13.2061091,9.85347965 13.3815528,10.1423885 13.6195822,10.3804178 C13.9722182,10.7330539 14.436524,10.9483278 14.9293854,10.9918129 L15.1153846,11 C16.2068332,11 17.2535347,11.433562 18.0254647,12.2054189 C18.6411944,12.8212361 19.0416785,13.6120766 19.1784166,14.4609738 L19.6153846,14.4615385 C20.932386,14.4615385 22,15.5291672 22,16.8461538 L22,19.6153846 C22,20.9323924 20.9323924,22 19.6153846,22 L16.8461538,22 C15.5291672,22 14.4615385,20.932386 14.4615385,19.6153846 L14.4615385,16.8461538 C14.4615385,15.5291737 15.5291737,14.4615385 16.8461538,14.4615385 L17.126925,14.460779 C17.0246537,14.1465537 16.8492179,13.857633 16.6112344,13.6196157 C16.2144418,13.2228606 15.6764136,13 15.1153846,13 C14.0239122,13 12.9771569,12.5664197 12.2053686,11.7946314 C12.1335167,11.7227795 12.0645962,11.6485444 11.9986839,11.5721119 C11.9354038,11.6485444 11.8664833,11.7227795 11.7946314,11.7946314 C11.0228431,12.5664197 9.97608778,13 8.88461538,13 C8.323576,13 7.78552852,13.2228666 7.38881294,13.6195822 C7.15078359,13.8576115 6.97533988,14.1465203 6.8730696,14.4607472 L7.15384615,14.4615385 C8.47082629,14.4615385 9.53846154,15.5291737 9.53846154,16.8461538 L9.53846154,19.6153846 C9.53846154,20.932386 8.47083276,22 7.15384615,22 L4.38461538,22 C3.06762347,22 2,20.9323876 2,19.6153846 L2,16.8461538 C2,15.5291721 3.06762994,14.4615385 4.38461538,14.4615385 L4.8215823,14.4609378 C4.95831893,13.6120029 5.3588057,12.8211623 5.97459937,12.2053686 C6.69125996,11.488708 7.64500941,11.0636656 8.6514968,11.0066017 L8.88461538,11 C9.44565477,11 9.98370225,10.7771334 10.3804178,10.3804178 C10.6184472,10.1423885 10.7938909,9.85347965 10.8961612,9.53925278 L10.6153846,9.53846154 C9.29840448,9.53846154 8.23076923,8.47082629 8.23076923,7.15384615 L8.23076923,4.38461538 C8.23076923,3.06762994 9.29840286,2 10.6153846,2 L13.3846154,2 Z M7.15384615,16.4615385 L4.38461538,16.4615385 C4.17220099,16.4615385 4,16.63374 4,16.8461538 L4,19.6153846 C4,19.8278134 4.17218833,20 4.38461538,20 L7.15384615,20 C7.36626945,20 7.53846154,19.8278103 7.53846154,19.6153846 L7.53846154,16.8461538 C7.53846154,16.6337432 7.36625679,16.4615385 7.15384615,16.4615385 Z M19.6153846,16.4615385 L16.8461538,16.4615385 C16.6337432,16.4615385 16.4615385,16.6337432 16.4615385,16.8461538 L16.4615385,19.6153846 C16.4615385,19.8278103 16.6337306,20 16.8461538,20 L19.6153846,20 C19.8278229,20 20,19.8278229 20,19.6153846 L20,16.8461538 C20,16.6337306 19.8278103,16.4615385 19.6153846,16.4615385 Z M13.3846154,4 L10.6153846,4 C10.4029708,4 10.2307692,4.17220099 10.2307692,4.38461538 L10.2307692,7.15384615 C10.2307692,7.36625679 10.402974,7.53846154 10.6153846,7.53846154 L13.3846154,7.53846154 C13.597026,7.53846154 13.7692308,7.36625679 13.7692308,7.15384615 L13.7692308,4.38461538 C13.7692308,4.17220099 13.5970292,4 13.3846154,4 Z" id="Shape" fill-rule="nonzero"/></g></symbol><symbol id="icon-eds-small-arrow-left" viewBox="0 0 16 17"><path stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2" d="M14 8.092H2m0 0L8 2M2 8.092l6 6.035"/></symbol><symbol id="icon-eds-small-arrow-right" viewBox="0 0 16 16"><g fill-rule="evenodd" stroke="currentColor" stroke-linecap="round" stroke-linejoin="round" stroke-width="2"><path d="M2 8.092h12M8 2l6 6.092M8 14.127l6-6.035"/></g></symbol><symbol id="icon-orcid-logo" viewBox="0 0 40 40"><path fill-rule="evenodd" d="M12.281 10.453c.875 0 1.578-.719 1.578-1.578 0-.86-.703-1.578-1.578-1.578-.875 0-1.578.703-1.578 1.578 0 .86.703 1.578 1.578 1.578Zm-1.203 18.641h2.406V12.359h-2.406v16.735Z"/><path fill-rule="evenodd" d="M17.016 12.36h6.5c6.187 0 8.906 4.421 8.906 8.374 0 4.297-3.36 8.375-8.875 8.375h-6.531V12.36Zm6.234 14.578h-3.828V14.53h3.703c4.688 0 6.828 2.844 6.828 6.203 0 2.063-1.25 6.203-6.703 6.203Z" clip-rule="evenodd"/></symbol></svg> </div> </body> </html>