CINXE.COM

Search | arXiv e-print repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1&ndash;50 of 503 results for author: <span class="mathjax">Beers, T C</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> <div class="content"> <form method="GET" action="/search/astro-ph" aria-role="search"> Searching in archive <strong>astro-ph</strong>. <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Beers, T C"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Beers%2C+T+C&amp;terms-0-field=author&amp;size=50&amp;order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Beers, T C"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.18680">arXiv:2411.18680</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2411.18680">pdf</a>, <a href="https://arxiv.org/format/2411.18680">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> SIRIUS: Identifying Metal-poor Stars Enriched by a Single Supernova in a Star-by-star Cosmological Zoom-in Simulation of a Dwarf Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hirai%2C+Y">Yutaka Hirai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saitoh%2C+T+R">Takayuki R. Saitoh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fujii%2C+M+S">Michiko S. Fujii</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kaneko%2C+K">Katsuhiro Kaneko</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.18680v1-abstract-short" style="display: inline;"> Metal-poor stars enriched by a single supernova (mono-enriched stars) are direct proof (and provide valuable probes) of supernova nucleosynthesis. Photometric and spectroscopic observations have shown that metal-poor stars have a wide variety of chemical compositions; the star&#39;s chemical composition reflects the nucleosynthesis process(es) that occurred before the star&#39;s formation. While the ident&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18680v1-abstract-full').style.display = 'inline'; document.getElementById('2411.18680v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.18680v1-abstract-full" style="display: none;"> Metal-poor stars enriched by a single supernova (mono-enriched stars) are direct proof (and provide valuable probes) of supernova nucleosynthesis. Photometric and spectroscopic observations have shown that metal-poor stars have a wide variety of chemical compositions; the star&#39;s chemical composition reflects the nucleosynthesis process(es) that occurred before the star&#39;s formation. While the identification of mono-enriched stars enables us to study the ejecta properties of a single supernova, the fraction of mono-enriched stars among metal-poor stars remains unknown. Here we identify mono-enriched stars in a star-by-star cosmological zoom-in simulation of a dwarf galaxy. We find that the fraction of mono-enriched stars is higher for lower metallicity, stars with [Fe/H] $&lt; -2.5$. The percentages of mono-enriched stars are 11% at [Fe/H] = $-$5.0 and 1% at [Fe/H] = $-$2.5, suggesting that most metal-poor stars are affected by multiple supernovae. We also find that mono-enriched stars tend to be located near the center of the simulated dwarf. Such regions will be explored in detail in upcoming surveys such as the Prime Focus Spectrograph (PFS) on the Subaru telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.18680v1-abstract-full').style.display = 'none'; document.getElementById('2411.18680v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, submitted to ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.19895">arXiv:2410.19895</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.19895">pdf</a>, <a href="https://arxiv.org/format/2410.19895">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Stellar Loci. VIII. Photometric Metallicities for 100 Million Stars Based on Synthetic Gaia Colors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+B">Bowen Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Haibo Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xiao%2C+K">Kai Xiao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xiang%2C+M">Maosheng Xiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.19895v1-abstract-short" style="display: inline;"> We apply the stellar locus method to synthetic $(BP-RP)_{XPSP}$ and $(BP-G)_{XPSP}$ colors derived from corrected Gaia BP/RP (XP) spectra to obtain accurate and precise estimates of metallicity for about 100 million stars in the Milky Way (34 million giants in the color range $0.6 &lt; (BP-RP)_0 &lt; 1.75$ and 65 million dwarfs in the color range $0.2 &lt; (BP-RP)_0 &lt; 1.5$). The sub milli-magnitude precisi&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19895v1-abstract-full').style.display = 'inline'; document.getElementById('2410.19895v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.19895v1-abstract-full" style="display: none;"> We apply the stellar locus method to synthetic $(BP-RP)_{XPSP}$ and $(BP-G)_{XPSP}$ colors derived from corrected Gaia BP/RP (XP) spectra to obtain accurate and precise estimates of metallicity for about 100 million stars in the Milky Way (34 million giants in the color range $0.6 &lt; (BP-RP)_0 &lt; 1.75$ and 65 million dwarfs in the color range $0.2 &lt; (BP-RP)_0 &lt; 1.5$). The sub milli-magnitude precision of the derived synthetic stellar colors enables estimates of metallicity for stars as low as [Fe/H] $\sim -4$. Multiple validation tests indicate that the typical metallicity precision is between 0.05 -- 0.1 dex for both dwarfs and giants at [Fe/H] = 0 as faint as G $\sim$ 17, and decreases to 0.15 -- 0.25 dex at [Fe/H] = $-$2.0. For $-4.0 &lt;$ [Fe/H] $ &lt; -3.0$, the typical metallicity precision decreases to on the order of 0.4 -- 0.5 dex, based on the results from the training sample. Our achieved precision is comparable to or better than previous efforts using the entire XP spectra, and about three times better than our previous work based on Gaia EDR3 colors. This opens up new opportunities for investigations of stellar populations, the formation and chemical evolution of the Milky Way, the chemistry of stars and star clusters, and the identification of candidate stars for subsequent high-resolution spectroscopic follow-up. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.19895v1-abstract-full').style.display = 'none'; document.getElementById('2410.19895v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 20 figures, ApJS submitted</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.13751">arXiv:2410.13751</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.13751">pdf</a>, <a href="https://arxiv.org/format/2410.13751">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Abundances of iron-peak elements in 58 bulge spheroid stars from APOGEE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Barbuy%2C+B">B. Barbuy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fria%C3%A7a%2C+A+C+S">A. C. S. Fria莽a</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ernandes%2C+H">H. Ernandes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=da+Silva%2C+P">P. da Silva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Souza%2C+S+O">S. O. Souza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez-Trincado%2C+J+G">J. G. Fern谩ndez-Trincado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cunha%2C+K">K. Cunha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smith%2C+V+V">V. V. Smith</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masseron%2C+T">T. Masseron</a>, <a href="/search/astro-ph?searchtype=author&amp;query=P%C3%A9rez-Villegas%2C+A">A. P茅rez-Villegas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiappini%2C+C">C. Chiappini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Queiroz%2C+A+B+A">A. B. A. Queiroz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santiago%2C+B+X">B. X. Santiago</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">T. C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anders%2C+F">F. Anders</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schiavon%2C+R+P">R. P. Schiavon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valentini%2C+M">M. Valentini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minniti%2C+D">D. Minniti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Geisler%2C+D">D. Geisler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Souto%2C+D">D. Souto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">V. M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zoccali%2C+M">M. Zoccali</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feltzing%2C+S">S. Feltzing</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schultheis%2C+M">M. Schultheis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nitschelm%2C+C">C. Nitschelm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.13751v1-abstract-short" style="display: inline;"> Stars presently identified in the bulge spheroid are probably very old, and their abundances can be interpreted as due to the fast chemical enrichment of the early Galactic bulge. The abundances of the iron-peak elements are important tracers of nucleosynthesis processes, in particular oxygen burning, silicon burning, the weak s-process, and alpha-rich freeze-out. Aims. The aim of this work is to&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13751v1-abstract-full').style.display = 'inline'; document.getElementById('2410.13751v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.13751v1-abstract-full" style="display: none;"> Stars presently identified in the bulge spheroid are probably very old, and their abundances can be interpreted as due to the fast chemical enrichment of the early Galactic bulge. The abundances of the iron-peak elements are important tracers of nucleosynthesis processes, in particular oxygen burning, silicon burning, the weak s-process, and alpha-rich freeze-out. Aims. The aim of this work is to derive the abundances of V, Cr, Mn, Co, Ni, and Cu in 58 bulge spheroid stars and to compare them with the results of a previous analysis of data from APOGEE. We selected the best lines for V, Cr, Mn, Co, Ni, and Cu located within the H-band of the spectrum, identifying the most suitable ones for abundance determination, and discarding severe blends. Using the stellar physical parameters available for our sample from the DR17 release of the APOGEE project, we derived the individual abundances through spectrum synthesis. We then complemented these measurements with similar results from different bulge field and globular cluster stars, in order to define the trends of the individual elements and compare with the results of chemical-evolution models. We verify that the H-band has useful lines for the derivation of the elements V, Cr, Mn, Co, Ni, and Cu in moderately metal-poor stars. The resulting abundances indicate that: V, Cr, and Ni vary in lockstep with Fe; Co tends to vary in lockstep with Fe, but could be showing a slight decrease with decreasing metallicity; and Mn and Cu decrease with decreasing metallicity. These behaviours are well reproduced by chemical-evolution models except for Cu, which appears to drop faster than the models predict for moderate metallicities. Finally, abundance indicators combined with kinematical and dynamical criteria appear to show that our 58 sample stars are likely to have originated in situ. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.13751v1-abstract-full').style.display = 'none'; document.getElementById('2410.13751v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, Astronomy &amp; Astrophysics, accepted on 9/October/2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.11943">arXiv:2410.11943</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.11943">pdf</a>, <a href="https://arxiv.org/format/2410.11943">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The $R$-process Alliance: Enrichment of $R$-process Elements in a Simulated Milky Way-like Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hirai%2C+Y">Yutaka Hirai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wanajo%2C+S">Shinya Wanajo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roederer%2C+I+U">Ian U. Roederer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tanaka%2C+M">Masaomi Tanaka</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiba%2C+M">Masashi Chiba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saitoh%2C+T+R">Takayuki R. Saitoh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+T+T">Terese T. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">Rana Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frebel%2C+A">Anna Frebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holmbeck%2C+E+M">Erika M. Holmbeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakari%2C+C+M">Charli M. Sakari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.11943v1-abstract-short" style="display: inline;"> We study the formation of stars with varying amounts of heavy elements synthesized by the rapid neutron-capture process ($r$-process) based on our detailed cosmological zoom-in simulation of a Milky Way-like galaxy with an $N$-body/smoothed particle hydrodynamics code, ASURA. Most stars with no overabundance in $r$-process elements, as well as the strongly $r$-process enhanced $r$-II stars ([Eu/Fe&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11943v1-abstract-full').style.display = 'inline'; document.getElementById('2410.11943v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.11943v1-abstract-full" style="display: none;"> We study the formation of stars with varying amounts of heavy elements synthesized by the rapid neutron-capture process ($r$-process) based on our detailed cosmological zoom-in simulation of a Milky Way-like galaxy with an $N$-body/smoothed particle hydrodynamics code, ASURA. Most stars with no overabundance in $r$-process elements, as well as the strongly $r$-process enhanced $r$-II stars ([Eu/Fe] $&gt;+0.7$), are formed in dwarf galaxies accreted by the Milky Way within the 6 Gyr after the Big Bang. In contrast, over half of the moderately enhanced $r$-I stars ($+0.3 &lt;$ [Eu/Fe] $\leq +0.7$) are formed in the main in-situ disk after 6 Gyr. Our results suggest that the fraction of $r$-I and $r$-II stars formed in disrupted dwarf galaxies is larger the higher their [Eu/Fe] is. Accordingly, the most strongly enhanced $r$-III stars ([Eu/Fe] $&gt; +2.0$) are formed in accreted components. These results suggest that non-$r$-process-enhanced stars and $r$-II stars are mainly formed in low-mass dwarf galaxies that hosted either none or a single neutron star merger, while the $r$-I stars tend to form in the well-mixed in-situ disk. We compare our findings with high-resolution spectroscopic observations of $r$-process-enhanced metal-poor stars in the halo and dwarf galaxies, including those collected by the R-Process Alliance. We conclude that observed [Eu/Fe] and [Eu/Mg] ratios can be employed in chemical tagging of the Milky Way&#39;s accretion history. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.11943v1-abstract-full').style.display = 'none'; document.getElementById('2410.11943v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 11 figures, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.00102">arXiv:2410.00102</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2410.00102">pdf</a>, <a href="https://arxiv.org/format/2410.00102">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> APOKASC-3: The Third Joint Spectroscopic and Asteroseismic catalog for Evolved Stars in the Kepler Fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pinsonneault%2C+M+H">Marc H. Pinsonneault</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zinn%2C+J+C">Joel C. Zinn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tayar%2C+J">Jamie Tayar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Serenelli%2C+A">Aldo Serenelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garcia%2C+R+A">Rafael A. Garcia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mathur%2C+S">Savita Mathur</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vrard%2C+M">Mathieu Vrard</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Elsworth%2C+Y+P">Yvonne P. Elsworth</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mosser%2C+B">Benoit Mosser</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stello%2C+D">Dennis Stello</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bell%2C+K+J">Keaton J. Bell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bugnet%2C+L">Lisa Bugnet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Corsaro%2C+E">Enrico Corsaro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gaulme%2C+P">Patrick Gaulme</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hekker%2C+S">Saskia Hekker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hon%2C+M">Marc Hon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huber%2C+D">Daniel Huber</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kallinger%2C+T">Thomas Kallinger</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cao%2C+K">Kaili Cao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+J+A">Jennifer A. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liagre%2C+B">Bastien Liagre</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Patton%2C+R+A">Rachel A. Patton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos%2C+A+R+G">Angela R. G. Santos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Basu%2C+S">Sarbani Basu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beck%2C+P+G">Paul G. Beck</a> , et al. (16 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.00102v1-abstract-short" style="display: inline;"> In the third APOKASC catalog, we present data for the complete sample of 15,808 evolved stars with APOGEE spectroscopic parameters and Kepler asteroseismology. We used ten independent asteroseismic analysis techniques and anchor our system on fundamental radii derived from Gaia $L$ and spectroscopic $T_{\rm eff}$. We provide evolutionary state, asteroseismic surface gravity, mass, radius, age, and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00102v1-abstract-full').style.display = 'inline'; document.getElementById('2410.00102v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.00102v1-abstract-full" style="display: none;"> In the third APOKASC catalog, we present data for the complete sample of 15,808 evolved stars with APOGEE spectroscopic parameters and Kepler asteroseismology. We used ten independent asteroseismic analysis techniques and anchor our system on fundamental radii derived from Gaia $L$ and spectroscopic $T_{\rm eff}$. We provide evolutionary state, asteroseismic surface gravity, mass, radius, age, and the spectroscopic and asteroseismic measurements used to derive them for 12,418 stars. This includes 10,036 exceptionally precise measurements, with median fractional uncertainties in \nmax, \dnu, mass, radius and age of 0.6\%, 0.6\%, 3.8\%, 1.8\%, and 11.1\% respectively. We provide more limited data for 1,624 additional stars which either have lower quality data or are outside of our primary calibration domain. Using lower red giant branch (RGB) stars, we find a median age for the chemical thick disk of $9.14 \pm 0.05 ({\rm ran}) \pm 0.9 ({\rm sys})$ Gyr with an age dispersion of 1.1 Gyr, consistent with our error model. We calibrate our red clump (RC) mass loss to derive an age consistent with the lower RGB and provide asymptotic GB and RGB ages for luminous stars. We also find a sharp upper age boundary in the chemical thin disk. We find that scaling relations are precise and accurate on the lower RGB and RC, but they become more model dependent for more luminous giants and break down at the tip of the RGB. We recommend the usage of multiple methods, calibration to a fundamental scale, and the usage of stellar models to interpret frequency spacings. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.00102v1-abstract-full').style.display = 'none'; document.getElementById('2410.00102v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">43 pages, 25 figures, submitted ApJSupp. Comments welcome. Data tables available on request from pinsonneault.1@osu.edu</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.02734">arXiv:2409.02734</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2409.02734">pdf</a>, <a href="https://arxiv.org/format/2409.02734">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Reply to Comment on &#34;A slightly oblate dark matter halo revealed by a retrograde precessing Galactic disk warp&#34; </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+Q">Qikang Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khachaturyants%2C+T">Tigran Khachaturyants</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+H">Huawei Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+J">Juntai Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+Y">Youjun Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+S">Song Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Haibo Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.02734v1-abstract-short" style="display: inline;"> In this reply, we present a comprehensive analysis addressing the concerns raised by Dehnen et al. (2024) regarding our recent measurement of the disk warp precession using the `motion-picture&#39; method (Huang et al. 2024). We carefully examine the impact of ignoring the twist of the disk warp and the so-called $R$-$蟿$ correlation on the estimation of the precession rate. The results indicate that t&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02734v1-abstract-full').style.display = 'inline'; document.getElementById('2409.02734v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.02734v1-abstract-full" style="display: none;"> In this reply, we present a comprehensive analysis addressing the concerns raised by Dehnen et al. (2024) regarding our recent measurement of the disk warp precession using the `motion-picture&#39; method (Huang et al. 2024). We carefully examine the impact of ignoring the twist of the disk warp and the so-called $R$-$蟿$ correlation on the estimation of the precession rate. The results indicate that the effect is minor and does not exceed the systematic and statistical uncertainties. Using N-body+SPH simulation data, we confirm that the `motion-picture&#39; technique is effective in measuring retrograde precession of disk warp in stellar populations younger than 170 Myr, similar to classical Cepheids. Therefore, the overall conclusions of Huang et al. (2024) remain robust. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.02734v1-abstract-full').style.display = 'none'; document.getElementById('2409.02734v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">4 pages, 2 figures, 1 table, in response to Dehnen et al. (arXiv:2407.06341)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.03731">arXiv:2408.03731</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.03731">pdf</a>, <a href="https://arxiv.org/format/2408.03731">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ad6f0f">10.3847/1538-4365/ad6f0f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The R-Process Alliance: Fifth Data Release from the Search for R-Process-Enhanced Metal-poor Stars in the Galactic Halo with the GTC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bandyopadhyay%2C+A">Avrajit Bandyopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">Rana Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prieto%2C+C+A">Carlos Allende Prieto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Aria%2C+N">Nima Aria</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shah%2C+S+P">Shivani P. Shah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frebel%2C+A">Anna Frebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+T+T">Terese T. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holmbeck%2C+E+M">Erika M. Holmbeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roederer%2C+I+U">Ian U. Roederer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakari%2C+C+M">Charli M. Sakari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.03731v3-abstract-short" style="display: inline;"> Understanding the abundance pattern of metal-poor stars and the production of heavy elements through various nucleosynthesis processes offers crucial insights into the chemical evolution of the Milky Way, revealing primary sites and major sources of rapid neutron-capture process ($r$-process) material in the Universe. In this fifth data release from the $R$-Process Alliance, we present the detaile&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03731v3-abstract-full').style.display = 'inline'; document.getElementById('2408.03731v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.03731v3-abstract-full" style="display: none;"> Understanding the abundance pattern of metal-poor stars and the production of heavy elements through various nucleosynthesis processes offers crucial insights into the chemical evolution of the Milky Way, revealing primary sites and major sources of rapid neutron-capture process ($r$-process) material in the Universe. In this fifth data release from the $R$-Process Alliance, we present the detailed chemical abundances of 41 faint (down to V = 15.8) and extremely metal-poor (down to [Fe/H] = -3.3) halo stars selected from the R-Process Alliance (RPA). We obtained high-resolution spectra for these objects with the HORuS spectrograph on the Gran Telescopio Canarias. We measure the abundances of light, alpha, Fe-peak, and neutron-capture elements. We report the discovery of five CEMP, one limited-$r$, three $r$-I, and four $r$-II stars, and six Mg-poor stars. We also identify one star of a possible globular cluster origin at an extremely low metallicity at [Fe/H] = -3.0. This adds to the growing evidence of a lower limit metallicity floor for globular cluster abundances. We use the abundances of Fe-peak elements and the alpha-elements to investigate the contributions from different nucleosynthesis channels in the progenitor supernovae. We find the distribution of [Mg/Eu] as a function of [Fe/H] to have different enrichment levels, indicating different possible pathways and sites of their production. We also reveal differences in the trends of the neutron-capture element abundances of Sr, Ba, and Eu of various $r$-I and $r$-II stars from the RPA data releases, which provide constraints on their nucleosynthesis sites and subsequent evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.03731v3-abstract-full').style.display = 'none'; document.getElementById('2408.03731v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 7 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 16 figures, 7 tables; Accepted for publication in The Astrophysical Journal Supplement</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Astrophysical Journal Supplement , 2024, Volume 274, Number 2, Page 39 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.02171">arXiv:2408.02171</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.02171">pdf</a>, <a href="https://arxiv.org/format/2408.02171">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> J-PLUS: Beyond Spectroscopy III. Stellar Parameters and Elemental-abundance Ratios for Five Million Stars from DR3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xiao%2C+K">Kai Xiao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Haibo Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+H">Hongrui Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hong%2C+J">Jihye Hong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fan%2C+Z">Zhou Fan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Coelho%2C+P">Paula Coelho</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cruz%2C+P">Patricia Cruz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galindo-Guil%2C+F+J">F. J. Galindo-Guil</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Daflon%2C+S">Simone Daflon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Jim%C3%A9nez-Esteban%2C+F">Fran Jim茅nez-Esteban</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenarro%2C+J">Javier Cenarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Crist%C3%B3bal-Hornillos%2C+D">David Crist贸bal-Hornillos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hern%C3%A1ndez-Monteagudo%2C+C">Carlos Hern谩ndez-Monteagudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=L%C3%B3pez-Sanjuan%2C+C">Carlos L贸pez-Sanjuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mar%C3%ADn-Franch%2C+A">Antonio Mar铆n-Franch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moles%2C+M">Mariano Moles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Varela%2C+J">Jes煤s Varela</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ram%C3%ADrez%2C+H+V">H茅ctor V谩zquez Ram铆rez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alcaniz%2C+J">Jailson Alcaniz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dupke%2C+R">Renato Dupke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ederoclite%2C+A">Alessandro Ederoclite</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.02171v1-abstract-short" style="display: inline;"> We present a catalog of stellar parameters (effective temperature $T_{\rm eff}$, surface gravity $\log g$, age, and metallicity [Fe/H]) and elemental-abundance ratios ([C/Fe], [Mg/Fe], and [$伪$/Fe]) for some five million stars (4.5 million dwarfs and 0.5 million giants stars) in the Milky Way, based on stellar colors from the Javalambre Photometric Local Universe Survey (J-PLUS) DR3 and \textit{Ga&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02171v1-abstract-full').style.display = 'inline'; document.getElementById('2408.02171v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.02171v1-abstract-full" style="display: none;"> We present a catalog of stellar parameters (effective temperature $T_{\rm eff}$, surface gravity $\log g$, age, and metallicity [Fe/H]) and elemental-abundance ratios ([C/Fe], [Mg/Fe], and [$伪$/Fe]) for some five million stars (4.5 million dwarfs and 0.5 million giants stars) in the Milky Way, based on stellar colors from the Javalambre Photometric Local Universe Survey (J-PLUS) DR3 and \textit{Gaia} EDR3. These estimates are obtained through the construction of a large spectroscopic training set with parameters and abundances adjusted to uniform scales, and trained with a Kernel Principal Component Analysis. Owing to the seven narrow/medium-band filters employed by J-PLUS, we obtain precisions in the abundance estimates that are as good or better than derived from medium-resolution spectroscopy for stars covering a wide range of the parameter space: 0.10-0.20 dex for [Fe/H] and [C/Fe], and 0.05 dex for [Mg/Fe] and [$伪$/Fe]. Moreover, systematic errors due to the influence of molecular carbon bands on previous photometric-metallicity estimates (which only included two narrow/medium-band blue filters) have now been removed, resulting in photometric-metallicity estimates down to [Fe/H] $\sim -4.0$, with typical uncertainties of 0.25 dex and 0.40 dex for dwarfs and giants, respectively. This large photometric sample should prove useful for the exploration of the assembly and chemical-evolution history of our Galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.02171v1-abstract-full').style.display = 'none'; document.getElementById('2408.02171v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">31 pages, 20 figures, 3 tables, accepeted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.01033">arXiv:2408.01033</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2408.01033">pdf</a>, <a href="https://arxiv.org/format/2408.01033">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Direct Method to Compute Doppler Beaming Factors in Binary Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+C">Chuanjie Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+Y">Youjun Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Han%2C+H">Henggeng Han</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tan%2C+Y">Yuan Tan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.01033v2-abstract-short" style="display: inline;"> The Doppler beaming effect, induced by the reflex motion of stars, introduces flux modulations and serves as an efficient method to photometrically determine mass functions for a large number of close binary systems, particularly those involving compact objects. In order to convert observed beaming-flux variations into a radial-velocity curve, precise determination of the beaming factor is essenti&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01033v2-abstract-full').style.display = 'inline'; document.getElementById('2408.01033v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.01033v2-abstract-full" style="display: none;"> The Doppler beaming effect, induced by the reflex motion of stars, introduces flux modulations and serves as an efficient method to photometrically determine mass functions for a large number of close binary systems, particularly those involving compact objects. In order to convert observed beaming-flux variations into a radial-velocity curve, precise determination of the beaming factor is essential. Previously, this factor was calculated as a constant, assuming a power-law profile for stellar spectra. In this study, we present a novel approach to directly compute this factor. Our new method not only simplifies the computation, especially for blue bands and cool stars, but also enables us to evaluate whether the relationship between beaming flux and radial velocity can be accurately described as linear. We develop a python code and compute a comprehensive beaming-factor table for commonly used filter systems covering main-sequence, subgiant, and giant stars, as well as hot subdwarf and white dwarf stars. Both the code and our table are archived and publicly available at http://doi.org/10.5281/zenodo.13049419. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.01033v2-abstract-full').style.display = 'none'; document.getElementById('2408.01033v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 2 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 5 figures, 1 table. Accepted by ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.20701">arXiv:2407.20701</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.20701">pdf</a>, <a href="https://arxiv.org/format/2407.20701">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The Fourth S-PLUS Data Release: 12-filter photometry covering $\sim3000$ square degrees in the southern hemisphere </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Herpich%2C+F+R">Fabio R. Herpich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almeida-Fernandes%2C+F">Felipe Almeida-Fernandes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwarz%2C+G+B+O">Gustavo B. Oliveira Schwarz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lima%2C+E+V+R">Erik V. R. Lima</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nakazono%2C+L">Lilianne Nakazono</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso-Garc%C3%ADa%2C+J">Javier Alonso-Garc铆a</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fonseca-Faria%2C+M+A">Marcos A. Fonseca-Faria</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sartori%2C+M+J">Marilia J. Sartori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bolutavicius%2C+G+F">Guilherme F. Bolutavicius</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Souza%2C+G+F">Gabriel Fabiano de Souza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartmann%2C+E+A">Eduardo A. Hartmann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+L">Liana Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Espinosa%2C+L">Luna Espinosa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kanaan%2C+A">Antonio Kanaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schoenell%2C+W">William Schoenell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Werle%2C+A">Ariel Werle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Machado-Pereira%2C+E">Eduardo Machado-Pereira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Guti%C3%A9rrez-Soto%2C+L+A">Luis A. Guti茅rrez-Soto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Santos-Silva%2C+T">Tha铆s Santos-Silva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Castelli%2C+A+V+S">Analia V. Smith Castelli</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lacerda%2C+E+A+D">Eduardo A. D. Lacerda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbosa%2C+C+L">Cassio L. Barbosa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perottoni%2C+H+D">H茅lio D. Perottoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lopes%2C+C+E+F">Carlos E. Ferreira Lopes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Valen%C3%A7a%2C+R+R">Raquel Ruiz Valen莽a</a> , et al. (46 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.20701v1-abstract-short" style="display: inline;"> The Southern Photometric Local Universe Survey (S-PLUS) is a project to map $\sim9300$ sq deg of the sky using twelve bands (seven narrow and five broadbands). Observations are performed with the T80-South telescope, a robotic telescope located at the Cerro Tololo Observatory in Chile. The survey footprint consists of several large contiguous areas, including fields at high and low galactic latitu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20701v1-abstract-full').style.display = 'inline'; document.getElementById('2407.20701v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.20701v1-abstract-full" style="display: none;"> The Southern Photometric Local Universe Survey (S-PLUS) is a project to map $\sim9300$ sq deg of the sky using twelve bands (seven narrow and five broadbands). Observations are performed with the T80-South telescope, a robotic telescope located at the Cerro Tololo Observatory in Chile. The survey footprint consists of several large contiguous areas, including fields at high and low galactic latitudes, and towards the Magellanic Clouds. S-PLUS uses fixed exposure times to reach point source depths of about $21$ mag in the $griz$ and $20$ mag in the $u$ and the narrow filters. This paper describes the S-PLUS Data Release 4 (DR4), which includes calibrated images and derived catalogues for over 3000 sq deg, covering the aforementioned area. The catalogues provide multi-band photometry performed with the tools \texttt{DoPHOT} and \texttt{SExtractor} -- point spread function (\PSF) and aperture photometry, respectively. In addition to the characterization, we also present the scientific potential of the data. We use statistical tools to present and compare the photometry obtained through different methods. Overall we find good agreement between the different methods, with a slight systematic offset of 0.05\,mag between our \PSF and aperture photometry. We show that the astrometry accuracy is equivalent to that obtained in previous S-PLUS data releases, even in very crowded fields where photometric extraction is challenging. The depths of main survey (MS) photometry for a minimum signal-to-noise ratio $S/N = 3$ reach from $\sim19.5$ for the bluer bands to $\sim21.5$ mag on the red. The range of magnitudes over which accurate \PSF photometry is obtained is shallower, reaching $\sim19$ to $\sim20.5$ mag depending on the filter. Based on these photometric data, we provide star-galaxy-quasar classification and photometric redshift for millions of objects. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.20701v1-abstract-full').style.display = 'none'; document.getElementById('2407.20701v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">26 pages, 17 figures, 14 tables, accepted for A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.11572">arXiv:2407.11572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.11572">pdf</a>, <a href="https://arxiv.org/format/2407.11572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/2041-8213/ad5ffd">10.3847/2041-8213/ad5ffd <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of an Extremely r-process-enhanced Thin-disk Star with [Eu/H] = +0.78 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xie%2C+X">Xiao-Jin Xie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+J">Jianrong Shi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yan%2C+H">Hong-Liang Yan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+T">Tian-Yi Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prieto%2C+C+A">Carlos Allende Prieto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+S">Shuai Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+C">Chun-Qian Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ding%2C+M">Ming-Yi Ding</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tang%2C+Y">Yao-Jia Tang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+R">Ruizhi Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xie%2C+R">Renjing Xie</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.11572v2-abstract-short" style="display: inline;"> Highly r-process-enhanced stars are rare and usually metal-poor ([Fe/H] &lt; - 1.0), and mainly populate the Milky Way halo and dwarf galaxies. This study presents the discovery of a relatively bright (V = 12.72), highly r-process-enhanced (r-II) star ([Eu/Fe] = +1.32, [Ba/Eu] = - 0.95), LAMOST J020632.21 + 494127.9. This star was selected from the Large Sky Area Multi-Object Fiber Spectroscopic Tele&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11572v2-abstract-full').style.display = 'inline'; document.getElementById('2407.11572v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.11572v2-abstract-full" style="display: none;"> Highly r-process-enhanced stars are rare and usually metal-poor ([Fe/H] &lt; - 1.0), and mainly populate the Milky Way halo and dwarf galaxies. This study presents the discovery of a relatively bright (V = 12.72), highly r-process-enhanced (r-II) star ([Eu/Fe] = +1.32, [Ba/Eu] = - 0.95), LAMOST J020632.21 + 494127.9. This star was selected from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) medium-resolution (R ~ 7500) spectroscopic survey; follow-up high-resolution (R ~ 25,000) observations were conducted with the High Optical Resolution Spectrograph (HORuS) installed on the Gran Telescopio Canarias (GTC). The stellar parameters (${T_{\rm eff}}$ = 4130 K, $\rm log\,g $ = 1.52, $ \rm[Fe/H] $ = $ - $0.54, $尉$ = 1.80 $ \rm{km\,{s^{-1}}} $) have been inferred taking into account non-local thermodynamic equilibrium (NLTE) effects. The abundances of [Ce/Fe], [Pr/Fe], and [Nd/Fe] are +0.19, +0.65 and +0.64, respectively, relatively low compared to the Solar r-process pattern normalized to Eu. This star has a high metallicity ([Fe/H] = - 0.54) compared to most other highly r-process-enhanced stars, and has the highest measured abundance ratio of Eu to H ([Eu/H] = +0.78). It is classified as a thin-disk star based on its kinematics, and does not appear to belong to any known stream or dwarf galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.11572v2-abstract-full').style.display = 'none'; document.getElementById('2407.11572v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 figures, 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJL, 2024, Volume 970, Number 2, L30 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.05004">arXiv:2407.05004</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.05004">pdf</a>, <a href="https://arxiv.org/format/2407.05004">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202348801">10.1051/0004-6361/202348801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The S-PLUS Ultra-Short Survey: first data release </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Perottoni%2C+H+D">H茅lio D. Perottoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almeida-Fernandes%2C+F">Felipe Almeida-Fernandes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Herpich%2C+F+R">F谩bio R. Herpich</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rossi%2C+S">Silvia Rossi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Smiljanic%2C+R">Rodolfo Smiljanic</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Amarante%2C+J+A+S">Jo茫o A. S. Amarante</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limberg%2C+G">Guilherme Limberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Werle%2C+A">Ariel Werle</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Rocha-Pinto%2C+H+J">Helio J. Rocha-Pinto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Silva%2C+L+B+e">Leandro Beraldo e Silva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Daflon%2C+S">Simone Daflon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alvarez-Candal%2C+A">Alvaro Alvarez-Candal</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schwarz%2C+G+B+O">Gustavo B Oliveira Schwarz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schoenell%2C+W">William Schoenell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ribeiro%2C+T">Tiago Ribeiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kanaan%2C+A">Antonio Kanaan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.05004v1-abstract-short" style="display: inline;"> This paper presents the first public data release of the S-PLUS Ultra-Short Survey (USS), a photometric survey with short exposure times, covering approximately 9300 deg$^{2}$ of the Southern sky. The USS utilizes the Javalambre 12-band magnitude system, including narrow and medium-band and broad-band filters targeting prominent stellar spectral features. The primary objective of the USS is to ide&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05004v1-abstract-full').style.display = 'inline'; document.getElementById('2407.05004v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.05004v1-abstract-full" style="display: none;"> This paper presents the first public data release of the S-PLUS Ultra-Short Survey (USS), a photometric survey with short exposure times, covering approximately 9300 deg$^{2}$ of the Southern sky. The USS utilizes the Javalambre 12-band magnitude system, including narrow and medium-band and broad-band filters targeting prominent stellar spectral features. The primary objective of the USS is to identify bright, extremely metal-poor (EMP; [Fe/H] $\leq -3$) and ultra metal-poor (UMP; [Fe/H] $\leq -4$) stars for further analysis using medium- and high-resolution spectroscopy.}{This paper provides an overview of the survey observations, calibration method, data quality, and data products. Additionally, it presents the selection of EMP and UMP candidates.}{The data from the USS were reduced and calibrated using the same methods as presented in the S-PLUS DR2. An additional step was introduced, accounting for the offset between the observed magnitudes off the USS and the predicted magnitudes from the very low-resolution Gaia XP spectra.}{This first release contains data for 163 observed fields totaling $\sim$324 deg$^{2}$ along the Celestial Equator. The magnitudes obtained from the USS are well-calibrated, showing a difference of $\sim 15$ mmag compared to the predicted magnitudes by the GaiaXPy toolkit. By combining colors and magnitudes, 140 candidates for EMP or UMP have been identified for follow-up studies.}{The S-PLUS USS DR1 is an important milestone in the search for bright metal-poor stars, with magnitudes in the range 10 $ &lt; r \leq 14$. The USS is an ongoing survey; in the near future, it will provide many more bright metal-poor candidate stars for spectroscopic follow-up. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.05004v1-abstract-full').style.display = 'none'; document.getElementById('2407.05004v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in A&amp;A. 17 pages 6 figures. Long table at the end of the paper</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 691, A138 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.00319">arXiv:2407.00319</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2407.00319">pdf</a>, <a href="https://arxiv.org/format/2407.00319">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41550-024-02309-5">10.1038/s41550-024-02309-5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A slightly oblate dark matter halo revealed by a retrograde precessing Galactic disk warp </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+Q">Qikang Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Khachaturyants%2C+T">Tigran Khachaturyants</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+H">Huawei Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shen%2C+J">Juntai Shen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+Y">Youjun Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+S">Song Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Haibo Yuan</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.00319v1-abstract-short" style="display: inline;"> The shape of the dark matter (DM) halo is key to understanding the hierarchical formation of the Galaxy. Despite extensive efforts in recent decades, however, its shape remains a matter of debate, with suggestions ranging from strongly oblate to prolate. Here, we present a new constraint on its present shape by directly measuring the evolution of the Galactic disk warp with time, as traced by accu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00319v1-abstract-full').style.display = 'inline'; document.getElementById('2407.00319v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.00319v1-abstract-full" style="display: none;"> The shape of the dark matter (DM) halo is key to understanding the hierarchical formation of the Galaxy. Despite extensive efforts in recent decades, however, its shape remains a matter of debate, with suggestions ranging from strongly oblate to prolate. Here, we present a new constraint on its present shape by directly measuring the evolution of the Galactic disk warp with time, as traced by accurate distance estimates and precise age determinations for about 2,600 classical Cepheids. We show that the Galactic warp is mildly precessing in a retrograde direction at a rate of $蠅= -2.1 \pm 0.5 ({\rm statistical}) \pm 0.6 ({\rm systematic})$ km s$^{-1}$ kpc$^{-1}$ for the outer disk over the Galactocentric radius [$7.5, 25$] kpc, decreasing with radius. This constrains the shape of the DM halo to be slightly oblate with a flattening (minor axis to major axis ratio) in the range $0.84 \le q_桅 \le 0.96$. Given the young nature of the disk warp traced by Cepheids (less than 200 Myr), our approach directly measures the shape of the present-day DM halo. This measurement, combined with other measurements from older tracers, could provide vital constraints on the evolution of the DM halo and the assembly history of the Galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.00319v1-abstract-full').style.display = 'none'; document.getElementById('2407.00319v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published in Nature Astronomy on June 27th, 2024. Final published version here: https://www.nature.com/articles/s41550-024-02309-5</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.02691">arXiv:2406.02691</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2406.02691">pdf</a>, <a href="https://arxiv.org/format/2406.02691">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The R-Process Alliance: 2MASS J22132050-5137385, the Star with the Highest-known r-process Enhancement at [Eu/Fe] = +2.45 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Roederer%2C+I+U">Ian U. Roederer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hattori%2C+K">Kohei Hattori</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+T+T">Terese T. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">Rana Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frebel%2C+A">Anna Frebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holmbeck%2C+E+M">Erika M. Holmbeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakari%2C+C+M">Charli M. Sakari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.02691v1-abstract-short" style="display: inline;"> We present stellar parameters and chemical abundances of 47 elements detected in the bright (V = 11.63) very metal-poor ([Fe/H] = -2.20 +- 0.12) star 2MASS J22132050-5137385. We observed this star using the Magellan Inamori Kyocera Echelle spectrograph as part of ongoing work by the R-Process Alliance. The spectrum of 2MASS J22132050-5137385 exhibits unusually strong lines of elements heavier than&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02691v1-abstract-full').style.display = 'inline'; document.getElementById('2406.02691v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.02691v1-abstract-full" style="display: none;"> We present stellar parameters and chemical abundances of 47 elements detected in the bright (V = 11.63) very metal-poor ([Fe/H] = -2.20 +- 0.12) star 2MASS J22132050-5137385. We observed this star using the Magellan Inamori Kyocera Echelle spectrograph as part of ongoing work by the R-Process Alliance. The spectrum of 2MASS J22132050-5137385 exhibits unusually strong lines of elements heavier than the iron group, and our analysis reveals that these elements were produced by rapid neutron-capture (r-process) nucleosynthesis. We derive a europium enhancement, [Eu/Fe] = +2.45 +- 0.08, that is higher than any other r-process-enhanced star known at present. This star is only the eighth r-process-enhanced star where both thorium and uranium are detected, and we calculate the age of the r-process material, 13.6 +- 2.6 Gyr, from the radioactive decay of these isotopes. This star contains relatively large enhancements of elements that may be produced as transuranic fission fragments, and we propose a new method using this characteristic to assess the r-process yields and gas dilution in samples of r-process-enhanced stars. We conclude that 2MASS J22132050-5137385 exhibits a high level of r-process enhancement because it formed in an environment where the r-process material was less diluted than average. Assuming a canonical baryonic minihalo mass of 10^6 M_sun and a 1 percent metal retention rate, this star formed in a cloud of only ~ 600 M_sun. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.02691v1-abstract-full').style.display = 'none'; document.getElementById('2406.02691v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Astrophysical Journal (23 pages, 9 figures)</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.20212">arXiv:2405.20212</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.20212">pdf</a>, <a href="https://arxiv.org/format/2405.20212">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Filter Design for Estimation of Stellar Metallicity: Insights from Experiments with Gaia XP Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xiao%2C+K">Kai Xiao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+B">Bowen Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Haibo Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+J">Jifeng Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xiang%2C+M">Maosheng Xiang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+X">Xue Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+L">Lin Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+C">Chuanjie Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Z">Zhirui Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+B">Bowen Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shi%2C+R">Ruifeng Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.20212v1-abstract-short" style="display: inline;"> We search for an optimal filter design for the estimation of stellar metallicity, based on synthetic photometry from Gaia XP spectra convolved with a series of filter-transmission curves defined by different central wavelengths and bandwidths. Unlike previous designs based solely on maximizing metallicity sensitivity, we find that the optimal solution provides a balance between the sensitivity and&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20212v1-abstract-full').style.display = 'inline'; document.getElementById('2405.20212v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.20212v1-abstract-full" style="display: none;"> We search for an optimal filter design for the estimation of stellar metallicity, based on synthetic photometry from Gaia XP spectra convolved with a series of filter-transmission curves defined by different central wavelengths and bandwidths. Unlike previous designs based solely on maximizing metallicity sensitivity, we find that the optimal solution provides a balance between the sensitivity and uncertainty of the spectra. With this optimal filter design, the best precision of metallicity estimates for relatively bright ($G \sim 11.5$) stars is excellent, $蟽_{\rm [Fe/H]} = 0.034$\,dex for FGK dwarf stars, superior to that obtained utilizing custom sensitivity-optimized filters (e.g., SkyMapper\,$v$). By selecting hundreds of high-probabability member stars of the open cluster M67, our analysis reveals that the intrinsic photometric-metallicity scatter of these cluster members is only 0.036\,dex, consistent with this level of precision. Our results clearly demonstrate that the internal precision of photometric-metallicity estimates can be extremely high, even providing the opportunity to perform chemical tagging for very large numbers of field stars in the Milky Way. This experiment shows that it is crucial to take into account uncertainty alongside the sensitivity when designing filters for measuring the stellar metallicity and other parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.20212v1-abstract-full').style.display = 'none'; document.getElementById('2405.20212v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures; ApJL accepted, see main result in Figures 5</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.05330">arXiv:2405.05330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2405.05330">pdf</a>, <a href="https://arxiv.org/format/2405.05330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Chemo-dynamical Evolution of Simulated Satellites for a Milky Way-like Galaxy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hirai%2C+Y">Yutaka Hirai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kirby%2C+E+N">Evan N. Kirby</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiba%2C+M">Masashi Chiba</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayashi%2C+K">Kohei Hayashi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anguiano%2C+B">Borja Anguiano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saitoh%2C+T+R">Takayuki R. Saitoh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ishigaki%2C+M+N">Miho N. Ishigaki</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.05330v2-abstract-short" style="display: inline;"> The chemical abundances of Milky Way&#39;s satellites reflect their star formation histories (SFHs), yet, due to the difficulty of determining the ages of old stars, the SFHs of most satellites are poorly measured. Ongoing and upcoming surveys will obtain around ten times more medium-resolution spectra for stars in satellites than are currently available. To correctly extract SFHs from large samples o&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05330v2-abstract-full').style.display = 'inline'; document.getElementById('2405.05330v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.05330v2-abstract-full" style="display: none;"> The chemical abundances of Milky Way&#39;s satellites reflect their star formation histories (SFHs), yet, due to the difficulty of determining the ages of old stars, the SFHs of most satellites are poorly measured. Ongoing and upcoming surveys will obtain around ten times more medium-resolution spectra for stars in satellites than are currently available. To correctly extract SFHs from large samples of chemical abundances, the relationship between chemical abundances and SFHs needs to be clarified. Here, we perform a high-resolution cosmological zoom-in simulation of a Milky Way-like galaxy with detailed models of star formation, supernova feedback, and metal diffusion. We quantify SFHs, metallicity distribution functions, and the $伪$-element (Mg, Ca, and Si) abundances in satellites of the host galaxy. We find that star formation in most simulated satellites is quenched before infalling to their host. Star formation episodes in simulated satellites are separated by a few hundred Myr owing to supernova feedback; each star formation event produces groups of stars with similar [$伪$/Fe] and [Fe/H]. We then perform a mock observation of the upcoming Subaru Prime Focus Spectrograph (PFS) observations. We find that Subaru PFS will be able to detect distinct groups of stars in [$伪$/Fe] vs. [Fe/H] space, produced by episodic star formation. This result means that episodic SFHs can be estimated from the chemical abundances of $\gtrsim$ 1,000 stars determined with medium-resolution spectroscopy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.05330v2-abstract-full').style.display = 'none'; document.getElementById('2405.05330v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 9 figures, accepted for publication in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14626">arXiv:2404.14626</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.14626">pdf</a>, <a href="https://arxiv.org/format/2404.14626">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ad3641">10.3847/1538-4365/ad3641 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Blueprint for the Milky Way&#39;s Stellar Populations. V. 3D Local Dust Extinction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+D">Deokkeun An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiti%2C+A">Anirudh Chiti</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14626v2-abstract-short" style="display: inline;"> Using a grid of empirically calibrated synthetic spectra developed in our previous study, we construct an all-sky 3D extinction map from the large collection of low-resolution XP spectra in Gaia DR3. Along each line of sight, with an area ranging from $0.2$ to $13.4$ deg$^2$, we determine both the reddening and metallicity of main-sequence stars and model the foreground extinction up to approximat&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14626v2-abstract-full').style.display = 'inline'; document.getElementById('2404.14626v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14626v2-abstract-full" style="display: none;"> Using a grid of empirically calibrated synthetic spectra developed in our previous study, we construct an all-sky 3D extinction map from the large collection of low-resolution XP spectra in Gaia DR3. Along each line of sight, with an area ranging from $0.2$ to $13.4$ deg$^2$, we determine both the reddening and metallicity of main-sequence stars and model the foreground extinction up to approximately $3$ kpc from the Sun. Furthermore, we explore variations in the total-to-selective extinction ratio in our parameter search and identify its mean systematic change across diverse cloud environments in both hemispheres. In regions outside the densest parts of the clouds, our reddening estimates are validated through comparisons with previous reddening maps. However, a notable discrepancy arises when compared to other independent work based on XP spectra, although our metallicity scale shows reasonable agreement with the high-resolution spectroscopic abundance scale. We also assess the accuracy of the XP spectra by applying our calibrated models, and confirm an increasing trend of flux overestimation at shorter wavelengths below $400$ nm. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14626v2-abstract-full').style.display = 'none'; document.getElementById('2404.14626v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">27 pages, 21 figures. Figure 15 and the accompanying text corrected, erratum accepted for publication. For associated data files, please visit: https://github.com/deokkeunan/Galactic-extinction-map</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJS, 272, 20 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03379">arXiv:2404.03379</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2404.03379">pdf</a>, <a href="https://arxiv.org/format/2404.03379">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The R-Process Alliance: Analysis of Limited-r Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xylakis-Dornbusch%2C+T">T. Xylakis-Dornbusch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+T+T">T. T. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">T. C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Christlieb%2C+N">N. Christlieb</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">R. Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frebel%2C+A">A. Frebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holmbeck%2C+E">E. Holmbeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">V. M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roederer%2C+I+U">I. U. Roederer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakari%2C+C+M">C. M. Sakari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sneden%2C+C">C. Sneden</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03379v1-abstract-short" style="display: inline;"> Context. In recent years, the R-Process Alliance (RPA) has conducted a successful search for stars enhanced in elements produced by the rapid neutron-capture (r-)process. In particular, the RPA has uncovered a number of stars strongly enriched in light r-process elements, such as Sr, Y and Zr, the so-called limited-r stars, in order to investigate the astrophysical production site(s) of these elem&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03379v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03379v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03379v1-abstract-full" style="display: none;"> Context. In recent years, the R-Process Alliance (RPA) has conducted a successful search for stars enhanced in elements produced by the rapid neutron-capture (r-)process. In particular, the RPA has uncovered a number of stars strongly enriched in light r-process elements, such as Sr, Y and Zr, the so-called limited-r stars, in order to investigate the astrophysical production site(s) of these elements. Aims. With this paper, we aim to investigate the possible formation sites for light neutron-capture elements, by deriving detailed abundances for neutron-capture elements from high-resolution, high signal-to-noise spectra of three limited-r stars. Methods. We conducted a 1D local thermodynamic equilibrium spectroscopic abundance analysis of three stars, as well as a kinematic analysis. Further, we calculated the lanthanide mass fraction (XLa) of our stars and of limited-r stars from the literature. Results. We found that the neutron-capture element abundance pattern of limited-r stars behaves differently depending on their [Ba/Eu]] ratios, and suggest that this should be taken into account in future investigations of their abundances. Furthermore, we found that the XLa of limited-r stars is lower than that of the kilonova AT2017gfo. The latter seems to be in the transition zone between limited-r XLa and that of r-I, r-II stars. Finally, we found that, unlike r-I and r-II stars, the current sample of limited-r stars are largely born in the Galaxy rather than being accreted. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03379v1-abstract-full').style.display = 'none'; document.getElementById('2404.03379v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 10 figures, accepted for publication in A&amp;A</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.19321">arXiv:2402.19321</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.19321">pdf</a>, <a href="https://arxiv.org/ps/2402.19321">ps</a>, <a href="https://arxiv.org/format/2402.19321">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> </div> </div> <p class="title is-5 mathjax"> Connections between Planetary Populations and the Chemical Characteristics of their Host Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Yun%2C+S">Sol Yun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+Y+K">Young Kwang Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Berfin%2C+T">Togay Berfin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lim%2C+D">Dongwook Lim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.19321v1-abstract-short" style="display: inline;"> Chemical anomalies in planet-hosting stars (PHSs) are studied in order to assess how the planetary nature and multiplicity affect the atmospheric chemical abundances of their host stars. We employ APOGEE DR17 to select thin-disk stars of the Milky Way, and cross-match them with the Kepler Input Catalog to identify confirmed PHSs, which results in 227 PHSs with available chemical-abundance ratios f&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19321v1-abstract-full').style.display = 'inline'; document.getElementById('2402.19321v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.19321v1-abstract-full" style="display: none;"> Chemical anomalies in planet-hosting stars (PHSs) are studied in order to assess how the planetary nature and multiplicity affect the atmospheric chemical abundances of their host stars. We employ APOGEE DR17 to select thin-disk stars of the Milky Way, and cross-match them with the Kepler Input Catalog to identify confirmed PHSs, which results in 227 PHSs with available chemical-abundance ratios for six refractory elements. We also examine an ensemble of stars without planet signals, which are equivalent to the selected PHSs in terms of evolutionary stage and stellar parameters, to correct for Galactic chemical-evolution effects, and derive the abundance gradient of refractory elements over the condensation temperature for the PHSs. Using the Galactic chemical-evolution corrected abundances, we found that PHSs do not show a significant difference in abundance slope from the stars without planets. Furthermore, we examine the depletion trends of refractory elements of PHSs depending on total number of planets and their types, and find that the PHSs with giant planets are more depleted in refractory elements than those with rocky planets. Among the PHSs with rocky planets, the refractory-depletion trends are potentially correlated with the terrestrial planets&#39; radii and multiplicity. In the cases of PHSs with giant planets, sub-Jovian PHSs demonstrated more depleted refractory trends than stars hosting Jovian-mass planets, raising questions on different planetary-formation processes for Neptune-like and Jupiter-like planets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.19321v1-abstract-full').style.display = 'none'; document.getElementById('2402.19321v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 6 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.17250">arXiv:2402.17250</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2402.17250">pdf</a>, <a href="https://arxiv.org/format/2402.17250">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stae613">10.1093/mnras/stae613 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A chemodynamical analysis of bright metal-poor stars from the HESP-GOMPA survey -- Indications of a non-prevailing site for light r-process elements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Bandyopadhyay%2C+A">Avrajit Bandyopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">Rana Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sivarani%2C+T">Thirupathi Sivarani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nayak%2C+P+K">Prasanta K Nayak</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pandey%2C+J+C">Jeewan C Pandey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Saraf%2C+P">Pallavi Saraf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Susmitha%2C+A">Antony Susmitha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.17250v1-abstract-short" style="display: inline;"> We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor and extremely metal-poor stars ([Fe/H] = -1.65 to [Fe/H] = -3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, wit&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17250v1-abstract-full').style.display = 'inline'; document.getElementById('2402.17250v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.17250v1-abstract-full" style="display: none;"> We present a comprehensive analysis of the detailed chemical abundances for a sample of 11 metal-poor, very metal-poor and extremely metal-poor stars ([Fe/H] = -1.65 to [Fe/H] = -3.0) as part of the HESP-GOMPA (Galactic survey Of Metal Poor stArs) survey. The abundance determinations encompass a range of elements, including C, Na, Mg, Al, Si, Ca, Sc, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Sr, and Ba, with a subset of the brighter objects allowing for the measurement of additional key elements. Notably, the abundance analysis of a relatively bright highly r-process-enhanced (r-II) star (SDSS J0019+3141) exhibits a predominantly main r-process signature and variations in the lighter r-process elements. Moreover, successful measurements of thorium in this star facilitate stellar age determinations. We find a consistent odd-even nucleosynthesis pattern in these stars, aligning with expectations for their respective metallicity levels, thus implicating Type II supernovae as potential progenitors. From the interplay between the light and heavy r-process elements, we infer a diminishing relative production of light r-process elements with increasing Type II supernova contributions, challenging the notion that Type II supernovae are the primary source of these light r-process elements in the early Milky Way. A chemodynamical analysis based on Gaia astrometric data and our derived abundances indicates that all but one of our program stars are likely to be of accreted origin. Additionally, our examination of alpha-poor stars underscores the occurrence of an early accretion event from a satellite on a prograde orbit, similar to that of the Galactic disc. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.17250v1-abstract-full').style.display = 'none'; document.getElementById('2402.17250v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 12 figures, Accepted for publication in MNRAS</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, Volume 529, Issue 3, pp.2191-2207, 2024 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.12311">arXiv:2401.12311</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.12311">pdf</a>, <a href="https://arxiv.org/format/2401.12311">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The $R$-Process Alliance: Detailed Composition of an $R$-Process Enhanced Star with UV and Optical Spectroscopy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shah%2C+S+P">Shivani P. Shah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">Rana Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roederer%2C+I+U">Ian U. Roederer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+T+T">Terese T. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frebel%2C+A">Anna Frebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+A+P">Alexander P. Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holmbeck%2C+E">Erika Holmbeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marshall%2C+J">Jennifer Marshall</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakari%2C+C+M">Charli M. Sakari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.12311v1-abstract-short" style="display: inline;"> We present a detailed chemical-abundance analysis of a highly $r$-process enhanced (RPE) star, 2MASS J00512646-1053170, using high-resolution spectroscopic observations with $Hubble\ Space\ Telescope$/STIS in the UV and Magellan/MIKE in the optical. We determined abundances for 41 elements in total, including 23 $r$-process elements and rarely probed species such as Al II, Ge I, Mo II, Cd I, Os II&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12311v1-abstract-full').style.display = 'inline'; document.getElementById('2401.12311v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.12311v1-abstract-full" style="display: none;"> We present a detailed chemical-abundance analysis of a highly $r$-process enhanced (RPE) star, 2MASS J00512646-1053170, using high-resolution spectroscopic observations with $Hubble\ Space\ Telescope$/STIS in the UV and Magellan/MIKE in the optical. We determined abundances for 41 elements in total, including 23 $r$-process elements and rarely probed species such as Al II, Ge I, Mo II, Cd I, Os II, Pt I, and Au I. We find that [Ge/Fe] $= +0.10$, which is an unusually high Ge enhancement for such a metal-poor star and indicates contribution from a production mechanism decoupled from that of Fe. We also find that this star has the highest Cd abundance observed for a metal-poor star to date. We find that the dispersion in the Cd abundances of metal-poor stars can be explained by the correlation of Cd I abundances with the stellar parameters of the stars, indicating the presence of NLTE effects. We also report that this star is now only the 6th star with Au abundance determined. This result, along with abundances of Pt and Os, uphold the case for the extension of the universal $r$-process pattern to the third $r$-process peak and to Au. This study adds to the sparse but growing number of RPE stars with extensive chemical-abundance inventories and highlights the need for not only more abundance determinations of these rarely probed species, but also advances in theoretical NLTE and astrophysical studies to reliably understand the origin of $r$-process elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.12311v1-abstract-full').style.display = 'none'; document.getElementById('2401.12311v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.05120">arXiv:2401.05120</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2401.05120">pdf</a>, <a href="https://arxiv.org/format/2401.05120">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> The Kinematic and Chemical Properties of the Close-in Planet Host Star 8 UMi </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+H">Huiling Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhu%2C+W">Wei Zhu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xie%2C+R">Renjing Xie</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhou%2C+Y">Yutao Zhou</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+S+X">Sharon Xuesong Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alexeeva%2C+S">Sofya Alexeeva</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feng%2C+Q">Qikang Feng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fu%2C+H">Haozhu Fu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+H">Haining Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+L">Lile Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+H">Huawei Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.05120v2-abstract-short" style="display: inline;"> A recent study by Hon et al. reported that a close-in planet around the red clump star, 8 UMi, should have been engulfed during the expansion phase of its parent star&#39;s evolution. They explained the survival of this exoplanet through a binary-merger channel for 8 UMi. The key to testing this formation scenario is to derive the true age of this star: is it an old &#34;imposter&#34; resulting from a binary&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05120v2-abstract-full').style.display = 'inline'; document.getElementById('2401.05120v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.05120v2-abstract-full" style="display: none;"> A recent study by Hon et al. reported that a close-in planet around the red clump star, 8 UMi, should have been engulfed during the expansion phase of its parent star&#39;s evolution. They explained the survival of this exoplanet through a binary-merger channel for 8 UMi. The key to testing this formation scenario is to derive the true age of this star: is it an old &#34;imposter&#34; resulting from a binary merger, or a genuinely young red clump giant? To accomplish this, we derive kinematic and chemical properties for 8 UMi using astrometric data from {\it Gaia} DR3 and the element-abundance pattern measured from a high-resolution ($R \sim 75,000$) spectrum taken by SOPHIE. Our analysis shows that 8 UMi is a normal thin-disk star with orbital rotation speed of $\it{V}_\mathrm蠁=\mathrm{244.96 km s^{-1}}$, and possesses a Solar metallicity ([Fe/H] $= -0.05 \pm 0.07$) and $伪$-element abundance ratio ([$伪$/Fe] $= +0.01 \pm 0.03$). By adopting well-established relationships between age and space velocities/elemental abundances, we estimate a kinematic age of $3.50^{+3.00}_{-2.00}$ Gyr, and a chemical age of $3.25^{+2.50}_{-1.50}$ Gyr from [C/N] and $3.47 \pm 1.96$ Gyr from [Y/Mg] for 8 UMi, respectively. These estimates are consistent with the isochrone-fitting age ($1.90^{+1.15}_{-0.30}$ Gyr) of 8 UMi, but are all much younger than the timescale required in a binary-merger scenario. This result challenges the binary-merger model; the existence of such a closely orbiting exoplanet around a giant star remains a mystery yet to be resolved. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.05120v2-abstract-full').style.display = 'none'; document.getElementById('2401.05120v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 5 figures, 2 table; accepted by ApJL</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.06844">arXiv:2312.06844</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2312.06844">pdf</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.adf1341">10.1126/science.adf1341 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Element abundance patterns in stars indicate fission of nuclei heavier than uranium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Roederer%2C+I+U">Ian U. Roederer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vassh%2C+N">Nicole Vassh</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holmbeck%2C+E+M">Erika M. Holmbeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mumpower%2C+M+R">Matthew R. Mumpower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surman%2C+R">Rebecca Surman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cowan%2C+J+J">John J. Cowan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">Rana Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frebel%2C+A">Anna Frebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+T+T">Terese T. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakari%2C+C+M">Charli M. Sakari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.06844v1-abstract-short" style="display: inline;"> The heaviest chemical elements are naturally produced by the rapid neutron-capture process (r-process) during neutron star mergers or supernovae. The r-process production of elements heavier than uranium (transuranic nuclei) is poorly understood and inaccessible to experiments, so must be extrapolated using nucleosynthesis models. We examine element abundances in a sample of stars that are enhance&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06844v1-abstract-full').style.display = 'inline'; document.getElementById('2312.06844v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.06844v1-abstract-full" style="display: none;"> The heaviest chemical elements are naturally produced by the rapid neutron-capture process (r-process) during neutron star mergers or supernovae. The r-process production of elements heavier than uranium (transuranic nuclei) is poorly understood and inaccessible to experiments, so must be extrapolated using nucleosynthesis models. We examine element abundances in a sample of stars that are enhanced in r-process elements. The abundances of elements Ru, Rh, Pd, and Ag (atomic numbers Z = 44 to 47, mass numbers A = 99 to 110) correlate with those of heavier elements (63 &lt;= Z &lt;= 78, A &gt; 150). There is no correlation for neighboring elements (34 &lt;= Z &lt;= 42 and 48 &lt;= Z &lt;= 62). We interpret this as evidence that fission fragments of transuranic nuclei contribute to the abundances. Our results indicate that neutron-rich nuclei with mass numbers &gt;260 are produced in r-process events. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.06844v1-abstract-full').style.display = 'none'; document.getElementById('2312.06844v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Authors&#39; version of manuscript published in Science on December 07, 2023</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science, 382, 1177-1180 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.16901">arXiv:2311.16901</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.16901">pdf</a>, <a href="https://arxiv.org/format/2311.16901">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> Stellar Loci. VII. Photometric Metallicities of 5 Million FGK Stars Based on GALEX GR6+7 AIS and Gaia EDR3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lu%2C+X">Xue Lu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Haibo Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+R">Ruoyi Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xiao%2C+K">Kai Xiao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hong%2C+J">Jihye Hong</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.16901v2-abstract-short" style="display: inline;"> We combine photometric data from GALEX GR6+7 AIS and Gaia EDR3 with stellar parameters from the SAGA and PASTEL catalogs to construct high-quality training samples for dwarfs ($\rm 0.4&lt; BP-RP&lt;1.6$) and giants ($\rm 0.6&lt; BP-RP &lt;1.6$). We apply careful reddening corrections using empirical temperature- and extinction-dependent extinction coefficients. Using the two samples, we establish a relationsh&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16901v2-abstract-full').style.display = 'inline'; document.getElementById('2311.16901v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.16901v2-abstract-full" style="display: none;"> We combine photometric data from GALEX GR6+7 AIS and Gaia EDR3 with stellar parameters from the SAGA and PASTEL catalogs to construct high-quality training samples for dwarfs ($\rm 0.4&lt; BP-RP&lt;1.6$) and giants ($\rm 0.6&lt; BP-RP &lt;1.6$). We apply careful reddening corrections using empirical temperature- and extinction-dependent extinction coefficients. Using the two samples, we establish a relationship between stellar loci (NUV$-$BP vs. BP$-$RP colors), metallicity, and $\rm M_G$. For a given BP$-$RP color, a 1 dex change in [Fe/H] corresponds to an approximately 1 magnitude change in NUV$-$BP color for solar-type stars. These relationships are employed to estimate metallicities based on NUV$-$BP, BP$-$RP, and $\rm M_G$. Thanks to the strong metallicity dependence in the GALEX NUV-band, our models enable a typical photometric-metallicity precision of approximately $蟽_{\rm [Fe/H]}$ = 0.11 dex for dwarfs and $蟽_{\rm [Fe/H]}$ = 0.17 dex for giants, with an effective metallicity range extending down to [Fe/H] $= -3.0$ for dwarfs and [Fe/H] $= -4.0$ for giants. We also find that the NUV-band based photometric-metallicity estimate is not as strongly affected by carbon enhancement as previous photometric techniques. With the Gaia and GALEX data, we have estimated metallicities for about 5 million stars across almost the entire sky, including approximately 4.5 million dwarfs and 0.5 million giants. This work demonstrates the potential of the NUV-band for estimating photometric metallicities, and sets the groundwork for utilizing the NUV data from space telescopes such as the upcoming Chinese Space Station Telescope. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.16901v2-abstract-full').style.display = 'none'; document.getElementById('2311.16901v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">24 pages, 19 figures, accepted by ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.13807">arXiv:2311.13807</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.13807">pdf</a>, <a href="https://arxiv.org/format/2311.13807">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad3199">10.1093/mnras/stad3199 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> rrlfe: Software for Generating and Applying Metallicity Calibrations for RR Lyrae Variable Stars Across a Wide Range of Phases and Temperatures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Spalding%2C+E">Eckhart Spalding</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilhelm%2C+R">Ronald Wilhelm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=De+Lee%2C+N">Nathan De Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Long%2C+S">Stacy Long</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kielkopf%2C+J">John Kielkopf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pepper%2C+J">Joshua Pepper</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carrell%2C+K">Kenneth Carrell</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.13807v1-abstract-short" style="display: inline;"> RR Lyrae stars play a central role in tracing phase-space structures within the Milky Way because they are easy to identify, are relatively luminous, and are found in large numbers in the Galactic bulge, disk, and halo. In this work, we present a new set of spectroscopic metallicity calibrations that use the equivalent widths of the Ca II K and Balmer H-gamma and H-delta lines to calculate metalli&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13807v1-abstract-full').style.display = 'inline'; document.getElementById('2311.13807v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.13807v1-abstract-full" style="display: none;"> RR Lyrae stars play a central role in tracing phase-space structures within the Milky Way because they are easy to identify, are relatively luminous, and are found in large numbers in the Galactic bulge, disk, and halo. In this work, we present a new set of spectroscopic metallicity calibrations that use the equivalent widths of the Ca II K and Balmer H-gamma and H-delta lines to calculate metallicity values from low-resolution spectra. This builds on an earlier calibration from Layden by extending the range of equivalent widths which map between Ca II K and the Balmer lines. We have developed the software rrlfe to apply this calibration to spectra in a consistent, reproducible, and extensible manner. This software is open-source and available to the community. The calibration can be updated with additional datasets in the future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.13807v1-abstract-full').style.display = 'none'; document.getElementById('2311.13807v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Published</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Monthly Notices of the Royal Astronomical Society, vol. 527, issue 1, January 2024, p. 828 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2311.02297">arXiv:2311.02297</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2311.02297">pdf</a>, <a href="https://arxiv.org/format/2311.02297">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4365/ad4a6f">10.3847/1538-4365/ad4a6f <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Candidate Members of the VMP/EMP Disk System of the Galaxy from the SkyMapper and SAGES Surveys </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Hong%2C+J">Jihye Hong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hirai%2C+Y">Yutaka Hirai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Garcia%2C+J+C">Jonathan Cabrera Garcia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shank%2C+D">Derek Shank</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Haibo Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mardini%2C+M+K">Mohammad K. Mardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catapano%2C+T">Thomas Catapano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+G">Gang Zhao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fan%2C+Z">Zhou Fan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+J">Jie Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tan%2C+K">Kefeng Tan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+J">Jingkun Zhao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+C">Chun Li</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2311.02297v3-abstract-short" style="display: inline;"> Photometric stellar surveys now cover a large fraction of the sky, probe to fainter magnitudes than large-scale spectroscopic surveys, and are relatively free from the target-selection biases often associated with such studies. Photometric-metallicity estimates that include narrow/medium-band filters can achieve comparable accuracy and precision to existing low-resolution spectroscopic surveys suc&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02297v3-abstract-full').style.display = 'inline'; document.getElementById('2311.02297v3-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2311.02297v3-abstract-full" style="display: none;"> Photometric stellar surveys now cover a large fraction of the sky, probe to fainter magnitudes than large-scale spectroscopic surveys, and are relatively free from the target-selection biases often associated with such studies. Photometric-metallicity estimates that include narrow/medium-band filters can achieve comparable accuracy and precision to existing low-resolution spectroscopic surveys such as SDSS/SEGUE and LAMOST. Here we report on an effort to identify likely members of the Galactic disk system among the very metal-poor (VMP; [Fe/H] $\leq$ --2) and extremely metal-poor (EMP; [Fe/H] $\leq$ --3) stars. Our analysis is based on an initial sample of $\sim11.5$ million stars with full space motions selected from the SkyMapper Southern Survey (SMSS) and Stellar Abundance and Galactic Evolution Survey (SAGES). After applying a number of quality cuts to obtain the best available metallicity and dynamical estimates, we analyze a total of $\sim$5.86 million stars in the combined SMSS/SAGES sample. We employ two techniques that, depending on the method, identify between 876 and 1,476 VMP stars (6.9%-11.7% of all VMP stars) and between 40 and 59 EMP stars (12.4%-18.3% of all EMP stars) that appear to be members of the Galactic disk system on highly prograde orbits (v$_蠁 &gt; 150$ km/s). The total number of candidate VMP/EMP disk-like stars is 1,496, the majority of which have low orbital eccentricities, ecc $\le 0.4$; many have ecc $\le 0.2$. The large fractions of VMP/EMP stars associated with the Milky Way disk system strongly suggest the presence of an early forming ``primordial&#34; disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2311.02297v3-abstract-full').style.display = 'none'; document.getElementById('2311.02297v3-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 November, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">It is now accepted to the ApJS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.13054">arXiv:2310.13054</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.13054">pdf</a>, <a href="https://arxiv.org/format/2310.13054">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> CAPOS: The bulge Cluster APOgee Survey IV. Elemental Abundances of the bulge globular cluster NGC 6558 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Gonz%C3%A1lez-D%C3%ADaz%2C+D">Danilo Gonz谩lez-D铆az</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez-Trincado%2C+J+G">Jos茅 G. Fern谩ndez-Trincado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Villanova%2C+S">Sandro Villanova</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Geisler%2C+D">Doug Geisler</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbuy%2C+B">Beatriz Barbuy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minniti%2C+D">Dante Minniti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bidin%2C+C+M">Christian Moni Bidin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mauro%2C+F">Francesco Mauro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mu%C3%B1oz%2C+C">Cesar Mu帽oz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tang%2C+B">Baitian Tang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Soto%2C+M">Mario Soto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Monachesi%2C+A">Antonela Monachesi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lane%2C+R+R">Richard R. Lane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frelijj%2C+H">Heinz Frelijj</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.13054v1-abstract-short" style="display: inline;"> This study presents the results concerning six red giant stars members of the globular cluster NGC 6558. Our analysis utilized high-resolution near-infrared spectra obtained through the CAPOS initiative (the APOgee Survey of Clusters in the Galactic Bulge), which focuses on surveying clusters within the Galactic Bulge, as a component of the Apache Point Observatory Galactic Evolution Experiment II&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13054v1-abstract-full').style.display = 'inline'; document.getElementById('2310.13054v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.13054v1-abstract-full" style="display: none;"> This study presents the results concerning six red giant stars members of the globular cluster NGC 6558. Our analysis utilized high-resolution near-infrared spectra obtained through the CAPOS initiative (the APOgee Survey of Clusters in the Galactic Bulge), which focuses on surveying clusters within the Galactic Bulge, as a component of the Apache Point Observatory Galactic Evolution Experiment II survey (APOGEE-2). We employ the BACCHUS (Brussels Automatic Code for Characterizing High accUracy Spectra) code to provide line-by-line elemental-abundances for Fe-peak (Fe, Ni), $伪$-(O, Mg, Si, Ca, Ti), light-(C, N), odd-Z (Al), and the $s$-process element (Ce) for the 4 stars with high signal-to-noise ratios. This is the first reliable measure of the CNO abundances for NGC 6558. Our analysis yields a mean metallicity for NGC 6558 of $\langle$[Fe/H]$\rangle$ = $-$1.15 $\pm$ 0.08, with no evidence for a metallicity spread. We find a Solar Ni abundance, $\langle$[Ni/Fe]$\rangle$ $\sim$ $+$0.01, and a moderate enhancement of $伪$-elements, ranging between $+$0.16 to $&lt;+$0.42, and a slight enhancement of the $s$-process element $\langle$[Ce/Fe]$\rangle$ $\sim$ $+$0.19. We also found low levels of $\langle$[Al/Fe]$\rangle \sim $+$0.09$, but with a strong enrichment of nitrogen, [N/Fe]$&gt;+$0.99, along with a low level of carbon, [C/Fe]$&lt;-$0.12. This behaviour of Nitrogen-Carbon is a typical chemical signature for the presence of multiple stellar populations in virtually all GCs; this is the first time that it is reported in NGC 6558. We also observed a remarkable consistency in the behaviour of all the chemical species compared to the other CAPOS bulge GCs of the same metallicity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.13054v1-abstract-full').style.display = 'none'; document.getElementById('2310.13054v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in MNRAS. The paper is 11 pages long, containing 5 figures, 4 tables,</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.07764">arXiv:2310.07764</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2310.07764">pdf</a>, <a href="https://arxiv.org/format/2310.07764">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> The APOGEE Value Added Catalogue of Galactic globular cluster stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Schiavon%2C+R+P">Ricardo P. Schiavon</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Phillips%2C+S+G">Si芒n G. Phillips</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Myers%2C+N">Natalie Myers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Horta%2C+D">Danny Horta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minniti%2C+D">Dante Minniti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prieto%2C+C+A">Carlos Allende Prieto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anguiano%2C+B">Borja Anguiano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R+L">Rachael L. Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brownstein%2C+J+R">Joel R. Brownstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cohen%2C+R+E">Roger E. Cohen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez-Trincado%2C+J+G">Jos茅 G. Fern谩ndez-Trincado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frinchaboy%2C+P+M">Peter M. Frinchaboy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=J%C3%B6nsson%2C+H">Henrik J枚nsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kisku%2C+S">Shobhit Kisku</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lane%2C+R+R">Richard R. Lane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Majewski%2C+S+R">Steven R. Majewski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mason%2C+A+C">Andrew C. Mason</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%A9sz%C3%A1ros%2C+S">Szabolcs M茅sz谩ros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stringfellow%2C+G+S">Guy S. Stringfellow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.07764v1-abstract-short" style="display: inline;"> We introduce the SDSS/APOGEE Value Added Catalogue of Galactic Globular Cluster (GC) Stars. The catalogue is the result of a critical search of the APOGEE data release 17 (DR17) catalogue for candidate members of all known Galactic GCs. Candidate members are assigned to various GCs on the basis of position on the sky, proper motion, and radial velocity. The catalogue contains a total of 7,737 entr&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07764v1-abstract-full').style.display = 'inline'; document.getElementById('2310.07764v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.07764v1-abstract-full" style="display: none;"> We introduce the SDSS/APOGEE Value Added Catalogue of Galactic Globular Cluster (GC) Stars. The catalogue is the result of a critical search of the APOGEE data release 17 (DR17) catalogue for candidate members of all known Galactic GCs. Candidate members are assigned to various GCs on the basis of position on the sky, proper motion, and radial velocity. The catalogue contains a total of 7,737 entries for 6,422 unique stars associated with 72 Galactic GCs. Full APOGEE DR17 information is provided, including radial velocities and abundances for up to 20 elements. Membership probabilities estimated on the basis of precision radial velocities are made available. Comparisons with chemical compositions derived by the GALAH survey, as well as optical values from the literature, show good agreement. This catalogue represents a significant increase in the public database of GC star chemical compositions and kinematics, providing a massive homogeneous data set that will enable a variety of studies. The catalogue in fits format is available for public download from the SDSS-IV DR17 value added catalogue website. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.07764v1-abstract-full').style.display = 'none'; document.getElementById('2310.07764v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">To appear in MNRAS. The paper is 16 pages long, containing 16 figures, 3 tables, and 1 Appendix. The catalogue and metadata can be obtained upon request to the authors</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11533">arXiv:2309.11533</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.11533">pdf</a>, <a href="https://arxiv.org/format/2309.11533">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> S-PLUS: Photometric Re-calibration with the Stellar Color Regression Method and an Improved Gaia XP Synthetic Photometry Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xiao%2C+K">Kai Xiao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Haibo Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+B">Bowen Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+L">Lin Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Almeida-Fernandes%2C+F">Felipe Almeida-Fernandes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Perottoni%2C+H+D">Helio D. Perottoni</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Limberg%2C+G">Guilherme Limberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Schoenell%2C+W">William Schoenell</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ribeiro%2C+T">Tiago Ribeiro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kanaan%2C+A">Antonio Kanaan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=de+Olivira%2C+N+G">Natanael Gomes de Olivira</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11533v1-abstract-short" style="display: inline;"> We present a comprehensive re-calibration of medium- and broad-band photometry from the Southern Photometric Local Universe Survey (S-PLUS) by leveraging two approaches: an improved Gaia XP Synthetic Photometry (XPSP) method with corrected Gaia XP spectra, the Stellar Color Regression (SCR) method with corrected Gaia EDR3 photometric data and spectroscopic data from LAMOST DR7. Through the use of&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11533v1-abstract-full').style.display = 'inline'; document.getElementById('2309.11533v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11533v1-abstract-full" style="display: none;"> We present a comprehensive re-calibration of medium- and broad-band photometry from the Southern Photometric Local Universe Survey (S-PLUS) by leveraging two approaches: an improved Gaia XP Synthetic Photometry (XPSP) method with corrected Gaia XP spectra, the Stellar Color Regression (SCR) method with corrected Gaia EDR3 photometric data and spectroscopic data from LAMOST DR7. Through the use of millions of stars as standards per band, we demonstrate the existence of position-dependent systematic errors, up to 23 mmag for the Main Survey region, in the S-PLUS DR4 photometric data. A comparison between the XPSP and SCR methods reveals minor differences in zero-point offsets, typically within the range of 1 to 6 mmag, indicating the accuracy of the re-calibration, and a two- to three-fold improvement in the zero-point precision. During this process, we also verified and corrected for the systematic errors related to CCD position. The corrected S-PLUS DR4 photometric data will provide a solid data foundation for conducting scientific research that relies on high-calibration precision. Our results underscore the power of the XPSP method in combination with the SCR method, showcasing their effectiveness in enhancing calibration precision for wide-field surveys when combined with Gaia photometry and XP spectra, to be applied for other S-PLUS sub-surveys. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11533v1-abstract-full').style.display = 'none'; document.getElementById('2309.11533v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 15 figures, submitted, see main results in Figures 4 and 8</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.11225">arXiv:2309.11225</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.11225">pdf</a>, <a href="https://arxiv.org/format/2309.11225">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> J-PLUS: Photometric Re-calibration with the Stellar Color Regression Method and an Improved Gaia XP Synthetic Photometry Method </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Xiao%2C+K">Kai Xiao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Haibo Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lopez-Sanjuan%2C+C">C. Lopez-Sanjuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+B">Bowen Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xu%2C+S">Shuai Xu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+Y">Yuanchang Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+L">Lin Yang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alcaniz%2C+J">J. Alcaniz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Galarza%2C+C+A">Carlos Andr茅s Galarza</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Angulo%2C+R+E">R. E. Angulo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cenarro%2C+A+J">A. J. Cenarro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cristobal-Hornillos%2C+D">D. Cristobal-Hornillos</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dupke%2C+R+A">R. A. Dupke</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ederoclite%2C+A">A. Ederoclite</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hernandez-Monteagudo%2C+C">C. Hernandez-Monteagudo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Marn-Franch%2C+A">A. Marn-Franch</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moles%2C+M">M. Moles</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sodre%2C+L">L. Sodre Jr.</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ramio%2C+H+V">H. Vazquez Ramio</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Varela%2C+J">J. Varela</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.11225v2-abstract-short" style="display: inline;"> We employ the corrected Gaia Early Data Release 3 (EDR3) photometric data and spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) DR7 to assemble a sample of approximately 0.25 million FGK dwarf photometric standard stars for the 12 J-PLUS filters using the Stellar Color Regression (SCR) method. We then independently validated the J-PLUS DR3 photometry, a&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11225v2-abstract-full').style.display = 'inline'; document.getElementById('2309.11225v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.11225v2-abstract-full" style="display: none;"> We employ the corrected Gaia Early Data Release 3 (EDR3) photometric data and spectroscopic data from the Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) DR7 to assemble a sample of approximately 0.25 million FGK dwarf photometric standard stars for the 12 J-PLUS filters using the Stellar Color Regression (SCR) method. We then independently validated the J-PLUS DR3 photometry, and uncovered significant systematic errors: up to 15 mmag in the results of Stellar Locus (SL) method, and up to 10 mmag mainly caused by magnitude-, color-, and extinction-dependent errors of the Gaia XP spectra with the Gaia BP/RP (XP) Synthetic Photometry (XPSP) method. We have also further developed the XPSP method using the corrected Gaia XP spectra by Huang et al. (2023) and applied it to the J-PLUS DR3 photometry. This resulted in an agreement of 1-5 mmag with the SCR method, and a two-fold improvement in the J-PLUS zero-point precision. Finally, the zero-point calibration for around 91% of the tiles within the LAMOST observation footprint is determined through the SCR method, with the remaining approximately 9% of tiles outside this footprint relying on the improved XPSP method. The re-calibrated J-PLUS DR3 photometric data establishes a solid data foundation for conducting research that depends on high-precision photometric calibration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.11225v2-abstract-full').style.display = 'none'; document.getElementById('2309.11225v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">ApJS accepted; 21 papes; 20 figures, see main results in Figures 5 and 12</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.02828">arXiv:2309.02828</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2309.02828">pdf</a>, <a href="https://arxiv.org/format/2309.02828">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2681">10.1093/mnras/stad2681 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Probing the Galactic halo with RR Lyrae stars -- IV. On the Oosterhoff dichotomy of RR Lyrae stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+S">Shan Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+G">Gaochao Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lv%2C+Z">Zongfei Lv</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bird%2C+S+A">Sarah Ann Bird</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+B">Bingqiu Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+H">Huawei Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+X">Xinyi Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tian%2C+H">Haijun Tian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+P">Peng Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.02828v4-abstract-short" style="display: inline;"> We use 3653 (2661 RRab, 992 RRc) RR Lyrae stars (RRLs) with 7D (3D position, 3D velocity, and metallicity) information selected from SDSS, LAMOST, and Gaia EDR3, and divide the sample into two Oosterhoff groups (Oo I and Oo II) according to their amplitude-period behaviour in the Bailey Diagram. We present a comparative study of these two groups based on chemistry, kinematics, and dynamics. We fin&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02828v4-abstract-full').style.display = 'inline'; document.getElementById('2309.02828v4-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.02828v4-abstract-full" style="display: none;"> We use 3653 (2661 RRab, 992 RRc) RR Lyrae stars (RRLs) with 7D (3D position, 3D velocity, and metallicity) information selected from SDSS, LAMOST, and Gaia EDR3, and divide the sample into two Oosterhoff groups (Oo I and Oo II) according to their amplitude-period behaviour in the Bailey Diagram. We present a comparative study of these two groups based on chemistry, kinematics, and dynamics. We find that Oo I RRLs are relatively more metal rich, with predominately radially dominated orbits and large eccentricities, while Oo II RRLs are relatively more metal poor, and have mildly radially dominated orbits. The Oosterhoff dichotomy of the Milky Way&#39;s halo is more apparent for the inner-halo region than for the outer-halo region. Additionally, we also search for this phenomenon in the halos of the two largest satellite galaxies, the Large and Small Magellanic clouds (LMC, SMC), and compare over different bins in metallicity. We find that the Oosterhoff dichotomy is not immutable, and varies based on position in the Galaxy and from galaxy-to-galaxy. We conclude that the Oosterhoff dichotomy is the result of a combination of stellar and galactic evolution, and that it is much more complex than the dichotomy originally identified in Galactic globular clusters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.02828v4-abstract-full').style.display = 'none'; document.getElementById('2309.02828v4-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.13887">arXiv:2307.13887</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.13887">pdf</a>, <a href="https://arxiv.org/format/2307.13887">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ace9b8">10.3847/1538-4357/ace9b8 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Tale of Two Disks: Mapping the Milky Way with the Final Data Release of APOGEE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Imig%2C+J">Julie Imig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Price%2C+C">Cathryn Price</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holtzman%2C+J+A">Jon A. Holtzman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stone-Martinez%2C+A">Alexander Stone-Martinez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Majewski%2C+S+R">Steven R. Majewski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Weinberg%2C+D+H">David H. Weinberg</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Johnson%2C+J+A">Jennifer A. Johnson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prieto%2C+C+A">Carlos Allende Prieto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beaton%2C+R+L">Rachael L. Beaton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bizyaev%2C+D">Dmitry Bizyaev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Blanton%2C+M+R">Michael R. Blanton</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brownstein%2C+J+R">Joel R. Brownstein</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cunha%2C+K">Katia Cunha</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez-Trincado%2C+J+G">Jos茅 G. Fern谩ndez-Trincado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Feuillet%2C+D+K">Diane K. Feuillet</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hasselquist%2C+S">Sten Hasselquist</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hayes%2C+C+R">Christian R. Hayes</a>, <a href="/search/astro-ph?searchtype=author&amp;query=J%C3%B6nsson%2C+H">Henrik J枚nsson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lane%2C+R+R">Richard R. Lane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lian%2C+J">Jianhui Lian</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%A9sz%C3%A1ros%2C+S">Szabolcs M茅sz谩ros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nidever%2C+D+L">David L. Nidever</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Robin%2C+A+C">Annie C. Robin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shetrone%2C+M">Matthew Shetrone</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.13887v1-abstract-short" style="display: inline;"> We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]), $伪$-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity,&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13887v1-abstract-full').style.display = 'inline'; document.getElementById('2307.13887v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.13887v1-abstract-full" style="display: none;"> We present new maps of the Milky Way disk showing the distribution of metallicity ([Fe/H]), $伪$-element abundances ([Mg/Fe]), and stellar age, using a sample of 66,496 red giant stars from the final data release (DR17) of the Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey. We measure radial and vertical gradients, quantify the distribution functions for age and metallicity, and explore chemical clock relations across the Milky Way for the low-$伪$ disk, high-$伪$ disk, and total population independently. The low-$伪$ disk exhibits a negative radial metallicity gradient of $-0.06 \pm 0.001$ dex kpc$^{-1}$, which flattens with distance from the midplane. The high-$伪$ disk shows a flat radial gradient in metallicity and age across nearly all locations of the disk. The age and metallicity distribution functions shift from negatively skewed in the inner Galaxy to positively skewed at large radius. Significant bimodality in the [Mg/Fe]-[Fe/H] plane and in the [Mg/Fe]-age relation persist across the entire disk. The age estimates have typical uncertainties of $\sim0.15$ in $\log$(age) and may be subject to additional systematic errors, which impose limitations on conclusions drawn from this sample. Nevertheless, these results act as critical constraints on galactic evolution models, constraining which physical processes played a dominant role in the formation of the Milky Way disk. We discuss how radial migration predicts many of the observed trends near the solar neighborhood and in the outer disk, but an additional more dramatic evolution history, such as the multi-infall model or a merger event, is needed to explain the chemical and age bimodality elsewhere in the Galaxy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.13887v1-abstract-full').style.display = 'none'; document.getElementById('2307.13887v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">41 pages, 32 figures, accepted to ApJ</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> ApJ 954 124 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.12330">arXiv:2307.12330</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.12330">pdf</a>, <a href="https://arxiv.org/format/2307.12330">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2167">10.1093/mnras/stad2167 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The chemical evolution of the solar neighbourhood for planet-hosting stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Pignatari%2C+M">Marco Pignatari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Trueman%2C+T+C+L">Thomas C. L. Trueman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Womack%2C+K+A">Kate A. Womack</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gibson%2C+B+K">Brad K. Gibson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=C%C3%B4t%C3%A9%2C+B">Benoit C么t茅</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Turrini%2C+D">Diego Turrini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sneden%2C+C">Christopher Sneden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mojzsis%2C+S+J">Stephen J. Mojzsis</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stancliffe%2C+R+J">Richard J. Stancliffe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fong%2C+P">Paul Fong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lawson%2C+T+V">Thomas V. Lawson</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Keegans%2C+J+D">James D. Keegans</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pilkington%2C+K">Kate Pilkington</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Passy%2C+J">Jean-Claude Passy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lugaro%2C+M">Maria Lugaro</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.12330v1-abstract-short" style="display: inline;"> Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun&#39;s composition, that of stars in the solar neighbourhood, and of the estimated &#34;pristine&#34; compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12330v1-abstract-full').style.display = 'inline'; document.getElementById('2307.12330v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.12330v1-abstract-full" style="display: none;"> Theoretical physical-chemical models for the formation of planetary systems depend on data quality for the Sun&#39;s composition, that of stars in the solar neighbourhood, and of the estimated &#34;pristine&#34; compositions for stellar systems. The effective scatter and the observational uncertainties of elements within a few hundred parsecs from the Sun, even for the most abundant metals like carbon, oxygen and silicon, are still controversial. Here we analyse the stellar production and the chemical evolution of key elements that underpin the formation of rocky (C, O, Mg, Si) and gas/ice giant planets (C, N, O, S). We calculate 198 galactic chemical evolution (GCE) models of the solar neighbourhood to analyse the impact of different sets of stellar yields, of the upper mass limit for massive stars contributing to GCE ($M_{\rm up}$) and of supernovae from massive-star progenitors which do not eject the bulk of the iron-peak elements (faint supernovae). Even considering the GCE variation produced via different sets of stellar yields, the observed dispersion of elements reported for stars in the Milky Way disk is not reproduced. Among others, the observed range of super-solar [Mg/Si] ratios, sub-solar [S/N], and the dispersion of up to 0.5 dex for [S/Si] challenge our models. The impact of varying $M_{\rm up}$ depends on the adopted supernova yields. Thus, observations do not provide a constraint on the M$_{\rm up}$ parametrization. When including the impact of faint supernova models in GCE calculations, elemental ratios vary by up to 0.1-0.2 dex in the Milky Way disk; this modification better reproduces observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.12330v1-abstract-full').style.display = 'none'; document.getElementById('2307.12330v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 26 figures, 1 Table, 1 Appendix, Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.10762">arXiv:2307.10762</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.10762">pdf</a>, <a href="https://arxiv.org/ps/2307.10762">ps</a>, <a href="https://arxiv.org/format/2307.10762">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1093/mnras/stad2206">10.1093/mnras/stad2206 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Decoding the compositions of four bright $r$-process-enhanced stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Saraf%2C+P">Pallavi Saraf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Prieto%2C+C+A">Carlos Allende Prieto</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sivarani%2C+T">Thirupathi Sivarani</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bandyopadhyay%2C+A">Avrajit Bandyopadhyay</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Susmitha%2C+A">A. Susmitha</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.10762v1-abstract-short" style="display: inline;"> There has been a concerted effort in recent years to identify the astrophysical sites of the $r$-process that can operate early in the Galaxy. The discovery of many $r$-process-enhanced (RPE) stars (especially by the $R$-process Alliance collaboration) has significantly accelerated this effort. However, only limited data exist on the detailed elemental abundances covering the primary neutron-captu&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10762v1-abstract-full').style.display = 'inline'; document.getElementById('2307.10762v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.10762v1-abstract-full" style="display: none;"> There has been a concerted effort in recent years to identify the astrophysical sites of the $r$-process that can operate early in the Galaxy. The discovery of many $r$-process-enhanced (RPE) stars (especially by the $R$-process Alliance collaboration) has significantly accelerated this effort. However, only limited data exist on the detailed elemental abundances covering the primary neutron-capture peaks. Subtle differences in the structure of the $r$-process pattern, such as the relative abundances of elements in the third peak, in particular, are expected to constrain the $r$-process sites further. Here, we present a detailed elemental-abundance analysis of four bright RPE stars selected from the HESP-GOMPA survey. Observations were carried out with the 10-m class telescope Gran Telescopio Canarias (GTC), Spain. The high spectral signal-to-noise ratios obtained allow us to derive abundances for 20 neutron-capture elements, including the third $r$-process peak element osmium (Os). We detect thorium (Th) in two stars, which we use to estimate their ages. We discuss the metallicity evolution of Mg, Sr, Ba, Eu, Os, and Th in $r$-II and $r$-I stars, based on a compilation of RPE stars from the literature. The strontium (Sr) abundance trend with respect to europium (Eu) suggests the need for an additional production site for Sr (similar to several earlier studies); this requirement could be milder for yttrium (Y) and zirconium (Zr). We also show that there could be some time delay between $r$-II and $r$-I star formation, based on the Mg/Th abundance ratios. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.10762v1-abstract-full').style.display = 'none'; document.getElementById('2307.10762v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">33 pages, 22 figures, Accepted for publication in MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.09572">arXiv:2307.09572</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.09572">pdf</a>, <a href="https://arxiv.org/format/2307.09572">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Probing the Galactic Halo with RR Lyrae Stars -- V. Chemistry, Kinematics, and Dynamically Tagged Groups </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Garcia%2C+J+C">Jonathan Cabrera Garcia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+X">Xin-Yi Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+G">Gaochao Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+H">Huawei Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hong%2C+J">Jihye Hong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shank%2C+D">Derek Shank</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudin%2C+D">Dmitrii Gudin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hirai%2C+Y">Yutaka Hirai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Komater%2C+D">Dante Komater</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.09572v1-abstract-short" style="display: inline;"> We employ a sample of 135,873 RR Lyrae stars (RRLs) with precise photometric-metallicity and distance estimates from the newly calibrated $P$--$蠁_{31}$--$R_{21}$--[Fe/H] and $Gaia$ $G$-band $P$--$R_{21}$--[Fe/H] absolute magnitude-metallicity relations of Li et al., combined with available proper motions from $Gaia$ EDR3, and 6955 systemic radial velocities from $Gaia$ DR3 and other sources, in or&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09572v1-abstract-full').style.display = 'inline'; document.getElementById('2307.09572v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.09572v1-abstract-full" style="display: none;"> We employ a sample of 135,873 RR Lyrae stars (RRLs) with precise photometric-metallicity and distance estimates from the newly calibrated $P$--$蠁_{31}$--$R_{21}$--[Fe/H] and $Gaia$ $G$-band $P$--$R_{21}$--[Fe/H] absolute magnitude-metallicity relations of Li et al., combined with available proper motions from $Gaia$ EDR3, and 6955 systemic radial velocities from $Gaia$ DR3 and other sources, in order to explore the chemistry and kinematics of the halo of the Milky Way (MW). This sample is ideally suited for characterization of the inner- and outer-halo populations of the stellar halo, free from the bias associated with spectroscopically selected probes, and for estimation of their relative contributions as a function of Galactocentric distance. The results of a Gaussian Mixture-Model analysis of these contributions are broadly consistent with other observational studies of the halo, and with expectations from recent MW simulation studies. We apply the HDBSCAN clustering method to the specific energies and cylindrical actions ($E$, J$_{r}$, J$_蠁$, J$_{z}$), identifying 97 Dynamically Tagged Groups (DTGs) of RRLs, and explore their associations with recognized substructures of the MW. The precise photometric-distance determinations ($未\, d/d &lt; 5$\%), and the resulting high-quality determination of dynamical parameters, yield highly statistically significant (low) dispersions of [Fe/H] for the stellar members of the DTGs compared to random draws from the full sample, indicating that they share common star-formation and chemical histories, influenced by their birth environments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.09572v1-abstract-full').style.display = 'none'; document.getElementById('2307.09572v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 8 figures, submitted to MNRAS</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.07642">arXiv:2307.07642</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.07642">pdf</a>, <a href="https://arxiv.org/format/2307.07642">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> </div> <p class="title is-5 mathjax"> Roman Early-Definition Astrophysics Survey Opportunity: Galactic Roman Infrared Plane Survey (GRIPS) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Paladini%2C+R">Roberta Paladini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zucker%2C+C">Catherine Zucker</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Benjamin%2C+R">Robert Benjamin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nataf%2C+D">David Nataf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minniti%2C+D">Dante Minniti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zasowski%2C+G">Gail Zasowski</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Peek%2C+J">Joshua Peek</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Carey%2C+S">Sean Carey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Allen%2C+L">Lori Allen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alonso-Garcia%2C+J">Javier Alonso-Garcia</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves%2C+J">Joao Alves</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anders%2C+F">Friederich Anders</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Athanassoula%2C+E">Evangelie Athanassoula</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bird%2C+J">Jonathan Bird</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bland-Hwathorn%2C+J">Joss Bland-Hwathorn</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Brown%2C+A">Anthony Brown</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Buder%2C+S">Sven Buder</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casagrande%2C+L">Luca Casagrande</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Casey%2C+A">Andrew Casey</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cassisi%2C+S">Santi Cassisi</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catelan%2C+M">Marcio Catelan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chary%2C+R">Ranga-Ram Chary</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chene%2C+A">Andre-Nicolas Chene</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ciardi%2C+D">David Ciardi</a> , et al. (45 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.07642v1-abstract-short" style="display: inline;"> A wide-field near-infrared survey of the Galactic disk and bulge/bar(s) is supported by a large representation of the community of Galactic astronomers. The combination of sensitivity, angular resolution and large field of view make Roman uniquely able to study the crowded and highly extincted lines of sight in the Galactic plane. A ~1000 deg2 survey of the bulge and inner Galactic disk would yiel&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07642v1-abstract-full').style.display = 'inline'; document.getElementById('2307.07642v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.07642v1-abstract-full" style="display: none;"> A wide-field near-infrared survey of the Galactic disk and bulge/bar(s) is supported by a large representation of the community of Galactic astronomers. The combination of sensitivity, angular resolution and large field of view make Roman uniquely able to study the crowded and highly extincted lines of sight in the Galactic plane. A ~1000 deg2 survey of the bulge and inner Galactic disk would yield an impressive dataset of ~120 billion sources and map the structure of our Galaxy. The effort would foster subsequent expansions in numerous dimensions (spatial, depth, wavelengths, epochs). Importantly, the survey would benefit from early defintion by the community, namely because the Galactic disk is a complex environment, and different science goals will require trade offs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.07642v1-abstract-full').style.display = 'none'; document.getElementById('2307.07642v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to the Roman Project on October 22 2021 in response to a call for white papers on early-definition Astrophysics opportunity</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2307.04469">arXiv:2307.04469</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2307.04469">pdf</a>, <a href="https://arxiv.org/format/2307.04469">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> </div> <p class="title is-5 mathjax"> Beyond spectroscopy. II. Stellar parameters for over twenty million stars in the northern sky from SAGES DR1 and Gaia DR3 </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Huang%2C+Y">Yang Huang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yuan%2C+H">Hai-Bo Yuan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tan%2C+K">Ke-Feng Tan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+W">Wei Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zheng%2C+J">Jie Zheng</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+C">Chun Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+H">Hai-Ning Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+J">Jing-Kun Zhao</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Xue%2C+X">Xiang-Xiang Xue</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+Y">Yu-Juan Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhang%2C+H">Hua-Wei Zhang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sun%2C+X">Xue-Ang Sun</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+J">Ji Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gu%2C+H">Hong-Rui Gu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wolf%2C+C">Christian Wolf</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Onken%2C+C+A">Christopher A. Onken</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Liu%2C+J">Ji-Feng Liu</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fan%2C+Z">Zhou Fan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Zhao%2C+G">Gang Zhao</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2307.04469v1-abstract-short" style="display: inline;"> We present precise photometric estimates of stellar parameters, including effective temperature, metallicity, luminosity classification, distance, and stellar age, for nearly 26 million stars using the methodology developed in the first paper of this series, based on the stellar colors from the Stellar Abundances and Galactic Evolution Survey (SAGES) DR1 and Gaia EDR3. The optimal design of stella&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04469v1-abstract-full').style.display = 'inline'; document.getElementById('2307.04469v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2307.04469v1-abstract-full" style="display: none;"> We present precise photometric estimates of stellar parameters, including effective temperature, metallicity, luminosity classification, distance, and stellar age, for nearly 26 million stars using the methodology developed in the first paper of this series, based on the stellar colors from the Stellar Abundances and Galactic Evolution Survey (SAGES) DR1 and Gaia EDR3. The optimal design of stellar-parameter sensitive $uv$ filters by SAGES has enabled us to determine photometric-metallicity estimates down to $-3.5$, similar to our previous results with the SkyMapper Southern Survey (SMSS), yielding a large sample of over five million metal-poor (MP; [Fe/H]$\le -1.0$) stars and nearly one million very metal-poor (VMP; [Fe/H]$\le -2.0$) stars. The typical precision is around $0.1$ dex for both dwarf and giant stars with [Fe/H]$&gt;-1.0$, and 0.15-0.25/0.3-0.4 dex for dwarf/giant stars with [Fe/H]$&lt;-1.0$. Using the precise parallax measurements and stellar colors from Gaia, effective temperature, luminosity classification, distance and stellar age are further derived for our sample stars. This huge data set in the Northern sky from SAGES, together with similar data in the Southern sky from SMSS, will greatly advance our understanding of the Milky Way, in particular its formation and evolution. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2307.04469v1-abstract-full').style.display = 'none'; document.getElementById('2307.04469v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 July, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 14 figures, 3 tables, accepted by ApJ. arXiv admin note: text overlap with arXiv:2104.14154</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.16748">arXiv:2306.16748</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.16748">pdf</a>, <a href="https://arxiv.org/ps/2306.16748">ps</a>, <a href="https://arxiv.org/format/2306.16748">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> </div> <p class="title is-5 mathjax"> A Dynamically Distinct Stellar Population in the Leading Arm of the Sagittarius Stream </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kang%2C+G">Gwibong Kang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+Y+K">Young Kwang Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.16748v1-abstract-short" style="display: inline;"> We present a chemical and dynamical analysis of the leading arm (LA) and trailing arm (TA) of the Sagittarius (Sgr) stream, as well as for the Sgr dwarf galaxy core (SC), using red giant branch, main sequence, and RR Lyrae stars from large spectroscopic survey data. The different chemical properties among the LA, TA, and SC generally agree with recent studies, and can be understood by radial metal&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16748v1-abstract-full').style.display = 'inline'; document.getElementById('2306.16748v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.16748v1-abstract-full" style="display: none;"> We present a chemical and dynamical analysis of the leading arm (LA) and trailing arm (TA) of the Sagittarius (Sgr) stream, as well as for the Sgr dwarf galaxy core (SC), using red giant branch, main sequence, and RR Lyrae stars from large spectroscopic survey data. The different chemical properties among the LA, TA, and SC generally agree with recent studies, and can be understood by radial metallicity gradient established in the progenitor of the Sgr dwarf, followed by preferential stellar stripping from the outer part of the Sgr progenitor. One striking finding is a relatively larger fraction of low-eccentricity stars (e &lt; 0.4) in the LA than in the TA and SC. The TA and SC exhibit very similar distributions. Considering that a tidal tail stripped off from a dwarf galaxy maintains the orbital properties of its progenitor, we expect that the e-distribution of the LA should be similar to that of the TA and SC. Thus, the disparate behavior of the e-distribution of the LA is of particular interest. Following the analysis of Vasiliev et al., we attempt to explain the different e-distribution by introducing a time-dependent perturbation of the Milky Way by the Large Magellanic Cloud (LMC)&#39;s gravitational pull, resulting in substantial evolution of the angular momentum of the LA stars to produce the low-e stars. In addition, we confirm from RR Lyrae stars with high eccentricity (e &gt; 0.6) that the TA stars farther away from the SC are also affected by disturbances from the LMC. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.16748v1-abstract-full').style.display = 'none'; document.getElementById('2306.16748v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2306.08677">arXiv:2306.08677</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2306.08677">pdf</a>, <a href="https://arxiv.org/format/2306.08677">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202346325">10.1051/0004-6361/202346325 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Galactic ArchaeoLogIcaL ExcavatiOns (GALILEO) II. t-SNE Portrait of Local Fossil Relics and Structures </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Ortigoza-Urdaneta%2C+M">Mario Ortigoza-Urdaneta</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vieira%2C+K">Katherine Vieira</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez-Trincado%2C+J+G">Jos茅 G. Fern谩ndez-Trincado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Queiroz%2C+A+B+A">Anna. B. A. Queiroz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbuy%2C+B">Beatriz Barbuy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chiappini%2C+C">Cristina Chiappini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Anders%2C+F">Friedrich Anders</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minniti%2C+D">Dante Minniti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Tang%2C+B">Baitian Tang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2306.08677v1-abstract-short" style="display: inline;"> Based on high-quality APOGEE DR17 and Gaia DR3 data for 1,742 red giants stars within 5 kpc of the Sun and not rotating with the Galactic disc ($V_蠁&lt;$ 100 km s$^{-1}$), we use the nonlinear technique of unsupervised analysis t-SNE to detect coherent structures in the space of ten chemical-abundance ratios: [Fe/H], [O/Fe], [Mg/Fe], [Si/Fe], [Ca/Fe], [C/Fe], [N/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe]. Ad&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08677v1-abstract-full').style.display = 'inline'; document.getElementById('2306.08677v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2306.08677v1-abstract-full" style="display: none;"> Based on high-quality APOGEE DR17 and Gaia DR3 data for 1,742 red giants stars within 5 kpc of the Sun and not rotating with the Galactic disc ($V_蠁&lt;$ 100 km s$^{-1}$), we use the nonlinear technique of unsupervised analysis t-SNE to detect coherent structures in the space of ten chemical-abundance ratios: [Fe/H], [O/Fe], [Mg/Fe], [Si/Fe], [Ca/Fe], [C/Fe], [N/Fe], [Al/Fe], [Mn/Fe], and [Ni/Fe]. Additionally, we obtain orbital parameters for each star using the non-axisymmetric gravitational potential {\tt GravPot16}. Seven structures are detected, including the Splash, Gaia-Sausage-Enceladus (GSE), the high-$伪$ heated-disc population, N-C-O peculiar stars, and inner disk-like stars, plus two other groups that did not match anything previously reported in the literature, here named Galileo 5 and Galileo 6 (G5 and G6). These two groups overlap with Splash in [Fe/H], G5 being lower metallicity than G6, both between GSE and Splash in the [Mg/Mn] versus [Al/Fe] plane, G5 in the $伪$-rich in-situ locus, and G6 on the border of the $伪$-poor in-situ one; nonetheless their low [Ni/Fe] hints to a possible ex-situ origin. Their orbital energy distributions are between the Splash and GSE, with G5 being slightly more energetic than G6. We verified the robustness of all the obtained groups by exploring a large range of t-SNE parameters, applying it to various subsets of data, and also measuring the effect of abundance errors through Monte Carlo tests. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2306.08677v1-abstract-full').style.display = 'none'; document.getElementById('2306.08677v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 June, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by A&amp;A. 19 pages, 15 figures, and 3 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 676, A140 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2305.04025">arXiv:2305.04025</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2305.04025">pdf</a>, <a href="https://arxiv.org/ps/2305.04025">ps</a>, <a href="https://arxiv.org/format/2305.04025">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.5303/JKAS.2023.56.1.59">10.5303/JKAS.2023.56.1.59 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Diverse Chemo-Dynamical Properties of Nitrogen-Rich Stars Identified From Low-Resolution Spectra </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+C">Changmin Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+Y+K">Young Kwang Kim</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2305.04025v1-abstract-short" style="display: inline;"> The second generation of stars in the GCs of the MW exhibit unusually high N, Na, or Al, compared to typical Galactic halo stars at similar metallicities. The halo field stars enhanced with such elements are believed to have originated in disrupted GCs or escaped from existing GCs. We identify such stars in the metallicity range -3.0 &lt; [Fe/H] &lt; 0.0 from a sample of ~ 36,800 giant stars observed in&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04025v1-abstract-full').style.display = 'inline'; document.getElementById('2305.04025v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2305.04025v1-abstract-full" style="display: none;"> The second generation of stars in the GCs of the MW exhibit unusually high N, Na, or Al, compared to typical Galactic halo stars at similar metallicities. The halo field stars enhanced with such elements are believed to have originated in disrupted GCs or escaped from existing GCs. We identify such stars in the metallicity range -3.0 &lt; [Fe/H] &lt; 0.0 from a sample of ~ 36,800 giant stars observed in the SDSS and LAMOST survey, and present their dynamical properties. The N-rich population and N-normal population among our giant sample do not exhibit similarities in either in their metallicity distribution function or dynamical properties. We find that, even though the MDF of the NRP looks similar to that of the MW&#39;s GCs in the range of [Fe/H] &lt; -1.0, our analysis of the dynamical properties does not indicate similarities between them in the same metallicity range, implying that the escaped members from existing GCs may account for a small fraction of our N-rich stars, or the orbits of the present GCs have been altered by the dynamical friction of the MW. We also find a significant increase in the fraction of N-rich stars in the halo field in the very metal-poor (VMP; [Fe/H] &lt; -2.0) regime, comprising up to ~ 20% of the fraction of the N-rich stars below [Fe/H] = -2.5, hinting that partially or fully destroyed VMP GCs may have in some degree contributed to the Galactic halo. A more detailed dynamical analysis of the NRP reveals that our sample of N-rich stars do not share a single common origin. Although a substantial fraction of the N-rich stars seem to originate from the GCs formed in situ, more than 60% of them are not associated with those of typical Galactic populations, but probably have extragalactic origins associated with GSE, Sequoia, and Sagittarius dwarf galaxies, as well as with presently unrecognized progenitors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2305.04025v1-abstract-full').style.display = 'none'; document.getElementById('2305.04025v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 6 figures, 1 table</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of the Korean Astronomical Society, Vol.56, No.1, pp.59-73 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.11945">arXiv:2301.11945</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.11945">pdf</a>, <a href="https://arxiv.org/format/2301.11945">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb8af">10.3847/1538-4357/acb8af <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Uranium Abundances and Ages of $R$-process Enhanced Stars with Novel U II Lines </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Shah%2C+S+P">Shivani P. Shah</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">Rana Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ji%2C+A+P">Alexander P. Ji</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+T">Terese Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roederer%2C+I+U">Ian U. Roederer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catelan%2C+M">M谩rcio Catelan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hackshaw%2C+Z">Zoe Hackshaw</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holmbeck%2C+E+M">Erika M. Holmbeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surman%2C+R">Rebecca Surman</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.11945v1-abstract-short" style="display: inline;"> The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the Universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar evolution models. The uranium abundance, which can be determined for metal-poor $r$-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11945v1-abstract-full').style.display = 'inline'; document.getElementById('2301.11945v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.11945v1-abstract-full" style="display: none;"> The ages of the oldest stars shed light on the birth, chemical enrichment, and chemical evolution of the Universe. Nucleocosmochronometry provides an avenue to determining the ages of these stars independent from stellar evolution models. The uranium abundance, which can be determined for metal-poor $r$-process enhanced (RPE) stars, has been known to constitute one of the most robust chronometers known. So far, U abundance determination has used a $single$ U II line at $\lambda3859$ 脜. Consequently, U abundance has been reliably determined for only five RPE stars. Here, we present the first homogeneous U abundance analysis of four RPE stars using two novel U II lines at $\lambda4050$ 脜 and $\lambda4090$ 脜, in addition to the canonical $\lambda3859$ 脜 line. We find that the U II lines at $\lambda4050$ 脜 and $\lambda4090$ 脜 are reliable and render U abundances in agreement with the $\lambda3859$ U abundance, for all the stars. We, thus, determine revised U abundances for RPE stars, 2MASS J09544277+5246414, RAVE J203843.2-002333, HE 1523-0901, and CS 31082-001, using multiple U II lines. We also provide nucleocosmochronometric ages of these stars based on the newly derived U, Th, and Eu abundances. The results of this study open up a new avenue to reliably and homogeneously determine U abundance for a significantly larger number of RPE stars. This will, in turn, enable robust constraints on the nucleocosmochronometric ages of RPE stars, which can be applied to understand the chemical enrichment and evolution in the early Universe, especially of $r$-process elements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.11945v1-abstract-full').style.display = 'none'; document.getElementById('2301.11945v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Resubmitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2301.06236">arXiv:2301.06236</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2301.06236">pdf</a>, <a href="https://arxiv.org/ps/2301.06236">ps</a>, <a href="https://arxiv.org/format/2301.06236">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acc58a">10.3847/1538-4357/acc58a <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Search for Extremely Metal-Poor Stars with GEMINI-N/GRACES I. Chemical-Abundance Analysis </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Jeong%2C+M">Miji Jeong</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+Y+K">Young Kwang Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Koo%2C+J">Jae-Rim Koo</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+H">Ho-Gyu Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yang%2C+S">Soung-Chul Yang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2301.06236v1-abstract-short" style="display: inline;"> We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] $&lt;$ -2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] $&lt;$ -3.0) candidates from SDSS and LAMOST survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find ten EMP stars among our candidates, and we newly identify three carbon-enhanced metal poor (CEMP) star&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06236v1-abstract-full').style.display = 'inline'; document.getElementById('2301.06236v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2301.06236v1-abstract-full" style="display: none;"> We present stellar parameters and abundances of 13 elements for 18 very metal-poor (VMP; [Fe/H] $&lt;$ -2.0) stars, selected as extremely metal-poor (EMP; [Fe/H] $&lt;$ -3.0) candidates from SDSS and LAMOST survey. High-resolution spectroscopic observations were performed using GEMINI-N/GRACES. We find ten EMP stars among our candidates, and we newly identify three carbon-enhanced metal poor (CEMP) stars with [Ba/Fe] $&lt;$ 0. Although chemical abundances of our VMP/EMP stars generally follow the overall trend of other Galactic halo stars, there are a few exceptions. One Na-rich star ([Na/Fe] = +1.14) with low [Mg/Fe] suggests a possible chemical connection with second-generation stars in a globular cluster. The progenitor of an extremely Na-poor star ([Na/Fe] = -1.02) with an enhancement of K- and Ni-abundance ratios may have undergone a distinct nucleosynthesis episode, associated with core-collapse supernovae (CCSNe) having a high explosion energy. We have also found a Mg-rich star ([Mg/Fe] = +0.73) with slightly enhanced Na and extremely low [Ba/Fe], indicating that its origin is not associated with neutron-capture events. On the other hand, the origin of the lowest Mg abundance ([Mg/Fe] = -0.61) star could be explained by accretion from a dwarf galaxy, or formation in a gas cloud largely polluted by SNe Ia. We have also explored the progenitor masses of our EMP stars by comparing their chemical-abundance patterns with those predicted by Population III SNe models, and find a mass range of 10 - 26 $M_\odot$, suggesting that such stars were primarily responsible for the chemical enrichment of the early Milky Way. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2301.06236v1-abstract-full').style.display = 'none'; document.getElementById('2301.06236v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 11 figures, 8 tables, submitted to ApJ</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.06517">arXiv:2212.06517</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.06517">pdf</a>, <a href="https://arxiv.org/ps/2212.06517">ps</a>, <a href="https://arxiv.org/format/2212.06517">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245503">10.1051/0004-6361/202245503 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> NLTE analysis of the methylidyne radical (CH) molecular lines in metal-poor stellar atmospheres </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Popa%2C+S+A">S. A. Popa</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hoppe%2C+R">R. Hoppe</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bergemann%2C+M">M. Bergemann</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+C+J">C. J. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Plez%2C+B">B. Plez</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">T. C. Beers</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.06517v1-abstract-short" style="display: inline;"> An analysis of the CH molecule in non-local thermodynamic equilibrium (NLTE) is performed for the physical conditions of cool stellar atmospheres typical of red giants (log g = 2.0, Teff = 4500 K) and the Sun. The aim of the present work is to explore whether the G-band of the CH molecule, which is commonly used in abundance diagnostics of Carbon-Enhanced Metal-Poor (CEMP) stars, is sensitive to N&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06517v1-abstract-full').style.display = 'inline'; document.getElementById('2212.06517v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.06517v1-abstract-full" style="display: none;"> An analysis of the CH molecule in non-local thermodynamic equilibrium (NLTE) is performed for the physical conditions of cool stellar atmospheres typical of red giants (log g = 2.0, Teff = 4500 K) and the Sun. The aim of the present work is to explore whether the G-band of the CH molecule, which is commonly used in abundance diagnostics of Carbon-Enhanced Metal-Poor (CEMP) stars, is sensitive to NLTE effects. LTE and NLTE theoretical spectra are computed with the MULTI code. We use one-dimensional (1D) LTE hydrostatic MARCS model atmospheres with parameters representing eleven red giant stars with metallicities ranging from [Fe/H] = -4.0 to [Fe/H] = 0.0 and carbon-to-iron ratios [C/Fe] = 0.0, +0.7, +1.5, and +3.0. The CH molecule model is represented by 1981 energy levels, 18377 radiative bound-bound transitions, and 932 photo-dissociation reactions. The rates due to transitions caused by collisions with free electrons and hydrogen atoms are computed using classical recipes. Our calculations suggest that NLTE effects in the statistical equilibrium of the CH molecule are significant and cannot be neglected for precision spectroscopic analysis of C abundances. The NLTE effects in the G-band increase with decreasing metallicity. We show that the C abundances are always under-estimated if LTE is assumed. The NLTE corrections to C abundance inferred from the CH feature range from +0.04 dex for the Sun to +0.21 dex for a red giant with metallicity [Fe/H] = -4.0. Departures from the LTE assumption in the CH molecule are non-negligible and NLTE effects have to be taken into account in the diagnostic spectroscopy based on the CH lines. We show here that the NLTE effects in the optical CH lines are non-negligible for the Sun and red giant stars, but further calculations are warranted to investigate the effects in other regimes of stellar parameters. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.06517v1-abstract-full').style.display = 'none'; document.getElementById('2212.06517v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in Astronomy &amp; Astrophysics</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 670, A25 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.02337">arXiv:2212.02337</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2212.02337">pdf</a>, <a href="https://arxiv.org/format/2212.02337">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202245119">10.1051/0004-6361/202245119 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Gaia-IGRINS synergy: Orbits of Newly Identified Milky Way Star Clusters </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Garro%2C+E+R">Elisa R. Garro</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Fern%C3%A1ndez-Trincado%2C+J+G">Jos茅 G. Fern谩ndez-Trincado</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Minniti%2C+D">Dante Minniti</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Moya%2C+W+H">Wisthon H. Moya</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Palma%2C+T">Tali Palma</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Barbuy%2C+B">Beatriz Barbuy</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sneden%2C+C">Chris Sneden</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Alves-Brito%2C+A">Alan Alves-Brito</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Dias%2C+B">Bruno Dias</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Af%C5%9Far%2C+M">Melike Af艧ar</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frelijj%2C+H">Heinz Frelijj</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lane%2C+R+R">Richard R. Lane</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.02337v2-abstract-short" style="display: inline;"> The recent exquisite Gaia astrometric, photometric, and radial velocity (RV) measurements resulted in a substantial advancement for the determination of the orbits for old star clusters, including the oldest Milky Way globular clusters (MW GCs). The main goal of this paper is to use the Gaia DR3 and the VVVX measurements to obtain the orbits for nearly a dozen new Galactic GC candidates that have&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02337v2-abstract-full').style.display = 'inline'; document.getElementById('2212.02337v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.02337v2-abstract-full" style="display: none;"> The recent exquisite Gaia astrometric, photometric, and radial velocity (RV) measurements resulted in a substantial advancement for the determination of the orbits for old star clusters, including the oldest Milky Way globular clusters (MW GCs). The main goal of this paper is to use the Gaia DR3 and the VVVX measurements to obtain the orbits for nearly a dozen new Galactic GC candidates that have been poorly studied or previously unexplored. We use the Gaia DR3 and VVVX databases to identify bonafide members of the Galactic GC candidates: VVV-CL160, Patchick122, Patchick125, Patchick126, Kronberger99, Kronberger119, Kronberger143, ESO92-18, ESO93-08, Gaia2, and Ferrero54. The relevant mean cluster physical parameters are derived (distances, Galactic coordinates, proper motions, RVs). We measure accurate mean RVs for the GCs VVV-CL160 and Patchick126, using observations acquired at the Gemini-South telescope with the IGRINS high-resolution spectrograph. Orbits for each cluster are then computed using the GravPot16 model, assuming typical Galactic bar pattern speeds. We reconstruct the orbits for these clusters for the first time. These include star clusters with retrograde and prograde orbital motions, both in the Galactic bulge and disk. Orbital properties, such as the mean time-variations of perigalactic and apogalactic distances, eccentricities, vertical excursions from the Galactic plane, and Z-components of the angular momentum are obtained for our sample. Our main conclusion is that, based on the orbital parameters, Patchick125 and Patchick126 are genuine MW bulge/halo GCs; Ferrero54, Gaia2 and Patchick122 are MW disk GCs. The orbits of Kronberger99, Kronberger119, Kronberger143, ESO92-18, and ESO93-08 are more consistent with old MW disk open clusters. VVV-CL160 falls very close to the Galactic centre, but reaches larger distances beyond the Sun, thus its origin is still unclear. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.02337v2-abstract-full').style.display = 'none'; document.getElementById('2212.02337v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 8 figures. Accepted for publication in A&amp;A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> A&amp;A 669, A136 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.15105">arXiv:2210.15105</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.15105">pdf</a>, <a href="https://arxiv.org/format/2210.15105">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Earth and Planetary Astrophysics">astro-ph.EP</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ac85bc">10.3847/1538-4357/ac85bc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The R-Process Alliance: Abundance Universality among Some Elements at and between the First and Second R-Process Peaks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Roederer%2C+I+U">Ian U. Roederer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Cowan%2C+J+J">John J. Cowan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pignatari%2C+M">Marco Pignatari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hartog%2C+E+A+D">Elizabeth A. Den Hartog</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">Rana Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frebel%2C+A">Anna Frebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+T+T">Terese T. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holmbeck%2C+E+M">Erika M. Holmbeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mumpower%2C+M+R">Matthew R. Mumpower</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakari%2C+C+M">Charli M. Sakari</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Surman%2C+R">Rebecca Surman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Vassh%2C+N">Nicole Vassh</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.15105v1-abstract-short" style="display: inline;"> We present new observational benchmarks of rapid neutron-capture process (r-process) nucleosynthesis for elements at and between the first (A ~ 80) and second (A ~ 130) peaks. Our analysis is based on archival ultraviolet and optical spectroscopy of eight metal-poor stars with Se (Z = 34) or Te (Z = 52) detections, whose r-process enhancement varies by more than a factor of 30 (-0.22 &lt;= [Eu/Fe] &lt;=&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.15105v1-abstract-full').style.display = 'inline'; document.getElementById('2210.15105v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.15105v1-abstract-full" style="display: none;"> We present new observational benchmarks of rapid neutron-capture process (r-process) nucleosynthesis for elements at and between the first (A ~ 80) and second (A ~ 130) peaks. Our analysis is based on archival ultraviolet and optical spectroscopy of eight metal-poor stars with Se (Z = 34) or Te (Z = 52) detections, whose r-process enhancement varies by more than a factor of 30 (-0.22 &lt;= [Eu/Fe] &lt;= +1.32). We calculate ratios among the abundances of Se, Sr through Mo (38 &lt;= Z &lt;= 42), and Te. These benchmarks may offer a new empirical alternative to the predicted solar system r-process residual pattern. The Te abundances in these stars correlate more closely with the lighter r-process elements than the heavier ones, contradicting and superseding previous findings. The small star-to-star dispersion among the abundances of Se, Sr, Y, Zr, Nb, Mo, and Te (&lt;= 0.13 dex, or 26%) matches that observed among the abundances of the lanthanides and third r-process-peak elements. The concept of r-process universality that is recognized among the lanthanide and third-peak elements in r-process-enhanced stars may also apply to Se, Sr, Y, Zr, Nb, Mo, and Te, provided the overall abundances of the lighter r-process elements are scaled independently of the heavier ones. The abundance behavior of the elements Ru through Sn (44 &lt;= Z &lt;= 50) requires further study. Our results suggest that at least one relatively common source in the early Universe produced a consistent abundance pattern among some elements spanning the first and second r-process peaks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.15105v1-abstract-full').style.display = 'none'; document.getElementById('2210.15105v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 3 figures, including 4 appendices. Published in the Astrophysical Journal</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Astrophysical Journal Vol. 936, p. 84 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.13511">arXiv:2210.13511</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.13511">pdf</a>, <a href="https://arxiv.org/format/2210.13511">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1051/0004-6361/202243701">10.1051/0004-6361/202243701 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> SDSS-IV MaStar: Stellar Parameter Determination with Continuum-Supplemented Full-Spectrum Fitting </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lazarz%2C+D">Daniel Lazarz</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Yan%2C+R">Renbin Yan</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wilhelm%2C+R">Ronald Wilhelm</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Chen%2C+Y">Yanping Chen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hill%2C+L">Lewis Hill</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holtzman%2C+J+A">Jon A. Holtzman</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Imig%2C+J">Julie Imig</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Maraston%2C+C">Claudia Maraston</a>, <a href="/search/astro-ph?searchtype=author&amp;query=M%C3%A9sz%C3%A1ros%2C+S">Szabolcs M茅sz谩ros</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Stringfellow%2C+G+S">Guy S. Stringfellow</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Thomas%2C+D">Daniel Thomas</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Bizyaev%2C+D">Dmitry Bizyaev</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Drory%2C+N">Niv Drory</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lane%2C+R+R">Richard R. Lane</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Nitschelm%2C+C">Christian Nitschelm</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.13511v1-abstract-short" style="display: inline;"> We present a stellar parameter catalog built to accompany the MaStar Stellar Library, which is a comprehensive collection of empirical, medium-resolution stellar spectra. We constructed this parameter catalog by using a multicomponent $蠂^{2}$ fitting approach to match MaStar spectra to models generated by interpolating the ATLAS9-based BOSZ model spectra. The total $蠂^{2}$ for a given model is def&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13511v1-abstract-full').style.display = 'inline'; document.getElementById('2210.13511v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.13511v1-abstract-full" style="display: none;"> We present a stellar parameter catalog built to accompany the MaStar Stellar Library, which is a comprehensive collection of empirical, medium-resolution stellar spectra. We constructed this parameter catalog by using a multicomponent $蠂^{2}$ fitting approach to match MaStar spectra to models generated by interpolating the ATLAS9-based BOSZ model spectra. The total $蠂^{2}$ for a given model is defined as the sum of components constructed to characterize narrow-band features of observed spectra (e.g., absorption lines) and the broadband continuum shape separately. Extinction and systematics due to flux calibration were taken into account in the fitting. The $蠂^{2}$ distribution for a given region of model space was sampled using a Markov Chain Monte Carlo (MCMC) algorithm, the data from which were then used to extract atmospheric parameter estimates ($T_{eff}$, log g, [Fe/H], and [$伪$/Fe]), their corresponding uncertainties, and direct extinction measurements. Two methods were used to extract parameters and uncertainties: one that accepts the MCMC&#39;s prescribed minimum-$蠂^{2}$ result, and one that uses Bayesian inference to compute a likelihood-weighted mean from the $蠂^{2}$ distribution sampled by the MCMC. Results were evaluated for internal consistency using repeat observations where available and by comparing them with external data sets (e.g., APOGEE-2 and Gaia DR2). Our spectral-fitting exercise reveals possible deficiencies in current theoretical model spectra, illustrating the potential power of MaStar spectra for helping to improve the models. This paper represents an update to the parameters that were originally presented with SDSS-IV DR17. The MaStar parameter catalog containing our BestFit results is available on the SDSS-IV DR17 website as part of version 2 of the MaStar stellar parameter value-added catalog. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.13511v1-abstract-full').style.display = 'none'; document.getElementById('2210.13511v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22 pages, 21 figures. A&amp;A in press</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07905">arXiv:2210.07905</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07905">pdf</a>, <a href="https://arxiv.org/ps/2210.07905">ps</a>, <a href="https://arxiv.org/format/2210.07905">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acb6f5">10.3847/1538-4357/acb6f5 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemodynamical Analysis of Metal-rich High-eccentricity Stars in the Milky Way&#39;s Disk </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+A">Ayeon Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Kim%2C+Y+K">Young Kwang Kim</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+D">Deokkeun An</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07905v1-abstract-short" style="display: inline;"> We present a chemodynamical analysis of 11,562 metal-rich, high-eccentricity halo-like main-sequence (MS) stars, which has been referred to as the Splash or Splashed Disk, selected from Sloan Digital Sky Survey (SDSS) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). When divided into two groups, a low-[$伪$/Fe] population (LAP) and a high-[$伪$/Fe] population (HAP), based on k&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07905v1-abstract-full').style.display = 'inline'; document.getElementById('2210.07905v1-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07905v1-abstract-full" style="display: none;"> We present a chemodynamical analysis of 11,562 metal-rich, high-eccentricity halo-like main-sequence (MS) stars, which has been referred to as the Splash or Splashed Disk, selected from Sloan Digital Sky Survey (SDSS) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST). When divided into two groups, a low-[$伪$/Fe] population (LAP) and a high-[$伪$/Fe] population (HAP), based on kinematics and chemistry, we find that they exhibit very distinct properties, indicative of different origins. From a detailed analysis of their orbital inclinations, we suggest that the HAP arises from a large fraction (~ 90%) of heated disk stars and a small fraction (~ 10%) of in situ stars from a starburst population, likely induced by interaction of the Milky Way with Gaia Sausage/Enceladus (GSE) or other early merger. The LAP comprises about half accreted stars from the GSE and half formed by the GSE-induced starburst. Our findings further imply that the Splash stars in our sample originated from at least three different mechanisms - accretion, disk heating, and a merger induced starburst. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07905v1-abstract-full').style.display = 'none'; document.getElementById('2210.07905v1-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2210.07542">arXiv:2210.07542</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2210.07542">pdf</a>, <a href="https://arxiv.org/ps/2210.07542">ps</a>, <a href="https://arxiv.org/format/2210.07542">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acd5cb">10.3847/1538-4357/acd5cb <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A Blueprint for the Milky Way&#39;s Stellar Populations. IV. A String of Pearls $-$ the Galactic Starburst Sequence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=An%2C+D">Deokkeun An</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Lee%2C+Y+S">Young Sun Lee</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Masseron%2C+T">Thomas Masseron</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2210.07542v2-abstract-short" style="display: inline;"> We continue our series of papers on phase-space distributions of stars in the Milky Way based on photometrically derived metallicities and Gaia astrometry, with a focus on the halo-disk interface in the local volume. To exploit various photometric databases, we develop a method of empirically calibrating synthetic stellar spectra based on a comparison with observations of stellar sequences and ind&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07542v2-abstract-full').style.display = 'inline'; document.getElementById('2210.07542v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2210.07542v2-abstract-full" style="display: none;"> We continue our series of papers on phase-space distributions of stars in the Milky Way based on photometrically derived metallicities and Gaia astrometry, with a focus on the halo-disk interface in the local volume. To exploit various photometric databases, we develop a method of empirically calibrating synthetic stellar spectra based on a comparison with observations of stellar sequences and individual stars in SDSS, SMSS, and PS1, overcoming band-specific corrections employed in our previous work. In addition, photometric zero-point corrections are derived to provide an internally consistent photometric system with a spatially uniform metallicity zero point. Using our phase-space diagrams, we find a remarkably narrow sequence in the rotational velocity ($v_蠁$) versus metallicity ([Fe/H]) space for a sample of high proper-motion stars ($&gt;25$ mas yr$^{-1}$), which runs along Gaia Sausage/Enceladus (GSE) and the Splash sub-structures, and is linked to the disk, spanning nearly $2$ dex in [Fe/H]. Notably, a rapid increase of $v_蠁$ from a nearly zero net rotation to $\sim180$ km s$^{-1}$ in a narrow metallicity interval ($-0.6 \leq$ [Fe/H] $\leq -0.4$) suggests that some of these stars emerged quickly on a short gas-depletion time scale. Through measurements of a scale height and length, we argue that these stars are distinct from those heated dynamically by mergers. This chain of high proper-motion stars provides additional support for recent findings that suggest a starburst occurred when the young Milky Way encountered the gas-rich GSE progenitor, which eventually led to the settling of metal-enriched gas onto the disk. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2210.07542v2-abstract-full').style.display = 'none'; document.getElementById('2210.07542v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 October, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">39 pages, 30 figures, accepted for publication in The Astrophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.12224">arXiv:2209.12224</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.12224">pdf</a>, <a href="https://arxiv.org/format/2209.12224">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/acbbcc">10.3847/1538-4357/acbbcc <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemo-Dynamically Tagged Groups of CEMP Stars in the Halo of the Milky Way. I. Untangling the Origins of CEMP-$s$ and CEMP-no Stars </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Zepeda%2C+J">Joseph Zepeda</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Shank%2C+D">Derek Shank</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Gudin%2C+D">Dmitrii Gudin</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hirai%2C+Y">Yutaka Hirai</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Mardini%2C+M">Mohammad Mardini</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Pifer%2C+C">Colin Pifer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Catapano%2C+T">Thomas Catapano</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Calagna%2C+S">Sean Calagna</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.12224v2-abstract-short" style="display: inline;"> We construct a sample of 644 carbon-enhanced metal-poor (CEMP) stars with abundance analyses based on moderate- to high-resolution spectroscopic studies. Dynamical parameters for these stars are estimated, based on radial velocities, Bayesian parallax-based distance estimates, and proper motions from $Gaia$ EDR3 and DR3, supplemented by additional available information where needed. After separati&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12224v2-abstract-full').style.display = 'inline'; document.getElementById('2209.12224v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.12224v2-abstract-full" style="display: none;"> We construct a sample of 644 carbon-enhanced metal-poor (CEMP) stars with abundance analyses based on moderate- to high-resolution spectroscopic studies. Dynamical parameters for these stars are estimated, based on radial velocities, Bayesian parallax-based distance estimates, and proper motions from $Gaia$ EDR3 and DR3, supplemented by additional available information where needed. After separating our sample into the different CEMP morphological groups in the Yoon-Beers Diagram of absolute carbon abundance vs. metallicity, we used the derived specific energies and actions (E, J$_{r}$, J$_蠁$, J$_{z}$) to cluster them into Chemo-Dynamically Tagged Groups (CDTGs). We then analyzed the elemental-abundance dispersions within these clusters by comparing them to the dispersion of clusters that were generated at random. We find that, for the Group I (primarily CEMP-$s$ and CEMP-$r/s$) clustered stars, there exist statistically insignificant intra-cluster dispersions in [Fe/H], $[\text{C}/\text{Fe}]_{c}$ (evolution corrected carbon), and [Mg/Fe] when compared to the intra-cluster dispersions of randomly clustered Group I CEMP stars. In contrast, the Group II (primarily CEMP-no) stars exhibit clear similarities in their intra-cluster abundances, with very low, statistically significant, dispersions in $[\text{C}/\text{Fe}]_{c}$. and marginally significant results in [Mg/Fe]. These results strongly indicate that Group I CEMP stars received their carbon enhancements from local phenomena, such as mass transfer from a evolved binary companion in regions with extended star-formation histories, while the CDTGs of Group II CEMP stars formed in low-metallicity environments that had already been enriched in carbon, likely from massive rapidly rotating ultra and hyper metal-poor stars and/or supernovae associated with high-mass early generation stars. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.12224v2-abstract-full').style.display = 'none'; document.getElementById('2209.12224v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to APJ Journals. arXiv admin note: substantial text overlap with arXiv:2208.09712</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02184">arXiv:2209.02184</a> <span>&nbsp;[<a href="https://arxiv.org/pdf/2209.02184">pdf</a>, <a href="https://arxiv.org/format/2209.02184">other</a>]&nbsp;</span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Solar and Stellar Astrophysics">astro-ph.SR</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Astrophysics of Galaxies">astro-ph.GA</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3847/1538-4357/ad6004">10.3847/1538-4357/ad6004 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Discovery of a Metal-Poor Red Giant Star with the Highest Ultra-Lithium Enhancement </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/astro-ph?searchtype=author&amp;query=Kowkabany%2C+J">Jeremy Kowkabany</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Ezzeddine%2C+R">Rana Ezzeddine</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Charbonnel%2C+C">Corinne Charbonnel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Roederer%2C+I+U">Ian U. Roederer</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Wang%2C+E+X">Ella Xi Wang</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Li%2C+Y">Yangyang Li</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hackshaw%2C+Z">Zoe Hackshaw</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Beers%2C+T+C">Timothy C. Beers</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Frebel%2C+A">Anna Frebel</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Hansen%2C+T+T">Terese T. Hansen</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Holmbeck%2C+E">Erika Holmbeck</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Placco%2C+V+M">Vinicius M. Placco</a>, <a href="/search/astro-ph?searchtype=author&amp;query=Sakari%2C+C+M">Charli M. Sakari</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02184v2-abstract-short" style="display: inline;"> We present the discovery of 2MASS J05241392-0336543 (hereafter J0524-0336), a very metal-poor ([Fe/H]=-2.43 +- 0.16), highly r-process-enhanced ([Eu/Fe]= +1.34 +- 0.10) Milky Way halo field red giant star, with an ultra high Li abundance of A(Li)(3D,NLTE)= 6.15 +- 0.25 and [Li/Fe]= +7.64 +- 0.25, respectively. This makes J0524-0336 the most lithium-enhanced giant star discovered to date. We presen&hellip; <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02184v2-abstract-full').style.display = 'inline'; document.getElementById('2209.02184v2-abstract-short').style.display = 'none';">&#9661; More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02184v2-abstract-full" style="display: none;"> We present the discovery of 2MASS J05241392-0336543 (hereafter J0524-0336), a very metal-poor ([Fe/H]=-2.43 +- 0.16), highly r-process-enhanced ([Eu/Fe]= +1.34 +- 0.10) Milky Way halo field red giant star, with an ultra high Li abundance of A(Li)(3D,NLTE)= 6.15 +- 0.25 and [Li/Fe]= +7.64 +- 0.25, respectively. This makes J0524-0336 the most lithium-enhanced giant star discovered to date. We present a detailed analysis of the star&#39;s atmospheric stellar parameters and chemical abundance determinations. Additionally, we detect indications of infrared excess, as well as observe variable emission in the wings of the H_alpha absorption line across multiple epochs, indicative of a potential enhanced mass-loss event with possible outflows. Our analysis reveals that J0524-0336 lies either between the bump and the tip of the Red Giant Branch (RGB), or on the early-Asymptotic Giant Branch (e-AGB). We investigate the possible sources of lithium enrichment in J0524-0336, including both internal and external sources. Based on current models and on the observational evidence we have collected, our study shows that J0524-0336 may be undergoing the so-called lithium flash that is expected to occur in low-mass stars when they reach the RGB bump and/or the early-AGB. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02184v2-abstract-full').style.display = 'none'; document.getElementById('2209.02184v2-abstract-short').style.display = 'inline';">&#9651; Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">25 pages, 4 tables, 10 figures, Accepted for publication in ApJ</span> </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&amp;query=Beers%2C+T+C&amp;start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li><span class="pagination-ellipsis">&hellip;</span></li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a>&nbsp;&nbsp;</span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10