CINXE.COM
Search results for: carcinogen
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: carcinogen</title> <meta name="description" content="Search results for: carcinogen"> <meta name="keywords" content="carcinogen"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="carcinogen" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="carcinogen"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 22</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: carcinogen</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">22</span> Bioremediation of PAHs-Contaminated Soil Using Land Treatment Processes </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Somaye%20Eskandary">Somaye Eskandary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycyclic aromatic hydrocarbons (PAHs) are present in crude oil and its derivatives contaminate soil and also increase carcinogen and mutagen contamination, which is a concern for researchers. Land farming is one of the methods that remove pollutants from the soil by native microorganisms. It seems that this technology is cost-effective, environmentally friendly and causes less debris problem to be disposed. This study aimed to refine the polycyclic aromatic hydrocarbons from oil-contaminated soil using the land farming method. In addition to examine the concentration of polycyclic aromatic hydrocarbons by GC-FID, some characteristics such as soil microbial respiration and dehydrogenase, peroxidase, urease, acid and alkaline phosphatase enzyme concentration were also measured. The results showed that after land farming process the concentrations of some polycyclic aromatic hydrocarbons dropped to 50 percent. The results showed that the enzyme concentration is reduced by reducing the concentration of hydrocarbons and microbial respiration. These results emphasize the process of land farming for removal of polycyclic aromatic hydrocarbons from soil by indigenous microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20contamination" title="soil contamination">soil contamination</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20chromatography" title=" gas chromatography"> gas chromatography</a>, <a href="https://publications.waset.org/abstracts/search?q=native%20microorganisms" title=" native microorganisms"> native microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20enzymes" title=" soil enzymes"> soil enzymes</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20respiration" title=" microbial respiration"> microbial respiration</a>, <a href="https://publications.waset.org/abstracts/search?q=carcinogen" title=" carcinogen"> carcinogen</a> </p> <a href="https://publications.waset.org/abstracts/5748/bioremediation-of-pahs-contaminated-soil-using-land-treatment-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5748.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">21</span> Roles of Lysine-63-Linked Ubiquitination in Cell Decision Fate between Cell Proliferation and Apoptosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chargui%20Abderrahman">Chargui Abderrahman</a>, <a href="https://publications.waset.org/abstracts/search?q=Nehdi%20%20Afef"> Nehdi Afef </a>, <a href="https://publications.waset.org/abstracts/search?q=Bela%C3%AFD%20%20Amine"> BelaïD Amine </a>, <a href="https://publications.waset.org/abstracts/search?q=Djerbi%20%20Nadir"> Djerbi Nadir</a>, <a href="https://publications.waset.org/abstracts/search?q=Tauc%20%20Michel"> Tauc Michel</a>, <a href="https://publications.waset.org/abstracts/search?q=Hofman%20Paul"> Hofman Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Mograbi%20%20Baharia"> Mograbi Baharia</a>, <a href="https://publications.waset.org/abstracts/search?q=El%20May%20%20Mich%C3%A8Le"> El May MichèLe </a> </p> <p class="card-text"><strong>Abstract:</strong></p> K63-linked ubiquitination — i.e. conjugation of a chain of ubiquitins (Ub) linked through lys63 — has emerged as a key mechanism regulating signalling transduction pathways. Although critical, very little information is currently available about how subversion of K63 ubiquitination might contribute to cancers and inflammatory diseases. The present study provides the first evidence that Cadmium (Cd), a widespread environmental carcinogen and toxicant, is a powerful activator of K63 ubiquitination. Indeed, Cd induces accumulation of K63 polyUb proteins. Importantly, Cd-induced ubiquitination does not stem on oxidative damage or proteasome impairment. Rather, we demonstrate that Cd not only activates K63 ubiquitination but also amplifies their accumulation by overloading the capacity of autophagy pathway. At molecular level, Cd-induced ubiquitination is correlated with stabilization of HIF-1 and the activation of NF-B, two transcription factors. Strikingly, prolonged cell exposure to high Cd concentrations induces an exaggerated K63 ubiquitination that fosters aggresome formation, thus precluding these proteins from interacting with their downstream nuclear targets. We therefore propose that the aberrant activation of K63 ubiquitination by the carcinogen Cadmium could promote cell proliferation and inflammation at low levels while high levels committed cell to death. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cadmium" title="cadmium">cadmium</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20exposure" title=" environmental exposure"> environmental exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=Lysine-63-ubiquitination" title=" Lysine-63-ubiquitination"> Lysine-63-ubiquitination</a>, <a href="https://publications.waset.org/abstracts/search?q=kidney" title=" kidney"> kidney</a>, <a href="https://publications.waset.org/abstracts/search?q=apoptosis" title=" apoptosis"> apoptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=proliferation" title=" proliferation"> proliferation</a>, <a href="https://publications.waset.org/abstracts/search?q=autophagy" title=" autophagy"> autophagy</a> </p> <a href="https://publications.waset.org/abstracts/138910/roles-of-lysine-63-linked-ubiquitination-in-cell-decision-fate-between-cell-proliferation-and-apoptosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138910.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">20</span> Intracellular Sphingosine-1-Phosphate Receptor 3 Contributes to Lung Tumor Cell Proliferation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michela%20Terlizzi">Michela Terlizzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chiara%20Colarusso"> Chiara Colarusso</a>, <a href="https://publications.waset.org/abstracts/search?q=Aldo%20Pinto"> Aldo Pinto</a>, <a href="https://publications.waset.org/abstracts/search?q=Rosalinda%20Sorrentino"> Rosalinda Sorrentino</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sphingosine-1-phosphate (S1P) is a membrane-derived bioactive phospholipid exerting a multitude of effects on respiratory cell physiology and pathology through five S1P receptors (S1PR1-5). Higher levels of S1P have been registered in a broad range of respiratory diseases, including inflammatory disorders and cancer, although its exact role is still elusive. Based on our previous study in which we found that S1P/S1PR3 is involved in an inflammatory pattern via the activation of Toll-like Receptor 9 (TLR9), highly expressed on lung cancer cells, the main goal of the current study was to better understand the involvement of S1P/S1PR3 pathway/signaling during lung carcinogenesis, taking advantage of a mouse model of first-hand smoke exposure and of carcinogen-induced lung cancer. We used human samples of Non-Small Cell Lung Cancer (NSCLC), a mouse model of first-hand smoking, and of Benzo(a)pyrene (BaP)-induced tumor-bearing mice and A549 lung adenocarcinoma cells. We found that the intranuclear, but not the membrane, localization of S1PR3 was associated to the proliferation of lung adenocarcinoma cells, the mechanism that was correlated to human and mouse samples of smoke-exposure and carcinogen-induced lung cancer, which were characterized by higher utilization of S1P. Indeed, the inhibition of the membrane S1PR3 did not alter tumor cell proliferation after TLR9 activation. Instead, according to the nuclear localization of sphingosine kinase (SPHK) II, the enzyme responsible for the catalysis of the S1P last step synthesis, the inhibition of the kinase completely blocked the endogenous S1P-induced tumor cell proliferation. These results prove that the endogenous TLR9-induced S1P can on one side favor pro-inflammatory mechanisms in the tumor microenvironment via the activation of cell surface receptors, but on the other tumor progression via the nuclear S1PR3/SPHK II axis, highlighting a novel molecular mechanism that identifies S1P as one of the crucial mediators for lung carcinogenesis-associated inflammatory processes and that could provide differential therapeutic approaches especially in non-responsive lung cancer patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sphingosine-1-phosphate%20%28S1P%29" title="sphingosine-1-phosphate (S1P)">sphingosine-1-phosphate (S1P)</a>, <a href="https://publications.waset.org/abstracts/search?q=S1P%20Receptor%203%20%28S1PR3%29" title=" S1P Receptor 3 (S1PR3)"> S1P Receptor 3 (S1PR3)</a>, <a href="https://publications.waset.org/abstracts/search?q=smoking-mice" title=" smoking-mice"> smoking-mice</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20inflammation" title=" lung inflammation"> lung inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a> </p> <a href="https://publications.waset.org/abstracts/143416/intracellular-sphingosine-1-phosphate-receptor-3-contributes-to-lung-tumor-cell-proliferation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143416.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">200</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> Health Risk Assessment According to Exposure with Heavy Metals and Physicochemical Parameters; Water Quality Index and Contamination Degree Evaluation in Bottled Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Samaneh%20Abolli">Samaneh Abolli</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Alimohammadi"> Mahmood Alimohammadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The survey analyzed 71 bottled water brands in Tehran, Iran, examining 10 physicochemical parameters and 16 heavy metals. The water quality index (WQI) approach was used to assess water quality, and methods such as carcinogen risk (CR) and hazard index (HI) were employed to evaluate health risks. The results indicated that the bottled water had good quality overall, but some brands were of poor or very poor quality. The study also revealed significant human health risks, especially for children, due to the presence of minerals and heavy metals in bottled water. Correlation analyses and risk assessments for various substances were conducted, providing valuable insights into the potential health impacts of the analyzed bottled water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bottled%20wate" title="bottled wate">bottled wate</a>, <a href="https://publications.waset.org/abstracts/search?q=rwater%20quality%20index" title=" rwater quality index"> rwater quality index</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20assessment" title=" health risk assessment"> health risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=contamination%20degree" title=" contamination degree"> contamination degree</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20metal%20evaluation%20index" title=" heavy metal evaluation index"> heavy metal evaluation index</a> </p> <a href="https://publications.waset.org/abstracts/179970/health-risk-assessment-according-to-exposure-with-heavy-metals-and-physicochemical-parameters-water-quality-index-and-contamination-degree-evaluation-in-bottled-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">53</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Ethyl Carbamate in Korean Total Diet Study: Level, Dietary Intake, and Risk Assessment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eunmi%20Koh">Eunmi Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Bogyoung%20Choi"> Bogyoung Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Dayeon%20Ryu"> Dayeon Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jee-Yeon%20Lee"> Jee-Yeon Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Sungok%20Kwon"> Sungok Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Cho-Il%20Kim"> Cho-Il Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ethyl carbamate(EC) is a probable human carcinogen (Group 2A) found in alcoholic beverages and fermented foods. A total of 351 samples including fermented foods and alcoholic beverages were chosen from 734 foods appeared in the pooled intake data of 2008, 2009, 2010, and 2011 Korea National Health & Nutrition Examination Survey (KNHANES). Sampling was carried out from September 2013 to July 2016 in 18 supermarkets of 9 metropolitan cities in Korea. The samples were pooled, prepared according to various cooking methods, and analyzed. A total of 1245 samples were analyzed using gas chromatograph-mass spectrometer. EC was detected in 13 items (1.0%), which ranged from not-detected to 151 g/kg. Alcoholic beverages (maesilju, whisky, and bokbunjaju) and fermented soy products (soy sauce and soybean paste) were the food items with relatively higher EC levels. Dietary intake of EC in the Korean population was estimated to be 2.11 ng/kg body weight (bw) per day for average population and 8.42 ng/kg bw per day for high consumers (the 97.5th percentile). When the estimated average dietary exposure to EC was compared with the Benchmark Dose Lower Confidence Limit 10% (BMDL10) of 0.3 mg/kg bw per day, margin of exposure (MOE) values of 1420000 to 28000000 were observed. This indicates that there is no health concern for the Korean population. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ethyl%20carbamate" title="ethyl carbamate">ethyl carbamate</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20diet%20study" title=" total diet study"> total diet study</a>, <a href="https://publications.waset.org/abstracts/search?q=dietary%20exposure" title=" dietary exposure"> dietary exposure</a>, <a href="https://publications.waset.org/abstracts/search?q=margin%20of%20exposure" title=" margin of exposure"> margin of exposure</a> </p> <a href="https://publications.waset.org/abstracts/77106/ethyl-carbamate-in-korean-total-diet-study-level-dietary-intake-and-risk-assessment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Effect of Post and Pre Induced Treatment with Hesperidin in N-Methyl N-Nitrosourea Induced Mammary Gland Cancer in Female Sprague-Dawley Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vinay%20Kumar%20Theendra">Vinay Kumar Theendra</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main objective of the study is to evaluate the effectiveness of hesperidin in the treatment of breast cancer and causing less (or) no bone marrow depression which is the major side effect of the present anticancer drugs treating breast cancer, also to evaluate the mechanisms through which these compounds are exerting their effect. Breast cancer is induced by administering N-methyl N-Nitrosourea (MNU) at a dose of 50mg/kg body weight. Upon the termination of the experiment, the animals were sacrificed by the method of cervical dislocation. The animals were dissected along the ventral midline and were grossly examined for the presence of tumors. Then the tumours were removed along with the stroma. Vascular endothelial growth factor (VEGF) levels were estimated by using ELISA method. The first occurrence of palpable tumors was eight weeks after carcinogen treatment and the final tumour incidence was 100% in the MNU alone and topical treated rats. Whereas in rats of other treatment groups there is decreased tumour incidence which might be due to their antitumour activity. Hesperidin therapy inhibited angiogenesis which can be evident from the significant reduction in serum as well as tumour VEGF concentrations in comparison to the untreated mammary carcinoma bearing rats. Hesperidin is promising agents that exert direct antitumor and also antiangiogenic, antiproliferative and anti-inflammatory activities. Even though the potency is little lesser than standard drug vincristine, it has been proved to be safe without effecting haematological count. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hesperidin" title="hesperidin">hesperidin</a>, <a href="https://publications.waset.org/abstracts/search?q=VEGF" title=" VEGF"> VEGF</a>, <a href="https://publications.waset.org/abstracts/search?q=COX%202" title=" COX 2"> COX 2</a>, <a href="https://publications.waset.org/abstracts/search?q=N-methyl%20N-nitrosourea" title=" N-methyl N-nitrosourea"> N-methyl N-nitrosourea</a> </p> <a href="https://publications.waset.org/abstracts/97109/effect-of-post-and-pre-induced-treatment-with-hesperidin-in-n-methyl-n-nitrosourea-induced-mammary-gland-cancer-in-female-sprague-dawley-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> Health Burden of Disease Assessment for Minimizing Aflatoxin Exposure in Peanuts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Min-Pei%20Ling">Min-Pei Ling</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aflatoxin is a fungal secondary metabolite with high toxicity capable of contaminating various types of food crops. It has been identified as a Group 1 human carcinogen by the International Agency for Research on Cancer. Chronic aflatoxin exposure has caused a worldwide public food safety concern. Peanuts and peanut products are the major sources of aflatoxin exposure. Therefore, some reduction interventions have been developed to minimize contamination through the peanut production chain. The purpose of this study is to estimate the efficacy of interventions in reducing the health impact of hepatocellular carcinoma caused by aflatoxin contamination in peanuts. The estimated total disability-adjusted life-years (DALYs) was calculated using FDA-iRISK online software. Six aflatoxin reduction strategies were evaluated, including good agricultural practice (GAP), biocontrol, Purdue Improved Crop Storage packaging, basic processing, ozonolysis, and ultraviolet irradiation. The results indicated that basic processing could prevent huge public health loss of 4,079.7–21,833 total DALYs per year, which accounted for 39.6% of all decreased total DALYs. GAP and biocontrol were both effective strategies in the farm field, while the other three interventions were limited in reducing total DALYs. In conclusion, this study could help farmers, processing plants, and government policymakers to alleviate aflatoxin contamination issues in the peanut production chain. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title="aflatoxin">aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20burden" title=" health burden"> health burden</a>, <a href="https://publications.waset.org/abstracts/search?q=disability-adjusted%20life-years" title=" disability-adjusted life-years"> disability-adjusted life-years</a>, <a href="https://publications.waset.org/abstracts/search?q=peanuts" title=" peanuts"> peanuts</a> </p> <a href="https://publications.waset.org/abstracts/102924/health-burden-of-disease-assessment-for-minimizing-aflatoxin-exposure-in-peanuts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102924.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Association of Single Nucleotide Polymorphisms in Leptin and Leptin Receptors with Oral Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chiung-Man%20Tsai">Chiung-Man Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chia-Jui%20Weng"> Chia-Jui Weng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Leptin (LEP) and leptin receptor (LEPR) both play a crucial role in the mediation of physiological reactions and carcinogenesis and may serve as a candidate biomarker of oral cancer. The present case-control study aimed to examine the effects of single nucleotide polymorphisms (SNPs) of LEP -2548 G/A (rs7799039), LEPR K109R (rs1137100), and LEPR Q223R (rs1137101) with or without interacting to environmental carcinogens on the risk for oral squamous cell carcinoma (OSCC). The SNPs of three genetic allele, from 567 patients with oral cancer and 560 healthy controls in Taiwan were analyzed. All of The three genetic polymorphisms exhibited insignificant (P > .05) effects on the risk to have oral cancer. However, the patients with polymorphic allele of LEP -2548 have a significant low risk for the development of clinical stage (A/G, AOR = 0.670, 95% CI = 0.454–0.988, P < .05; A/G+G/G, AOR = 0.676, 95% CI = 0.467–0.978, P < .05) compared to patients with ancestral homozygous A/A genotype. Additionally, an interesting result was found that the impact of LEP -2548 G/A SNP on oral carcinogenesis in subjects without tobacco consumption (A/G, AOR=2.078, 95% CI: 1.161-3.720, p=0.014; A/G+G/G, AOR=2.002, 95% CI: 1.143-3.505, p=0.015) is higher than subjects with tobacco consumption. These results suggest that the genetic polymorphism of LEP -2548 G/A (rs7799039), LEPR K109R (rs1137100), and LEPR Q223R (rs1137101) were not associated with the susceptibility of oral cancer; SNP in LEP -2548 G/A showed a poor clinicopathological development of oral cancer; Population without tobacco consumption and with polymorphic LEP -2548 G/A gene may significantly increase the risk to have oral cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carcinogen" title="carcinogen">carcinogen</a>, <a href="https://publications.waset.org/abstracts/search?q=leptin" title=" leptin"> leptin</a>, <a href="https://publications.waset.org/abstracts/search?q=leptin%20receptor" title=" leptin receptor"> leptin receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=oral%20squamous%20cell%20carcinoma" title=" oral squamous cell carcinoma"> oral squamous cell carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20nucleotide%20polymorphism" title=" single nucleotide polymorphism"> single nucleotide polymorphism</a> </p> <a href="https://publications.waset.org/abstracts/105176/association-of-single-nucleotide-polymorphisms-in-leptin-and-leptin-receptors-with-oral-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/105176.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Anticancer Effect of Isolated from the Methanolic Extract of Triticum Aestivum Straw in Mice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Savita%20Dixit">Savita Dixit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rutin is the bioactive flavonoid isolated from the straw part of Triticum aestivum and possess various pharmacological applications. The aim of this study is to evaluate the chemopreventive potential of rutin in an experimental skin carcinogenesis mice model system. Skin tumor was induced by topical application of 7, 12-dimethyl benz(a) anthracene (DMBA) and promoted by croton oil in Swiss albino mice. To assess the chemopreventive potential of rutin, it was orally administered at a concentration of (200 mg/kg and 400 mg/kg body weight) continued three times weekly for 16th weeks. The development of skin carcinogenesis was assessed by histopathological analysis. Reductions in tumor size and cumulative number of papillomas were seen due to rutin treatment. Average latent period was significantly increased as compared to carcinogen-treated control. Rutin produced a significant decrease in the activity of serum enzyme serum glutamate oxalate transaminase (SGOT), serum glutamate pyruvate transaminase (SGPT), alkaline phosphatase (ALP) and bilirubin when compared with the control. They significantly increased the levels of enzyme involved in oxidative stress glutathione (GSH), superoxide dismutase (SOD) and catalase. The elevated level of lipid peroxidase in the control group was significantly inhibited by rutin administration. The results of the present study suggest the chemopreventive effect of rutin in DMBA and croton oil-induced skin carcinogenesis in swiss albino mice and one of the probable reasons would be its antioxidant potential. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemoprevention" title="chemoprevention">chemoprevention</a>, <a href="https://publications.waset.org/abstracts/search?q=papilloma" title=" papilloma"> papilloma</a>, <a href="https://publications.waset.org/abstracts/search?q=rutin" title=" rutin"> rutin</a>, <a href="https://publications.waset.org/abstracts/search?q=skin%20carcinogenesis" title=" skin carcinogenesis"> skin carcinogenesis</a> </p> <a href="https://publications.waset.org/abstracts/48071/anticancer-effect-of-isolated-from-the-methanolic-extract-of-triticum-aestivum-straw-in-mice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48071.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Histopathological and Biochemical Investigations of Protective Role of Honey in Rats with Experimental Aflatoxicosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Turan%20Yaman">Turan Yaman</a>, <a href="https://publications.waset.org/abstracts/search?q=Zabit%20Yener"> Zabit Yener</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Celik"> Ismail Celik</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to investigate the antioxidant properties and protective role of honey, considered a part of traditional medicine, against carcinogen chemical aflatoxin (AF) exposure in rats, which were evaluated by histopathological changes in liver and kidney, measuring level of serum marker enzymes [aspartate aminotransferase (AST), alanin aminotransferase (ALT), gamma glutamil transpeptidase (GGT)], antioxidant defense systems [Reduced glutathione (GSH), glutathione reductase (GR), superoxide dismutase (SOD), glutathione-S-transferase (GST) and catalase (CAT)], and lipid peroxidation content in liver, erythrocyte, brain, kidney, heart and lungs. For this purpose, a total of eighteen healthy Sprague-Dawley rats were randomly allocated into three experimental groups: A (Control), B (AF-treated) and C (AF+honey-treated). While rats in group A were fed with a diet without AF, B, and C groups received 25 µg of AF/rat/day, where C group additionally received 1 mL/kg of honey by gavage for 90 days. At the end of the 90-day experimental period, we found that the honey supplementation decreased the lipid peroxidation and the levels of enzyme associated with liver damage, increased enzymatic and non-enzymatic antioxidants in the AF+honey-treated rats. Hepatoprotective and nephroprotective effects of honey is further substantiated by showing almost normal histological architecture in AF+honey-treated group, compared to degenerative changes in the liver and kidney of AF-treated rats. Additionally, honey supplementation ameliorated antioxidant defense systems and lipid peroxidation content in other tissues of AF+honey-treated rats. In conclusion, the present study indicates that honey has a hepatoprotective and nephroprotective effect in rats with experimental aflatoxicosis due to its antioxidant activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aflatoxicosis" title="aflatoxicosis">aflatoxicosis</a>, <a href="https://publications.waset.org/abstracts/search?q=honey" title=" honey"> honey</a>, <a href="https://publications.waset.org/abstracts/search?q=histopathology" title=" histopathology"> histopathology</a>, <a href="https://publications.waset.org/abstracts/search?q=malondialdehyde" title=" malondialdehyde"> malondialdehyde</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a>, <a href="https://publications.waset.org/abstracts/search?q=rat" title=" rat"> rat</a> </p> <a href="https://publications.waset.org/abstracts/48199/histopathological-and-biochemical-investigations-of-protective-role-of-honey-in-rats-with-experimental-aflatoxicosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> A Comparative Time-Series Analysis and Deep Learning Projection of Innate Radon Gas Risk in Canadian and Swedish Residential Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Selim%20M.%20Khan">Selim M. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Dustin%20D.%20Pearson"> Dustin D. Pearson</a>, <a href="https://publications.waset.org/abstracts/search?q=Tryggve%20R%C3%B6nnqvist"> Tryggve Rönnqvist</a>, <a href="https://publications.waset.org/abstracts/search?q=Markus%20E.%20Nielsen"> Markus E. Nielsen</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20M.%20Taron"> Joshua M. Taron</a>, <a href="https://publications.waset.org/abstracts/search?q=Aaron%20A.%20Goodarzi"> Aaron A. Goodarzi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Accumulation of radioactive radon gas in indoor air poses a serious risk to human health by increasing the lifetime risk of lung cancer and is classified by IARC as a category one carcinogen. Radon exposure risks are a function of geologic, geographic, design, and human behavioural variables and can change over time. Using time series and deep machine learning modelling, we analyzed long-term radon test outcomes as a function of building metrics from 25,489 Canadian and 38,596 Swedish residential properties constructed between 1945 to 2020. While Canadian and Swedish properties built between 1970 and 1980 are comparable (96–103 Bq/m³), innate radon risks subsequently diverge, rising in Canada and falling in Sweden such that 21st Century Canadian houses show 467% greater average radon (131 Bq/m³) relative to Swedish equivalents (28 Bq/m³). These trends are consistent across housing types and regions within each country. The introduction of energy efficiency measures within Canadian and Swedish building codes coincided with opposing radon level trajectories in each nation. Deep machine learning modelling predicts that, without intervention, average Canadian residential radon levels will increase to 176 Bq/m³ by 2050, emphasizing the importance and urgency of future building code intervention to achieve systemic radon reduction in Canada. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=radon%20health%20risk" title="radon health risk">radon health risk</a>, <a href="https://publications.waset.org/abstracts/search?q=time-series" title=" time-series"> time-series</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20machine%20learning" title=" deep machine learning"> deep machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=lung%20cancer" title=" lung cancer"> lung cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=Canada" title=" Canada"> Canada</a>, <a href="https://publications.waset.org/abstracts/search?q=Sweden" title=" Sweden"> Sweden</a> </p> <a href="https://publications.waset.org/abstracts/161187/a-comparative-time-series-analysis-and-deep-learning-projection-of-innate-radon-gas-risk-in-canadian-and-swedish-residential-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161187.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Syntheses of Biobased Hybrid Poly(epoxy-hydroxyurethane) Polymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adrien%20Cornille">Adrien Cornille</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Caillol"> Sylvain Caillol</a>, <a href="https://publications.waset.org/abstracts/search?q=Bernard%20Boutevon"> Bernard Boutevon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The development of polyurethanes began in 1937 at I. G. Farbenindustrie where Bayer with coworkers discovered the addition polymerization reaction between diisocyanates and diols. Since their discovery, the demand in PU has continued to increase and it will attain in 2016 a production of 18 million tons. However, isocyanates compounds are harmful to human and environment. Methylene diphenyl 4,4’-diisocyanate (MDI) and toluene diisocyanate (TDI), the most widely used isocyanates in PU industry, are classified as CMR (Carcinogen, Mutagen, and Reprotoxic). In order to design isocyanate-free materials, an interesting alternative is the use of Polyhydroxyurethanes (PHUs) by reaction between cyclic carbonate and polyfunctional amines. The main problem concerning PHUs synthesis relates to the low reactivity of carbonate/amine reaction. To solve this issue, many studies in the literature have been conducted to design PHU from more reactive cyclic-carbonates, bearing electro-withdrawing substituent or by using six-membered, seven-membered or thio-cyclic carbonate. The main drawback of all these systems remains the low molar masses obtained for the synthesized PHUs, which hinders their use for material applications. Therefore, we developed another strategy to afford new hybrid PHU with high conversion. This very innovative two-step approach consists in the first step in the synthesis of aminotelechelic PHU oligomers with different chain length from bis-cyclic carbonate with different excess of primary amine functions. In the second step, these aminotelechelic PHU oligomers were used in formulation with biobased epoxy monomers (from cashew nut shell liquid and tannins) to synthesize hybrid polyepoxyurethane polymers. These materials were then characterized by thermal and mechanical analyses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyurethane" title="polyurethane">polyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhydroxyurethane" title=" polyhydroxyurethane"> polyhydroxyurethane</a>, <a href="https://publications.waset.org/abstracts/search?q=aminotelechelic%20NIPU%20oligomers" title=" aminotelechelic NIPU oligomers"> aminotelechelic NIPU oligomers</a>, <a href="https://publications.waset.org/abstracts/search?q=carbonates" title=" carbonates"> carbonates</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=amine" title=" amine"> amine</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxyurethane%20polymers" title=" epoxyurethane polymers"> epoxyurethane polymers</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20polymers" title=" hybrid polymers"> hybrid polymers</a> </p> <a href="https://publications.waset.org/abstracts/40036/syntheses-of-biobased-hybrid-polyepoxy-hydroxyurethane-polymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40036.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Synthesis and Properties of Oxidized Corn Starch Based Wood Adhesive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salise%20Oktay">Salise Oktay</a>, <a href="https://publications.waset.org/abstracts/search?q=Nilgun%20Kizilcan"> Nilgun Kizilcan</a>, <a href="https://publications.waset.org/abstracts/search?q=Basak%20Bengu"> Basak Bengu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> At present, formaldehyde-based adhesives such as urea-formaldehyde (UF), melamine-formaldehyde (MF), melamine – urea-formaldehyde (MUF), etc. are mostly used in wood-based panel industry because of their high reactivity, chemical versatility, and economic competitiveness. However, formaldehyde-based wood adhesives are produced from non- renewable resources and also formaldehyde is classified as a probable human carcinogen (Group B1) by the U.S. Environmental Protection Agency (EPA). Therefore, there has been a growing interest in the development of environment-friendly, economically competitive, bio-based wood adhesives to meet wood-based panel industry requirements. In this study, like a formaldehyde-free adhesive, oxidized starch – urea wood adhesives was synthesized. In this scope, firstly, acid hydrolysis of corn starch was conducted and then acid thinned corn starch was oxidized by using hydrogen peroxide and CuSO₄ as an oxidizer and catalyst, respectively. Secondly, the polycondensation reaction between oxidized starch and urea conducted. Finally, nano – TiO₂ was added to the reaction system to strengthen the adhesive network. Solid content, viscosity, and gel time analyses of the prepared adhesive were performed to evaluate the adhesive processability. FTIR, DSC, TGA, SEM characterization techniques were used to investigate chemical structures, thermal, and morphological properties of the adhesive, respectively. Rheological analysis of the adhesive was also performed. In order to evaluate the quality of oxidized corn starch – urea adhesives, particleboards were produced in laboratory scale and mechanical and physical properties of the boards were investigated such as an internal bond, modulus of rupture, modulus of elasticity, formaldehyde emission, etc. The obtained results revealed that oxidized starch – urea adhesives were synthesized successfully and it can be a good potential candidate to use the wood-based panel industry with some developments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nano-TiO%E2%82%82" title="nano-TiO₂">nano-TiO₂</a>, <a href="https://publications.waset.org/abstracts/search?q=corn%20starch" title=" corn starch"> corn starch</a>, <a href="https://publications.waset.org/abstracts/search?q=formaldehyde%20emission" title=" formaldehyde emission"> formaldehyde emission</a>, <a href="https://publications.waset.org/abstracts/search?q=wood%20adhesives" title=" wood adhesives"> wood adhesives</a> </p> <a href="https://publications.waset.org/abstracts/115506/synthesis-and-properties-of-oxidized-corn-starch-based-wood-adhesive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/115506.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Evaluation of Chemoprotective Effect of NBRIQU16 against N-Methyl-N-Nitro-N-Nitrosoguanidine and NaCl-Induced Gastric Carcinomas in Wistar Rats</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubna%20Azmi">Lubna Azmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ila%20Shukla"> Ila Shukla</a>, <a href="https://publications.waset.org/abstracts/search?q=Shyam%20Sundar%20Gupta"> Shyam Sundar Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Padam%20Kant"> Padam Kant</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20V.%20Rao"> C. V. Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To investigate the chemoprotective potential of NBRIQU16 chemotype isolated from Argyreia speciosa (Family: Convolvulaceae) on N-methyl-N-nitro-N-nitrosoguanidine (MNNG) and NaCl-induced gastric carcinomas in Wistar rats. Forty-six male 6-week-old Wistar rats were divided into two groups. Thirty rats in group A were fed with a diet supplemented with 8 % NaCl for 20 weeks and simultaneously given N-methyl-N’-nitro-N-nitrosoguanidine (MNNG) in drinking water at a concentration of 100 ug/ml for the first 17 weeks. After administration of the carcinogen, 200 and 400 mg/kg of NBRIQU16 were administered orally once a day throughout the study. From week 18, these rats were given normal water. From week 21, these rats were fed with a normal diet for 15 weeks. Group B containing 16 rats was fed standard diet for thirty-five days. It served as control. Ten rats from group A were sacrificed after 20 weeks. Scarification of remaining animals was conducted after 35 weeks. Entire stomach and some part of the duodenum were incised parallel to the greater curvature, and the samples were collected. After opening the stomach location and size of tumors were recorded. The number of tumors with their locations and sizes were recorded. Expression of survivin was examined by recording the Immunohistochemistry of the specimens. The treatment with NBRIQU16 significantly reduced the nodule incidence and nodule multiplicity in the rats after MNNG administration. Surviving expression in glandular stomachs of normal rats, of rats in middle induction period, in adenocarcinomas and NBRIQU16 treated tissues adjacent to tumor were 0, 42.0 %, 79.3%, and 36.4 %, respectively. Expression of survivin was significantly different as compared to the normal rats. Histological observations of stomach tissues too correlated with the biochemical observations.These finding powerfully supports that NBRIQU16 chemopreventive effect by suppressing the tumor burden and restoring the activities of gastric cancer marker enzymes on MNNG and NaCl-induced gastric carcinomas in Wistar rats. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Argyreia%20speciosa" title="Argyreia speciosa">Argyreia speciosa</a>, <a href="https://publications.waset.org/abstracts/search?q=gastric%20carcinoma" title=" gastric carcinoma"> gastric carcinoma</a>, <a href="https://publications.waset.org/abstracts/search?q=immunochemistry" title=" immunochemistry"> immunochemistry</a>, <a href="https://publications.waset.org/abstracts/search?q=NBRIQU16" title=" NBRIQU16"> NBRIQU16</a> </p> <a href="https://publications.waset.org/abstracts/64316/evaluation-of-chemoprotective-effect-of-nbriqu16-against-n-methyl-n-nitro-n-nitrosoguanidine-and-nacl-induced-gastric-carcinomas-in-wistar-rats" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64316.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Real-World Vehicle to Grid: Case Study on School Buses in New England</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aaron%20Huber">Aaron Huber</a>, <a href="https://publications.waset.org/abstracts/search?q=Manoj%20Karwa"> Manoj Karwa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Floods, heat waves, drought, wildfires, tornadoes and other environmental disasters are a snapshot of looming national problems that can create increasing demands on the national grid. With nearly 500,000 school buses on the road and the environmental protection agency (EPA) providing nearly $1B for electric school buses, there is a solution for this national issue. Bidirectional batteries in electric school buses enable a future proof solution to sustain the power grid during adverse environmental conditions and other periods of high demand. School buses have larger batteries than standard electric vehicles. When they are not transporting students, these buses can spend peak solar hours parked and plugged into bi-directional direct current fast chargers (DCFC). A partnership with Highland Electric, Proterra and Rhombus enabled over 7 MWh of energy servicing Massachusetts and Vermont grids. The buses were part of a vehicle to grid (V2G) program with National Grid and Green Mountain Power that can charge an average American home for one month with a single bus. V2G infrastructure enables school systems to future proof their charging strategies, strengthen their local grids and can create additional revenue streams with their EV fleets. A bidirectional ecosystem with Highland, Proterra and Rhombus can enable grid resiliency or the ability to withstand power outages caused by excessive demands, natural disasters or rogue nation's attacks with no loss of service. A fleet of school buses is a standalone resilient asset that can be accessed across a city to keep its citizens safe without having any toxic fumes. Nearly 95% of all school buses across USA are powered by diesel internal combustion engines. Diesel exhaust has been classified as a human carcinogen, and it can lead to and exacerbate respiratory conditions. Bidirectional school buses and chargers enable energy justice by providing backup power in case of emergencies or high demand for marginalized communities and aim to make energy more accessible, affordable, clean, and democratically managed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=V2G" title="V2G">V2G</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle%20to%20grid" title=" vehicle to grid"> vehicle to grid</a>, <a href="https://publications.waset.org/abstracts/search?q=electric%20buses" title=" electric buses"> electric buses</a>, <a href="https://publications.waset.org/abstracts/search?q=eBuses" title=" eBuses"> eBuses</a>, <a href="https://publications.waset.org/abstracts/search?q=DC%20fast%20chargers" title=" DC fast chargers"> DC fast chargers</a>, <a href="https://publications.waset.org/abstracts/search?q=DCFC" title=" DCFC"> DCFC</a> </p> <a href="https://publications.waset.org/abstracts/159503/real-world-vehicle-to-grid-case-study-on-school-buses-in-new-england" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159503.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Long-Term Exposure, Health Risk, and Loss of Quality-Adjusted Life Expectancy Assessments for Vinyl Chloride Monomer Workers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tzu-Ting%20Hu">Tzu-Ting Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jung-Der%20Wang"> Jung-Der Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ming-Yeng%20Lin"> Ming-Yeng Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jin-Luh%20Chen"> Jin-Luh Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Perng-Jy%20Tsai"> Perng-Jy Tsai</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The vinyl chloride monomer (VCM) has been classified as group 1 (human) carcinogen by the IARC. Workers exposed to VCM are known associated with the development of the liver cancer and hence might cause economical and health losses. Particularly, for those work for the petrochemical industry have been seriously concerned in the environmental and occupational health field. Considering assessing workers’ health risks and their resultant economical and health losses requires the establishment of long-term VCM exposure data for any similar exposure group (SEG) of interest, the development of suitable technologies has become an urgent and important issue. In the present study, VCM exposures for petrochemical industry workers were determined firstly based on the database of the 'Workplace Environmental Monitoring Information Systems (WEMIS)' provided by Taiwan OSHA. Considering the existence of miss data, the reconstruction of historical exposure techniques were then used for completing the long-term exposure data for SEGs with routine operations. For SEGs with non-routine operations, exposure modeling techniques, together with their time/activity records, were adopted for determining their long-term exposure concentrations. The Bayesian decision analysis (BDA) was adopted for conducting exposure and health risk assessments for any given SEG in the petrochemical industry. The resultant excessive cancer risk was then used to determine the corresponding loss of quality-adjusted life expectancy (QALE). Results show that low average concentrations can be found for SEGs with routine operations (e.g., VCM rectification 0.0973 ppm, polymerization 0.306 ppm, reaction tank 0.33 ppm, VCM recovery 1.4 ppm, control room 0.14 ppm, VCM storage tanks 0.095 ppm and wastewater treatment 0.390 ppm), and the above values were much lower than that of the permissible exposure limit (PEL; 3 ppm) of VCM promulgated in Taiwan. For non-routine workers, though their high exposure concentrations, their low exposure time and frequencies result in low corresponding health risks. Through the consideration of exposure assessment results, health risk assessment results, and QALE results simultaneously, it is concluded that the proposed method was useful for prioritizing SEGs for conducting exposure abatement measurements. Particularly, the obtained QALE results further indicate the importance of reducing workers’ VCM exposures, though their exposures were low as in comparison with the PEL and the acceptable health risk. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=exposure%20assessment" title="exposure assessment">exposure assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=health%20risk%20assessment" title=" health risk assessment"> health risk assessment</a>, <a href="https://publications.waset.org/abstracts/search?q=petrochemical%20industry" title=" petrochemical industry"> petrochemical industry</a>, <a href="https://publications.waset.org/abstracts/search?q=quality-adjusted%20life%20years" title=" quality-adjusted life years"> quality-adjusted life years</a>, <a href="https://publications.waset.org/abstracts/search?q=vinyl%20chloride%20monomer" title=" vinyl chloride monomer"> vinyl chloride monomer</a> </p> <a href="https://publications.waset.org/abstracts/81383/long-term-exposure-health-risk-and-loss-of-quality-adjusted-life-expectancy-assessments-for-vinyl-chloride-monomer-workers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Assessment of Current and Future Opportunities of Chemical and Biological Surveillance of Wastewater for Human Health</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Gushgari">Adam Gushgari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The SARS-CoV-2 pandemic has catalyzed the rapid adoption of wastewater-based epidemiology (WBE) methodologies both domestically and internationally. To support the rapid scale-up of pandemic-response wastewater surveillance systems, multiple federal agencies (i.e. US CDC), non-government organizations (i.e. Water Environment Federation), and private charities (i.e. Bill and Melinda Gates Foundation) have funded over $220 million USD supporting development and expanding equitable access of surveillance methods. Funds were primarily distributed directly to municipalities under the CARES Act (90.6%), followed by academic projects (7.6%), and initiatives developed by private companies (1.8%). In addition to federal funding for wastewater monitoring primarily conducted at wastewater treatment plants, state/local governments and private companies have leveraged wastewater sampling to obtain health and lifestyle data on student, prison inmate, and employee populations. We explore the viable paths for expansion of the WBE m1ethodology across a variety of analytical methods; the development of WBE-specific samplers and real-time wastewater sensors; and their application to various governments and private sector industries. Considerable investment in, and public acceptance of WBE suggests the methodology will be applied to other future notifiable diseases and health risks. Early research suggests that WBE methods can be applied to a host of additional “biological insults” including communicable diseases and pathogens, such as influenza, Cryptosporidium, Giardia, mycotoxin exposure, hepatitis, dengue, West Nile, Zika, and yellow fever. Interest in chemical insults is also likely, providing community health and lifestyle data on narcotics consumption, use of pharmaceutical and personal care products (PPCP), PFAS and hazardous chemical exposure, and microplastic exposure. Successful application of WBE to monitor analytes correlated with carcinogen exposure, community stress prevalence, and dietary indicators has also been shown. Additionally, technology developments of in situ wastewater sensors, WBE-specific wastewater samplers, and integration of artificial intelligence will drastically change the landscape of WBE through the development of “smart sewer” networks. The rapid expansion of the WBE field is creating significant business opportunities for professionals across the scientific, engineering, and technology industries ultimately focused on community health improvement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastewater%20surveillance" title="wastewater surveillance">wastewater surveillance</a>, <a href="https://publications.waset.org/abstracts/search?q=wastewater-based%20epidemiology" title=" wastewater-based epidemiology"> wastewater-based epidemiology</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20cities" title=" smart cities"> smart cities</a>, <a href="https://publications.waset.org/abstracts/search?q=public%20health" title=" public health"> public health</a>, <a href="https://publications.waset.org/abstracts/search?q=pandemic%20management" title=" pandemic management"> pandemic management</a>, <a href="https://publications.waset.org/abstracts/search?q=substance%20abuse" title=" substance abuse"> substance abuse</a> </p> <a href="https://publications.waset.org/abstracts/170289/assessment-of-current-and-future-opportunities-of-chemical-and-biological-surveillance-of-wastewater-for-human-health" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170289.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">108</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Acrylamide Concentration in Cakes with Different Caloric Sweeteners</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Garc%C3%ADa">L. García</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Cobas"> N. Cobas</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20L%C3%B3pez"> M. López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acrylamide, a probable carcinogen, is formed in high-temperature processed food (>120ºC) when the free amino acid asparagine reacts with reducing sugars, mainly glucose and fructose. Cane juices' repeated heating would potentially form acrylamide during brown sugar production. This study aims to determine if using panela in yogurt cake preparation increases acrylamide formation. A secondary aim is to analyze the acrylamide concentration in four cake confections with different caloric sweetener ingredients: beet sugar (BS), cane sugar (CS), panela (P), and a panela and chocolate mix (PC). The doughs were obtained by combining ingredients in a planetary mixer. A model system made up of flour (25%), caloric sweeteners (25 %), eggs (23%), yogurt (15.7%), sunflower oil (9.4%), and brewer's yeast (2 %) was applied to BS, CS and P cakes. The ingredients of PC cakes varied: flour (21.5 %), panela chocolate (21.5 %), eggs (25.9 %), yogurt (18 %), sunflower oil (10.8 %), and brewer’s yeast (2.3 %). The preparations were baked for 45' at 180 ºC. Moisture was estimated by AOAC. Protein was determined by the Kjeldahl method. Ash percentage was calculated by weight loss after pyrolysis (≈ 600 °C). Fat content was measured using liquid-solid extraction in hydrolyzed raw ingredients and final confections. Carbohydrates were determined by difference and total sugars by the Luff-Schoorl method, based on the iodometric determination of copper ions. Finally, acrylamide content was determined by LC-MS by the isocratic system (phase A: 97.5 % water with 0.1% formic acid; phase B: 2.5 % methanol), using a standard internal procedure. Statistical analysis was performed using SPSS v.23. One-way variance analysis determined differences between acrylamide content and compositional analysis, with caloric sweeteners as fixed effect. Significance levels were determined by applying Duncan's t-test (p<0.05). P cakes showed a lower energy value than the other baked products; sugar content was similar to BS and CS, with 6.1 % mean crude protein. Acrylamide content in caloric sweeteners was similar to previously reported values. However, P and PC showed significantly higher concentrations, probably explained by the applied procedure. Acrylamide formation depends on both reducing sugars and asparagine concentration and availability. Beet sugar samples did not present acrylamide concentrations within the detection and quantification limit. However, the highest acrylamide content was measured in the BS. This may be due to the higher concentration of reducing sugars and asparagine in other raw ingredients. The cakes made with panela, cane sugar, or panela with chocolate did not differ in acrylamide content. The lack of asparagine measures constitutes a limitation. Cakes made with panela showed lower acrylamide formation than products elaborated with beet or cane sugar. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beet%20sugar" title="beet sugar">beet sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=cane%20sugar" title=" cane sugar"> cane sugar</a>, <a href="https://publications.waset.org/abstracts/search?q=panela" title=" panela"> panela</a>, <a href="https://publications.waset.org/abstracts/search?q=yogurt%20cake" title=" yogurt cake"> yogurt cake</a> </p> <a href="https://publications.waset.org/abstracts/146841/acrylamide-concentration-in-cakes-with-different-caloric-sweeteners" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146841.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Comparison of a Capacitive Sensor Functionalized with Natural or Synthetic Receptors Selective towards Benzo(a)Pyrene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natalia%20V.%20Beloglazova">Natalia V. Beloglazova</a>, <a href="https://publications.waset.org/abstracts/search?q=Pieterjan%20Lenain"> Pieterjan Lenain</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Hedstrom"> Martin Hedstrom</a>, <a href="https://publications.waset.org/abstracts/search?q=Dietmar%20Knopp"> Dietmar Knopp</a>, <a href="https://publications.waset.org/abstracts/search?q=Sarah%20De%20Saeger"> Sarah De Saeger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years polycyclic aromatic hydrocarbons (PAHs), which represent a hazard to humans and entire ecosystem, have been receiving an increased interest due to their mutagenic, carcinogenic and endocrine disrupting properties. They are formed in all incomplete combustion processes of organic matter and, as a consequence, ubiquitous in the environment. Benzo(a)pyrene (BaP) is on the priority list published by the Environmental Agency (US EPA) as the first PAH to be identified as a carcinogen and has often been used as a marker for PAHs contamination in general. It can be found in different types of water samples, therefore, the European Commission set up a limit value of 10 ng L–1 (10 ppt) for BAP in water intended for human consumption. Generally, different chromatographic techniques are used for PAHs determination, but these assays require pre-concentration of analyte, create large amounts of solvent waste, and are relatively time consuming and difficult to perform on-site. An alternative robust, stand-alone, and preferably cheap solution is needed. For example, a sensing unit which can be submerged in a river to monitor and continuously sample BaP. An affinity sensor based on capacitive transduction was developed. Natural antibodies or their synthetic analogues can be used as ligands. Ideally the sensor should operate independently over a longer period of time, e.g. several weeks or months, therefore the use of molecularly imprinted polymers (MIPs) was discussed. MIPs are synthetic antibodies which are selective for a chosen target molecule. Their robustness allows application in environments for which biological recognition elements are unsuitable or denature. They can be reused multiple times, which is essential to meet the stand-alone requirement. BaP is a highly lipophilic compound and does not contain any functional groups in its structure, thus excluding non-covalent imprinting methods based on ionic interactions. Instead, the MIPs syntheses were based on non-covalent hydrophobic and π-π interactions. Different polymerization strategies were compared and the best results were demonstrated by the MIPs produced using electropolymerization. 4-vinylpyridin (VP) and divinylbenzene (DVB) were used as monomer and cross-linker in the polymerization reaction. The selectivity and recovery of the MIP were compared to a non-imprinted polymer (NIP). Electrodes were functionalized with natural receptor (monoclonal anti-BaP antibody) and with MIPs selective towards BaP. Different sets of electrodes were evaluated and their properties such as sensitivity, selectivity and linear range were determined and compared. It was found that both receptor can reach the cut-off level comparable to the established ML, and despite the fact that the antibody showed the better cross-reactivity and affinity, MIPs were more convenient receptor due to their ability to regenerate and stability in river till 7 days. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibody" title="antibody">antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=benzo%28a%29pyrene" title=" benzo(a)pyrene"> benzo(a)pyrene</a>, <a href="https://publications.waset.org/abstracts/search?q=capacitive%20sensor" title=" capacitive sensor"> capacitive sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=MIPs" title=" MIPs"> MIPs</a>, <a href="https://publications.waset.org/abstracts/search?q=river%20water" title=" river water"> river water</a> </p> <a href="https://publications.waset.org/abstracts/43965/comparison-of-a-capacitive-sensor-functionalized-with-natural-or-synthetic-receptors-selective-towards-benzoapyrene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43965.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">303</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> LaeA/1-Velvet Interplay in Aspergillus and Trichoderma: Regulation of Secondary Metabolites and Cellulases</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Karimi%20Aghcheh">Razieh Karimi Aghcheh</a>, <a href="https://publications.waset.org/abstracts/search?q=Christian%20Kubicek"> Christian Kubicek</a>, <a href="https://publications.waset.org/abstracts/search?q=Joseph%20Strauss"> Joseph Strauss</a>, <a href="https://publications.waset.org/abstracts/search?q=Gerhard%20Braus"> Gerhard Braus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Filamentous fungi are of considerable economic and social significance for human health, nutrition and in white biotechnology. These organisms are dominant producers of a range of primary metabolites such as citric acid, microbial lipids (biodiesel) and higher unsaturated fatty acids (HUFAs). In particular, they produce also important but structurally complex secondary metabolites with enormous therapeutic applications in pharmaceutical industry, for example: cephalosporin, penicillin, taxol, zeranol and ergot alkaloids. Several fungal secondary metabolites, which are significantly relevant to human health do not only include antibiotics, but also e.g. lovastatin, a well-known antihypercholesterolemic agent produced by Aspergillus. terreus, or aflatoxin, a carcinogen produced by A. flavus. In addition to their roles for human health and agriculture, some fungi are industrially and commercially important: Species of the ascomycete genus Hypocrea spp. (teleomorph of Trichoderma) have been demonstrated as efficient producer of highly active cellulolytic enzymes. This trait makes them effective in disrupting and depolymerization of lignocellulosic materials and thus applicable tools in number of biotechnological areas as diverse as clothes-washing detergent, animal feed, and pulp and fuel productions. Fungal LaeA/LAE1 (Loss of aflR Expression A) homologs their gene products act at the interphase between secondary metabolisms, cellulase production and development. Lack of the corresponding genes results in significant physiological changes including loss of secondary metabolite and lignocellulose degrading enzymes production. At the molecular level, the encoded proteins are presumably methyltransferases or demethylases which act directly or indirectly at heterochromatin and interact with velvet domain proteins. Velvet proteins bind to DNA and affect expression of secondary metabolites (SMs) genes and cellulases. The dynamic interplay between LaeA/LAE1, velvet proteins and additional interaction partners is the key for an understanding of the coordination of metabolic and morphological functions of fungi and is required for a biotechnological control of the formation of desired bioactive products. Aspergilli and Trichoderma represent different biotechnologically significant species with significant differences in the LaeA/LAE1-Velvet protein machinery and their target proteins. We, therefore, performed a comparative study of the interaction partners of this machinery and the dynamics of the various protein-protein interactions using our robust proteomic and mass spectrometry techniques. This enhances our knowledge about the fungal coordination of secondary metabolism, cellulase production and development and thereby will certainly improve recombinant fungal strain construction for the production of industrial secondary metabolite or lignocellulose hydrolytic enzymes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellulases" title="cellulases">cellulases</a>, <a href="https://publications.waset.org/abstracts/search?q=LaeA%2F1" title=" LaeA/1"> LaeA/1</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a> </p> <a href="https://publications.waset.org/abstracts/64126/laea1-velvet-interplay-in-aspergillus-and-trichoderma-regulation-of-secondary-metabolites-and-cellulases" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64126.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Aerobic Biodegradation of a Chlorinated Hydrocarbon by Bacillus Cereus 2479</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Srijata%20Mitra">Srijata Mitra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mobina%20Parveen"> Mobina Parveen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pranab%20Roy"> Pranab Roy</a>, <a href="https://publications.waset.org/abstracts/search?q=Narayan%20Chandra%20Chattopadhyay"> Narayan Chandra Chattopadhyay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chlorinated hydrocarbon can be a major pollution problem in groundwater as well as soil. Many people interact with these chemicals on daily accidentally or by professionally in the laboratory. One of the most common sources for Chlorinated hydrocarbon contamination of soil and groundwater are industrial effluents. The wide use and discharge of Trichloroethylene (TCE), a volatile chlorohydrocarbon from chemical industry, led to major water pollution in rural areas. TCE is an mainly used as an industrial metal degreaser in industries. Biotransformation of TCE to the potent carcinogen vinyl chloride (VC) by consortia of anaerobic bacteria might have role for the above purpose. For these reasons, the aim of current study was to isolate and characterized the genes involved in TCE metabolism and also to investigate the in silico study of those genes. To our knowledge, only one aromatic dioxygenase system, the toluene dioxygenase in Pseudomonas putida F1 has been shown to be involved in TCE degradation. This is first instance where Bacillus cereus group being used in biodegradation of trichloroethylene. A novel bacterial strain 2479 was isolated from oil depot site at Rajbandh, Durgapur (West Bengal, India) by enrichment culture technique. It was identified based on polyphasic approach and ribotyping. The bacterium was gram positive, rod shaped, endospore forming and capable of degrading trichloroethylene as the sole carbon source. On the basis of phylogenetic data and Fatty Acid Methyl Ester Analysis, strain 2479 should be placed within the genus Bacillus and species cereus. However, the present isolate (strain 2479) is unique and sharply different from the usual Bacillus strains in its biodegrading nature. Fujiwara test was done to estimate that the strain 2479 could degrade TCE efficiently. The gene for TCE biodegradation was PCR amplified from genomic DNA of Bacillus cereus 2479 by using todC1 gene specific primers. The 600bp amplicon was cloned into expression vector pUC I8 in the E. coli host XL1-Blue and expressed under the control of lac promoter and nucleotide sequence was determined. The gene sequence was deposited at NCBI under the Accession no. GU183105. In Silico approach involved predicting the physico-chemical properties of deduced Tce1 protein by using ProtParam tool. The tce1 gene contained 342 bp long ORF encoding 114 amino acids with a predicted molecular weight 12.6 kDa and the theoretical pI value of the polypeptide was 5.17, molecular formula: C559H886N152O165S8, total number of atoms: 1770, aliphatic index: 101.93, instability index: 28.60, Grand Average of Hydropathicity (GRAVY): 0.152. Three differentially expressed proteins (97.1, 40 and 30 kDa) were directly involved in TCE biodegradation, found to react immunologically to the antibodies raised against TCE inducible proteins in Western blot analysis. The present study suggested that cloned gene product (TCE1) was capable of degrading TCE as verified chemically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cloning" title="cloning">cloning</a>, <a href="https://publications.waset.org/abstracts/search?q=Bacillus%20cereus" title=" Bacillus cereus"> Bacillus cereus</a>, <a href="https://publications.waset.org/abstracts/search?q=in%20silico%20analysis" title=" in silico analysis"> in silico analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=TCE" title=" TCE"> TCE</a> </p> <a href="https://publications.waset.org/abstracts/20574/aerobic-biodegradation-of-a-chlorinated-hydrocarbon-by-bacillus-cereus-2479" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">397</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> The Association between Gene Polymorphisms of GPX, SEPP1, and SEP15, Plasma Selenium Levels, Urinary Total Arsenic Concentrations, and Prostate Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yu-Mei%20Hsueh">Yu-Mei Hsueh</a>, <a href="https://publications.waset.org/abstracts/search?q=Wei-Jen%20Chen"> Wei-Jen Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yung-Kai%20Huang"> Yung-Kai Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Cheng-Shiuan%20Tsai"> Cheng-Shiuan Tsai</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuo-Cheng%20Yeh"> Kuo-Cheng Yeh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Prostate cancer occurs in men over the age of 50, and rank sixth of the top ten cancers in Taiwan, and the incidence increased gradually over the past decade in Taiwan. Arsenic is confirmed as a carcinogen by International Agency for Research on (IARC). Arsenic induces oxidative stress may be a risk factor for prostate cancer, but the mechanism is not clear. Selenium is an important antioxidant element. Whether the association between plasma selenium levels and risk of prostate cancer are modified by different genotype of selenoprotein is still unknown. Glutathione peroxidase, selenoprotein P (SEPP1) and 15 kDa selenoprotein (SEP 15) are selenoprotein and regulates selenium transport and the oxidation and reduction reaction. However, the association between gene polymorphisms of selenoprotein and prostate cancer is not yet clear. The aim of this study is to determine the relationship between plasma selenium, polymorphism of selenoprotein, urinary total arsenic concentration and prostate cancer. This study is a hospital-based case-control study. Three hundred twenty-two cases of prostate cancer and age (±5 years) 1:1 matched 322 control group were recruited from National Taiwan University Hospital, Taipei Medical University Hospital, and Wan Fang Hospital. Well-trained personnel carried out standardized personal interviews based on a structured questionnaire. Information collected included demographic and socioeconomic characteristics, lifestyle and disease history. Blood and urine samples were also collected at the same time. The Research Ethics Committee of National Taiwan University Hospital, Taipei, Taiwan, approved the study. All patients provided informed consent forms before sample and data collection. Buffy coat was to extract DNA, and the polymerase chain reaction - restriction fragment length polymorphism (PCR-RFLP) was used to measure the genotypes of SEPP1 rs3797310, SEP15 rs5859, GPX1 rs1050450, GPX2 rs4902346, GPX3 rs4958872, and GPX4 rs2075710. Plasma concentrations of selenium were determined by inductively coupled plasma mass spectrometry (ICP-MS).Urinary arsenic species concentrations were measured by high-performance liquid chromatography links hydride generator and atomic absorption spectrometer (HPLC-HG-AAS). Subject with high education level compared to those with low educational level had a lower prostate cancer odds ratio (OR) Mainland Chinese and aboriginal people had a lower OR of prostate cancer compared to Fukien Taiwanese. After adjustment for age, educational level, subjects with GPX1 rs1050450 CT and TT genotype compared to the CC genotype have lower, OR of prostate cancer, the OR and 95% confidence interval (Cl) was 0.53 (0.31-0.90). SEPP1 rs3797310 CT+TT genotype compared to those with CC genotype had a marginally significantly lower OR of PC. The low levels of plasma selenium and the high urinary total arsenic concentrations had the high OR of prostate cancer in a significant dose-response manner, and SEPP1 rs3797310 genotype modified this joint association. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title="prostate cancer">prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20selenium%20concentration" title=" plasma selenium concentration"> plasma selenium concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=urinary%20total%20arsenic%20concentrations" title=" urinary total arsenic concentrations"> urinary total arsenic concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=glutathione%20peroxidase" title=" glutathione peroxidase"> glutathione peroxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=selenoprotein%20P" title=" selenoprotein P"> selenoprotein P</a>, <a href="https://publications.waset.org/abstracts/search?q=selenoprotein%2015" title=" selenoprotein 15"> selenoprotein 15</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20polymorphism" title=" gene polymorphism"> gene polymorphism</a> </p> <a href="https://publications.waset.org/abstracts/71097/the-association-between-gene-polymorphisms-of-gpx-sepp1-and-sep15-plasma-selenium-levels-urinary-total-arsenic-concentrations-and-prostate-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71097.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>