CINXE.COM
Document Zbl 1012.62042 - zbMATH Open
<!doctype html> <html lang="en"> <head> <meta charset="utf-8"> <title>Document Zbl 1012.62042 - zbMATH Open</title> <meta name="viewport" content="width=device-width, minimum-scale=0.1, maximum-scale=5.0"> <meta name="robots" content="noarchive, noindex"> <meta name="referrer" content="origin-when-cross-origin"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap/v3.3.7/css/bootstrap-theme.min.css" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.css" rel="stylesheet" media="screen,print"> <link rel="stylesheet" href="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/css/bootstrap-select.min.css"> <link href="/static/css/smoothness/jquery-ui-1.10.1.custom.min.css" rel="stylesheet" media="screen"> <link href="/static/styles.css?v=20241024" rel="stylesheet" media="screen,print"> <link href="https://static.zbmath.org/zbMathJax/v0.1.38/zbmathjax.css" rel="stylesheet" media="screen,print"> <link rel="shortcut icon" href="/static/zbmath.ico"> <script type="application/ld+json"> { "@context": "http://schema.org", "@type": "Organization", "url": "https://zbmath.org/", "logo": "https://zbmath.org/static/zbMATH.png" } </script> </head> <body> <div id="line"></div> <span id="clear" style="cursor: pointer;">×</span> <div id="page"> <div id="head"> <nav id="menu" class="navbar navbar-default"> <div class="container-fluid"> <div class="navbar-header"> <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target="#zbnav" aria-expanded="false"> <span class="sr-only">Toggle navigation</span> <span class="icon-bar"></span> <span class="icon-bar"></span> <span class="icon-bar"></span> </button> <a class="navbar-brand" href="#"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open logo"> </a> </div> <div id="zbnav" class="collapse navbar-collapse"> <ul class="nav navbar-nav pages"> <li class="about"> <a href="/about/">About</a> </li> <li class="frequently-asked-questions"> <a href="/frequently-asked-questions/">FAQ</a> </li> <li class="general-help"> <a href="/general-help/">General Help</a> </li> <li class="reviewer-service"> <a href="https://zbmath.org/reviewer-service/" target="_self" >Reviewer Service</a> </li> <li> <a href="/tools-and-resources/">Tools & Resources</a> </li> <li class="contact"> <a href="/contact/">Contact</a> </li> </ul> <ul class="nav navbar-nav navbar-right prefs"> <li class="preferences dropdown"> <a data-toggle="dropdown" href="#">Preferences <i class="caret"></i></a> <ul class="dropdown-menu preferences"> <li> <form id="preferences" class="navbar-form" method="post" action="/preferences/" onsubmit="return confirm('This website uses cookies for the purposes of storing preference information on your device. Do you agree to this?\n\nPlease refer to our Privacy Policy to learn more about our use of cookies.')" > <input type="hidden" name="path" value="/1012.62042?"> <span class=""> <label class="title">Search Form</label> <div class="form-group"> <input id="search-multi-line" type="radio" name="search" value="multi-line" checked> <label for="search-multi-line" class="radio">Multi-Line Search (default)</label> </div> <div class="form-group"> <input id="search-one-line" type="radio" name="search" value="one-line"> <label for="search-one-line" class="radio">One-Line Search</label> </div> </span> <span class="count"> <label class="title">Hits per Page</label> <div class="form-group"> <input id="count-10" type="radio" name="count" value="10"> <label for="count-10" class="radio">10</label> </div> <div class="form-group"> <input id="count-20" type="radio" name="count" value="20"> <label for="count-20" class="radio">20</label> </div> <div class="form-group"> <input id="count-50" type="radio" name="count" value="50"> <label for="count-50" class="radio">50</label> </div> <div class="form-group"> <input id="count-100" type="radio" name="count" value="100" checked> <label for="count-100" class="radio">100 (default)</label> </div> <div class="form-group"> <input id="count-200" type="radio" name="count" value="200"> <label for="count-200" class="radio">200</label> </div> </span> <span class="format"> <label class="title">Display Format</label> <div class="form-group"> <input id="format-mathjax" type="radio" name="format" value="mathjax" checked> <label for="format-mathjax" class="radio">MathJax (default)</label> </div> <div class="form-group"> <input id="format-amstex" type="radio" name="format" value="latex"> <label for="format-amstex" class="radio">LaTeX</label> </div> </span> <span class="ranking"> <label class="title">Documents Sorting</label> <div class="form-group"> <input id="documents-ranking-default" type="radio" name="documents_ranking" value="date" checked> <label for="documents-ranking-default" class="radio">Newest first (default)</label> </div> <div class="form-group"> <input id="documents-ranking-references" type="radio" name="documents_ranking" value="references"> <label for="documents-ranking-references" class="radio">Citations</label> </div> <div class="form-group"> <input id="documents-ranking-relevance" type="radio" name="documents_ranking" value="relevance"> <label for="documents-ranking-relevance" class="radio">Relevance</label> </div> </span> <span class="ranking"> <label class="title">Authors Sorting</label> <div class="form-group"> <input id="authors-ranking-default" type="radio" name="authors_ranking" value="alpha" checked> <label for="authors-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="authors-ranking-references" type="radio" name="authors_ranking" value="references"> <label for="authors-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Serials Sorting</label> <div class="form-group"> <input id="serials-ranking-default" type="radio" name="serials_ranking" value="alpha" checked> <label for="serials-ranking-default" class="radio">Alphabetically (default)</label> </div> <div class="form-group"> <input id="serials-ranking-references" type="radio" name="serials_ranking" value="references"> <label for="serials-ranking-references" class="radio">Citations</label> </div> </span> <span class="ranking"> <label class="title">Software Sorting</label> <div class="form-group"> <input id="software-ranking-default" type="radio" name="software_ranking" value="references" checked> <label for="software-ranking-default" class="radio">Citations (default)</label> </div> <div class="form-group"> <input id="software-ranking-alpha" type="radio" name="software_ranking" value="alpha"> <label for="software-ranking-alpha" class="radio">Alphabetically</label> </div> </span> <button type="submit" class="btn btn-default">OK</button> <div class="clearfix"> </form> </li> </ul> </li> </ul> </div> </div> </nav> <div id="tabs"> <h1 class="logo"> <a class="logo" href="/"> <img class="logo" src="/static/zbmath.gif" alt="zbMATH Open — the first resource for mathematics" > </a> </h1> <nav> <ul class="nav nav-tabs"> <li class="tab-documents active"> <a href="/">Documents</a> </li> <li class="tab-authors"> <a href="/authors/">Authors</a> </li> <li class="tab-serials"> <a href="/serials/">Serials</a> </li> <li class="tab-software"> <a href="/software/">Software</a> </li> <li class="tab-classification"> <a href="/classification/">Classification</a> </li> <li class="tab-formulae"> <a href="/formulae/">Formulæ</a> </li> </ul> </nav> <div class="clearfix"></div> </div> <div class="content-fixed"> <div class="content-formular"> <div style="display: none;"> <div class="row ml-0"id="multi-line-new-line" style="display: none;"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-0-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-0-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input"> <span class="multi-line-value" id="multi-line-type-range"><span style="padding-left: 5px;">from</span> <input name="ml-0-v1" class="form-control multi-line-input" type="text" value="" aria-label="value"> until <input name="ml-0-v2" class="form-control multi-line-input" type="text" value="" aria-label="value"></span> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-la" placeholder="use name or ISO code"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-rv" placeholder="enter name or zbMATH reviewer number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-an" placeholder="Zbl, JFM or ERAM number"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-en" placeholder="e.g. DOI, ISBN, arXiv ID"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-sw" placeholder="use * to find all documents using software"> <input name="ml-0-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value" id="multi-line-type-input-br" placeholder="find documents about the life or work of a person"> <span class="multi-line-value" id="multi-line-type-multiselect-db"> <select class="multi-line-selectpicker" data-width="100%" multiple> <option value="zbl">Zbl</option> <option value="arxiv">arXiv</option> <option value="jfm">JFM</option> <option value="eram">ERAM</option> </select> <input type="hidden" class="multi-line-input" name="ml-0-v" value=""> </span> </div> <form name="documents" method="GET" action="/" autocomplete="off"> <div class="documents multi-line" style="display: none;"> <div class="forms"> <ul class="nav forms"> <li class="one-line"> <span tabindex="0" class="glyphicon glyphicon-question-sign" title="One-Line Search allows for free logical combinations of search fields" aria-label="One-Line Search allows for free logical combinations of search fields" data-placement="bottom"></span> <a style="display: inline-block;" href="#">One-Line Search <span class="glyphicon glyphicon-search"></span></a> </li> </ul> </div> <div class="clearfix"></div> <div class="container-fluid"> <input type="hidden" id="multi-line-ml" name="ml" value="3"> <div id="multi-line-row-wrapper"> <div class="row ml-1"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-1-f" aria-label="field"> <option data-type="input" value="any" selected>Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-1-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-1-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-2"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-2-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au" selected>Authors</option> <option data-type="input" value="ti">Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-2-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><select class="form-control multi-line-operators multi-line-selectpicker" name="ml-2-op" aria-label="operator"> <option value="and" selected>AND</option> <option value="andnot">AND NOT</option> <option value="or">OR</option> </select></div> </div> <div class="row ml-3"> <div class="col-xs-12 form-inline multi-line"> <select class="form-control multi-line-field multi-line-selectpicker" name="ml-3-f" aria-label="field"> <option data-type="input" value="any">Anywhere</option> <option data-type="input" value="au">Authors</option> <option data-type="input" value="ti" selected>Title</option> <option data-type="input" value="py">Year</option> <option data-type="range" value="pyr">Year Range</option> <option data-type="input" value="cc">MSC</option> <option data-type="input" value="cc1">MSC Primary</option> <option data-type="input" value="so">Source / Journal</option> <option data-type="input" value="pu">Publisher</option> <option data-type="input" value="la">Language</option> <option data-type="input" value="ab">Summary / Review</option> <option data-type="input" value="rv">Reviewer</option> <option data-type="input" value="an">zbMATH ID</option> <option data-type="input" value="en">External ID</option> <option data-type="input" value="ut">Keywords</option> <option data-type="input" value="sw">Software</option> <option data-type="input" value="br">Biographic Ref</option> <option data-type="input" value="rft">Reference Text</option> <option data-type="multiselect-db" value="db">Database</option> <option data-divider="true"></option> <option data-function="remove-line" data-content='<span class="glyphicon glyphicon-minus" aria-hidden="true"></span> remove line' value="any">remove line</option> </select><input name="ml-3-v" class="form-control multi-line-value multi-line-input" type="text" value="" aria-label="value"><div id="multi-line-plus"> <a href="#"><span class="glyphicon glyphicon-plus" aria-hidden="true"></span> add line</a> </div></div> </div> </div> <div class="row"> <div class="col-xs-12 form-inline"> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-test" style="visibility: hidden; position: fixed;"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label title="search for Articles in Journals"> <input type="checkbox" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label title="search for arXiv Preprints"> <input type="checkbox" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> <div class="form-group field checkboxes-wrapper" id="checkboxes-wrapper-real"> <label>Document Type:</label> <div class="checkboxes"> <div class="slider"> <label for="dt-j" title="search for Articles in Journals"> <input type="checkbox" id="dt-j" name="dt" class="form-control" value="j" checked> <span tabindex="0"><small></small></span> Journal Articles </label> </div> <div class="slider"> <label for="dt-a" title="search for Articles in Conference Proceedings and Collected Volumes"> <input type="checkbox" id="dt-a" name="dt" class="form-control" value="a" checked> <span tabindex="0"><small></small></span> Collection Articles </label> </div> <div class="slider"> <label for="dt-b" title="search for Monographs, Proceedings, Dissertations etc."> <input type="checkbox" id="dt-b" name="dt" class="form-control" value="b" checked> <span tabindex="0"><small></small></span> Books </label> </div> <div class="slider"> <label for="dt-p" title="search for arXiv Preprints"> <input type="checkbox" id="dt-p" name="dt" class="form-control" value="p" checked> <span tabindex="0"><small></small></span> arXiv Preprints </label> </div> </div> </div> </div> </div> <div class="row"> <div class="col-xs-12 buttons"> <a tabindex="0" class="btn btn-default clear-all">Reset all <span class="glyphicon glyphicon-remove"></span></a> <div class="submit"> <button class="btn btn-default search" type="submit">Search <span class="glyphicon glyphicon-search"></span></button> </div> </div> </div> </div> </div> </form> <form class="form-inline" name="documents" method="GET" action="/"> <div class="documents one-line" style="display: block;"> <div class="forms"> <ul class="nav forms"> <li class="multi-line"><a href="#">New Multi-Line Search <span class="glyphicon glyphicon-list"></span></a></li> </ul> </div> <div id="search-row" class="input-group box"> <span> <div id="search-field"> <input class="query form-control" type="text" name="q" value="an:1012.62042" aria-label="Search for documents" placeholder="Search for documents" autocomplete="off"> </div> <div class="search-buttons input-group-btn"> <div class="btn-group"> <button class="btn btn-default search" type="submit"><span class="virtual">Search</span> <span class="glyphicon glyphicon-search" style="top: 2px;"></span></button> </div> </div> </span> <span> <div class="search-buttons input-group-btn"> <div class="btn-group"> <div class="btn-group fields"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Fields <i class="caret"></i></button> <ul id="fields" class="dropdown-menu pull-right"> <li><a href="#"><span class="token item">any:</span><span> </span>anywhere (default)</a></li> <li><a href="#"><span class="token item">ab:</span><span> </span>review text</a></li> <li><a href="#"><span class="token item">an:</span><span> </span>zbmath id</a></li> <li><a href="#"><span class="token item">any:</span><span> </span>anywhere</a></li> <li><a href="#"><span class="token item">au:</span><span> </span>contributor name</a></li> <li><a href="#"><span class="token item">br:</span><span> </span>biographic reference name</a></li> <li><a href="#"><span class="token item">cc:</span><span> </span>msc title</a></li> <li><a href="#"><span class="token item">dt:</span><span> </span>document type</a></li> <li><a href="#"><span class="token item">doi:</span><span> </span>doi</a></li> <li><a href="#"><span class="token item">en:</span><span> </span>external id</a></li> <li><a href="#"><span class="token item">la:</span><span> </span>language</a></li> <li><a href="#"><span class="token item">pu:</span><span> </span>publisher</a></li> <li><a href="#"><span class="token item">py:</span><span> </span>year</a></li> <li><a href="#"><span class="token item">rv:</span><span> </span>reviewer name</a></li> <li><a href="#"><span class="token item">so:</span><span> </span>source</a></li> <li><a href="#"><span class="token item">sw:</span><span> </span>software name</a></li> <li><a href="#"><span class="token item">ti:</span><span> </span>title</a></li> <li><a href="#"><span class="token item">ut:</span><span> </span>keyword</a></li> </ul> </div> <div class="btn-group operators"> <button class="btn btn-default dropdown-toggle" data-toggle="dropdown">Operators <i class="caret"></i></button> <ul id="operators" class="dropdown-menu pull-right"> <li><a href="#"><span class="token">a <span class="item">&</span> b </span><span> </span>logical and (default)</a></li> <li><a href="#"><span class="token">a <span class="item">|</span> b </span><span> </span>logical or</a></li> <li><a href="#"><span class="token"><span class="item">!</span>ab </span><span> </span>logical not</a></li> <li><a href="#"><span class="token">abc<span class="item">*</span> </span><span> </span>right wildcard</a></li> <li><a href="#"><span class="token"><span class="item">"</span>ab c<span class="item">"</span></span><span> </span>phrase</a></li> <li><a href="#"><span class="token"><span class="item">(</span>ab c<span class="item">)</span></span><span> </span>parentheses</a></li> </ul> </div> </div> </div> <div class="special"> <ul class="nav help-button"> <li class="dropdown pull-right"> <a href="#">Help <i class="caret"></i></a> </li> </ul> </div> </span> </div> <div class="help"><h2>Examples</h2> <div id="help-terms" role="table"> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Geometry">Geometry</a></span> <span class="search-explanation" role="cell" role="cell">Search for the term <em>Geometry</em> in <strong>any</strong> field. Queries are <strong>case-independent</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Funct%2A">Funct*</a></span> <span class="search-explanation" role="cell"><strong>Wildcard</strong> queries are specified by <strong><u>*</u></strong> (e.g. <em>functions</em>, <em>functorial</em>, etc.). Otherwise the search is <strong>exact</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Topological+group%22">"Topological group"</a></span> <span class="search-explanation" role="cell"><strong>Phrases</strong> (multi-words) should be set in <u>"</u>straight quotation marks<u>"</u>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=au%3A+Bourbaki+%26+ti%3A+Algebra">au: Bourbaki & ti: Algebra</a></span> <span class="search-explanation" role="cell">Search for <strong><u>au</u>thor</strong> and <strong><u>ti</u>tle</strong>. The <strong>and-operator &</strong> is default and can be omitted.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Chebyshev+%7C+Tschebyscheff">Chebyshev | Tschebyscheff</a></span> <span class="search-explanation" role="cell">The <strong>or-operator |</strong> allows to search for <em>Chebyshev</em> or <em>Tschebyscheff</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=Quasi%2A+map%2A+py%3A+1989">Quasi* map* py: 1989</a></span> <span class="search-explanation" role="cell">The resulting documents have <strong><u>p</u>ublication <u>y</u>ear</strong> <em>1989</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=so%3A+Eur%2A+J%2A+Mat%2A+Soc%2A+cc%3A+14">so: Eur* J* Mat* Soc* cc: 14</a></span> <span class="search-explanation" role="cell">Search for publications in a particular <strong><u>so</u>urce</strong> with a <strong>Mathematics Subject <u>C</u>lassification <u>c</u>ode (<u>cc</u>)</strong> in <em>14</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=%22Partial+diff%2A+eq%2A%22+%21+elliptic">"Partial diff* eq*" ! elliptic</a></span> <span class="search-explanation" role="cell">The <strong>not</strong>-operator <strong>!</strong> eliminates all results containing the word <em>elliptic</em>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=dt%3A+b+%26+au%3A+Hilbert">dt: b & au: Hilbert</a></span> <span class="search-explanation" role="cell">The <strong><u>d</u>ocument <u>t</u>ype</strong> is set to books; alternatively: <u>j</u> for <strong>journal articles</strong>, <u>a</u> for <strong>book articles</strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=py%3A+2000-2015+cc%3A+%2894A+%7C+11T%29">py: 2000-2015 cc: (94A | 11T)</a></span> <span class="search-explanation" role="cell">Number <strong>ranges</strong> are accepted. Terms can be grouped within <strong><u>(</u>parentheses<u>)</u></strong>.</span> </div> <div class="help-item" role="row"> <span class="search-example" role="rowheader"><a href="/?q=la%3A+chinese">la: chinese</a></span> <span class="search-explanation" role="cell">Find documents in a given <strong><u>la</u>nguage</strong>. <a href="http://en.wikipedia.org/wiki/ISO_639-1">ISO 639-1</a> language codes can also be used.</span> </div> </div> <div id="help-fields"> <h2>Fields</h2> <table> <tr> <td class="nowrap padding" role="rowheader"><strong>any</strong></td> <td class="padding">anywhere</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>an</strong></td> <td class="padding">internal document identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>au</strong></td> <td class="padding">author, editor</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ai</strong></td> <td class="padding">internal author identifier</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ti</strong></td> <td class="padding">title</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>la</strong></td> <td class="padding">language</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>so</strong></td> <td class="padding">source</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ab</strong></td> <td class="padding">review, abstract</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>py</strong></td> <td class="padding">publication year</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>rv</strong></td> <td class="padding">reviewer</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>cc</strong></td> <td class="padding">MSC code</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>ut</strong></td> <td class="padding">uncontrolled term</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>dt</strong></td> <td class="padding" colspan="4">document type (<strong>j</strong>: journal article; <strong>b</strong>: book; <strong>a</strong>: book article)</td> </tr> </table> </div> <div id="help-operators"> <h2>Operators</h2> <table> <tr> <td class="nowrap padding" role="rowheader">a <strong>&</strong> b</td> <td class="padding">logic and</td> </tr> <tr> <td class="nowrap padding" role="rowheader">a <strong>|</strong> b</td> <td class="padding">logic or</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>!</strong>ab</td> <td class="padding">logic not</td> </tr> <tr> <td class="nowrap padding" role="rowheader">abc<strong>*</strong></td> <td class="padding">right wildcard</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>"</strong>ab c<strong>"</strong></td> <td class="padding">phrase</td> </tr> <tr> <td class="nowrap padding" role="rowheader"><strong>(</strong>ab c<strong>)</strong></td> <td class="padding">parentheses</td> </tr> </table> </div> <p> See also our <a href="/general-help/">General Help</a>. </p></div> </div> </form> <div class="clearfix"></div> </div> <div class="content-shadow"></div> </div> </div> <div id="body"> <div id="main"> <div class="messages"> </div> <div id="documents"> <div class="content-main"> <div class="content-item"><div class="item"> <article> <div class="author"><a href="/authors/hoffmann.marc" title="Author Profile">Hoffmann, M.</a>; <a href="/authors/lepskii.oleg-v" title="Author Profile">Lepski, O.</a></div> <h2 class="title"> <strong>Random rates in anisotropic regression. (With discussion).</strong> <i>(English)</i> <a class="label nowrap" href="/1012.62042">Zbl 1012.62042</a> </h2> <div class="source"> <a href="/serials/319" title="Journal Profile">Ann. Stat.</a> <a href="/?q=in%3A89977" title="Articles in this Issue">30, No. 2, 325-396 (2002)</a>. </div> <div class="abstract">Summary: In the context of minimax theory, we propose a new kind of risk, normalized by a random variable, measurable with respect to the data. We present a notion of optimality and a method to construct optimal procedures accordingly. We apply this general setup to the problem of selecting significant variables in Gaussian white noise. In particular, we show that our method essentially improves the accuracy of estimation, in the sense of giving explicit improved confidence sets in \(L_2\)-norm. Links to adaptive estimation are discussed.</div> <div class="clear"></div> <br> <div class="citations"><div class="clear"><a href="/?q=rf%3A1829086">Cited in <strong>49</strong> Documents</a></div></div> <div class="classification"> <h3>MSC:</h3> <table><tr> <td> <a class="mono" href="/classification/?q=cc%3A62G08" title="MSC2020">62G08</a> </td> <td class="space"> Nonparametric regression and quantile regression </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A62M10" title="MSC2020">62M10</a> </td> <td class="space"> Time series, auto-correlation, regression, etc. in statistics (GARCH) </td> </tr><tr> <td> <a class="mono" href="/classification/?q=cc%3A62G15" title="MSC2020">62G15</a> </td> <td class="space"> Nonparametric tolerance and confidence regions </td> </tr></table> </div> <!-- Modal used to show zbmath metadata in different output formats--> <div class="modal fade" id="metadataModal" tabindex="-1" role="dialog" aria-labelledby="myModalLabel"> <div class="modal-dialog" role="document"> <div class="modal-content"> <div class="modal-header"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> <h4 class="modal-title" id="myModalLabel">Cite</h4> </div> <div class="modal-body"> <div class="form-group"> <label for="select-output" class="control-label">Format</label> <select id="select-output" class="form-control" aria-label="Select Metadata format"></select> </div> <div class="form-group"> <label for="metadataText" class="control-label">Result</label> <textarea class="form-control" id="metadataText" rows="10" style="min-width: 100%;max-width: 100%"></textarea> </div> <div id="metadata-alert" class="alert alert-danger" role="alert" style="display: none;"> <!-- alert for connection errors etc --> </div> </div> <div class="modal-footer"> <button type="button" class="btn btn-primary" onclick="copyMetadata()">Copy to clipboard</button> <button type="button" class="btn btn-default" data-dismiss="modal">Close</button> </div> </div> </div> </div> <div class="functions clearfix"> <div class="function"> <!-- Button trigger metadata modal --> <a type="button" class="btn btn-default btn-xs pdf" data-toggle="modal" data-target="#metadataModal" data-itemtype="Zbl" data-itemname="Zbl 1012.62042" data-ciurl="/ci/01829086" data-biburl="/bibtex/01829086.bib" data-amsurl="/amsrefs/01829086.bib" data-xmlurl="/xml/01829086.xml" > Cite </a> <a class="btn btn-default btn-xs pdf" data-container="body" type="button" href="/pdf/01829086.pdf" title="Zbl 1012.62042 as PDF">Review PDF</a> </div> <div class="fulltexts"> <span class="fulltext">Full Text:</span> <a class="btn btn-default btn-xs" type="button" href="https://doi.org/10.1214/aos/1021379858" aria-label="DOI for “Random rates in anisotropic regression. (With discussion)”" title="10.1214/aos/1021379858">DOI</a> </div> <div class="sfx" style="float: right;"> </div> </div> <div class="references"> <h3>References:</h3> <table><tr> <td>[1]</td> <td class="space">AKAIKE, H. (1974). A new look at the statistical model identification. IEEE Trans. Automat. Control 19 716-723. · <a href="/0314.62039" class="nowrap">Zbl 0314.62039</a> · <a href="https://doi.org/10.1109/TAC.1974.1100705" class="nowrap">doi:10.1109/TAC.1974.1100705</a></td> </tr><tr> <td>[2]</td> <td class="space">BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413. · <a href="/0946.62036" class="nowrap">Zbl 0946.62036</a> · <a href="https://doi.org/10.1007/s004400050210" class="nowrap">doi:10.1007/s004400050210</a></td> </tr><tr> <td>[3]</td> <td class="space">BREIMAN, L. and FREEDMAN, D. (1983). How many variables should be entered in a regression model? J. Amer. Statist. Assoc. 78 131-136. JSTOR: · <a href="/0513.62068" class="nowrap">Zbl 0513.62068</a> · <a href="https://doi.org/10.2307/2287119" class="nowrap">doi:10.2307/2287119</a></td> </tr><tr> <td>[4]</td> <td class="space">BROWN, L. D. and LOW, M. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. · <a href="/0867.62022" class="nowrap">Zbl 0867.62022</a> · <a href="https://doi.org/10.1214/aos/1032181159" class="nowrap">doi:10.1214/aos/1032181159</a></td> </tr><tr> <td>[5]</td> <td class="space">CHERNOFF, H. (1956). Large sample theory: parametric case. Ann. Math. Statist. 27 1-22. · <a href="/0072.35703" class="nowrap">Zbl 0072.35703</a> · <a href="https://doi.org/10.1214/aoms/1177728347" class="nowrap">doi:10.1214/aoms/1177728347</a></td> </tr><tr> <td>[6]</td> <td class="space">CSISZÁR, I. and KÖRNER, J. (1981). Information Theory: Coding Theorems for Discrete Memoryless Systems. Akademic, New York. · <a href="/0568.94012" class="nowrap">Zbl 0568.94012</a></td> </tr><tr> <td>[7]</td> <td class="space">DELYON, B. and JUDITSKY, A. (1996). On minimax wavelet estimators. Appl. Comput. Harmon. Anal. 3 215-228. · <a href="/0865.62023" class="nowrap">Zbl 0865.62023</a> · <a href="https://doi.org/10.1006/acha.1996.0017" class="nowrap">doi:10.1006/acha.1996.0017</a></td> </tr><tr> <td>[8]</td> <td class="space">DONOHO, D. L. and JOHNSTONE, I. M. (1994). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455. JSTOR: · <a href="/0815.62019" class="nowrap">Zbl 0815.62019</a> · <a href="https://doi.org/10.1093/biomet/81.3.425" class="nowrap">doi:10.1093/biomet/81.3.425</a></td> </tr><tr> <td>[9]</td> <td class="space">DONOHO, D. L., JOHNSTONE, I. M., KERKYACHARIAN, G. and PICARD, D. (1995). Wavelet shrinkage: Asymptopia? J. Roy. Statist. Soc. Ser. B 57 301-369. JSTOR: · <a href="/0827.62035" class="nowrap">Zbl 0827.62035</a></td> </tr><tr> <td>[10]</td> <td class="space">DYCHAKOV, A. G. (1971). On a search model of false coins. In Colloquia Mathematica Societatis Janos Bolyai: Topics in Information Theory. North-Holland, Amsterdam.</td> </tr><tr> <td>[11]</td> <td class="space">EFROMOVICH, S. YU. (1985). Nonparametric estimation of a density of unknown smoothness. Theory Probab. Appl. 30 524-534. · <a href="/0581.62035" class="nowrap">Zbl 0581.62035</a></td> </tr><tr> <td>[12]</td> <td class="space">EFROMOVICH, S. YU. and PINSKER, M. S. (1984). Adaptive algorithms for nonparametric filtering. Automat. Remote Control 11 54-60.</td> </tr><tr> <td>[13]</td> <td class="space">FREIDLINA, V. L. (1975). On one problem of screening experimental design. Theory Probab. Appl. 20 100-114. · <a href="/0357.60016" class="nowrap">Zbl 0357.60016</a></td> </tr><tr> <td>[14]</td> <td class="space">GOLDENSHLUGER, A. and NEMIROVSKI, A. (1997). On spatially adaptive estimation of nonparametric regression. Math. Methods Statist. 6 135-170. · <a href="/0892.62018" class="nowrap">Zbl 0892.62018</a></td> </tr><tr> <td>[15]</td> <td class="space">GOLUBEV, G. K. (1990). Quasilinear estimates of a signal in L2. Problems Inform. Transmission 26 15-20. · <a href="/0723.62026" class="nowrap">Zbl 0723.62026</a></td> </tr><tr> <td>[16]</td> <td class="space">GRAMA, I. and NUSSBAUM, M. (1998). Asymptotic equivalence for nonparametric generalized linear models. Probab. Theory Related Fields 111 167-214. · <a href="/0953.62039" class="nowrap">Zbl 0953.62039</a> · <a href="https://doi.org/10.1007/s004400050166" class="nowrap">doi:10.1007/s004400050166</a></td> </tr><tr> <td>[17]</td> <td class="space">HÄRDLE, W. and MARRON, J. S. (1985). Optimal bandwidth selection in nonparametric regression function estimation. Ann. Statist. 3 1465-1481. · <a href="/0594.62043" class="nowrap">Zbl 0594.62043</a> · <a href="https://doi.org/10.1214/aos/1176349748" class="nowrap">doi:10.1214/aos/1176349748</a></td> </tr><tr> <td>[18]</td> <td class="space">HALL, P. (1991). Edgeworth expansions for nonparametric density estimators, with applications. Statistics 22 215-232. · <a href="/0809.62031" class="nowrap">Zbl 0809.62031</a> · <a href="https://doi.org/10.1080/02331889108802305" class="nowrap">doi:10.1080/02331889108802305</a></td> </tr><tr> <td>[19]</td> <td class="space">HALL, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Statist. 20 675-694. · <a href="/0748.62028" class="nowrap">Zbl 0748.62028</a> · <a href="https://doi.org/10.1214/aos/1176348651" class="nowrap">doi:10.1214/aos/1176348651</a></td> </tr><tr> <td>[20]</td> <td class="space">HALL, P., KERKYACHARIAN, G. and PICARD, D. (1998). Block threshold rules for curve estimation using kernel and wavelet methods. Ann. Statist. 26 922-942. · <a href="/0929.62040" class="nowrap">Zbl 0929.62040</a> · <a href="https://doi.org/10.1214/aos/1024691082" class="nowrap">doi:10.1214/aos/1024691082</a></td> </tr><tr> <td>[21]</td> <td class="space">HALL, P., KERKYACHARIAN, G. and PICARD, D. (1999). A note on the wavelet oracle. Statist. Probab. Lett. 43 415-420. · <a href="/0939.62030" class="nowrap">Zbl 0939.62030</a> · <a href="https://doi.org/10.1016/S0167-7152(98)00282-X" class="nowrap">doi:10.1016/S0167-7152(98)00282-X</a></td> </tr><tr> <td>[22]</td> <td class="space">HALL, P., KERKYACHARIAN, G. and PICARD, D. (1999). On the minimax optimality of block thresholding wavelet estimators. Statist. Sinica 9 33-49. · <a href="/0915.62028" class="nowrap">Zbl 0915.62028</a></td> </tr><tr> <td>[23]</td> <td class="space">IBRAGIMOV, I. A. and KHASMINSKI, R. Z. (1981). Statistical Estimation: Asymptotic Theory. Springer, New York.</td> </tr><tr> <td>[24]</td> <td class="space">IBRAGIMOV, I. A. and KHASMINSKI, R. Z. (1984). More on estimation of the density of a distribution. J. Soviet. Math. 25 1155-1165. · <a href="/0528.62032" class="nowrap">Zbl 0528.62032</a></td> </tr><tr> <td>[25]</td> <td class="space">LEPSKI, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 454-466. · <a href="/0745.62083" class="nowrap">Zbl 0745.62083</a> · <a href="https://doi.org/10.1137/1135065" class="nowrap">doi:10.1137/1135065</a></td> </tr><tr> <td>[26]</td> <td class="space">LEPSKI, O. V. (1991). Asymptotic minimax adaptive estimation. 1. Upper bounds. Optimally adaptive estimates. Theory Probab. Appl. 36 682-697. · <a href="/0776.62039" class="nowrap">Zbl 0776.62039</a> · <a href="https://doi.org/10.1137/1136085" class="nowrap">doi:10.1137/1136085</a></td> </tr><tr> <td>[27]</td> <td class="space">LEPSKI, O. V. (1992). Asymptotic minimax adaptive estimation. 2. Statistical models without optimal adaptation. Adaptive estimators. Theory Probab. Appl. 37 433-448. · <a href="/0787.62087" class="nowrap">Zbl 0787.62087</a> · <a href="https://doi.org/10.1137/1137095" class="nowrap">doi:10.1137/1137095</a></td> </tr><tr> <td>[28]</td> <td class="space">LEPSKI, O. V. (1992). On problems of adaptive estimation in white Gaussian noise. In Advances in Soviet Mathematics (R. Z. Khasminskii, ed.) 12 87-106. Amer. Math. Soc., Providence, RI. · <a href="/0783.62061" class="nowrap">Zbl 0783.62061</a></td> </tr><tr> <td>[29]</td> <td class="space">LEPSKI, O. V. (1999). How to improve the accuracy of estimation. Math. Methods Statist. 8 441-486. · <a href="/1033.62032" class="nowrap">Zbl 1033.62032</a></td> </tr><tr> <td>[30]</td> <td class="space">LEPSKI, O. V. and SPOKOINY, V. G. (1995). Local adaptation to inhomogeneous smoothness: resolution level. Math. Methods Statist. 4 239-258. · <a href="/0836.62030" class="nowrap">Zbl 0836.62030</a></td> </tr><tr> <td>[31]</td> <td class="space">LEPSKI, O. V. and SPOKOINY, V. G. (1997). Optimal pointwise adaptive methods in nonparametric estimation. Ann. Statist. 25 2512-2546. · <a href="/0894.62041" class="nowrap">Zbl 0894.62041</a> · <a href="https://doi.org/10.1214/aos/1030741083" class="nowrap">doi:10.1214/aos/1030741083</a></td> </tr><tr> <td>[32]</td> <td class="space">LEPSKI, O. V., MAMMEN, E. and SPOKOINY, V. G. (1997). Optimal spatial adaptation to inhomogeneous smoothness: an approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 929-947. · <a href="/0885.62044" class="nowrap">Zbl 0885.62044</a> · <a href="https://doi.org/10.1214/aos/1069362731" class="nowrap">doi:10.1214/aos/1069362731</a></td> </tr><tr> <td>[33]</td> <td class="space">LOW, M. G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547-2554. · <a href="/0894.62055" class="nowrap">Zbl 0894.62055</a> · <a href="https://doi.org/10.1214/aos/1030741084" class="nowrap">doi:10.1214/aos/1030741084</a></td> </tr><tr> <td>[34]</td> <td class="space">MALYUTOV, M. B. and TSITOVICH, I. I. (1996). On sequential search for significant variables of unknown function. In Proceedings of 6th Lukacs Symposium 155-178. VSP, Utrecht. · <a href="/0883.62091" class="nowrap">Zbl 0883.62091</a></td> </tr><tr> <td>[35]</td> <td class="space">MESHALKIN, P. S. (1970). To the justification of random balance method. Industrial Laboratory 36.</td> </tr><tr> <td>[36]</td> <td class="space">NEUMANN, M. (1995). Automatic bandwidth choice and confidence intervals in nonparametric regression. Ann. Statist. 23 1937-1959. · <a href="/0856.62042" class="nowrap">Zbl 0856.62042</a> · <a href="https://doi.org/10.1214/aos/1034713641" class="nowrap">doi:10.1214/aos/1034713641</a></td> </tr><tr> <td>[37]</td> <td class="space">NEUMANN, M. and VON SACHS, R. (1995). Wavelet thresholding in anisotropic function classes and application to the adaptive estimation of evolutionary spectra. Preprint, WIAS, Berlin.</td> </tr><tr> <td>[38]</td> <td class="space">NIKOLSKII, S. M. (1975). Approximation of Functions of Several Variables and Imbedding Theorems. Springer, Berlin.</td> </tr><tr> <td>[39]</td> <td class="space">NUSSBAUM, M. (1983). Optimal filtration of a function of many variables in white Gaussian noise. Problems Inform. Transmission 19 23-29. · <a href="/0525.94002" class="nowrap">Zbl 0525.94002</a></td> </tr><tr> <td>[40]</td> <td class="space">NUSSBAUM, M. (1986). On nonparametric estimation of a regression function, being smooth on a domain in Rk. Theory Probab. Appl. 31 118-125. · <a href="/0606.62039" class="nowrap">Zbl 0606.62039</a> · <a href="https://doi.org/10.1137/1131010" class="nowrap">doi:10.1137/1131010</a></td> </tr><tr> <td>[41]</td> <td class="space">NUSSBAUM, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430. · <a href="/0867.62035" class="nowrap">Zbl 0867.62035</a> · <a href="https://doi.org/10.1214/aos/1032181160" class="nowrap">doi:10.1214/aos/1032181160</a></td> </tr><tr> <td>[42]</td> <td class="space">PATEL, M. S., ed. (1987). Experiments in Factor Screening. Comm. Statist. Theory Methods 16(10). (Special issue.)</td> </tr><tr> <td>[43]</td> <td class="space">PETROV, V. V. (1975). Sums of Independent Random Variables. Springer, Berlin. · <a href="/0322.60043" class="nowrap">Zbl 0322.60043</a></td> </tr><tr> <td>[44]</td> <td class="space">PICARD, D. and TRIBOULEY, K. (2000). Adaptive confidence intervals for pointwise curve estimation. Ann. Statist. 28 298-335. · <a href="/1106.62331" class="nowrap">Zbl 1106.62331</a> · <a href="https://doi.org/10.1214/aos/1016120374" class="nowrap">doi:10.1214/aos/1016120374</a></td> </tr><tr> <td>[45]</td> <td class="space">POLYAK, B. T. and TSYBAKOV, A. B. (1990). Asymptotic optimality of the Cp test in the projection estimation of a regression. Theory Probab. Appl. 35 293-306. · <a href="/0721.62042" class="nowrap">Zbl 0721.62042</a> · <a href="https://doi.org/10.1137/1135037" class="nowrap">doi:10.1137/1135037</a></td> </tr><tr> <td>[46]</td> <td class="space">RÉNYI, A. (1965). On the theory of random search. Bull. Amer. Math. Soc. 71 809-828. · <a href="/0138.14706" class="nowrap">Zbl 0138.14706</a> · <a href="https://doi.org/10.1090/S0002-9904-1965-11402-1" class="nowrap">doi:10.1090/S0002-9904-1965-11402-1</a></td> </tr><tr> <td>[47]</td> <td class="space">SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464. · <a href="/0379.62005" class="nowrap">Zbl 0379.62005</a> · <a href="https://doi.org/10.1214/aos/1176344136" class="nowrap">doi:10.1214/aos/1176344136</a></td> </tr><tr> <td>[48]</td> <td class="space">STONE, C. J. (1986). The dimensionality reduction principle for generalized additive models. Ann. Statist. 14 590-606. · <a href="/0603.62050" class="nowrap">Zbl 0603.62050</a> · <a href="https://doi.org/10.1214/aos/1176349940" class="nowrap">doi:10.1214/aos/1176349940</a></td> </tr><tr> <td>[49]</td> <td class="space">TOPOLOGIE, PROBABILITÉS CENTRE DE MATHÉMATIQUES ET D ’INFORMATIQUE CNRS-UMR 6632 UNIVERSITÉ DE PROVENCE 39, RUE JOLIOT CURIE 13453 MARSEILLE CEDEX 13 FRANCE E-MAIL: lepski@cmi.univ-mrs.fr Lepski (1999). In Section 5 of Lepski [3], the author gives two concrete applications of his ideas after having listed in Section 4 a number of potentially interesting problems to be solved, concluding that ”the treatment of minimax risk with RNFs for multidimensional models is the subject of a series of forthcoming papers.” The paper by Marc Hoffmann and Oleg Lepski (hereafter H&L) to be discussed is one of these and, in view of the numerous connections between both papers, my discussion will deal with the two of them simultaneously.</td> </tr><tr> <td>[50]</td> <td class="space">BIRGÉ, L. and ROZENHOLC, Y. (2002). How many bins should be put in a regular histogram? Technical report, Univ. Paris VI. · <a href="/1136.62329" class="nowrap">Zbl 1136.62329</a></td> </tr><tr> <td>[51]</td> <td class="space">CASTELLAN, G. (1999). Modified Akaike’s criterion for histogram density estimation. Technical Report, Univ. Paris-Sud, Orsay.</td> </tr><tr> <td>[52]</td> <td class="space">LEPSKI, O. (1999). How to improve the accuracy of estimation. Math. Methods Statist. 8 441- 486. · <a href="/1033.62032" class="nowrap">Zbl 1033.62032</a></td> </tr><tr> <td>[53]</td> <td class="space">, is = 2 log 1 s-1 m/(2m+1). Notations A (is), (is) and (is) have the same definitions as those in HL, but with our new T (is), (, is), (), and (0) (is). We will show that Theorem 1 in HL holds in our case with our definitions (ignoring the constants). To do that, we first prove Lemma 1. This is a different lemma since all the quantities involved are defined differently now. Therefore we provide a detailed proof:</td> </tr><tr> <td>[54]</td> <td class="space">BROWN, L. D. and LOW, M. G. (1996). Asymptotic equivalence of nonparametric regression and white noise. Ann. Statist. 24 2384-2398. · <a href="/0867.62022" class="nowrap">Zbl 0867.62022</a> · <a href="https://doi.org/10.1214/aos/1032181159" class="nowrap">doi:10.1214/aos/1032181159</a></td> </tr><tr> <td>[55]</td> <td class="space">LIN, Y. (2000). Tensor product space ANOVA models. Ann. Statist. 28 734-755. · <a href="/1105.62329" class="nowrap">Zbl 1105.62329</a> · <a href="https://doi.org/10.1214/aos/1015951996" class="nowrap">doi:10.1214/aos/1015951996</a></td> </tr><tr> <td>[56]</td> <td class="space">NUSSBAUM, M. (1996). Asymptotic equivalence of density estimation and Gaussian white noise. Ann. Statist. 24 2399-2430. · <a href="/0867.62035" class="nowrap">Zbl 0867.62035</a> · <a href="https://doi.org/10.1214/aos/1032181160" class="nowrap">doi:10.1214/aos/1032181160</a></td> </tr><tr> <td>[57]</td> <td class="space">STONE, C. J. (1994). The use of polynomial splines and their tensor products in multivariate function estimation (with discussion). Ann. Statist. 22 118-184. · <a href="/0827.62038" class="nowrap">Zbl 0827.62038</a> · <a href="https://doi.org/10.1214/aos/1176325361" class="nowrap">doi:10.1214/aos/1176325361</a></td> </tr><tr> <td>[58]</td> <td class="space">WAHBA, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia. · <a href="/0813.62001" class="nowrap">Zbl 0813.62001</a></td> </tr><tr> <td>[59]</td> <td class="space">WAHBA, G., WANG, Y., GU, C., KLEIN, R. and KLEIN, B. (1995). Smoothing spline ANOVA for exponential families, with application to the Wisconsin epidemiological study of diabetic retinopathy. Ann. Statist. 23 1865-1895. · <a href="/0854.62042" class="nowrap">Zbl 0854.62042</a> · <a href="https://doi.org/10.1214/aos/1034713638" class="nowrap">doi:10.1214/aos/1034713638</a></td> </tr><tr> <td>[60]</td> <td class="space">PHILADELPHIA, PENNSYLVANIA 19104-6302 E-MAIL: lbrown@wharton.upenn.edu</td> </tr><tr> <td>[61]</td> <td class="space">BROWN, L. D., LOW, M. G. and ZHAO, L. H. (1997). Superefficiency in nonparametric function estimation. Ann. Statist. 25 2607-2625. · <a href="/0895.62043" class="nowrap">Zbl 0895.62043</a> · <a href="https://doi.org/10.1214/aos/1030741087" class="nowrap">doi:10.1214/aos/1030741087</a></td> </tr><tr> <td>[62]</td> <td class="space">EFROMOVICH, S. (1999). Nonparametric Curve Estimation: Methods, Theory and Applications. Springer, New York. · <a href="/0935.62039" class="nowrap">Zbl 0935.62039</a></td> </tr><tr> <td>[63]</td> <td class="space">LEPSKI, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 454-466. · <a href="/0745.62083" class="nowrap">Zbl 0745.62083</a> · <a href="https://doi.org/10.1137/1135065" class="nowrap">doi:10.1137/1135065</a></td> </tr><tr> <td>[64]</td> <td class="space">LEPSKI, O. V. (1992). Asymptotic minimax adaptive estimation. 2. Statistical models without optimal adaptation. Adaptive estimators. Theory Probab. Appl. 37 433-448. · <a href="/0787.62087" class="nowrap">Zbl 0787.62087</a> · <a href="https://doi.org/10.1137/1137095" class="nowrap">doi:10.1137/1137095</a></td> </tr><tr> <td>[65]</td> <td class="space">ALBUQUERQUE, NEW MEXICO 87131-1141 E-MAIL: efrom@math.unm.edu · <a href="/1219.01061" class="nowrap">Zbl 1219.01061</a></td> </tr><tr> <td>[66]</td> <td class="space">FARAWAY, J. (1990). Bootstrap selection of bandwidth and confidence bands for nonparametric regression. J. Statist. Comput. Simulation 37 37-44. · <a href="/0775.62092" class="nowrap">Zbl 0775.62092</a> · <a href="https://doi.org/10.1080/00949659008811292" class="nowrap">doi:10.1080/00949659008811292</a></td> </tr><tr> <td>[67]</td> <td class="space">HALL, P. (1991). Edgeworth expansions for nonparametric density estimators, with applications. Statistics 22 215-232. · <a href="/0809.62031" class="nowrap">Zbl 0809.62031</a> · <a href="https://doi.org/10.1080/02331889108802305" class="nowrap">doi:10.1080/02331889108802305</a></td> </tr><tr> <td>[68]</td> <td class="space">HALL, P. (1992). Effect of bias estimation on coverage accuracy of bootstrap confidence intervals for a probability density. Ann. Statist. 20 675-694. · <a href="/0748.62028" class="nowrap">Zbl 0748.62028</a> · <a href="https://doi.org/10.1214/aos/1176348651" class="nowrap">doi:10.1214/aos/1176348651</a></td> </tr><tr> <td>[69]</td> <td class="space">KERKYACHARIAN, G. and PICARD, D. (2000). Minimax or maxisets? Technical report, Univ. Paris VI and Paris VII.</td> </tr><tr> <td>[70]</td> <td class="space">LOW, M. G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547-2554. · <a href="/0894.62055" class="nowrap">Zbl 0894.62055</a> · <a href="https://doi.org/10.1214/aos/1030741084" class="nowrap">doi:10.1214/aos/1030741084</a></td> </tr><tr> <td>[71]</td> <td class="space">NEUMANN, M. (1995). Automatic bandwidth choice and confidence intervals in nonparametric regression. Ann. Statist. 23 1937-1959. · <a href="/0856.62042" class="nowrap">Zbl 0856.62042</a> · <a href="https://doi.org/10.1214/aos/1034713641" class="nowrap">doi:10.1214/aos/1034713641</a></td> </tr><tr> <td>[72]</td> <td class="space">PICARD, D. and TRIBOULEY, K. (2000). Adaptive confidence interval for pointwise curve estimation. Ann. Statist. 28 298-335. · <a href="/1106.62331" class="nowrap">Zbl 1106.62331</a> · <a href="https://doi.org/10.1214/aos/1016120374" class="nowrap">doi:10.1214/aos/1016120374</a></td> </tr><tr> <td>[73]</td> <td class="space">,k = kYk, k = 1 2|Bm| k Bm Y2k +, k Bm, m 1,..., J d, (2)</td> </tr><tr> <td>[74]</td> <td class="space">CAVALIER, L., GOLUBEV, YU., PICARD, D. and TSYBAKOV, A. B. (2000). Oracle inequalities for inverse problems. Ann. Statist. · <a href="/1029.62032" class="nowrap">Zbl 1029.62032</a> · <a href="https://doi.org/10.1214/aos/1028674843" class="nowrap">doi:10.1214/aos/1028674843</a></td> </tr><tr> <td>[75]</td> <td class="space">CAVALIER, L. and TSYBAKOV, A. B. (2000). Sharp adaptation for inverse problems with random noise. Probab. Theory Related Fields. To appear. Available at www.proba. jussieu.fr. URL: · <a href="/1039.62031" class="nowrap">Zbl 1039.62031</a> · <a href="https://doi.org/10.1007/s004400100169" class="nowrap">doi:10.1007/s004400100169</a></td> </tr><tr> <td>[76]</td> <td class="space">CAVALIER, L. and TSYBAKOV, A. B. (2001). Penalized blockwise Stein’s method, monotone oracles and sharp adaptive estimation. Math. Methods Statist. 10 247-282. · <a href="/1005.62027" class="nowrap">Zbl 1005.62027</a></td> </tr><tr> <td>[77]</td> <td class="space">GOLDENSHLUGER, A. and TSYBAKOV, A. (2001). Adaptive prediction and estimation in linear regression with infinitely many parameters. Ann. Statist. 29 1601-1619. · <a href="/1043.62076" class="nowrap">Zbl 1043.62076</a> · <a href="https://doi.org/10.1214/aos/1015345956" class="nowrap">doi:10.1214/aos/1015345956</a></td> </tr><tr> <td>[78]</td> <td class="space">JOHNSTONE, I. M. (1998). Function estimation in Gaussian noise: sequence models. (Draft of a monograph; available at http://www-stat.stanford.edu/.) URL:</td> </tr><tr> <td>[79]</td> <td class="space">KERKYACHARIAN, G., LEPSKI, O. and PICARD, D. (2001). Nonlinear estimation in anisotropic multi-index denoising. Probab. Theory Related Fields. 121 137-170. · <a href="/1010.62029" class="nowrap">Zbl 1010.62029</a> · <a href="https://doi.org/10.1007/s004400100148" class="nowrap">doi:10.1007/s004400100148</a></td> </tr><tr> <td>[80]</td> <td class="space">LEPSKI, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Theory Probab. Appl. 35 454-466. · <a href="/0745.62083" class="nowrap">Zbl 0745.62083</a> · <a href="https://doi.org/10.1137/1135065" class="nowrap">doi:10.1137/1135065</a></td> </tr><tr> <td>[81]</td> <td class="space">LEPSKI, O. V. (1999). How to improve the accuracy of estimation. Math. Methods Statist. 8 441-486. · <a href="/1033.62032" class="nowrap">Zbl 1033.62032</a></td> </tr><tr> <td>[82]</td> <td class="space">LEPSKI, O. V. and LEVIT, B. YA. (1999). Adaptive nonparametric estimation of smooth multivariate functions. Math. Methods Statist. 8 344-370. · <a href="/1104.62312" class="nowrap">Zbl 1104.62312</a></td> </tr><tr> <td>[83]</td> <td class="space">LI, K.-C. (1989). Honest confidence regions for nonparametric regression. Ann. Statist. 17 1001-1008. · <a href="/0681.62047" class="nowrap">Zbl 0681.62047</a> · <a href="https://doi.org/10.1214/aos/1176347253" class="nowrap">doi:10.1214/aos/1176347253</a></td> </tr><tr> <td>[84]</td> <td class="space">LOW, M. G. (1997). On nonparametric confidence intervals. Ann. Statist. 25 2547-2554. · <a href="/0894.62055" class="nowrap">Zbl 0894.62055</a> · <a href="https://doi.org/10.1214/aos/1030741084" class="nowrap">doi:10.1214/aos/1030741084</a></td> </tr><tr> <td>[85]</td> <td class="space">POLZEHL, J. and SPOKOINY, V. G. (1999). Image denoising: pointwise adaptive approach. Preprint, Weierstrass Inst., Berlin. · <a href="/1018.62047" class="nowrap">Zbl 1018.62047</a> · <a href="https://doi.org/10.1214/aos/1046294457" class="nowrap">doi:10.1214/aos/1046294457</a></td> </tr><tr> <td>[86]</td> <td class="space">TSYBAKOV, A. B. (2001a). Introduction à l’estimation non-paramétrique. Unpublished manuscript (book, submitted for publication). · <a href="/1043.62076" class="nowrap">Zbl 1043.62076</a> · <a href="https://doi.org/10.1214/aos/1015345956" class="nowrap">doi:10.1214/aos/1015345956</a></td> </tr><tr> <td>[87]</td> <td class="space">TSYBAKOV, A. B. (2001b). Optimal aggregation of classifiers in statistical learning. Preprint 682, Laboratoire de Probabilités et Modèles Aléatoires, Univ. Paris VI and Paris VII. (Available at http://www.proba.jussieu.fr/mathdoc/preprints/index.html#2001.) URL: · <a href="/1043.62076" class="nowrap">Zbl 1043.62076</a> · <a href="https://doi.org/10.1214/aos/1015345956" class="nowrap">doi:10.1214/aos/1015345956</a></td> </tr><tr> <td>[88]</td> <td class="space">BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413. · <a href="/0946.62036" class="nowrap">Zbl 0946.62036</a> · <a href="https://doi.org/10.1007/s004400050210" class="nowrap">doi:10.1007/s004400050210</a></td> </tr><tr> <td>[89]</td> <td class="space">DÜMBGEN, L. and SPOKOINY, V. G. (2001). Multiscale testing of qualitative hypothesis. Ann. Statist. 29 124-152. · <a href="/1029.62070" class="nowrap">Zbl 1029.62070</a></td> </tr><tr> <td>[90]</td> <td class="space">LEPSKI, O. V. (1999). How to improve the accuracy of estimation. Math. Methods Statist. 8 441-486. · <a href="/1033.62032" class="nowrap">Zbl 1033.62032</a></td> </tr><tr> <td>[91]</td> <td class="space">PICARD, D. and TRIBOULEY, K. (2000). Adaptive confidence intervals for pointwise curve estimation. Ann. Statist. 28 298-335. · <a href="/1106.62331" class="nowrap">Zbl 1106.62331</a> · <a href="https://doi.org/10.1214/aos/1016120374" class="nowrap">doi:10.1214/aos/1016120374</a></td> </tr><tr> <td>[92]</td> <td class="space">BARRON, A., BIRGÉ, L. and MASSART, P. (1999). Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 301-413. · <a href="/0946.62036" class="nowrap">Zbl 0946.62036</a> · <a href="https://doi.org/10.1007/s004400050210" class="nowrap">doi:10.1007/s004400050210</a></td> </tr><tr> <td>[93]</td> <td class="space">INGSTER, Y. I. (1993). Asymptotically minimax hypothesis testing for nonparametric alternatives, I-III. Math. Methods Statist. 2 85-114, 171-189, 249-268. · <a href="/0798.62057" class="nowrap">Zbl 0798.62057</a></td> </tr><tr> <td>[94]</td> <td class="space">IOUDITSKY, A. and LEPSKI, O. (2001). Evaluation of the accuracy of nonparametric estimators. Math. Methods Statist. · <a href="/1005.62041" class="nowrap">Zbl 1005.62041</a></td> </tr><tr> <td>[95]</td> <td class="space">LEPSKI O. V. (1991). Asymptotic minimax adaptive estimation. 1. Upper bounds. Theory Probab. Appl. 36 682-697. · <a href="/0776.62039" class="nowrap">Zbl 0776.62039</a> · <a href="https://doi.org/10.1137/1136085" class="nowrap">doi:10.1137/1136085</a></td> </tr><tr> <td>[96]</td> <td class="space">KERKYACHARIAN, G., LEPSKI, O. and PICARD, D. (2001). Nonlinear estimation in anisotropic multi-index denoising. Probab. Theory Related Fields 121 137-170. · <a href="/1010.62029" class="nowrap">Zbl 1010.62029</a> · <a href="https://doi.org/10.1007/s004400100148" class="nowrap">doi:10.1007/s004400100148</a></td> </tr><tr> <td>[97]</td> <td class="space">NEUMANN, M. H. and VON SACHS, R. (1997). Wavelet threshholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann. Statist. 25 38-76. · <a href="/0871.62081" class="nowrap">Zbl 0871.62081</a> · <a href="https://doi.org/10.1214/aos/1034276621" class="nowrap">doi:10.1214/aos/1034276621</a></td> </tr><tr> <td>[98]</td> <td class="space">TOPOLOGIE, PROBABILITÉS CENTRE DE MATHÉMATIQUES ET D ’INFORMATIQUE CNRS-UMR 6632 UNIVERSITÉ DE PROVENCE 39, RUE JOLIOT CURIE, 13453 MARSEILLE CEDEX 13 FRANCE E-MAIL: lepski@cmi.univ-mrs.fr</td> </tr></table> <div class="reference_disclaimer"> This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching. </div> </div></article> </div></div> </div> </div> <div class="clearfix"></div> </div> </div> <div id="foot"><div class="copyright"> © 2025 <a target="fiz" href="https://www.fiz-karlsruhe.de/en">FIZ Karlsruhe GmbH</a> <a href="/privacy-policy/">Privacy Policy</a> <a href="/legal-notices/">Legal Notices</a> <a href="/terms-conditions/">Terms & Conditions</a> <div class="info"> <ul class="nav"> <li class="mastodon"> <a href="https://mathstodon.xyz/@zbMATH" target="_blank" class="no-new-tab-icon"> <img src="/static/mastodon.png" title="zbMATH at Mathstodon (opens in new tab)" alt="Mastodon logo"> </a> </li> </ul> </div> </div> <div class="clearfix" style="height: 0px;"></div> </div> </div> <script src="https://static.zbmath.org/contrib/jquery/1.9.1/jquery.min.js"></script> <script src="https://static.zbmath.org/contrib/jquery-caret/1.5.2/jquery.caret.min.js"></script> <script src="/static/js/jquery-ui-1.10.1.custom.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap/v3.3.7zb1/js/bootstrap.min.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-lightbox/v0.7.0/bootstrap-lightbox.min.js"></script> <script src="https://static.zbmath.org/contrib/retina/unknown/retina.js"></script> <script src="https://static.zbmath.org/contrib/bootstrap-select/v1.13.14/js/bootstrap-select.min.js"></script> <script> var SCRIPT_ROOT = ""; </script> <script src="/static/scripts.js?v=20240926"> </script> <script src="https://static.zbmath.org/contrib/mathjax/2.7.1/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ "HTML-CSS": { preferredFont: "TeX", availableFonts: [ "STIX", "TeX" ], linebreaks: { automatic: true }, EqnChunk: (MathJax.Hub.Browser.isMobile ? 10 : 50) }, tex2jax: { processEscapes: true, ignoreClass: "tex2jax_ignore|dno" }, TeX: { Macros: { Aut: "\\operatorname{Aut}", Hom: "\\operatorname{Hom}" }, noUndefined: { attributes: { mathcolor: "#039", //"red", mathbackground: "white", //"#FFEEEE", mathsize: "90%" } } }, messageStyle: "none" }); </script> <script type="text/javascript"> $(document).ready(function() { $("#MathInput").stop(true, true).keyup(function() { $.ajax({ url: "/mwsq/", type: "POST", data: { query : $("#MathInput").val() }, dataType: "text" }) .done(function(xml) { $("#MathPreview").html(xml); $(window).resize(); }); }); var press = jQuery.Event("keyup"); press.ctrlKey = false; press.which = 40; $("#MathInput").trigger(press); }); </script> <div id="new_tab_icon" style="display: none"> <span class="glyphicon glyphicon-new-window" aria-hidden="true"></span><span class="sr-only">(opens in new tab)</span></div> </body> </html>