CINXE.COM
Search results for: temperature effect
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: temperature effect</title> <meta name="description" content="Search results for: temperature effect"> <meta name="keywords" content="temperature effect"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="temperature effect" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="temperature effect"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19676</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: temperature effect</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19676</span> Modelling and Simulation of Photovoltaic Cell</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fouad%20Berrabeh">Fouad Berrabeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Sabir%20Messalti"> Sabir Messalti </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performances of the photovoltaic systems are very dependent on different conditions, such as solar irradiation, temperature, etc. Therefore, it is very important to provide detailed studies for different cases in order to provide continuously power, so the photovoltaic system must be properly sized. This paper presents the modelling and simulation of the photovoltaic cell using single diode model. I-V characteristics and P-V characteristics are presented and it verified at different conditions (irradiance effect, temperature effect, series resistance effect). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20cell" title="photovoltaic cell">photovoltaic cell</a>, <a href="https://publications.waset.org/abstracts/search?q=BP%20SX%20150%20BP%20solar%20photovoltaic%20module" title=" BP SX 150 BP solar photovoltaic module"> BP SX 150 BP solar photovoltaic module</a>, <a href="https://publications.waset.org/abstracts/search?q=irradiance%20effect" title=" irradiance effect"> irradiance effect</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=series%20resistance%20effect" title=" series resistance effect"> series resistance effect</a>, <a href="https://publications.waset.org/abstracts/search?q=I%E2%80%93V%20characteristics" title=" I–V characteristics"> I–V characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=P%E2%80%93V%20characteristics" title=" P–V characteristics"> P–V characteristics</a> </p> <a href="https://publications.waset.org/abstracts/16671/modelling-and-simulation-of-photovoltaic-cell" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">489</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19675</span> Influence of Temperature on Properties of MOSFETs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azizi%20Cherifa">Azizi Cherifa</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Benzaoui"> O. Benzaoui </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The thermal aspects in the design of power circuits often deserve as much attention as pure electric components aspects as the operating temperature has a direct influence on their static and dynamic characteristics. MOSFET is fundamental in the circuits, it is the most widely used device in the current production of semiconductor components using their honorable performance. The aim of this contribution is devoted to the effect of the temperature on the properties of MOSFETs. The study enables us to calculate the drain current as function of bias in both linear and saturated modes. The effect of temperature is evaluated using a numerical simulation, using the laws of mobility and saturation velocity of carriers as a function of temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature" title="temperature">temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=MOSFET" title=" MOSFET"> MOSFET</a>, <a href="https://publications.waset.org/abstracts/search?q=mobility" title=" mobility"> mobility</a>, <a href="https://publications.waset.org/abstracts/search?q=transistor" title=" transistor"> transistor</a> </p> <a href="https://publications.waset.org/abstracts/42385/influence-of-temperature-on-properties-of-mosfets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">346</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19674</span> Effect of Current Density, Temperature and Pressure on Proton Exchange Membrane Electrolyser Stack</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Na%20Li">Na Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Samuel%20Simon%20Araya"> Samuel Simon Araya</a>, <a href="https://publications.waset.org/abstracts/search?q=S%C3%B8ren%20Knudsen%20K%C3%A6r"> Søren Knudsen Kær</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the effects of operating parameters of different current density, temperature and pressure on the performance of a proton exchange membrane (PEM) water electrolysis stack. A 7-cell PEM water electrolysis stack was assembled and tested under different operation modules. The voltage change and polarization curves under different test conditions, namely current density, temperature and pressure, were recorded. Results show that higher temperature has positive effect on overall stack performance, where temperature of 80 ℃ improved the cell performance greatly. However, the cathode pressure and current density has little effect on stack performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PEM%20electrolysis%20stack" title="PEM electrolysis stack">PEM electrolysis stack</a>, <a href="https://publications.waset.org/abstracts/search?q=current%20density" title=" current density"> current density</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure" title=" pressure"> pressure</a> </p> <a href="https://publications.waset.org/abstracts/131951/effect-of-current-density-temperature-and-pressure-on-proton-exchange-membrane-electrolyser-stack" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131951.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19673</span> Effect of Microstructure on Transition Temperature of Austempered Ductile Iron (ADI)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Ozel">A. Ozel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ductile to brittle transition temperature is a very important criterion that is used for selection of materials in some applications, especially in low-temperature conditions. For that reason, in this study transition temperature of as-cast and austempered unalloyed ductile iron in the temperature interval from -60 to +100 degrees C have been investigated. The microstructures of samples were examined by light microscope. The impact energy values obtained from the experiments were found to depend on the austempering time and temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Austempered%20Ductile%20Iron%20%28ADI%29" title="Austempered Ductile Iron (ADI)">Austempered Ductile Iron (ADI)</a>, <a href="https://publications.waset.org/abstracts/search?q=Charpy%20test" title=" Charpy test"> Charpy test</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=transition%20temperature" title=" transition temperature "> transition temperature </a> </p> <a href="https://publications.waset.org/abstracts/28406/effect-of-microstructure-on-transition-temperature-of-austempered-ductile-iron-adi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28406.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19672</span> Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High-Temperature Micromodels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zakaria%20Hamdi">Zakaria Hamdi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mariyamni%20Awang"> Mariyamni Awang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the past decades, CO<sub>2</sub> flooding has been used as a successful method for enhanced oil recovery (EOR). However, high mobility ratio and fingering effect are considered as important drawbacka of this process. Low temperature injection of CO<sub>2</sub> into high temperature reservoirs may improve the oil recovery, but simulating multiphase flow in the non-isothermal medium is difficult, and commercial simulators are very unstable in these conditions. Furthermore, to best of authors’ knowledge, no experimental work was done to verify the results of the simulations and to understand the pore-scale process. In this paper, we present results of investigations on injection of low temperature CO<sub>2</sub> into a high-pressure high-temperature micromodel with injection temperature range from 34 to 75 °F. Effect of temperature and saturation changes of different fluids are measured in each case. The results prove the proposed method. The injection of CO<sub>2</sub> at low temperatures increased the oil recovery in high temperature reservoirs significantly. Also, CO<sub>2</sub> rich phases available in the high temperature system can affect the oil recovery through the better sweep of the oil which is initially caused by penetration of LCO<sub>2</sub> inside the system. Furthermore, no unfavorable effect was detected using this method. Low temperature CO<sub>2</sub> is proposed to be used as early as secondary recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=enhanced%20oil%20recovery" title="enhanced oil recovery">enhanced oil recovery</a>, <a href="https://publications.waset.org/abstracts/search?q=CO%E2%82%82%20flooding" title=" CO₂ flooding"> CO₂ flooding</a>, <a href="https://publications.waset.org/abstracts/search?q=micromodel%20studies" title=" micromodel studies"> micromodel studies</a>, <a href="https://publications.waset.org/abstracts/search?q=miscible%20flooding" title=" miscible flooding"> miscible flooding</a> </p> <a href="https://publications.waset.org/abstracts/71727/oil-recovery-study-by-low-temperature-carbon-dioxide-injection-in-high-pressure-high-temperature-micromodels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">352</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19671</span> Magnesium Alloys Containing Y, Gd and Ca with Enhanced Ignition Temperature and Mechanical Properties for Aviation Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji%C5%99%C3%AD%20Kub%C3%A1sek">Jiří Kubásek</a>, <a href="https://publications.waset.org/abstracts/search?q=Peter%20Min%C3%A1rik"> Peter Minárik</a>, <a href="https://publications.waset.org/abstracts/search?q=Kl%C3%A1ra%20Hosov%C3%A1"> Klára Hosová</a>, <a href="https://publications.waset.org/abstracts/search?q=Stanislav%20%C5%A0a%C5%A1ek"> Stanislav Šašek</a>, <a href="https://publications.waset.org/abstracts/search?q=Jozef%20Vesel%C3%BD"> Jozef Veselý</a>, <a href="https://publications.waset.org/abstracts/search?q=Jitka%20Str%C3%A1sk%C3%A1"> Jitka Stráská</a>, <a href="https://publications.waset.org/abstracts/search?q=Drahom%C3%ADr%20Dvorsk%C3%BD"> Drahomír Dvorský</a>, <a href="https://publications.waset.org/abstracts/search?q=Dalibor%20Vojt%C4%9Bch"> Dalibor Vojtěch</a>, <a href="https://publications.waset.org/abstracts/search?q=Milo%C5%A1%20Jane%C4%8Dek"> Miloš Janeček</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mg-2Y-2Gd-1Ca and Mg-4Y-4Gd-2Ca alloys were processed by extrusion or equal channel angular pressing (ECAP) to analyse the effect of the microstructure on ignition temperature, mechanical properties and corrosion resistance. The alloys are characterized by good mechanical properties and exceptionally high ignition temperature, which is a critical safety measure. The effect of extrusion and ECAP on the microstructure, mechanical properties and ignition temperature was studied. The obtained results indicated a substantial effect of the processing conditions on the average grain size, the recrystallized fraction and texture formation. Both alloys featured a high strength, depending on the composition and processing condition, and a high ignition temperature of ≈1100 °C (Mg-4Y-4Gd-2Ca) and ≈950 °C (Mg-2Y-2Gd-1Ca), which was attributed to the synergic effect of Y, Gd and Ca oxides, with the dominant effect of Y₂O₃. The achieved combination of enhanced mechanical properties and the ignition temperature makes these alloys a prominent candidate for aircraft applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnesium%20alloys" title="magnesium alloys">magnesium alloys</a>, <a href="https://publications.waset.org/abstracts/search?q=enhanced%20ignition%20temperature" title=" enhanced ignition temperature"> enhanced ignition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=ECAP" title=" ECAP"> ECAP</a> </p> <a href="https://publications.waset.org/abstracts/157860/magnesium-alloys-containing-y-gd-and-ca-with-enhanced-ignition-temperature-and-mechanical-properties-for-aviation-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19670</span> Temperature Effect on Sound Propagation in an Elastic Pipe with Viscoelastic Liquid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Levitsky">S. Levitsky</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Bergman"> R. Bergman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fluid rheology may have essential impact on sound propagation in a liquid-filled pipe, especially, in a low frequency range. Rheological parameters of liquid are temperature-sensitive, which ultimately results in a temperature dependence of the wave speed and attenuation in the waveguide. The study is devoted to modeling of this effect at sound propagation in an elastic pipe with polymeric liquid, described by generalized Maxwell model with non-zero high-frequency viscosity. It is assumed that relaxation spectrum is distributed according to the Spriggs law; temperature impact on the liquid rheology is described on the basis of the temperature-superposition principle and activation theory. The dispersion equation for the waveguide, considered as a thin-walled tube with polymeric solution, is obtained within a quasi-one-dimensional formulation. Results of the study illustrate the influence of temperature on sound propagation in the system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=elastic%20tube" title="elastic tube">elastic tube</a>, <a href="https://publications.waset.org/abstracts/search?q=sound%20propagation" title=" sound propagation"> sound propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20liquid" title=" viscoelastic liquid"> viscoelastic liquid</a> </p> <a href="https://publications.waset.org/abstracts/12837/temperature-effect-on-sound-propagation-in-an-elastic-pipe-with-viscoelastic-liquid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12837.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">420</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19669</span> Water Temperature on Early Age Concrete Property</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tesfaye%20Sisay%20Dessalegn">Tesfaye Sisay Dessalegn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The long-term performance of concrete structures is affected by the properties and behavior of concrete at an early age. However, the fundamental mechanisms affecting the early-age behavior of concrete have not yet been fully studied. The effect of water temperature on concrete is not sufficiently studied, and at the same time, the majority of studies focused on the effect of mixing water temperature on the workability and mechanical properties of concrete. However, to the best of the authors' knowledge, the effect of mixing water temperatures on plastic shrinkage cracking of concrete has not been studied yet. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=water%20temperature" title="water temperature">water temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20age%20concrete%20strength" title=" early age concrete strength"> early age concrete strength</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties%20of%20concrete" title=" mechanical properties of concrete"> mechanical properties of concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=strength" title=" strength"> strength</a> </p> <a href="https://publications.waset.org/abstracts/186313/water-temperature-on-early-age-concrete-property" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">57</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19668</span> Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Parekh">A. D. Parekh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title="cascade refrigeration system">cascade refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20area" title=" heat transfer area"> heat transfer area</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20solution" title=" optimal solution"> optimal solution</a> </p> <a href="https://publications.waset.org/abstracts/12558/analysis-of-heat-exchanger-area-of-two-stage-cascade-refrigeration-system-using-taguchi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12558.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">338</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19667</span> Analysis of Heat Exchanger Area of Two Stage Cascade Refrigeration System Using Taguchi Methodology</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20D.%20Parekh">A. D. Parekh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work describes relative contributions of operating parameters on required heat transfer area of three heat exchangers viz. evaporator, condenser and cascade condenser of two stage R404A-R508B cascade refrigeration system using Taguchi method. The operating parameters considered in present study includes (1) condensing temperature of high temperature cycle and low temperature cycle (2) evaporating temperature of low temperature cycle (3) degree of superheating in low temperature cycle (4) refrigerating effect. Heat transfer areas of three heat exchangers are studied with variation of above operating parameters and also optimum working levels of each operating parameter has been obtained for minimum heat transfer area of each heat exchanger using Taguchi method. The analysis using Taguchi method reveals that evaporating temperature of low temperature cycle and refrigerating effect contribute relatively largely on the area of evaporator. Condenser area is mainly influenced by both condensing temperature of high temperature cycle and refrigerating effect. Area of cascade condenser is mainly affected by refrigerating effect and the effects of other operating parameters are minimal. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cascade%20refrigeration%20system" title="cascade refrigeration system">cascade refrigeration system</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer%20area" title=" heat transfer area"> heat transfer area</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20solution" title=" optimal solution"> optimal solution</a> </p> <a href="https://publications.waset.org/abstracts/10978/analysis-of-heat-exchanger-area-of-two-stage-cascade-refrigeration-system-using-taguchi-methodology" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19666</span> Elasto-Plastic Behavior of Rock during Temperature Drop</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Reppas">N. Reppas</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20L.%20Gui"> Y. L. Gui</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Wetenhall"> B. Wetenhall</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20T.%20Davie"> C. T. Davie</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Ma"> J. Ma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A theoretical constitutive model describing the stress-strain behavior of rock subjected to different confining pressures is presented. A bounding surface plastic model with hardening effects is proposed which includes the effect of temperature drop. The bounding surface is based on a mapping rule and the temperature effect on rock is controlled by Poisson’s ratio. Validation of the results against available experimental data is also presented. The relation of deviatoric stress and axial strain is illustrated at different temperatures to analyze the effect of temperature decrease in terms of stiffness of the material. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bounding%20surface" title="bounding surface">bounding surface</a>, <a href="https://publications.waset.org/abstracts/search?q=cooling%20of%20rock" title=" cooling of rock"> cooling of rock</a>, <a href="https://publications.waset.org/abstracts/search?q=plasticity%20model" title=" plasticity model"> plasticity model</a>, <a href="https://publications.waset.org/abstracts/search?q=rock%20deformation" title=" rock deformation"> rock deformation</a>, <a href="https://publications.waset.org/abstracts/search?q=elasto-plastic%20behavior" title=" elasto-plastic behavior"> elasto-plastic behavior</a> </p> <a href="https://publications.waset.org/abstracts/128121/elasto-plastic-behavior-of-rock-during-temperature-drop" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128121.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19665</span> Effect of Process Parameters on Tensile Strength of Aluminum Alloy ADC 10 Produced through Ceramic Shell Investment Casting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Balwinder%20Singh">Balwinder Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Castings are produced by using aluminum alloy ADC 10 through the process of Ceramic Shell Investment Casting. Experiments are conducted as per the Taguchi L9 orthogonal array. In order to evaluate the effect of process parameters such as mould preheat temperature, preheat time, firing temperature and pouring temperature on surface roughness of ceramic shell investment castings, the Taguchi parameter design and optimization approach is used. Plots of means of significant factors and S/N ratios have been used to determine the best relationship between the responses and model parameters. It is found that the pouring temperature is the most significant factor. The best tensile strength of aluminum alloy ADC 10 is given by 150 ºC shell preheat temperature, 45 minutes preheat time, 900 ºC firing temperature, 650 ºC pouring temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=investment%20casting" title="investment casting">investment casting</a>, <a href="https://publications.waset.org/abstracts/search?q=shell%20preheat%20temperature" title=" shell preheat temperature"> shell preheat temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=firing%20temperature" title=" firing temperature"> firing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title=" Taguchi method"> Taguchi method</a> </p> <a href="https://publications.waset.org/abstracts/94264/effect-of-process-parameters-on-tensile-strength-of-aluminum-alloy-adc-10-produced-through-ceramic-shell-investment-casting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94264.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19664</span> Power and Efficiency of Photovoltaic Module: Effect of Cell Temperature</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20Nasrin">R. Nasrin</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ferdows"> M. Ferdows</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the renewable energy sources, photovoltaic (PV) is a high potential, effective, and sustainable system. Irradiation intensity from 200 W/m2 to 1000 W/m2 has been considered to observe the performance of PV module. Generally, this module converts only about 15% - 20% of incident irradiation into electrical energy and the rest part is converted into heat energy. Finite element method has been used to solve the problem numerically. Simulation has been performed by considering the ambient temperature 30°C. Higher irradiation increase solar cell temperature and electrical power. The electrical efficiency of PV module decreases with the variation of solar radiation. The efficiency of PV module can be increased if cell temperature is reduced. Thus the effect of irradiation is significant to enhance the efficiency of PV module if the solar cell temperature is kept at a certain level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PV%20module" title="PV module">PV module</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20radiation" title=" solar radiation"> solar radiation</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20temperature" title=" cell temperature"> cell temperature</a> </p> <a href="https://publications.waset.org/abstracts/82035/power-and-efficiency-of-photovoltaic-module-effect-of-cell-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19663</span> Simulation the Effect of Temperature on the Residual Stress in Shot Peening Process Using FEM Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour">M. Jalali Azizpour</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Mohammadi%20Majd"> H. Mohammadi Majd</a>, <a href="https://publications.waset.org/abstracts/search?q=A.R.%20Aboudi%20Asl"> A.R. Aboudi Asl</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Sajedipour"> D. Sajedipour</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Tawaf"> V. Tawaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sandblasting is a generally used surface treatment technique to improve the residual stress and adhesion of coatings to substrate. The goal of this work is to study the effect of temperature on the residual stress in sandblasting AISI1045 substrate. For this purpose a two dimensional axisymmetric model of shot impacting on an AISI 1045 disc was generated using ABAQUS version 6.10. The result shows for sandblasting temperature there is an optimum condition. In addition there are other effective factors that influence the fatigue life of parts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=shot%20peen" title=" shot peen"> shot peen</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a> </p> <a href="https://publications.waset.org/abstracts/26894/simulation-the-effect-of-temperature-on-the-residual-stress-in-shot-peening-process-using-fem-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26894.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">586</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19662</span> Temperature Profile Modelling in Flexible Pavement Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Csaba%20T%C3%B3th">Csaba Tóth</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%89va%20Lakatos"> Éva Lakatos</a>, <a href="https://publications.waset.org/abstracts/search?q=L%C3%A1szl%C3%B3%20Peth%C5%91"> László Pethő</a>, <a href="https://publications.waset.org/abstracts/search?q=Seoyoung%20Cho"> Seoyoung Cho </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The temperature effect on asphalt pavement structure is a crucial factor at the design stage. In this paper, by applying the German guidelines for temperature along the asphalt depth is estimated. The aim is to consider temperature profiles in different seasons in numerical modelling. The model is built with an elastic and isotropic solid element with 19 subdivisions of asphalt layers to reflect the temperature variation. Comparison with the simple three-layer pavement system (asphalt layers, base, and subgrade layers) will be followed to see the difference in result without temperature variation along with the depth. Finally, the fatigue life calculation was checked to prove the validity of the methodology of considering the temperature in the numerical modelling. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temperature%20profile" title="temperature profile">temperature profile</a>, <a href="https://publications.waset.org/abstracts/search?q=flexible%20pavement%20modeling" title=" flexible pavement modeling"> flexible pavement modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20modeling" title=" temperature modeling"> temperature modeling</a> </p> <a href="https://publications.waset.org/abstracts/123609/temperature-profile-modelling-in-flexible-pavement-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123609.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">267</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19661</span> Effect of SPS Parameters on the Densification of ZrB2-Based Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20Balak">Z. Balak</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zakeri"> M. Zakeri</a>, <a href="https://publications.waset.org/abstracts/search?q=M.R.Rahimipur"> M.R.Rahimipur</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Azizieh"> M. Azizieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Spark Plasma Sintering is a new technique which was used for ultra high temperature ceramics such as ZrB2-based composites in recent years. Taguchi design was applied to explore effective parameters for achieving the highest hardness. Nine factors including SiC, Cf, MoSi2, HfB2 and ZrC content, milling time of Cf and SPS parameters such as temperature, time and pressure in four levels were considered through the Taguchi technique. In this study, only the effect of SPS conditions on densification and hardness were investigated. ZrB2-based composites were prepared by SPS in different temperatures (1600°C,1700°C, 1800°C, 1900°C), times (4min, 8 min, 12 min, 16min) and pressures (10MPa, 20MPa, 30MPa and 40MPa). The effect of SPS parameters on the densification and hardness were investigated. It was found, by increasing the temperature and time, from level 1 to 4, densification improved continuously. Also, the results shows hardness increases continuously by increasing temperature and time. Finally, it is concluded that temperature and time have more significant effect on densification and harness rather than pressure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=spark%20plasma%20sintering%20%28SPS%29" title="spark plasma sintering (SPS)">spark plasma sintering (SPS)</a>, <a href="https://publications.waset.org/abstracts/search?q=ultra%20high%20temperature%20ceramics%20%28UHTCs%29" title=" ultra high temperature ceramics (UHTCs)"> ultra high temperature ceramics (UHTCs)</a>, <a href="https://publications.waset.org/abstracts/search?q=densification" title=" densification"> densification</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness" title=" hardness"> hardness</a> </p> <a href="https://publications.waset.org/abstracts/23666/effect-of-sps-parameters-on-the-densification-of-zrb2-based-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23666.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19660</span> Cable Diameter Effect on the Contact Temperature of Power Automotive Connector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amine%20Beloufa">Amine Beloufa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Amirat"> Mohamed Amirat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the electric vehicle, high power leads to high current; automotive power connector should resist to this high current in order to avoid a serious damage caused by the increase of contact temperature. The purpose of this paper is to analyze experimentally and numerically the effect of the cable diameter variation on the decrease of contact temperature. For this reason, a finite element model was developed to calculate the numerical contact temperature for several cable diameters and several electrical high currents. Also, experimental tests were established in order to validate this numerical model. Results show that the influence of cable diameter on the contact temperature is never neglected. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20temperature" title="contact temperature">contact temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental%20test" title=" experimental test"> experimental test</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element" title=" finite element"> finite element</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20automotive%20connector" title=" power automotive connector"> power automotive connector</a> </p> <a href="https://publications.waset.org/abstracts/66274/cable-diameter-effect-on-the-contact-temperature-of-power-automotive-connector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19659</span> Liquid Temperature Effect on Sound Propagation in Polymeric Solution with Gas Bubbles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Levitsky">S. Levitsky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acoustic properties of polymeric liquids are high sensitive to free gas traces in the form of fine bubbles. Their presence is typical for such liquids because of chemical reactions, small wettability of solid boundaries, trapping of air in technological operations, etc. Liquid temperature influences essentially its rheological properties, which may have an impact on the bubble pulsations and sound propagation in the system. The target of the paper is modeling of the liquid temperature effect on single bubble dynamics and sound dispersion and attenuation in polymeric solution with spherical gas bubbles. The basic sources of attenuation (heat exchange between gas in microbubbles and surrounding liquid, rheological and acoustic losses) are taken into account. It is supposed that in the studied temperature range the interface mass transfer has a minor effect on bubble dynamics. The results of the study indicate that temperature raise yields enhancement of bubble pulsations and increase in sound attenuation in the near-resonance range and may have a strong impact on sound dispersion in the liquid-bubble mixture at frequencies close to the resonance frequency of bubbles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sound%20propagation" title="sound propagation">sound propagation</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20bubbles" title=" gas bubbles"> gas bubbles</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20effect" title=" temperature effect"> temperature effect</a>, <a href="https://publications.waset.org/abstracts/search?q=polymeric%20liquid" title=" polymeric liquid"> polymeric liquid</a> </p> <a href="https://publications.waset.org/abstracts/28205/liquid-temperature-effect-on-sound-propagation-in-polymeric-solution-with-gas-bubbles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28205.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">304</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19658</span> Temperature Dependent Tribological Properties of Graphite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Kumar%20Das">Pankaj Kumar Das</a>, <a href="https://publications.waset.org/abstracts/search?q=Niranjan%20Kumar"> Niranjan Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Prasun%20Chakraborti"> Prasun Chakraborti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature dependent tribologiocal properties of nuclear grade turbostatic graphite were studied using 100Cr6 steel counterbody. High value of friction coefficient (0.25) and high wear loss was observed at room temperature and this value decreased to 0.1 at 150oC. Consequently, wear loss is also decreased. Such behavior is explained by oxidation/vaporization of graphite and water molecules. At room temperature, the adsorbed water in graphite does not decompose and effect of passivation mechanism does not work. However, at 150oC, the water decomposed into OH, atomic hydrogen and oxygen which efficiently passivates the carbon dangling bonds. This effect is known to decrease the energy of the contact and protect against abrasive wear. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20temperature%20tribology" title="high temperature tribology">high temperature tribology</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation" title=" oxidation"> oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbostratic%20graphite" title=" turbostratic graphite"> turbostratic graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear "> wear </a> </p> <a href="https://publications.waset.org/abstracts/26767/temperature-dependent-tribological-properties-of-graphite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26767.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19657</span> Discussion on Microstructural Changes Caused by Deposition Temperature of LZO Doped Mg Piezoelectric Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cheng-Ying%20Li">Cheng-Ying Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Yuan%20Chu"> Sheng-Yuan Chu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article deposited LZO-doped Mg piezoelectric thin films via RF sputtering and observed microstructure and electrical characteristics by varying the deposition temperature. The XRD analysis results indicate that LZO-doped Mg exhibits excellent (002) orientation, and there is no presence of ZnO(100), Influenced by the temperature's effect on the lattice constant, the (002) peak intensity increases with rising temperature. Finally, we conducted deformation intensity analysis on the films, revealing an over fourfold increase in deformation at a processing temperature of 500°C. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=RF%20sputtering" title="RF sputtering">RF sputtering</a>, <a href="https://publications.waset.org/abstracts/search?q=piezoelectricity" title=" piezoelectricity"> piezoelectricity</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO" title=" ZnO"> ZnO</a>, <a href="https://publications.waset.org/abstracts/search?q=Mg" title=" Mg"> Mg</a> </p> <a href="https://publications.waset.org/abstracts/186346/discussion-on-microstructural-changes-caused-by-deposition-temperature-of-lzo-doped-mg-piezoelectric-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/186346.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">41</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19656</span> Experimental Studies on the Effect of Rake Angle on Turning Ti-6Al-4V with TiAlN Coated Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satyanarayana%20Kosaraju">Satyanarayana Kosaraju</a>, <a href="https://publications.waset.org/abstracts/search?q=Venu%20Gopal%20Anne"> Venu Gopal Anne</a>, <a href="https://publications.waset.org/abstracts/search?q=Sateesh%20Nagari"> Sateesh Nagari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of cutting speed, feedrate and rake angle in tool geometry on cutting forces and temperature generated on the tool tip in turning were investigated. The data used for the investigation derived from experiments conducted on precision lathe according to the full factorial design to observe the effect of each factor level on the process performance. During the tests, depth of cut were kept constant and each test was conducted with a sharp coated tool insert. Ti-6Al-4V was used as the workpiece material. The effects of cutting parameters and tool geometry on cutting forces and tool tip temperature were analyzed. The main cutting force was observed to have a decreasing trend and temperature found to be increasing trend as the rake angle increased. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cutting%20force" title="cutting force">cutting force</a>, <a href="https://publications.waset.org/abstracts/search?q=tool%20tip%20temperature" title=" tool tip temperature"> tool tip temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=rake%20angle" title=" rake angle"> rake angle</a>, <a href="https://publications.waset.org/abstracts/search?q=machining" title=" machining"> machining</a> </p> <a href="https://publications.waset.org/abstracts/37425/experimental-studies-on-the-effect-of-rake-angle-on-turning-ti-6al-4v-with-tialn-coated-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19655</span> Noninvasive Evaluation of Acupuncture by Measuring Facial Temperature through Thermal Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=An%20Guo">An Guo</a>, <a href="https://publications.waset.org/abstracts/search?q=Hieyong%20Jeong"> Hieyong Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Tianyi%20Wang"> Tianyi Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Na%20Li"> Na Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuko%20Ohno"> Yuko Ohno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acupuncture, known as sensory simulation, has been used to treat various disorders for thousands of years. However, present studies had not addressed approaches for noninvasive measurement in order to evaluate therapeutic effect of acupuncture. The purpose of this study is to propose a noninvasive method to evaluate acupuncture by measuring facial temperature through thermal image. Three human subjects were recruited in this study. Each subject received acupuncture therapy for 30 mins. Acupuncture needles (Ø0.16 x 30 mm) were inserted into Baihui point (DU20), Neiguan points (PC6) and Taichong points (LR3), acupuncture needles (Ø0.18 x 39 mm) were inserted into Tanzhong point (RN17), Zusanli points (ST36) and Yinlingquan points (SP9). Facial temperature was recorded by an infrared thermometer. Acupuncture therapeutic effect was compared pre- and post-acupuncture. Experiment results demonstrated that facial temperature changed according to acupuncture therapeutic effect. It was concluded that proposed method showed high potential to evaluate acupuncture by noninvasive measurement of facial temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=acupuncture" title="acupuncture">acupuncture</a>, <a href="https://publications.waset.org/abstracts/search?q=facial%20temperature" title=" facial temperature"> facial temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=noninvasive%20evaluation" title=" noninvasive evaluation"> noninvasive evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20image" title=" thermal image"> thermal image</a> </p> <a href="https://publications.waset.org/abstracts/95222/noninvasive-evaluation-of-acupuncture-by-measuring-facial-temperature-through-thermal-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95222.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19654</span> Modeling of Radiofrequency Nerve Lesioning in Inhomogeneous Media</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nour%20Ismail">Nour Ismail</a>, <a href="https://publications.waset.org/abstracts/search?q=Sahar%20El%20Kardawy"> Sahar El Kardawy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bassant%20Badwy"> Bassant Badwy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Radiofrequency (RF) lesioning of nerves have been commonly used to alleviate chronic pain, where RF current preventing transmission of pain signals through the nerve by heating the nerve causing the pain. There are some factors that affect the temperature distribution and the nerve lesion size, one of these factors is the inhomogeneities in the tissue medium. Our objective is to calculate the temperature distribution and the nerve lesion size in a nonhomogenous medium surrounding the RF electrode. A two 3-D finite element models are used to compare the temperature distribution in the homogeneous and nonhomogeneous medium. Also the effect of temperature-dependent electric conductivity on maximum temperature and lesion size is observed. Results show that the presence of a nonhomogeneous medium around the RF electrode has a valuable effect on the temperature distribution and lesion size. The dependency of electric conductivity on tissue temperature increased lesion size. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title="finite element model">finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=nerve%20lesioning" title=" nerve lesioning"> nerve lesioning</a>, <a href="https://publications.waset.org/abstracts/search?q=pain%20relief" title=" pain relief"> pain relief</a>, <a href="https://publications.waset.org/abstracts/search?q=radiofrequency%20lesion" title=" radiofrequency lesion"> radiofrequency lesion</a> </p> <a href="https://publications.waset.org/abstracts/1842/modeling-of-radiofrequency-nerve-lesioning-in-inhomogeneous-media" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">416</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19653</span> Mechanical Behavior of Geosynthetics vs the Combining Effect of Aging, Temperature and Internal Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Carpio-Garc%C3%ADa">Jaime Carpio-García</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Blanco-Fern%C3%A1ndez"> Elena Blanco-Fernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Jorge%20Rodr%C3%ADguez-Hern%C3%A1ndez"> Jorge Rodríguez-Hernández</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel%20Castro-Fresno"> Daniel Castro-Fresno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Geosynthetic mechanical behavior vs temperature or vs aging has been widely studied independently during the last years, both in laboratory and in outdoor conditions. This paper studies this behavior deeper, considering that geosynthetics have to perform adequately at different outdoor temperatures once they have been subjected to a certain degree of aging, and also considering the different geosynthetic structures made of the same material. This combining effect has been not considered so far, and it is important to ensure the performance of geosynthetics, especially where high temperatures are expected. In order to fill this gap, six commercial geosynthetics with different internal structures made of polypropylene (PP), high density polyethylene (HDPE), bitumen and polyvinyl chloride (PVC), or even a combination of some of them have been mechanically tested at mild temperature (20ºC or 23ºC) and at warm temperature (45ºC) before and after specific exposition to air at standardized high temperature in order to simulate 25 years of aging due to oxidation. Besides, for 45ºC tests, an innovative heating system during test for high deformable specimens is proposed. The influence of the combining effect of aging, structure and temperature in the product behavior have been analyzed and discussed, concluding that internal structure is more influential than aging in the mechanical behavior of a geosynthetic versus temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geosynthetics" title="geosynthetics">geosynthetics</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behavior" title=" mechanical behavior"> mechanical behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=aging" title=" aging"> aging</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20structure" title=" internal structure"> internal structure</a> </p> <a href="https://publications.waset.org/abstracts/170357/mechanical-behavior-of-geosynthetics-vs-the-combining-effect-of-aging-temperature-and-internal-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170357.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">70</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19652</span> The Influence of Thomson Effect on the Performance of N-Type Skutterudite Thermoelement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anbang%20Liu">Anbang Liu</a>, <a href="https://publications.waset.org/abstracts/search?q=Huaqing%20Xie"> Huaqing Xie</a>, <a href="https://publications.waset.org/abstracts/search?q=Zihua%20Wu"> Zihua Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaoxiao%20Yu"> Xiaoxiao Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuanyuan%20Wang"> Yuanyuan Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the temperature-dependence and mutual coupling of thermoelectric parameters, the Thomson effect always exists, which is derived from temperature gradients during thermoelectric conversion. The synergistic effect between the Thomson effect and non-equilibrium heat transport of charge carriers leads to local heat absorption or release in thermoelements, thereby affecting its power generation performance and conversion efficiency. This study verified and analyzed the influence and mechanism of the Thomson effect on N-type skutterudite thermoelement through quasi-steady state testing under approximate vacuum conditions. The results indicate the temperature rise/fall of N-type thermoelement at any position is affected by Thomson heat release/absorption. Correspondingly, the Thomson effect also contributes advantageously/disadvantageously to the output power of N-type skutterudite thermoelement when the Thomson coefficients are positive/negative. In this work, the output power can be promoted or decreased maximally by more than 27% due to the presence of Thomson heat when the absolute value of the Thomson coefficient is around 36 μV/℃. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thomson%20effect" title="Thomson effect">Thomson effect</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transport" title=" heat transport"> heat transport</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoelectric%20conversion" title=" thermoelectric conversion"> thermoelectric conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a> </p> <a href="https://publications.waset.org/abstracts/177667/the-influence-of-thomson-effect-on-the-performance-of-n-type-skutterudite-thermoelement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19651</span> Effect of Curing Temperature on Unconfined Compression Strength of Bagasse Ash-Calcium Carbide Residue Treated Organic Clay</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Trihatmoko">John Trihatmoko</a>, <a href="https://publications.waset.org/abstracts/search?q=Luky%20Handoko"> Luky Handoko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A series of experimental program was undertaken to study the effect of curing temperature on the unconfined compression strength of bagasse ash (BA) - calcium carbide residue (CCR) stabilized organic clay (OC). A preliminary experiment was performed to get the physical properties of OC, and to get the optimum water content (OMC), the standard compaction test was done. The stabilizing agents used in this research was (40% BA + 60% CCR) . Then to obtain the best binder proportion, unconfined compression test was undertaken for OC + 3, 6, 9, 12 and 15% of binder with 7, 14, 21, 28 and 56 days curing period. The best quantity of the binder was found on 9%. Finally, to study the effect of curing temperature, the unconfined compression test was performed on OC + 9% binder with 7, 14, 21, 28 and 56 days curing time with 20O, 25O, 30O, 40O, and 50O C curing temperature. The result indicates that unconfined compression strength (UCS) of treated OC improve according to the increase of curing temperature at the same curing time. The improvement of UCS is probably due to the degree of cementation and pozzolanic reactions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=curing%20temperature" title="curing temperature">curing temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20clay" title=" organic clay"> organic clay</a>, <a href="https://publications.waset.org/abstracts/search?q=bagasse%20ash" title=" bagasse ash"> bagasse ash</a>, <a href="https://publications.waset.org/abstracts/search?q=calcium%20carbide%20residue" title=" calcium carbide residue"> calcium carbide residue</a>, <a href="https://publications.waset.org/abstracts/search?q=unconfined%20compression%20strength" title=" unconfined compression strength"> unconfined compression strength</a> </p> <a href="https://publications.waset.org/abstracts/123381/effect-of-curing-temperature-on-unconfined-compression-strength-of-bagasse-ash-calcium-carbide-residue-treated-organic-clay" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">125</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19650</span> Study on the Heat Transfer Performance of the Annular Fin under Condensing Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdenour%20Bourabaa">Abdenour Bourabaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Malika%20Fekih"> Malika Fekih</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Saighi"> Mohamed Saighi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A numerical investigation of the fin efficiency and temperature distribution of an annular fin under dehumidification has been presented in this paper. The non-homogeneous second order differential equation that describes the temperature distribution from the fin base to the fin tip has been solved using the central finite difference method. The effects of variations in parameters including relative humidity, air temperature, air face velocity on temperature distribution and fin efficiency are investigated and compared with those under fully dry fin conditions. Also, the effect of fin pitch on the dimensionless temperature has been studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=annular%20fin" title="annular fin">annular fin</a>, <a href="https://publications.waset.org/abstracts/search?q=dehumidification" title=" dehumidification"> dehumidification</a>, <a href="https://publications.waset.org/abstracts/search?q=fin%20efficiency" title=" fin efficiency"> fin efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20and%20mass%20transfer" title=" heat and mass transfer"> heat and mass transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=wet%20fin" title=" wet fin"> wet fin</a> </p> <a href="https://publications.waset.org/abstracts/1939/study-on-the-heat-transfer-performance-of-the-annular-fin-under-condensing-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/1939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">480</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19649</span> Magnetocaloric Effect in Ho₂O₃ Nanopowder at Cryogenic Temperature </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20P.%20Shinde">K. P. Shinde</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20V.%20Tien"> M. V. Tien</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Lin"> H. Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=H.-R.%20Park"> H.-R. Park</a>, <a href="https://publications.waset.org/abstracts/search?q=S.-C.Yu"> S.-C.Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20C.%20Chung"> K. C. Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=D.-H.%20Kim"> D.-H. Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Magnetic refrigeration provides an attractive alternative cooling technology due to its potential advantages such as high cooling efficiency, environmental friendliness, low noise, and compactness over the conventional cooling techniques based on gas compression. Magnetocaloric effect (MCE) occurs by changes in entropy (ΔS) and temperature (ΔT) under external magnetic fields. We have been focused on identifying materials with large MCE in two temperature regimes, not only room temperature but also at cryogenic temperature for specific technological applications, such as space science and liquefaction of hydrogen in fuel industry. To date, the commonly used materials for cryogenic refrigeration are based on hydrated salts. In the present work, we report giant MCE in rare earth Ho2O3 nanopowder at cryogenic temperature. HoN nanoparticles with average size of 30 nm were prepared by using plasma arc discharge method with gas composition of N2/H2 (80%/20%). The prepared HoN was sintered in air atmosphere at 1200 oC for 24 hrs to convert it into oxide. Structural and morphological properties were studied by XRD and SEM. XRD confirms the pure phase and cubic crystal structure of Ho2O3 without any impurity within error range. It has been discovered that Holmium oxide exhibits giant MCE at low temperature without magnetic hysteresis loss with the second-order antiferromagnetic phase transition with Néels temperature around 2 K. The maximum entropy change was found to be 25.2 J/kgK at an applied field of 6 T. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=magnetocaloric%20effect" title="magnetocaloric effect">magnetocaloric effect</a>, <a href="https://publications.waset.org/abstracts/search?q=Ho%E2%82%82O%E2%82%83" title=" Ho₂O₃"> Ho₂O₃</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20entropy%20change" title=" magnetic entropy change"> magnetic entropy change</a>, <a href="https://publications.waset.org/abstracts/search?q=nanopowder" title=" nanopowder"> nanopowder</a> </p> <a href="https://publications.waset.org/abstracts/103023/magnetocaloric-effect-in-ho2o3-nanopowder-at-cryogenic-temperature" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103023.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">149</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19648</span> Thermal End Effect on the Isotachophoretic Separation of Analytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Partha%20P.%20Gopmandal">Partha P. Gopmandal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Bhattacharyya"> S. Bhattacharyya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We investigate the thermal end effect on the pseudo-steady state behavior of the isotachophoretic transport of ionic species in a 2-D microchannel. Both ends of the channel are kept at a constant temperature which may lead to significant changes in electrophoretic migration speed. A mathematical model based on Nernst-Planck equations for transport of ions coupled with the equation for temperature field is considered. In addition, the charge conservation equations govern the potential field due to the external electric field. We have computed the equations for ion transport, potential and temperature in a coupled manner through the finite volume method. The diffusive terms are discretized via central difference scheme, while QUICK (Quadratic Upwind Interpolation Convection Kinematics) scheme is used to discretize the convective terms. We find that the thermal end effect has significant effect on the isotachophoretic (ITP) migration speed of the analyte. Our result shows that the ITP velocity for temperature dependent case no longer varies linearly with the applied electric field. A detailed analysis has been made to provide a range of the key parameters to minimize the Joule heating effect on ITP transport of analytes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20method" title="finite volume method">finite volume method</a>, <a href="https://publications.waset.org/abstracts/search?q=isotachophoresis" title=" isotachophoresis"> isotachophoresis</a>, <a href="https://publications.waset.org/abstracts/search?q=QUICK%20scheme" title=" QUICK scheme"> QUICK scheme</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20effect" title=" thermal effect"> thermal effect</a> </p> <a href="https://publications.waset.org/abstracts/63435/thermal-end-effect-on-the-isotachophoretic-separation-of-analytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63435.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19647</span> The Effect of Particle Temperature on the Thickness of Thermally Sprayed Coatings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Jalali%20Azizpour">M. Jalali Azizpour</a>, <a href="https://publications.waset.org/abstracts/search?q=H.Mohammadi%20Majd"> H.Mohammadi Majd </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, the effect of WC-12Co particle Temperature in HVOF thermal spraying process on the coating thickness has been studied. The statistical results show that the spray distance and oxygen-to-fuel ratio are more effective factors on particle characterization and thickness of HVOF thermal spraying coatings. Spray Watch diagnostic system, scanning electron microscopy (SEM), X-ray diffraction and thickness measuring system were used for this purpose. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HVOF" title="HVOF">HVOF</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thickness" title=" thickness"> thickness</a>, <a href="https://publications.waset.org/abstracts/search?q=velocity" title=" velocity"> velocity</a>, <a href="https://publications.waset.org/abstracts/search?q=WC-12Co" title=" WC-12Co "> WC-12Co </a> </p> <a href="https://publications.waset.org/abstracts/15001/the-effect-of-particle-temperature-on-the-thickness-of-thermally-sprayed-coatings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15001.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">402</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=655">655</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=656">656</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=temperature%20effect&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>