CINXE.COM
Search results for: nonlinear Renninger effect
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: nonlinear Renninger effect</title> <meta name="description" content="Search results for: nonlinear Renninger effect"> <meta name="keywords" content="nonlinear Renninger effect"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="nonlinear Renninger effect" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="nonlinear Renninger effect"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 15792</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: nonlinear Renninger effect</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15792</span> X-Ray Dynamical Diffraction 'Third Order Nonlinear Renninger Effect'</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minas%20Balyan">Minas Balyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays X-ray nonlinear diffraction and nonlinear effects are investigated due to the presence of the third generation synchrotron sources and XFELs. X-ray third order nonlinear dynamical diffraction is considered as well. Using the nonlinear model of the usual visible light optics the third-order nonlinear Takagi’s equations for monochromatic waves and the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses are obtained by the author in previous papers. The obtained equations show, that even if the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero (forbidden reflection), the dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus, in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well-known Renninger effect takes place. In this work, the 'third order nonlinear Renninger effect' is considered theoretically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bragg%20diffraction" title="Bragg diffraction">Bragg diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Takagi%E2%80%99s%20equations" title=" nonlinear Takagi’s equations"> nonlinear Takagi’s equations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect" title=" nonlinear Renninger effect"> nonlinear Renninger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=third%20order%20nonlinearity" title=" third order nonlinearity"> third order nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/55035/x-ray-dynamical-diffraction-third-order-nonlinear-renninger-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55035.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">385</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15791</span> X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minas%20Balyan">Minas Balyan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=third%20order%20nonlinearity" title="third order nonlinearity">third order nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=Bragg%20diffraction" title=" Bragg diffraction"> Bragg diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect" title=" nonlinear Renninger effect"> nonlinear Renninger effect</a>, <a href="https://publications.waset.org/abstracts/search?q=rocking%20curves" title=" rocking curves"> rocking curves</a> </p> <a href="https://publications.waset.org/abstracts/56984/x-ray-dynamical-diffraction-rocking-curves-in-case-of-third-order-nonlinear-renninger-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56984.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">406</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15790</span> Simulation of Propagation of Cos-Gaussian Beam in Strongly Nonlocal Nonlinear Media Using Paraxial Group Transformation </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Keshavarz">A. Keshavarz</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Roosta"> Z. Roosta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, propagation of cos-Gaussian beam in strongly nonlocal nonlinear media has been stimulated by using paraxial group transformation. At first, cos-Gaussian beam, nonlocal nonlinear media, critical power, transfer matrix, and paraxial group transformation are introduced. Then, the propagation of the cos-Gaussian beam in strongly nonlocal nonlinear media is simulated. Results show that beam propagation has periodic structure during self-focusing effect in this case. However, this simple method can be used for investigation of propagation of kinds of beams in ABCD optical media. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=paraxial%20group%20transformation" title="paraxial group transformation">paraxial group transformation</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlocal%20nonlinear%20media" title=" nonlocal nonlinear media"> nonlocal nonlinear media</a>, <a href="https://publications.waset.org/abstracts/search?q=cos-Gaussian%20beam" title=" cos-Gaussian beam"> cos-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=ABCD%20law" title=" ABCD law"> ABCD law</a> </p> <a href="https://publications.waset.org/abstracts/52660/simulation-of-propagation-of-cos-gaussian-beam-in-strongly-nonlocal-nonlinear-media-using-paraxial-group-transformation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52660.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">342</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15789</span> A New Nonlinear State-Space Model and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Eqal%20Al%20Mazrooei">Abdullah Eqal Al Mazrooei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, a new nonlinear model will be introduced. The model is in the state-space form. The nonlinearity of this model is in the state equation where the state vector is multiplied by its self. This technique makes our model generalizes many famous models as Lotka-Volterra model and Lorenz model which have many applications in the real life. We will apply our new model to estimate the wind speed by using a new nonlinear estimator which suitable to work with our model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title="nonlinear systems">nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=state-space%20model" title=" state-space model"> state-space model</a>, <a href="https://publications.waset.org/abstracts/search?q=Kronecker%20product" title=" Kronecker product"> Kronecker product</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20estimator" title=" nonlinear estimator"> nonlinear estimator</a> </p> <a href="https://publications.waset.org/abstracts/34407/a-new-nonlinear-state-space-model-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">691</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15788</span> Investigation of Fire Damaged Concrete Using Nonlinear Resonance Vibration Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kang-Gyu%20Park">Kang-Gyu Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Jong%20Park"> Sun-Jong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong%20Jae%20Yim"> Hong Jae Yim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Gyung%20Kwak"> Hyo-Gyung Kwak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper attempts to evaluate the effect of fire damage on concrete by using nonlinear resonance vibration method, one of the nonlinear nondestructive method. Concrete exhibits not only nonlinear stress-strain relation but also hysteresis and discrete memory effect which are contained in consolidated materials. Hysteretic materials typically show the linear resonance frequency shift. Also, the shift of resonance frequency is changed according to the degree of micro damage. The degree of the shift can be obtained through nonlinear resonance vibration method. Five exposure scenarios were considered in order to make different internal micro damage. Also, the effect of post-fire-curing on fire-damaged concrete was taken into account to conform the change in internal damage. Hysteretic non linearity parameter was obtained by amplitude-dependent resonance frequency shift after specific curing periods. In addition, splitting tensile strength was measured on each sample to characterize the variation of residual strength. Then, a correlation between the hysteretic non linearity parameter and residual strength was proposed from each test result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20resonance%20vibration%20method" title="nonlinear resonance vibration method">nonlinear resonance vibration method</a>, <a href="https://publications.waset.org/abstracts/search?q=non%20linearity%20parameter" title=" non linearity parameter"> non linearity parameter</a>, <a href="https://publications.waset.org/abstracts/search?q=splitting%20tensile%20strength" title=" splitting tensile strength"> splitting tensile strength</a>, <a href="https://publications.waset.org/abstracts/search?q=micro%20damage" title=" micro damage"> micro damage</a>, <a href="https://publications.waset.org/abstracts/search?q=post-fire-curing" title=" post-fire-curing"> post-fire-curing</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20damaged%20concrete" title=" fire damaged concrete"> fire damaged concrete</a> </p> <a href="https://publications.waset.org/abstracts/17425/investigation-of-fire-damaged-concrete-using-nonlinear-resonance-vibration-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17425.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15787</span> Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Seguini">M. Seguini</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Nedjar"> D. Nedjar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20nonlinearity" title=" geometric nonlinearity"> geometric nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=soil-structure%20interaction" title=" soil-structure interaction"> soil-structure interaction</a>, <a href="https://publications.waset.org/abstracts/search?q=spatial%20variability" title=" spatial variability"> spatial variability</a> </p> <a href="https://publications.waset.org/abstracts/40934/nonlinear-finite-element-modeling-of-deep-beam-resting-on-linear-and-nonlinear-random-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40934.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">414</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15786</span> Achieving Better Security by Using Nonlinear Cellular Automata as a Cryptographic Primitive</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swapan%20Maiti">Swapan Maiti</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipanwita%20Roy%20Chowdhury"> Dipanwita Roy Chowdhury</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear functions are essential in different cryptoprimitives as they play an important role on the security of the cipher designs. Rule 30 was identified as a powerful nonlinear function for cryptographic applications. However, an attack (MS attack) was mounted against Rule 30 Cellular Automata (CA). Nonlinear rules as well as maximum period CA increase randomness property. In this work, nonlinear rules of maximum period nonlinear hybrid CA (M-NHCA) are studied and it is shown to be a better crypto-primitive than Rule 30 CA. It has also been analysed that the M-NHCA with single nonlinearity injection proposed in the literature is vulnerable against MS attack, whereas M-NHCA with multiple nonlinearity injections provide maximum length cycle as well as better cryptographic primitives and they are also secure against MS attack. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cellular%20automata" title="cellular automata">cellular automata</a>, <a href="https://publications.waset.org/abstracts/search?q=maximum%20period%20nonlinear%20CA" title=" maximum period nonlinear CA"> maximum period nonlinear CA</a>, <a href="https://publications.waset.org/abstracts/search?q=Meier%20and%20Staffelbach%20attack" title=" Meier and Staffelbach attack"> Meier and Staffelbach attack</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20functions" title=" nonlinear functions"> nonlinear functions</a> </p> <a href="https://publications.waset.org/abstracts/72864/achieving-better-security-by-using-nonlinear-cellular-automata-as-a-cryptographic-primitive" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72864.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">314</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15785</span> Analytical Solving of Nonlinear Differential Equations in the Nonlinear Phenomena for Viscos Fluids </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arash%20Jafari">Arash Jafari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehdi%20Taghaddosi"> Mehdi Taghaddosi</a>, <a href="https://publications.waset.org/abstracts/search?q=Azin%20Parvin"> Azin Parvin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the paper, our purpose is to enhance the ability to solve a nonlinear differential equation which is about the motion of an incompressible fluid flow going down of an inclined plane without thermal effect with a simple and innovative approach which we have named it new method. Comparisons are made amongst the Numerical, new method, and HPM methods, and the results reveal that this method is very effective and simple and can be applied to other nonlinear problems. It is noteworthy that there are some valuable advantages in this way of solving differential equations, and also most of the sets of differential equations can be answered in this manner which in the other methods they do not have acceptable solutions up to now. A summary of the excellence of this method in comparison to the other manners is as follows: 1) Differential equations are directly solvable by this method. 2) Without any dimensionless procedure, we can solve equation(s). 3) It is not necessary to convert variables into new ones. According to the afore-mentioned assertions which will be proved in this case study, the process of solving nonlinear equation(s) will be very easy and convenient in comparison to the other methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=viscos%20fluid" title="viscos fluid">viscos fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=incompressible%20fluid%20flow" title=" incompressible fluid flow"> incompressible fluid flow</a>, <a href="https://publications.waset.org/abstracts/search?q=inclined%20plane" title=" inclined plane"> inclined plane</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20phenomena" title=" nonlinear phenomena"> nonlinear phenomena</a> </p> <a href="https://publications.waset.org/abstracts/58352/analytical-solving-of-nonlinear-differential-equations-in-the-nonlinear-phenomena-for-viscos-fluids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">283</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15784</span> Nonlinear Flow Behavior and Validity of the Cubic Law in a Rough Fracture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kunwar%20Mrityunjai%20Sharma">Kunwar Mrityunjai Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Trilok%20Nath%20Singh"> Trilok Nath Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Navier-Stokes equation is used to study nonlinear fluid flow in rough 2D fractures. The major goal is to investigate the influence of inertial flow owing to fracture wall roughness on nonlinear flow behavior. Roughness profiles are developed using Barton's Joint Roughness Coefficient (JRC) and used as fracture walls to assess wall roughness. Four JRC profiles (5, 11, 15, and 19) are employed in the study, where a higher number indicates higher roughness. A parametric study has been performed using varying pressure gradients, and the corresponding Forchheimer number is calculated to observe the nonlinear behavior. The results indicate that the fracture roughness has a significant effect on the onset of nonlinearity. Additionally, the validity of the cubic law is evaluated and observed that it overestimates the flow in rough fractures and should be used with utmost care. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fracture%20flow" title="fracture flow">fracture flow</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20flow" title=" nonlinear flow"> nonlinear flow</a>, <a href="https://publications.waset.org/abstracts/search?q=cubic%20law" title=" cubic law"> cubic law</a>, <a href="https://publications.waset.org/abstracts/search?q=Navier-stokes%20equation" title=" Navier-stokes equation"> Navier-stokes equation</a> </p> <a href="https://publications.waset.org/abstracts/149916/nonlinear-flow-behavior-and-validity-of-the-cubic-law-in-a-rough-fracture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15783</span> Comparison of DPC and FOC Vector Control Strategies on Reducing Harmonics Caused by Nonlinear Load in the DFIG Wind Turbine </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamid%20Havasi">Hamid Havasi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamad%20Reza%20Gholami%20Dehbalaei"> Mohamad Reza Gholami Dehbalaei</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Khorami"> Hamed Khorami</a>, <a href="https://publications.waset.org/abstracts/search?q=Shahram%20Karimi"> Shahram Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamdi%20Abdi"> Hamdi Abdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Doubly-fed induction generator (DFIG) equipped with a power converter is an efficient tool for converting mechanical energy of a variable speed system to a fixed-frequency electrical grid. Since electrical energy sources faces with production problems such as harmonics caused by nonlinear loads, so in this paper, compensation performance of DPC and FOC method on harmonics reduction of a DFIG wind turbine connected to a nonlinear load in MATLAB Simulink model has been simulated and effect of each method on nonlinear load harmonic elimination has been compared. Results of the two mentioned control methods shows the advantage of the FOC method on DPC method for harmonic compensation. Also, the fifth and seventh harmonic components of the network and THD greatly reduced. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFIG%20machine" title="DFIG machine">DFIG machine</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conversion" title=" energy conversion"> energy conversion</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20load" title=" nonlinear load"> nonlinear load</a>, <a href="https://publications.waset.org/abstracts/search?q=THD" title=" THD"> THD</a>, <a href="https://publications.waset.org/abstracts/search?q=DPC" title=" DPC"> DPC</a>, <a href="https://publications.waset.org/abstracts/search?q=FOC" title=" FOC"> FOC</a> </p> <a href="https://publications.waset.org/abstracts/15405/comparison-of-dpc-and-foc-vector-control-strategies-on-reducing-harmonics-caused-by-nonlinear-load-in-the-dfig-wind-turbine" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15405.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">589</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15782</span> Nonlinear Observer Canonical Form for Genetic Regulation Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bououden%20Soraya">Bououden Soraya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper aims to study the existence of the change of coordinates which permits to transform a class of nonlinear dynamical systems into the so-called nonlinear observer canonical form (NOCF). Moreover, an algorithm to construct such a change of coordinates is given. Based on this form, we can design an observer with a linear error dynamic. This enables us to estimate the state of a nonlinear dynamical system. A concrete example (biological model) is provided to illustrate the feasibility of the proposed results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20observer%20canonical%20form" title="nonlinear observer canonical form">nonlinear observer canonical form</a>, <a href="https://publications.waset.org/abstracts/search?q=observer" title=" observer"> observer</a>, <a href="https://publications.waset.org/abstracts/search?q=design" title=" design"> design</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20regulation" title=" gene regulation"> gene regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20expression" title=" gene expression"> gene expression</a> </p> <a href="https://publications.waset.org/abstracts/37920/nonlinear-observer-canonical-form-for-genetic-regulation-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15781</span> Radiation Effect on MHD Casson Fluid Flow over a Power-Law Stretching Sheet with Chemical Reaction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Motahar%20Reza">Motahar Reza</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajni%20Chahal"> Rajni Chahal</a>, <a href="https://publications.waset.org/abstracts/search?q=Neha%20Sharma"> Neha Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article addresses the boundary layer flow and heat transfer of Casson fluid over a nonlinearly permeable stretching surface with chemical reaction in the presence of variable magnetic field. The effect of thermal radiation is considered to control the rate of heat transfer at the surface. Using similarity transformations, the governing partial differential equations of this problem are reduced into a set of non-linear ordinary differential equations which are solved by finite difference method. It is observed that the velocity at fixed point decreases with increasing the nonlinear stretching parameter but the temperature increases with nonlinear stretching parameter. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boundary%20layer%20flow" title="boundary layer flow">boundary layer flow</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20stretching" title=" nonlinear stretching"> nonlinear stretching</a>, <a href="https://publications.waset.org/abstracts/search?q=Casson%20fluid" title=" Casson fluid"> Casson fluid</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=radiation" title=" radiation"> radiation</a> </p> <a href="https://publications.waset.org/abstracts/46451/radiation-effect-on-mhd-casson-fluid-flow-over-a-power-law-stretching-sheet-with-chemical-reaction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46451.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15780</span> Self-Action of Pyroelectric Spatial Soliton in Undoped Lithium Niobate Samples with Pyroelectric Mechanism of Nonlinear Response</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anton%20S.%20Perin">Anton S. Perin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vladimir%20M.%20Shandarov"> Vladimir M. Shandarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Compensation for the nonlinear diffraction of narrow laser beams with wavelength of 532 and the formation of photonic waveguides and waveguide circuits due to the contribution of pyroelectric effect to the nonlinear response of lithium niobate crystal have been experimentally demonstrated. Complete compensation for the linear and nonlinear diffraction broadening of light beams is obtained upon uniform heating of an undoped sample from room temperature to 55 degrees Celsius. An analysis of the light-field distribution patterns and the corresponding intensity distribution profiles allowed us to estimate the spacing for the channel waveguides. The observed behavior of bright soliton beams may be caused by their coherent interaction, which manifests itself in repulsion for anti-phase light fields and in attraction for in-phase light fields. The experimental results of this study showed a fundamental possibility of forming optically complex waveguide structures in lithium niobate crystals with pyroelectric mechanism of nonlinear response. The topology of these structures is determined by the light field distribution on the input face of crystalline sample. The optical induction of channel waveguide elements by interacting spatial solitons makes it possible to design optical systems with a more complex topology and a possibility of their dynamic reconfiguration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=self-action" title="self-action">self-action</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton" title=" soliton"> soliton</a>, <a href="https://publications.waset.org/abstracts/search?q=lithium%20niobate" title=" lithium niobate"> lithium niobate</a>, <a href="https://publications.waset.org/abstracts/search?q=piroliton" title=" piroliton"> piroliton</a>, <a href="https://publications.waset.org/abstracts/search?q=photorefractive%20effect" title=" photorefractive effect"> photorefractive effect</a>, <a href="https://publications.waset.org/abstracts/search?q=pyroelectric%20effect" title=" pyroelectric effect"> pyroelectric effect</a> </p> <a href="https://publications.waset.org/abstracts/89331/self-action-of-pyroelectric-spatial-soliton-in-undoped-lithium-niobate-samples-with-pyroelectric-mechanism-of-nonlinear-response" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">167</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15779</span> Nonlinear Absorption and Scattering in Wide Band Gap Silver Sulfide Nanoparticles Colloid and Their Effects on the Optical Limiting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hoda%20Aleali">Hoda Aleali</a>, <a href="https://publications.waset.org/abstracts/search?q=Nastran%20Mansour"> Nastran Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Mirzaie"> Maryam Mirzaie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study the optical nonlinearities of Silver sulfide (Ag2S) nanostructures dispersed in the Dimethyl sulfoxide (DMSO) under exposure to 532 nm, 15 nanosecond (ns) pulsed laser irradiation. Ultraviolet–visible absorption spectrometry (UV-Vis), X-ray diffraction (XRD), and transmission electron microscopy (TEM) are used to characterize the obtained nanocrystal samples. The band gap energy of colloid is determined by analyzing the UV–Vis absorption spectra of the Ag2S NPs using the band theory of semiconductors. Z-scan technique is used to characterize the optical nonlinear properties of the Ag2S nanoparticles (NPs). Large enhancement of two photon absorption effect is observed with increase in concentration of the Ag2S nanoparticles using open Z-scan measurements in the ns laser regime. The values of the nonlinear absorption coefficients are determined based on the local nonlinear responses including two photon absorption. The observed aperture dependence of the Ag2S NP limiting performance indicates that the nonlinear scattering plays an important role in the limiting action of the sample.The concentration dependence of the optical liming is also investigated. Our results demonstrate that the optical limiting threshold decreases with increasing the silver sulfide NPs in DMSO. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoscale%20materials" title="nanoscale materials">nanoscale materials</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20sulfide%20nanoparticles" title=" silver sulfide nanoparticles"> silver sulfide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20absorption" title=" nonlinear absorption"> nonlinear absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20scattering" title=" nonlinear scattering"> nonlinear scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20limiting" title=" optical limiting "> optical limiting </a> </p> <a href="https://publications.waset.org/abstracts/13234/nonlinear-absorption-and-scattering-in-wide-band-gap-silver-sulfide-nanoparticles-colloid-and-their-effects-on-the-optical-limiting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15778</span> A Filtering Algorithm for a Nonlinear State-Space Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20Eqal%20Al%20Mazrooei">Abdullah Eqal Al Mazrooei</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalman%20filter" title="Kalman filter">Kalman filter</a>, <a href="https://publications.waset.org/abstracts/search?q=filtering%20algorithm" title=" filtering algorithm"> filtering algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a>, <a href="https://publications.waset.org/abstracts/search?q=state-space%20model" title=" state-space model"> state-space model</a> </p> <a href="https://publications.waset.org/abstracts/74331/a-filtering-algorithm-for-a-nonlinear-state-space-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74331.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15777</span> Spectral Broadening in an InGaAsP Optical Waveguide with χ(3) Nonlinearity Including Two Photon Absorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keigo%20Matsuura">Keigo Matsuura</a>, <a href="https://publications.waset.org/abstracts/search?q=Isao%20Tomita"> Isao Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied a method to widen the spectrum of optical pulses that pass through an InGaAsP waveguide for application to broadband optical communication. In particular, we have investigated the competitive effect between spectral broadening arising from nonlinear refraction (optical Kerr effect) and shrinking due to two photon absorption in the InGaAsP waveguide with chi^(3) nonlinearity. The shrunk spectrum recovers broadening by the enhancement effect of the nonlinear refractive index near the bandgap of InGaAsP with a bandgap wavelength of 1490 nm. The broadened spectral width at around 1525 nm (196.7 THz) becomes 10.7 times wider than that at around 1560 nm (192.3 THz) without the enhancement effect, where amplified optical pulses with a pulse width of 2 ps and a peak power of 10 W propagate through a 1-cm-long InGaAsP waveguide with a cross-section of 4 um^2. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=InGaAsP%20waveguide" title="InGaAsP waveguide">InGaAsP waveguide</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%5E%283%29%20nonlinearity" title=" Chi^(3) nonlinearity"> Chi^(3) nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20broadening" title=" spectral broadening"> spectral broadening</a>, <a href="https://publications.waset.org/abstracts/search?q=photon%20absorption" title=" photon absorption "> photon absorption </a> </p> <a href="https://publications.waset.org/abstracts/13656/spectral-broadening-in-an-ingaasp-optical-waveguide-with-kh3-nonlinearity-including-two-photon-absorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13656.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">634</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15776</span> Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yamaguchi">T. Yamaguchi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Watanabe"> M. Watanabe</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Sasajima"> M. Sasajima</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Yuan"> C. Yuan</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Maruyama"> S. Maruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20B.%20Ibrahim"> T. B. Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Tomita"> H. Tomita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20response" title="dynamic response">dynamic response</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20impact%20response" title=" nonlinear impact response"> nonlinear impact response</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20analysis" title=" finite element analysis"> finite element analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a> </p> <a href="https://publications.waset.org/abstracts/15947/nonlinear-impact-responses-for-a-damped-frame-supported-by-nonlinear-springs-with-hysteresis-using-fast-fea" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15947.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">434</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15775</span> Nonlinear Internal Waves in Rotating Ocean</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20A.%20Ostrovsky">L. A. Ostrovsky</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu.%20A.%20Stepanyants"> Yu. A. Stepanyants</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Effect of Earth rotation on nonlinear waves is a practically important and theoretically challenging problem of fluid mechanics and geophysics. Whereas the large-scale, geostrophic processes such as Rossby waves are a classical object of oceanic and atmospheric physics, rotation effects on mesoscale waves are not well studied. In particular, the Coriolis force can radically modify the behavior of nonlinear internal gravity waves in the ocean having spatial scales of 1-10 kilometers and time durations of few hours. In the last decade, such a non-trivial behavior was observed more than once. Similar effects are possible for magnetic sound in the ionosphere. Here we outline the main physical peculiarities in the behavior of nonlinear internal waves due to the rotation effect and present some results of our recent studies. The consideration is based on the fourth-order equation derived by one of the authors as a rotation-modified Korteweg–de Vries (rKdV) equation which includes two types of dispersion: one is responsible for the finiteness of depth as in the classical KdV equation; another is due to the Coriolis effect. This equation is, in general, non-integrable; moreover, under the conditions typical of oceanic waves (positive dispersion parameter), it does not allow solitary solutions at all. In the opposite case (negative dispersion) which is possible for, e.g., magnetic sound, solitary solutions do exist and can form complex bound states (multisoliton). Another non-trivial properties of nonlinear internal waves with rotation include, to name a few, the ‘terminal’ damping of the initial KdV soliton disappearing in a finite time due to radiation losses caused by Earth’s rotation, and eventual transformation of a KdV soliton into a wave packet (an envelope soliton). The new results to be discussed refer to the interaction of a soliton with a long background wave. It is shown, in particular, that in this case internal solitons can exist since the radiation losses are compensated by energy pumping from the background wave. Finally, the relevant oceanic observations of rotation effect on internal waves are briefly described. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Earth%20rotation" title="Earth rotation">Earth rotation</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20waves" title=" internal waves"> internal waves</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20waves" title=" nonlinear waves"> nonlinear waves</a>, <a href="https://publications.waset.org/abstracts/search?q=solitons" title=" solitons"> solitons</a> </p> <a href="https://publications.waset.org/abstracts/28004/nonlinear-internal-waves-in-rotating-ocean" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28004.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">671</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15774</span> Frequency Response of Complex Systems with Localized Nonlinearities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Menga">E. Menga</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Hernandez"> S. Hernandez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Finite Element Models (FEMs) are widely used in order to study and predict the dynamic properties of structures and usually, the prediction can be obtained with much more accuracy in the case of a single component than in the case of assemblies. Especially for structural dynamics studies, in the low and middle frequency range, most complex FEMs can be seen as assemblies made by linear components joined together at interfaces. From a modelling and computational point of view, these types of joints can be seen as localized sources of stiffness and damping and can be modelled as lumped spring/damper elements, most of time, characterized by nonlinear constitutive laws. On the other side, most of FE programs are able to run nonlinear analysis in time-domain. They treat the whole structure as nonlinear, even if there is one nonlinear degree of freedom (DOF) out of thousands of linear ones, making the analysis unnecessarily expensive from a computational point of view. In this work, a methodology in order to obtain the nonlinear frequency response of structures, whose nonlinearities can be considered as localized sources, is presented. The work extends the well-known Structural Dynamic Modification Method (SDMM) to a nonlinear set of modifications, and allows getting the Nonlinear Frequency Response Functions (NLFRFs), through an ‘updating’ process of the Linear Frequency Response Functions (LFRFs). A brief summary of the analytical concepts is given, starting from the linear formulation and understanding what the implications of the nonlinear one, are. The response of the system is formulated in both: time and frequency domain. First the Modal Database is extracted and the linear response is calculated. Secondly the nonlinear response is obtained thru the NL SDMM, by updating the underlying linear behavior of the system. The methodology, implemented in MATLAB, has been successfully applied to estimate the nonlinear frequency response of two systems. The first one is a two DOFs spring-mass-damper system, and the second example takes into account a full aircraft FE Model. In spite of the different levels of complexity, both examples show the reliability and effectiveness of the method. The results highlight a feasible and robust procedure, which allows a quick estimation of the effect of localized nonlinearities on the dynamic behavior. The method is particularly powerful when most of the FE Model can be considered as acting linearly and the nonlinear behavior is restricted to few degrees of freedom. The procedure is very attractive from a computational point of view because the FEM needs to be run just once, which allows faster nonlinear sensitivity analysis and easier implementation of optimization procedures for the calibration of nonlinear models. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=frequency%20response" title="frequency response">frequency response</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamics" title=" nonlinear dynamics"> nonlinear dynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20dynamic%20modification" title=" structural dynamic modification"> structural dynamic modification</a>, <a href="https://publications.waset.org/abstracts/search?q=softening%20effect" title=" softening effect"> softening effect</a>, <a href="https://publications.waset.org/abstracts/search?q=rubber" title=" rubber"> rubber</a> </p> <a href="https://publications.waset.org/abstracts/47202/frequency-response-of-complex-systems-with-localized-nonlinearities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15773</span> Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boo-Sung%20Koh">Boo-Sung Koh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seung-Eock%20Kim"> Seung-Eock Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=direct%20design" title="direct design">direct design</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20inelastic%20analysis" title=" nonlinear inelastic analysis"> nonlinear inelastic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=residual%20stress" title=" residual stress"> residual stress</a>, <a href="https://publications.waset.org/abstracts/search?q=initial%20geometric%20imperfection" title=" initial geometric imperfection"> initial geometric imperfection</a> </p> <a href="https://publications.waset.org/abstracts/24354/direct-design-of-steel-bridge-using-nonlinear-inelastic-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">531</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15772</span> Design of Reinforced Concrete (RC) Walls Considering Shear Amplification by Nonlinear Dynamic Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sunghyun%20Kim">Sunghyun Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Hong-Gun%20Park"> Hong-Gun Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the performance-based design (PBD), by using the nonlinear dynamic analysis (NDA), the actual performance of the structure is evaluated. Unlike frame structures, in the wall structures, base shear force which is resulted from the NDA, is greatly amplified than that from the elastic analysis. This shear amplifying effect causes repeated designs which make designer difficult to apply the PBD. Therefore, in this paper, factors which affect shear amplification were studied. For the 20-story wall model, the NDA was performed. From the analysis results, the base shear amplification factor was proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20based%20design" title="performance based design">performance based design</a>, <a href="https://publications.waset.org/abstracts/search?q=shear%20amplification%20factor" title=" shear amplification factor"> shear amplification factor</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20dynamic%20analysis" title=" nonlinear dynamic analysis"> nonlinear dynamic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20shear%20wall" title=" RC shear wall"> RC shear wall</a> </p> <a href="https://publications.waset.org/abstracts/60242/design-of-reinforced-concrete-rc-walls-considering-shear-amplification-by-nonlinear-dynamic-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60242.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15771</span> Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hocine%20Hammoum">Hocine Hammoum</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Bouzelha"> Karima Bouzelha</a>, <a href="https://publications.waset.org/abstracts/search?q=Lounis%20Ziani"> Lounis Ziani</a>, <a href="https://publications.waset.org/abstracts/search?q=Lounis%20Hamitouche"> Lounis Hamitouche</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m<sup>3</sup>. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21<sup>st</sup>, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=performance%20analysis" title="performance analysis">performance analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20tank" title=" reinforced concrete tank"> reinforced concrete tank</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20analysis" title=" seismic analysis"> seismic analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20analysis" title=" nonlinear analysis"> nonlinear analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrodynamic" title=" hydrodynamic"> hydrodynamic</a>, <a href="https://publications.waset.org/abstracts/search?q=pushover" title=" pushover"> pushover</a> </p> <a href="https://publications.waset.org/abstracts/45967/nonlinear-analysis-of-a-building-surmounted-by-a-rc-water-tank-under-hydrodynamic-load" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15770</span> Soliton Solutions of the Higher-Order Nonlinear Schrödinger Equation with Dispersion Effects</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20Triki">H. Triki</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Hamaizi"> Y. Hamaizi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20El-Akrmi"> A. El-Akrmi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider the higher order nonlinear Schrödinger equation model with fourth-order dispersion, cubic-quintic terms, and self-steepening. This equation governs the propagation of fem to second pulses in optical fibers. We present new bright and dark solitary wave type solutions for such a model under certain parametric conditions. This kind of solution may be useful to explain some physical phenomena related to wave propagation in a nonlinear optical fiber systems supporting high-order nonlinear and dispersive effects. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20Schr%C3%B6dinger%20equation" title="nonlinear Schrödinger equation">nonlinear Schrödinger equation</a>, <a href="https://publications.waset.org/abstracts/search?q=high-order%20effects" title=" high-order effects"> high-order effects</a>, <a href="https://publications.waset.org/abstracts/search?q=soliton%20solution" title=" soliton solution"> soliton solution</a> </p> <a href="https://publications.waset.org/abstracts/11564/soliton-solutions-of-the-higher-order-nonlinear-schrodinger-equation-with-dispersion-effects" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11564.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">635</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15769</span> Chaotic Motion of Single-Walled Carbon Nanotube Subject to Damping Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tai-Ping%20Chang">Tai-Ping Chang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, the effects on chaotic motion of single-walled carbon nanotube (SWCNT) due to the linear and nonlinear damping are investigated. By using the Hamilton’s principle, the nonlinear governing equation of the single-walled carbon nanotube embedded in a matrix is derived. The Galerkin’s method is adopted to simplify the integro-partial differential equation into a nonlinear dimensionless governing equation for the SWCNT, which turns out to be a forced Duffing equation. The variations of the Lyapunov exponents of the SWCNT with damping and harmonic forcing amplitudes are investigated. Based on the computations of the top Lyapunov exponent, it is concluded that the chaotic motion of the SWCNT occurs when the amplitude of the periodic excitation exceeds certain value, besides, the chaotic motion of the SWCNT occurs with small linear damping and tiny nonlinear damping. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chaotic%20motion" title="chaotic motion">chaotic motion</a>, <a href="https://publications.waset.org/abstracts/search?q=damping" title=" damping"> damping</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov%20exponents" title=" Lyapunov exponents"> Lyapunov exponents</a>, <a href="https://publications.waset.org/abstracts/search?q=single-walled%20carbon%20nanotube" title=" single-walled carbon nanotube"> single-walled carbon nanotube</a> </p> <a href="https://publications.waset.org/abstracts/43091/chaotic-motion-of-single-walled-carbon-nanotube-subject-to-damping-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43091.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15768</span> State Estimation Method Based on Unscented Kalman Filter for Vehicle Nonlinear Dynamics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wataru%20Nakamura">Wataru Nakamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomoaki%20Hashimoto"> Tomoaki Hashimoto</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Kuang%20Chen"> Liang-Kuang Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper provides a state estimation method for automatic control systems of nonlinear vehicle dynamics. A nonlinear tire model is employed to represent the realistic behavior of a vehicle. In general, all the state variables of control systems are not precisedly known, because those variables are observed through output sensors and limited parts of them might be only measurable. Hence, automatic control systems must incorporate some type of state estimation. It is needed to establish a state estimation method for nonlinear vehicle dynamics with restricted measurable state variables. For this purpose, unscented Kalman filter method is applied in this study for estimating the state variables of nonlinear vehicle dynamics. The objective of this paper is to propose a state estimation method using unscented Kalman filter for nonlinear vehicle dynamics. The effectiveness of the proposed method is verified by numerical simulations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=state%20estimation" title="state estimation">state estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=control%20systems" title=" control systems"> control systems</a>, <a href="https://publications.waset.org/abstracts/search?q=observer%20systems" title=" observer systems"> observer systems</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20systems" title=" nonlinear systems"> nonlinear systems</a> </p> <a href="https://publications.waset.org/abstracts/118764/state-estimation-method-based-on-unscented-kalman-filter-for-vehicle-nonlinear-dynamics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/118764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15767</span> Solving the Nonlinear Heat Conduction in a Spherical Coordinate with Electrical Simulation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20Gheitaghy">A. M. Gheitaghy</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Saffari"> H. Saffari</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Q.%20Zhang"> G. Q. Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical approach based on the electrical simulation method is proposed to solve a nonlinear transient heat conduction problem with nonlinear boundary for a spherical body. This problem represents a strong nonlinearity in both the governing equation for temperature dependent thermal property and the boundary condition for combined convective and radiative cooling. By analysing the equivalent electrical model using the electrical circuit simulation program HSPICE, transient temperature and heat flux distributions at sphere can be obtained easily and fast. The solutions clearly illustrate the effect of the radiation-conduction parameter Nrc, the Biot number and the linear coefficient of temperature dependent conductivity and heat capacity. On comparing the results with corresponding numerical solutions, the accuracy and efficiency of this computational method are found to be good. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convective%20and%20radiative%20boundary" title="convective and radiative boundary">convective and radiative boundary</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20simulation%20method" title=" electrical simulation method"> electrical simulation method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20heat%20conduction" title=" nonlinear heat conduction"> nonlinear heat conduction</a>, <a href="https://publications.waset.org/abstracts/search?q=spherical%20coordinate" title=" spherical coordinate"> spherical coordinate</a> </p> <a href="https://publications.waset.org/abstracts/44491/solving-the-nonlinear-heat-conduction-in-a-spherical-coordinate-with-electrical-simulation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15766</span> A Mathematical Study of Magnetic Field, Heat Transfer and Brownian Motion of Nanofluid over a Nonlinear Stretching Sheet</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Aneja">Madhu Aneja</a>, <a href="https://publications.waset.org/abstracts/search?q=Sapna%20Sharma"> Sapna Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal conductivity of ordinary heat transfer fluids is not adequate to meet today’s cooling rate requirements. Nanoparticles have been shown to increase the thermal conductivity and convective heat transfer to the base fluids. One of the possible mechanisms for anomalous increase in the thermal conductivity of nanofluids is the Brownian motions of the nanoparticles in the basefluid. In this paper, the natural convection of incompressible nanofluid over a nonlinear stretching sheet in the presence of magnetic field is studied. The flow and heat transfer induced by stretching sheets is important in the study of extrusion processes and is a subject of considerable interest in the contemporary literature. Appropriate similarity variables are used to transform the governing nonlinear partial differential equations to a system of nonlinear ordinary (similarity) differential equations. For computational purpose, Finite Element Method is used. The effective thermal conductivity and viscosity of nanofluid are calculated by KKL (Koo – Klienstreuer – Li) correlation. In this model effect of Brownian motion on thermal conductivity is considered. The effect of important parameter i.e. nonlinear parameter, volume fraction, Hartmann number, heat source parameter is studied on velocity and temperature. Skin friction and heat transfer coefficients are also calculated for concerned parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brownian%20motion" title="Brownian motion">Brownian motion</a>, <a href="https://publications.waset.org/abstracts/search?q=convection" title=" convection"> convection</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title=" finite element method"> finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20field" title=" magnetic field"> magnetic field</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofluid" title=" nanofluid"> nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=stretching%20sheet" title=" stretching sheet"> stretching sheet</a> </p> <a href="https://publications.waset.org/abstracts/64215/a-mathematical-study-of-magnetic-field-heat-transfer-and-brownian-motion-of-nanofluid-over-a-nonlinear-stretching-sheet" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64215.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">218</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15765</span> Comprehensive Investigation of Solving Analytical of Nonlinear Differential Equations at Chemical Reactions to Design of Reactors by New Method “AGM”</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammadreza%20Akbari">Mohammadreza Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Pooya%20Soleimani%20Besheli"> Pooya Soleimani Besheli</a>, <a href="https://publications.waset.org/abstracts/search?q=Reza%20khalili"> Reza khalili</a>, <a href="https://publications.waset.org/abstracts/search?q=Sara%20Akbari"> Sara Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Davood%20Domiri%20Ganji"> Davood Domiri Ganji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this symposium, our aims are accuracy, capabilities and power at solving of the complicate non-linear differential at the reaction chemical in the catalyst reactor (heterogeneous reaction). Our purpose is to enhance the ability of solving the mentioned nonlinear differential equations at chemical engineering and similar issues with a simple and innovative approach which entitled ‘’Akbari-Ganji's Method’’ or ‘’AGM’’. In this paper we solve many examples of nonlinear differential equations of chemical reactions and its investigate. The chemical reactor with the energy changing (non-isotherm) in two reactors of mixed and plug are separately studied and the nonlinear differential equations obtained from the reaction behavior in these systems are solved by a new method. Practically, the reactions with the energy changing (heat or cold) have an important effect on designing and function of the reactors. This means that possibility of reaching the optimal conditions of operation for the maximum conversion depending on nonlinear nature of the reaction velocity toward temperature, results in the complexity of the operation in the reactor. In this case, the differential equation set which governs the reactors can be obtained simultaneous solution of mass equilibrium and energy and temperature changing at concentration. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=new%20method%20%28AGM%29" title="new method (AGM)">new method (AGM)</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20differential%20equation" title=" nonlinear differential equation"> nonlinear differential equation</a>, <a href="https://publications.waset.org/abstracts/search?q=tubular%20and%20mixed%20reactors" title=" tubular and mixed reactors"> tubular and mixed reactors</a>, <a href="https://publications.waset.org/abstracts/search?q=catalyst%20bed" title=" catalyst bed"> catalyst bed</a> </p> <a href="https://publications.waset.org/abstracts/32700/comprehensive-investigation-of-solving-analytical-of-nonlinear-differential-equations-at-chemical-reactions-to-design-of-reactors-by-new-method-agm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32700.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">382</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15764</span> Numerical Iteration Method to Find New Formulas for Nonlinear Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kholod%20Mohammad%20Abualnaja">Kholod Mohammad Abualnaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new algorithm is presented to find some new iterative methods for solving nonlinear equations F(x)=0 by using the variational iteration method. The efficiency of the considered method is illustrated by example. The results show that the proposed iteration technique, without linearization or small perturbation, is very effective and convenient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=variational%20iteration%20method" title="variational iteration method">variational iteration method</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20equations" title=" nonlinear equations"> nonlinear equations</a>, <a href="https://publications.waset.org/abstracts/search?q=Lagrange%20multiplier" title=" Lagrange multiplier"> Lagrange multiplier</a>, <a href="https://publications.waset.org/abstracts/search?q=algorithms" title=" algorithms "> algorithms </a> </p> <a href="https://publications.waset.org/abstracts/12184/numerical-iteration-method-to-find-new-formulas-for-nonlinear-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12184.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">544</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15763</span> Modified Tendon Model Considered Structural Nonlinearity in PSC Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yangsu%20Kwon">Yangsu Kwon</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyo-Gyoung%20Kwak"> Hyo-Gyoung Kwak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nonlinear tendon constitutive model for nonlinear analysis of pre-stressed concrete structures are presented. Since the post-cracking behavior of concrete structures, in which bonded reinforcements such as tendons and/or reinforcing steels are embedded, depends on many influencing factors(the tensile strength of concrete, anchorage length of reinforcements, concrete cover, and steel spacing) that are deeply related to the bond characteristics between concrete and reinforcements, consideration of the tension stiffening effect on the basis of the bond-slip mechanism is necessary to evaluate ultimate resisting capacity of structures. In this paper, an improved tendon model, which considering the slip effect between concrete and tendon, and effect of tension stiffening, is suggested. The validity of the proposed models is established by comparing between the analytical results and experimental results in pre-stressed concrete beams. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bond-slip" title="bond-slip">bond-slip</a>, <a href="https://publications.waset.org/abstracts/search?q=prestressed%20concrete" title=" prestressed concrete"> prestressed concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=tendon" title=" tendon"> tendon</a>, <a href="https://publications.waset.org/abstracts/search?q=ultimate%20strength" title=" ultimate strength"> ultimate strength</a> </p> <a href="https://publications.waset.org/abstracts/17409/modified-tendon-model-considered-structural-nonlinearity-in-psc-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17409.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=526">526</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=527">527</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=nonlinear%20Renninger%20effect&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>