CINXE.COM

{"title":"Multi-Font Farsi\/Arabic Isolated Character Recognition Using Chain Codes","authors":"H. Izakian, S. A. Monadjemi, B. Tork Ladani, K. Zamanifar","volume":19,"journal":"International Journal of Computer and Information Engineering","pagesStart":2315,"pagesEnd":2319,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/301","abstract":"Nowadays, OCR systems have got several\napplications and are increasingly employed in daily life. Much\nresearch has been done regarding the identification of Latin,\nJapanese, and Chinese characters. However, very little investigation\nhas been performed regarding Farsi\/Arabic characters recognition.\nProbably the reason is difficulty and complexity of those characters\nidentification compared to the others and limitation of IT activities in\nFarsi and Arabic speaking countries. In this paper, a technique has\nbeen employed to identify isolated Farsi\/Arabic characters. A chain\ncode based algorithm along with other significant peculiarities such\nas number and location of dots and auxiliary parts, and the number of\nholes existing in the isolated character has been used in this study to\nidentify Farsi\/Arabic characters. Experimental results show the\nrelatively high accuracy of the method developed when it is tested on\nseveral standard Farsi fonts.","references":"[1] M. M. Altuwaijri and M. A.Bayoumi, \"Arabic text recognition using\nneural networks\", IEEE International Symposium on Circuits and\nSystems, pp;415-418, 1994.\n[2] B.M.F.Bushofa and M.Spann, \"Segmentation and recognition of Arabic\ncharacters by structural classification\",Image and Vision Computing, ,\n15,pp:167-179, 1997.\n[3] B. Al-Badr and S. A. Mahmoud, \"Survey and bibliography of Arabic\noptical text recognition\", Signal Processing, 41, pp:49-77, 1995.\n[4] L. Zheng, Abbas H. Hassin and X.Tang, \"A new algorithm for machine\nprinted Arabic character segmentation\", Pattern Recognition Characters,\n25(15),pp:1723-1729, 2004.\n[5] J. Mantas, \"An Overview of Character Recognition Methodologies\",\nPattern Recognition 19, pp. 425-430, 1986.\n[6] R. M. Bozinovic and S. N. Shihari, \"Off Line Cursive Script Word\nRecognition\", IEEE Trans.Pattern Anal. Mach. Intell. PAMI 11, pp. 68-\n83, 1989.\n[7] R. Casey and G. Nagy, \"Automatic Reading Machine\", IEE Trans.\nComput. 17, pp. 492-503, 1968.\n[8] K. Y. Wang, R. C. Casey and F. M. Wahl, \"Document Analysis\nSystem\", IBM J.Res.Dev . 26, pp. 647-656, 1982.\n[9] S. Mori, C. Y. Suen and K. Yamamoto, \"Historical Review of OCR\nResearch and Development\", Proc. IEEE 80, pp. 1029-1058, 1992.\n[10] N. B. Amor, N. E. BenAmara, \"Multifont Arabic Characters Recognition\nUsing Hough Transform and HMM\/ANN Classification\", journal of\nmultimedia, VOL. 1, NO. 2, MAY 2006.\n[11] Lippmann \"Pattern Classification using Neural Networks.\" IEEE\nCommunications Magazine, 1989.\n[12] Kavianifar M. and Amin A. \"Preprocessing and structural feature\nextraction for a multi-fonts Arabic\/Persian OCR\", Proceedings of the\nFifth International Conference on Document Analysis and Recognition.\nICDAR '99 (Cat. No.PR00318). Soc, Los Alamitos, CA, USA. pp: 213-\n16, 1999.\n[13] S. Alma'adeed, C. Higgens, D. Elliman, R. Kasturi, D. Laurendeau, and\nC. Suen, \"Recognition of off-line handwritten Arabic words using\nhidden Markov model approach\" , Proceedings 16th International\nConference on Pattern Recognition.IEEE Comput. Soc, Los Alamitos,\nCA, USA. Vol.3: 481-4, 2002.\n[14] J. Cowell, F. Hussain, M. H. Hamza, and M. Sarfraz, \"Extracting\nfeatures from Arabic characters\", Proceedings of the IASTED erence\nComputer Graphics and Imaging. ACTA Press, Anaheim, CA, USA, pp:\n201-6, 2001.\n[15] T. Sari, and M. Sellami, \"MOrpho-LEXical analysis for correcting OCRgenerated\nArabic words\" , Proceedings Eighth International Workshop\non Frontiers in Handwriting Recognition. IEEE Comput. Soc, Los\nAlamitos, CA, USA. pp: 461-6, 2002.\n[16] S. Hoque, K. Sirlantzis, M. C. Fairhurst, \"A New Chain-code\nQuantization Approach Enabling High Performance Handwriting\nRecognition based on Multi-Classifier Schemes\", Proceedings of the\nSeventh International Conference on Document Analysis and\nRecognition , ICDAR 2003.\n[17] T. Y. Zhang, C. Y. Suen, \"A fast parallel algorithm for thinning digital\npatterns\", ACM 1984.\n[18] Pratt, K. William, \"Digital Image Processing\", New York, John Wiley &\nSons, Inc., p. 633, 1991.\n[19] P. Zingaretti, M. Casparroni and L. Vecci, \"Fast chain coding of region\nboundarie\", IEEE Transactions on Pattern Analysis and Machine\nIntelligence 20 (4), 407-415, 1998.\n[20] Christopher J.C. Burges, \"A Tutorial on Support Vector Machines for\nPattern Recognition\", Data Mining and Knowledge Discovery, Vol.2,\nNo.2, 1998.\n[21] L. Almeida, \"Multilayer Perceptrons\", Handbook of Neural\nComputation, IOP Publishing Ltd and Oxford University Press, pp.\nC1.2: 1-C1.2: 30, 1997.\n[22] T. Mitchell, \"Machine Learning\", McGraw Hill, New York, 1997.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 19, 2008"}