CINXE.COM

Search results for: copper oxide

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: copper oxide</title> <meta name="description" content="Search results for: copper oxide"> <meta name="keywords" content="copper oxide"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="copper oxide" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="copper oxide"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2129</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: copper oxide</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2129</span> Facile Synthesis of Copper Based Nanowires Suitable for Lithium Ion Battery Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zeinab%20Sanaee">Zeinab Sanaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Jafaripour"> Hossein Jafaripour</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper is an excellent conductive material that is widely used in the energy devices such as Lithium-ion batteries and supercapacitors as the current collector. On the other hand, copper oxide nanowires have been used in these applications as potential electrode material. In this paper, nanowires of Copper and Copper oxide have been synthesized through a simple and time and cost-effective approach. The thermally grown Copper oxide nanowires have been converted into Copper nanowires through annealing in the Hydrogen atmosphere in a DC-PECVD system. To have a proper Copper nanostructure formation, an Au nanolayer was coated on the surface of Copper oxide nanowires. The results show the successful achievement of Copper nanowires without deformation or cracking. These structures have a great potential for Lithium-ion batteries and supercapacitors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Copper" title="Copper">Copper</a>, <a href="https://publications.waset.org/abstracts/search?q=Copper%20oxide" title=" Copper oxide"> Copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowires" title=" nanowires"> nanowires</a>, <a href="https://publications.waset.org/abstracts/search?q=Hydrogen%20annealing" title=" Hydrogen annealing"> Hydrogen annealing</a>, <a href="https://publications.waset.org/abstracts/search?q=Lithium%20ion%20battery" title=" Lithium ion battery"> Lithium ion battery</a> </p> <a href="https://publications.waset.org/abstracts/158298/facile-synthesis-of-copper-based-nanowires-suitable-for-lithium-ion-battery-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158298.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">87</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2128</span> Copper Doped P-Type Nickel Oxide Transparent Conducting Oxide Thin Films</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kai%20Huang">Kai Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Assamen%20Ayalew%20Ejigu"> Assamen Ayalew Ejigu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mu-Jie%20Lin"> Mu-Jie Lin</a>, <a href="https://publications.waset.org/abstracts/search?q=Liang-Chiun%20Chao"> Liang-Chiun Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel oxide and copper-nickel oxide thin films have been successfully deposited by reactive ion beam sputter deposition. Experimental results show that nickel oxide deposited at 300°C is single phase NiO while best crystalline quality is achieved with an O_pf of 0.5. XRD analysis of nickel-copper oxide deposited at 300°C shows a Ni2O3 like crystalline structure at low O_pf while changes to NiO like crystalline structure at high O_pf. EDS analysis shows that nickel-copper oxide deposited at low O_pf is CuxNi2-xO3 with x = 1, while nickel-copper oxide deposited at high O_pf is CuxNi1-xO with x = 0.5, which is supported by Raman analysis. The bandgap of NiO is ~ 3.5 eV regardless of O_pf while the band gap of nickel-copper oxide decreases from 3.2 to 2.3 eV as Opf reaches 1.0. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=ion%20beam" title=" ion beam"> ion beam</a>, <a href="https://publications.waset.org/abstracts/search?q=NiO" title=" NiO"> NiO</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide" title=" oxide"> oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=resistivity" title=" resistivity"> resistivity</a>, <a href="https://publications.waset.org/abstracts/search?q=transparent" title=" transparent"> transparent</a> </p> <a href="https://publications.waset.org/abstracts/58525/copper-doped-p-type-nickel-oxide-transparent-conducting-oxide-thin-films" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2127</span> Green Synthesis of Copper Oxide and Cobalt Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yameen%20Ahmed">Yameen Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamshid%20Hussain"> Jamshid Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Farman%20Ullah"> Farman Ullah</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohaib%20Asif"> Sohaib Asif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The investigation aims at the synthesis of copper oxide and cobalt oxide nanoparticles using Spinacia oleracea leaf extract. These nanoparticles have many properties and applications. They possess antimicrobial catalytic properties and also they can be used in energy storage materials, gas sensors, etc. The Spinacia oleracea leaf extract behaves as a reducing agent in nanoparticle synthesis. The plant extract was first prepared and then treated with copper and cobalt salt solutions to get the precipitate. The salt solutions used for this purpose are copper sulfate pentahydrate (CuSO₄.5H₂O) and cobalt chloride hexahydrate (CoCl₂.6H₂O). The UV-Vis, XRD, EDX, and SEM techniques are used to find the optical, structural, and morphological properties of copper oxide and cobalt oxide nanoparticles. The UV absorption peaks are at 326 nm and 506 nm for copper oxide and cobalt oxide nanoparticles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cobalt%20oxide" title="cobalt oxide">cobalt oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20synthesis" title=" green synthesis"> green synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/142865/green-synthesis-of-copper-oxide-and-cobalt-oxide-nanoparticles-using-spinacia-oleracea-leaf-extract" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142865.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">212</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2126</span> Evaluation of Total Antioxidant Activity (TAC) of Copper Oxide Decorated Reduced Graphene Oxide (CuO-rGO) at Different Stirring time</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aicha%20Bensouici">Aicha Bensouici</a>, <a href="https://publications.waset.org/abstracts/search?q=Assia%20Mili"> Assia Mili</a>, <a href="https://publications.waset.org/abstracts/search?q=Naouel%20Rdjem"> Naouel Rdjem</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Baali"> Nacera Baali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper oxide decorated reduced graphene oxide (GO) was obtained successfully using two steps route synthesis was used. Firstly, graphene oxide was obtained using a modified Hummers method by excluding sodium nitrate from starting materials. After washing-centrifugation routine pristine GO was decorated by copper oxide using a refluxation technique at 120°C during 2h, and an equal amount of GO and copper acetate was used. Three CuO-rGO nanocomposite samples types were obtained at 30min, 24h, and 7 day stirring time. TAC results show dose dependent behavior of CuO-rGO and confirm no influence of stirring time on antioxidant properties, 30min is considered as an optimal stirring condition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title="copper oxide">copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=TAC" title=" TAC"> TAC</a>, <a href="https://publications.waset.org/abstracts/search?q=GO" title=" GO"> GO</a> </p> <a href="https://publications.waset.org/abstracts/157959/evaluation-of-total-antioxidant-activity-tac-of-copper-oxide-decorated-reduced-graphene-oxide-cuo-rgo-at-different-stirring-time" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157959.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2125</span> Changes in Amounts of Glycyrrhizin and Phenolic Compounds of Glycrrhiza glabra L. Seedlings Treated by Copper and Zinc Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roya%20Razavizadeh">Roya Razavizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Razieh%20Soltaninejad"> Razieh Soltaninejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Hakimeh%20Oloumi"> Hakimeh Oloumi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Glycyrrhiza glabra L. (Licorice) is one of the oldest medicinal plants in Iran and secondary metabolites present in the plant root is used in food and pharmaceutical industries. With the use of heavy metals as elicitors, plant secondary metabolite production can be increased. In this study, the effects of the concentrations of 1 and 10 μM of zinc oxide and copper oxide on the contents of reducing sugars (as precursor of secondary metabolites), proline, glycyrrhizin, total phenolic compounds, flavonoids and anthocyanin in Glycyrrhiza glabra seedlings were investigated. Also, the correlation between the content of these metabolites in the treated seedlings was examined using Pearson's test. The amount of reducing sugars at concentration of 10 μM zinc oxide was decreased. Whereas, the amounts of proline and glycyrrhizin under treatment 1 and 10 μM copper oxide and 1 μM zinc oxide compared with the control plants was increased. The content of total phenolic compounds was increased with increasing concentrations of copper oxide. The highest amount of flavonoids was observed at concentrations of 1 and 10 μM copper oxide. Anthocyanin content was increased in concentration of 1 μM copper oxide. Also, the tannin content of the Glycyrrhiza glabra seedlings at concentrations of 10 μM zinc oxide was increased. Based on the result it seemed that at concentrations of 1 and 10 μM copper oxide the amount of glycyrrhizin, phenolic compounds, flavonoids, anthocyanins were significantly increased, whereas, zinc oxide had no significant impact on the levels of these metabolites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide" title="zinc oxide">zinc oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=phenolic%20compounds" title=" phenolic compounds"> phenolic compounds</a>, <a href="https://publications.waset.org/abstracts/search?q=licorice%20%28glycyrrhiza%20glabra%20L.%29" title=" licorice (glycyrrhiza glabra L.)"> licorice (glycyrrhiza glabra L.)</a>, <a href="https://publications.waset.org/abstracts/search?q=glycyrrhizin" title=" glycyrrhizin"> glycyrrhizin</a> </p> <a href="https://publications.waset.org/abstracts/23030/changes-in-amounts-of-glycyrrhizin-and-phenolic-compounds-of-glycrrhiza-glabra-l-seedlings-treated-by-copper-and-zinc-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23030.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2124</span> Synthesis and D.C. Conductivity Measurements of Polyaniline/CopperOxide Nanocomposites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20N.%20Shubha">L. N. Shubha</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Madhusudana%20Rao"> P. Madhusudana Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Polyaniline / Copper Oxide(PANI / CuO) nanocomposite was prepared by solution mixing of prepared Polyaniline and copper Oxide in Dimethyl sulfoxide (DMSO). The synthesis involved the formation of dark green colored Polyaniline-Copper Oxide nanocomposite. The synthesized polymer nano composites were characterized by XRD, FTIR, SEM and UV-Visible Spectroscopy. The characteristic peaks in XRD, FTIR and UV-Visible spectra confirmed the presence of CuO in the polymer structure. SEM analysis revealed formation of PANI/CuO nano composite The D.C. conductivity measurements were performed using two probe method for various temperatures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyaniline%2Fcopper%20oxide%20%28PANI%2FCuO%29%20nanocomposite" title="polyaniline/copper oxide (PANI/CuO) nanocomposite">polyaniline/copper oxide (PANI/CuO) nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a>, <a href="https://publications.waset.org/abstracts/search?q=FTIRand%20DC-%20conductivity" title=" FTIRand DC- conductivity"> FTIRand DC- conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-visible%20spectra" title=" UV-visible spectra"> UV-visible spectra</a> </p> <a href="https://publications.waset.org/abstracts/44353/synthesis-and-dc-conductivity-measurements-of-polyanilinecopperoxide-nanocomposites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44353.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2123</span> Synthesis, Spectral Characterization and Photocatalytic Applications of Graphene Oxide Nanocomposite with Copper Doped Zinc Oxide </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Humaira%20Khan">Humaira Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsin%20Javed"> Mohsin Javed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sammia%20Shahid"> Sammia Shahid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The reinforced photocatalytic activity of graphene oxide (GO) along with composites of ZnO nanoparticles and copper-doped ZnO nanoparticles were studied by synthesizing ZnO and copper- doped ZnO nanoparticles by co-precipitation method. Zinc acetate and copper acetate were used as precursors, whereas graphene oxide was prepared from pre-oxidized graphite in the presence of H2O2.The supernatant was collected carefully and showed high-quality single-layer characterized by FTIR (Fourier Transform Infrared Spectroscopy), TEM (Transmission Electron Microscopy), SEM (Scanning Electron Microscopy), XRD (X-ray Diffraction Analysis), EDS (Energy Dispersive Spectrometry). The degradation of methylene blue as standard pollutant under UV-Visible irradiation gave results for photocatalytic activity of dopants. It could be concluded that shrinking of optical band caused by composites of Cu-dopped nanoparticles with GO enhances the photocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=degradation" title="degradation">degradation</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=photocatalysis" title=" photocatalysis"> photocatalysis</a>, <a href="https://publications.waset.org/abstracts/search?q=ZnO%20nanoparticles%20and%20copper-doped%20ZnO%20nanoparticles" title=" ZnO nanoparticles and copper-doped ZnO nanoparticles"> ZnO nanoparticles and copper-doped ZnO nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/81655/synthesis-spectral-characterization-and-photocatalytic-applications-of-graphene-oxide-nanocomposite-with-copper-doped-zinc-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81655.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">209</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2122</span> Synthesizing CuFe2O4 Spinel Powders by a Combustion-Like Process for Solid Oxide Fuel Cell Interconnects Coating</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyedeh%20Narjes%20Hosseini">Seyedeh Narjes Hosseini</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hossein%20Enayati"> Mohammad Hossein Enayati</a>, <a href="https://publications.waset.org/abstracts/search?q=Fathallah%20Karimzadeh"> Fathallah Karimzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigel%20Mark%20Sammes"> Nigel Mark Sammes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The synthesis of CuFe2O4 spinel powders by an optimized combustion-like process followed by calcinations is described herein. The samples were characterized by X-ray diffraction (XRD), differential thermal analysis (TG/DTA), scanning electron microscopy (SEM), dilatometry and 4-probe DC methods. Different glycine to nitrate (G/N) ratios of 1 (fuel-deficient), 1.48 (stoichiometric) and 2 (fuel-rich) were employed. Calcining the as-prepared powders at 800 and 1000°C for 5 hours showed that the 2 ratio results in the formation of desired copper spinel single phase at both calcinations temperatures. For G/N=1, formation of CuFe2O4 takes place in three steps. First, iron and copper nitrates decomposes to iron oxide and pure copper. Then, copper transforms to copper oxide and finally, copper and iron oxides react to each other to form copper ferrite spinel phase. The electrical conductivity and the coefficient of thermal expansion of the sintered pelletized samples were obtained 2 S.cm-1 (800°C) and 11×10-6 °C-1 (25-800°C), respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SOFC%20interconnect%20coatings" title="SOFC interconnect coatings">SOFC interconnect coatings</a>, <a href="https://publications.waset.org/abstracts/search?q=Copper%20ferrite" title=" Copper ferrite"> Copper ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=Spinels" title=" Spinels"> Spinels</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=Glycine%E2%80%93nitrate%20process" title=" Glycine–nitrate process"> Glycine–nitrate process</a> </p> <a href="https://publications.waset.org/abstracts/31568/synthesizing-cufe2o4-spinel-powders-by-a-combustion-like-process-for-solid-oxide-fuel-cell-interconnects-coating" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">479</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2121</span> Methane Oxidation to Methanol Catalyzed by Copper Oxide Clusters Supported in MIL-53(Al): A Density Functional Theory Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chun-Wei%20Yeh">Chun-Wei Yeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Santhanamoorthi%20Nachimuthu"> Santhanamoorthi Nachimuthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Jyh-Chiang%20Jiang"> Jyh-Chiang Jiang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing greenhouse gases or converting them into fuels and chemicals with added value is vital for the environment. Given the enhanced techniques for hydrocarbon extraction in this context, the catalytic conversion of methane to methanol is particularly intriguing for future applications as vehicle fuels and/or bulk chemicals. Metal-organic frameworks (MOFs) have received much attention recently for the oxidation of methane to methanol. In addition, biomimetic material, particulate methane monooxygenase (pMMO), has been reported to convert methane using copper oxide clusters as active sites. Inspired by these, in this study, we considered the well-known MIL-53(Al) MOF as support for copper oxide clusters (Cu2Ox, Cu3Ox) to investigate their reactivity towards methane oxidation using Density Functional Theory (DFT) calculations. The copper oxide clusters (Cu2O2, Cu3O2) are modeled by oxidizing copper clusters (Cu2, Cu3) with two oxidizers, O2 and N2O. The initial C-H bond activation barriers on Cu2O2/MIL-53(Al) and Cu3O2/MIL-53(Al) catalysts are 0.70 eV and 0.64 eV, respectively, and are the rate-determining steps in the overall methane conversion to methanol reactions. The desorption energy of the methanol over the Cu2O/MIL-53(Al) and Cu3O/MIL-53(Al) is 0.71eV and 0.75 eV, respectively. Furthermore, to explore the prospect of catalyst reusability, we considered the different oxidants and proposed the different reaction pathways for completing the reaction cycle and regenerating the active copper oxide clusters. To know the reason for the difference between bi-copper and tri-cooper systems, we also did an electronic analysis. Finally, we calculate the Microkinetic Simulation. The result shows that the reaction can happen at room temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT%20study" title="DFT study">DFT study</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide%20cluster" title=" copper oxide cluster"> copper oxide cluster</a>, <a href="https://publications.waset.org/abstracts/search?q=MOFs" title=" MOFs"> MOFs</a>, <a href="https://publications.waset.org/abstracts/search?q=methane%20conversion" title=" methane conversion"> methane conversion</a> </p> <a href="https://publications.waset.org/abstracts/160069/methane-oxidation-to-methanol-catalyzed-by-copper-oxide-clusters-supported-in-mil-53al-a-density-functional-theory-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">79</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2120</span> Leaching of Flotation Concentrate of Oxide Copper Ore from Sepon Mine, Lao PDR</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20Rattanakawin">C. Rattanakawin</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Vasailor"> S. Vasailor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Acid leaching of flotation concentrate of oxide copper ore containing mainly of malachite was performed in a standard agitation tank with various parameters. The effects of solid to liquid ratio, sulfuric acid concentration, agitation speed, leaching temperature and time were examined to get proper conditions. The best conditions are 1:8 solid to liquid ratio, 10% concentration by weight, 250 rev/min, 30 <sup>o</sup>C and 5-min leaching time in respect. About 20% Cu grade assayed by atomic absorption technique with 98% copper recovery was obtained from these combined optimum conditions. Dissolution kinetics of the concentrate was approximated as a logarithmic function. As a result, the first-order reaction rate is suggested from this leaching study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agitation%20leaching" title="agitation leaching">agitation leaching</a>, <a href="https://publications.waset.org/abstracts/search?q=dissolution%20kinetics" title=" dissolution kinetics"> dissolution kinetics</a>, <a href="https://publications.waset.org/abstracts/search?q=flotation%20concentrate" title=" flotation concentrate"> flotation concentrate</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide%20copper%20ore" title=" oxide copper ore"> oxide copper ore</a>, <a href="https://publications.waset.org/abstracts/search?q=sulfuric%20acid" title=" sulfuric acid"> sulfuric acid</a> </p> <a href="https://publications.waset.org/abstracts/108978/leaching-of-flotation-concentrate-of-oxide-copper-ore-from-sepon-mine-lao-pdr" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108978.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">119</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2119</span> Synthesis and Characterization of Polypyrrole-Coated Non-Conducting Cellulosic Substrate and Modified by Copper Oxide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Hamam">A. Hamam</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Oukil"> D. Oukil</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Dib"> A. Dib</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Makhloufi"> L. Makhloufi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this work is to synthesize modified Polypyrrole films (PPy) containing nanoparticles of copper oxides onto a non conducting cellulosic substrate. Firstly, the chemical polymerization of polypyrrole onto cellulosic substrate is carried out using FeCl3 as an oxidant and Pyrrole as monomer. Different parameters were optimized (monomer concentration, duration of the experiment, nature of supporting electrolyte, temperature, etc.) in order to obtain films with different thickness and different morphologies. Thickness and topography of different PPy deposits were estimated by a profilometer apparatus. The electrochemical reactivity of the obtained electrodes were tested by cyclic voltammetry technique (CV) and electrochemical impedance spectroscopy (EIS). Secondly, the modification of the PPy film surface by incorporation of copper oxide nanonoparticles is conducted by applying a galvanostatic procedure from CuCl2 solution. Surface characterization has been carried out using scanning microscope (SEM) coupled with energy dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The analysis showed the presence of the copper oxide nanoparticles (CuO) in the polymer films with dimensions less than 50 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polypyrrole" title="polypyrrole">polypyrrole</a>, <a href="https://publications.waset.org/abstracts/search?q=modified%20electrode" title=" modified electrode"> modified electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=cellulosic%20substrate" title=" cellulosic substrate"> cellulosic substrate</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide "> copper oxide </a> </p> <a href="https://publications.waset.org/abstracts/16789/synthesis-and-characterization-of-polypyrrole-coated-non-conducting-cellulosic-substrate-and-modified-by-copper-oxide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">451</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2118</span> Hydrometallurgical Processing of a Nigerian Chalcopyrite Ore</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alafara%20A.%20Baba">Alafara A. Baba</a>, <a href="https://publications.waset.org/abstracts/search?q=Kuranga%20I.%20Ayinla"> Kuranga I. Ayinla</a>, <a href="https://publications.waset.org/abstracts/search?q=Folahan%20A.%20Adekola"> Folahan A. Adekola</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiu%20B.%20Bale"> Rafiu B. Bale</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to increasing demands and diverse applications of copper oxide as pigment in ceramics, cuprammonium hydroxide solution for rayon, p-type semi-conductor, dry cell batteries production and as safety disposal of hazardous materials, a study on the hydrometallurgical operations involving leaching, solvent extraction and precipitation for the recovery of copper for producing high grade copper oxide from a Nigerian chalcopyrite ore in chloride media has been examined. At a particular set of experimental parameter with respect to acid concentration, reaction temperature and particle size, the leaching investigation showed that the ore dissolution increases with increasing acid concentration, temperature and decreasing particle diameter at a moderate stirring. The kinetics data has been analyzed and was found to follow diffusion control mechanism. At optimal conditions, the extent of ore dissolution reached 94.3%. The recovery of the total copper from the hydrochloric acid-leached chalcopyrite ore was undertaken by solvent extraction and precipitation techniques, prior to the beneficiation of the purified solution as copper oxide. The purification of the leach liquor was firstly done by precipitation of total iron and manganese using Ca(OH)2 and H2O2 as oxidizer at pH 3.5 and 4.25, respectively. An extraction efficiency of 97.3% total copper was obtained by 0.2 mol/L Dithizone in kerosene at 25±2ºC within 40 minutes, from which ≈98% Cu from loaded organic phase was successfully stripped by 0.1 mol/L HCl solution. The beneficiation of the recovered pure copper solution was carried out by crystallization through alkali addition followed by calcination at 600ºC to obtain high grade copper oxide (Tenorite, CuO: 05-0661). Finally, a simple hydrometallurgical scheme for the operational extraction procedure amenable for industrial utilization and economic sustainability was provided. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chalcopyrite%20ore" title="chalcopyrite ore">chalcopyrite ore</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a>, <a href="https://publications.waset.org/abstracts/search?q=copper" title=" copper"> copper</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=solvent%20extraction" title=" solvent extraction"> solvent extraction</a> </p> <a href="https://publications.waset.org/abstracts/15710/hydrometallurgical-processing-of-a-nigerian-chalcopyrite-ore" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15710.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">393</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2117</span> Effect of Nano-Copper Oxide Synthesized by Solution-Based Chemical Precipitation Method on Antibacterial Polyester Nanocopper Oxide Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jordy%20Herfandi">Jordy Herfandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Faris%20Naufal"> Faris Naufal</a>, <a href="https://publications.waset.org/abstracts/search?q=Anne%20Zulfia%20Syahrial"> Anne Zulfia Syahrial</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Antibacterial materials have become future textile materials due to the escalation of people’s awareness regarding the importance of maintaining health. Textile materials with antibacterial properties are examples in application which has positive results in various aspects. In this research polyester nano-copper oxide composite with nanoparticle is synthesized by solution-based chemical precipitation method from Cu(NO3)2 solution. Parameters such as precursor concentration is varied to determine which composition would result in effective properties of antibacterial composite. The antibacterial property is observed using disk diffusion method and SEM observation is conducted on each specimen. The composites produced are able to inhibit the growth of both positive gram bacteria (i.e. S. aureus) and negative gram bacteria (i.e. E. coli), thus, highly capable of helping to prevent the spread of disease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide%20nanoparticle" title="copper oxide nanoparticle">copper oxide nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=antibacterial" title=" antibacterial"> antibacterial</a>, <a href="https://publications.waset.org/abstracts/search?q=solution-based%20chemical%20precipitation" title=" solution-based chemical precipitation"> solution-based chemical precipitation</a>, <a href="https://publications.waset.org/abstracts/search?q=polyester%20composite" title=" polyester composite"> polyester composite</a> </p> <a href="https://publications.waset.org/abstracts/5929/effect-of-nano-copper-oxide-synthesized-by-solution-based-chemical-precipitation-method-on-antibacterial-polyester-nanocopper-oxide-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2116</span> Synergetic effect of the Sodium Hydrosulfide and Ammonium Sulfate as Activators in the Flotation of Copper-cobalt Bearing Oxide Minerals from the Kamoya Mineralization in the Democratic Republic of Congo (DRC).</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Craig%20Nsakabwebwe%20Kabange">Craig Nsakabwebwe Kabange</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current study investigated the synergetic effect of two activators, mainly sodium hydrosulfide (NaHS) and ammonium sulfate (NH₄)₂SO₄, as sulphidizersin the flotation of oxide minerals. A series of flotation tests were conducted on copper-cobalt samples originating from the Kamoyaopen pitin the DRCat an adjusted pH value of 9.5. The results revealed that in the presence of NaHS (5000g/t), an increase in the recovery values of both metals to a maximum of 87% copper and 78.1% cobalt could be achieved. However, the addition of (NH4)₂SO4 to theNaHS-containing pulp had a negative effect on the recoveries, shifting it from 87 to 49.1% for copper and from78.1 to 49.2% forcobalt. The recovery trend for the two metals waskept below 50% with an increase in the concentration of(NH₄)₂SO4. A satisfactory result was obtained at a NaHS - (NH₄)₂SO₄ concentration ratio of 1/1, which delivered 89.5 % Cu recovery and 79.2% Co recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20sulphate" title="ammonium sulphate">ammonium sulphate</a>, <a href="https://publications.waset.org/abstracts/search?q=sodium%20hydrosulphide" title=" sodium hydrosulphide"> sodium hydrosulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=sulphidizer" title=" sulphidizer"> sulphidizer</a>, <a href="https://publications.waset.org/abstracts/search?q=activator" title=" activator"> activator</a> </p> <a href="https://publications.waset.org/abstracts/158296/synergetic-effect-of-the-sodium-hydrosulfide-and-ammonium-sulfate-as-activators-in-the-flotation-of-copper-cobalt-bearing-oxide-minerals-from-the-kamoya-mineralization-in-the-democratic-republic-of-congo-drc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/158296.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2115</span> The Catalytic Activity of CU2O Microparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kanda%20Wongwailikhit">Kanda Wongwailikhit</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper (I) oxide microparticles with the morphology of cubic and hollow sphere were synthesized with the assistance of a surfactant as the shape controller. Both particles were then subjected to a study of the catalytic activity and the results of shape effects of catalysts on rate of catalytic reaction was observed. The decolorizing reaction of crystal violet and sodium hydroxide was chosen and the decrease of reactant with respect to time was measured using a spectrophotometer. The result revealed that morphology of the crystal had no effect on the catalytic activity for the crystal violet reaction but contributed to total surface area predominantly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20%28I%29%20oxide" title="copper (I) oxide">copper (I) oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=catalytic%20activity" title=" catalytic activity"> catalytic activity</a>, <a href="https://publications.waset.org/abstracts/search?q=crystal%20violet" title=" crystal violet"> crystal violet</a> </p> <a href="https://publications.waset.org/abstracts/23861/the-catalytic-activity-of-cu2o-microparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23861.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2114</span> CuO Thin Films Deposition by Spray Pyrolysis: Influence of Precursor Solution Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Lamri%20Zeggar">M. Lamri Zeggar</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bourfaa"> F. Bourfaa</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Adjimi"> A. Adjimi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Boutebakh"> F. Boutebakh</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Aida"> M. S. Aida</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Attaf"> N. Attaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CuO thin films were deposited by spray ultrasonic pyrolysis with different precursor solution. Two staring solution slats were used namely: Copper acetate and copper chloride. The influence of these solutions on CuO thin films proprieties of is instigated. The X rays diffraction (XDR) analysis indicated that the films deposed with copper acetate are amorphous however the films elaborated with copper chloride have monoclinic structure. UV- Visible transmission spectra showed a strong absorbance of the deposited CuO thin films in the visible region. Electrical characterization has shown that CuO thin films prepared with copper acetate have a higher electrical conductivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title="thin films">thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=cuprous%20oxide" title=" cuprous oxide"> cuprous oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=spray%20pyrolysis" title=" spray pyrolysis"> spray pyrolysis</a>, <a href="https://publications.waset.org/abstracts/search?q=precursor%20solution" title=" precursor solution"> precursor solution</a> </p> <a href="https://publications.waset.org/abstracts/36338/cuo-thin-films-deposition-by-spray-pyrolysis-influence-of-precursor-solution-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">310</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2113</span> Enhancing the Oxidation Resistance of Copper at High Temperature by Surface Fluorination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae-Ho%20Kim">Jae-Ho Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ryosuke%20Yokochi"> Ryosuke Yokochi</a>, <a href="https://publications.waset.org/abstracts/search?q=Miho%20Fuzihashi"> Miho Fuzihashi</a>, <a href="https://publications.waset.org/abstracts/search?q=Susumu%20Yonezawa"> Susumu Yonezawa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of silver nanoparticles in conductive inks and their printing by injecting technology has been known for years. However, the very high cost of silver limits wide industrial applications. Since copper is much cheaper but possesses a very high conductivity (only 6% less than that of Ag), Cu nanoparticles can be considered as a replacement for silver nanoparticles. However, a major problem in utilizing their copper nanoparticles is their inherent tendency to oxidize in ambient conditions. In conductive printing applications, the presence of copper oxide on the surface of nanoparticles has two negative consequences: it increases the required sintering temperature and reduces the electrical conductivity. Only a limited number of reports have attempted to address the oxidation problem, which in general is based on minimizing the exposure of the copper nanoparticles to oxygen by a protective layer composed of a second material at the surface of the particles. To form the protective layer on the surface, carbon-based materials, surfactants, metals, and so on. In this study, we tried to modify the oxide on Cu particles using fluorine gas. And the creation effects of oxyfluorides or fluorides on the oxidation resistance of Cu particles were investigated. Compared with untreated sample (a), the fluorinated samples can restrain the weight increase even at 200℃ from the TG-DTA results. It might be considered that the substantial oxyfluorides on the surface play a role in protecting metal oxidation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20metal" title="copper metal">copper metal</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidation%20resistance" title=" oxidation resistance"> oxidation resistance</a>, <a href="https://publications.waset.org/abstracts/search?q=surface%20fluorination" title=" surface fluorination"> surface fluorination</a> </p> <a href="https://publications.waset.org/abstracts/152860/enhancing-the-oxidation-resistance-of-copper-at-high-temperature-by-surface-fluorination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">109</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2112</span> Polymer Solar Cells Synthesized with Copper Oxide Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nidal%20H.%20Abu-Zahra">Nidal H. Abu-Zahra</a>, <a href="https://publications.waset.org/abstracts/search?q=Aruna%20P.%20Wanninayake"> Aruna P. Wanninayake</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper Oxide (CuO) is a p-type semiconductor with a band gap energy of 1.5 eV, this is close to the ideal energy gap of 1.4 eV required for solar cells to allow good solar spectral absorption. The inherent electrical characteristics of CuO nano particles make them attractive candidates for improving the performance of polymer solar cells when incorporated into the active polymer layer. The UV-visible absorption spectra and external quantum efficiency of P3HT/PC70BM solar cells containing different weight percentages of CuO nano particles showed a clear enhancement in the photo absorption of the active layer, this increased the power conversion efficiency of the solar cells by 24% in comparison to the reference cell. The short circuit current of the reference cell was found to be 5.234 mA/cm2 and it seemed to increase to 6.484 mA/cm2 in cells containing 0.6 mg of CuO NPs; in addition the fill factor increased from 61.15% to 68.0%, showing an enhancement of 11.2%. These observations suggest that the optimum concentration of CuO nano particles was 0.6 mg in the active layer. These significant findings can be applied to design high-efficiency polymer solar cells containing inorganic nano particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide%20nanoparticle" title="copper oxide nanoparticle">copper oxide nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-visible%20spectroscopy" title=" UV-visible spectroscopy"> UV-visible spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20solar%20cells" title=" polymer solar cells"> polymer solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=P3HT%2FPCBM" title=" P3HT/PCBM"> P3HT/PCBM</a> </p> <a href="https://publications.waset.org/abstracts/24214/polymer-solar-cells-synthesized-with-copper-oxide-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24214.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">423</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2111</span> Copper Oxide Doped Carbon Catalyst for Anodic Half-Cell of Vanadium Redox Flow Battery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Irshad%20U.%20Khan">Irshad U. Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tanmay%20Paul"> Tanmay Paul</a>, <a href="https://publications.waset.org/abstracts/search?q=Murali%20Mohan%20Seepana"> Murali Mohan Seepana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a study on synthesizing and characterizing a Copper oxide doped Carbon (CuO-C) electrocatalyst for the negative half-cell reactions of Vanadium Redox Flow Battery (VRFB). The CuO was synthesized using a microreactor. The electrocatalyst was characterized using X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Field Emission Scanning Electron Microscopy (SEM). The electrochemical performance was assessed by linear sweep voltammetry (LSV). The findings suggest that the synthesized CuO exhibited favorable crystallinity, morphology, and surface area, which reflects improved cell performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ECSA" title="ECSA">ECSA</a>, <a href="https://publications.waset.org/abstracts/search?q=electrocatalyst" title=" electrocatalyst"> electrocatalyst</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20storage" title=" energy storage"> energy storage</a>, <a href="https://publications.waset.org/abstracts/search?q=Tafel" title=" Tafel"> Tafel</a> </p> <a href="https://publications.waset.org/abstracts/167257/copper-oxide-doped-carbon-catalyst-for-anodic-half-cell-of-vanadium-redox-flow-battery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">90</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2110</span> Cupric Oxide Thin Films for Optoelectronic Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Kumar">Sanjay Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Dinesh%20Pathak"> Dinesh Pathak</a>, <a href="https://publications.waset.org/abstracts/search?q=Sudhir%20Saralch"> Sudhir Saralch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Copper oxide is a semiconductor that has been studied for several reasons such as the natural abundance of starting material copper (Cu); the easiness of production by Cu oxidation; their non-toxic nature and the reasonably good electrical and optical properties. Copper oxide is well-known as cuprite oxide. The cuprite is p-type semiconductors having band gap energy of 1.21 to 1.51 eV. As a p-type semiconductor, conduction arises from the presence of holes in the valence band (VB) due to doping/annealing. CuO is attractive as a selective solar absorber since it has high solar absorbency and a low thermal emittance. CuO is very promising candidate for solar cell applications as it is a suitable material for photovoltaic energy conversion. It has been demonstrated that the dip technique can be used to deposit CuO films in a simple manner using metallic chlorides (CuCl₂.2H₂O) as a starting material. Copper oxide films are prepared using a methanolic solution of cupric chloride (CuCl₂.2H₂O) at three baking temperatures. We made three samples, after heating which converts to black colour. XRD data confirm that the films are of CuO phases at a particular temperature. The optical band gap of the CuO films calculated from optical absorption measurements is 1.90 eV which is quite comparable to the reported value. Dip technique is a very simple and low-cost method, which requires no sophisticated specialized setup. Coating of the substrate with a large surface area can be easily obtained by this technique compared to that in physical evaporation techniques and spray pyrolysis. Another advantage of the dip technique is that it is very easy to coat both sides of the substrate instead of only one and to deposit otherwise inaccessible surfaces. This method is well suited for applying coating on the inner and outer surfaces of tubes of various diameters and shapes. The main advantage of the dip coating method lies in the fact that it is possible to deposit a variety of layers having good homogeneity and mechanical and chemical stability with a very simple setup. In this paper, the CuO thin films preparation by dip coating method and their characterization will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=absorber%20material" title="absorber material">absorber material</a>, <a href="https://publications.waset.org/abstracts/search?q=cupric%20oxide" title=" cupric oxide"> cupric oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=dip%20coating" title=" dip coating"> dip coating</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20film" title=" thin film"> thin film</a> </p> <a href="https://publications.waset.org/abstracts/82434/cupric-oxide-thin-films-for-optoelectronic-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82434.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">309</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2109</span> A Study on Kinetic of Nitrous Oxide Catalytic Decomposition over CuO/HZSM-5</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Y.%20J.%20Song">Y. J. Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Q.%20S.%20Xu"> Q. S. Xu</a>, <a href="https://publications.waset.org/abstracts/search?q=X.%20C.%20Wang"> X. C. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Wang"> H. Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Q.%20Li"> C. Q. Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The catalyst of copper oxide loaded on HZSM-5 was developed for nitrous oxide (N₂O) direct decomposition. The kinetic of nitrous oxide decomposition was studied for CuO/HZSM-5 catalyst prepared by incipient wetness impregnation method. The external and internal diffusion of catalytic reaction were considered in the investigation. Experiment results indicated that the external diffusion was basically eliminated when the reaction gas mixture gas hourly space velocity (GHSV) was higher than 9000h⁻¹ and the influence of the internal diffusion was negligible when the particle size of the catalyst CuO/HZSM-5 was small than 40-60 mesh. The experiment results showed that the kinetic of catalytic decomposition of N₂O was a first-order reaction and the activation energy and the pre-factor of the kinetic equation were 115.15kJ/mol and of 1.6×109, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=catalytic%20decomposition" title="catalytic decomposition">catalytic decomposition</a>, <a href="https://publications.waset.org/abstracts/search?q=CuO%2FHZSM-5" title=" CuO/HZSM-5"> CuO/HZSM-5</a>, <a href="https://publications.waset.org/abstracts/search?q=kinetic" title=" kinetic"> kinetic</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrous%20oxide" title=" nitrous oxide"> nitrous oxide</a> </p> <a href="https://publications.waset.org/abstracts/130896/a-study-on-kinetic-of-nitrous-oxide-catalytic-decomposition-over-cuohzsm-5" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2108</span> Alumina Supported Copper-manganese Catalysts for Combustion of Exhaust Gases: Catalysts Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Krasimir%20I.%20Ivanov">Krasimir I. Ivanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Elitsa%20N.%20Kolentsova"> Elitsa N. Kolentsova</a>, <a href="https://publications.waset.org/abstracts/search?q=Dimitar%20Y.%20Dimitrov"> Dimitar Y. Dimitrov</a>, <a href="https://publications.waset.org/abstracts/search?q=Georgi%20V.%20Avdeev"> Georgi V. Avdeev</a>, <a href="https://publications.waset.org/abstracts/search?q=Tatyana%20T.%20Tabakova"> Tatyana T. Tabakova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent research copper and manganese systems were found to be the most active in CO and organic compounds oxidation among the base catalysts. The mixed copper manganese oxide has been widely studied in oxidation reactions because of their higher activity at low temperatures in comparison with single oxide catalysts. The results showed that the formation of spinel CuxMn3−xO4 in the oxidized catalyst is responsible for the activity even at room temperature. That is why most of the investigations are focused on the hopcalite catalyst (CuMn2O4) as the best copper-manganese catalyst. Now it’s known that this is true only for CO oxidation, but not for mixture of CO and VOCs. The purpose of this study is to investigate the alumina supported copper-manganese catalysts with different Cu/Mn molar ratio in terms of oxidation of CO, methanol and dimethyl ether. The catalysts were prepared by impregnation of γ-Al2O3 with copper and manganese nitrates and the catalytic activity measurements were carried out in continuous flow equipment with a four-channel isothermal stainless steel reactor. Gas mixtures on the input and output of the reactor were analyzed with a gas chromatograph, equipped with FID and TCD detectors. The texture characteristics were determined by low-temperature (- 196 oС) nitrogen adsorption in a Quantachrome Instruments NOVA 1200e (USA) specific surface area&pore analyzer. Thermal, XRD and TPR analyses were performed. It was established that the active component of the mixed Cu-Mn/γ–alumina catalysts strongly depends on the Cu/Mn molar ratio. Highly active alumina supported Cu-Mn catalysts for CO, methanol and DME oxidation were synthesized. While the hopcalite is the best catalyst for CO oxidation, the best compromise for simultaneous oxidation of all components is the catalyst with Cu/Mn molar ratio 1:5. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=supported%20copper-manganese%20catalysts" title="supported copper-manganese catalysts">supported copper-manganese catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=CO" title=" CO"> CO</a>, <a href="https://publications.waset.org/abstracts/search?q=VOCs%20oxidation" title=" VOCs oxidation"> VOCs oxidation</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion%20of%20exhaust%20gases" title=" combustion of exhaust gases"> combustion of exhaust gases</a> </p> <a href="https://publications.waset.org/abstracts/23639/alumina-supported-copper-manganese-catalysts-for-combustion-of-exhaust-gases-catalysts-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2107</span> Development of Zinc Oxide Coated Carbon Nanoparticles from Pineapples Leaves Using SOL Gel Method for Optimal Adsorption of Copper ion and Reuse in Latent Fingerprint</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bienvenu%20Gael%20Fouda%20Mbanga">Bienvenu Gael Fouda Mbanga</a>, <a href="https://publications.waset.org/abstracts/search?q=Zikhona%20Tywabi-Ngeva"> Zikhona Tywabi-Ngeva</a>, <a href="https://publications.waset.org/abstracts/search?q=Kriveshini%20Pillay"> Kriveshini Pillay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work highlighted a new method for preparing Nitrogen carbon nanoparticles fused on zinc oxide nanoparticle nanocomposite (N-CNPs/ZnONPsNC) to remove copper ions (Cu²+) from wastewater by sol-gel method and applying the metal-loaded adsorbent in latent fingerprint application. The N-CNPs/ZnONPsNC showed to be an effective sorbent for optimum Cu²+ sorption at pH 8 and 0.05 g dose. The Langmuir isotherm was found to best fit the process, with a maximum adsorption capacity of 285.71 mg/g, which was higher than most values found in other research for Cu²+ removal. Adsorption was spontaneous and endothermic at 25oC. In addition, the Cu²+-N-CNPs/ZnONPsNC was found to be sensitive and selective for latent fingerprint (LFP) recognition on a range of porous surfaces. As a result, in forensic research, it is an effective distinguishing chemical for latent fingerprint detection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=latent%20fingerprint" title="latent fingerprint">latent fingerprint</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorption" title=" adsorption"> adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20ions" title=" copper ions"> copper ions</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20loaded%20adsorption" title=" metal loaded adsorption"> metal loaded adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title=" adsorbent"> adsorbent</a> </p> <a href="https://publications.waset.org/abstracts/166109/development-of-zinc-oxide-coated-carbon-nanoparticles-from-pineapples-leaves-using-sol-gel-method-for-optimal-adsorption-of-copper-ion-and-reuse-in-latent-fingerprint" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/166109.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2106</span> Recovery of Selenium from Scrubber Sludge in Copper Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lakshmikanth%20%20Reddy">Lakshmikanth Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhavin%20Desai"> Bhavin Desai</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandrakala%20Kari"> Chandrakala Kari</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20Sarkar"> Sanjay Sarkar</a>, <a href="https://publications.waset.org/abstracts/search?q=Pradeep%20Binu"> Pradeep Binu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The sulphur dioxide gases generated as a by-product of smelting and converting operations of copper concentrate contain selenium apart from zinc, lead, copper, cadmium, bismuth, antimony, and arsenic. The gaseous stream is treated in waste heat boiler, electrostatic precipitator and scrubbers to remove coarse particulate matter in order to produce commercial grade sulfuric acid. The gas cleaning section of the acid plant uses water to scrub the smelting gases. After scrubbing, the sludge settled at the bottom of the scrubber, was analyzed in present investigation. It was found to contain 30 to 40 wt% copper and selenium up to 40 wt% selenium. The sludge collected during blow-down is directly recycled to the smelter for copper recovery. However, the selenium is expected to again vaporize due to high oxidation potential during smelting and converting, causing accumulation of selenium in sludge. In present investigation, a roasting process has been developed to recover the selenium before the copper recovery from the sludge at smelter. Selenium is associated with copper in sludge as copper selenide, as determined by X-ray diffraction and electron microscopy. The thermodynamic and thermos-gravimetry study revealed that the copper selenide phase present in the sludge was amenable to oxidation at 600°C forming oxides of copper and selenium (Cu-Se-O). However, the dissociation of selenium from the copper oxide was made possible by sulfatation using sulfur dioxide between 450 to 600°C, resulting into the formation of CuSO₄ (s) and SeO₂ (g). Lab scale trials were carried out in vertical tubular furnace to determine the optimum roasting conditions with respect to roasting time, temperature and molar ratio of O₂:SO₂. Using these optimum conditions, selenium up to 90 wt% in the form of SeO₂ vapors could be recovered from the sludge in a large-scale commercial roaster. Roasted sludge free from the selenium and containing oxides and sulfates of copper could now be recycled in the smelter for copper recovery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper" title="copper">copper</a>, <a href="https://publications.waset.org/abstracts/search?q=selenium" title=" selenium"> selenium</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20selenide" title=" copper selenide"> copper selenide</a>, <a href="https://publications.waset.org/abstracts/search?q=sludge" title=" sludge"> sludge</a>, <a href="https://publications.waset.org/abstracts/search?q=roasting" title=" roasting"> roasting</a>, <a href="https://publications.waset.org/abstracts/search?q=SeO%E2%82%82" title=" SeO₂"> SeO₂</a> </p> <a href="https://publications.waset.org/abstracts/92797/recovery-of-selenium-from-scrubber-sludge-in-copper-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92797.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">205</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2105</span> Determination of Optimum Conditions for the Leaching of Oxidized Copper Ores with Ammonium Nitrate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Javier%20Paul%20Montalvo%20Andia">Javier Paul Montalvo Andia</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Larrea%20Valdivia"> Adriana Larrea Valdivia</a>, <a href="https://publications.waset.org/abstracts/search?q=Adolfo%20Pillihuaman%20Zambrano"> Adolfo Pillihuaman Zambrano</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The most common lixiviant in the leaching process of copper minerals is H₂SO₄, however, the current situation requires more environmentally friendly reagents and in certain situations that have a lower consumption due to the presence of undesirable gangue as muscovite or kaolinite that can make the process unfeasible. The present work studied the leaching of an oxidized copper mineral in an aqueous solution of ammonium nitrate, in order to obtain the optimum leaching conditions of the copper contained in the malachite mineral from Peru. The copper ore studied comes from a deposit in southern Peru and was characterized by X-ray diffractometer, inductively coupled-plasma emission spectrometer (ICP-OES) and atomic absorption spectrophotometry (AAS). The experiments were developed in batch reactor of 600 mL where the parameters as; temperature, pH, ammonium nitrate concentration, particle size and stirring speed were controlled according to experimental planning. The sample solution was analyzed for copper by atomic absorption spectrophotometry (AAS). A simulation in the HSC Chemistry 6.0 program showed that the predominance of the copper compounds of a Cu-H₂O aqueous system is altered by the presence in the system of ammonium complexes, the compound being thermodynamically more stable Cu(NH3)₄²⁺, which predominates in pH ranges from 8.5 to 10 at a temperature of 25 °C. The optimum conditions for copper leaching of the malachite mineral were a stirring speed of 600 rpm, an ammonium nitrate concentration of 4M, a particle diameter of 53 um and temperature of 62 °C. These results showed that the leaching of copper increases with increasing concentration of the ammonium solution, increasing the stirring rate, increasing the temperature and decreasing the particle diameter. Finally, the recovery of copper in optimum conditions was above 80%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ammonium%20nitrate" title="ammonium nitrate">ammonium nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=malachite" title=" malachite"> malachite</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=leaching" title=" leaching"> leaching</a> </p> <a href="https://publications.waset.org/abstracts/77305/determination-of-optimum-conditions-for-the-leaching-of-oxidized-copper-ores-with-ammonium-nitrate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77305.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2104</span> Optimization of SOL-Gel Copper Oxide Layers for Field-Effect Transistors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Vincze">Tomas Vincze</a>, <a href="https://publications.waset.org/abstracts/search?q=Michal%20Micjan"> Michal Micjan</a>, <a href="https://publications.waset.org/abstracts/search?q=Milan%20Pavuk"> Milan Pavuk</a>, <a href="https://publications.waset.org/abstracts/search?q=Martin%20Weis"> Martin Weis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, alternative materials are gaining attention to replace polycrystalline and amorphous silicon, which are a standard for low requirement devices, where silicon is unnecessarily and high cost. For that reason, metal oxides are envisioned as the new materials for these low-requirement applications such as sensors, solar cells, energy storage devices, or field-effect transistors. Their most common way of layer growth is sputtering; however, this is a high-cost fabrication method, and a more industry-suitable alternative is the sol-gel method. In this group of materials, many oxides exhibit a semiconductor-like behavior with sufficiently high mobility to be applied as transistors. The sol-gel method is a cost-effective deposition technique for semiconductor-based devices. Copper oxides, as p-type semiconductors with free charge mobility up to 1 cm2/Vs., are suitable replacements for poly-Si or a-Si:H devices. However, to reach the potential of silicon devices, a fine-tuning of material properties is needed. Here we focus on the optimization of the electrical parameters of copper oxide-based field-effect transistors by modification of precursor solvent (usually 2-methoxy ethanol). However, to achieve solubility and high-quality films, a better solvent is required. Since almost no solvents have both high dielectric constant and high boiling point, an alternative approach was proposed with blend solvents. By mixing isopropyl alcohol (IPA) and 2-methoxy ethanol (2ME) the precursor reached better solubility. The quality of the layers fabricated using mixed solutions was evaluated in accordance with the surface morphology and electrical properties. The IPA:2ME solution mixture reached optimum results for the weight ratio of 1:3. The cupric oxide layers for optimal mixture had the highest crystallinity and highest effective charge mobility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title="copper oxide">copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=field-effect%20transistor" title=" field-effect transistor"> field-effect transistor</a>, <a href="https://publications.waset.org/abstracts/search?q=semiconductor" title=" semiconductor"> semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel%20method" title=" sol-gel method"> sol-gel method</a> </p> <a href="https://publications.waset.org/abstracts/146143/optimization-of-sol-gel-copper-oxide-layers-for-field-effect-transistors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">135</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2103</span> Effects of Copper Oxide Doping on Hydrothermal Ageing in Alumina Toughened Zirconia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Abbas">Mohamed Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Singh"> Ramesh Singh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the hydrothermal aging behavior of undoped and copper oxide-doped alumina-toughened zirconia (ATZ). The ATZ ceramic composites underwent conventional sintering at temperatures ranging from 1250 to 1500°C with a holding time of 12 minutes. XRD analysis revealed a stable 100% tetragonal phase for conventionally sintered ATZ samples up to 1450°C, even after 100 hours of exposure. At 1500℃, XRD patterns of both undoped and doped ATZ samples showed no phase transformation after up to 3 hours of exposure to superheated steam. Extended exposure, however, resulted in phase transformation beyond 10 hours. CuO-doped ATZ samples initially exhibited lower monoclinic content, gradually increasing with aging. Undoped ATZ demonstrated better-aging resistance, maintaining ~40% monoclinic content after 100 hours. FESEM images post-aging revealed surface roughness changes due to the tetragonal-to-monoclinic phase transformation, with limited nucleation in the largest tetragonal grains. Fracture analysis exhibited macrocracks and microcracks on the transformed surface layer after aging. This study found that 0.2wt% CuO doping did not prevent the low-temperature degradation (LTD) phenomenon at elevated temperatures. Transformation zone depth (TZD) calculations supported the trend observed in the transformed monoclinic phase. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=alumina%20toughened%20zirconia" title="alumina toughened zirconia">alumina toughened zirconia</a>, <a href="https://publications.waset.org/abstracts/search?q=conventional%20sintering" title=" conventional sintering"> conventional sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20oxide" title=" copper oxide"> copper oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrothermal%20ageing" title=" hydrothermal ageing"> hydrothermal ageing</a> </p> <a href="https://publications.waset.org/abstracts/176383/effects-of-copper-oxide-doping-on-hydrothermal-ageing-in-alumina-toughened-zirconia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/176383.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2102</span> Boiling Heat Transfer Enhancement Using Hydrophilic Millimeter Copper Free Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbasali%20Abouei%20Mehrizi">Abbasali Abouei Mehrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hao%20Wang"> Hao Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Leping%20Zhou"> Leping Zhou</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modification of surface wettability is one of the conventional approaches to manipulate the boiling heat transfer. Instead of direct surface modification, in the present study, the surface is decorated with free copper particles with different hydrophobicity. We used millimeter-sized copper particles with two different hydrophobicity. The surface is covered with untreated, hydrophilic, and a combination of hydrophobic and hydrophilic copper particles separately, and the heat flux and wall superheat temperature was measured experimentally and compared with the bare polished copper surface. The results show that the untreated copper particles can slightly improve the boiling heat transfer when the hydrophilic copper particles have better performance. Combining hydrophilic and hydrophobic copper particles reduces boiling heat transfer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boiling%20heat%20transfer" title="boiling heat transfer">boiling heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=copper%20balls" title=" copper balls"> copper balls</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic" title=" hydrophobic"> hydrophobic</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophilic" title=" hydrophilic"> hydrophilic</a> </p> <a href="https://publications.waset.org/abstracts/163360/boiling-heat-transfer-enhancement-using-hydrophilic-millimeter-copper-free-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/163360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">71</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2101</span> Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyun-Jong%20Choi">Hyun-Jong Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Minjun%20Kwak"> Minjun Kwak</a>, <a href="https://publications.waset.org/abstracts/search?q=Doo-Won%20Seo"> Doo-Won Seo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang-Kuk%20Woo"> Sang-Kuk Woo</a>, <a href="https://publications.waset.org/abstracts/search?q=Sun-Dong%20Kim"> Sun-Dong Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Co-Sintering" title="Co-Sintering">Co-Sintering</a>, <a href="https://publications.waset.org/abstracts/search?q=GDC-LSCF" title=" GDC-LSCF"> GDC-LSCF</a>, <a href="https://publications.waset.org/abstracts/search?q=Sintering%20Aid" title=" Sintering Aid"> Sintering Aid</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20Oxide%20Cells" title=" solid Oxide Cells"> solid Oxide Cells</a> </p> <a href="https://publications.waset.org/abstracts/66228/performance-and-processing-evaluation-of-solid-oxide-cells-by-co-sintering-of-gdc-buffer-layer-and-lscf-air-electrode" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/66228.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2100</span> Effect of Edta in the Phytoextraction of Copper by Terminalia catappa (Talisay) Linnaeus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ian%20Marc%20G.%20Cabugsa">Ian Marc G. Cabugsa</a>, <a href="https://publications.waset.org/abstracts/search?q=Zarine%20M.%20Hermita"> Zarine M. Hermita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phytoextraction capability of T. catappa in contaminated soils was done in the improvised greenhouse. The plant samples were planted to the soil which contained different concentrations of copper. Chelating agent EDTA was added to observe the uptake and translocation of copper in the plant samples. Results showed a significant increase of copper accumulation with the addition of EDTA at 250 and 1250 mgˑkg-1 concentration of copper in the contaminated soils (p<0.05). While translocation of copper was observed in all treatments, translocation of copper is not significantly enhanced by the addition of EDTA (p>0.05). Uptake and translocation were not directly affected the presence of EDTA. Furthermore, this study suggests that the T. catappa is not a hyperaccumulator of copper, and there is no relationship observed between the length of the plant and the copper uptake in all treatments. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chelating%20agent%20EDTA" title="chelating agent EDTA">chelating agent EDTA</a>, <a href="https://publications.waset.org/abstracts/search?q=hyperaccumulator" title=" hyperaccumulator"> hyperaccumulator</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoextraction" title=" phytoextraction"> phytoextraction</a>, <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title=" phytoremediation"> phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=terminalia%20catappa" title=" terminalia catappa"> terminalia catappa</a> </p> <a href="https://publications.waset.org/abstracts/17719/effect-of-edta-in-the-phytoextraction-of-copper-by-terminalia-catappa-talisay-linnaeus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=70">70</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=71">71</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=copper%20oxide&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10