CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 283 results for author: <span class="mathjax">Xuemin</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/cs" aria-role="search"> Searching in archive <strong>cs</strong>. <a href="/search/?searchtype=author&query=Xuemin">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Xuemin"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Xuemin&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Xuemin"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xuemin&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xuemin&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.13243">arXiv:2411.13243</a> <span> [<a href="https://arxiv.org/pdf/2411.13243">pdf</a>, <a href="https://arxiv.org/format/2411.13243">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> XMask3D: Cross-modal Mask Reasoning for Open Vocabulary 3D Semantic Segmentation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+Z">Ziyi Wang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Y">Yanbo Wang</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+X">Xumin Yu</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+J">Jiwen Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.13243v1-abstract-short" style="display: inline;"> Existing methodologies in open vocabulary 3D semantic segmentation primarily concentrate on establishing a unified feature space encompassing 3D, 2D, and textual modalities. Nevertheless, traditional techniques such as global feature alignment or vision-language model distillation tend to impose only approximate correspondence, struggling notably with delineating fine-grained segmentation boundari… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13243v1-abstract-full').style.display = 'inline'; document.getElementById('2411.13243v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.13243v1-abstract-full" style="display: none;"> Existing methodologies in open vocabulary 3D semantic segmentation primarily concentrate on establishing a unified feature space encompassing 3D, 2D, and textual modalities. Nevertheless, traditional techniques such as global feature alignment or vision-language model distillation tend to impose only approximate correspondence, struggling notably with delineating fine-grained segmentation boundaries. To address this gap, we propose a more meticulous mask-level alignment between 3D features and the 2D-text embedding space through a cross-modal mask reasoning framework, XMask3D. In our approach, we developed a mask generator based on the denoising UNet from a pre-trained diffusion model, leveraging its capability for precise textual control over dense pixel representations and enhancing the open-world adaptability of the generated masks. We further integrate 3D global features as implicit conditions into the pre-trained 2D denoising UNet, enabling the generation of segmentation masks with additional 3D geometry awareness. Subsequently, the generated 2D masks are employed to align mask-level 3D representations with the vision-language feature space, thereby augmenting the open vocabulary capability of 3D geometry embeddings. Finally, we fuse complementary 2D and 3D mask features, resulting in competitive performance across multiple benchmarks for 3D open vocabulary semantic segmentation. Code is available at https://github.com/wangzy22/XMask3D. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.13243v1-abstract-full').style.display = 'none'; document.getElementById('2411.13243v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to NeurIPS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2411.10357">arXiv:2411.10357</a> <span> [<a href="https://arxiv.org/pdf/2411.10357">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> Interactive Image-Based Aphid Counting in Yellow Water Traps under Stirring Actions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Gao%2C+X">Xumin Gao</a>, <a href="/search/cs?searchtype=author&query=Stevens%2C+M">Mark Stevens</a>, <a href="/search/cs?searchtype=author&query=Cielniak%2C+G">Grzegorz Cielniak</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2411.10357v1-abstract-short" style="display: inline;"> The current vision-based aphid counting methods in water traps suffer from undercounts caused by occlusions and low visibility arising from dense aggregation of insects and other objects. To address this problem, we propose a novel aphid counting method through interactive stirring actions. We use interactive stirring to alter the distribution of aphids in the yellow water trap and capture a seque… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10357v1-abstract-full').style.display = 'inline'; document.getElementById('2411.10357v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2411.10357v1-abstract-full" style="display: none;"> The current vision-based aphid counting methods in water traps suffer from undercounts caused by occlusions and low visibility arising from dense aggregation of insects and other objects. To address this problem, we propose a novel aphid counting method through interactive stirring actions. We use interactive stirring to alter the distribution of aphids in the yellow water trap and capture a sequence of images which are then used for aphid detection and counting through an optimized small object detection network based on Yolov5. We also propose a counting confidence evaluation system to evaluate the confidence of count-ing results. The final counting result is a weighted sum of the counting results from all sequence images based on the counting confidence. Experimental results show that our proposed aphid detection network significantly outperforms the original Yolov5, with improvements of 33.9% in AP@0.5 and 26.9% in AP@[0.5:0.95] on the aphid test set. In addition, the aphid counting test results using our proposed counting confidence evaluation system show significant improvements over the static counting method, closely aligning with manual counting results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2411.10357v1-abstract-full').style.display = 'none'; document.getElementById('2411.10357v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20711">arXiv:2410.20711</a> <span> [<a href="https://arxiv.org/pdf/2410.20711">pdf</a>, <a href="https://arxiv.org/format/2410.20711">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biomolecules">q-bio.BM</span> </div> </div> <p class="title is-5 mathjax"> Contextual Representation Anchor Network to Alleviate Selection Bias in Few-Shot Drug Discovery </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Li%2C+R">Ruifeng Li</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+W">Wei Liu</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+X">Xiangxin Zhou</a>, <a href="/search/cs?searchtype=author&query=Li%2C+M">Mingqian Li</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+H">Hongyang Chen</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20711v2-abstract-short" style="display: inline;"> In the drug discovery process, the low success rate of drug candidate screening often leads to insufficient labeled data, causing the few-shot learning problem in molecular property prediction. Existing methods for few-shot molecular property prediction overlook the sample selection bias, which arises from non-random sample selection in chemical experiments. This bias in data representativeness le… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20711v2-abstract-full').style.display = 'inline'; document.getElementById('2410.20711v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20711v2-abstract-full" style="display: none;"> In the drug discovery process, the low success rate of drug candidate screening often leads to insufficient labeled data, causing the few-shot learning problem in molecular property prediction. Existing methods for few-shot molecular property prediction overlook the sample selection bias, which arises from non-random sample selection in chemical experiments. This bias in data representativeness leads to suboptimal performance. To overcome this challenge, we present a novel method named contextual representation anchor Network (CRA), where an anchor refers to a cluster center of the representations of molecules and serves as a bridge to transfer enriched contextual knowledge into molecular representations and enhance their expressiveness. CRA introduces a dual-augmentation mechanism that includes context augmentation, which dynamically retrieves analogous unlabeled molecules and captures their task-specific contextual knowledge to enhance the anchors, and anchor augmentation, which leverages the anchors to augment the molecular representations. We evaluate our approach on the MoleculeNet and FS-Mol benchmarks, as well as in domain transfer experiments. The results demonstrate that CRA outperforms the state-of-the-art by 2.60% and 3.28% in AUC and $螖$AUC-PR metrics, respectively, and exhibits superior generalization capabilities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20711v2-abstract-full').style.display = 'none'; document.getElementById('2410.20711v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 27 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 68U07 <span class="has-text-black-bis has-text-weight-semibold">ACM Class:</span> I.2.1 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.20151">arXiv:2410.20151</a> <span> [<a href="https://arxiv.org/pdf/2410.20151">pdf</a>, <a href="https://arxiv.org/format/2410.20151">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> A Digital Twin-based Intelligent Network Architecture for Underwater Acoustic Sensor Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Song%2C+S">Shanshan Song</a>, <a href="/search/cs?searchtype=author&query=Huangfu%2C+B">Bingwen Huangfu</a>, <a href="/search/cs?searchtype=author&query=Guo%2C+J">Jiani Guo</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+J">Jun Liu</a>, <a href="/search/cs?searchtype=author&query=Cui%2C+J">Junhong Cui</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.20151v1-abstract-short" style="display: inline;"> Underwater acoustic sensor networks (UASNs) drive toward strong environmental adaptability, intelligence, and multifunctionality. However, due to unique UASN characteristics, such as long propagation delay, dynamic channel quality, and high attenuation, existing studies present untimeliness, inefficiency, and inflexibility in real practice. Digital twin (DT) technology is promising for UASNs to br… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20151v1-abstract-full').style.display = 'inline'; document.getElementById('2410.20151v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.20151v1-abstract-full" style="display: none;"> Underwater acoustic sensor networks (UASNs) drive toward strong environmental adaptability, intelligence, and multifunctionality. However, due to unique UASN characteristics, such as long propagation delay, dynamic channel quality, and high attenuation, existing studies present untimeliness, inefficiency, and inflexibility in real practice. Digital twin (DT) technology is promising for UASNs to break the above bottlenecks by providing high-fidelity status prediction and exploring optimal schemes. In this article, we propose a Digital Twin-based Network Architecture (DTNA), enhancing UASNs' environmental adaptability, intelligence, and multifunctionality. By extracting real UASN information from local (node) and global (network) levels, we first design a layered architecture to improve the DT replica fidelity and UASN control flexibility. In local DT, we develop a resource allocation paradigm (RAPD), which rapidly perceives performance variations and iteratively optimizes allocation schemes to improve real-time environmental adaptability of resource allocation algorithms. In global DT, we aggregate decentralized local DT data and propose a collaborative Multi-agent reinforcement learning framework (CMFD) and a task-oriented network slicing (TNSD). CMFD patches scarce real data and provides extensive DT data to accelerate AI model training. TNSD unifies heterogeneous tasks' demand extraction and efficiently provides comprehensive network status, improving the flexibility of multi-task scheduling algorithms. Finally, practical and simulation experiments verify the high fidelity of DT. Compared with the original UASN architecture, experiment results demonstrate that DTNA can: (i) improve the timeliness and robustness of resource allocation; (ii) greatly reduce the training time of AI algorithms; (iii) more rapidly obtain network status for multi-task scheduling at a low cost. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.20151v1-abstract-full').style.display = 'none'; document.getElementById('2410.20151v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.06480">arXiv:2410.06480</a> <span> [<a href="https://arxiv.org/pdf/2410.06480">pdf</a>, <a href="https://arxiv.org/format/2410.06480">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> TCGU: Data-centric Graph Unlearning based on Transferable Condensation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Li%2C+F">Fan Li</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/cs?searchtype=author&query=Cheng%2C+D">Dawei Cheng</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Ying Zhang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.06480v1-abstract-short" style="display: inline;"> With growing demands for data privacy and model robustness, graph unlearning (GU), which erases the influence of specific data on trained GNN models, has gained significant attention. However, existing exact unlearning methods suffer from either low efficiency or poor model performance. While being more utility-preserving and efficient, current approximate unlearning methods are not applicable in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06480v1-abstract-full').style.display = 'inline'; document.getElementById('2410.06480v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.06480v1-abstract-full" style="display: none;"> With growing demands for data privacy and model robustness, graph unlearning (GU), which erases the influence of specific data on trained GNN models, has gained significant attention. However, existing exact unlearning methods suffer from either low efficiency or poor model performance. While being more utility-preserving and efficient, current approximate unlearning methods are not applicable in the zero-glance privacy setting, where the deleted samples cannot be accessed during unlearning due to immediate deletion requested by regulations. Besides, these approximate methods, which try to directly perturb model parameters still involve high privacy concerns in practice. To fill the gap, we propose Transferable Condensation Graph Unlearning (TCGU), a data-centric solution to zero-glance graph unlearning. Specifically, we first design a two-level alignment strategy to pre-condense the original graph into a small yet utility-preserving dataset. Upon receiving an unlearning request, we fine-tune the pre-condensed data with a low-rank plugin, to directly align its distribution with the remaining graph, thus efficiently revoking the information of deleted data without accessing them. A novel similarity distribution matching approach and a discrimination regularizer are proposed to effectively transfer condensed data and preserve its utility in GNN training, respectively. Finally, we retrain the GNN on the transferred condensed data. Extensive experiments on 6 benchmark datasets demonstrate that TCGU can achieve superior performance in terms of model utility, unlearning efficiency, and unlearning efficacy than existing GU methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.06480v1-abstract-full').style.display = 'none'; document.getElementById('2410.06480v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 18 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.02688">arXiv:2410.02688</a> <span> [<a href="https://arxiv.org/pdf/2410.02688">pdf</a>, <a href="https://arxiv.org/format/2410.02688">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> User-centric Immersive Communications in 6G: A Data-oriented Approach via Digital Twin </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhou%2C+C">Conghao Zhou</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+S">Shisheng Hu</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+J">Jie Gao</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+X">Xinyu Huang</a>, <a href="/search/cs?searchtype=author&query=Zhuang%2C+W">Weihua Zhuang</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.02688v1-abstract-short" style="display: inline;"> In this article, we present a novel user-centric service provision for immersive communications (IC) in 6G to deal with the uncertainty of individual user behaviors while satisfying unique requirements on the quality of multi-sensory experience. To this end, we propose a data-oriented approach for network resource management, featuring personalized data management that can support network modeling… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02688v1-abstract-full').style.display = 'inline'; document.getElementById('2410.02688v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.02688v1-abstract-full" style="display: none;"> In this article, we present a novel user-centric service provision for immersive communications (IC) in 6G to deal with the uncertainty of individual user behaviors while satisfying unique requirements on the quality of multi-sensory experience. To this end, we propose a data-oriented approach for network resource management, featuring personalized data management that can support network modeling tailored to different user demands. Our approach leverages the digital twin (DT) technique as a key enabler. Particularly, a DT is established for each user, and the data attributes in the DT are customized based on the characteristics of the user. The DT functions, corresponding to various data operations, are customized in the development, evaluation, and update of network models to meet unique user demands. A trace-driven case study demonstrates the effectiveness of our approach in achieving user-centric IC and the significance of personalized data management in 6G. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.02688v1-abstract-full').style.display = 'none'; document.getElementById('2410.02688v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.18128">arXiv:2409.18128</a> <span> [<a href="https://arxiv.org/pdf/2409.18128">pdf</a>, <a href="https://arxiv.org/format/2409.18128">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> FlowTurbo: Towards Real-time Flow-Based Image Generation with Velocity Refiner </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhao%2C+W">Wenliang Zhao</a>, <a href="/search/cs?searchtype=author&query=Shi%2C+M">Minglei Shi</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+X">Xumin Yu</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+J">Jie Zhou</a>, <a href="/search/cs?searchtype=author&query=Lu%2C+J">Jiwen Lu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.18128v1-abstract-short" style="display: inline;"> Building on the success of diffusion models in visual generation, flow-based models reemerge as another prominent family of generative models that have achieved competitive or better performance in terms of both visual quality and inference speed. By learning the velocity field through flow-matching, flow-based models tend to produce a straighter sampling trajectory, which is advantageous during t… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18128v1-abstract-full').style.display = 'inline'; document.getElementById('2409.18128v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.18128v1-abstract-full" style="display: none;"> Building on the success of diffusion models in visual generation, flow-based models reemerge as another prominent family of generative models that have achieved competitive or better performance in terms of both visual quality and inference speed. By learning the velocity field through flow-matching, flow-based models tend to produce a straighter sampling trajectory, which is advantageous during the sampling process. However, unlike diffusion models for which fast samplers are well-developed, efficient sampling of flow-based generative models has been rarely explored. In this paper, we propose a framework called FlowTurbo to accelerate the sampling of flow-based models while still enhancing the sampling quality. Our primary observation is that the velocity predictor's outputs in the flow-based models will become stable during the sampling, enabling the estimation of velocity via a lightweight velocity refiner. Additionally, we introduce several techniques including a pseudo corrector and sample-aware compilation to further reduce inference time. Since FlowTurbo does not change the multi-step sampling paradigm, it can be effectively applied for various tasks such as image editing, inpainting, etc. By integrating FlowTurbo into different flow-based models, we obtain an acceleration ratio of 53.1%$\sim$58.3% on class-conditional generation and 29.8%$\sim$38.5% on text-to-image generation. Notably, FlowTurbo reaches an FID of 2.12 on ImageNet with 100 (ms / img) and FID of 3.93 with 38 (ms / img), achieving the real-time image generation and establishing the new state-of-the-art. Code is available at https://github.com/shiml20/FlowTurbo. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.18128v1-abstract-full').style.display = 'none'; document.getElementById('2409.18128v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted to NeurIPS 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.15695">arXiv:2409.15695</a> <span> [<a href="https://arxiv.org/pdf/2409.15695">pdf</a>, <a href="https://arxiv.org/format/2409.15695">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Toward Mixture-of-Experts Enabled Trustworthy Semantic Communication for 6G Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=He%2C+J">Jiayi He</a>, <a href="/search/cs?searchtype=author&query=Luo%2C+X">Xiaofeng Luo</a>, <a href="/search/cs?searchtype=author&query=Kang%2C+J">Jiawen Kang</a>, <a href="/search/cs?searchtype=author&query=Du%2C+H">Hongyang Du</a>, <a href="/search/cs?searchtype=author&query=Xiong%2C+Z">Zehui Xiong</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+C">Ci Chen</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.15695v1-abstract-short" style="display: inline;"> Semantic Communication (SemCom) plays a pivotal role in 6G networks, offering a viable solution for future efficient communication. Deep Learning (DL)-based semantic codecs further enhance this efficiency. However, the vulnerability of DL models to security threats, such as adversarial attacks, poses significant challenges for practical applications of SemCom systems. These vulnerabilities enable… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15695v1-abstract-full').style.display = 'inline'; document.getElementById('2409.15695v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.15695v1-abstract-full" style="display: none;"> Semantic Communication (SemCom) plays a pivotal role in 6G networks, offering a viable solution for future efficient communication. Deep Learning (DL)-based semantic codecs further enhance this efficiency. However, the vulnerability of DL models to security threats, such as adversarial attacks, poses significant challenges for practical applications of SemCom systems. These vulnerabilities enable attackers to tamper with messages and eavesdrop on private information, especially in wireless communication scenarios. Although existing defenses attempt to address specific threats, they often fail to simultaneously handle multiple heterogeneous attacks. To overcome this limitation, we introduce a novel Mixture-of-Experts (MoE)-based SemCom system. This system comprises a gating network and multiple experts, each specializing in different security challenges. The gating network adaptively selects suitable experts to counter heterogeneous attacks based on user-defined security requirements. Multiple experts collaborate to accomplish semantic communication tasks while meeting the security requirements of users. A case study in vehicular networks demonstrates the efficacy of the MoE-based SemCom system. Simulation results show that the proposed MoE-based SemCom system effectively mitigates concurrent heterogeneous attacks, with minimal impact on downstream task accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.15695v1-abstract-full').style.display = 'none'; document.getElementById('2409.15695v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.00324">arXiv:2409.00324</a> <span> [<a href="https://arxiv.org/pdf/2409.00324">pdf</a>, <a href="https://arxiv.org/format/2409.00324">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> User-centric Service Provision for Edge-assisted Mobile AR: A Digital Twin-based Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhou%2C+C">Conghao Zhou</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+J">Jie Gao</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+Y">Yixiang Liu</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+S">Shisheng Hu</a>, <a href="/search/cs?searchtype=author&query=Cheng%2C+N">Nan Cheng</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.00324v1-abstract-short" style="display: inline;"> Future 6G networks are envisioned to support mobile augmented reality (MAR) applications and provide customized immersive experiences for users via advanced service provision. In this paper, we investigate user-centric service provision for edge-assisted MAR to support the timely camera frame uploading of an MAR device by optimizing the spectrum resource reservation. To address the challenge of no… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00324v1-abstract-full').style.display = 'inline'; document.getElementById('2409.00324v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.00324v1-abstract-full" style="display: none;"> Future 6G networks are envisioned to support mobile augmented reality (MAR) applications and provide customized immersive experiences for users via advanced service provision. In this paper, we investigate user-centric service provision for edge-assisted MAR to support the timely camera frame uploading of an MAR device by optimizing the spectrum resource reservation. To address the challenge of non-stationary data traffic due to uncertain user movement and the complex camera frame uploading mechanism, we develop a digital twin (DT)-based data-driven approach to user-centric service provision. Specifically, we first establish a hierarchical data model with well-defined data attributes to characterize the impact of the camera frame uploading mechanism on the user-specific data traffic. We then design an easy-to-use algorithm to adapt the data attributes used in traffic modeling to the non-stationary data traffic. We also derive a closed-form service provision solution tailored to data-driven traffic modeling with the consideration of potential modeling inaccuracies. Trace-driven simulation results demonstrate that our DT-based approach for user-centric service provision outperforms conventional approaches in terms of adaptivity and robustness. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.00324v1-abstract-full').style.display = 'none'; document.getElementById('2409.00324v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.08593">arXiv:2408.08593</a> <span> [<a href="https://arxiv.org/pdf/2408.08593">pdf</a>, <a href="https://arxiv.org/format/2408.08593">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> </div> </div> <p class="title is-5 mathjax"> RadioDiff: An Effective Generative Diffusion Model for Sampling-Free Dynamic Radio Map Construction </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xiucheng Wang</a>, <a href="/search/cs?searchtype=author&query=Tao%2C+K">Keda Tao</a>, <a href="/search/cs?searchtype=author&query=Cheng%2C+N">Nan Cheng</a>, <a href="/search/cs?searchtype=author&query=Yin%2C+Z">Zhisheng Yin</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Z">Zan Li</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Yuan Zhang</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.08593v3-abstract-short" style="display: inline;"> Radio map (RM) is a promising technology that can obtain pathloss based on only location, which is significant for 6G network applications to reduce the communication costs for pathloss estimation. However, the construction of RM in traditional is either computationally intensive or depends on costly sampling-based pathloss measurements. Although the neural network (NN)-based method can efficientl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08593v3-abstract-full').style.display = 'inline'; document.getElementById('2408.08593v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.08593v3-abstract-full" style="display: none;"> Radio map (RM) is a promising technology that can obtain pathloss based on only location, which is significant for 6G network applications to reduce the communication costs for pathloss estimation. However, the construction of RM in traditional is either computationally intensive or depends on costly sampling-based pathloss measurements. Although the neural network (NN)-based method can efficiently construct the RM without sampling, its performance is still suboptimal. This is primarily due to the misalignment between the generative characteristics of the RM construction problem and the discrimination modeling exploited by existing NN-based methods. Thus, to enhance RM construction performance, in this paper, the sampling-free RM construction is modeled as a conditional generative problem, where a denoised diffusion-based method, named RadioDiff, is proposed to achieve high-quality RM construction. In addition, to enhance the diffusion model's capability of extracting features from dynamic environments, an attention U-Net with an adaptive fast Fourier transform module is employed as the backbone network to improve the dynamic environmental features extracting capability. Meanwhile, the decoupled diffusion model is utilized to further enhance the construction performance of RMs. Moreover, a comprehensive theoretical analysis of why the RM construction is a generative problem is provided for the first time, from both perspectives of data features and NN training methods. Experimental results show that the proposed RadioDiff achieves state-of-the-art performance in all three metrics of accuracy, structural similarity, and peak signal-to-noise ratio. The code is available at https://github.com/UNIC-Lab/RadioDiff. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.08593v3-abstract-full').style.display = 'none'; document.getElementById('2408.08593v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 November, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.05432">arXiv:2408.05432</a> <span> [<a href="https://arxiv.org/pdf/2408.05432">pdf</a>, <a href="https://arxiv.org/format/2408.05432">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> </div> </div> <p class="title is-5 mathjax"> Simpler is More: Efficient Top-K Nearest Neighbors Search on Large Road Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+Y">Yiqi Wang</a>, <a href="/search/cs?searchtype=author&query=Yuan%2C+L">Long Yuan</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+Z">Zi Chen</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+Q">Qing Liu</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.05432v1-abstract-short" style="display: inline;"> Top-k Nearest Neighbors (kNN) problem on road network has numerous applications on location-based services. As direct search using the Dijkstra's algorithm results in a large search space, a plethora of complex-index-based approaches have been proposed to speedup the query processing. However, even with the current state-of-the-art approach, long query processing delays persist, along with signifi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05432v1-abstract-full').style.display = 'inline'; document.getElementById('2408.05432v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.05432v1-abstract-full" style="display: none;"> Top-k Nearest Neighbors (kNN) problem on road network has numerous applications on location-based services. As direct search using the Dijkstra's algorithm results in a large search space, a plethora of complex-index-based approaches have been proposed to speedup the query processing. However, even with the current state-of-the-art approach, long query processing delays persist, along with significant space overhead and prohibitively long indexing time. In this paper, we depart from the complex index designs prevalent in existing literature and propose a simple index named KNN-Index. With KNN-Index, we can answer a kNN query optimally and progressively with small and size-bounded index. To improve the index construction performance, we propose a bidirectional construction algorithm which can effectively share the common computation during the construction. Theoretical analysis and experimental results on real road networks demonstrate the superiority of KNN-Index over the state-of-the-art approach in query processing performance, index size, and index construction efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.05432v1-abstract-full').style.display = 'none'; document.getElementById('2408.05432v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">15 pages, 15 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.15320">arXiv:2407.15320</a> <span> [<a href="https://arxiv.org/pdf/2407.15320">pdf</a>, <a href="https://arxiv.org/format/2407.15320">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Edge Graph Intelligence: Reciprocally Empowering Edge Networks with Graph Intelligence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zeng%2C+L">Liekang Zeng</a>, <a href="/search/cs?searchtype=author&query=Ye%2C+S">Shengyuan Ye</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+X">Xu Chen</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+X">Xiaoxi Zhang</a>, <a href="/search/cs?searchtype=author&query=Ren%2C+J">Ju Ren</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+J">Jian Tang</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+Y">Yang Yang</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.15320v1-abstract-short" style="display: inline;"> Recent years have witnessed a thriving growth of computing facilities connected at the network edge, cultivating edge computing networks as a fundamental infrastructure for supporting miscellaneous intelligent services. Meanwhile, Artificial Intelligence frontiers have extrapolated Machine Learning to the graph domain and promoted Graph Intelligence (GI), which unlocks unprecedented ability in lea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15320v1-abstract-full').style.display = 'inline'; document.getElementById('2407.15320v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.15320v1-abstract-full" style="display: none;"> Recent years have witnessed a thriving growth of computing facilities connected at the network edge, cultivating edge computing networks as a fundamental infrastructure for supporting miscellaneous intelligent services. Meanwhile, Artificial Intelligence frontiers have extrapolated Machine Learning to the graph domain and promoted Graph Intelligence (GI), which unlocks unprecedented ability in learning from massive data in graph structures. Given the inherent relation between graphs and networks, the interdiscipline of graph representation learning and edge networks, i.e., Edge GI or EGI, has revealed a novel interplay between them -- GI models principally open a new door for modeling, understanding, and optimizing edge networks, and conversely, edge networks serve as physical support for training, deploying, and accelerating GI models. Driven by this delicate closed-loop, EGI can be widely recognized as a promising solution to fully unleash the potential of edge computing power and is garnering significant attention. Nevertheless, research on EGI yet remains nascent, and there is a soaring demand within both the communications and AI communities for a dedicated venue to share recent advancements. To this end, this paper promotes the concept of EGI, explores its scope and core principles, and conducts a comprehensive survey concerning recent research efforts on this emerging field and specifically, introduces and discusses: 1) fundamentals of edge computing and graph representation learning, 2) emerging techniques centering on the closed loop between graph intelligence and edge networks, and 3) open challenges and research opportunities of future EGI. By bridging the gap across communication, networking, and graph learning areas, we believe that this survey can garner increased attention, foster meaningful discussions, and inspire further research ideas in EGI. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.15320v1-abstract-full').style.display = 'none'; document.getElementById('2407.15320v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">38 pages, 14 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.10980">arXiv:2407.10980</a> <span> [<a href="https://arxiv.org/pdf/2407.10980">pdf</a>, <a href="https://arxiv.org/ps/2407.10980">ps</a>, <a href="https://arxiv.org/format/2407.10980">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Learning-based Big Data Sharing Incentive in Mobile AIGC Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wen%2C+J">Jinbo Wen</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Yang Zhang</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+Y">Yulin Chen</a>, <a href="/search/cs?searchtype=author&query=Zhong%2C+W">Weifeng Zhong</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+X">Xumin Huang</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+L">Lei Liu</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.10980v2-abstract-short" style="display: inline;"> Rapid advancements in wireless communication have led to a dramatic upsurge in data volumes within mobile edge networks. These substantial data volumes offer opportunities for training Artificial Intelligence-Generated Content (AIGC) models to possess strong prediction and decision-making capabilities. AIGC represents an innovative approach that utilizes sophisticated generative AI algorithms to a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10980v2-abstract-full').style.display = 'inline'; document.getElementById('2407.10980v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.10980v2-abstract-full" style="display: none;"> Rapid advancements in wireless communication have led to a dramatic upsurge in data volumes within mobile edge networks. These substantial data volumes offer opportunities for training Artificial Intelligence-Generated Content (AIGC) models to possess strong prediction and decision-making capabilities. AIGC represents an innovative approach that utilizes sophisticated generative AI algorithms to automatically generate diverse content based on user inputs. Leveraging mobile edge networks, mobile AIGC networks enable customized and real-time AIGC services for users by deploying AIGC models on edge devices. Nonetheless, several challenges hinder the provision of high-quality AIGC services, including issues related to the quality of sensing data for AIGC model training and the establishment of incentives for big data sharing from mobile devices to edge devices amidst information asymmetry. In this paper, we initially define a Quality of Data (QoD) metric based on the age of information to quantify the quality of sensing data. Subsequently, we propose a contract theoretic model aimed at motivating mobile devices for big data sharing. Furthermore, we employ a Proximal Policy Optimization (PPO) algorithm to determine the optimal contract. Numerical results demonstrate the efficacy and reliability of the proposed PPO-based contract model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.10980v2-abstract-full').style.display = 'none'; document.getElementById('2407.10980v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 31 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.08047">arXiv:2407.08047</a> <span> </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Spatial-Temporal Attention Model for Traffic State Estimation with Sparse Internet of Vehicles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xue%2C+J">Jianzhe Xue</a>, <a href="/search/cs?searchtype=author&query=Yuan%2C+D">Dongcheng Yuan</a>, <a href="/search/cs?searchtype=author&query=Sun%2C+Y">Yu Sun</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+T">Tianqi Zhang</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+W">Wenchao Xu</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+H">Haibo Zhou</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.08047v2-abstract-short" style="display: inline;"> The growing number of connected vehicles offers an opportunity to leverage internet of vehicles (IoV) data for traffic state estimation (TSE) which plays a crucial role in intelligent transportation systems (ITS). By utilizing only a portion of IoV data instead of the entire dataset, the significant overheads associated with collecting and processing large amounts of data can be avoided. In this p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08047v2-abstract-full').style.display = 'inline'; document.getElementById('2407.08047v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.08047v2-abstract-full" style="display: none;"> The growing number of connected vehicles offers an opportunity to leverage internet of vehicles (IoV) data for traffic state estimation (TSE) which plays a crucial role in intelligent transportation systems (ITS). By utilizing only a portion of IoV data instead of the entire dataset, the significant overheads associated with collecting and processing large amounts of data can be avoided. In this paper, we introduce a novel framework that utilizes sparse IoV data to achieve cost-effective TSE. Particularly, we propose a novel spatial-temporal attention model called the convolutional retentive network (CRNet) to improve the TSE accuracy by mining spatial-temporal traffic state correlations. The model employs the convolutional neural network (CNN) for spatial correlation aggregation and the retentive network (RetNet) based on the attention mechanism to extract temporal correlations. Extensive simulations on a real-world IoV dataset validate the advantage of the proposed TSE approach in achieving accurate TSE using sparse IoV data, demonstrating its cost effectiveness and practicality for real-world applications. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.08047v2-abstract-full').style.display = 'none'; document.getElementById('2407.08047v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 10 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">need further improvement</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2407.03954">arXiv:2407.03954</a> <span> [<a href="https://arxiv.org/pdf/2407.03954">pdf</a>, <a href="https://arxiv.org/format/2407.03954">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> </div> </div> <p class="title is-5 mathjax"> Efficient Maximal Frequent Group Enumeration in Temporal Bipartite Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wu%2C+Y">Yanping Wu</a>, <a href="/search/cs?searchtype=author&query=Sun%2C+R">Renjie Sun</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/cs?searchtype=author&query=Wen%2C+D">Dong Wen</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Ying Zhang</a>, <a href="/search/cs?searchtype=author&query=Qin%2C+L">Lu Qin</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2407.03954v1-abstract-short" style="display: inline;"> Cohesive subgraph mining is a fundamental problem in bipartite graph analysis. In reality, relationships between two types of entities often occur at some specific timestamps, which can be modeled as a temporal bipartite graph. However, the temporal information is widely neglected by previous studies. Moreover, directly extending the existing models may fail to find some critical groups in tempora… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03954v1-abstract-full').style.display = 'inline'; document.getElementById('2407.03954v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2407.03954v1-abstract-full" style="display: none;"> Cohesive subgraph mining is a fundamental problem in bipartite graph analysis. In reality, relationships between two types of entities often occur at some specific timestamps, which can be modeled as a temporal bipartite graph. However, the temporal information is widely neglected by previous studies. Moreover, directly extending the existing models may fail to find some critical groups in temporal bipartite graphs, which appear in a unilateral (i.e., one-layer) form. To fill the gap, in this paper, we propose a novel model, called maximal 位-frequency group (MFG). Given a temporal bipartite graph G=(U,V,E), a vertex set V_S \subseteq V is an MFG if i) there are no less than 位timestamps, at each of which V_S can form a (t_U,t_V)-biclique with some vertices in U at the corresponding snapshot, and ii) it is maximal. To solve the problem, a filter-and-verification (FilterV) method is proposed based on the Bron-Kerbosch framework, incorporating novel filtering techniques to reduce the search space and array-based strategy to accelerate the frequency and maximality verification. Nevertheless, the cost of frequency verification in each valid candidate set computation and maximality check could limit the scalability of FilterV to larger graphs. Therefore, we further develop a novel verification-free (VFree) approach by leveraging the advanced dynamic counting structure proposed. Theoretically, we prove that VFree can reduce the cost of each valid candidate set computation in FilterV by a factor of O(|V|). Furthermore, VFree can avoid the explicit maximality verification because of the developed search paradigm. Finally, comprehensive experiments on 15 real-world graphs are conducted to demonstrate the efficiency and effectiveness of the proposed techniques and model. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2407.03954v1-abstract-full').style.display = 'none'; document.getElementById('2407.03954v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.13964">arXiv:2406.13964</a> <span> [<a href="https://arxiv.org/pdf/2406.13964">pdf</a>, <a href="https://arxiv.org/format/2406.13964">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Hierarchical Micro-Segmentations for Zero-Trust Services via Large Language Model (LLM)-enhanced Graph Diffusion </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+Y">Yinqiu Liu</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+G">Guangyuan Liu</a>, <a href="/search/cs?searchtype=author&query=Du%2C+H">Hongyang Du</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Kang%2C+J">Jiawen Kang</a>, <a href="/search/cs?searchtype=author&query=Xiong%2C+Z">Zehui Xiong</a>, <a href="/search/cs?searchtype=author&query=Kim%2C+D+I">Dong In Kim</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.13964v1-abstract-short" style="display: inline;"> In the rapidly evolving Next-Generation Networking (NGN) era, the adoption of zero-trust architectures has become increasingly crucial to protect security. However, provisioning zero-trust services in NGNs poses significant challenges, primarily due to the environmental complexity and dynamics. Motivated by these challenges, this paper explores efficient zero-trust service provisioning using hiera… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13964v1-abstract-full').style.display = 'inline'; document.getElementById('2406.13964v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.13964v1-abstract-full" style="display: none;"> In the rapidly evolving Next-Generation Networking (NGN) era, the adoption of zero-trust architectures has become increasingly crucial to protect security. However, provisioning zero-trust services in NGNs poses significant challenges, primarily due to the environmental complexity and dynamics. Motivated by these challenges, this paper explores efficient zero-trust service provisioning using hierarchical micro-segmentations. Specifically, we model zero-trust networks via hierarchical graphs, thereby jointly considering the resource- and trust-level features to optimize service efficiency. We organize such zero-trust networks through micro-segmentations, which support granular zero-trust policies efficiently. To generate the optimal micro-segmentation, we present the Large Language Model-Enhanced Graph Diffusion (LEGD) algorithm, which leverages the diffusion process to realize a high-quality generation paradigm. Additionally, we utilize policy boosting and Large Language Models (LLM) to enable LEGD to optimize the generation policy and understand complicated graphical features. Moreover, realizing the unique trustworthiness updates or service upgrades in zero-trust NGN, we further present LEGD-Adaptive Maintenance (LEGD-AM), providing an adaptive way to perform task-oriented fine-tuning on LEGD. Extensive experiments demonstrate that the proposed LEGD achieves 90% higher efficiency in provisioning services compared with other baselines. Moreover, the LEGD-AM can reduce the service outage time by over 50%. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.13964v1-abstract-full').style.display = 'none'; document.getElementById('2406.13964v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.09089">arXiv:2406.09089</a> <span> [<a href="https://arxiv.org/pdf/2406.09089">pdf</a>, <a href="https://arxiv.org/format/2406.09089">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> DiffPoGAN: Diffusion Policies with Generative Adversarial Networks for Offline Reinforcement Learning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hu%2C+X">Xuemin Hu</a>, <a href="/search/cs?searchtype=author&query=Li%2C+S">Shen Li</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+Y">Yingfen Xu</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+B">Bo Tang</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+L">Long Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.09089v1-abstract-short" style="display: inline;"> Offline reinforcement learning (RL) can learn optimal policies from pre-collected offline datasets without interacting with the environment, but the sampled actions of the agent cannot often cover the action distribution under a given state, resulting in the extrapolation error issue. Recent works address this issue by employing generative adversarial networks (GANs). However, these methods often… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09089v1-abstract-full').style.display = 'inline'; document.getElementById('2406.09089v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.09089v1-abstract-full" style="display: none;"> Offline reinforcement learning (RL) can learn optimal policies from pre-collected offline datasets without interacting with the environment, but the sampled actions of the agent cannot often cover the action distribution under a given state, resulting in the extrapolation error issue. Recent works address this issue by employing generative adversarial networks (GANs). However, these methods often suffer from insufficient constraints on policy exploration and inaccurate representation of behavior policies. Moreover, the generator in GANs fails in fooling the discriminator while maximizing the expected returns of a policy. Inspired by the diffusion, a generative model with powerful feature expressiveness, we propose a new offline RL method named Diffusion Policies with Generative Adversarial Networks (DiffPoGAN). In this approach, the diffusion serves as the policy generator to generate diverse distributions of actions, and a regularization method based on maximum likelihood estimation (MLE) is developed to generate data that approximate the distribution of behavior policies. Besides, we introduce an additional regularization term based on the discriminator output to effectively constrain policy exploration for policy improvement. Comprehensive experiments are conducted on the datasets for deep data-driven reinforcement learning (D4RL), and experimental results show that DiffPoGAN outperforms state-of-the-art methods in offline RL. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.09089v1-abstract-full').style.display = 'none'; document.getElementById('2406.09089v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.07857">arXiv:2406.07857</a> <span> [<a href="https://arxiv.org/pdf/2406.07857">pdf</a>, <a href="https://arxiv.org/format/2406.07857">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Systems and Control">eess.SY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Toward Enhanced Reinforcement Learning-Based Resource Management via Digital Twin: Opportunities, Applications, and Challenges </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Cheng%2C+N">Nan Cheng</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xiucheng Wang</a>, <a href="/search/cs?searchtype=author&query=Li%2C+Z">Zan Li</a>, <a href="/search/cs?searchtype=author&query=Yin%2C+Z">Zhisheng Yin</a>, <a href="/search/cs?searchtype=author&query=Luan%2C+T">Tom Luan</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.07857v2-abstract-short" style="display: inline;"> This article presents a digital twin (DT)-enhanced reinforcement learning (RL) framework aimed at optimizing performance and reliability in network resource management, since the traditional RL methods face several unified challenges when applied to physical networks, including limited exploration efficiency, slow convergence, poor long-term performance, and safety concerns during the exploration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07857v2-abstract-full').style.display = 'inline'; document.getElementById('2406.07857v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.07857v2-abstract-full" style="display: none;"> This article presents a digital twin (DT)-enhanced reinforcement learning (RL) framework aimed at optimizing performance and reliability in network resource management, since the traditional RL methods face several unified challenges when applied to physical networks, including limited exploration efficiency, slow convergence, poor long-term performance, and safety concerns during the exploration phase. To deal with the above challenges, a comprehensive DT-based framework is proposed to enhance the convergence speed and performance for unified RL-based resource management. The proposed framework provides safe action exploration, more accurate estimates of long-term returns, faster training convergence, higher convergence performance, and real-time adaptation to varying network conditions. Then, two case studies on ultra-reliable and low-latency communication (URLLC) services and multiple unmanned aerial vehicles (UAV) network are presented, demonstrating improvements of the proposed framework in performance, convergence speed, and training cost reduction both on traditional RL and neural network based Deep RL (DRL). Finally, the article identifies and explores some of the research challenges and open issues in this rapidly evolving field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.07857v2-abstract-full').style.display = 'none'; document.getElementById('2406.07857v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 12 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7pages, 6figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01137">arXiv:2406.01137</a> <span> [<a href="https://arxiv.org/pdf/2406.01137">pdf</a>, <a href="https://arxiv.org/format/2406.01137">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Configuration Space Distance Fields for Manipulation Planning </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Li%2C+Y">Yiming Li</a>, <a href="/search/cs?searchtype=author&query=Chi%2C+X">Xuemin Chi</a>, <a href="/search/cs?searchtype=author&query=Razmjoo%2C+A">Amirreza Razmjoo</a>, <a href="/search/cs?searchtype=author&query=Calinon%2C+S">Sylvain Calinon</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01137v1-abstract-short" style="display: inline;"> The signed distance field is a popular implicit shape representation in robotics, providing geometric information about objects and obstacles in a form that can easily be combined with control, optimization and learning techniques. Most often, SDFs are used to represent distances in task space, which corresponds to the familiar notion of distances that we perceive in our 3D world. However, SDFs ca… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01137v1-abstract-full').style.display = 'inline'; document.getElementById('2406.01137v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01137v1-abstract-full" style="display: none;"> The signed distance field is a popular implicit shape representation in robotics, providing geometric information about objects and obstacles in a form that can easily be combined with control, optimization and learning techniques. Most often, SDFs are used to represent distances in task space, which corresponds to the familiar notion of distances that we perceive in our 3D world. However, SDFs can mathematically be used in other spaces, including robot configuration spaces. For a robot manipulator, this configuration space typically corresponds to the joint angles for each articulation of the robot. While it is customary in robot planning to express which portions of the configuration space are free from collision with obstacles, it is less common to think of this information as a distance field in the configuration space. In this paper, we demonstrate the potential of considering SDFs in the robot configuration space for optimization, which we call the configuration space distance field. Similarly to the use of SDF in task space, CDF provides an efficient joint angle distance query and direct access to the derivatives. Most approaches split the overall computation with one part in task space followed by one part in configuration space. Instead, CDF allows the implicit structure to be leveraged by control, optimization, and learning problems in a unified manner. In particular, we propose an efficient algorithm to compute and fuse CDFs that can be generalized to arbitrary scenes. A corresponding neural CDF representation using multilayer perceptrons is also presented to obtain a compact and continuous representation while improving computation efficiency. We demonstrate the effectiveness of CDF with planar obstacle avoidance examples and with a 7-axis Franka robot in inverse kinematics and manipulation planning tasks. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01137v1-abstract-full').style.display = 'none'; document.getElementById('2406.01137v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 10 figures. Accepted to Robotics: Science and Systems(RSS), 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.17664">arXiv:2405.17664</a> <span> [<a href="https://arxiv.org/pdf/2405.17664">pdf</a>, <a href="https://arxiv.org/format/2405.17664">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1109/JIOT.2023.3336600">10.1109/JIOT.2023.3336600 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adaptive Device-Edge Collaboration on DNN Inference in AIoT: A Digital Twin-Assisted Approach </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hu%2C+S">Shisheng Hu</a>, <a href="/search/cs?searchtype=author&query=Li%2C+M">Mushu Li</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+J">Jie Gao</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+C">Conghao Zhou</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.17664v1-abstract-short" style="display: inline;"> Device-edge collaboration on deep neural network (DNN) inference is a promising approach to efficiently utilizing network resources for supporting artificial intelligence of things (AIoT) applications. In this paper, we propose a novel digital twin (DT)-assisted approach to device-edge collaboration on DNN inference that determines whether and when to stop local inference at a device and upload th… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17664v1-abstract-full').style.display = 'inline'; document.getElementById('2405.17664v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.17664v1-abstract-full" style="display: none;"> Device-edge collaboration on deep neural network (DNN) inference is a promising approach to efficiently utilizing network resources for supporting artificial intelligence of things (AIoT) applications. In this paper, we propose a novel digital twin (DT)-assisted approach to device-edge collaboration on DNN inference that determines whether and when to stop local inference at a device and upload the intermediate results to complete the inference on an edge server. Instead of determining the collaboration for each DNN inference task only upon its generation, multi-step decision-making is performed during the on-device inference to adapt to the dynamic computing workload status at the device and the edge server. To enhance the adaptivity, a DT is constructed to evaluate all potential offloading decisions for each DNN inference task, which provides augmented training data for a machine learning-assisted decision-making algorithm. Then, another DT is constructed to estimate the inference status at the device to avoid frequently fetching the status information from the device, thus reducing the signaling overhead. We also derive necessary conditions for optimal offloading decisions to reduce the offloading decision space. Simulation results demon-strate the outstanding performance of our DT-assisted approach in terms of balancing the tradeoff among inference accuracy, delay, and energy consumption. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.17664v1-abstract-full').style.display = 'none'; document.getElementById('2405.17664v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> IEEE Internet Things J. (Volume: 11, Issue: 7, 01 April 2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12871">arXiv:2405.12871</a> <span> [<a href="https://arxiv.org/pdf/2405.12871">pdf</a>, <a href="https://arxiv.org/format/2405.12871">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> </div> </div> <p class="title is-5 mathjax"> Efficient Influence Minimization via Node Blocking </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+J">Jinghao Wang</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+Y">Yanping Wu</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Ying Zhang</a>, <a href="/search/cs?searchtype=author&query=Qin%2C+L">Lu Qin</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12871v1-abstract-short" style="display: inline;"> Given a graph G, a budget k and a misinformation seed set S, Influence Minimization (IMIN) via node blocking aims to find a set of k nodes to be blocked such that the expected spread of S is minimized. This problem finds important applications in suppressing the spread of misinformation and has been extensively studied in the literature. However, existing solutions for IMIN still incur significant… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12871v1-abstract-full').style.display = 'inline'; document.getElementById('2405.12871v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12871v1-abstract-full" style="display: none;"> Given a graph G, a budget k and a misinformation seed set S, Influence Minimization (IMIN) via node blocking aims to find a set of k nodes to be blocked such that the expected spread of S is minimized. This problem finds important applications in suppressing the spread of misinformation and has been extensively studied in the literature. However, existing solutions for IMIN still incur significant computation overhead, especially when k becomes large. In addition, there is still no approximation solution with non-trivial theoretical guarantee for IMIN via node blocking prior to our work. In this paper, we conduct the first attempt to propose algorithms that yield data-dependent approximation guarantees. Based on the Sandwich framework, we first develop submodular and monotonic lower and upper bounds for our non-submodular objective function and prove the computation of proposed bounds is \#P-hard. In addition, two advanced sampling methods are proposed to estimate the value of bounding functions. Moreover, we develop two novel martingale-based concentration bounds to reduce the sample complexity and design two non-trivial algorithms that provide (1-1/e-蔚)-approximate solutions to our bounding functions. Comprehensive experiments on 9 real-world datasets are conducted to validate the efficiency and effectiveness of the proposed techniques. Compared with the state-of-the-art methods, our solutions can achieve up to two orders of magnitude speedup and provide theoretical guarantees for the quality of returned results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12871v1-abstract-full').style.display = 'none'; document.getElementById('2405.12871v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.12502">arXiv:2405.12502</a> <span> [<a href="https://arxiv.org/pdf/2405.12502">pdf</a>, <a href="https://arxiv.org/format/2405.12502">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1145/3637528.3671943">10.1145/3637528.3671943 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> EntropyStop: Unsupervised Deep Outlier Detection with Loss Entropy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Huang%2C+Y">Yihong Huang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Yuang Zhang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+L">Liping Wang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+F">Fan Zhang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.12502v3-abstract-short" style="display: inline;"> Unsupervised Outlier Detection (UOD) is an important data mining task. With the advance of deep learning, deep Outlier Detection (OD) has received broad interest. Most deep UOD models are trained exclusively on clean datasets to learn the distribution of the normal data, which requires huge manual efforts to clean the real-world data if possible. Instead of relying on clean datasets, some approach… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12502v3-abstract-full').style.display = 'inline'; document.getElementById('2405.12502v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.12502v3-abstract-full" style="display: none;"> Unsupervised Outlier Detection (UOD) is an important data mining task. With the advance of deep learning, deep Outlier Detection (OD) has received broad interest. Most deep UOD models are trained exclusively on clean datasets to learn the distribution of the normal data, which requires huge manual efforts to clean the real-world data if possible. Instead of relying on clean datasets, some approaches directly train and detect on unlabeled contaminated datasets, leading to the need for methods that are robust to such conditions. Ensemble methods emerged as a superior solution to enhance model robustness against contaminated training sets. However, the training time is greatly increased by the ensemble. In this study, we investigate the impact of outliers on the training phase, aiming to halt training on unlabeled contaminated datasets before performance degradation. Initially, we noted that blending normal and anomalous data causes AUC fluctuations, a label-dependent measure of detection accuracy. To circumvent the need for labels, we propose a zero-label entropy metric named Loss Entropy for loss distribution, enabling us to infer optimal stopping points for training without labels. Meanwhile, we theoretically demonstrate negative correlation between entropy metric and the label-based AUC. Based on this, we develop an automated early-stopping algorithm, EntropyStop, which halts training when loss entropy suggests the maximum model detection capability. We conduct extensive experiments on ADBench (including 47 real datasets), and the overall results indicate that AutoEncoder (AE) enhanced by our approach not only achieves better performance than ensemble AEs but also requires under 2\% of training time. Lastly, our proposed metric and early-stopping approach are evaluated on other deep OD models, exhibiting their broad potential applicability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.12502v3-abstract-full').style.display = 'none'; document.getElementById('2405.12502v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.11293">arXiv:2405.11293</a> <span> [<a href="https://arxiv.org/pdf/2405.11293">pdf</a>, <a href="https://arxiv.org/format/2405.11293">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computer Vision and Pattern Recognition">cs.CV</span> </div> </div> <p class="title is-5 mathjax"> InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Li%2C+W">Wuzhou Li</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+J">Jiawei Zhou</a>, <a href="/search/cs?searchtype=author&query=Li%2C+X">Xiang Li</a>, <a href="/search/cs?searchtype=author&query=Cao%2C+Y">Yi Cao</a>, <a href="/search/cs?searchtype=author&query=Jin%2C+G">Guang Jin</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+X">Xuemin Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.11293v1-abstract-short" style="display: inline;"> Recently, the field of few-shot detection within remote sensing imagery has witnessed significant advancements. Despite these progresses, the capacity for continuous conceptual learning still poses a significant challenge to existing methodologies. In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images. We introduce a pioneering fine-tuningba… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11293v1-abstract-full').style.display = 'inline'; document.getElementById('2405.11293v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.11293v1-abstract-full" style="display: none;"> Recently, the field of few-shot detection within remote sensing imagery has witnessed significant advancements. Despite these progresses, the capacity for continuous conceptual learning still poses a significant challenge to existing methodologies. In this paper, we explore the intricate task of incremental few-shot object detection in remote sensing images. We introduce a pioneering fine-tuningbased technique, termed InfRS, designed to facilitate the incremental learning of novel classes using a restricted set of examples, while concurrently preserving the performance on established base classes without the need to revisit previous datasets. Specifically, we pretrain the model using abundant data from base classes and then generate a set of class-wise prototypes that represent the intrinsic characteristics of the data. In the incremental learning stage, we introduce a Hybrid Prototypical Contrastive (HPC) encoding module for learning discriminative representations. Furthermore, we develop a prototypical calibration strategy based on the Wasserstein distance to mitigate the catastrophic forgetting problem. Comprehensive evaluations on the NWPU VHR-10 and DIOR datasets demonstrate that our model can effectively solve the iFSOD problem in remote sensing images. Code will be released. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.11293v1-abstract-full').style.display = 'none'; document.getElementById('2405.11293v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.04198">arXiv:2405.04198</a> <span> [<a href="https://arxiv.org/pdf/2405.04198">pdf</a>, <a href="https://arxiv.org/format/2405.04198">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Enhancing Physical Layer Communication Security through Generative AI with Mixture of Experts </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhao%2C+C">Changyuan Zhao</a>, <a href="/search/cs?searchtype=author&query=Du%2C+H">Hongyang Du</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Kang%2C+J">Jiawen Kang</a>, <a href="/search/cs?searchtype=author&query=Xiong%2C+Z">Zehui Xiong</a>, <a href="/search/cs?searchtype=author&query=Kim%2C+D+I">Dong In Kim</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a>, <a href="/search/cs?searchtype=author&query=Letaief%2C+K+B">Khaled B. Letaief</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.04198v1-abstract-short" style="display: inline;"> AI technologies have become more widely adopted in wireless communications. As an emerging type of AI technologies, the generative artificial intelligence (GAI) gains lots of attention in communication security. Due to its powerful learning ability, GAI models have demonstrated superiority over conventional AI methods. However, GAI still has several limitations, including high computational comple… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04198v1-abstract-full').style.display = 'inline'; document.getElementById('2405.04198v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.04198v1-abstract-full" style="display: none;"> AI technologies have become more widely adopted in wireless communications. As an emerging type of AI technologies, the generative artificial intelligence (GAI) gains lots of attention in communication security. Due to its powerful learning ability, GAI models have demonstrated superiority over conventional AI methods. However, GAI still has several limitations, including high computational complexity and limited adaptability. Mixture of Experts (MoE), which uses multiple expert models for prediction through a gate mechanism, proposes possible solutions. Firstly, we review GAI model's applications in physical layer communication security, discuss limitations, and explore how MoE can help GAI overcome these limitations. Furthermore, we propose an MoE-enabled GAI framework for network optimization problems for communication security. To demonstrate the framework's effectiveness, we provide a case study in a cooperative friendly jamming scenario. The experimental results show that the MoE-enabled framework effectively assists the GAI algorithm, solves its limitations, and enhances communication security. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.04198v1-abstract-full').style.display = 'none'; document.getElementById('2405.04198v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2405.01221">arXiv:2405.01221</a> <span> [<a href="https://arxiv.org/pdf/2405.01221">pdf</a>, <a href="https://arxiv.org/format/2405.01221">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> A Survey on Semantic Communication Networks: Architecture, Security, and Privacy </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Guo%2C+S">Shaolong Guo</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+Y">Yuntao Wang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+N">Ning Zhang</a>, <a href="/search/cs?searchtype=author&query=Su%2C+Z">Zhou Su</a>, <a href="/search/cs?searchtype=author&query=Luan%2C+T+H">Tom H. Luan</a>, <a href="/search/cs?searchtype=author&query=Tian%2C+Z">Zhiyi Tian</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2405.01221v1-abstract-short" style="display: inline;"> Semantic communication, emerging as a breakthrough beyond the classical Shannon paradigm, aims to convey the essential meaning of source data rather than merely focusing on precise yet content-agnostic bit transmission. By interconnecting diverse intelligent agents (e.g., autonomous vehicles and VR devices) via semantic communications, the semantic communication networks (SemComNet) supports seman… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01221v1-abstract-full').style.display = 'inline'; document.getElementById('2405.01221v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2405.01221v1-abstract-full" style="display: none;"> Semantic communication, emerging as a breakthrough beyond the classical Shannon paradigm, aims to convey the essential meaning of source data rather than merely focusing on precise yet content-agnostic bit transmission. By interconnecting diverse intelligent agents (e.g., autonomous vehicles and VR devices) via semantic communications, the semantic communication networks (SemComNet) supports semantic-oriented transmission, efficient spectrum utilization, and flexible networking among collaborative agents. Consequently, SemComNet stands out for enabling ever-increasing intelligent applications, such as autonomous driving and Metaverse. However, being built on a variety of cutting-edge technologies including AI and knowledge graphs, SemComNet introduces diverse brand-new and unexpected threats, which pose obstacles to its widespread development. Besides, due to the intrinsic characteristics of SemComNet in terms of heterogeneous components, autonomous intelligence, and large-scale structure, a series of critical challenges emerge in securing SemComNet. In this paper, we provide a comprehensive and up-to-date survey of SemComNet from its fundamentals, security, and privacy aspects. Specifically, we first introduce a novel three-layer architecture of SemComNet for multi-agent interaction, which comprises the control layer, semantic transmission layer, and cognitive sensing layer. Then, we discuss its working modes and enabling technologies. Afterward, based on the layered architecture of SemComNet, we outline a taxonomy of security and privacy threats, while discussing state-of-the-art defense approaches. Finally, we present future research directions, clarifying the path toward building intelligent, robust, and green SemComNet. To our knowledge, this survey is the first to comprehensively cover the fundamentals of SemComNet, alongside a detailed analysis of its security and privacy issues. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2405.01221v1-abstract-full').style.display = 'none'; document.getElementById('2405.01221v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 May, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.19449">arXiv:2404.19449</a> <span> [<a href="https://arxiv.org/pdf/2404.19449">pdf</a>, <a href="https://arxiv.org/format/2404.19449">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> AoI-aware Sensing Scheduling and Trajectory Optimization for Multi-UAV-assisted Wireless Backscatter Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Long%2C+Y">Yusi Long</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+S">Songhan Zhao</a>, <a href="/search/cs?searchtype=author&query=Gong%2C+S">Shimin Gong</a>, <a href="/search/cs?searchtype=author&query=Gu%2C+B">Bo Gu</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.19449v1-abstract-short" style="display: inline;"> This paper considers multiple unmanned aerial vehicles (UAVs) to assist sensing data transmissions from the ground users (GUs) to a remote base station (BS). Each UAV collects sensing data from the GUs and then forwards the sensing data to the remote BS. The GUs first backscatter their data to the UAVs and then all UAVs forward data to the BS by the nonorthogonal multiple access (NOMA) transmissio… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19449v1-abstract-full').style.display = 'inline'; document.getElementById('2404.19449v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.19449v1-abstract-full" style="display: none;"> This paper considers multiple unmanned aerial vehicles (UAVs) to assist sensing data transmissions from the ground users (GUs) to a remote base station (BS). Each UAV collects sensing data from the GUs and then forwards the sensing data to the remote BS. The GUs first backscatter their data to the UAVs and then all UAVs forward data to the BS by the nonorthogonal multiple access (NOMA) transmissions. We formulate a multi-stage stochastic optimization problem to minimize the long-term time-averaged age-of-information (AoI) by jointly optimizing the GUs' access control, the UAVs' beamforming, and trajectory planning strategies. To solve this problem, we first model the dynamics of the GUs' AoI statuses by virtual queueing systems, and then propose the AoI-aware sensing scheduling and trajectory optimization (AoI-STO) algorithm. This allows us to transform the multi-stage AoI minimization problem into a series of per-slot control problems by using the Lyapunov optimization framework. In each time slot, the GUs' access control, the UAVs' beamforming, and mobility control strategies are updated by using the block coordinate descent (BCD) method according to the instant GUs' AoI statuses. Simulation results reveal that the proposed AoI-STO algorithm can reduce the overall AoI by more than 50%. The GUs' scheduling fairness is also improved greatly by adapting the GUs' access control compared with typical baseline schemes. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.19449v1-abstract-full').style.display = 'none'; document.getElementById('2404.19449v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">This paper has been accepted by IEEE TVT</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.16356">arXiv:2404.16356</a> <span> [<a href="https://arxiv.org/pdf/2404.16356">pdf</a>, <a href="https://arxiv.org/format/2404.16356">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Integration of Mixture of Experts and Multimodal Generative AI in Internet of Vehicles: A Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Xu%2C+M">Minrui Xu</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Kang%2C+J">Jiawen Kang</a>, <a href="/search/cs?searchtype=author&query=Xiong%2C+Z">Zehui Xiong</a>, <a href="/search/cs?searchtype=author&query=Jamalipour%2C+A">Abbas Jamalipour</a>, <a href="/search/cs?searchtype=author&query=Fang%2C+Y">Yuguang Fang</a>, <a href="/search/cs?searchtype=author&query=Kim%2C+D+I">Dong In Kim</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.16356v1-abstract-short" style="display: inline;"> Generative AI (GAI) can enhance the cognitive, reasoning, and planning capabilities of intelligent modules in the Internet of Vehicles (IoV) by synthesizing augmented datasets, completing sensor data, and making sequential decisions. In addition, the mixture of experts (MoE) can enable the distributed and collaborative execution of AI models without performance degradation between connected vehicl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16356v1-abstract-full').style.display = 'inline'; document.getElementById('2404.16356v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.16356v1-abstract-full" style="display: none;"> Generative AI (GAI) can enhance the cognitive, reasoning, and planning capabilities of intelligent modules in the Internet of Vehicles (IoV) by synthesizing augmented datasets, completing sensor data, and making sequential decisions. In addition, the mixture of experts (MoE) can enable the distributed and collaborative execution of AI models without performance degradation between connected vehicles. In this survey, we explore the integration of MoE and GAI to enable Artificial General Intelligence in IoV, which can enable the realization of full autonomy for IoV with minimal human supervision and applicability in a wide range of mobility scenarios, including environment monitoring, traffic management, and autonomous driving. In particular, we present the fundamentals of GAI, MoE, and their interplay applications in IoV. Furthermore, we discuss the potential integration of MoE and GAI in IoV, including distributed perception and monitoring, collaborative decision-making and planning, and generative modeling and simulation. Finally, we present several potential research directions for facilitating the integration. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.16356v1-abstract-full').style.display = 'none'; document.getElementById('2404.16356v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.14692">arXiv:2404.14692</a> <span> [<a href="https://arxiv.org/pdf/2404.14692">pdf</a>, <a href="https://arxiv.org/format/2404.14692">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Deep Overlapping Community Search via Subspace Embedding </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Sima%2C+Q">Qing Sima</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+J">Jianke Yu</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Ying Zhang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.14692v1-abstract-short" style="display: inline;"> Community search (CS) aims to identify a set of nodes based on a specified query, leveraging structural cohesiveness and attribute homogeneity. This task enjoys various applications, ranging from fraud detection to recommender systems. In contrast to algorithm-based approaches, graph neural network (GNN) based methods define communities using ground truth labels, leveraging prior knowledge to expl… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14692v1-abstract-full').style.display = 'inline'; document.getElementById('2404.14692v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.14692v1-abstract-full" style="display: none;"> Community search (CS) aims to identify a set of nodes based on a specified query, leveraging structural cohesiveness and attribute homogeneity. This task enjoys various applications, ranging from fraud detection to recommender systems. In contrast to algorithm-based approaches, graph neural network (GNN) based methods define communities using ground truth labels, leveraging prior knowledge to explore patterns from graph structures and node features. However, existing solutions face three major limitations: 1) GNN-based models primarily focus on the disjoint community structure, disregarding the nature of nodes belonging to multiple communities. 2) These model structures suffer from low-order awareness and severe efficiency issues. 3) The identified community is subject to the free-rider and boundary effects. In this paper, we propose Simplified Multi-hop Attention Networks (SMN), which consist of three designs. First, we introduce a subspace community embedding technique called Sparse Subspace Filter (SSF). SSF enables the projection of community embeddings into distinct vector subspaces, accommodating the nature of overlapping and nesting community structures. In addition, we propose a lightweight model structure and a hop-wise attention mechanism to capture high-order patterns while improving model efficiency. Furthermore, two search algorithms are developed to minimize the latent space's community radius, addressing the challenges of free-rider and boundary effects. To the best of our knowledge, this is the first learning-based study of overlapping community search. Extensive experiments validate the superior performance of SMN compared with the state-of-the-art approaches. SMN achieves 14.73% improvements in F1-Score and up to 3 orders of magnitude acceleration in model efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.14692v1-abstract-full').style.display = 'none'; document.getElementById('2404.14692v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13898">arXiv:2404.13898</a> <span> [<a href="https://arxiv.org/pdf/2404.13898">pdf</a>, <a href="https://arxiv.org/format/2404.13898">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Cross-Modal Generative Semantic Communications for Mobile AIGC: Joint Semantic Encoding and Prompt Engineering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+Y">Yinqiu Liu</a>, <a href="/search/cs?searchtype=author&query=Du%2C+H">Hongyang Du</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Kang%2C+J">Jiawen Kang</a>, <a href="/search/cs?searchtype=author&query=Xiong%2C+Z">Zehui Xiong</a>, <a href="/search/cs?searchtype=author&query=Mao%2C+S">Shiwen Mao</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+P">Ping Zhang</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13898v1-abstract-short" style="display: inline;"> Employing massive Mobile AI-Generated Content (AIGC) Service Providers (MASPs) with powerful models, high-quality AIGC services can become accessible for resource-constrained end users. However, this advancement, referred to as mobile AIGC, also introduces a significant challenge: users should download large AIGC outputs from the MASPs, leading to substantial bandwidth consumption and potential tr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13898v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13898v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13898v1-abstract-full" style="display: none;"> Employing massive Mobile AI-Generated Content (AIGC) Service Providers (MASPs) with powerful models, high-quality AIGC services can become accessible for resource-constrained end users. However, this advancement, referred to as mobile AIGC, also introduces a significant challenge: users should download large AIGC outputs from the MASPs, leading to substantial bandwidth consumption and potential transmission failures. In this paper, we apply cross-modal Generative Semantic Communications (G-SemCom) in mobile AIGC to overcome wireless bandwidth constraints. Specifically, we utilize a series of cross-modal attention maps to indicate the correlation between user prompts and each part of AIGC outputs. In this way, the MASP can analyze the prompt context and filter the most semantically important content efficiently. Only semantic information is transmitted, with which users can recover the entire AIGC output with high quality while saving mobile bandwidth. Since the transmitted information not only preserves the semantics but also prompts the recovery, we formulate a joint semantic encoding and prompt engineering problem to optimize the bandwidth allocation among users. Particularly, we present a human-perceptual metric named Joint Perpetual Similarity and Quality (JPSQ), which is fused by two learning-based measurements regarding semantic similarity and aesthetic quality, respectively. Furthermore, we develop the Attention-aware Deep Diffusion (ADD) algorithm, which learns attention maps and leverages the diffusion process to enhance the environment exploration ability. Extensive experiments demonstrate that our proposal can reduce the bandwidth consumption of mobile users by 49.4% on average, with almost no perceptual difference in AIGC output quality. Moreover, the ADD algorithm shows superior performance over baseline DRL methods, with 1.74x higher overall reward. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13898v1-abstract-full').style.display = 'none'; document.getElementById('2404.13898v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13749">arXiv:2404.13749</a> <span> [<a href="https://arxiv.org/pdf/2404.13749">pdf</a>, <a href="https://arxiv.org/format/2404.13749">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Efficient Digital Twin Data Processing for Low-Latency Multicast Short Video Streaming </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Huang%2C+X">Xinyu Huang</a>, <a href="/search/cs?searchtype=author&query=Hu%2C+S">Shisheng Hu</a>, <a href="/search/cs?searchtype=author&query=Li%2C+M">Mushu Li</a>, <a href="/search/cs?searchtype=author&query=Huang%2C+C">Cheng Huang</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13749v1-abstract-short" style="display: inline;"> In this paper, we propose a novel efficient digital twin (DT) data processing scheme to reduce service latency for multicast short video streaming. Particularly, DT is constructed to emulate and analyze user status for multicast group update and swipe feature abstraction. Then, a precise measurement model of DT data processing is developed to characterize the relationship among DT model size, user… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13749v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13749v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13749v1-abstract-full" style="display: none;"> In this paper, we propose a novel efficient digital twin (DT) data processing scheme to reduce service latency for multicast short video streaming. Particularly, DT is constructed to emulate and analyze user status for multicast group update and swipe feature abstraction. Then, a precise measurement model of DT data processing is developed to characterize the relationship among DT model size, user dynamics, and user clustering accuracy. A service latency model, consisting of DT data processing delay, video transcoding delay, and multicast transmission delay, is constructed by incorporating the impact of user clustering accuracy. Finally, a joint optimization problem of DT model size selection and bandwidth allocation is formulated to minimize the service latency. To efficiently solve this problem, a diffusion-based resource management algorithm is proposed, which utilizes the denoising technique to improve the action-generation process in the deep reinforcement learning algorithm. Simulation results based on the real-world dataset demonstrate that the proposed DT data processing scheme outperforms benchmark schemes in terms of service latency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13749v1-abstract-full').style.display = 'none'; document.getElementById('2404.13749v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 6 figures, submitted to ICCC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.13158">arXiv:2404.13158</a> <span> [<a href="https://arxiv.org/pdf/2404.13158">pdf</a>, <a href="https://arxiv.org/format/2404.13158">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Resource Slicing with Cross-Cell Coordination in Satellite-Terrestrial Integrated Networks </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=He%2C+M">Mingcheng He</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+H">Huaqing Wu</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+C">Conghao Zhou</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.13158v1-abstract-short" style="display: inline;"> Satellite-terrestrial integrated networks (STIN) are envisioned as a promising architecture for ubiquitous network connections to support diversified services. In this paper, we propose a novel resource slicing scheme with cross-cell coordination in STIN to satisfy distinct service delay requirements and efficient resource usage. To address the challenges posed by spatiotemporal dynamics in servic… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13158v1-abstract-full').style.display = 'inline'; document.getElementById('2404.13158v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.13158v1-abstract-full" style="display: none;"> Satellite-terrestrial integrated networks (STIN) are envisioned as a promising architecture for ubiquitous network connections to support diversified services. In this paper, we propose a novel resource slicing scheme with cross-cell coordination in STIN to satisfy distinct service delay requirements and efficient resource usage. To address the challenges posed by spatiotemporal dynamics in service demands and satellite mobility, we formulate the resource slicing problem into a long-term optimization problem and propose a distributed resource slicing (DRS) scheme for scalable and flexible resource management across different cells. Specifically, a hybrid data-model co-driven approach is developed, including an asynchronous multi-agent reinforcement learning-based algorithm to determine the optimal satellite set serving each cell and a distributed optimization-based algorithm to make the resource reservation decisions for each slice. Simulation results demonstrate that the proposed scheme outperforms benchmark methods in terms of resource usage and delay performance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.13158v1-abstract-full').style.display = 'none'; document.getElementById('2404.13158v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by IEEE ICC 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.12545">arXiv:2404.12545</a> <span> [<a href="https://arxiv.org/pdf/2404.12545">pdf</a>, <a href="https://arxiv.org/format/2404.12545">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Latent Concept-based Explanation of NLP Models </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yu%2C+X">Xuemin Yu</a>, <a href="/search/cs?searchtype=author&query=Dalvi%2C+F">Fahim Dalvi</a>, <a href="/search/cs?searchtype=author&query=Durrani%2C+N">Nadir Durrani</a>, <a href="/search/cs?searchtype=author&query=Nouri%2C+M">Marzia Nouri</a>, <a href="/search/cs?searchtype=author&query=Sajjad%2C+H">Hassan Sajjad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.12545v3-abstract-short" style="display: inline;"> Interpreting and understanding the predictions made by deep learning models poses a formidable challenge due to their inherently opaque nature. Many previous efforts aimed at explaining these predictions rely on input features, specifically, the words within NLP models. However, such explanations are often less informative due to the discrete nature of these words and their lack of contextual verb… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12545v3-abstract-full').style.display = 'inline'; document.getElementById('2404.12545v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.12545v3-abstract-full" style="display: none;"> Interpreting and understanding the predictions made by deep learning models poses a formidable challenge due to their inherently opaque nature. Many previous efforts aimed at explaining these predictions rely on input features, specifically, the words within NLP models. However, such explanations are often less informative due to the discrete nature of these words and their lack of contextual verbosity. To address this limitation, we introduce the Latent Concept Attribution method (LACOAT), which generates explanations for predictions based on latent concepts. Our foundational intuition is that a word can exhibit multiple facets, contingent upon the context in which it is used. Therefore, given a word in context, the latent space derived from our training process reflects a specific facet of that word. LACOAT functions by mapping the representations of salient input words into the training latent space, allowing it to provide latent context-based explanations of the prediction. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.12545v3-abstract-full').style.display = 'none'; document.getElementById('2404.12545v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted by EMNLP 2024 Main Conference</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.11825">arXiv:2404.11825</a> <span> [<a href="https://arxiv.org/pdf/2404.11825">pdf</a>, <a href="https://arxiv.org/format/2404.11825">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> </div> </div> <p class="title is-5 mathjax"> Hypergraph Self-supervised Learning with Sampling-efficient Signals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Li%2C+F">Fan Li</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xiaoyang Wang</a>, <a href="/search/cs?searchtype=author&query=Cheng%2C+D">Dawei Cheng</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Ying Zhang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.11825v1-abstract-short" style="display: inline;"> Self-supervised learning (SSL) provides a promising alternative for representation learning on hypergraphs without costly labels. However, existing hypergraph SSL models are mostly based on contrastive methods with the instance-level discrimination strategy, suffering from two significant limitations: (1) They select negative samples arbitrarily, which is unreliable in deciding similar and dissimi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11825v1-abstract-full').style.display = 'inline'; document.getElementById('2404.11825v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.11825v1-abstract-full" style="display: none;"> Self-supervised learning (SSL) provides a promising alternative for representation learning on hypergraphs without costly labels. However, existing hypergraph SSL models are mostly based on contrastive methods with the instance-level discrimination strategy, suffering from two significant limitations: (1) They select negative samples arbitrarily, which is unreliable in deciding similar and dissimilar pairs, causing training bias. (2) They often require a large number of negative samples, resulting in expensive computational costs. To address the above issues, we propose SE-HSSL, a hypergraph SSL framework with three sampling-efficient self-supervised signals. Specifically, we introduce two sampling-free objectives leveraging the canonical correlation analysis as the node-level and group-level self-supervised signals. Additionally, we develop a novel hierarchical membership-level contrast objective motivated by the cascading overlap relationship in hypergraphs, which can further reduce membership sampling bias and improve the efficiency of sample utilization. Through comprehensive experiments on 7 real-world hypergraphs, we demonstrate the superiority of our approach over the state-of-the-art method in terms of both effectiveness and efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.11825v1-abstract-full').style.display = 'none'; document.getElementById('2404.11825v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages,4 figures,4 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.08899">arXiv:2404.08899</a> <span> [<a href="https://arxiv.org/pdf/2404.08899">pdf</a>, <a href="https://arxiv.org/format/2404.08899">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> ProSecutor: Protecting Mobile AIGC Services on Two-Layer Blockchain via Reputation and Contract Theoretic Approaches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+Y">Yinqiu Liu</a>, <a href="/search/cs?searchtype=author&query=Du%2C+H">Hongyang Du</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Kang%2C+J">Jiawen Kang</a>, <a href="/search/cs?searchtype=author&query=Xiong%2C+Z">Zehui Xiong</a>, <a href="/search/cs?searchtype=author&query=Jamalipour%2C+A">Abbas Jamalipour</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.08899v1-abstract-short" style="display: inline;"> Mobile AI-Generated Content (AIGC) has achieved great attention in unleashing the power of generative AI and scaling the AIGC services. By employing numerous Mobile AIGC Service Providers (MASPs), ubiquitous and low-latency AIGC services for clients can be realized. Nonetheless, the interactions between clients and MASPs in public mobile networks, pertaining to three key mechanisms, namely MASP se… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08899v1-abstract-full').style.display = 'inline'; document.getElementById('2404.08899v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.08899v1-abstract-full" style="display: none;"> Mobile AI-Generated Content (AIGC) has achieved great attention in unleashing the power of generative AI and scaling the AIGC services. By employing numerous Mobile AIGC Service Providers (MASPs), ubiquitous and low-latency AIGC services for clients can be realized. Nonetheless, the interactions between clients and MASPs in public mobile networks, pertaining to three key mechanisms, namely MASP selection, payment scheme, and fee-ownership transfer, are unprotected. In this paper, we design the above mechanisms using a systematic approach and present the first blockchain to protect mobile AIGC, called ProSecutor. Specifically, by roll-up and layer-2 channels, ProSecutor forms a two-layer architecture, realizing tamper-proof data recording and atomic fee-ownership transfer with high resource efficiency. Then, we present the Objective-Subjective Service Assessment (OS^{2}A) framework, which effectively evaluates the AIGC services by fusing the objective service quality with the reputation-based subjective experience of the service outcome (i.e., AIGC outputs). Deploying OS^{2}A on ProSecutor, firstly, the MASP selection can be realized by sorting the reputation. Afterward, the contract theory is adopted to optimize the payment scheme and help clients avoid moral hazards in mobile networks. We implement the prototype of ProSecutor on BlockEmulator.Extensive experiments demonstrate that ProSecutor achieves 12.5x throughput and saves 67.5\% storage resources compared with BlockEmulator. Moreover, the effectiveness and efficiency of the proposed mechanisms are validated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.08899v1-abstract-full').style.display = 'none'; document.getElementById('2404.08899v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">17 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06182">arXiv:2404.06182</a> <span> [<a href="https://arxiv.org/pdf/2404.06182">pdf</a>, <a href="https://arxiv.org/format/2404.06182">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Streamlined Transmission: A Semantic-Aware XR Deployment Framework Enhanced by Generative AI </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yang%2C+W">Wanting Yang</a>, <a href="/search/cs?searchtype=author&query=Xiong%2C+Z">Zehui Xiong</a>, <a href="/search/cs?searchtype=author&query=Quek%2C+T+Q+S">Tony Q. S. Quek</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06182v1-abstract-short" style="display: inline;"> In the era of 6G, featuring compelling visions of digital twins and metaverses, Extended Reality (XR) has emerged as a vital conduit connecting the digital and physical realms, garnering widespread interest. Ensuring a fully immersive wireless XR experience stands as a paramount technical necessity, demanding the liberation of XR from the confines of wired connections. In this paper, we first intr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06182v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06182v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06182v1-abstract-full" style="display: none;"> In the era of 6G, featuring compelling visions of digital twins and metaverses, Extended Reality (XR) has emerged as a vital conduit connecting the digital and physical realms, garnering widespread interest. Ensuring a fully immersive wireless XR experience stands as a paramount technical necessity, demanding the liberation of XR from the confines of wired connections. In this paper, we first introduce the technologies applied in the wireless XR domain, delve into their benefits and limitations, and highlight the ongoing challenges. We then propose a novel deployment framework for a broad XR pipeline, termed "GeSa-XRF", inspired by the core philosophy of Semantic Communication (SemCom) which shifts the concern from "how" to transmit to "what" to transmit. Particularly, the framework comprises three stages: data collection, data analysis, and data delivery. In each stage, we integrate semantic awareness to achieve streamlined transmission and employ Generative Artificial Intelligence (GAI) to achieve collaborative refinements. For the data collection of multi-modal data with differentiated data volumes and heterogeneous latency requirements, we propose a novel SemCom paradigm based on multi-modal fusion and separation and a GAI-based robust superposition scheme. To perform a comprehensive data analysis, we employ multi-task learning to perform the prediction of field of view and personalized attention and discuss the possible preprocessing approaches assisted by GAI. Lastly, for the data delivery stage, we present a semantic-aware multicast-based delivery strategy aimed at reducing pixel level redundant transmissions and introduce the GAI collaborative refinement approach. The performance gain of the proposed GeSa-XRF is preliminarily demonstrated through a case study. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06182v1-abstract-full').style.display = 'none'; document.getElementById('2404.06182v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Under review with IEEE Network</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06037">arXiv:2404.06037</a> <span> [<a href="https://arxiv.org/pdf/2404.06037">pdf</a>, <a href="https://arxiv.org/format/2404.06037">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Distributed, Parallel, and Cluster Computing">cs.DC</span> </div> </div> <p class="title is-5 mathjax"> A Survey of Distributed Graph Algorithms on Massive Graphs </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Meng%2C+L">Lingkai Meng</a>, <a href="/search/cs?searchtype=author&query=Shao%2C+Y">Yu Shao</a>, <a href="/search/cs?searchtype=author&query=Yuan%2C+L">Long Yuan</a>, <a href="/search/cs?searchtype=author&query=Lai%2C+L">Longbin Lai</a>, <a href="/search/cs?searchtype=author&query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/cs?searchtype=author&query=Li%2C+X">Xue Li</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+W">Wenyuan Yu</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+J">Jingren Zhou</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06037v2-abstract-short" style="display: inline;"> Distributed processing of large-scale graph data has many practical applications and has been widely studied. In recent years, a lot of distributed graph processing frameworks and algorithms have been proposed. While many efforts have been devoted to analyzing these, with most analyzing them based on programming models, less research focuses on understanding their challenges in distributed environ… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06037v2-abstract-full').style.display = 'inline'; document.getElementById('2404.06037v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06037v2-abstract-full" style="display: none;"> Distributed processing of large-scale graph data has many practical applications and has been widely studied. In recent years, a lot of distributed graph processing frameworks and algorithms have been proposed. While many efforts have been devoted to analyzing these, with most analyzing them based on programming models, less research focuses on understanding their challenges in distributed environments. Applying graph tasks to distributed environments is not easy, often facing numerous challenges through our analysis, including parallelism, load balancing, communication overhead, and bandwidth. In this paper, we provide an extensive overview of the current state-of-the-art in this field by outlining the challenges and solutions of distributed graph algorithms. We first conduct a systematic analysis of the inherent challenges in distributed graph processing, followed by presenting an overview of existing general solutions. Subsequently, we survey the challenges highlighted in recent distributed graph processing papers and the strategies adopted to address them. Finally, we discuss the current research trends and identify potential future opportunities. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06037v2-abstract-full').style.display = 'none'; document.getElementById('2404.06037v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 9 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.04898">arXiv:2404.04898</a> <span> [<a href="https://arxiv.org/pdf/2404.04898">pdf</a>, <a href="https://arxiv.org/format/2404.04898">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Information Theory">cs.IT</span> </div> </div> <p class="title is-5 mathjax"> Graph Neural Network Meets Multi-Agent Reinforcement Learning: Fundamentals, Applications, and Future Directions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Liu%2C+Z">Ziheng Liu</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+J">Jiayi Zhang</a>, <a href="/search/cs?searchtype=author&query=Shi%2C+E">Enyu Shi</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+Z">Zhilong Liu</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Ai%2C+B">Bo Ai</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.04898v1-abstract-short" style="display: inline;"> Multi-agent reinforcement learning (MARL) has become a fundamental component of next-generation wireless communication systems. Theoretically, although MARL has the advantages of low computational complexity and fast convergence rate, there exist several challenges including partial observability, non-stationary, and scalability. In this article, we investigate a novel MARL with graph neural netwo… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04898v1-abstract-full').style.display = 'inline'; document.getElementById('2404.04898v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.04898v1-abstract-full" style="display: none;"> Multi-agent reinforcement learning (MARL) has become a fundamental component of next-generation wireless communication systems. Theoretically, although MARL has the advantages of low computational complexity and fast convergence rate, there exist several challenges including partial observability, non-stationary, and scalability. In this article, we investigate a novel MARL with graph neural network-aided communication (GNNComm-MARL) to address the aforementioned challenges by making use of graph attention networks to effectively sample neighborhoods and selectively aggregate messages. Furthermore, we thoroughly study the architecture of GNNComm-MARL and present a systematic design solution. We then present the typical applications of GNNComm-MARL from two aspects: resource allocation and mobility management. The results obtained unveil that GNNComm-MARL can achieve better performance with lower communication overhead compared to conventional communication schemes. Finally, several important research directions regarding GNNComm-MARL are presented to facilitate further investigation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.04898v1-abstract-full').style.display = 'none'; document.getElementById('2404.04898v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 7 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03025">arXiv:2404.03025</a> <span> [<a href="https://arxiv.org/pdf/2404.03025">pdf</a>, <a href="https://arxiv.org/format/2404.03025">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> When Digital Twin Meets Generative AI: Intelligent Closed-Loop Network Management </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Huang%2C+X">Xinyu Huang</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+H">Haojun Yang</a>, <a href="/search/cs?searchtype=author&query=Zhou%2C+C">Conghao Zhou</a>, <a href="/search/cs?searchtype=author&query=He%2C+M">Mingcheng He</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a>, <a href="/search/cs?searchtype=author&query=Zhuang%2C+W">Weihua Zhuang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03025v2-abstract-short" style="display: inline;"> Generative artificial intelligence (GAI) and digital twin (DT) are advanced data processing and virtualization technologies to revolutionize communication networks. Thanks to the powerful data processing capabilities of GAI, integrating it into DT is a potential approach to construct an intelligent holistic virtualized network for better network management performance. To this end, we propose a GA… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03025v2-abstract-full').style.display = 'inline'; document.getElementById('2404.03025v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03025v2-abstract-full" style="display: none;"> Generative artificial intelligence (GAI) and digital twin (DT) are advanced data processing and virtualization technologies to revolutionize communication networks. Thanks to the powerful data processing capabilities of GAI, integrating it into DT is a potential approach to construct an intelligent holistic virtualized network for better network management performance. To this end, we propose a GAI-driven DT (GDT) network architecture to enable intelligent closed-loop network management. In the architecture, various GAI models can empower DT status emulation, feature abstraction, and network decision-making. The interaction between GAI-based and model-based data processing can facilitate intelligent external and internal closed-loop network management. To further enhance network management performance, three potential approaches are proposed, i.e., model light-weighting, adaptive model selection, and data-model-driven network management. We present a case study pertaining to data-model-driven network management for the GDT network, followed by some open research issues. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03025v2-abstract-full').style.display = 'none'; document.getElementById('2404.03025v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18874">arXiv:2403.18874</a> <span> [<a href="https://arxiv.org/pdf/2403.18874">pdf</a>, <a href="https://arxiv.org/format/2403.18874">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> </div> </div> <p class="title is-5 mathjax"> Neural Attributed Community Search at Billion Scale </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+J">Jianwei Wang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+K">Kai Wang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Ying Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18874v1-abstract-short" style="display: inline;"> Community search has been extensively studied in the past decades. In recent years, there is a growing interest in attributed community search that aims to identify a community based on both the query nodes and query attributes. A set of techniques have been investigated. Though the recent methods based on advanced learning models such as graph neural networks (GNNs) can achieve state-of-the-art p… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18874v1-abstract-full').style.display = 'inline'; document.getElementById('2403.18874v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18874v1-abstract-full" style="display: none;"> Community search has been extensively studied in the past decades. In recent years, there is a growing interest in attributed community search that aims to identify a community based on both the query nodes and query attributes. A set of techniques have been investigated. Though the recent methods based on advanced learning models such as graph neural networks (GNNs) can achieve state-of-the-art performance in terms of accuracy, we notice that 1) they suffer from severe efficiency issues; 2) they directly model community search as a node classification problem and thus cannot make good use of interdependence among different entities in the graph. Motivated by these, in this paper, we propose a new neurAL attrIbuted Community sEarch model for large-scale graphs, termed ALICE. ALICE first extracts a candidate subgraph to reduce the search scope and subsequently predicts the community by the Consistency-aware Net , termed ConNet. Specifically, in the extraction phase, we introduce the density sketch modularity that uses a unified form to combine the strengths of two existing powerful modularities, i.e., classical modularity and density modularity. Based on the new modularity metric, we first adaptively obtain the candidate subgraph, formed by the k-hop neighbors of the query nodes, with the maximum modularity. Then, we construct a node-attribute bipartite graph to take attributes into consideration. After that, ConNet adopts a cross-attention encoder to encode the interaction between the query and the graph. The training of the model is guided by the structure-attribute consistency and the local consistency to achieve better performance. Extensive experiments over 11 real-world datasets including one billion-scale graph demonstrate the superiority of ALICE in terms of accuracy, efficiency, and scalability. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18874v1-abstract-full').style.display = 'none'; document.getElementById('2403.18874v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18869">arXiv:2403.18869</a> <span> [<a href="https://arxiv.org/pdf/2403.18869">pdf</a>, <a href="https://arxiv.org/format/2403.18869">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Social and Information Networks">cs.SI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> </div> </div> <p class="title is-5 mathjax"> Efficient Unsupervised Community Search with Pre-trained Graph Transformer </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Wang%2C+J">Jianwei Wang</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+K">Kai Wang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+W">Wenjie Zhang</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Y">Ying Zhang</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18869v2-abstract-short" style="display: inline;"> Community search has aroused widespread interest in the past decades. Among existing solutions, the learning-based models exhibit outstanding performance in terms of accuracy by leveraging labels to 1) train the model for community score learning, and 2) select the optimal threshold for community identification. However, labeled data are not always available in real-world scenarios. To address thi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18869v2-abstract-full').style.display = 'inline'; document.getElementById('2403.18869v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18869v2-abstract-full" style="display: none;"> Community search has aroused widespread interest in the past decades. Among existing solutions, the learning-based models exhibit outstanding performance in terms of accuracy by leveraging labels to 1) train the model for community score learning, and 2) select the optimal threshold for community identification. However, labeled data are not always available in real-world scenarios. To address this notable limitation of learning-based models, we propose a pre-trained graph Transformer based community search framework that uses Zero label (i.e., unsupervised), termed TransZero. TransZero has two key phases, i.e., the offline pre-training phase and the online search phase. Specifically, in the offline pretraining phase, we design an efficient and effective community search graph transformer (CSGphormer) to learn node representation. To pre-train CSGphormer without the usage of labels, we introduce two self-supervised losses, i.e., personalization loss and link loss, motivated by the inherent uniqueness of node and graph topology, respectively. In the online search phase, with the representation learned by the pre-trained CSGphormer, we compute the community score without using labels by measuring the similarity of representations between the query nodes and the nodes in the graph. To free the framework from the usage of a label-based threshold, we define a new function named expected score gain to guide the community identification process. Furthermore, we propose two efficient and effective algorithms for the community identification process that run without the usage of labels. Extensive experiments over 10 public datasets illustrate the superior performance of TransZero regarding both accuracy and efficiency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18869v2-abstract-full').style.display = 'none'; document.getElementById('2403.18869v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.18209">arXiv:2403.18209</a> <span> [<a href="https://arxiv.org/pdf/2403.18209">pdf</a>, <a href="https://arxiv.org/format/2403.18209">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> Long and Short-Term Constraints Driven Safe Reinforcement Learning for Autonomous Driving </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Hu%2C+X">Xuemin Hu</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+P">Pan Chen</a>, <a href="/search/cs?searchtype=author&query=Wen%2C+Y">Yijun Wen</a>, <a href="/search/cs?searchtype=author&query=Tang%2C+B">Bo Tang</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+L">Long Chen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.18209v2-abstract-short" style="display: inline;"> Reinforcement learning (RL) has been widely used in decision-making and control tasks, but the risk is very high for the agent in the training process due to the requirements of interaction with the environment, which seriously limits its industrial applications such as autonomous driving systems. Safe RL methods are developed to handle this issue by constraining the expected safety violation cost… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18209v2-abstract-full').style.display = 'inline'; document.getElementById('2403.18209v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.18209v2-abstract-full" style="display: none;"> Reinforcement learning (RL) has been widely used in decision-making and control tasks, but the risk is very high for the agent in the training process due to the requirements of interaction with the environment, which seriously limits its industrial applications such as autonomous driving systems. Safe RL methods are developed to handle this issue by constraining the expected safety violation costs as a training objective, but the occurring probability of an unsafe state is still high, which is unacceptable in autonomous driving tasks. Moreover, these methods are difficult to achieve a balance between the cost and return expectations, which leads to learning performance degradation for the algorithms. In this paper, we propose a novel algorithm based on the long and short-term constraints (LSTC) for safe RL. The short-term constraint aims to enhance the short-term state safety that the vehicle explores, while the long-term constraint enhances the overall safety of the vehicle throughout the decision-making process, both of which are jointly used to enhance the vehicle safety in the training process. In addition, we develop a safe RL method with dual-constraint optimization based on the Lagrange multiplier to optimize the training process for end-to-end autonomous driving. Comprehensive experiments were conducted on the MetaDrive simulator. Experimental results demonstrate that the proposed method achieves higher safety in continuous state and action tasks, and exhibits higher exploration performance in long-distance decision-making tasks compared with state-of-the-art methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.18209v2-abstract-full').style.display = 'none'; document.getElementById('2403.18209v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 12 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.16408">arXiv:2403.16408</a> <span> [<a href="https://arxiv.org/pdf/2403.16408">pdf</a>, <a href="https://arxiv.org/format/2403.16408">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Signal Processing">eess.SP</span> </div> </div> <p class="title is-5 mathjax"> Accuracy-Aware Cooperative Sensing and Computing for Connected Autonomous Vehicles </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Ye%2C+X">Xuehan Ye</a>, <a href="/search/cs?searchtype=author&query=Qu%2C+K">Kaige Qu</a>, <a href="/search/cs?searchtype=author&query=Zhuang%2C+W">Weihua Zhuang</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.16408v1-abstract-short" style="display: inline;"> To maintain high perception performance among connected and autonomous vehicles (CAVs), in this paper, we propose an accuracy-aware and resource-efficient raw-level cooperative sensing and computing scheme among CAVs and road-side infrastructure. The scheme enables fined-grained partial raw sensing data selection, transmission, fusion, and processing in per-object granularity, by exploiting the pa… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16408v1-abstract-full').style.display = 'inline'; document.getElementById('2403.16408v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.16408v1-abstract-full" style="display: none;"> To maintain high perception performance among connected and autonomous vehicles (CAVs), in this paper, we propose an accuracy-aware and resource-efficient raw-level cooperative sensing and computing scheme among CAVs and road-side infrastructure. The scheme enables fined-grained partial raw sensing data selection, transmission, fusion, and processing in per-object granularity, by exploiting the parallelism among object classification subtasks associated with each object. A supervised learning model is trained to capture the relationship between the object classification accuracy and the data quality of selected object sensing data, facilitating accuracy-aware sensing data selection. We formulate an optimization problem for joint sensing data selection, subtask placement and resource allocation among multiple object classification subtasks, to minimize the total resource cost while satisfying the delay and accuracy requirements. A genetic algorithm based iterative solution is proposed for the optimization problem. Simulation results demonstrate the accuracy awareness and resource efficiency achieved by the proposed cooperative sensing and computing scheme, in comparison with benchmark solutions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.16408v1-abstract-full').style.display = 'none'; document.getElementById('2403.16408v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.12398">arXiv:2403.12398</a> <span> [<a href="https://arxiv.org/pdf/2403.12398">pdf</a>, <a href="https://arxiv.org/format/2403.12398">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Hierarchical Digital Twin for Efficient 6G Network Orchestration via Adaptive Attribute Selection and Scalable Network Modeling </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Jia%2C+P">Pengyi Jia</a>, <a href="/search/cs?searchtype=author&query=Wang%2C+X">Xianbin Wang</a>, <a href="/search/cs?searchtype=author&query=Shen%2C+X">Xuemin Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.12398v1-abstract-short" style="display: inline;"> Achieving a holistic and long-term understanding through accurate network modeling is essential for orchestrating future networks with increasing service diversity and infrastructure complexities. However, due to unselective data collection and uniform processing, traditional modeling approaches undermine the efficacy and timeliness of network orchestration. Additionally, temporal disparities aris… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12398v1-abstract-full').style.display = 'inline'; document.getElementById('2403.12398v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.12398v1-abstract-full" style="display: none;"> Achieving a holistic and long-term understanding through accurate network modeling is essential for orchestrating future networks with increasing service diversity and infrastructure complexities. However, due to unselective data collection and uniform processing, traditional modeling approaches undermine the efficacy and timeliness of network orchestration. Additionally, temporal disparities arising from various modeling delays further impair the centralized decision-making with distributed models. In this paper, we propose a new hierarchical digital twin paradigm adapting to real-time network situations for problem-centered model construction. Specifically, we introduce an adaptive attribute selection mechanism that evaluates the distinct modeling values of diverse network attributes, considering their relevance to current network scenarios and inherent modeling complexity. By prioritizing critical attributes at higher layers, an efficient evaluation of network situations is achieved to identify target areas. Subsequently, scalable network modeling facilitates the inclusion of all identified elements at the lower layers, where more fine-grained digital twins are developed to generate targeted solutions for user association and power allocation. Furthermore, virtual-physical domain synchronization is implemented to maintain accurate temporal alignment between the digital twins and their physical counterparts, spanning from the construction to the utilization of the proposed paradigm. Extensive simulations validate the proposed approach, demonstrating its effectiveness in efficiently identifying pressing issues and delivering network orchestration solutions in complex 6G HetNets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.12398v1-abstract-full').style.display = 'none'; document.getElementById('2403.12398v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.11099">arXiv:2403.11099</a> <span> [<a href="https://arxiv.org/pdf/2403.11099">pdf</a>, <a href="https://arxiv.org/format/2403.11099">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Databases">cs.DB</span> </div> </div> <p class="title is-5 mathjax"> Wait to be Faster: a Smart Pooling Framework for Dynamic Ridesharing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhong%2C+X">Xiaoyao Zhong</a>, <a href="/search/cs?searchtype=author&query=Jin%2C+J">Jiabao Jin</a>, <a href="/search/cs?searchtype=author&query=Cheng%2C+P">Peng Cheng</a>, <a href="/search/cs?searchtype=author&query=Ni%2C+W">Wangze Ni</a>, <a href="/search/cs?searchtype=author&query=Zheng%2C+L">Libin Zheng</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+L">Lei Chen</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.11099v1-abstract-short" style="display: inline;"> Ridesharing services, such as Uber or Didi, have attracted considerable attention in recent years due to their positive impact on environmental protection and the economy. Existing studies require quick responses to orders, which lack the flexibility to accommodate longer wait times for better grouping opportunities. In this paper, we address a NP-hard ridesharing problem, called Minimal Extra Tim… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11099v1-abstract-full').style.display = 'inline'; document.getElementById('2403.11099v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.11099v1-abstract-full" style="display: none;"> Ridesharing services, such as Uber or Didi, have attracted considerable attention in recent years due to their positive impact on environmental protection and the economy. Existing studies require quick responses to orders, which lack the flexibility to accommodate longer wait times for better grouping opportunities. In this paper, we address a NP-hard ridesharing problem, called Minimal Extra Time RideSharing (METRS), which balances waiting time and group quality (i.e., detour time) to improve riders' satisfaction. To tackle this problem, we propose a novel approach called WATTER (WAit To be fasTER), which leverages an order pooling management algorithm allowing orders to wait until they can be matched with suitable groups. The key challenge is to customize the extra time threshold for each order by reducing the original optimization objective into a convex function of threshold, thus offering a theoretical guarantee to be optimized efficiently. We model the dispatch process using a Markov Decision Process (MDP) with a carefully designed value function to learn the threshold. Through extensive experiments on three real datasets, we demonstrate the efficiency and effectiveness of our proposed approaches. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.11099v1-abstract-full').style.display = 'none'; document.getElementById('2403.11099v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">IEEE ICDE 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.10043">arXiv:2403.10043</a> <span> [<a href="https://arxiv.org/pdf/2403.10043">pdf</a>, <a href="https://arxiv.org/format/2403.10043">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Robotics">cs.RO</span> </div> </div> <p class="title is-5 mathjax"> GeoPro-VO: Dynamic Obstacle Avoidance with Geometric Projector Based on Velocity Obstacle </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Huang%2C+J">Jihao Huang</a>, <a href="/search/cs?searchtype=author&query=Chi%2C+X">Xuemin Chi</a>, <a href="/search/cs?searchtype=author&query=Zeng%2C+J">Jun Zeng</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+Z">Zhitao Liu</a>, <a href="/search/cs?searchtype=author&query=Su%2C+H">Hongye Su</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.10043v1-abstract-short" style="display: inline;"> Optimization-based approaches are widely employed to generate optimal robot motions while considering various constraints, such as robot dynamics, collision avoidance, and physical limitations. It is crucial to efficiently solve the optimization problems in practice, yet achieving rapid computations remains a great challenge for optimization-based approaches with nonlinear constraints. In this pap… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10043v1-abstract-full').style.display = 'inline'; document.getElementById('2403.10043v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.10043v1-abstract-full" style="display: none;"> Optimization-based approaches are widely employed to generate optimal robot motions while considering various constraints, such as robot dynamics, collision avoidance, and physical limitations. It is crucial to efficiently solve the optimization problems in practice, yet achieving rapid computations remains a great challenge for optimization-based approaches with nonlinear constraints. In this paper, we propose a geometric projector for dynamic obstacle avoidance based on velocity obstacle (GeoPro-VO) by leveraging the projection feature of the velocity cone set represented by VO. Furthermore, with the proposed GeoPro-VO and the augmented Lagrangian spectral projected gradient descent (ALSPG) algorithm, we transform an initial mixed integer nonlinear programming problem (MINLP) in the form of constrained model predictive control (MPC) into a sub-optimization problem and solve it efficiently. Numerical simulations are conducted to validate the fast computing speed of our approach and its capability for reliable dynamic obstacle avoidance. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.10043v1-abstract-full').style.display = 'none'; document.getElementById('2403.10043v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13667">arXiv:2402.13667</a> <span> [<a href="https://arxiv.org/pdf/2402.13667">pdf</a>, <a href="https://arxiv.org/format/2402.13667">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> GCOF: Self-iterative Text Generation for Copywriting Using Large Language Model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhou%2C+J">Jianghui Zhou</a>, <a href="/search/cs?searchtype=author&query=Gao%2C+Y">Ya Gao</a>, <a href="/search/cs?searchtype=author&query=Liu%2C+J">Jie Liu</a>, <a href="/search/cs?searchtype=author&query=Zhao%2C+X">Xuemin Zhao</a>, <a href="/search/cs?searchtype=author&query=Yang%2C+Z">Zhaohua Yang</a>, <a href="/search/cs?searchtype=author&query=Wu%2C+Y">Yue Wu</a>, <a href="/search/cs?searchtype=author&query=Shi%2C+L">Lirong Shi</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13667v1-abstract-short" style="display: inline;"> Large language models(LLM) such as ChatGPT have substantially simplified the generation of marketing copy, yet producing content satisfying domain specific requirements, such as effectively engaging customers, remains a significant challenge. In this work, we introduce the Genetic Copy Optimization Framework (GCOF) designed to enhance both efficiency and engagememnt of marketing copy creation. We… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13667v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13667v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13667v1-abstract-full" style="display: none;"> Large language models(LLM) such as ChatGPT have substantially simplified the generation of marketing copy, yet producing content satisfying domain specific requirements, such as effectively engaging customers, remains a significant challenge. In this work, we introduce the Genetic Copy Optimization Framework (GCOF) designed to enhance both efficiency and engagememnt of marketing copy creation. We conduct explicit feature engineering within the prompts of LLM. Additionally, we modify the crossover operator in Genetic Algorithm (GA), integrating it into the GCOF to enable automatic feature engineering. This integration facilitates a self-iterative refinement of the marketing copy. Compared to human curated copy, Online results indicate that copy produced by our framework achieves an average increase in click-through rate (CTR) of over $50\%$. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13667v1-abstract-full').style.display = 'none'; document.getElementById('2402.13667v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.13553">arXiv:2402.13553</a> <span> [<a href="https://arxiv.org/pdf/2402.13553">pdf</a>, <a href="https://arxiv.org/format/2402.13553">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cryptography and Security">cs.CR</span> </div> </div> <p class="title is-5 mathjax"> Generative AI for Secure Physical Layer Communications: A Survey </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Zhao%2C+C">Changyuan Zhao</a>, <a href="/search/cs?searchtype=author&query=Du%2C+H">Hongyang Du</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Kang%2C+J">Jiawen Kang</a>, <a href="/search/cs?searchtype=author&query=Xiong%2C+Z">Zehui Xiong</a>, <a href="/search/cs?searchtype=author&query=Kim%2C+D+I">Dong In Kim</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a>, <a href="/search/cs?searchtype=author&query=Letaief%2C+K+B">Khaled B. Letaief</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.13553v1-abstract-short" style="display: inline;"> Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content. Beyond content creation, GAI has significant analytical abilities to learn complex data distribution, offering numerous opportunities to resolve security issues. In the realm of security from physical layer perspectives, trad… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13553v1-abstract-full').style.display = 'inline'; document.getElementById('2402.13553v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.13553v1-abstract-full" style="display: none;"> Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content. Beyond content creation, GAI has significant analytical abilities to learn complex data distribution, offering numerous opportunities to resolve security issues. In the realm of security from physical layer perspectives, traditional AI approaches frequently struggle, primarily due to their limited capacity to dynamically adjust to the evolving physical attributes of transmission channels and the complexity of contemporary cyber threats. This adaptability and analytical depth are precisely where GAI excels. Therefore, in this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks. We first emphasize the importance of advanced GAI models in this area, including Generative Adversarial Networks (GANs), Autoencoders (AEs), Variational Autoencoders (VAEs), and Diffusion Models (DMs). We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity. Furthermore, we also present future research directions focusing model improvements, multi-scenario deployment, resource-efficient optimization, and secure semantic communication, highlighting the multifaceted potential of GAI to address emerging challenges in secure physical layer communications and sensing. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.13553v1-abstract-full').style.display = 'none'; document.getElementById('2402.13553v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">22pages, 8figs</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2402.09394">arXiv:2402.09394</a> <span> [<a href="https://arxiv.org/pdf/2402.09394">pdf</a>, <a href="https://arxiv.org/format/2402.09394">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computation and Language">cs.CL</span> </div> </div> <p class="title is-5 mathjax"> Long-form evaluation of model editing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Rosati%2C+D">Domenic Rosati</a>, <a href="/search/cs?searchtype=author&query=Gonzales%2C+R">Robie Gonzales</a>, <a href="/search/cs?searchtype=author&query=Chen%2C+J">Jinkun Chen</a>, <a href="/search/cs?searchtype=author&query=Yu%2C+X">Xuemin Yu</a>, <a href="/search/cs?searchtype=author&query=Erkan%2C+M">Melis Erkan</a>, <a href="/search/cs?searchtype=author&query=Kayani%2C+Y">Yahya Kayani</a>, <a href="/search/cs?searchtype=author&query=Chavatapalli%2C+S+D">Satya Deepika Chavatapalli</a>, <a href="/search/cs?searchtype=author&query=Rudzicz%2C+F">Frank Rudzicz</a>, <a href="/search/cs?searchtype=author&query=Sajjad%2C+H">Hassan Sajjad</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2402.09394v2-abstract-short" style="display: inline;"> Evaluations of model editing currently only use the `next few token' completions after a prompt. As a result, the impact of these methods on longer natural language generation is largely unknown. We introduce long-form evaluation of model editing (LEME) a novel evaluation protocol that measures the efficacy and impact of model editing in long-form generative settings. Our protocol consists of a ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09394v2-abstract-full').style.display = 'inline'; document.getElementById('2402.09394v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2402.09394v2-abstract-full" style="display: none;"> Evaluations of model editing currently only use the `next few token' completions after a prompt. As a result, the impact of these methods on longer natural language generation is largely unknown. We introduce long-form evaluation of model editing (LEME) a novel evaluation protocol that measures the efficacy and impact of model editing in long-form generative settings. Our protocol consists of a machine-rated survey and a classifier which correlates well with human ratings. Importantly, we find that our protocol has very little relationship with previous short-form metrics (despite being designed to extend efficacy, generalization, locality, and portability into a long-form setting), indicating that our method introduces a novel set of dimensions for understanding model editing methods. Using this protocol, we benchmark a number of model editing techniques and present several findings including that, while some methods (ROME and MEMIT) perform well in making consistent edits within a limited scope, they suffer much more from factual drift than other methods. Finally, we present a qualitative analysis that illustrates common failure modes in long-form generative settings including internal consistency, lexical cohesion, and locality issues. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2402.09394v2-abstract-full').style.display = 'none'; document.getElementById('2402.09394v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 February, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.16710">arXiv:2401.16710</a> <span> [<a href="https://arxiv.org/pdf/2401.16710">pdf</a>, <a href="https://arxiv.org/format/2401.16710">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Networking and Internet Architecture">cs.NI</span> </div> </div> <p class="title is-5 mathjax"> Dynamic Human Digital Twin Deployment at the Edge for Task Execution: A Two-Timescale Accuracy-Aware Online Optimization </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Yang%2C+Y">Yuye Yang</a>, <a href="/search/cs?searchtype=author&query=Shi%2C+Y">You Shi</a>, <a href="/search/cs?searchtype=author&query=Yi%2C+C">Changyan Yi</a>, <a href="/search/cs?searchtype=author&query=Cai%2C+J">Jun Cai</a>, <a href="/search/cs?searchtype=author&query=Kang%2C+J">Jiawen Kang</a>, <a href="/search/cs?searchtype=author&query=Niyato%2C+D">Dusit Niyato</a>, <a href="/search/cs?searchtype=author&query=Xuemin"> Xuemin</a>, <a href="/search/cs?searchtype=author&query=Shen"> Shen</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.16710v1-abstract-short" style="display: inline;"> Human digital twin (HDT) is an emerging paradigm that bridges physical twins (PTs) with powerful virtual twins (VTs) for assisting complex task executions in human-centric services. In this paper, we study a two-timescale online optimization for building HDT under an end-edge-cloud collaborative framework. As a unique feature of HDT, we consider that PTs' corresponding VTs are deployed on edge ser… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16710v1-abstract-full').style.display = 'inline'; document.getElementById('2401.16710v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.16710v1-abstract-full" style="display: none;"> Human digital twin (HDT) is an emerging paradigm that bridges physical twins (PTs) with powerful virtual twins (VTs) for assisting complex task executions in human-centric services. In this paper, we study a two-timescale online optimization for building HDT under an end-edge-cloud collaborative framework. As a unique feature of HDT, we consider that PTs' corresponding VTs are deployed on edge servers, consisting of not only generic models placed by downloading experiential knowledge from the cloud but also customized models updated by collecting personalized data from end devices. To maximize task execution accuracy with stringent energy and delay constraints, and by taking into account HDT's inherent mobility and status variation uncertainties, we jointly and dynamically optimize VTs' construction and PTs' task offloading, along with communication and computation resource allocations. Observing that decision variables are asynchronous with different triggers, we propose a novel two-timescale accuracy-aware online optimization approach (TACO). Specifically, TACO utilizes an improved Lyapunov method to decompose the problem into multiple instant ones, and then leverages piecewise McCormick envelopes and block coordinate descent based algorithms, addressing two timescales alternately. Theoretical analyses and simulations show that the proposed approach can reach asymptotic optimum within a polynomial-time complexity, and demonstrate its superiority over counterparts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.16710v1-abstract-full').style.display = 'none'; document.getElementById('2401.16710v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2401.15617">arXiv:2401.15617</a> <span> [<a href="https://arxiv.org/pdf/2401.15617">pdf</a>, <a href="https://arxiv.org/format/2401.15617">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Artificial Intelligence">cs.AI</span> </div> </div> <p class="title is-5 mathjax"> Diffusion-based Graph Generative Methods </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/cs?searchtype=author&query=Chen%2C+H">Hongyang Chen</a>, <a href="/search/cs?searchtype=author&query=Xu%2C+C">Can Xu</a>, <a href="/search/cs?searchtype=author&query=Zheng%2C+L">Lingyu Zheng</a>, <a href="/search/cs?searchtype=author&query=Zhang%2C+Q">Qiang Zhang</a>, <a href="/search/cs?searchtype=author&query=Lin%2C+X">Xuemin Lin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2401.15617v2-abstract-short" style="display: inline;"> Being the most cutting-edge generative methods, diffusion methods have shown great advances in wide generation tasks. Among them, graph generation attracts significant research attention for its broad application in real life. In our survey, we systematically and comprehensively review on diffusion-based graph generative methods. We first make a review on three mainstream paradigms of diffusion me… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15617v2-abstract-full').style.display = 'inline'; document.getElementById('2401.15617v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2401.15617v2-abstract-full" style="display: none;"> Being the most cutting-edge generative methods, diffusion methods have shown great advances in wide generation tasks. Among them, graph generation attracts significant research attention for its broad application in real life. In our survey, we systematically and comprehensively review on diffusion-based graph generative methods. We first make a review on three mainstream paradigms of diffusion methods, which are denoising diffusion probabilistic models, score-based genrative models, and stochastic differential equations. Then we further categorize and introduce the latest applications of diffusion models on graphs. In the end, we point out some limitations of current studies and future directions of future explorations. The summary of existing methods metioned in this survey is in https://github.com/zhejiangzhuque/Diffusion-based-Graph-Generative-Methods. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2401.15617v2-abstract-full').style.display = 'none'; document.getElementById('2401.15617v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 28 January, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2024. </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Xuemin&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Xuemin&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=150" class="pagination-link " aria-label="Page 4" aria-current="page">4 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=200" class="pagination-link " aria-label="Page 5" aria-current="page">5 </a> </li> <li> <a href="/search/?searchtype=author&query=Xuemin&start=250" class="pagination-link " aria-label="Page 6" aria-current="page">6 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>