CINXE.COM
Search results for: soil rhizosphere
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: soil rhizosphere</title> <meta name="description" content="Search results for: soil rhizosphere"> <meta name="keywords" content="soil rhizosphere"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="soil rhizosphere" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="soil rhizosphere"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3012</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: soil rhizosphere</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3012</span> Rhizosphere Microbiome Involvement in the Natural Suppression of Soybean Cyst Nematode in Disease Suppressive Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Imran%20Hamid">M. Imran Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Muzammil%20Hussain"> Muzammil Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Yunpeng%20Wu"> Yunpeng Wu</a>, <a href="https://publications.waset.org/abstracts/search?q=Meichun%20Xiang"> Meichun Xiang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xingzhong%20Liu"> Xingzhong Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rhizosphere microbiome elucidate multiple functioning in the soil suppressiveness against plant pathogens. Soybean rhizosphere microbial communities may involve in the natural suppression of soybean cyst nematode (SCN) populations in disease suppressive soils. To explore these ecological mechanisms of microbes, a long term monoculture suppressive soil were taken into account for further investigation to test the disease suppressive ability by using different treatments. The designed treatments are as, i) suppressive soil (S), ii) conducive soil (C), iii) conducive soil mixed with 10% (w/w) suppressive soil (CS), iv) suppressive soil treated at 80°C for 1 hr (S80), and v) suppressive soil treated with formalin (SF). By using an ultra-high-throughput sequencing approach, we identified the key bacterial and fungal taxa involved in SCN suppression. The Phylum-level investigation of bacteria revealed that Actinobacteria, Bacteroidetes, and Proteobacteria in the rhizosphere soil of soybean seedlings were more abundant in the suppressive soil than in the conducive soil. The phylum-level analysis of fungi in rhizosphere soil indicated that relative abundance of Ascomycota was higher in suppressive soil than in the conducive soil, where Basidiomycota was more abundant. Transferring suppressive soil to conducive soil increased the population of Ascomycota in the conducive soil by lowering the populations of Basidiomycota. The genera, such as, Pochonia, Purpureocillium, Fusarium, Stachybotrys that have been well documented as bio-control agents of plant nematodes were far more in the disease suppressive soils. Our results suggested that the plants engage a subset of functional microbial groups in the rhizosphere for initial defense upon nematode attack and protect the plant roots later on by nematodes to response for suppression of SCN in disease-suppressive soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=disease%20suppressive%20soil" title="disease suppressive soil">disease suppressive soil</a>, <a href="https://publications.waset.org/abstracts/search?q=high-throughput%20sequencing" title=" high-throughput sequencing"> high-throughput sequencing</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere%20microbiome" title=" rhizosphere microbiome"> rhizosphere microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=soybean%20cyst%20nematode" title=" soybean cyst nematode"> soybean cyst nematode</a> </p> <a href="https://publications.waset.org/abstracts/95784/rhizosphere-microbiome-involvement-in-the-natural-suppression-of-soybean-cyst-nematode-in-disease-suppressive-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/95784.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3011</span> The Response of Soil Biodiversity to Agriculture Practice in Rhizosphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yan%20Wang">Yan Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Guowei%20Chen"> Guowei Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Gang%20Wang"> Gang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil microbial diversity is one of the important parameters to assess the soil fertility and soil health, even stability of the ecosystem. In this paper, we aim to reveal the soil microbial difference in rhizosphere and root zone, even to pick the special biomarkers influenced by the long term tillage practices, which included four treatments of no-tillage, ridge tillage, continuous cropping with corn and crop rotation with corn and soybean. Here, high-throughput sequencing was performed to investigate the difference of bacteria in rhizosphere and root zone. The results showed a very significant difference of species richness between rhizosphere and root zone soil at the same crop rotation system (p < 0.01), and also significant difference of species richness was found between continuous cropping with corn and corn-soybean rotation treatment in the rhizosphere statement, no-tillage and ridge tillage in root zone soils. Implied by further beta diversity analysis, both tillage methods and crop rotation systems influence the soil microbial diversity and community structure in varying degree. The composition and community structure of microbes in rhizosphere and root zone soils were clustered distinctly by the beta diversity (p < 0.05). Linear discriminant analysis coupled with effect size (LEfSe) analysis of total taxa in rhizosphere picked more than 100 bacterial taxa, which were significantly more abundant than that in root zone soils, whereas the number of biomarkers was lower between the continuous cropping with corn and crop rotation treatment, the same pattern was found at no-tillage and ridge tillage treatment. Bacterial communities were greatly influenced by main environmental factors in large scale, which is the result of biological adaptation and acclimation, hence it is beneficial for optimizing agricultural practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tillage%20methods" title="tillage methods">tillage methods</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarker" title=" biomarker"> biomarker</a>, <a href="https://publications.waset.org/abstracts/search?q=biodiversity" title=" biodiversity"> biodiversity</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere" title=" rhizosphere"> rhizosphere</a> </p> <a href="https://publications.waset.org/abstracts/99559/the-response-of-soil-biodiversity-to-agriculture-practice-in-rhizosphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3010</span> Biodiversity of Plants Rhizosphere and Rhizoplane Bacteria in the Presence of Petroleum Hydrocarbons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Togzhan%20D.%20Mukasheva">Togzhan D. Mukasheva</a>, <a href="https://publications.waset.org/abstracts/search?q=Anel%20A.%20Omirbekova"> Anel A. Omirbekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Raikhan%20S.%20Sydykbekova"> Raikhan S. Sydykbekova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramza%20Zh.%20Berzhanova"> Ramza Zh. Berzhanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyudmila%20V.%20Ignatova"> Lyudmila V. Ignatova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Following plants-barley (Hordeum sativum), alfalfa (Medicago sativa), grass mixture (red fescue-75%, long-term ryegrass - 20% Kentucky bluegrass - 10%), oilseed rape (Brassica napus biennis), resistant to growth in the contaminated soil with oil content of 15.8 g / kg 25.9 g / kg soil were used. Analysis of the population showed that the oil pollution reduces the number of bacteria in the rhizosphere and rhizoplane of plants and enhances the amount of spore-forming bacteria and saprotrophic micromycetes. It was shown that regardless of the plant, dominance of Pseudomonas and Bacillus genera bacteria was typical for the rhizosphere and rhizoplane of plants. The frequency of bacteria of these genera was more than 60%. Oil pollution changes the ratio of occurrence of various types of bacteria in the rhizosphere and rhizoplane of plants. Besides the Pseudomonas and Bacillus genera, in the presence of hydrocarbons in the root zone of plants dominant and most typical were the representatives of the Mycobacterium and Rhodococcus genera. Together the number was between 62% to 72%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pollution" title="pollution">pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20system" title=" root system"> root system</a>, <a href="https://publications.waset.org/abstracts/search?q=micromycetes" title=" micromycetes"> micromycetes</a>, <a href="https://publications.waset.org/abstracts/search?q=identification" title=" identification"> identification</a> </p> <a href="https://publications.waset.org/abstracts/10208/biodiversity-of-plants-rhizosphere-and-rhizoplane-bacteria-in-the-presence-of-petroleum-hydrocarbons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">500</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3009</span> Isolation and Characterization of Indigenous Rhizosphere Bacteria Producing Gibberellin Acid from Local Soybeans in Three Different Areas of South Sulawesi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asmiaty%20Sahur">Asmiaty Sahur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ambo%20Ala"> Ambo Ala</a>, <a href="https://publications.waset.org/abstracts/search?q=Baharuddin%20Patanjengi"> Baharuddin Patanjengi</a>, <a href="https://publications.waset.org/abstracts/search?q=Elkawakib%20Syam%27un"> Elkawakib Syam'un</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aimed to isolate and characterize the indigenous Rhizosphere bacteria producing Gibberellin Acid as plant growth isolated from local soybean of three different areas in South Sulawesi, Indonesia. Several soil samples of soybean plants were collected from the Rhizosphere of local soybeans in three different areas of South Sulawesi such as Soppeng, Bone and Takalar. There were 56 isolates of bacteria were isolated and grouped into gram-positive bacteria and gram negative bacteria .There are 35 isolates produce a thick slime or slimy when cultured on media Natrium Broth and the remaining of those produced spores. The results showed that of potential bacterial isolated produced Gibberellin Acid in high concentration. The best isolate of Rhizosphere bacteria for the production of Gibberellin Acid is with concentration 2%. There are 4 isolates that had higher concentration are AKB 19 (4.67 mg/ml) followed by RKS 17 (3.80 mg/ml), RKS 25 (3.70 mg / ml) and RKS 24 (3.29 mg/ml) respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=rhizosphere" title="rhizosphere">rhizosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=bacteria" title=" bacteria"> bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=gibberellin%20acid" title=" gibberellin acid"> gibberellin acid</a>, <a href="https://publications.waset.org/abstracts/search?q=soybeans" title=" soybeans"> soybeans</a> </p> <a href="https://publications.waset.org/abstracts/35624/isolation-and-characterization-of-indigenous-rhizosphere-bacteria-producing-gibberellin-acid-from-local-soybeans-in-three-different-areas-of-south-sulawesi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">236</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3008</span> Shift in the Rhizosphere Soil Fungal Community Associated with Root Rot Infection of Plukenetia Volubilis Linneo Caused by Fusarium and Rhizopus Species</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Constantine%20Uwaremwe">Constantine Uwaremwe</a>, <a href="https://publications.waset.org/abstracts/search?q=Wenjie%20Bao"> Wenjie Bao</a>, <a href="https://publications.waset.org/abstracts/search?q=Bachir%20Goudia%20Daoura"> Bachir Goudia Daoura</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandhya%20Mishra"> Sandhya Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Xianxian%20Zhang"> Xianxian Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lingjie%20Shen"> Lingjie Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shangwen%20Xia"> Shangwen Xia</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiaodong%20Yang"> Xiaodong Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Plukenetia volubilis Linneo is an oleaginous plant belonging to the family Euphorbiaceae. Due to its seeds containing a high content of edible oil and rich in vitamins, P. volubilis is cultivated as an economical plant worldwide. However, the cultivation and growth of P. volubilis is challenged by phytopathogen invasion leading to production loss. Methods: In the current study, we tested the pathogenicity of fungal pathogens isolated from root rot infected P. volubilis plant tissues by inoculating them into healthy P. volubilis seedlings. Metagenomic sequencing was used to assess the shift in the fungal community of P. volubilis rhizosphere soil after root rot infection. Results: Four Fusarium isolates and two Rhizopus isolates were found to be root rot causative agents of P. volubilis as they induced typical root rot symptoms in healthy seedlings. The metagenomic sequencing data showed that root rot infection altered the rhizosphere fungal community. In root rot infected soil, the richness and diversity indices increased or decreased depending on pathogens. The four most abundant phyla across all samples were Ascomycota, Glomeromycota, Basidiomycota, and Mortierellomycota. In infected soil, the relative abundance of each phylum increased or decreased depending on the pathogen and functional taxonomic classification. Conclusions: Based on our results, we concluded that Fusarium and Rhizopus species cause root rot infection of P. volubilis. In root rot infected P. volubilis, the shift in the rhizosphere fungal community was pathogen-dependent. These findings may serve as a key point for a future study on the biocontrol of root rot of P. volubilis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fusarium%20spp." title="fusarium spp.">fusarium spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=plukenetia%20volubilis%20l." title=" plukenetia volubilis l."> plukenetia volubilis l.</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizopus%20spp." title=" rhizopus spp."> rhizopus spp.</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere%20fungal%20community" title=" rhizosphere fungal community"> rhizosphere fungal community</a>, <a href="https://publications.waset.org/abstracts/search?q=root%20rot" title=" root rot"> root rot</a> </p> <a href="https://publications.waset.org/abstracts/187906/shift-in-the-rhizosphere-soil-fungal-community-associated-with-root-rot-infection-of-plukenetia-volubilis-linneo-caused-by-fusarium-and-rhizopus-species" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187906.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3007</span> Rhizosphere Microbial Communities in Fynbos Endemic Legumes during Wet and Dry Seasons</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tiisetso%20Mpai">Tiisetso Mpai</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjay%20K.%20Jaiswal"> Sanjay K. Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20D.%20Dakora"> Felix D. Dakora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The South African Cape fynbos biome is a global biodiversity hotspot. This biome contains a diversity of endemic shrub legumes, including Polhillia, Wiborgia, and Wiborgiella species, which are important for ecotourism as well as for improving soil fertility status. This is due to their proven N₂-fixing abilities when in association with compatible soil bacteria. In fact, Polhillia, Wiborgia, and Wiborgiella species have been reported to derive over 61% of their needed nitrogen through biological nitrogen fixation and to exhibit acid and alkaline phosphatase activity in their rhizospheres. Thus, their interactions with soil microbes may explain their survival mechanisms under the continued summer droughts and acidic, nutrient-poor soils in this region. However, information regarding their rhizosphere microbiome is still unavailable, yet it is important for Fynbos biodiversity management. Therefore, the aim of this study was to assess the microbial community structures associated with rhizosphere soils of Polhillia pallens, Polhillia brevicalyx, Wiborgia obcordata, Wiborgia sericea, and Wiborgiella sessilifolia growing at different locations of the South African Cape fynbos, during the wet and dry seasons. The hypothesis is that the microbial communities in these legume rhizospheres are the same type and are not affected by the growing season due to the restricted habitat of these wild fynbos legumes. To obtain the results, DNA was extracted from 0.5 g of each rhizosphere soil using PowerSoil™ DNA Isolation Kit, and sequences were obtained using the 16S rDNA Miseq Illumina technology. The results showed that in both seasons, bacteria were the most abundant microbial taxa in the rhizosphere soils of all five legume species, with Actinobacteria showing the highest number of sequences (about 30%). However, over 19.91% of the inhabitants in all five legume rhizospheres were unclassified. In terms of genera, Mycobacterium and Conexibacter were common in rhizosphere soils of all legumes in both seasons except for W. obcordata soils sampled during the dry season, which had Dehalogenimonas as the major inhabitant (6.08%). In conclusion, plant species and season were found to be the main drivers of microbial community structure in Cape fynbos, with the wet season being more dominant in shaping microbial diversity relative to the dry season. Wiborgia obcordata had a greater influence on microbial community structure than the other four legume species. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=16S%20rDNA" title="16S rDNA">16S rDNA</a>, <a href="https://publications.waset.org/abstracts/search?q=Cape%20fynbos" title=" Cape fynbos"> Cape fynbos</a>, <a href="https://publications.waset.org/abstracts/search?q=endemic%20legumes" title=" endemic legumes"> endemic legumes</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere" title=" rhizosphere"> rhizosphere</a> </p> <a href="https://publications.waset.org/abstracts/140574/rhizosphere-microbial-communities-in-fynbos-endemic-legumes-during-wet-and-dry-seasons" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140574.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3006</span> Study on the Enhancement of Soil Fertility and Tomato Quality by Applying Concentrated Biogas Slurry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fang%20Bo%20Yu">Fang Bo Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Li%20Bo%20Guan"> Li Bo Guan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Biogas slurry is a low-cost source of crop nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its application scale. In this report, one growing season field research was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of the microflora in both non-rhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could cause significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N, and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, β-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It could be concluded as the application is a practicable means in tomato production and might better service the sustainable agriculture in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=concentrated%20slurry" title="concentrated slurry">concentrated slurry</a>, <a href="https://publications.waset.org/abstracts/search?q=fruit%20quality" title=" fruit quality"> fruit quality</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20fertility" title=" soil fertility"> soil fertility</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20agriculture" title=" sustainable agriculture"> sustainable agriculture</a> </p> <a href="https://publications.waset.org/abstracts/28581/study-on-the-enhancement-of-soil-fertility-and-tomato-quality-by-applying-concentrated-biogas-slurry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28581.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">458</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3005</span> Phytoremediation Potenciality of ‘Polypogon monspeliensis L. in Detoxification of Petroleum-Contaminated Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mozhgan%20Farzami%20Sepehr">Mozhgan Farzami Sepehr</a>, <a href="https://publications.waset.org/abstracts/search?q=Farhad%20Nourozi"> Farhad Nourozi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a greenhouse study, decontamination capacity of the species Polypogon monspoliensis, for detoxification of petroleum-polluted soils caused by sewage and waste materials of Tehran Petroleum Refinery. For this purpose, the amount of total oil and grease before and 45 days after transplanting one-month-old seedlings in the soils of five different treatments in which pollution-free agricultural soil and contaminated soil were mixed together with the weight ratio of respectively 1 to 9 (% 10), 2 to 8 (%20), 3 to 7 (%30) , 4 to 6 (%40), and 5 to 5 (%50) were evaluated and compared with the amounts obtained from control treatment without vegetation, but with the same concentration of pollution. Findings demonstrated that the maximum reduction in the petroleum rate ,as much as 84.85 percent, is related to the treatment 10% containing the plant. Increasing the shoot height in treatments 10% and 20% as well as the root dry and fresh weight in treatments 10% , 20% , and 30% shows that probably activity of more rhizosphere microorganisms of the plant in these treatments has led to the improvement in growth of plant organs comparing to the treatments without pollution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=phytoremediation" title="phytoremediation">phytoremediation</a>, <a href="https://publications.waset.org/abstracts/search?q=total%20oil%20and%20%20grease" title=" total oil and grease"> total oil and grease</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere" title=" rhizosphere"> rhizosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=microorganisms" title=" microorganisms"> microorganisms</a>, <a href="https://publications.waset.org/abstracts/search?q=petroleum-contaminated%20soil" title=" petroleum-contaminated soil "> petroleum-contaminated soil </a> </p> <a href="https://publications.waset.org/abstracts/22502/phytoremediation-potenciality-of-polypogon-monspeliensis-l-in-detoxification-of-petroleum-contaminated-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">409</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3004</span> Iron Influx, Its Root-Shoot Relations and Utilization Efficiency in Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdul%20Malik%20Dawlatzai">Abdul Malik Dawlatzai</a>, <a href="https://publications.waset.org/abstracts/search?q=Shafiqullah%20Rahmani"> Shafiqullah Rahmani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant cultivars of the same species differ in their Fe efficiency. This paper studied the Fe influx and root-shoot relations of Fe at different growth stages in wheat. The four wheat cultivars (HD 2967, PDW 233, PBW 550 and PDW 291) were grown in pots in Badam Bagh agricultural researching farm, Kabul under two Fe treatments: (i) 0 mg Fe kg⁻¹ soil (soil with 2.7 mg kg⁻¹ of DTPA-extractable Fe) and (ii) 50 mg Fe kg⁻¹ soil. Root length (RL), shoot dry matter (SDM), Fe uptake, and soil parameters were measured at tillering and anthesis. Application of Fe significantly increased RL, root surface area, SDM, and Fe uptake in all wheat cultivars. Under Fe deficiency, wheat cv. HD 2967 produced 90% of its maximum RL and 75% of its maximum SDM. However, PDW 233 produced only 69% and 60%, respectively. Wheat cultivars HD 2967, and PDW 233 exhibited the highest and lowest value of root surface area and Fe uptake, respectively. The concentration difference in soil solution Fe between bulk soil and root surface (ΔCL) was maximum in wheat cultivar HD 2967, followed by PBW 550, PDW 291, and PDW 233. More depletion at the root surface causes steeper concentration gradients, which result in a high influx and transport of Fe towards root. Fe influx in all the wheat cultivars increased with the Fe application, but the increase was maximum, i.e., 4 times in HD 2967 and minimum, i.e., 2.8 times in PDW 233. It can be concluded that wheat cultivars HD 2967 and PBW 550 efficiently utilized Fe as compared to other cultivars. Additionally, iron efficiency of wheat cultivars depends upon uptake of each root segment, i.e., the influx, which in turn depends on depletion of Fe in the rhizosphere during vegetative phase and higher utilization efficiency of acquired Fe during reproductive phase that governs the ultimate grain yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fe%20efficiency" title="Fe efficiency">Fe efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%20influx" title=" Fe influx"> Fe influx</a>, <a href="https://publications.waset.org/abstracts/search?q=Fe%20uptake" title=" Fe uptake"> Fe uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=Rhizosphere" title=" Rhizosphere"> Rhizosphere</a> </p> <a href="https://publications.waset.org/abstracts/128052/iron-influx-its-root-shoot-relations-and-utilization-efficiency-in-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128052.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3003</span> Effect of Fertilization and Combined Inoculation with Azospirillum brasilense and Pseudomonas fluorescens on Rhizosphere Microbial Communities of Avena sativa (Oats) and Secale Cereale (Rye) Grown as Cover Crops</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jhovana%20Silvia%20Escobar%20Ortega">Jhovana Silvia Escobar Ortega</a>, <a href="https://publications.waset.org/abstracts/search?q=Ines%20Eugenia%20Garcia%20De%20Salamone"> Ines Eugenia Garcia De Salamone</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cover crops are an agri-technological alternative to improve all properties of soils. Cover crops such as oats and rye could be used to reduce erosion and favor system sustainability when they are grown in the same agricultural cycle of the soybean crop. This crop is very profitable but its low contribution of easily decomposable residues, due to its low C/N ratio, leaves the soil exposed to erosive action and raises the need to reduce its monoculture. Furthermore, inoculation with the plant growth promoting rhizobacteria contributes to the implementation, development and production of several cereal crops. However, there is little information on its effects on forage crops which are often used as cover crops to improve soil quality. In order to evaluate the effect of combined inoculation with Azospirillum brasilense and Pseudomonas fluorescens on rhizosphere microbial communities, field experiments were conducted in the west of Buenos Aires province, Argentina, with a split-split plot randomized complete block factorial design with three replicates. The factors were: type of cover crop, inoculation and fertilization. In the main plot two levels of fertilization 0 and 7 40-0-5 (NPKS) were established at sowing. Rye (Secale cereale cultivar Quehué) and oats (Avena sativa var Aurora.) were sown in the subplots. In the sub-subplots two inoculation treatments are applied without and with application of a combined inoculant with A. brasilense and P. fluorescens. Due to the growth of cover crops has to be stopped usually with the herbicide glyphosate, rhizosphere soil of 0-20 and 20-40 cm layers was sampled at three sampling times which were: before glyphosate application (BG), a month after glyphosate application (AG) and at soybean harvest (SH). Community level of physiological profiles (CLPP) and Shannon index of microbial diversity (H) were obtained by multivariate analysis of Principal Components. Also, the most probable number (MPN) of nitrifiers and cellulolytics were determined using selective liquid media for each functional group. The CLPP of rhizosphere microbial communities showed significant differences between sampling times. There was not interaction between sampling times and both, types of cover crops and inoculation. Rhizosphere microbial communities of samples obtained BG had different CLPP with respect to the samples obtained in the sampling times AG and SH. Fertilizer and depth of sampling also caused changes in the CLPP. The H diversity index of rhizosphere microbial communities of rye in the sampling time BG were higher than those associated with oats. The MPN of both microbial functional types was lower in the deeper layer since these microorganisms are mostly aerobic. The MPN of nitrifiers decreased in rhizosphere of both cover crops only AG. At the sampling time BG, the NMP of both microbial types were larger than those obtained for AG and SH. This may mean that the glyphosate application could cause fairly permanent changes in these microbial communities which can be considered bio-indicators of soil quality. Inoculation and fertilizer inputs could be included to improve management of these cover crops because they can have a significant positive effect on the sustainability of the agro-ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=community%20level%20of%20physiological%20profiles" title="community level of physiological profiles">community level of physiological profiles</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20diversity" title=" microbial diversity"> microbial diversity</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20growth%20promoting%20rhizobacteria" title=" plant growth promoting rhizobacteria"> plant growth promoting rhizobacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere%20microbial%20communities" title=" rhizosphere microbial communities"> rhizosphere microbial communities</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20quality" title=" soil quality"> soil quality</a>, <a href="https://publications.waset.org/abstracts/search?q=system%20sustainability" title=" system sustainability"> system sustainability</a> </p> <a href="https://publications.waset.org/abstracts/68602/effect-of-fertilization-and-combined-inoculation-with-azospirillum-brasilense-and-pseudomonas-fluorescens-on-rhizosphere-microbial-communities-of-avena-sativa-oats-and-secale-cereale-rye-grown-as-cover-crops" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3002</span> Effect of Chemical Fertilizer on Plant Growth-Promoting Rhizobacteria in Wheat</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tessa%20E.%20Reid">Tessa E. Reid</a>, <a href="https://publications.waset.org/abstracts/search?q=Vanessa%20N.%20Kavamura"> Vanessa N. Kavamura</a>, <a href="https://publications.waset.org/abstracts/search?q=Maider%20Abadie"> Maider Abadie</a>, <a href="https://publications.waset.org/abstracts/search?q=Adriana%20Torres-Ballesteros"> Adriana Torres-Ballesteros</a>, <a href="https://publications.waset.org/abstracts/search?q=Mark%20Pawlett"> Mark Pawlett</a>, <a href="https://publications.waset.org/abstracts/search?q=Ian%20M.%20Clark"> Ian M. Clark</a>, <a href="https://publications.waset.org/abstracts/search?q=Jim%20Harris"> Jim Harris</a>, <a href="https://publications.waset.org/abstracts/search?q=Tim%20Mauchline"> Tim Mauchline</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The deleterious effect of chemical fertilizer on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. Biofertilization is a cost-effective and sustainable alternative; improving strategies depends on isolating beneficial soil microorganisms. Although culturing is widespread in biofertilization, it is unknown whether the composition of cultured isolates closely mirrors native beneficial rhizobacterial populations. This study aimed to determine the relative abundance of culturable plant growth-promoting rhizobacteria (PGPR) isolates within total soil DNA and how potential PGPR populations respond to chemical fertilization in a commercial wheat variety. It was hypothesized that PGPR will be reduced in fertilized relative to unfertilized wheat. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without nitrogen-phosphorous-potassium (NPK) fertilizer. Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (amplicon sequence variance (ASV) analysis of total rhizobacterial DNA) and -dependent (isolation using growth media) techniques. Rhizosphere- and rhizoplane-derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron and, zinc) isolated from rhizocompartments in wheat, whereas salt tolerant bacteria were not affected. A PGPR database was created from isolate 16S rRNA gene sequences and searched against total soil DNA, revealing that 1.52% of total community ASVs were identified as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples (rhizosphere (49%) and rhizoplane (91%)) compared to fertilized samples (rhizosphere (21%) and rhizoplane (19%)) which constituted approximately 1.95% and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; this study suggests that rhizobacteria, which potentially benefit plants by mobilizing insoluble nutrients in soil, are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bacteria" title="bacteria">bacteria</a>, <a href="https://publications.waset.org/abstracts/search?q=fertilizer" title=" fertilizer"> fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=microbiome" title=" microbiome"> microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizoplane" title=" rhizoplane"> rhizoplane</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere" title=" rhizosphere"> rhizosphere</a> </p> <a href="https://publications.waset.org/abstracts/132075/effect-of-chemical-fertilizer-on-plant-growth-promoting-rhizobacteria-in-wheat" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3001</span> Top-Down and Bottom-up Effects in Rhizosphere-Plant-Aphid Interactions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anas%20Cherqui">Anas Cherqui</a>, <a href="https://publications.waset.org/abstracts/search?q=Audrey%20Pecourt"> Audrey Pecourt</a>, <a href="https://publications.waset.org/abstracts/search?q=Manuella%20Catterou"> Manuella Catterou</a>, <a href="https://publications.waset.org/abstracts/search?q=Candice%20Mazoyon"> Candice Mazoyon</a>, <a href="https://publications.waset.org/abstracts/search?q=Herv%C3%A9%20Demailly"> Hervé Demailly</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivien%20Sarazin"> Vivien Sarazin</a>, <a href="https://publications.waset.org/abstracts/search?q=Fr%C3%A9d%C3%A9ric%20Dubois"> Frédéric Dubois</a>, <a href="https://publications.waset.org/abstracts/search?q=J%C3%A9r%C3%B4me%20Duclercq"> Jérôme Duclercq</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Aphids are pests that can cause severe yield losses in field crops. Chemical control is currently widely used to control aphids, but this method is increasingly controversial. The pea is able to recruit bacteria that are beneficial to its development, growth and health. However, the effects of this microbial recruitment on plant-insect interactions have generally been underestimated. This study investigated the interactions between Pisum sativum, key bacteria of pea rhizosphere (Rhizobium and Sphingomonas species) and the pea aphid, Acyrthosiphon pisum. We assessed the bottom-up effects of single and combined bacterial inoculations on pea plant health and subsequent aphid performance, as well as the top-down effects of aphid infestation on soil functionality. The presence of S. sediminicola or S. daechungensis limited the fecundity of the pea aphid without strongly affecting its feeding behaviour. Nevertheless, these bacteria limited the effect of A. pisum on the plant phenotype. In addition, the aphid infestation decreased the soil functionality, suggesting a potential strategy to hinder the recruitment of beneficial microorganisms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Acyrthosiphon%20pisum" title="Acyrthosiphon pisum">Acyrthosiphon pisum</a>, <a href="https://publications.waset.org/abstracts/search?q=Pisum%20sativum" title=" Pisum sativum"> Pisum sativum</a>, <a href="https://publications.waset.org/abstracts/search?q=Sphingomonas" title=" Sphingomonas"> Sphingomonas</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobium" title=" rhizobium"> rhizobium</a>, <a href="https://publications.waset.org/abstracts/search?q=EPG" title=" EPG"> EPG</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a> </p> <a href="https://publications.waset.org/abstracts/191373/top-down-and-bottom-up-effects-in-rhizosphere-plant-aphid-interactions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191373.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3000</span> Ecological Engineering Through Organic Amendments: Enhancing Pest Regulation, Beneficial Insect Populations, and Rhizosphere Microbial Diversity in Cabbage Ecosystems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ravi%20Prakash%20Maurya">Ravi Prakash Maurya</a>, <a href="https://publications.waset.org/abstracts/search?q=Munaswamyreddygari%20Sreedhar"> Munaswamyreddygari Sreedhar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present studies on ecological engineering through soil amendments in cabbage crops for insect pests regulation were conducted at G. B. Pant University of Agriculture and Technology, Pantnagar, Udham Singh Nagar, Uttarakhand, India. Ten treatments viz., Farm Yard Manure (FYM), Neem cake (NC), Vermicompost (VC), Poultry manure (PM), PM+FYM, NC+VC, NC+PM, VC+FYM, Urea+ SSP+MOP (Standard Check) and Untreated Check were evaluated to study the effect of these amendments on the population of insect pests, natural enemies and the microbial community of the rhizosphere in the cabbage crop ecosystem. The results revealed that most of the cabbage pests, viz., aphids, head borer, gram pod borer, and armyworm, were more prevalent in FYM, followed by PM and NC-treated plots. The best cost-benefit ratio was found in PM + FYM treatment, which was 1: 3.62, while the lowest, 1: 0.97, was found in the VC plot. The population of natural enemies like spiders, coccinellids, syrphids, and other hymenopterans and dipterans was also found to be prominent in organic plots, namely FYM, followed by VC and PM plots. Diversity studies on organic manure-treated plots were also carried out, which revealed a total of nine insect orders (Hymenoptera, Hemiptera, Lepidoptera, Coleoptera, Neuroptera, Diptera, Orthoptera, Dermaptera, Thysanoptera, and one arthropodan class, Arachnida) in different treatments. The Simpson Diversity Index was also studied and found to be maximum in FYM plots. The metagenomic analysis of the rhizosphere microbial community revealed that the highest bacterial count was found in NC+PM plot as compared to standard check and untreated check. The diverse microbial population contributes to soil aggregation and stability. Healthier soil structures can improve water retention, aeration, and root penetration, which are all crucial for crop health. The further analysis also identified a total of 39 bacterial phyla, among which the most abundant were Actinobacteria, Firmicutes, and the SAR324 clade. Actinobacteria and Firmicutes are known for their roles in decomposing organic matter and mineralizing nutrients. Their highest abundance suggests improved nutrient cycling and availability, which can directly enhance plant growth. Hence, organic amendments in cabbage farming can transform the rhizosphere microbiome, reduce pest pressure, and foster populations of beneficial insects, leading to healthier crops and a more sustainable agricultural ecosystem. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cabbage%20ecosystem" title="cabbage ecosystem">cabbage ecosystem</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20amendments" title=" organic amendments"> organic amendments</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere%20microbiome" title=" rhizosphere microbiome"> rhizosphere microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=pest%20and%20natural%20enemy%20diversity" title=" pest and natural enemy diversity"> pest and natural enemy diversity</a> </p> <a href="https://publications.waset.org/abstracts/193385/ecological-engineering-through-organic-amendments-enhancing-pest-regulation-beneficial-insect-populations-and-rhizosphere-microbial-diversity-in-cabbage-ecosystems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/193385.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">13</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2999</span> Mechanisms of Metals Stabilization in the Soil by Biochar Material as Affected by the Low Molecular Weight Organic Acids</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shoffikul%20Islam">Md. Shoffikul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongqing%20Hu"> Hongqing Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Immobilizing trace elements by reducing their mobility and bioavailability through amendment application, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to immobilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study examined the impact of BC derived from rice husk, tartaric acid (TA), and oxalic acid (OA), and the combination of BC and TA/OA on the changes of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the attacks of TA and OA were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The TA and OA each at 2, 5, 10, and 20 mM kg-1 (w/v) were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC, TA, and OA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. The BC, low level of TA (2 mM kg-1 soil), and BC plus the low concentration of TA (BC-TA2) addition considerably declined the acid-soluble Cd, Pb, and Zn in which BC-TA2 was found to be the most effective treatment. The trends were reversed concerning the high levels of TA (>5-20 mM kg-1 soil), all levels of OA (2-20 mM kg-1 soil), and the BC plus high levels of TA/OA treatments. BC-TA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual fractions with time. The most increased electronegative charges of BC-TA2 indicate its (BC-TA2) highest metals' immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite concerning Cd, Pb, and Zn immobilization, respectively. The findings demonstrated that the low level of TA increased metals immobilization, while the high levels of TA and all levels of OA enhanced their mobilization. The BC-TA2 was the best treatment in stabilizing metals in soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biochar" title="biochar">biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title=" immobilization"> immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=low%20molecular%20weight%20organic%20acids" title=" low molecular weight organic acids"> low molecular weight organic acids</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elements%20contaminated%20soil" title=" trace elements contaminated soil"> trace elements contaminated soil</a> </p> <a href="https://publications.waset.org/abstracts/147423/mechanisms-of-metals-stabilization-in-the-soil-by-biochar-material-as-affected-by-the-low-molecular-weight-organic-acids" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2998</span> Biochar-induced Metals Immobilization in the Soil as Affected by Citric Acid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shoffikul%20Islam">Md. Shoffikul Islam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hongqing%20Hu"> Hongqing Hu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Reducing trace elements' mobility and bioavailability through amendment addition, especially biochar (BC), is a cost-effective and efficient method to address their toxicity in the soil environment. However, the low molecular weight organic acids (LMWOAs) in the rhizosphere could affect BC's efficiency to stabilize trace metals as the LMWOAs could either mobilize or fix metals in the soils. Therefore, understanding the BC's and LMWOAs' interaction mechanisms on metals stabilization in the rhizosphere is crucial. The present study explored the impact of BC derived from rice husk and citric acid (CA) and the combination of BC and CA on the redistribution of cadmium (Cd), lead (Pb), and zinc (Zn) among their geochemical forms through incubation experiment. The changes of zeta potential and X-ray diffraction (XRD) pattern of BC and BC-amended soils to investigate the probable mechanisms of trace elements' immobilization by BC under the CA attack were also examined. The rice husk BC at 5% (w/w) was mixed with the air-dry soil (an Anthrosols) contaminated with Cd, Pb, and Zn in the plastic pot. The 2, 5, 10, and 20 mM kg-1 (w/v) of CA were added separately into the pot. All the ingredients were mixed thoroughly with the soil. A control (CK) treatment was also prepared without BC and CA addition. After 7, 15, and 60 days of incubation with 60% (w/v) moisture level at 25 °C, the incubated soils were determined for pH and EC and were sequentially extracted to assess the metals' transformation in soil. The electronegative charges and XRD peaks of BC and BC-amended soils were also measured. Compared to CK, the application of BC, low level of CA (2 mM kg-1 soil) (CA2), and BC plus the low concentration of CA (BC-CA2) considerably declined the acid-soluble Cd, Pb, and Zn in which BC-CA2 was found to be the most effective treatment. The reversed trends were observed concerning the high levels of CA (>5-20 mM kg-1 soil) and the BC plus high concentrations of CA treatments. BC-CA2 changed the highest amounts of acid-soluble and reducible metals to the oxidizable and residual forms with time. The most increased electronegative charges of BC-CA2 indicate its (BC-CA2) highest Cd, Pb, and Zn immobilizing efficiency, probably through metals adsorption and fixation with the negative charge sites. The XRD study revealed the presence of P, O, CO32-, and Cl1- in BC, which might be responsible for the precipitation of CdCO3, pyromorphite, and hopeite in the case of Cd, Pb, and Zn immobilization, respectively. The findings depicted that the low concentration of CA increased metals' stabilization, whereas the high levels of CA enhanced their mobilization. The BC-CA2 emerged as the best amendment among treatments for metals stabilization in contaminated soils. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biochar" title="Biochar">Biochar</a>, <a href="https://publications.waset.org/abstracts/search?q=citric%20acid" title="citric acid">citric acid</a>, <a href="https://publications.waset.org/abstracts/search?q=immobilization" title="immobilization">immobilization</a>, <a href="https://publications.waset.org/abstracts/search?q=trace%20elements%20contaminated%20soil" title="trace elements contaminated soil">trace elements contaminated soil</a> </p> <a href="https://publications.waset.org/abstracts/147412/biochar-induced-metals-immobilization-in-the-soil-as-affected-by-citric-acid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147412.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">82</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2997</span> Which Mechanisms are Involved by Legume-Rhizobia Symbiosis to Increase Its Phosphorus Use Efficiency under Low Phosphorus Level?</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Makoudi">B. Makoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ghanimi"> R. Ghanimi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Bargaz"> A. Bargaz</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Mouradi"> M. Mouradi</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Farissi"> M. Farissi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Kabbaj"> A. Kabbaj</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20J.%20Drevon"> J. J. Drevon</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Ghoulam"> C. Ghoulam </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Legume species are able to establish a nitrogen fixing symbiosis with soil rhizobia that allows them, when it operates normally, to ensure their necessary nitrogen nutrition. This biological process needs high phosphorus (P) supply and consequently it is limited under low phosphorus availability. To overcome this constraint, legume-rhizobia symbiosis develops many mechanisms to increase P availability in the rhizosphere and also the efficiency of P fertilizers. The objectives of our research works are to understand the physiological and biochemical mechanisms implemented by legume-rhizobia symbiosis to increase its P use efficiency (PUE) in order to select legume genotypes-rhizobia strains combination more performing for BNF under P deficiency. Our studies were carried out on two grain legume species, common bean (Phaseolus vulgaris) and faba bean (Vicia faba) tested in farmers’ fields and in experimental station fewer than two soil phosphorus levels. Under field conditions, the P deficiency caused a significant decrease of Plant and nodule biomasses in all of the tested varieties with a difference between them. This P limitation increased the contents of available P in the rhizospheric soils that was positively correlated with the increase of phosphatases activities in the nodules and the rhizospheric soil. Some legume genotypes showed a significant increase of their P use efficiency under P deficiency. The P solubilization test showed that some rhizobia strains isolated from Haouz region presented an important capacity to grow on solid and liquid media with tricalcium phosphate as the only P source and their P solubilizing activity was confirmed by the assay of the released P in the liquid medium. Also, this P solubilizing activity was correlated with medium acidification and the excretion of acid phosphatases and phytases in the medium. Thus, we concluded that medium acidification and excretion of phosphatases in the rhizosphere are the prominent reactions for legume-rhizobia symbiosis to improve its P nutrition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=legume" title="legume">legume</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20deficiency" title=" phosphorus deficiency"> phosphorus deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizobia" title=" rhizobia"> rhizobia</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizospheric%20soil" title=" rhizospheric soil"> rhizospheric soil</a> </p> <a href="https://publications.waset.org/abstracts/29833/which-mechanisms-are-involved-by-legume-rhizobia-symbiosis-to-increase-its-phosphorus-use-efficiency-under-low-phosphorus-level" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29833.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2996</span> Effects of Drought on Microbial Activity in Rhizosphere, Soil Hydrophobicity and Leaching of Mineral Nitrogen from Arable Soil Depending on Method of Fertilization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Elbl">Jakub Elbl</a>, <a href="https://publications.waset.org/abstracts/search?q=Luk%C3%A1%C5%A1%20Plo%C5%A1ek"> Lukáš Plošek</a>, <a href="https://publications.waset.org/abstracts/search?q=Anton%C3%ADn%20Kintl"> Antonín Kintl</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Hyn%C5%A1t"> Jaroslav Hynšt</a>, <a href="https://publications.waset.org/abstracts/search?q=So%C5%88a%20Javorekov%C3%A1"> Soňa Javoreková</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaroslav%20Z%C3%A1hora"> Jaroslav Záhora</a>, <a href="https://publications.waset.org/abstracts/search?q=Libor%20Kalhotka"> Libor Kalhotka</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Urb%C3%A1nkov%C3%A1"> Olga Urbánková</a>, <a href="https://publications.waset.org/abstracts/search?q=Ivana%20Charousov%C3%A1"> Ivana Charousová </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work presents the first results from the long-term laboratory experiment dealing with impact of drought on soil properties. Three groups of the treatment (A, B and C) with different regime of irrigation were prepared. The soil water content was maintained at 70 % of soil water holding capacity in group A, at 40 % in group B. In group C, soil water regime was maintained in the range of wilting point. Each group of the experiment was divided into three variants (A1 = B1, C1; A2 = B2, C2 etc.) with three repetitions: Variants A1 (B1, C1) were controls without addition of another fertilizer. Variants A2 (B2, C2) were fertilized with mineral nitrogen fertilizer DAM 390 (0.140 Mg of N per ha) and variants A3 (B3, C3) contained 45 g of Cp per a pot. The significant differences (ANOVA, P<0.05) in the leaching of mineral nitrogen and values of saturated hydraulic conductivity (Ksat) were found. The highest values of Ksat were found in variants (within each group) with addition of compost (A3, B3, C3). Conversely, the lowest values of Ksat were found in variants with addition of mineral nitrogen. Low values of Ksat indicate an increased level of hydrophobicity in individual groups of the experiment. Moreover, all variants with compost addition showed lower amount of mineral nitrogen leaching and high level of microbial activity than variants without. This decrease of mineral nitrogen leaching was about 200 % in comparison with the control variant and about 300 % with variant, where mineral nitrogen was added. Based on these results, we can conclude that changes of soil water content directly have impact on microbial activity, soil hydrophobicity and loss of mineral nitrogen from the soil. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=drought" title="drought">drought</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activity" title=" microbial activity"> microbial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=mineral%20nitrogen" title=" mineral nitrogen"> mineral nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20hydrophobicity" title=" soil hydrophobicity"> soil hydrophobicity</a> </p> <a href="https://publications.waset.org/abstracts/7657/effects-of-drought-on-microbial-activity-in-rhizosphere-soil-hydrophobicity-and-leaching-of-mineral-nitrogen-from-arable-soil-depending-on-method-of-fertilization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/7657.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2995</span> Screening of Rice Genotypes in Methane and Carbon Dioxide Emissions Under Different Water Regimes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mthiyane%20Pretty">Mthiyane Pretty</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitsui%20Toshiake"> Mitsui Toshiake</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagano%20Hirohiko"> Nagano Hirohiko</a>, <a href="https://publications.waset.org/abstracts/search?q=Aycan%20Murat"> Aycan Murat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among the most significant greenhouse gases released from rice fields are methane and carbon dioxide. The primary focus of this research was to quantify CH₄ and CO₂ gas using different 4 rice cultivars, two water regimes, and a recording of soil moisture and temperature. In this study, we hypothesized that paddy field soils may directly affect soil enzymatic activities and physicochemical properties in the rhizosphere soil of paddy fields and subsequently indirectly affect the activity, abundance, diversity, and community composition of methanogens, ultimately affecting CH₄ flux. The experiment was laid out in the randomized block design with two treatments and three replications for each genotype. In two treatments, paddy fields and artificial soil were used. 35 days after planting (DAP), continuous flooding irrigation, Alternate wetting, and drying (AWD) were applied during the vegetative stage. The highest recorded measurements of soil and environmental parameters were soil moisture at 76%, soil temperature at 28.3℃, Bulk EC at 0.99 ds/m, and pore water EC at 1,25, using HydraGO portable soil sensor system. Gas samples were carried out once on a weekly basis at 09:00 am and 12: 00 pm to obtain the mean GHG flux. Gas Chromatography (GC, Shimadzu, GC-2010, Japan) was used for the analysis of CH4 and CO₂. The treatments with paddy field soil had a 1.3℃ higher temperature than artificial soil. The overall changes in Bulk EC were not significant across the treatment. The CH₄ emission patterns were observed in all rice genotypes, although they were less in treatments with AWD with artificial soil. This shows that AWD creates oxic conditions in the rice soil. CO₂ was also quantified, but it was in minute quantities, as rice plants were using CO₂ for photosynthesis. The highest tillering number was 7, and the lowest was 3 in cultivars grown. The rice varieties to be used for breeding are Norin 24, with showed a high number of tillers with less CH₄. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=greenhouse%20gases" title="greenhouse gases">greenhouse gases</a>, <a href="https://publications.waset.org/abstracts/search?q=methane" title=" methane"> methane</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological%20characterization" title=" morphological characterization"> morphological characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=alternating%20wetting%20and%20drying" title=" alternating wetting and drying"> alternating wetting and drying</a> </p> <a href="https://publications.waset.org/abstracts/167782/screening-of-rice-genotypes-in-methane-and-carbon-dioxide-emissions-under-different-water-regimes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167782.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2994</span> Influence of Genotypic Variability on Symbiotic and Agrophysiological Performances of Chickpea Under Mesorhizobium-PSB Inoculation and RP-Fertilization Likely Due to Shipping Rhizosphere Diversity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rym%20Saidi">Rym Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Pape%20Alioune%20Ndiaye"> Pape Alioune Ndiaye</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Idbella"> Mohamed Idbella</a>, <a href="https://publications.waset.org/abstracts/search?q=Ammar%20Ibnyasser"> Ammar Ibnyasser</a>, <a href="https://publications.waset.org/abstracts/search?q=Zineb%20Rchiad"> Zineb Rchiad</a>, <a href="https://publications.waset.org/abstracts/search?q=Issam%20Kadmiri%20Meftahi"> Issam Kadmiri Meftahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Khalid%20Daoui"> Khalid Daoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnane%20Bargaz"> Adnane Bargaz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Chickpea (Cicer arietinum L.) is an important leguminous crop grown worldwide, and the second most important food legume in Morocco. In addition, that chickpea plays a significant role in humans’ dietary consumption, it has key ecological interest in terms of biological N-fixation (BNF) having the ability to symbiotically secure 20-80% of needed. Alongside nitrogen (N), low soil phosphorus (P) availability is one of the major factors limiting chickpea growth and productivity. After nitrogen, P is the most important macronutrient for plants growth and development as well as the BNF. In the context of improving chickpea symbiotic performance, co-application of beneficial bacterial inoculants (including Mesorhizobium) and Rock P-fertilizer could boost chickpea performance and productivity, owing to increasing P-utilization efficiency and overall nutrient acquisition under P-deficiency conditions. Greenhouse experiment was conducted to evaluate the response of two chickpea varieties (Arifi “A” and Bochra “B”) to co-application of RP-fertilizer alongside Mesorhizobium and phosphate solubilizing bacteria (PSB) consortium under P-deficient soil in Morocco. Our findings demonstrate that co-applying RP50 with bacterial inoculant significantly increased NDW by 85.71% and 109.09% in A and B chickpea varieties respectively, compared to uninoculated RP-fertilized plants. Nodule Pi and leghemoglobin (LHb) contents also increased in RP-fertilized bacterial inoculants plants. Likewise, shoot and root dry weights of both chickpea varieties increased with bacterial inoculation and RP-fertilization. This is due to enhanced Pi content in shoot (282.54% and 291.42%) and root (334.30% and 408.32%) in response to RP50-Inc compared to unfertilized uninoculated plants, for A and B chickpea varieties respectively. Rhizosphere available P was also increased by 173.86% and 182.25% in response to RP50-Inc as compared to RP-fertilized uninoculated plants, with a positive correlation between soil available P and root length in inoculated plants of A. and B. chickpea varieties (R= 0.49; 0.6) respectively. Furthermore, Mesorhizobium was among the dominant genera in rhizosphere bacterial diversity of both chickpea varieties. This can be attributed to its capacity to enhance plant growth traits, with a more pronounced effect observed in B. variety. Our research demonstrates that integrated fertilization with bacterial inoculation effectively improves biological N-fixation and P nutrition, enhancing the agrophysiological performance of Moroccan chickpea varieties, particularly in restricted P-availability conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chickpea%20varieties" title="chickpea varieties">chickpea varieties</a>, <a href="https://publications.waset.org/abstracts/search?q=bacterial%20consortium" title=" bacterial consortium"> bacterial consortium</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculants" title=" inoculants"> inoculants</a>, <a href="https://publications.waset.org/abstracts/search?q=Mesorhizobium" title=" Mesorhizobium"> Mesorhizobium</a>, <a href="https://publications.waset.org/abstracts/search?q=Rock-P%20fertilizer" title=" Rock-P fertilizer"> Rock-P fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=phosphorus%20deficiency" title=" phosphorus deficiency"> phosphorus deficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=agrophysiological%20performance" title=" agrophysiological performance"> agrophysiological performance</a> </p> <a href="https://publications.waset.org/abstracts/192257/influence-of-genotypic-variability-on-symbiotic-and-agrophysiological-performances-of-chickpea-under-mesorhizobium-psb-inoculation-and-rp-fertilization-likely-due-to-shipping-rhizosphere-diversity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192257.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">20</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2993</span> Microbial Inoculants to Increase the Biomass and Nutrient Uptake of Tithonia Cultivated as Hedgerow Plants to Control Erosion in Ultisols</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nurhajati%20Hakim">Nurhajati Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiki%20Amalia"> Kiki Amalia</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Agustian"> A. Agustian</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Hermansah"> H. Hermansah</a>, <a href="https://publications.waset.org/abstracts/search?q=Y.%20Yulnafatmawita"> Y. Yulnafatmawita</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Ultisols require greater amounts of fertilizer application compared to other soils and susceptible to erosion. Unfortunately, the price of synthetic fertilizers has increased over time during the years, making them unaffordable for most Indonesian farmers. While terrace technique to control erosion very costly.Over the last century, efforts to reduce reliance on synthetic agro-chemicals fertilizers and erosion control have recently focused on Tithonia diversifolia as a fertilizer alternative, and as hedgerow plant to control erosion. Generally known by its common name of tree marigold or Mexican sunflower, this plant has attracted considerable attention for its prolific production of green biomass, rich in nitrogen, phosphorous and potassium (NPK). In pot experiments has founded some microbial such as Mycorrhizal, Azotobacter, Azospirillum, phosphate solubilizing bacterial (PSB) and fungi (PSF) are expected to play an important role in biomass production and high nutrient uptake of this plant. This issue of importance was pursued further in the following investigation in field condition. The aim of this study was to determine the type of microbial combination suitable for Tithonia cultivation as hedgerow plants in Ultisols which have higher biomass production and nutrient content, and decline soil erosion. The field experiment was conducted with 6 treatments in a randomized block design (RBD) using 3 replications. The treatments were: Tithonia rhizosphere without microbial inoculated (A); Inokulanted by Mycorrhizal + Azotobacter + Azospirillium (B); Mycorrhizal + PSF (C); Mycorrhizal + PSB(D); Mycorrhizal + PSB + PSF(E);and without hedgerow Tithonia (F).The microbial substrates were inoculated into the Tithonia rhizosphere in the nursery. The young Tithonia plants were then planted as hedgerow on Ultisols in the experimental field for 8 months, and pruned once every 2 months. Soil erosion were collected every rainy time. The differences between treatments were statistically significant by HSD test at the 95% level of probability. The result showed that treatment C (mycorrhizal + PSB) was the most effective, and followed by treatment D (mycorrhizal + PSF) in producing higher Tithonia biomass about 8 t dry matter 2000 m-2 ha-1 y-1 and declined soil erosion 71-75%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hedgerow%20tithonia" title="hedgerow tithonia">hedgerow tithonia</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20inoculants" title=" microbial inoculants"> microbial inoculants</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20fertilizer" title=" organic fertilizer"> organic fertilizer</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20erosion%20control" title=" soil erosion control"> soil erosion control</a> </p> <a href="https://publications.waset.org/abstracts/24912/microbial-inoculants-to-increase-the-biomass-and-nutrient-uptake-of-tithonia-cultivated-as-hedgerow-plants-to-control-erosion-in-ultisols" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24912.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2992</span> Stabilization of Clay Soil Using A-3 Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mustapha%20Alhaji">Mohammed Mustapha Alhaji</a>, <a href="https://publications.waset.org/abstracts/search?q=Sadiku%20Salawu"> Sadiku Salawu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A clay soil which classified under A-7-6 soil according to AASHTO soil classification system and CH according to the unified soil classification system was stabilized using A-3 soil (AASHTO soil classification system). The clay soil was replaced with 0%, 10%, 20% to 100% A-3 soil, compacted at both the BSL and BSH compaction energy level and using unconfined compressive strength as evaluation criteria. The MDD of the compactions at both the BSL and BSH compaction energy levels showed increase in MDD from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values reduced to 100% A-3 soil replacement. The trend of the OMC with varied A-3 soil replacement is similar to that of MDD but in a reversed order. The OMC reduced from 0% A-3 soil replacement to 40% A-3 soil replacement after which the values increased to 100% A-3 soil replacement. This trend was attributed to the observed reduction in the void ratio from 0% A-3 soil replacement to 40% A-3 soil replacement after which the void ratio increased to 100% A-3 soil replacement. The maximum UCS for clay at varied A-3 soil replacement increased from 272 and 770kN/m2 for BSL and BSH compaction energy level at 0% A-3 soil replacement to 295 and 795kN/m2 for BSL and BSH compaction energy level respectively at 10% A-3 soil replacement after which the values reduced to 22 and 60kN/m2 for BSL and BSH compaction energy level respectively at 70% A-3 soil replacement. Beyond 70% A-3 soil replacement, the mixture cannot be moulded for UCS test. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=A-3%20soil" title="A-3 soil">A-3 soil</a>, <a href="https://publications.waset.org/abstracts/search?q=clay%20minerals" title=" clay minerals"> clay minerals</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic%20action" title=" pozzolanic action"> pozzolanic action</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a> </p> <a href="https://publications.waset.org/abstracts/33993/stabilization-of-clay-soil-using-a-3-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33993.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">444</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2991</span> Crop Genotype and Inoculum Density Influences Plant Growth and Endophytic Colonization Potential of Plant Growth-Promoting Bacterium Burkholderia phytofirmans PsJN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Naveed">Muhammad Naveed</a>, <a href="https://publications.waset.org/abstracts/search?q=Sohail%20Yousaf"> Sohail Yousaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Zahir%20Ahmad%20Zahir"> Zahir Ahmad Zahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Birgit%20Mitter"> Birgit Mitter</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Sessitsch"> Angela Sessitsch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Most bacterial endophytes originate from the soil and enter plants via the roots followed by further spread through the inner tissues. The mechanisms allowing bacteria to colonize plants endophytically are still poorly understood for most bacterial and plant species. Specific bacterial functions are required for plant colonization, but also the plant itself is a determining factor as bacterial ability to establish endophytic populations is very often dependent on the plant genotype (cultivar) and inoculums density. The effect of inoculum density (107, 108, 109 CFU mL-1) of Burkholderia phytofirmans strain PsJN was evaluated on growth and endophytic colonization of different maize and potato cultivars under axenic and natural soil conditions. PsJN inoculation significantly increased maize seedling growth and tuber yield of potato at all inoculum density compared to uninoculated control. Under axenic condition, PsJN inoculation (108 CFU mL-1) significantly improved the germination, root/shoot length and biomass up to 62, 115, 98 and 135% of maize seedling compared to uninoculated control. In case of potato, PsJN inoculation (109 CFU mL-1) showed maximum response and significantly increased root/shoot biomass and tuber yield under natural soil condition. We confirmed that PsJN is able to colonize the rhizosphere, roots and shoots of maize and potato cultivars. The endophytic colonization increased linearly with increasing inoculum density (within a range of 8 x 104 – 3 x 107 CFU mL-1) and were highest for maize (Morignon) and potato (Romina) as compared to other cultivars. Efficient colonization of cv. Morignon and Romina by strain PsJN indicates the specific cultivar colonizing capacity of the bacteria. The findings of the study indicate the non-significant relationship between colonization and plant growth promotion in maize under axenic conditions. However, the inoculum level (109 CFU mL-1) that promoted colonization of rhizosphere and plant interior (endophytic) also best promoted growth and tuber yield of potato under natural soil conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=crop%20genotype" title="crop genotype">crop genotype</a>, <a href="https://publications.waset.org/abstracts/search?q=inoculum%20density" title=" inoculum density"> inoculum density</a>, <a href="https://publications.waset.org/abstracts/search?q=Burkholderia%20phytofirmans%20PsJN" title=" Burkholderia phytofirmans PsJN"> Burkholderia phytofirmans PsJN</a>, <a href="https://publications.waset.org/abstracts/search?q=colonization" title=" colonization"> colonization</a>, <a href="https://publications.waset.org/abstracts/search?q=growth" title=" growth"> growth</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a> </p> <a href="https://publications.waset.org/abstracts/20888/crop-genotype-and-inoculum-density-influences-plant-growth-and-endophytic-colonization-potential-of-plant-growth-promoting-bacterium-burkholderia-phytofirmans-psjn" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20888.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">486</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2990</span> Plant Microbiota of Coastal Halophyte Salicornia Ramossisima</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isabel%20N.%20Sierra-Garcia">Isabel N. Sierra-Garcia</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20J.%20Ferreira"> Maria J. Ferreira</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandro%20Figuereido"> Sandro Figuereido</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%20Gomes"> Newton Gomes</a>, <a href="https://publications.waset.org/abstracts/search?q=Helena%20Silva"> Helena Silva</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Cunha"> Angela Cunha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Plant-associated microbial communities are considered crucial in the adaptation of halophytes to coastal environments. The plant microbiota can be horizontally acquired from the environment or vertically transmitted from generation to generation via seeds. Recruiting of the microbial communities by the plant is affected by geographical location, soil source, host genotype, and cultivation practice. There is limited knowledge reported on the microbial communities in halophytes the influence of biotic and abiotic factors. In this work, the microbiota associated with the halophyte Salicornia ramosissima was investigated to determine whether the structure of bacterial communities is influenced by host genotype or soil source. For this purpose, two contrasting sites where S. ramosissima is established in the estuarine system of the Ria de Aveiro were investigated. One site corresponds to a natural salt marsh where S. ramosissima plants are present (wild plants), and the other site is a former salt pan that nowadays are subjected to intensive crop production of S. ramosissima (crop plants). Bacterial communities from the rhizosphere, seeds and root endosphere of S. ramossisima from both sites were investigated by sequencing bacterial 16S rRNA gene using the Illumina MiSeq platform. The analysis of the sequences showed that the three plant-associated compartments, rhizosphere, root endosphere, and seed endosphere, harbor distinct microbiomes. However, bacterial richness and diversity were higher in seeds of wild plants, followed by rhizosphere in both sites, while seeds in the crop site had the lowest diversity. Beta diversity measures indicated that bacterial communities in root endosphere and seeds were more similar in both wild and crop plants in contrast to rhizospheres that differed by local, indicating that the recruitment of the similar bacterial communities by the plant genotype is active in regard to the site. Moreover, bacterial communities from the root endosphere and rhizosphere were phylogenetically more similar in both sites, but the phylogenetic composition of seeds in wild and crop sites was distinct. These results indicate that cultivation practices affect the seed microbiome. However, minimal vertical transmission of bacteria from seeds to adult plants is expected. Seeds from the crop site showed higher abundances of Kushneria and Zunongwangia genera. Bacterial members of the classes Alphaprotebacteria and Bacteroidia were the most ubiquitous across sites and compartments and might encompass members of the core microbiome. These findings indicate that bacterial communities associated with S. ramosissima are more influenced by host genotype rather than local abiotic factors or cultivation practices. This study provides a better understanding of the composition of the plant microbiota in S. ramosissima , which is essential to predict the interactions between plant and associated microbial communities and their effects on plant health. This knowledge is useful to the manipulations of these microbial communities to enhance the health and productivity of this commercially important plant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=halophytes" title="halophytes">halophytes</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20microbiome" title=" plant microbiome"> plant microbiome</a>, <a href="https://publications.waset.org/abstracts/search?q=Salicornia%20ramosissima" title=" Salicornia ramosissima"> Salicornia ramosissima</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a> </p> <a href="https://publications.waset.org/abstracts/142448/plant-microbiota-of-coastal-halophyte-salicornia-ramossisima" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142448.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2989</span> Biodegrading Potentials of Plant Growth - Promoting Bacteria on Insecticides Used in Agricultural Soil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chioma%20Nwakanma">Chioma Nwakanma</a>, <a href="https://publications.waset.org/abstracts/search?q=Onyeka%20Okoh%20Irene"> Onyeka Okoh Irene</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20Eze"> Emmanuel Eze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pesticide residues left in agricultural soils after cropping are always accumulative, difficult to degrade and harmful to animals, plants, soil and human health in general. The biodegrading potential of pesticides- resistant PGPB on soil pollution was investigated using in situ remediation technique following recommended standards. In addition, screening for insecticide utilization, maximum insecticide concentration tolerance, insecticide biodegradation and insecticide residues analyses via gas chromatographic/electron column detector were determined. The location of bacterial degradation genes was also determined. Three plant growth-promoting rhizophere (PGPR) were isolated and identified according to 16S rRNA as Paraburkholderia tropica, Burkolderia glumae and Achromobacter insolitus. From the results, all the three isolates showed phosphate solubilizing traits and were able to grow on nitrogen free medium. The isolates were able to utilize the insecticide as sole carbon source and increase in biomass. They were statistically significantly tolerant to all the insecticide concentrations screened. The gas chromatographic profiles of the insecticide residues showed a reduction in the peak areas of the insecticides, indicating degradation. The bacterial consortium had the lowest peak areas, showing the highest degradation efficiency. The genes responsible for degradation were found to be in the plasmids of the isolates. Therefore, the use of PGPR is recommended for bioremediation of agricultural soil insecticide polluted areas and can also enhance soil fertility. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biodegradation" title="biodegradation">biodegradation</a>, <a href="https://publications.waset.org/abstracts/search?q=rhizosphere" title=" rhizosphere"> rhizosphere</a>, <a href="https://publications.waset.org/abstracts/search?q=insecticides%20utilization" title=" insecticides utilization"> insecticides utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=agricultural%20soil" title=" agricultural soil"> agricultural soil</a> </p> <a href="https://publications.waset.org/abstracts/164308/biodegrading-potentials-of-plant-growth-promoting-bacteria-on-insecticides-used-in-agricultural-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164308.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2988</span> Monitoring of Potato Rot Nematode (Ditylenchus destructor Thorne, 1945) in Southern Georgia Nematode Fauna Diversity of Rhizosphere</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20Tskitishvili">E. Tskitishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Jgenti"> L. Jgenti</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Eliava"> I. Eliava</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Tskitishvili"> T. Tskitishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Bagathuria"> N. Bagathuria</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Gigolashvili"> M. Gigolashvili </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The nematode fauna of 20 agrocenosis (soil, tuber of potato, green parts of plant, roots) was studied in four regions in South Georgia (Akhaltsikhe, Aspindza, Akhalkalaki, Ninotsminda). In all, there were registered 173 forms of free-living and Phyto-parasitic nematodes, including 132 forms which were specified according to their species. A few exemplars of potato root nematode (Ditylenchus destructor) were identified in soil samples taken in Ninotsminda, Akhalkalaki and Aspinda stations, i.e. invasion is weak. Based on our data, potato Ditylenchus was not found in any of the researched tubers, while based on the data of previous years the most of tubers were infested. The cysts of 'golden nematodes' were not found during inspection of material for detection of Globoderosis <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ditylenchus" title="ditylenchus">ditylenchus</a>, <a href="https://publications.waset.org/abstracts/search?q=monitoring" title=" monitoring"> monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=nematoda" title=" nematoda"> nematoda</a>, <a href="https://publications.waset.org/abstracts/search?q=potato" title=" potato"> potato</a> </p> <a href="https://publications.waset.org/abstracts/29630/monitoring-of-potato-rot-nematode-ditylenchus-destructor-thorne-1945-in-southern-georgia-nematode-fauna-diversity-of-rhizosphere" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29630.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2987</span> Effects of Organic Amendments on Primary Nutrients (N, P and K) in a Sandy Soil </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nejib%20Turki">Nejib Turki</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Kouki%20Khalfallah"> Karima Kouki Khalfallah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The effect of six treatments of organic amendments were evaluated on a sandy soil in the region of Soukra in Tunisia. T1: cattle manure 55 t.ha-1, T2: commercial compost from Germany to 1 t.ha-1, T3: a mixture of 27.5 t.ha-1 of T1 with 0.5 t. ha-1 of T2, T4: commercial compost from France 2 t.ha-1, T5: a Tunisian commercial compost to 10 t.ha-1 and T0: control without treatment. The nitrogen in the soil increase to 0.029 g.kg-1 of soil treatment for the T1 and 0.021 g. kg-1 of soil treatment for the T3. The highest content of P2O5 has been registered by the T3 treatment that 0.44 g kg-1 soil with respect to the control (T0), which shows a content of 0.36 g.kg-1 soil. The soil was initially characterized by a potassium content of 0.8 g kg-1 soil, K2O exchangeable rate varied between 0.63 g.Kg-1 and 0.71 g.kg-1 soil respectively T2 and T1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20amendement" title=" organic amendement"> organic amendement</a>, <a href="https://publications.waset.org/abstracts/search?q=Ntot" title=" Ntot"> Ntot</a>, <a href="https://publications.waset.org/abstracts/search?q=P2O5" title=" P2O5"> P2O5</a>, <a href="https://publications.waset.org/abstracts/search?q=K2O" title=" K2O"> K2O</a> </p> <a href="https://publications.waset.org/abstracts/19419/effects-of-organic-amendments-on-primary-nutrients-n-p-and-k-in-a-sandy-soil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">633</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2986</span> Combined Aplication of Indigenous Pseudomonas fluorescens and the AM Fungi as the Potential Biocontrol Agents of Banana Fusarium wilt</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eri%20Sulyanti">Eri Sulyanti</a>, <a href="https://publications.waset.org/abstracts/search?q=Trimurti%20Habazar"> Trimurti Habazar</a>, <a href="https://publications.waset.org/abstracts/search?q=Eti%20Farda%20Husen"> Eti Farda Husen</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdi%20Dharma"> Abdi Dharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Nasril%20Nasir"> Nasril Nasir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, combination of some biocontrol agents with different mechanisms was an alternative to improve the effectiveness of the biological control agents. Single and combined applications of indigenous Pseudomonas fluorescens and Arbuscular Mychorrhizae Fungi (AM Fungi) isolates were tested to induce the resistance on susceptible Cavendish banana against F.oxysporum f. sp. cubense race 4 under greenhouse conditions. These isolates originally isolated from healthy banana rhizosphere at endemic Fusarium wilt areas in the centre of production banana in West Sumatra. These researches were conducted with Randomized Block Design with 16 treatments and 10 replications. The treatments were three indigenous isolates of Pseudomonas fluorescens (Par1-Cv, Par4-Rj1, Par2-Jt1) and 3 isolates of AM Fungi (Gl1BuA4, Gl2BuA6, and Gl1KeP3. The biocontrol agents were applied as single agents and combination two of them. This study demonstrated that the application of combination biocontrol organisms Pseudomonas fluorescens and AM Fungi provided were more effective than single application. The combination of Par1-Cv and Gl1BuA4 isolates was the most effective to control Fusarium wilt and followed by the combination of Par1-Cv and Gl2BuA6 and Par2-Jt1 and Gl1P3. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pseudomonad%20fluorescens%20%28Pf%29" title="pseudomonad fluorescens (Pf)">pseudomonad fluorescens (Pf)</a>, <a href="https://publications.waset.org/abstracts/search?q=arbuscular%20mychorrhizae%20fungi%20%28AM%20Fungi%29%20indigenous%20isolates" title=" arbuscular mychorrhizae fungi (AM Fungi) indigenous isolates"> arbuscular mychorrhizae fungi (AM Fungi) indigenous isolates</a>, <a href="https://publications.waset.org/abstracts/search?q=fusarium%20oxysporum%20f.%20sp.%20cubense" title=" fusarium oxysporum f. sp. cubense"> fusarium oxysporum f. sp. cubense</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere" title=" soil rhizosphere"> soil rhizosphere</a> </p> <a href="https://publications.waset.org/abstracts/37182/combined-aplication-of-indigenous-pseudomonas-fluorescens-and-the-am-fungi-as-the-potential-biocontrol-agents-of-banana-fusarium-wilt" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37182.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">307</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2985</span> A Review of Soil Stabilization Techniques</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amin%20Chegenizadeh">Amin Chegenizadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Keramatikerman"> Mahdi Keramatikerman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Soil stabilization is a crucial issue that helps to remove of risks associated with the soil failure. As soil has applications in different industries such as construction, pavement and railways, the means of stabilizing soil are varied. This paper will focus on the techniques of stabilizing soils. It will do so by gathering useful information on the state of the art in the field of soil stabilization, investigating both traditional and advanced methods. To inquire into the current knowledge, the existing literature will be divided into categories addressing the different techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=review" title="review">review</a>, <a href="https://publications.waset.org/abstracts/search?q=soil" title=" soil"> soil</a>, <a href="https://publications.waset.org/abstracts/search?q=stabilization" title=" stabilization"> stabilization</a>, <a href="https://publications.waset.org/abstracts/search?q=techniques" title=" techniques"> techniques</a> </p> <a href="https://publications.waset.org/abstracts/36500/a-review-of-soil-stabilization-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36500.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2984</span> The Effect of Soil Treatment on Micro Metal Contents in Soil at UB Forest in Malang District, East Java, Indonesia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Adam%20Wiryawan">Adam Wiryawan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The levels of micro metal elements in the soil are influenced by soil management. In this research, the influence of soil management on the content of micro metal elements in the soil in the UB forest was studied. The metals studied include Zn, Mn, Cu, Fe, Cd, and Pb. Soil samples were taken from five sampling points on soil in the UB forest, both soils tilled and untilled. Before analysis, soil samples were digested with HNO₃ solution, and metal levels in soil samples were measured using atomic absorption spectrometry (AAS). The results of the analysis of metal content in the soil at the UB forest show that tilled land has consistently lower levels of metals like Zn, Mn, Cu, and Fe compared to untilled land. Meanwhile, Pb and Cd metals were not detected in all soil samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=soil%20treatment" title="soil treatment">soil treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20content" title=" metal content"> metal content</a>, <a href="https://publications.waset.org/abstracts/search?q=forest%20soil" title=" forest soil"> forest soil</a>, <a href="https://publications.waset.org/abstracts/search?q=Malang%20District" title=" Malang District"> Malang District</a> </p> <a href="https://publications.waset.org/abstracts/194568/the-effect-of-soil-treatment-on-micro-metal-contents-in-soil-at-ub-forest-in-malang-district-east-java-indonesia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194568.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">10</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2983</span> Contributions of Microbial Activities to Tomato Growth and Yield under an Organic Production System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Babalola">O. A. Babalola</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20F%20Adekunle"> A. F Adekunle</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Oladeji"> F. Oladeji</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20T.%20Osungbade"> A. T. Osungbade</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20A.%20Akinlaja"> O. A. Akinlaja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optimizing microbiological activities in an organic crop production system is crucial to the realization of optimum growth and development of the crops. Field and pot experiments were conducted to assess soil microbial activities, growth and yield of tomato varieties in response to 4 rates of composted plant and animal residues. The compost rates were 0, 5, 10 and 20 t ha-1, and improved Ibadan and Ibadan local constituted the varieties. Fungi population, microbial biomass nitrogen, cellulase and proteinase activities were significantly higher (P≤ 0.05) at the rhizosphere of the local variety than that of improved variety. This led to a significantly higher number of branches, plant height, leaf area, number of fruits and less days to maturity in the local variety. Furthermore, compost-amended soil had significantly higher microbial populations, microbial biomass N, P and C, enzyme activities, soil N, P and organic carbon than control, but amendment of 20 t ha-1 gave significantly higher values than other compost rates. Consequently, growth parameters and tissue N significantly increased in all compost treatments while dry matter yield and weight of fruits were significantly higher in soil amended with 20 t ha-1. Correlation analysis showed that microbial activities at 6 weeks after transplanting (6 WAT) were more consistently and highly correlated with growth and yield parameters. It was concluded that microbial activities could be optimized to improve the yield of the two tomato varieties in an organic production system, through the application of compost, particularly at 20 t ha-1. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compost" title="compost">compost</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20activities" title=" microbial activities"> microbial activities</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20contribution" title=" microbial contribution"> microbial contribution</a>, <a href="https://publications.waset.org/abstracts/search?q=tomato%20growth%20and%20yield" title=" tomato growth and yield"> tomato growth and yield</a> </p> <a href="https://publications.waset.org/abstracts/81437/contributions-of-microbial-activities-to-tomato-growth-and-yield-under-an-organic-production-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81437.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">265</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=100">100</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=101">101</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=soil%20rhizosphere&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>