CINXE.COM
(PDF) Wavelet Multipliers and Operators on Locally Compact Groups
<!DOCTYPE html> <html > <head> <meta charset="utf-8"> <meta rel="search" type="application/opensearchdescription+xml" href="/open_search.xml" title="Academia.edu"> <meta content="width=device-width, initial-scale=1" name="viewport"> <meta name="google-site-verification" content="bKJMBZA7E43xhDOopFZkssMMkBRjvYERV-NaN4R6mrs"> <meta name="csrf-param" content="authenticity_token" /> <meta name="csrf-token" content="EUpi8X0Co9c0z8fxV7IGLVJBRL3jPMaAX9blb4h6rZt/NyLbV7tza5WyTUHUH7DmSE4dtItC50w7/eYhCxliZw==" /> <meta name="citation_title" content="Two wavelet multipliers and Landau-Pollak-Slepian operators on locally compact abelian groups associated to right-H-translation invariant functions" /> <meta name="citation_author" content="Aparajita Dasgupta" /> <meta name="twitter:card" content="summary" /> <meta name="twitter:url" content="https://www.academia.edu/108111466/Two_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions" /> <meta name="twitter:title" content="Two wavelet multipliers and Landau-Pollak-Slepian operators on locally compact abelian groups associated to right-H-translation invariant functions" /> <meta name="twitter:description" content="By using a coset of closed subgroup, we define a generalization of directionally sensitive variant Fourier like transform for locally compact abelian (LCA) topological groups. Further we have showed that this transform have some resembles with short" /> <meta name="twitter:image" content="https://0.academia-photos.com/279272619/127849415/117237157/s200_aparajita.dasgupta.png" /> <meta property="fb:app_id" content="2369844204" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://www.academia.edu/108111466/Two_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions" /> <meta property="og:title" content="Two wavelet multipliers and Landau-Pollak-Slepian operators on locally compact abelian groups associated to right-H-translation invariant functions" /> <meta property="og:image" content="http://a.academia-assets.com/images/open-graph-icons/fb-paper.gif" /> <meta property="og:description" content="By using a coset of closed subgroup, we define a generalization of directionally sensitive variant Fourier like transform for locally compact abelian (LCA) topological groups. Further we have showed that this transform have some resembles with short" /> <meta property="article:author" content="https://independent.academia.edu/AparajitaDasgupta17" /> <meta name="description" content="By using a coset of closed subgroup, we define a generalization of directionally sensitive variant Fourier like transform for locally compact abelian (LCA) topological groups. Further we have showed that this transform have some resembles with short" /> <title>(PDF) Wavelet Multipliers and Operators on Locally Compact Groups</title> <link rel="canonical" href="https://www.academia.edu/108111466/Two_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions" /> <script async src="https://www.googletagmanager.com/gtag/js?id=G-5VKX33P2DS"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-5VKX33P2DS', { cookie_domain: 'academia.edu', send_page_view: false, }); gtag('event', 'page_view', { 'controller': "single_work", 'action': "show", 'controller_action': 'single_work#show', 'logged_in': 'false', 'edge': 'unknown', // Send nil if there is no A/B test bucket, in case some records get logged // with missing data - that way we can distinguish between the two cases. // ab_test_bucket should be of the form <ab_test_name>:<bucket> 'ab_test_bucket': null, }) </script> <script> var $controller_name = 'single_work'; var $action_name = "show"; var $rails_env = 'production'; var $app_rev = '836a04d38e13e94dcd4e9d2b995bb1a155f81b46'; var $domain = 'academia.edu'; var $app_host = "academia.edu"; var $asset_host = "academia-assets.com"; var $start_time = new Date().getTime(); var $recaptcha_key = "6LdxlRMTAAAAADnu_zyLhLg0YF9uACwz78shpjJB"; var $recaptcha_invisible_key = "6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj"; var $disableClientRecordHit = false; </script> <script> window.require = { config: function() { return function() {} } } </script> <script> window.Aedu = window.Aedu || {}; window.Aedu.hit_data = null; window.Aedu.serverRenderTime = new Date(1734029568000); window.Aedu.timeDifference = new Date().getTime() - 1734029568000; </script> <script type="application/ld+json">{"@context":"https://schema.org","@type":"ScholarlyArticle","abstract":"By using a coset of closed subgroup, we define a generalization of directionally sensitive variant Fourier like transform for locally compact abelian (LCA) topological groups. Further we have showed that this transform have some resembles with short time Fourier transform (STFT). For particular choices of LCA group and its closed subgroup, this operator gives directional STFT of function with respect to some windows. That means the present theory extends the theory of directional STFT in LCA groups. We study the interesting properties of two wavelet multipliers on locally compact abelian topological groups associated to this transform, known as generalized two wavelet multipliers, and show that these operators are Lp-bounded for 1 ≤ p ≤ ∞, and are in Schatten-von Neumann classes, Sp. For S1 class we obtain their traces, and finally determine the connection between generalized two wavelet multipliers and generalized Landau-Pollak-Slepian operators. Mathematics Subject Classification ...","author":[{"@context":"https://schema.org","@type":"Person","name":"Aparajita Dasgupta"}],"contributor":[],"dateCreated":"2023-10-13","headline":"Two wavelet multipliers and Landau-Pollak-Slepian operators on locally compact abelian groups associated to right-H-translation invariant functions","image":"https://attachments.academia-assets.com/106582962/thumbnails/1.jpg","inLanguage":"en","keywords":["Mathematics","Pure Mathematics","Fourier transform"],"publisher":{"@context":"https://schema.org","@type":"Organization","name":"Research Square Platform LLC"},"sourceOrganization":[{"@context":"https://schema.org","@type":"EducationalOrganization","name":null}],"thumbnailUrl":"https://attachments.academia-assets.com/106582962/thumbnails/1.jpg","url":"https://www.academia.edu/108111466/Two_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions"}</script><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/single_work_page/loswp-102fa537001ba4d8dcd921ad9bd56c474abc201906ea4843e7e7efe9dfbf561d.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/body-8d679e925718b5e8e4b18e9a4fab37f7eaa99e43386459376559080ac8f2856a.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/button-3cea6e0ad4715ed965c49bfb15dedfc632787b32ff6d8c3a474182b231146ab7.css" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/text_button-73590134e40cdb49f9abdc8e796cc00dc362693f3f0f6137d6cf9bb78c318ce7.css" /><link crossorigin="" href="https://fonts.gstatic.com/" rel="preconnect" /><link href="https://fonts.googleapis.com/css2?family=DM+Sans:ital,opsz,wght@0,9..40,100..1000;1,9..40,100..1000&family=Gupter:wght@400;500;700&family=IBM+Plex+Mono:wght@300;400&family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20,400,0,0&display=swap" rel="stylesheet" /><link rel="stylesheet" media="all" href="//a.academia-assets.com/assets/design_system/common-10fa40af19d25203774df2d4a03b9b5771b45109c2304968038e88a81d1215c5.css" /> </head> <body> <div id='react-modal'></div> <div class="js-upgrade-ie-banner" style="display: none; text-align: center; padding: 8px 0; background-color: #ebe480;"><p style="color: #000; font-size: 12px; margin: 0 0 4px;">Academia.edu no longer supports Internet Explorer.</p><p style="color: #000; font-size: 12px; margin: 0;">To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to <a href="https://www.academia.edu/upgrade-browser">upgrade your browser</a>.</p></div><script>// Show this banner for all versions of IE if (!!window.MSInputMethodContext || /(MSIE)/.test(navigator.userAgent)) { document.querySelector('.js-upgrade-ie-banner').style.display = 'block'; }</script> <div class="bootstrap login"><div class="modal fade login-modal" id="login-modal"><div class="login-modal-dialog modal-dialog"><div class="modal-content"><div class="modal-header"><button class="close close" data-dismiss="modal" type="button"><span aria-hidden="true">×</span><span class="sr-only">Close</span></button><h4 class="modal-title text-center"><strong>Log In</strong></h4></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><button class="btn btn-fb btn-lg btn-block btn-v-center-content" id="login-facebook-oauth-button"><svg style="float: left; width: 19px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="facebook-square" class="svg-inline--fa fa-facebook-square fa-w-14" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512"><path fill="currentColor" d="M400 32H48A48 48 0 0 0 0 80v352a48 48 0 0 0 48 48h137.25V327.69h-63V256h63v-54.64c0-62.15 37-96.48 93.67-96.48 27.14 0 55.52 4.84 55.52 4.84v61h-31.27c-30.81 0-40.42 19.12-40.42 38.73V256h68.78l-11 71.69h-57.78V480H400a48 48 0 0 0 48-48V80a48 48 0 0 0-48-48z"></path></svg><small><strong>Log in</strong> with <strong>Facebook</strong></small></button><br /><button class="btn btn-google btn-lg btn-block btn-v-center-content" id="login-google-oauth-button"><svg style="float: left; width: 22px; line-height: 1em; margin-right: .3em;" aria-hidden="true" focusable="false" data-prefix="fab" data-icon="google-plus" class="svg-inline--fa fa-google-plus fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M256,8C119.1,8,8,119.1,8,256S119.1,504,256,504,504,392.9,504,256,392.9,8,256,8ZM185.3,380a124,124,0,0,1,0-248c31.3,0,60.1,11,83,32.3l-33.6,32.6c-13.2-12.9-31.3-19.1-49.4-19.1-42.9,0-77.2,35.5-77.2,78.1S142.3,334,185.3,334c32.6,0,64.9-19.1,70.1-53.3H185.3V238.1H302.2a109.2,109.2,0,0,1,1.9,20.7c0,70.8-47.5,121.2-118.8,121.2ZM415.5,273.8v35.5H380V273.8H344.5V238.3H380V202.8h35.5v35.5h35.2v35.5Z"></path></svg><small><strong>Log in</strong> with <strong>Google</strong></small></button><br /><style type="text/css">.sign-in-with-apple-button { width: 100%; height: 52px; border-radius: 3px; border: 1px solid black; cursor: pointer; }</style><script src="https://appleid.cdn-apple.com/appleauth/static/jsapi/appleid/1/en_US/appleid.auth.js" type="text/javascript"></script><div class="sign-in-with-apple-button" data-border="false" data-color="white" id="appleid-signin"><span ="Sign Up with Apple" class="u-fs11"></span></div><script>AppleID.auth.init({ clientId: 'edu.academia.applesignon', scope: 'name email', redirectURI: 'https://www.academia.edu/sessions', state: "f03a0032bb82cd2b563ce98f5b17ba54ada6872ca9a5da462de0d2fff94adcec", });</script><script>// Hacky way of checking if on fast loswp if (window.loswp == null) { (function() { const Google = window?.Aedu?.Auth?.OauthButton?.Login?.Google; const Facebook = window?.Aedu?.Auth?.OauthButton?.Login?.Facebook; if (Google) { new Google({ el: '#login-google-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } if (Facebook) { new Facebook({ el: '#login-facebook-oauth-button', rememberMeCheckboxId: 'remember_me', track: null }); } })(); }</script></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><div class="hr-heading login-hr-heading"><span class="hr-heading-text">or</span></div></div></div></div><div class="modal-body"><div class="row"><div class="col-xs-10 col-xs-offset-1"><form class="js-login-form" action="https://www.academia.edu/sessions" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="TZEeuZuKUAxkvrEEFuX0gq5Rk+Dp/JB3TW0/Y04wy2cj7F6TsTOAsMXDO7SVSEJJtF7K6YGCsbspRjwtzVMEmw==" autocomplete="off" /><div class="form-group"><label class="control-label" for="login-modal-email-input" style="font-size: 14px;">Email</label><input class="form-control" id="login-modal-email-input" name="login" type="email" /></div><div class="form-group"><label class="control-label" for="login-modal-password-input" style="font-size: 14px;">Password</label><input class="form-control" id="login-modal-password-input" name="password" type="password" /></div><input type="hidden" name="post_login_redirect_url" id="post_login_redirect_url" value="https://www.academia.edu/108111466/Two_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions" autocomplete="off" /><div class="checkbox"><label><input type="checkbox" name="remember_me" id="remember_me" value="1" checked="checked" /><small style="font-size: 12px; margin-top: 2px; display: inline-block;">Remember me on this computer</small></label></div><br><input type="submit" name="commit" value="Log In" class="btn btn-primary btn-block btn-lg js-login-submit" data-disable-with="Log In" /></br></form><script>typeof window?.Aedu?.recaptchaManagedForm === 'function' && window.Aedu.recaptchaManagedForm( document.querySelector('.js-login-form'), document.querySelector('.js-login-submit') );</script><small style="font-size: 12px;"><br />or <a data-target="#login-modal-reset-password-container" data-toggle="collapse" href="javascript:void(0)">reset password</a></small><div class="collapse" id="login-modal-reset-password-container"><br /><div class="well margin-0x"><form class="js-password-reset-form" action="https://www.academia.edu/reset_password" accept-charset="UTF-8" method="post"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><input type="hidden" name="authenticity_token" value="O6OKfskD3DiX2UMPfaYvYd/pCDMqC2dZ/ECZnohSG+lV3spU47oMhDakyb/+C5mqxeZROkJ1RpWYa5rQCzHUFQ==" autocomplete="off" /><p>Enter the email address you signed up with and we'll email you a reset link.</p><div class="form-group"><input class="form-control" name="email" type="email" /></div><input class="btn btn-primary btn-block g-recaptcha js-password-reset-submit" data-sitekey="6Lf3KHUUAAAAACggoMpmGJdQDtiyrjVlvGJ6BbAj" type="submit" value="Email me a link" /></form></div></div><script> require.config({ waitSeconds: 90 })(["https://a.academia-assets.com/assets/collapse-45805421cf446ca5adf7aaa1935b08a3a8d1d9a6cc5d91a62a2a3a00b20b3e6a.js"], function() { // from javascript_helper.rb $("#login-modal-reset-password-container").on("shown.bs.collapse", function() { $(this).find("input[type=email]").focus(); }); }); </script> </div></div></div><div class="modal-footer"><div class="text-center"><small style="font-size: 12px;">Need an account? <a rel="nofollow" href="https://www.academia.edu/signup">Click here to sign up</a></small></div></div></div></div></div></div><script>// If we are on subdomain or non-bootstrapped page, redirect to login page instead of showing modal (function(){ if (typeof $ === 'undefined') return; var host = window.location.hostname; if ((host === $domain || host === "www."+$domain) && (typeof $().modal === 'function')) { $("#nav_log_in").click(function(e) { // Don't follow the link and open the modal e.preventDefault(); $("#login-modal").on('shown.bs.modal', function() { $(this).find("#login-modal-email-input").focus() }).modal('show'); }); } })()</script> <div id="fb-root"></div><script>window.fbAsyncInit = function() { FB.init({ appId: "2369844204", version: "v8.0", status: true, cookie: true, xfbml: true }); // Additional initialization code. if (window.InitFacebook) { // facebook.ts already loaded, set it up. window.InitFacebook(); } else { // Set a flag for facebook.ts to find when it loads. window.academiaAuthReadyFacebook = true; } };</script> <div id="google-root"></div><script>window.loadGoogle = function() { if (window.InitGoogle) { // google.ts already loaded, set it up. window.InitGoogle("331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"); } else { // Set a flag for google.ts to use when it loads. window.GoogleClientID = "331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b"; } };</script> <div class="header--container" id="main-header-container"><div class="header--inner-container header--inner-container-ds2"><div class="header-ds2--left-wrapper"><div class="header-ds2--left-wrapper-inner"><a data-main-header-link-target="logo_home" href="https://www.academia.edu/"><img class="hide-on-desktop-redesign" style="height: 24px; width: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015-A.svg" width="24" height="24" /><img width="145.2" height="18" class="hide-on-mobile-redesign" style="height: 24px;" alt="Academia.edu" src="//a.academia-assets.com/images/academia-logo-redesign-2015.svg" /></a><div class="header--search-container header--search-container-ds2"><form class="js-SiteSearch-form select2-no-default-pills" action="https://www.academia.edu/search" accept-charset="UTF-8" method="get"><input name="utf8" type="hidden" value="✓" autocomplete="off" /><svg style="width: 14px; height: 14px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="search" class="header--search-icon svg-inline--fa fa-search fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M505 442.7L405.3 343c-4.5-4.5-10.6-7-17-7H372c27.6-35.3 44-79.7 44-128C416 93.1 322.9 0 208 0S0 93.1 0 208s93.1 208 208 208c48.3 0 92.7-16.4 128-44v16.3c0 6.4 2.5 12.5 7 17l99.7 99.7c9.4 9.4 24.6 9.4 33.9 0l28.3-28.3c9.4-9.4 9.4-24.6.1-34zM208 336c-70.7 0-128-57.2-128-128 0-70.7 57.2-128 128-128 70.7 0 128 57.2 128 128 0 70.7-57.2 128-128 128z"></path></svg><input class="header--search-input header--search-input-ds2 js-SiteSearch-form-input" data-main-header-click-target="search_input" name="q" placeholder="Search" type="text" /></form></div></div></div><nav class="header--nav-buttons header--nav-buttons-ds2 js-main-nav"><button class="ds2-5-button ds2-5-button--secondary js-header-login-url header-button-ds2 header-login-ds2 hide-on-mobile-redesign react-login-modal-opener" data-signup-modal="{"location":"login-button--header"}" rel="nofollow">Log In</button><button class="ds2-5-button ds2-5-button--secondary header-button-ds2 hide-on-mobile-redesign react-login-modal-opener" data-signup-modal="{"location":"signup-button--header"}" rel="nofollow">Sign Up</button><button class="header--hamburger-button header--hamburger-button-ds2 hide-on-desktop-redesign js-header-hamburger-button"><div class="icon-bar"></div><div class="icon-bar" style="margin-top: 4px;"></div><div class="icon-bar" style="margin-top: 4px;"></div></button></nav></div><ul class="header--dropdown-container js-header-dropdown"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/login" rel="nofollow">Log In</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/signup" rel="nofollow">Sign Up</a></li><li class="header--dropdown-row js-header-dropdown-expand-button"><button class="header--dropdown-button">more<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-down" class="header--dropdown-button-icon svg-inline--fa fa-caret-down fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M31.3 192h257.3c17.8 0 26.7 21.5 14.1 34.1L174.1 354.8c-7.8 7.8-20.5 7.8-28.3 0L17.2 226.1C4.6 213.5 13.5 192 31.3 192z"></path></svg></button></li><li><ul class="header--expanded-dropdown-container"><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/about">About</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/press">Press</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/documents">Papers</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/terms">Terms</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/privacy">Privacy</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/copyright">Copyright</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://www.academia.edu/hiring"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="header--dropdown-row-icon svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg>We're Hiring!</a></li><li class="header--dropdown-row"><a class="header--dropdown-link" href="https://support.academia.edu/"><svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="header--dropdown-row-icon svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg>Help Center</a></li><li class="header--dropdown-row js-header-dropdown-collapse-button"><button class="header--dropdown-button">less<svg aria-hidden="true" focusable="false" data-prefix="fas" data-icon="caret-up" class="header--dropdown-button-icon svg-inline--fa fa-caret-up fa-w-10" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 320 512"><path fill="currentColor" d="M288.662 352H31.338c-17.818 0-26.741-21.543-14.142-34.142l128.662-128.662c7.81-7.81 20.474-7.81 28.284 0l128.662 128.662c12.6 12.599 3.676 34.142-14.142 34.142z"></path></svg></button></li></ul></li></ul></div> <script src="//a.academia-assets.com/assets/webpack_bundles/fast_loswp-bundle-4a5bd0e3336526b8821b295c6de9b4b3520efd56a0558b2ddb94f7aecb2d0a85.js" defer="defer"></script><script>window.loswp = {}; window.loswp.author = 279272619; window.loswp.bulkDownloadFilterCounts = {}; window.loswp.hasDownloadableAttachment = true; window.loswp.hasViewableAttachments = true; // TODO: just use routes for this window.loswp.loginUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F108111466%2FTwo_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions%3Fauto%3Ddownload"; window.loswp.translateUrl = "https://www.academia.edu/login?post_login_redirect_url=https%3A%2F%2Fwww.academia.edu%2F108111466%2FTwo_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions%3Fshow_translation%3Dtrue"; window.loswp.previewableAttachments = [{"id":106582962,"identifier":"Attachment_106582962","shouldShowBulkDownload":false}]; window.loswp.shouldDetectTimezone = true; window.loswp.shouldShowBulkDownload = true; window.loswp.showSignupCaptcha = false window.loswp.willEdgeCache = false; window.loswp.work = {"work":{"id":108111466,"created_at":"2023-10-13T21:49:30.812-07:00","from_world_paper_id":241929674,"updated_at":"2024-11-27T22:26:52.341-08:00","_data":{"abstract":"By using a coset of closed subgroup, we define a generalization of directionally sensitive variant Fourier like transform for locally compact abelian (LCA) topological groups. Further we have showed that this transform have some resembles with short time Fourier transform (STFT). For particular choices of LCA group and its closed subgroup, this operator gives directional STFT of function with respect to some windows. That means the present theory extends the theory of directional STFT in LCA groups. We study the interesting properties of two wavelet multipliers on locally compact abelian topological groups associated to this transform, known as generalized two wavelet multipliers, and show that these operators are Lp-bounded for 1 ≤ p ≤ ∞, and are in Schatten-von Neumann classes, Sp. For S1 class we obtain their traces, and finally determine the connection between generalized two wavelet multipliers and generalized Landau-Pollak-Slepian operators. Mathematics Subject Classification ...","publisher":"Research Square Platform LLC","ai_title_tag":"Wavelet Multipliers and Operators on Locally Compact Groups"},"document_type":"paper","pre_hit_view_count_baseline":null,"quality":"high","language":"en","title":"Two wavelet multipliers and Landau-Pollak-Slepian operators on locally compact abelian groups associated to right-H-translation invariant functions","broadcastable":false,"draft":null,"has_indexable_attachment":true,"indexable":true}}["work"]; window.loswp.workCoauthors = [279272619]; window.loswp.locale = "en"; window.loswp.countryCode = "SG"; window.loswp.cwvAbTestBucket = ""; window.loswp.designVariant = "ds_vanilla"; window.loswp.fullPageMobileSutdModalVariant = "control"; window.loswp.useOptimizedScribd4genScript = false; window.loginModal = {}; window.loginModal.appleClientId = 'edu.academia.applesignon';</script><script defer="" src="https://accounts.google.com/gsi/client"></script><div class="ds-loswp-container"><div class="ds-work-card--grid-container"><div class="ds-work-card--container js-loswp-work-card"><div class="ds-work-card--cover"><div class="ds-work-cover--wrapper"><div class="ds-work-cover--container"><button class="ds-work-cover--clickable js-swp-download-button" data-signup-modal="{"location":"swp-splash-paper-cover","attachmentId":106582962,"attachmentType":"pdf"}"><img alt="First page of “Two wavelet multipliers and Landau-Pollak-Slepian operators on locally compact abelian groups associated to right-H-translation invariant functions”" class="ds-work-cover--cover-thumbnail" src="https://0.academia-photos.com/attachment_thumbnails/106582962/mini_magick20231014-1-cdrz3u.png?1697259098" /><img alt="PDF Icon" class="ds-work-cover--file-icon" src="//a.academia-assets.com/images/single_work_splash/adobe_icon.svg" /><div class="ds-work-cover--hover-container"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span><p>Download Free PDF</p></div><div class="ds-work-cover--ribbon-container">Download Free PDF</div><div class="ds-work-cover--ribbon-triangle"></div></button></div></div></div><div class="ds-work-card--work-information"><h1 class="ds-work-card--work-title">Two wavelet multipliers and Landau-Pollak-Slepian operators on locally compact abelian groups associated to right-H-translation invariant functions</h1><div class="ds-work-card--work-authors ds-work-card--detail"><a class="ds-work-card--author js-wsj-grid-card-author ds2-5-body-md ds2-5-body-link" data-author-id="279272619" href="https://independent.academia.edu/AparajitaDasgupta17"><img alt="Profile image of Aparajita Dasgupta" class="ds-work-card--author-avatar" src="https://0.academia-photos.com/279272619/127849415/117237157/s65_aparajita.dasgupta.png" />Aparajita Dasgupta</a></div><div class="ds-work-card--detail"><div class="ds-work-card--work-metadata"><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">visibility</span><p class="ds2-5-body-sm" id="work-metadata-view-count">…</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">description</span><p class="ds2-5-body-sm">23 pages</p></div><div class="ds-work-card--work-metadata__stat"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">link</span><p class="ds2-5-body-sm">1 file</p></div></div><script>(async () => { const workId = 108111466; const worksViewsPath = "/v0/works/views?subdomain_param=api&work_ids%5B%5D=108111466"; const getWorkViews = async (workId) => { const response = await fetch(worksViewsPath); if (!response.ok) { throw new Error('Failed to load work views'); } const data = await response.json(); return data.views[workId]; }; // Get the view count for the work - we send this immediately rather than waiting for // the DOM to load, so it can be available as soon as possible (but without holding up // the backend or other resource requests, because it's a bit expensive and not critical). const viewCount = await getWorkViews(workId); const updateViewCount = (viewCount) => { try { const viewCountNumber = parseInt(viewCount, 10); if (viewCountNumber === 0) { // Remove the whole views element if there are zero views. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); return; } const commaizedViewCount = viewCountNumber.toLocaleString(); const viewCountBody = document.getElementById('work-metadata-view-count'); if (!viewCountBody) { throw new Error('Failed to find work views element'); } viewCountBody.textContent = `${commaizedViewCount} views`; } catch (error) { // Remove the whole views element if there was some issue parsing. document.getElementById('work-metadata-view-count')?.parentNode?.remove(); throw new Error(`Failed to parse view count: ${viewCount}`, error); } }; // If the DOM is still loading, wait for it to be ready before updating the view count. if (document.readyState === "loading") { document.addEventListener('DOMContentLoaded', () => { updateViewCount(viewCount); }); // Otherwise, just update it immediately. } else { updateViewCount(viewCount); } })();</script></div><p class="ds-work-card--work-abstract ds-work-card--detail ds2-5-body-md">By using a coset of closed subgroup, we define a generalization of directionally sensitive variant Fourier like transform for locally compact abelian (LCA) topological groups. Further we have showed that this transform have some resembles with short time Fourier transform (STFT). For particular choices of LCA group and its closed subgroup, this operator gives directional STFT of function with respect to some windows. That means the present theory extends the theory of directional STFT in LCA groups. We study the interesting properties of two wavelet multipliers on locally compact abelian topological groups associated to this transform, known as generalized two wavelet multipliers, and show that these operators are Lp-bounded for 1 ≤ p ≤ ∞, and are in Schatten-von Neumann classes, Sp. For S1 class we obtain their traces, and finally determine the connection between generalized two wavelet multipliers and generalized Landau-Pollak-Slepian operators. Mathematics Subject Classification ...</p><div class="ds-work-card--button-container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--work-card","attachmentId":106582962,"attachmentType":"pdf","workUrl":"https://www.academia.edu/108111466/Two_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions"}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--work-card","attachmentId":106582962,"attachmentType":"pdf","workUrl":"https://www.academia.edu/108111466/Two_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions"}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div></div><div data-auto_select="false" data-client_id="331998490334-rsn3chp12mbkiqhl6e7lu2q0mlbu0f1b" data-doc_id="106582962" data-landing_url="https://www.academia.edu/108111466/Two_wavelet_multipliers_and_Landau_Pollak_Slepian_operators_on_locally_compact_abelian_groups_associated_to_right_H_translation_invariant_functions" data-login_uri="https://www.academia.edu/registrations/google_one_tap" data-moment_callback="onGoogleOneTapEvent" id="g_id_onload"></div><div class="ds-top-related-works--grid-container"><div class="ds-related-content--container ds-top-related-works--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="0" data-entity-id="22719605" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/22719605/Orthogonal_wavelets_on_locally_compact_Abelian_groups">Orthogonal wavelets on locally compact Abelian groups</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="7702031" href="https://independent.academia.edu/YuriFarkov">Yuri Farkov</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Functional Analysis and Its Applications, 1997</p><p class="ds-related-work--abstract ds2-5-body-sm">We extend and improve the results of W. Lang (1998) on the wavelet analysis on the Cantor dyadic group C. Our construction is realized on a locally compact abelian group G which is defined for an integer p 2 and coincides with C when p = 2. For any integers p, n 2 we determine a function ϕ in L 2 (G) which 1) is the sum of a lacunary series by generalized Walsh functions, 2) has orthonormal "integer" shifts in L 2 (G), 3) satisfies "the scaling equation" with p n numerical coefficients, 4) has compact support whose Haar measure is proportional to p n , 5) generates a multiresolution analysis in L 2 (G). Orthogonal wavelets ψ with compact supports on G are defined by such functions ϕ. The family of these functions ϕ is in many respects analogous to the well-known family of Daubechies' scaling functions. We give a method for estimating the moduli of continuity of the functions ϕ, which leads to sharp estimates for small p and n. We also show that the notion of adapted multiresolution analysis recently suggested by Sendov is applicable in this situation.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Orthogonal wavelets on locally compact Abelian groups","attachmentId":43290155,"attachmentType":"pdf","work_url":"https://www.academia.edu/22719605/Orthogonal_wavelets_on_locally_compact_Abelian_groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/22719605/Orthogonal_wavelets_on_locally_compact_Abelian_groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="1" data-entity-id="65146448" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/65146448/Continuous_wavelet_transforms_and_non_commutative_Fourier_analysis">Continuous wavelet transforms and non-commutative Fourier analysis</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67770495" href="https://independent.academia.edu/HideyukiIshi">Hideyuki Ishi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2010</p><p class="ds-related-work--abstract ds2-5-body-sm">We discuss continuous wavelet transforms for the semidirect product group of a unimodular (not necessarily commutative) normal subgroup N with a closed subgroup H of Aut(N ), which is a generalization of the wavelet theory for an affine transformation group on a vector space. The operator-valued Fourier transform for N plays a substantial role in the arguments.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Continuous wavelet transforms and non-commutative Fourier analysis","attachmentId":76867082,"attachmentType":"pdf","work_url":"https://www.academia.edu/65146448/Continuous_wavelet_transforms_and_non_commutative_Fourier_analysis","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/65146448/Continuous_wavelet_transforms_and_non_commutative_Fourier_analysis"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="2" data-entity-id="97241972" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/97241972/Wavelet_Packets_on_Locally_Compact_Abelian_Groups">Wavelet Packets on Locally Compact Abelian Groups</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="49374580" href="https://independent.academia.edu/AbdulWahid329">Abdul Wahid</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2010</p><p class="ds-related-work--abstract ds2-5-body-sm">The objective of this paper is to construct wavelet packets associated with multiresolution analysis on locally compact Abelian groups. Moreover, from the collection of dilations and translations of the wavelet packets, we characterize the subcollections which form an orthonormal basis for L 2 (G).</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Wavelet Packets on Locally Compact Abelian Groups","attachmentId":98917826,"attachmentType":"pdf","work_url":"https://www.academia.edu/97241972/Wavelet_Packets_on_Locally_Compact_Abelian_Groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/97241972/Wavelet_Packets_on_Locally_Compact_Abelian_Groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="3" data-entity-id="85492236" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/85492236/Riesz_and_Tight_Wavelet_Frame_Sets_in_Locally_Compact_Abelian_Groups">Riesz and Tight Wavelet Frame Sets in Locally Compact Abelian Groups</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="229478183" href="https://independent.academia.edu/RadhakrushnaSahooPhDStudent">Radhakrushna Sahoo (Ph. D. Student)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2021</p><p class="ds-related-work--abstract ds2-5-body-sm">In this paper, we attempt to obtain sufficient conditions for the existence of tight wavelet frame sets in locally compact abelian groups. The condition is generated by modulating a collection of characteristic functions that correspond to a generalized shift-invariant system via the Fourier transform. We present two approaches (for stationary and non-stationary wavelets) to construct the scaling function for L(G) and, using the scaling function, we construct an orthonormal wavelet basis for L(G). We propose an open problem related to the extension principle for Riesz wavelets in locally compact abelian groups.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Riesz and Tight Wavelet Frame Sets in Locally Compact Abelian Groups","attachmentId":90175205,"attachmentType":"pdf","work_url":"https://www.academia.edu/85492236/Riesz_and_Tight_Wavelet_Frame_Sets_in_Locally_Compact_Abelian_Groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/85492236/Riesz_and_Tight_Wavelet_Frame_Sets_in_Locally_Compact_Abelian_Groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="4" data-entity-id="85492237" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/85492237/Wavelet_Frames_and_Time_Frequency_Localization_in_Locally_Compact_Abelian_Groups">Wavelet Frames and Time-Frequency Localization in Locally Compact Abelian Groups</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="229478183" href="https://independent.academia.edu/RadhakrushnaSahooPhDStudent">Radhakrushna Sahoo (Ph. D. Student)</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Advances in Mathematics: Scientific Journal</p><p class="ds-related-work--abstract ds2-5-body-sm">We construct a wavelet frame system on locally compact abelian (LCA) group G associated with the multiresolution analysis and Haar measures. We show the characterization of the wavelet frame set and the scaling sequence on L 2 (G). The dilation and translation of wavelet frame sets for time-frequency localization in LCA groups have been set up. We obtain an orthonormal wavelet basis for L 2 (G) using the scaling sequence. We also establish the relationship between multiresolution analysis and wavelet functions. Finally, we obtain periodization for the multiresolution analysis using time-frequency localization on a periodic wavelet frame. The periodization holds wavelets' regular properties and decay conditions.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Wavelet Frames and Time-Frequency Localization in Locally Compact Abelian Groups","attachmentId":90175206,"attachmentType":"pdf","work_url":"https://www.academia.edu/85492237/Wavelet_Frames_and_Time_Frequency_Localization_in_Locally_Compact_Abelian_Groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/85492237/Wavelet_Frames_and_Time_Frequency_Localization_in_Locally_Compact_Abelian_Groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="5" data-entity-id="86094949" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86094949/Fourier_Stieltjes_transform_defined_by_induced_representation_on_locally_compact_groups">Fourier-Stieltjes transform defined by induced representation on locally compact groups</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="137244740" href="https://independent.academia.edu/Hounkonnou">Norbert Hounkonnou</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2022</p><p class="ds-related-work--abstract ds2-5-body-sm">Abstract. In this work we extend the Fourier-Stieltjes transform of a vector measure and a continuous function defined on compact groups to locally compact groups. To do so, we consider a representation L of a normal compact subgroup K of a locally compact group G, and we use a representation of G induced by that of L. Then, we define the Fourier-Stieltjes transform of a vector measure and that of a continuous function with compact support defined on G from the representation of G. Then, we extend the Shur orthogonality relation established for compact groups to locally compact groups by using the representations of G induced by the unitary representations of one of its normal compact subgroups. This extension enables us to develop a Fourier-Stieltjes transform in series form that is linear, continuous, and invertible.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Fourier-Stieltjes transform defined by induced representation on locally compact groups","attachmentId":90624887,"attachmentType":"pdf","work_url":"https://www.academia.edu/86094949/Fourier_Stieltjes_transform_defined_by_induced_representation_on_locally_compact_groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/86094949/Fourier_Stieltjes_transform_defined_by_induced_representation_on_locally_compact_groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="6" data-entity-id="49544872" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/49544872/Multipliers_on_spaces_of_functions_on_compact_groups_with_p_summable_Fourier_transforms">Multipliers on spaces of functions on compact groups with p-summable Fourier transforms</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="152333134" href="https://independent.academia.edu/sanjivgupta21">sanjiv gupta</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Bulletin of the Australian Mathematical Society, 1993</p><p class="ds-related-work--abstract ds2-5-body-sm">Let G be a compact abelian group with dual group Γ. For 1 ≤ p &lt; ∞, denote by Ap(G) the space of integrable functions on G whose Fourier transforms belong to lp(Γ). We investigate several problems related to multipliers from Ap(G) to Aq(G). In particular, we prove that (Ap, Ap) ⊊ (Aq, Aq). For the circle group, we characterise permutation invariant multipliers from Ap to Ar for 1 ≤ r ≤ 2.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Multipliers on spaces of functions on compact groups with p-summable Fourier transforms","attachmentId":67873285,"attachmentType":"pdf","work_url":"https://www.academia.edu/49544872/Multipliers_on_spaces_of_functions_on_compact_groups_with_p_summable_Fourier_transforms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/49544872/Multipliers_on_spaces_of_functions_on_compact_groups_with_p_summable_Fourier_transforms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="7" data-entity-id="60108481" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/60108481/Wavelet_Transforms_for_Semidirect_Product_Groups_with_Not_Necessarily_Commutative_Normal_Subgroups">Wavelet Transforms for Semidirect Product Groups with Not Necessarily Commutative Normal Subgroups</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="67770495" href="https://independent.academia.edu/HideyukiIshi">Hideyuki Ishi</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Fourier Analysis and Applications, 2006</p><p class="ds-related-work--abstract ds2-5-body-sm">Let G be the semidirect product group of a separable locally compact unimodular group N of type I with a closed subgroup H of Aut(N). The group N is not necessarily commutative. We consider irreducible subrepresentations of the unitary representation of G realized naturally on L 2 (N), and investigate the wavelet transforms associated to them. Furthermore, the irreducible subspaces are characterized by certain singular integrals on N analogous to the Cauchy-Szegö integral.</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Wavelet Transforms for Semidirect Product Groups with Not Necessarily Commutative Normal Subgroups","attachmentId":73695038,"attachmentType":"pdf","work_url":"https://www.academia.edu/60108481/Wavelet_Transforms_for_Semidirect_Product_Groups_with_Not_Necessarily_Commutative_Normal_Subgroups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/60108481/Wavelet_Transforms_for_Semidirect_Product_Groups_with_Not_Necessarily_Commutative_Normal_Subgroups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="8" data-entity-id="86207549" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/86207549/On_the_uniform_convergence_of_Fourier_transforms_on_groups">On the uniform convergence of Fourier transforms on groups</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="24490894" href="https://independent.academia.edu/ConstantineGeorgakis">Constantine Georgakis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1970</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the uniform convergence of Fourier transforms on groups","attachmentId":90714653,"attachmentType":"pdf","work_url":"https://www.academia.edu/86207549/On_the_uniform_convergence_of_Fourier_transforms_on_groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/86207549/On_the_uniform_convergence_of_Fourier_transforms_on_groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-wsj-grid-card" data-collection-position="9" data-entity-id="23879659" data-sort-order="default"><a class="ds-related-work--title js-wsj-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/23879659/Continuous_Wavelet_Transforms_from_Semidirect_Products_Cyclic_Representations_and_Plancherel_Measure">Continuous Wavelet Transforms from Semidirect Products: Cyclic Representations and Plancherel Measure</a><div class="ds-related-work--metadata"><a class="js-wsj-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="46150045" href="https://independent.academia.edu/HartmutF%C3%BChr">Hartmut Führ</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Fourier Analysis and Applications, 2002</p><p class="ds-related-work--abstract ds2-5-body-sm">Continuous wavelet transforms arising from the quasiregular representation of a semidirect product group G = R k ⋊ H have been studied by various authors. Recently the attention has shifted from the irreducible case to include more general dilation groups H, for instance cyclic (more generally: discrete) or one-parameter groups. These groups do not give rise to irreducible square-integrable representations, yet it is possible (and quite simple) to give admissibility conditions for a large class of them. We put these results in a theoretical context by establishing a connection to the Plancherel theory of the semidirect products, and show how the admissibility conditions relate to abstract admissibility conditions which use Plancherel theory. *</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Continuous Wavelet Transforms from Semidirect Products: Cyclic Representations and Plancherel Measure","attachmentId":44269533,"attachmentType":"pdf","work_url":"https://www.academia.edu/23879659/Continuous_Wavelet_Transforms_from_Semidirect_Products_Cyclic_Representations_and_Plancherel_Measure","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-wsj-grid-card-view-pdf" href="https://www.academia.edu/23879659/Continuous_Wavelet_Transforms_from_Semidirect_Products_Cyclic_Representations_and_Plancherel_Measure"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div></div><div class="ds-sticky-ctas--wrapper js-loswp-sticky-ctas hidden"><div class="ds-sticky-ctas--grid-container"><div class="ds-sticky-ctas--container"><button class="ds2-5-button js-swp-download-button" data-signup-modal="{"location":"continue-reading-button--sticky-ctas","attachmentId":106582962,"attachmentType":"pdf","workUrl":null}">See full PDF</button><button class="ds2-5-button ds2-5-button--secondary js-swp-download-button" data-signup-modal="{"location":"download-pdf-button--sticky-ctas","attachmentId":106582962,"attachmentType":"pdf","workUrl":null}"><span class="material-symbols-outlined" style="font-size: 20px" translate="no">download</span>Download PDF</button></div></div></div><div class="ds-below-fold--grid-container"><div class="ds-work--container js-loswp-embedded-document"><div class="attachment_preview" data-attachment="Attachment_106582962" style="display: none"><div class="js-scribd-document-container"><div class="scribd--document-loading js-scribd-document-loader" style="display: block;"><img alt="Loading..." src="//a.academia-assets.com/images/loaders/paper-load.gif" /><p>Loading Preview</p></div></div><div style="text-align: center;"><div class="scribd--no-preview-alert js-preview-unavailable"><p>Sorry, preview is currently unavailable. You can download the paper by clicking the button above.</p></div></div></div></div><div class="ds-sidebar--container js-work-sidebar"><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related papers</h2><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="0" data-entity-id="92379980" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/92379980/Fourier_Transform_on_Group_Like_Structures_and_Applications">Fourier Transform on Group-Like Structures and Applications</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="2240411" href="https://liau.academia.edu/hassanmyrnouri">hassan myrnouri</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Fourier Transforms - Approach to Scientific Principles, 2011</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Fourier Transform on Group-Like Structures and Applications","attachmentId":95403865,"attachmentType":"pdf","work_url":"https://www.academia.edu/92379980/Fourier_Transform_on_Group_Like_Structures_and_Applications","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/92379980/Fourier_Transform_on_Group_Like_Structures_and_Applications"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="1" data-entity-id="109451115" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/109451115/Fundamental_Theorems_of_Fourier_Stieltjes_Transform_Defined_by_Induced_Representation_on_Locally_Compact_Group">Fundamental Theorems of Fourier-Stieltjes Transform Defined by Induced Representation on Locally Compact Group</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="137244740" href="https://independent.academia.edu/Hounkonnou">Norbert Hounkonnou</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2022</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Fundamental Theorems of Fourier-Stieltjes Transform Defined by Induced Representation on Locally Compact Group","attachmentId":107572730,"attachmentType":"pdf","work_url":"https://www.academia.edu/109451115/Fundamental_Theorems_of_Fourier_Stieltjes_Transform_Defined_by_Induced_Representation_on_Locally_Compact_Group","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/109451115/Fundamental_Theorems_of_Fourier_Stieltjes_Transform_Defined_by_Induced_Representation_on_Locally_Compact_Group"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="2" data-entity-id="69938733" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/69938733/Multiresolution_analysis_and_Harr_like_wavelet_bases_on_locally_compact_groups">Multiresolution analysis and Harr-like wavelet bases on locally compact groups</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="153317761" href="https://independent.academia.edu/QingdeYang">Qingde Yang</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Multiresolution analysis and Harr-like wavelet bases on locally compact groups","attachmentId":79845665,"attachmentType":"pdf","work_url":"https://www.academia.edu/69938733/Multiresolution_analysis_and_Harr_like_wavelet_bases_on_locally_compact_groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/69938733/Multiresolution_analysis_and_Harr_like_wavelet_bases_on_locally_compact_groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="3" data-entity-id="58405037" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/58405037/Functions_that_operate_in_the_Fourier_algebra_of_a_compact_group">Functions that operate in the Fourier algebra of a compact group</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39545224" href="https://independent.academia.edu/CharlesDunkl">Charles Dunkl</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings of the American Mathematical Society, 1969</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Functions that operate in the Fourier algebra of a compact group","attachmentId":72838146,"attachmentType":"pdf","work_url":"https://www.academia.edu/58405037/Functions_that_operate_in_the_Fourier_algebra_of_a_compact_group","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/58405037/Functions_that_operate_in_the_Fourier_algebra_of_a_compact_group"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="4" data-entity-id="54535373" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54535373/On_the_vector_Fourier_multipliers_for_compact_groups">On the vector Fourier multipliers for compact groups</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="172262998" href="https://independent.academia.edu/YaoganMensah">Yaogan Mensah</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Open Journal of Mathematical Sciences</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the vector Fourier multipliers for compact groups","attachmentId":70854259,"attachmentType":"pdf","work_url":"https://www.academia.edu/54535373/On_the_vector_Fourier_multipliers_for_compact_groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/54535373/On_the_vector_Fourier_multipliers_for_compact_groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="5" data-entity-id="122570788" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/122570788/Convolution_Operators_Supported_by_SUBGROUPS1">Convolution Operators Supported by SUBGROUPS1</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="39545224" href="https://independent.academia.edu/CharlesDunkl">Charles Dunkl</a></div><p class="ds-related-work--metadata ds2-5-body-xs">1972</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Convolution Operators Supported by SUBGROUPS1","attachmentId":117210321,"attachmentType":"pdf","work_url":"https://www.academia.edu/122570788/Convolution_Operators_Supported_by_SUBGROUPS1","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/122570788/Convolution_Operators_Supported_by_SUBGROUPS1"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="6" data-entity-id="112793003" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/112793003/Riesz_Wavelets_Tiling_and_Spectral_Sets_in_LCA_Groups">Riesz Wavelets, Tiling and Spectral Sets in LCA Groups</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="185209677" href="https://independent.academia.edu/AzitaMayeli">Azita Mayeli</a></div><p class="ds-related-work--metadata ds2-5-body-xs">arXiv (Cornell University), 2017</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Riesz Wavelets, Tiling and Spectral Sets in LCA Groups","attachmentId":109914607,"attachmentType":"pdf","work_url":"https://www.academia.edu/112793003/Riesz_Wavelets_Tiling_and_Spectral_Sets_in_LCA_Groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/112793003/Riesz_Wavelets_Tiling_and_Spectral_Sets_in_LCA_Groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="7" data-entity-id="31337827" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/31337827/The_Fourier_transform_in_quantum_group_theory">The Fourier transform in quantum group theory</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="59823803" href="https://independent.academia.edu/ADaele">Alfons Van Daele</a></div><p class="ds-related-work--metadata ds2-5-body-xs">2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The Fourier transform in quantum group theory","attachmentId":51723167,"attachmentType":"pdf","work_url":"https://www.academia.edu/31337827/The_Fourier_transform_in_quantum_group_theory","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/31337827/The_Fourier_transform_in_quantum_group_theory"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="8" data-entity-id="95534560" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/95534560/Reproducing_formulas_for_generalized_translation_invariant_systems_on_locally_compact_abelian_groups">Reproducing formulas for generalized translation invariant systems on locally compact abelian groups</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44369643" href="https://independent.academia.edu/MadsSielemannJakobsen">Mads Jakobsen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Transactions of the American Mathematical Society, 2016</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Reproducing formulas for generalized translation invariant systems on locally compact abelian groups","attachmentId":97689895,"attachmentType":"pdf","work_url":"https://www.academia.edu/95534560/Reproducing_formulas_for_generalized_translation_invariant_systems_on_locally_compact_abelian_groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/95534560/Reproducing_formulas_for_generalized_translation_invariant_systems_on_locally_compact_abelian_groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="9" data-entity-id="54535363" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54535363/Completely_Bounded_Fourier_Multipliers_Over_Compact_Groups">Completely Bounded Fourier Multipliers Over Compact Groups</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="172262998" href="https://independent.academia.edu/YaoganMensah">Yaogan Mensah</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Completely Bounded Fourier Multipliers Over Compact Groups","attachmentId":70854261,"attachmentType":"pdf","work_url":"https://www.academia.edu/54535363/Completely_Bounded_Fourier_Multipliers_Over_Compact_Groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/54535363/Completely_Bounded_Fourier_Multipliers_Over_Compact_Groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="10" data-entity-id="54535366" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54535366/On_the_Fourier_Transform_On_Semi_direct_Products_With_Compact_Factor">On the Fourier Transform On Semi-direct Products With Compact Factor</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="172262998" href="https://independent.academia.edu/YaoganMensah">Yaogan Mensah</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Fourier Transform On Semi-direct Products With Compact Factor","attachmentId":70854266,"attachmentType":"pdf","work_url":"https://www.academia.edu/54535366/On_the_Fourier_Transform_On_Semi_direct_Products_With_Compact_Factor","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/54535366/On_the_Fourier_Transform_On_Semi_direct_Products_With_Compact_Factor"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="11" data-entity-id="85216434" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/85216434/On_the_Fourier_transform_on_the_infinite_symmetric_group">On the Fourier transform on the infinite symmetric group</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="53951142" href="https://independent.academia.edu/AnatolyVershik">Anatoly M Vershik</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Mathematical Sciences, 2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the Fourier transform on the infinite symmetric group","attachmentId":89983060,"attachmentType":"pdf","work_url":"https://www.academia.edu/85216434/On_the_Fourier_transform_on_the_infinite_symmetric_group","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/85216434/On_the_Fourier_transform_on_the_infinite_symmetric_group"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="12" data-entity-id="91067890" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/91067890/A_characterisation_of_the_Fourier_transform_on_the_Heisenberg_group">A characterisation of the Fourier transform on the Heisenberg group</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="13954725" href="https://iisc.academia.edu/SundaramThangavelu">Sundaram Thangavelu</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Annals of Functional Analysis, 2012</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A characterisation of the Fourier transform on the Heisenberg group","attachmentId":94459325,"attachmentType":"pdf","work_url":"https://www.academia.edu/91067890/A_characterisation_of_the_Fourier_transform_on_the_Heisenberg_group","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/91067890/A_characterisation_of_the_Fourier_transform_on_the_Heisenberg_group"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="13" data-entity-id="21263210" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21263210/Two_Wavelet_Localization_Operators_on_L_p_mathbb_R_n_for_the_Weyl_Heisenberg_Group">Two-Wavelet Localization Operators on $$ L^p(\mathbb{R}^n) $$ for the Weyl-Heisenberg Group</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="42383738" href="https://independent.academia.edu/PaoloBoggiatto">Paolo Boggiatto</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Integral Equations and Operator Theory, 2004</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Two-Wavelet Localization Operators on $$ L^p(\\mathbb{R}^n) $$ for the Weyl-Heisenberg Group","attachmentId":41788283,"attachmentType":"pdf","work_url":"https://www.academia.edu/21263210/Two_Wavelet_Localization_Operators_on_L_p_mathbb_R_n_for_the_Weyl_Heisenberg_Group","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/21263210/Two_Wavelet_Localization_Operators_on_L_p_mathbb_R_n_for_the_Weyl_Heisenberg_Group"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="14" data-entity-id="22400471" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/22400471/On_the_structure_of_the_space_of_wavelet_transforms">On the structure of the space of wavelet transforms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="34839525" href="https://independent.academia.edu/OndrejHutn%C3%ADk">Ondrej Hutník</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Comptes Rendus Mathematique, 2008</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On the structure of the space of wavelet transforms","attachmentId":43024869,"attachmentType":"pdf","work_url":"https://www.academia.edu/22400471/On_the_structure_of_the_space_of_wavelet_transforms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/22400471/On_the_structure_of_the_space_of_wavelet_transforms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="15" data-entity-id="54598290" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54598290/The_convolution_induced_topology_on_L_G_and_linearly_dependent_translates_in_L1_G_">The convolution-induced topology on L∞(G) and linearly dependent translates in L1(G)</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="36132317" href="https://independent.academia.edu/GovaertsW">W. Govaerts</a></div><p class="ds-related-work--metadata ds2-5-body-xs">International Journal of Mathematics and Mathematical Sciences, 1982</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"The convolution-induced topology on L∞(G) and linearly dependent translates in L1(G)","attachmentId":70886805,"attachmentType":"pdf","work_url":"https://www.academia.edu/54598290/The_convolution_induced_topology_on_L_G_and_linearly_dependent_translates_in_L1_G_","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/54598290/The_convolution_induced_topology_on_L_G_and_linearly_dependent_translates_in_L1_G_"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="16" data-entity-id="54535359" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54535359/On_Spaces_of_Fourier_Stieltjes_Transform_of_Vector_Measures_on_Compact_Groups">On Spaces of Fourier-Stieltjes Transform of Vector Measures on Compact Groups</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="172262998" href="https://independent.academia.edu/YaoganMensah">Yaogan Mensah</a></div><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"On Spaces of Fourier-Stieltjes Transform of Vector Measures on Compact Groups","attachmentId":70854269,"attachmentType":"pdf","work_url":"https://www.academia.edu/54535359/On_Spaces_of_Fourier_Stieltjes_Transform_of_Vector_Measures_on_Compact_Groups","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/54535359/On_Spaces_of_Fourier_Stieltjes_Transform_of_Vector_Measures_on_Compact_Groups"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="17" data-entity-id="21796237" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21796237/A_characterization_of_the_higher_dimensional_groups_associated_with_continuous_wavelets">A characterization of the higher dimensional groups associated with continuous wavelets</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="43012828" href="https://independent.academia.edu/LaugesenR">R. Laugesen</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Journal of Geometric Analysis, 2002</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A characterization of the higher dimensional groups associated with continuous wavelets","attachmentId":42558999,"attachmentType":"pdf","work_url":"https://www.academia.edu/21796237/A_characterization_of_the_higher_dimensional_groups_associated_with_continuous_wavelets","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/21796237/A_characterization_of_the_higher_dimensional_groups_associated_with_continuous_wavelets"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="18" data-entity-id="21321315" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/21321315/A_group_representation_related_to_the_Stockwell_transform">A group representation related to the Stockwell transform</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="42421810" href="https://independent.academia.edu/AntonioGalbis">Antonio Galbis</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Indiana University Mathematics Journal, 2009</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A group representation related to the Stockwell transform","attachmentId":41814923,"attachmentType":"pdf","work_url":"https://www.academia.edu/21321315/A_group_representation_related_to_the_Stockwell_transform","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/21321315/A_group_representation_related_to_the_Stockwell_transform"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="19" data-entity-id="22654930" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/22654930/A_characterization_of_Fourier_transforms">A characterization of Fourier transforms</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="44154523" href="https://independent.academia.edu/PhilippeJaming">Philippe Jaming</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Colloquium Mathematicum, 2010</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"A characterization of Fourier transforms","attachmentId":43245251,"attachmentType":"pdf","work_url":"https://www.academia.edu/22654930/A_characterization_of_Fourier_transforms","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/22654930/A_characterization_of_Fourier_transforms"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="20" data-entity-id="54349069" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/54349069/Wavelet_subspaces_invariant_under_groups_of_translation_operators">Wavelet subspaces invariant under groups of translation operators</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="94294988" href="https://iitk.academia.edu/ShobhaMadan">Shobha Madan</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Proceedings Mathematical Sciences, 2003</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Wavelet subspaces invariant under groups of translation operators","attachmentId":70756234,"attachmentType":"pdf","work_url":"https://www.academia.edu/54349069/Wavelet_subspaces_invariant_under_groups_of_translation_operators","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/54349069/Wavelet_subspaces_invariant_under_groups_of_translation_operators"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div><div class="ds-related-work--container js-related-work-sidebar-card" data-collection-position="21" data-entity-id="8370734" data-sort-order="default"><a class="ds-related-work--title js-related-work-grid-card-title ds2-5-body-md ds2-5-body-link" href="https://www.academia.edu/8370734/Wavelet_transform_on_the_circle_and_the_real_line_A_unified_group_theoretical_treatment">Wavelet transform on the circle and the real line: A unified group-theoretical treatment</a><div class="ds-related-work--metadata"><a class="js-related-work-grid-card-author ds2-5-body-sm ds2-5-body-link" data-author-id="16831814" href="https://independent.academia.edu/JULIOGUERRERO2">JULIO GUERRERO</a></div><p class="ds-related-work--metadata ds2-5-body-xs">Applied and Computational Harmonic Analysis, 2006</p><div class="ds-related-work--ctas"><button class="ds2-5-text-link ds2-5-text-link--inline js-swp-download-button" data-signup-modal="{"location":"wsj-grid-card-download-pdf-modal","work_title":"Wavelet transform on the circle and the real line: A unified group-theoretical treatment","attachmentId":48119635,"attachmentType":"pdf","work_url":"https://www.academia.edu/8370734/Wavelet_transform_on_the_circle_and_the_real_line_A_unified_group_theoretical_treatment","alternativeTracking":true}"><span class="material-symbols-outlined" style="font-size: 18px" translate="no">download</span><span class="ds2-5-text-link__content">Download free PDF</span></button><a class="ds2-5-text-link ds2-5-text-link--inline js-related-work-grid-card-view-pdf" href="https://www.academia.edu/8370734/Wavelet_transform_on_the_circle_and_the_real_line_A_unified_group_theoretical_treatment"><span class="ds2-5-text-link__content">View PDF</span><span class="material-symbols-outlined" style="font-size: 18px" translate="no">chevron_right</span></a></div></div></div><div class="ds-related-content--container"><h2 class="ds-related-content--heading">Related topics</h2><div class="ds-research-interests--pills-container"><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="300" href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="19997" href="https://www.academia.edu/Documents/in/Pure_Mathematics">Pure Mathematics</a><a class="js-related-research-interest ds-research-interests--pill" data-entity-id="390056" href="https://www.academia.edu/Documents/in/Fourier_transform">Fourier transform</a></div></div></div></div></div><div class="footer--content"><ul class="footer--main-links hide-on-mobile"><li><a href="https://www.academia.edu/about">About</a></li><li><a href="https://www.academia.edu/press">Press</a></li><li><a href="https://www.academia.edu/documents">Papers</a></li><li><a href="https://www.academia.edu/topics">Topics</a></li><li><a href="https://www.academia.edu/hiring"><svg style="width: 13px; height: 13px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="briefcase" class="svg-inline--fa fa-briefcase fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M320 336c0 8.84-7.16 16-16 16h-96c-8.84 0-16-7.16-16-16v-48H0v144c0 25.6 22.4 48 48 48h416c25.6 0 48-22.4 48-48V288H320v48zm144-208h-80V80c0-25.6-22.4-48-48-48H176c-25.6 0-48 22.4-48 48v48H48c-25.6 0-48 22.4-48 48v80h512v-80c0-25.6-22.4-48-48-48zm-144 0H192V96h128v32z"></path></svg> <strong>We're Hiring!</strong></a></li><li><a href="https://support.academia.edu/"><svg style="width: 12px; height: 12px; position: relative; bottom: -1px;" aria-hidden="true" focusable="false" data-prefix="fas" data-icon="question-circle" class="svg-inline--fa fa-question-circle fa-w-16" role="img" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512"><path fill="currentColor" d="M504 256c0 136.997-111.043 248-248 248S8 392.997 8 256C8 119.083 119.043 8 256 8s248 111.083 248 248zM262.655 90c-54.497 0-89.255 22.957-116.549 63.758-3.536 5.286-2.353 12.415 2.715 16.258l34.699 26.31c5.205 3.947 12.621 3.008 16.665-2.122 17.864-22.658 30.113-35.797 57.303-35.797 20.429 0 45.698 13.148 45.698 32.958 0 14.976-12.363 22.667-32.534 33.976C247.128 238.528 216 254.941 216 296v4c0 6.627 5.373 12 12 12h56c6.627 0 12-5.373 12-12v-1.333c0-28.462 83.186-29.647 83.186-106.667 0-58.002-60.165-102-116.531-102zM256 338c-25.365 0-46 20.635-46 46 0 25.364 20.635 46 46 46s46-20.636 46-46c0-25.365-20.635-46-46-46z"></path></svg> <strong>Help Center</strong></a></li></ul><ul class="footer--research-interests"><li>Find new research papers in:</li><li><a href="https://www.academia.edu/Documents/in/Physics">Physics</a></li><li><a href="https://www.academia.edu/Documents/in/Chemistry">Chemistry</a></li><li><a href="https://www.academia.edu/Documents/in/Biology">Biology</a></li><li><a href="https://www.academia.edu/Documents/in/Health_Sciences">Health Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Ecology">Ecology</a></li><li><a href="https://www.academia.edu/Documents/in/Earth_Sciences">Earth Sciences</a></li><li><a href="https://www.academia.edu/Documents/in/Cognitive_Science">Cognitive Science</a></li><li><a href="https://www.academia.edu/Documents/in/Mathematics">Mathematics</a></li><li><a href="https://www.academia.edu/Documents/in/Computer_Science">Computer Science</a></li></ul><ul class="footer--legal-links hide-on-mobile"><li><a href="https://www.academia.edu/terms">Terms</a></li><li><a href="https://www.academia.edu/privacy">Privacy</a></li><li><a href="https://www.academia.edu/copyright">Copyright</a></li><li>Academia ©2024</li></ul></div> </body> </html>