CINXE.COM

Machine learning approaches and databases for prediction of drug–target interaction: a survey paper | Briefings in Bioinformatics | Oxford Academic

<!DOCTYPE html> <html lang="en" class="no-js"> <head> <!-- charset must appear in the first 1024 bytes of the document --> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Machine learning approaches and databases for prediction of drug–target interaction: a survey paper | Briefings in Bioinformatics | Oxford Academic</title> <script type='text/javascript' defer src='//js.trendmd.com/trendmd.min.js' data-trendmdconfig='{"element":"#trendmd-suggestions"}' class='optanon-category-C0002'></script> <script src="https://ajax.googleapis.com/ajax/libs/jquery/3.7.1/jquery.min.js" type="text/javascript"></script> <script>window.jQuery || document.write('<script src="//oup.silverchair-cdn.com/Themes/Silver/app/js/jquery.3.7.1.min.js" type="text/javascript">\x3C/script>')</script> <script src="//oup.silverchair-cdn.com/Themes/Silver/app/vendor/v-638654880267142888/jquery-migrate-1.4.1.min.js" type="text/javascript"></script> <script type='text/javascript' src='https://platform-api.sharethis.com/js/sharethis.js#property=643701de45aa460012e1032e&amp;product=sop' async='async' class='optanon-category-C0004'></script> <meta name="viewport" content="width=device-width, initial-scale=1, maximum-scale=10" /> <meta http-equiv="X-UA-Compatible" content="IE=Edge" /> <!-- Turn off telephone number detection. --> <meta name="format-detection" content="telephone=no" /> <!-- Bookmark Icons --> <link rel="apple-touch-icon" sizes="180x180" href="//oup.silverchair-cdn.com/UI/app/img/v-638654879241847311/apple-touch-icon.png"> <link rel="icon" type="image/png" href="//oup.silverchair-cdn.com/UI/app/img/v-638654879242047735/favicon-32x32.png" sizes="32x32"> <link rel="icon" type="image/png" href="//oup.silverchair-cdn.com/UI/app/img/v-638654879241997236/favicon-16x16.png" sizes="16x16"> <link rel="mask-icon" href="//oup.silverchair-cdn.com/UI/app/img/v-638654879242697268/safari-pinned-tab.svg" color="#001C54"> <link rel="icon" href="//oup.silverchair-cdn.com/UI/app/img/v-638654879242147229/favicon.ico"> <link rel="manifest" href="//oup.silverchair-cdn.com/UI/app/img/v-638654879242447968/manifest.json"> <meta name="msapplication-config" content="//oup.silverchair-cdn.com/UI/app/img/v-638654879241847311/browserconfig.xml"> <meta name="theme-color" content="#002f65"> <link rel="stylesheet" type="text/css" href="//oup.silverchair-cdn.com/UI/app/fonts/icons.css" /> <link rel="stylesheet" type="text/css" href="//oup.silverchair-cdn.com/Themes/Client/app/css/v-638669719594245124/site.min.css" /> <link rel="preload" href="https://fonts.googleapis.com/css?family=Merriweather:300,400,400italic,700,700italic|Source+Sans+Pro:400,400italic,700,700italic" as="style" onload="this.onload=null;this.rel='stylesheet'"> <link href="//oup.silverchair-cdn.com/data/SiteBuilderAssetsOriginals/Live/CSS/journals/v-638683065031606590/global.css" rel="stylesheet" type="text/css" /> <link href="//oup.silverchair-cdn.com/data/SiteBuilderAssets/Live/CSS/bib/v-638567327252713419/Site.css" rel="stylesheet" type="text/css" /> <script> var dataLayer = [{"full_title":"Machine learning approaches and databases for prediction of drug–target interaction: a survey paper","short_title":"Machine learning approaches and databases for prediction of drug–target interaction: a survey paper","authors":"Maryam Bagherian,Elyas Sabeti,Kai Wang,Maureen A Sartor,Zaneta Nikolovska-Coleska,Kayvan Najarian","issue_and_volume":"Volume 22 | Issue 1","type":"review-article","online_publication_date":"2020-01-17","access_type":"Open Access","license_type":"cc-by-nc","event_type":"full-text","discipline_ot_level_1":"Science and Mathematics","discipline_ot_level_2":"Biological Sciences","supplier_tag":"SC_Journals","object_type":"Article","taxonomy":"taxId%3a39%7ctaxLabel%3aAcademicSubjects%7cnodeId%3aSCI01060%7cnodeLabel%3aBioinformatics+and+Computational+Biology%7cnodeLevel%3a3","siteid":"bib","authzrequired":"false","doi":"10.1093/bib/bbz157"}]; </script> <script> (function (w, d, s, l, i) { w[l] = w[l] || []; w[l].push({ 'gtm.start': new Date().getTime(), event: 'gtm.js' }); var f = d.getElementsByTagName(s)[0], j = d.createElement(s), dl = l != 'dataLayer' ? '&l=' + l : ''; j.async = true; j.src = 'https://www.googletagmanager.com/gtm.js?id=' + i + dl; f.parentNode.insertBefore(j, f); })(window, document, 'script', 'dataLayer', 'GTM-W6DD7HV'); </script> <script type="text/javascript"> var App = App || {}; App.LoginUserInfo = { isInstLoggedIn: 0, isIndividualLoggedIn: 0 }; App.CurrentSubdomain = 'bib'; App.SiteURL = 'academic.oup.com/bib'; </script> <link href="https://cdn.jsdelivr.net/chartist.js/latest/chartist.min.css" media="print" onload="this.onload=null;this.removeAttribute('media');" rel="stylesheet" type="text/css" /> <script type="application/ld+json"> {"@context":"https://schema.org","@type":"ScholarlyArticle","@id":"https://academic.oup.com/bib/article/22/1/247/5681786","name":"Machine learning approaches and databases for prediction of drug–target interaction: a survey paper","datePublished":"2020-01-17","isPartOf":{"@id":"https://academic.oup.com/bib/issue/22/1","@type":"PublicationIssue","issueNumber":"1","datePublished":"2021-01-18","isPartOf":{"@id":"https://academic.oup.com/bib/bib","@type":"Periodical","name":"Briefings in Bioinformatics","issn":["1477-4054"]}},"url":"https://dx.doi.org/10.1093/bib/bbz157","keywords":["Machine learning","drug–target interaction prediction","DTI software","DTI database"],"inLanguage":"en","copyrightHolder":"Oxford University Press","copyrightYear":"2024","publisher":"Oxford University Press","author":[{"name":"Bagherian, Maryam","affiliation":"Department of Computational Medicine and Bioinformatics , University of Michigan, Ann Arbor, MI, 48109, USA","@type":"Person"},{"name":"Sabeti, Elyas","affiliation":"Michigan Institute for Data Science , University of Michigan, Ann Arbor, MI, 48109, USA","@type":"Person"},{"name":"Wang, Kai","affiliation":"Department of Biostatistics , School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA","@type":"Person"},{"name":"Sartor, Maureen A","affiliation":"Department of Pathology , University of Michigan, Ann Arbor, MI, 48109, USA","@type":"Person"},{"name":"Nikolovska-Coleska, Zaneta","affiliation":"Department of Emergency Medicine , Medical School, University of Michigan, Ann Arbor, MI, 48109, USA","@type":"Person"},{"name":"Najarian, Kayvan","affiliation":"Department of Electrical Engineering and Computer Science , College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA","@type":"Person"}],"description":"Abstract. The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop n","pageStart":"247","pageEnd":"269","siteName":"OUP Academic","thumbnailURL":"https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f1.jpeg?Expires=1794510477&Signature=A1DuNJ9~RCWI1J1lcyknofi~3dcrzmf-sw~5n~l1hVRzEeZkzDPOXCnj88KG569jApKNDuOl~kaDR3~P3hYjqs2xvdweaNSqyqIew3tTvqVZPgufpXCnbjk3ue~RP7HYOCS5FjTtjfD83zqvDg5cAYe1wkCjHH1FC2n2YSEpcwlawupDekvE90zQlw1DnRaGJM8id9pXgAf9fnFRNc8Zp6rpV7RYJNwAvp44Y0DRABgIqoFE-vpLh5ugk3CHo25KCIq~8mA9HcBWnC-rfpFdXvaVc0kPfuhT7pcEC~El1Md53ggES~SQ~nBgtkjvKeSiIZ5N3vylv9KpglOo0AgFlA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA","headline":"Machine learning approaches and databases for prediction of drug–target interaction: a survey paper","image":"https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f1.jpeg?Expires=1794510477&Signature=A1DuNJ9~RCWI1J1lcyknofi~3dcrzmf-sw~5n~l1hVRzEeZkzDPOXCnj88KG569jApKNDuOl~kaDR3~P3hYjqs2xvdweaNSqyqIew3tTvqVZPgufpXCnbjk3ue~RP7HYOCS5FjTtjfD83zqvDg5cAYe1wkCjHH1FC2n2YSEpcwlawupDekvE90zQlw1DnRaGJM8id9pXgAf9fnFRNc8Zp6rpV7RYJNwAvp44Y0DRABgIqoFE-vpLh5ugk3CHo25KCIq~8mA9HcBWnC-rfpFdXvaVc0kPfuhT7pcEC~El1Md53ggES~SQ~nBgtkjvKeSiIZ5N3vylv9KpglOo0AgFlA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA","image:alt":"An overview of the present work."} </script> <meta property="og:site_name" content="OUP Academic" /> <meta property="og:title" content="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" /> <meta property="og:description" content="Abstract. The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop n" /> <meta property="og:type" content="article" /> <meta property="og:url" content="https://dx.doi.org/10.1093/bib/bbz157" /> <meta property="og:updated_time" content="" /> <meta property="og:image" content="https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f1.jpeg?Expires=1794510477&Signature=A1DuNJ9~RCWI1J1lcyknofi~3dcrzmf-sw~5n~l1hVRzEeZkzDPOXCnj88KG569jApKNDuOl~kaDR3~P3hYjqs2xvdweaNSqyqIew3tTvqVZPgufpXCnbjk3ue~RP7HYOCS5FjTtjfD83zqvDg5cAYe1wkCjHH1FC2n2YSEpcwlawupDekvE90zQlw1DnRaGJM8id9pXgAf9fnFRNc8Zp6rpV7RYJNwAvp44Y0DRABgIqoFE-vpLh5ugk3CHo25KCIq~8mA9HcBWnC-rfpFdXvaVc0kPfuhT7pcEC~El1Md53ggES~SQ~nBgtkjvKeSiIZ5N3vylv9KpglOo0AgFlA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" /> <meta property="og:image:url" content="https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f1.jpeg?Expires=1794510477&Signature=A1DuNJ9~RCWI1J1lcyknofi~3dcrzmf-sw~5n~l1hVRzEeZkzDPOXCnj88KG569jApKNDuOl~kaDR3~P3hYjqs2xvdweaNSqyqIew3tTvqVZPgufpXCnbjk3ue~RP7HYOCS5FjTtjfD83zqvDg5cAYe1wkCjHH1FC2n2YSEpcwlawupDekvE90zQlw1DnRaGJM8id9pXgAf9fnFRNc8Zp6rpV7RYJNwAvp44Y0DRABgIqoFE-vpLh5ugk3CHo25KCIq~8mA9HcBWnC-rfpFdXvaVc0kPfuhT7pcEC~El1Md53ggES~SQ~nBgtkjvKeSiIZ5N3vylv9KpglOo0AgFlA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" /> <meta property="og:image:secure_url" content="https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f1.jpeg?Expires=1794510477&Signature=A1DuNJ9~RCWI1J1lcyknofi~3dcrzmf-sw~5n~l1hVRzEeZkzDPOXCnj88KG569jApKNDuOl~kaDR3~P3hYjqs2xvdweaNSqyqIew3tTvqVZPgufpXCnbjk3ue~RP7HYOCS5FjTtjfD83zqvDg5cAYe1wkCjHH1FC2n2YSEpcwlawupDekvE90zQlw1DnRaGJM8id9pXgAf9fnFRNc8Zp6rpV7RYJNwAvp44Y0DRABgIqoFE-vpLh5ugk3CHo25KCIq~8mA9HcBWnC-rfpFdXvaVc0kPfuhT7pcEC~El1Md53ggES~SQ~nBgtkjvKeSiIZ5N3vylv9KpglOo0AgFlA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" /> <meta property="og:image:alt" content="An overview of the present work." /> <meta name="twitter:card" content="summary_large_image" /> <meta name="citation_author" content="Bagherian, Maryam" /><meta name="citation_author_institution" content="Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA" /><meta name="citation_author" content="Sabeti, Elyas" /><meta name="citation_author_institution" content="Michigan Institute for Data Science, University of Michigan, Ann Arbor, MI, 48109, USA" /><meta name="citation_author" content="Wang, Kai" /><meta name="citation_author_institution" content="Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA" /><meta name="citation_author" content="Sartor, Maureen A" /><meta name="citation_author_institution" content="Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA" /><meta name="citation_author" content="Nikolovska-Coleska, Zaneta" /><meta name="citation_author_institution" content="Department of Emergency Medicine, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA" /><meta name="citation_author" content="Najarian, Kayvan" /><meta name="citation_author_institution" content="Department of Electrical Engineering and Computer Science, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA" /><meta name="citation_title" content="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" /><meta name="citation_firstpage" content="247" /><meta name="citation_lastpage" content="269" /><meta name="citation_doi" content="10.1093/bib/bbz157" /><meta name="citation_journal_title" content="Briefings in Bioinformatics" /><meta name="citation_journal_abbrev" content="Brief Bioinform" /><meta name="citation_volume" content="22" /><meta name="citation_issue" content="1" /><meta name="citation_publication_date" content="2021/01/18" /><meta name="citation_publisher" content="Oxford Academic" /><meta name="citation_reference" content="citation_title=The nobel chronicles; citation_author=Raju TN; citation_journal_title=The Lancet; citation_year=2000; citation_volume=355; citation_pages=1022" /><meta name="citation_reference" content="citation_title=Drug-target interaction prediction: a bayesian ranking approach; citation_author=Peska L; citation_author=Buza K; citation_author=Koller J; citation_journal_title=Comput Methods Programs Biomed; citation_year=2017; citation_volume=152; citation_pages=15-21; " /><meta name="citation_reference" content="citation_title=Drug repositioning and repurposing: terminology and definitions in literature; citation_author=Langedijk J; citation_author=Mantel-Teeuwisse AK; citation_author=Slijkerman DS; citation_journal_title=Drug Discov Today; citation_year=2015; citation_volume=20; citation_issue=8; citation_pages=1027-34; " /><meta name="citation_reference" content="citation_title=Predicting new molecular targets for known drugs; citation_author=Keiser MJ; citation_author=Setola V; citation_author=Irwin JJ; citation_journal_title=Nature; citation_year=2009; citation_volume=462; citation_issue=7270; citation_pages=175" /><meta name="citation_reference" content="citation_title=Toward more realistic drug-target interaction predictions; citation_author=Pahikkala T; citation_author=Airola A; citation_author=Pietilä S; citation_journal_title=Brief Bioinform; citation_year=2014; citation_volume=16; citation_issue=2; citation_pages=325-37; " /><meta name="citation_reference" content="citation_title=Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces; citation_author=Xia Z; citation_author=Wu L-Y; citation_author=Zhou X; citation_journal_title=BMC Syst Biol; citation_year=2010; citation_volume=4; citation_pages=S6" /><meta name="citation_reference" content="citation_title=Structure–activity relationships for in vitro and in vivo toxicity; citation_author=Blagg J; citation_journal_title=Annu Rep Med Chem; citation_year=2006; citation_volume=41; citation_pages=353-68; " /><meta name="citation_reference" content="citation_title=Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development; citation_author=Whitebread S; citation_author=Hamon J; citation_author=Bojanic D; citation_journal_title=Drug Discov Today; citation_year=2005; citation_volume=10; citation_issue=21; citation_pages=1421-33; " /><meta name="citation_reference" content="citation_title=Drug target prediction using adverse event report systems: a pharmacogenomic approach; citation_author=Takarabe M; citation_author=Kotera M; citation_author=Nishimura Y; citation_journal_title=Bioinformatics; citation_year=2012; citation_volume=28; citation_issue=18; citation_pages=i611-8; " /><meta name="citation_reference" content="citation_title=Exploiting drug–disease relationships for computational drug repositioning; citation_author=Dudley JT; citation_author=Deshpande T; citation_author=Butte AJ; citation_journal_title=Brief Bioinform; citation_year=2011; citation_volume=12; citation_issue=4; citation_pages=303-11; " /><meta name="citation_reference" content="citation_title=Mining small-molecule screens to repurpose drugs; citation_author=Swamidass SJ; citation_journal_title=Brief Bioinform; citation_year=2011; citation_volume=12; citation_issue=4; citation_pages=327-35; " /><meta name="citation_reference" content="citation_title=Identify drug repurposing candidates by mining the protein data bank; citation_author=Moriaud F; citation_author=Richard SB; citation_author=Adcock SA; citation_journal_title=Brief Bioinform; citation_year=2011; citation_volume=12; citation_issue=4; citation_pages=336-40; " /><meta name="citation_reference" content="citation_title=Prediction of drug–target interaction networks from the integration of chemical and genomic spaces; citation_author=Yamanishi Y; citation_author=Araki M; citation_author=Gutteridge A; citation_journal_title=Bioinformatics; citation_year=2008; citation_volume=24; citation_issue=13; citation_pages=i232-40; " /><meta name="citation_reference" content="citation_title=Protein-ligand interaction prediction: an improved chemogenomics approach; citation_author=Jacob L; citation_author=Vert J-P; citation_journal_title=Bioinformatics; citation_year=2008; citation_volume=24; citation_issue=19; citation_pages=2149-56; " /><meta name="citation_reference" content="citation_title=G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin; citation_author=Ballesteros J; citation_author=Palczewski K; citation_journal_title=Curr Opin Drug Discov Devel; citation_year=2001; citation_volume=4; citation_issue=5; citation_pages=561" /><meta name="citation_reference" content="citation_title=Chemogenomic approaches to drug discovery: similar receptors bind similar ligands; citation_author=Klabunde T; citation_journal_title=Br J Pharmacol; citation_year=2007; citation_volume=152; citation_issue=1; citation_pages=5-7; " /><meta name="citation_reference" content="citation_title=Chemogenomic approaches to rational drug design; citation_author=Rognan D; citation_journal_title=Br J Pharmacol; citation_year=2007; citation_volume=152; citation_issue=1; citation_pages=38-52; " /><meta name="citation_reference" content="citation_title=Prediction of human drug targets and their interactions using machine learning methods: current and future perspectives; citation_author=Nath A; citation_author=Kumari P; citation_author=Chaube R; citation_publisher=NY, USA.; citation_journal_title=Computational Drug Discovery and Design; citation_year=2018; citation_pages=21-30; " /><meta name="citation_reference" content="citation_author=Schölkopf B; citation_author=Tsuda K; citation_author=Vert J-P; citation_publisher=MIT Press, Cambridge, MA; citation_title=Kernel Methods in Computational Biology; citation_year=2004; " /><meta name="citation_reference" content="citation_title=Drug-target network; citation_author=Yildirim MA; citation_author=Goh K-I; citation_author=Cusick ME; citation_journal_title=Nat Biotechnol; citation_year=2007; citation_volume=25; citation_issue=10; citation_pages=1119-26; " /><meta name="citation_reference" content="citation_title=Discovery of drug mode of action and drug repositioning from transcriptional responses; citation_author=Iorio F; citation_author=Bosotti R; citation_author=Scacheri E; citation_journal_title=Proc Natl Acad Sci; citation_year=2010; citation_volume=107; citation_issue=33; citation_pages=14621-6; " /><meta name="citation_reference" content="citation_title=Extracting sets of chemical substructures and protein domains governing drug-target interactions; citation_author=Yamanishi Y; citation_author=Pauwels E; citation_author=Saigo H; citation_journal_title=J Chem Inf Model; citation_year=2011; citation_volume=51; citation_issue=5; citation_pages=1183-94; " /><meta name="citation_reference" content="citation_title=Assessing drug target association using semantic linked data; citation_author=Chen B; citation_author=Ding Y; citation_author=Wild DJ; citation_journal_title=PLoS Comput Biol; citation_year=2012; citation_volume=8; citation_issue=7; " /><meta name="citation_reference" content="citation_title=SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug–target interactions and drug repositioning; citation_author=Wu Z; citation_author=Cheng F; citation_author=Li J; citation_journal_title=Brief Bioinform; citation_year=2016; citation_volume=18; citation_issue=2; citation_pages=333-47; " /><meta name="citation_reference" content="citation_title=An integrative approach to develop computational pipeline for drug–target interaction network analysis; citation_author=Bansal A; citation_author=Srivastava PA; citation_author=Singh TR; citation_journal_title=Sci Rep; citation_year=2018; citation_volume=8; citation_issue=1; citation_pages=10238" /><meta name="citation_reference" content="citation_title=A unified, probabilistic framework for structure-and ligand-based virtual screening; citation_author=Swann SL; citation_author=Brown SP; citation_author=Muchmore SW; citation_journal_title=J Med Chem; citation_year=2011; citation_volume=54; citation_issue=5; citation_pages=1223-32; " /><meta name="citation_reference" content="citation_title=Identifying compound-target associations by combining bioactivity profile similarity search and public databases mining; citation_author=Cheng T; citation_author=Li Q; citation_author=Wang Y; citation_author=Bryant SH; citation_journal_title=J Chem Inf Model; citation_year=2011; citation_volume=51; citation_issue=9; citation_pages=2440-8; " /><meta name="citation_reference" content="citation_title=Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space; citation_author=Cheng F; citation_author=Li W; citation_author=Wu Z; citation_journal_title=J Chem Inf Model; citation_year=2013; citation_volume=53; citation_issue=4; citation_pages=753-62; " /><meta name="citation_reference" content="citation_title=Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets; citation_author=van Westen GJ; citation_author=Wegner JK; citation_author=IJzerman AP; citation_journal_title=MedChemComm; citation_year=2011; citation_volume=2; citation_issue=1; citation_pages=16-30; " /><meta name="citation_reference" content="citation_title=Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules; citation_author=Paricharak S; citation_author=Cortés-Ciriano I; citation_author=IJzerman AP; citation_journal_title=J Chem; citation_year=2015; citation_volume=7; citation_issue=1; citation_pages=15" /><meta name="citation_reference" content="citation_title=Linking drug target and pathway activation for effective therapy using multi-task learning; citation_author=Yang M; citation_author=Simm J; citation_author=Lam CC; citation_journal_title=Sci Rep; citation_year=2018; citation_volume=8; citation_pages=8322" /><meta name="citation_reference" content="citation_title=Predicting drug target interactions using meta-path-based semantic network analysis; citation_author=Fu G; citation_author=Ding Y; citation_author=Seal A; citation_journal_title=BMC Bioinformatics; citation_year=2016; citation_volume=17; citation_issue=1; citation_pages=160" /><meta name="citation_reference" content="citation_title=Mind-best: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae; citation_author=González-Díaz H; citation_author=Prado-Prado F; citation_author=García-Mera X; citation_journal_title=J Proteome Res; citation_year=2011; citation_volume=10; citation_issue=4; citation_pages=1698-718; " /><meta name="citation_reference" content="citation_title=Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir; citation_author=Xie L; citation_author=Evangelidis T; citation_author=Xie L; citation_journal_title=PLoS Comput Biol; citation_year=2011; citation_volume=7; citation_issue=4; " /><meta name="citation_reference" content="citation_title=Tarfisdock: a web server for identifying drug targets with docking approach; citation_author=Li H; citation_author=Gao Z; citation_author=Kang L; citation_journal_title=Nucleic Acids Res; citation_year=2006; citation_volume=34; citation_issue=suppl_2; citation_pages=W219-24; " /><meta name="citation_reference" content="citation_title=Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome–clozapine-induced agranulocytosis as a case study; citation_author=Yang L; citation_author=Wang K; citation_author=Chen J; citation_journal_title=PLoS Comput Biol; citation_year=2011; citation_volume=7; citation_issue=3; " /><meta name="citation_reference" content="citation_title=Generating genome-scale candidate gene lists for pharmacogenomics; citation_author=Hansen NT; citation_author=Brunak S; citation_author=Altman R; citation_journal_title=Clin Pharmacol Ther; citation_year=2009; citation_volume=86; citation_issue=2; citation_pages=183-9; " /><meta name="citation_reference" content="citation_title=Relating protein pharmacology by ligand chemistry; citation_author=Keiser MJ; citation_author=Roth BL; citation_author=Armbruster BN; citation_journal_title=Nat Biotechnol; citation_year=2007; citation_volume=25; citation_issue=2; citation_pages=197" /><meta name="citation_reference" content="citation_title=Predicting adme properties in silico: methods and models; citation_author=Butina D; citation_author=Segall MD; citation_author=Frankcombe K; citation_journal_title=Drug Discov Today; citation_year=2002; citation_volume=7; citation_issue=11; citation_pages=S83-8; " /><meta name="citation_reference" content="citation_title=Comparison of support vector machine and artificial neural network systems for drug/nondrug classification; citation_author=Byvatov E; citation_author=Fechner U; citation_author=Sadowski J; citation_journal_title=J Chem Inf Comput Sci; citation_year=2003; citation_volume=43; citation_issue=6; citation_pages=1882-9; " /><meta name="citation_reference" content="citation_title=A computational approach to finding novel targets for existing drugs; citation_author=Li YY; citation_author=An J; citation_author=Jones SJ; citation_journal_title=PLoS Comput Biol; citation_year=2011; citation_volume=7; citation_issue=9; " /><meta name="citation_reference" content="citation_title=Network pharmacology: the next paradigm in drug discovery; citation_author=Hopkins AL; citation_journal_title=Nat Chem Biol; citation_year=2008; citation_volume=4; citation_issue=11; citation_pages=682" /><meta name="citation_reference" content="citation_title=Drug repositioning for personalized medicine; citation_author=Li YY; citation_author=Jones SJ; citation_journal_title=Genome Med; citation_year=2012; citation_volume=4; citation_issue=3; citation_pages=27" /><meta name="citation_reference" content="citation_title=Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis; citation_author=Kinnings SL; citation_author=Liu N; citation_author=Buchmeier N; citation_journal_title=PLoS Comput Biol; citation_year=2009; citation_volume=5; citation_issue=7; " /><meta name="citation_reference" content="citation_title=Detecting evolutionary relationships across existing fold space, using sequence order-independent profile–profile alignments; citation_author=Xie L; citation_author=Bourne PE; citation_journal_title=Proc Natl Acad Sci; citation_year=2008; citation_volume=105; citation_issue=14; citation_pages=5441-6; " /><meta name="citation_reference" content="citation_title=Predict: a method for inferring novel drug indications with application to personalized medicine; citation_author=Gottlieb A; citation_author=Stein GY; citation_author=Ruppin E; citation_journal_title=Mol Syst Biol; citation_year=2011; citation_volume=7; citation_issue=1; citation_pages=496" /><meta name="citation_reference" content="citation_title=Graph kernels for molecular structure- activity relationship analysis with support vector machines; citation_author=Mahé P; citation_author=Ueda N; citation_author=Akutsu T; citation_journal_title=J Chem Inf Model; citation_year=2005; citation_volume=45; citation_issue=4; citation_pages=939-51; " /><meta name="citation_reference" content="citation_title=In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass Naïve Bayes and Parzen–Rosenblatt window; citation_author=Koutsoukas A; citation_author=Lowe R; citation_author=KalantarMotamedi Y; citation_journal_title=J Chem Inf Model; citation_year=2013; citation_volume=53; citation_issue=8; citation_pages=1957-66; " /><meta name="citation_reference" content="citation_title=Drugminer: comparative analysis of machine learning algorithms for prediction of potential druggable proteins; citation_author=Jamali AA; citation_author=Ferdousi R; citation_author=Razzaghi S; citation_journal_title=Drug Discov Today; citation_year=2016; citation_volume=21; citation_issue=5; citation_pages=718-24; " /><meta name="citation_reference" content="citation_title=Predicting the reliability of drug-target interaction predictions with maximum coverage of target space; citation_author=Peón A; citation_author=Naulaerts S; citation_author=Ballester PJ; citation_journal_title=Sci Rep; citation_year=2017; citation_volume=7; citation_issue=1; citation_pages=3820" /><meta name="citation_reference" content="citation_title=Quantitative and systems pharmacology. 1. In silico prediction of drug–target interactions of natural products enables new targeted cancer therapy; citation_author=Fang J; citation_author=Wu Z; citation_author=Cai C; citation_journal_title=J Chem Inf Model; citation_year=2017; citation_volume=57; citation_issue=11; citation_pages=2657-71; " /><meta name="citation_reference" content="citation_title=Computational drug discovery with dyadic positive-unlabeled learning; citation_author=Liu Y; citation_author=Qiu S; citation_author=Zhang P; citation_publisher=SIAM, University City, Philadelphia, USA; citation_title=Proceedings of the 2017 SIAM International Conference on Data Mining; citation_year=2017; citation_pages=45-53; " /><meta name="citation_reference" content="citation_title=A modular approach for integrative analysis of large-scale gene-expression and drug-response data; citation_author=Kutalik Z; citation_author=Beckmann JS; citation_author=Bergmann S; citation_journal_title=Nat Biotechnol; citation_year=2008; citation_volume=26; citation_issue=5; citation_pages=531" /><meta name="citation_reference" content="citation_title=Predicting cancer drug response by proteomic profiling; citation_author=Ma Y; citation_author=Ding Z; citation_author=Qian Y; citation_journal_title=Clin Cancer Res; citation_year=2006; citation_volume=12; citation_issue=15; citation_pages=4583-9; " /><meta name="citation_reference" content="citation_title=Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease; citation_author=Dudley JT; citation_author=Sirota M; citation_author=Shenoy M; citation_journal_title=Sci Transl Med; citation_year=2011; citation_volume=3; citation_issue=96; citation_pages=96ra76-6; " /><meta name="citation_reference" content="citation_title=Discovery and preclinical validation of drug indications using compendia of public gene expression data; citation_author=Sirota M; citation_author=Dudley JT; citation_author=Kim J; citation_journal_title=Sci Transl Med; citation_year=2011; citation_volume=3; citation_issue=96; citation_pages=96ra77-7; " /><meta name="citation_reference" content="citation_title=Analysis of multiple compound–protein interactions reveals novel bioactive molecules; citation_author=Yabuuchi H; citation_author=Niijima S; citation_author=Takematsu H; citation_journal_title=Mol Syst Biol; citation_year=2011; citation_volume=7; citation_issue=1; citation_pages=472" /><meta name="citation_reference" content="citation_title=The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease; citation_author=Lamb J; citation_author=Crawford ED; citation_author=Peck D; citation_journal_title=Science; citation_year=2006; citation_volume=313; citation_issue=5795; citation_pages=1929-35; " /><meta name="citation_reference" content="citation_title=Drug target identification using side-effect similarity; citation_author=Campillos M; citation_author=Kuhn M; citation_author=Gavin A-C; citation_journal_title=Science; citation_year=2008; citation_volume=321; citation_issue=5886; citation_pages=263-6; " /><meta name="citation_reference" content="citation_title=Large-scale prediction and testing of drug activity on side-effect targets; citation_author=Lounkine E; citation_author=Keiser MJ; citation_author=Whitebread S; citation_journal_title=Nature; citation_year=2012; citation_volume=486; citation_issue=7403; citation_pages=361" /><meta name="citation_reference" content="citation_title=Predicting drug side-effect profiles: a chemical fragment-based approach; citation_author=Pauwels E; citation_author=Stoven V; citation_author=Yamanishi Y; citation_journal_title=BMC Bioinformatics; citation_year=2011; citation_volume=12; citation_issue=1; citation_pages=169" /><meta name="citation_reference" content="citation_title=An algorithmic framework for predicting side effects of drugs; citation_author=Atias N; citation_author=Sharan R; citation_journal_title=J Comput Biol; citation_year=2011; citation_volume=18; citation_issue=3; citation_pages=207-18; " /><meta name="citation_reference" content="citation_title=Identification of drug-side effect association via multiple information integration with centered kernel alignment; citation_author=Ding Y; citation_author=Tang J; citation_author=Guo F; citation_journal_title=Neurocomputing; citation_year=2019; citation_volume=325; citation_pages=211-24; " /><meta name="citation_reference" content="citation_title=Systematic evaluation of drug–disease relationships to identify leads for novel drug uses; citation_author=Chiang AP; citation_author=Butte AJ; citation_journal_title=Clin Pharmacol Ther; citation_year=2009; citation_volume=86; citation_issue=5; citation_pages=507-10; " /><meta name="citation_reference" content="citation_title=Finding multiple target optimal intervention in disease-related molecular network; citation_author=Yang K; citation_author=Bai H; citation_author=Ouyang Q; citation_journal_title=Mol Syst Biol; citation_year=2008; citation_volume=4; citation_issue=1; citation_pages=228" /><meta name="citation_reference" content="citation_title=Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts; citation_author=Li J; citation_author=Zhu X; citation_author=Chen JY; citation_journal_title=PLoS Comput Biol; citation_year=2009; citation_volume=5; citation_issue=7; " /><meta name="citation_reference" content="citation_title=Drug target prediction and repositioning using an integrated network-based approach; citation_author=Emig D; citation_author=Ivliev A; citation_author=Pustovalova O; citation_journal_title=PLoS One; citation_year=2013; citation_volume=8; citation_issue=4; " /><meta name="citation_reference" content="citation_title=Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels; citation_author=Tatonetti NP; citation_author=Denny J; citation_author=Murphy S; citation_journal_title=Clin Pharmacol Ther; citation_year=2011; citation_volume=90; citation_issue=1; citation_pages=133-42; " /><meta name="citation_reference" content="citation_title=A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports; citation_author=Tatonetti NP; citation_author=Fernald GH; citation_author=Altman RB; citation_journal_title=J Am Med Inform Assoc; citation_volume=19; citation_issue=1; citation_pages=79-85, 2011; " /><meta name="citation_reference" content="citation_title=An empirical study of features fusion techniques for protein–protein interaction prediction; citation_author=Zeng J; citation_author=Li D; citation_author=Wu Y; citation_journal_title=Curr Bioinform; citation_year=2016; citation_volume=11; citation_issue=1; citation_pages=4-12; " /><meta name="citation_reference" content="citation_title=Improved prediction of protein–protein interactions using novel negative samples, features, and an ensemble classifier; citation_author=Wei L; citation_author=Xing P; citation_author=Zeng J; citation_journal_title=Artif Intell Med; citation_year=2017; citation_volume=83; citation_pages=67-74; " /><meta name="citation_reference" content="citation_title=Predicting drug–target interactions using drug–drug interactions; citation_author=Kim S; citation_author=Jin D; citation_author=Lee H; citation_journal_title=PloS One; citation_year=2013; citation_volume=8; citation_issue=11; " /><meta name="citation_reference" content="citation_title=A probabilistic model for mining implicit ‘chemical compound–gene’ relations from literature; citation_author=Zhu S; citation_author=Okuno Y; citation_author=Tsujimoto G; citation_journal_title=Bioinformatics; citation_year=2005; citation_volume=21; citation_issue=suppl_2; citation_pages=ii245-51; " /><meta name="citation_reference" content="citation_title=Link prediction in complex networks: a survey; citation_author=Lü L; citation_author=Zhou T; citation_journal_title=Physica A; citation_year=2011; citation_volume=390; citation_issue=6; citation_pages=1150-70; " /><meta name="citation_reference" content="citation_title=Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions; citation_author=Adomavicius G; citation_author=Tuzhilin A; citation_journal_title=IEEE Trans Knowl Data Eng; citation_year=2005; citation_issue=6; citation_pages=734-49; " /><meta name="citation_reference" content="citation_title=A survey of collaborative filtering techniques; citation_author=Su X; citation_author=Khoshgoftaar TM; citation_journal_title=Adv Artif Intell; citation_year=2009; citation_volume=2009; " /><meta name="citation_reference" content="citation_title=Content-boosted matrix factorization techniques for recommender systems; citation_author=Nguyen J; citation_author=Zhu M; citation_journal_title=Stat Anal Data Min; citation_year=2013; citation_volume=6; citation_issue=4; citation_pages=286-301; " /><meta name="citation_reference" content="citation_title=Virtual screen for ligands of orphan g protein-coupled receptors; citation_author=Bock JR; citation_author=Gough DA; citation_journal_title=J Chem Inf Model; citation_year=2005; citation_volume=45; citation_issue=5; citation_pages=1402-14; " /><meta name="citation_reference" content="citation_title=Large-scale prediction of drug–target relationships; citation_author=Kuhn M; citation_author=Campillos M; citation_author=González P; citation_journal_title=FEBS Lett; citation_year=2008; citation_volume=582; citation_issue=8; citation_pages=1283-90; " /><meta name="citation_reference" content="citation_title=Drug discovery in the age of systems biology: the rise of computational approaches for data integration; citation_author=Iskar M; citation_author=Zeller G; citation_author=Zhao X-M; citation_journal_title=Curr Opin Biotechnol; citation_year=2012; citation_volume=23; citation_issue=4; citation_pages=609-16; " /><meta name="citation_reference" content="citation_title=From in silico target prediction to multi-target drug design: current databases, methods and applications; citation_author=Koutsoukas A; citation_author=Simms B; citation_author=Kirchmair J; citation_journal_title=J Proteomics; citation_year=2011; citation_volume=74; citation_issue=12; citation_pages=2554-74; " /><meta name="citation_reference" content="citation_title=A survey on the computational approaches to identify drug targets in the postgenomic era; citation_author=Dai Y-F; citation_author=Zhao X-M; citation_journal_title=Biomed Res Int; citation_year=2015; citation_volume=2015; " /><meta name="citation_reference" content="citation_title=Identification of drug candidates and repurposing opportunities through compound–target interaction networks; citation_author=Cichonska A; citation_author=Rousu J; citation_author=Aittokallio T; citation_journal_title=Expert Opin Drug Discovery; citation_year=2015; citation_volume=10; citation_issue=12; citation_pages=1333-45; " /><meta name="citation_reference" content="citation_title=Similarity-based machine learning methods for predicting drug–target interactions: a brief review; citation_author=Ding H; citation_author=Takigawa I; citation_author=Mamitsuka H; citation_journal_title=Brief Bioinform; citation_year=2013; citation_volume=15; citation_issue=5; citation_pages=734-47; " /><meta name="citation_reference" content="citation_title=Chemogenomic approaches to infer drug–target interaction networks; citation_author=Yamanishi Y; citation_publisher=Springer, Totowa, NJ,; citation_journal_title=Data Mining for Systems Biology; citation_year=2013; citation_pages=97-113; " /><meta name="citation_reference" content="citation_title=Recent advances in the machine learning-based drug–target interaction prediction; citation_author=Zhang W; citation_author=Lin W; citation_author=Zhang D; citation_journal_title=Curr Drug Metab; citation_year=2019; citation_volume=20; citation_issue=3; citation_pages=194-202; " /><meta name="citation_reference" content="citation_title=Machine learning for drug-target interaction prediction; citation_author=Chen R; citation_author=Liu X; citation_author=Jin S; citation_journal_title=Molecules; citation_year=2018; citation_volume=23; citation_issue=9; citation_pages=2208" /><meta name="citation_reference" content="citation_title=Survey of similarity-based prediction of drug–protein interactions; citation_author=Wang C; citation_author=Kurgan L; citation_journal_title=Curr Med Chem; citation_year=2019; citation_volume=26; citation_pages=1" /><meta name="citation_reference" content="citation_title=Machine-learning approaches in drug discovery: methods and applications; citation_author=Lavecchia A; citation_journal_title=Drug Discov Today; citation_year=2015; citation_volume=20; citation_issue=3; citation_pages=318-31; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction via chemogenomic space: learning-based methods; citation_author=Mousavian Z; citation_author=Masoudi-Nejad A; citation_journal_title=Expert Opin Drug Metab Toxicol; citation_year=2014; citation_volume=10; citation_issue=9; citation_pages=1273-87; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction: databases, web servers and computational models; citation_author=Chen X; citation_author=Yan CC; citation_author=Zhang X; citation_journal_title=Brief Bioinform; citation_year=2015; citation_volume=17; citation_issue=4; citation_pages=696-712; " /><meta name="citation_reference" content="citation_title=Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey; citation_author=Ezzat A; citation_author=Wu M; citation_author=Li X-L; citation_journal_title=Brief Bioinform; citation_year=2018; citation_volume=8; " /><meta name="citation_reference" content="citation_title=A comprehensive review of feature based methods for drug target interaction prediction; citation_author=Sachdev K; citation_author=Gupta MK; citation_journal_title=J Biomed Inform; citation_year=2019; citation_volume=93; citation_pages=103159" /><meta name="citation_reference" content="citation_title=In silico databases and tools for drug repurposing; citation_author=Serçinoğlu O; citation_author=Sarica PO; citation_publisher=Elsevier, London, United Kingdom; citation_title=In Silico Drug Design; citation_year=2019; citation_pages=703-42; " /><meta name="citation_reference" content="citation_title=Combining drug and gene similarity measures for drug-target elucidation; citation_author=Perlman L; citation_author=Gottlieb A; citation_author=Atias N; citation_journal_title=J Comput Biol; citation_year=2011; citation_volume=18; citation_issue=2; citation_pages=133-45; " /><meta name="citation_reference" content="citation_title=Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy; citation_author=Peng H; citation_author=Long F; citation_author=Ding C; citation_journal_title=IEEE Trans Pattern Anal Mach Intell; citation_year=2005; citation_issue=8; citation_pages=1226-38; " /><meta name="citation_reference" content="citation_title=SRP: a concise non-parametric similarity-rank-based model for predicting drug-target interactions; citation_author=Shi J-Y; citation_author=Yiu S-M; citation_publisher=IEEE, NY, USA,; citation_title=2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); citation_year=2015; citation_pages=1636-41; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction with bipartite local models and hubness-aware regression; citation_author=Buza K; citation_author=Peška L; citation_journal_title=Neurocomputing; citation_year=2017; citation_volume=260; citation_pages=284-93; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction with hubness-aware machine learning; citation_author=Buza K; citation_publisher=IEEE, NY, USA; citation_title=2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI); citation_year=2016; citation_pages=437-40; " /><meta name="citation_reference" content="citation_title=Nearest neighbor regression in the presence of bad hubs; citation_author=Buza K; citation_author=Nanopoulos A; citation_author=Nagy G; citation_journal_title=Knowl-Based Syst; citation_year=2015; citation_volume=86; citation_pages=250-60; " /><meta name="citation_reference" content="citation_title=Supervised prediction of drug–target interactions using bipartite local models; citation_author=Bleakley K; citation_author=Yamanishi Y; citation_journal_title=Bioinformatics; citation_year=2009; citation_volume=25; citation_issue=18; citation_pages=2397-403; " /><meta name="citation_reference" content="citation_title=Predicting drug–target interaction networks based on functional groups and biological features; citation_author=He Z; citation_author=Zhang J; citation_author=Shi X-H; citation_journal_title=PloS One; citation_year=2010; citation_volume=5; citation_issue=3; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction by integrating multiview network data; citation_author=Zhang X; citation_author=Li L; citation_author=Ng MK; citation_journal_title=Comput Biol Chem; citation_year=2017; citation_volume=69; citation_pages=185-93; " /><meta name="citation_reference" content="citation_title=Predicting drug–target interaction for new drugs using enhanced similarity measures and super-target clustering; citation_author=Shi J-Y; citation_author=Yiu S-M; citation_author=Li Y; citation_journal_title=Methods; citation_year=2015; citation_volume=83; citation_pages=98-104; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction through label propagation with linear neighborhood information; citation_author=Zhang W; citation_author=Chen Y; citation_author=Li D; citation_journal_title=Molecules; citation_year=2017; citation_volume=22; citation_issue=12; citation_pages=2056" /><meta name="citation_reference" content="citation_title=Predicting drug–target interactions for new drug compounds using a weighted nearest neighbor profile; citation_author=Van Laarhoven T; citation_author=Marchiori E; citation_journal_title=PloS One; citation_year=2013; citation_volume=8; citation_issue=6; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction by learning from local information and neighbors; citation_author=Mei J-P; citation_author=Kwoh C-K; citation_author=Yang P; citation_journal_title=Bioinformatics; citation_year=2012; citation_volume=29; citation_issue=2; citation_pages=238-45; " /><meta name="citation_reference" content="citation_title=Supervised reconstruction of biological networks with local models; citation_author=Bleakley K; citation_author=Biau G; citation_author=Vert J-P; citation_journal_title=Bioinformatics; citation_year=2007; citation_volume=23; citation_issue=13; citation_pages=i57-65; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction with weighted Bayesian ranking; citation_author=Shi Z; citation_author=Li J; citation_publisher=ACM, London, United Kingdom; citation_title=Proceedings of the 2nd International Conference on Biomedical Engineering and Bioinformatics; citation_year=2018; citation_pages=19-24; " /><meta name="citation_reference" content="citation_author=Kohn LT; citation_author=Corrigan J; citation_author=Donaldson MS; citation_publisher=National Academy Press, Washington, DC; citation_title=To Err is Human: Building a Safer Health System; citation_year=2000; citation_volume=6; " /><meta name="citation_reference" content="citation_title=A semi-supervised method for drug–target interaction prediction with consistency in networks; citation_author=Chen H; citation_author=Zhang Z; citation_journal_title=PloS One; citation_year=2013; citation_volume=8; citation_issue=5; " /><meta name="citation_reference" content="citation_title=Supervised prediction of drug–target interactions by ensemble learning; citation_author=Niu YQ; citation_journal_title=J Chem Pharm Res; citation_year=2014; citation_volume=6; citation_pages=1991-9; " /><meta name="citation_reference" content="citation_title=Deep learning in drug discovery; citation_author=Gawehn E; citation_author=Hiss JA; citation_author=Schneider G; citation_journal_title=Mol Inform; citation_year=2016; citation_volume=35; citation_issue=1; citation_pages=3-14; " /><meta name="citation_reference" content="citation_title=The next era: deep learning in pharmaceutical research; citation_author=Ekins S; citation_journal_title=Pharm Res; citation_year=2016; citation_volume=33; citation_issue=11; citation_pages=2594-603; " /><meta name="citation_reference" content="citation_title=Drug repositioning: a machine-learning approach through data integration; citation_author=Napolitano F; citation_author=Zhao Y; citation_author=Moreira VM; citation_journal_title=J Chem; citation_year=2013; citation_volume=5; citation_issue=1; citation_pages=30" /><meta name="citation_reference" content="citation_title=A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network; citation_author=Wang L; citation_author=You Z-H; citation_author=Chen X; citation_journal_title=J Comput Biol; citation_year=2018; citation_volume=25; citation_issue=3; citation_pages=361-73; " /><meta name="citation_reference" content="citation_title=Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations; citation_author=Zong N; citation_author=Kim H; citation_author=Ngo V; citation_journal_title=Bioinformatics; citation_year=2017; citation_volume=33; citation_issue=15; citation_pages=2337-44; " /><meta name="citation_reference" content="citation_title=Deep-learning-based drug–target interaction prediction; citation_author=Wen M; citation_author=Zhang Z; citation_author=Niu S; citation_journal_title=J Proteome Res; citation_year=2017; citation_volume=16; citation_issue=4; citation_pages=1401-9; " /><meta name="citation_reference" content=" Gao KY, Fokoue A, Luo H , et al. Interpretable drug target prediction using deep neural representation. IJCAI , 2018 , 3371 – 7. " /><meta name="citation_reference" content="citation_title=DeepDTA: deep drug–target binding affinity prediction; citation_author=Öztürk H; citation_author=Özgür A; citation_author=Ozkirimli E; citation_journal_title=Bioinformatics; citation_year=2018; citation_volume=34; citation_issue=17; citation_pages=i821-9; " /><meta name="citation_reference" content="citation_title=Predicting drug–target interaction network using deep learning model; citation_author=You J; citation_author=McLeod RD; citation_author=Hu P; citation_journal_title=Comput Biol Chem; citation_year=2019; citation_volume=80; citation_pages=90-101; " /><meta name="citation_reference" content="citation_title=DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences; citation_author=Lee I; citation_author=Keum J; citation_author=Nam H; citation_journal_title=PLoS Comput Biol; citation_year=2019; citation_volume=15; citation_issue=6; " /><meta name="citation_reference" content="citation_title=Reducing the dimensionality of data with neural networks; citation_author=Hinton GE; citation_author=Salakhutdinov RR; citation_journal_title=Science; citation_year=2006; citation_volume=313; citation_issue=5786; citation_pages=504-7; " /><meta name="citation_reference" content="citation_title=Deep learning-based transcriptome data classification for drug–target interaction prediction; citation_author=Xie L; citation_author=He S; citation_author=Song X; citation_journal_title=BMC Genomics; citation_year=2018; citation_volume=19; citation_issue=7; citation_pages=667" /><meta name="citation_reference" content="citation_title=Linked data—the story so far; citation_author=Bizer C; citation_author=Heath T; citation_author=Berners-Lee T; citation_journal_title=Int J Semantic Web Inf Syst; citation_year=2009; citation_volume=5; citation_pages=1-22; " /><meta name="citation_reference" content="citation_title=Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases; citation_author=Rifaioglu AS; citation_author=Atas H; citation_author=Martin MJ; citation_journal_title=Brief Bioinform; citation_year=2018; citation_pages=10" /><meta name="citation_reference" content="citation_title=Statistical prediction of protein–chemical interactions based on chemical structure and mass spectrometry data; citation_author=Nagamine N; citation_author=Sakakibara Y; citation_journal_title=Bioinformatics; citation_year=2007; citation_volume=23; citation_issue=15; citation_pages=2004-12; " /><meta name="citation_reference" content="citation_title=Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects; citation_author=Wassermann AM; citation_author=Geppert H; citation_author=Bajorath J; citation_journal_title=J Chem Inf Model; citation_year=2009; citation_volume=49; citation_issue=10; citation_pages=2155-67; " /><meta name="citation_reference" content="citation_title=Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening; citation_author=Nagamine N; citation_author=Shirakawa T; citation_author=Minato Y; citation_journal_title=PLoS Comput Biol; citation_year=2009; citation_volume=5; citation_issue=6; " /><meta name="citation_reference" content="citation_title=Genome scale enzyme–metabolite and drug–target interaction predictions using the signature molecular descriptor; citation_author=Faulon J-L; citation_author=Misra M; citation_author=Martin S; citation_journal_title=Bioinformatics; citation_year=2007; citation_volume=24; citation_issue=2; citation_pages=225-33; " /><meta name="citation_reference" content="citation_title=A systematic prediction of multiple drug–target interactions from chemical, genomic, and pharmacological data; citation_author=Yu H; citation_author=Chen J; citation_author=Xu X; citation_journal_title=PloS One; citation_year=2012; citation_volume=7; citation_issue=5; " /><meta name="citation_reference" content="citation_title=Computationally probing drug-protein interactions via support vector machine; citation_author=Wang Y-C; citation_author=Yang Z-X; citation_author=Wang Y; citation_journal_title=Lett Drug Des Discov; citation_year=2010; citation_volume=7; citation_issue=5; citation_pages=370-8; " /><meta name="citation_reference" content="citation_title=A method of drug target prediction based on SVM and its application; citation_author=Shang Z; citation_author=Jin L; citation_author=Jiang Y; citation_journal_title=Prog Modern Biomed; citation_year=2012; citation_pages=20" /><meta name="citation_reference" content="citation_title=Identification of drug–target interactions via multiple information integration; citation_author=Ding Y; citation_author=Tang J; citation_author=Guo F; citation_journal_title=Inform Sci; citation_year=2017; citation_volume=418; citation_pages=546-60; " /><meta name="citation_reference" content="citation_title=An ameliorated prediction of drug–target interactions based on multi-scale discrete wavelet transform and network features; citation_author=Shen C; citation_author=Ding Y; citation_author=Tang J; citation_journal_title=Int J Mol Sci; citation_year=2017; citation_volume=18; citation_issue=8; citation_pages=1781" /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction from PSSM based evolutionary information; citation_author=Mousavian Z; citation_author=Khakabimamaghani S; citation_author=Kavousi K; citation_journal_title=J Pharmacol Toxicol Methods; citation_year=2016; citation_volume=78; citation_pages=42-51; " /><meta name="citation_reference" content="citation_title=Large-scale prediction of drug–target interactions using protein sequences and drug topological structures; citation_author=Cao D-S; citation_author=Liu S; citation_author=Xu Q-S; citation_journal_title=Anal Chim Acta; citation_year=2012; citation_volume=752; citation_pages=1-10; " /><meta name="citation_reference" content="citation_title=Improving compound–protein interaction prediction by building up highly credible negative samples; citation_author=Liu H; citation_author=Sun J; citation_author=Guan J; citation_journal_title=Bioinformatics; citation_year=2015; citation_volume=31; citation_issue=12; citation_pages=i221-9; " /><meta name="citation_reference" content="citation_title=Scalable prediction of compound–protein interactions using minwise hashing; citation_author=Tabei Y; citation_author=Yamanishi Y; citation_journal_title=BMC Syst Biol; citation_year=2013; citation_volume=7; citation_issue=6; citation_pages=S3" /><meta name="citation_reference" content="citation_title=Predicting protein–protein interactions based only on sequences information; citation_author=Shen J; citation_author=Zhang J; citation_author=Luo X; citation_journal_title=Proc Natl Acad Sci; citation_year=2007; citation_volume=104; citation_issue=11; citation_pages=4337-41; " /><meta name="citation_reference" content="citation_title=Computational prediction of drug–target interactions using chemical, biological, and network features; citation_author=Cao D-S; citation_author=Zhang L-X; citation_author=Tan G-S; citation_journal_title=Mol Inform; citation_year=2014; citation_volume=33; citation_issue=10; citation_pages=669-81; " /><meta name="citation_reference" content=" Yamanishi Y. Supervised bipartite graph inference. In: Advances in Neural Information Processing Systems , NIPS,   Vancouver, BC, CA.   2009 , 1841 – 8. " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction from chemical, genomic and pharmacological data in an integrated framework; citation_author=Yamanishi Y; citation_author=Kotera M; citation_author=Kanehisa M; citation_journal_title=Bioinformatics; citation_year=2010; citation_volume=26; citation_issue=12; citation_pages=i246-54; " /><meta name="citation_reference" content="citation_title=Predicting drug–target interactions using lasso with random forest based on evolutionary information and chemical structure; citation_author=Shi H; citation_author=Liu S; citation_author=Chen J; citation_journal_title=Genomics; citation_year=2018; citation_volume=111; citation_issue=6; citation_pages=1839-1852; " /><meta name="citation_reference" content="citation_title=DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches; citation_author=Olayan RS; citation_author=Ashoor H; citation_author=Bajic VB; citation_journal_title=Bioinformatics; citation_year=2017; citation_volume=34; citation_issue=7; citation_pages=1164-73; " /><meta name="citation_reference" content="citation_title=Protein secondary structure prediction based on position-specific scoring matrices; citation_author=Jones DT; citation_journal_title=J Mol Biol; citation_year=1999; citation_volume=292; citation_issue=2; citation_pages=195-202; " /><meta name="citation_reference" content="citation_title=Open babel: an open chemical toolbox; citation_author=O’Boyle NM; citation_author=Banck M; citation_author=James CA; citation_journal_title=J Chem; citation_year=2011; citation_volume=3; citation_issue=1; citation_pages=33" /><meta name="citation_reference" content="citation_title=Regression shrinkage and selection via the lasso: a retrospective; citation_author=Tibshirani R; citation_journal_title=J R Stat Soc Series B Stat Methodol; citation_year=2011; citation_volume=73; citation_issue=3; citation_pages=273-82; " /><meta name="citation_reference" content="citation_title=Smote: synthetic minority over-sampling technique; citation_author=Chawla NV; citation_author=Bowyer KW; citation_author=Hall LO; citation_journal_title=J Artif Intell Res; citation_year=2002; citation_volume=16; citation_pages=321-57; " /><meta name="citation_reference" content="citation_title=Random forests; citation_author=Breiman L; citation_journal_title=Mach Learn; citation_year=2001; citation_volume=45; citation_issue=1; citation_pages=5-32; " /><meta name="citation_reference" content="citation_title=iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting; citation_author=Rayhan F; citation_author=Ahmed S; citation_author=Shatabda S; citation_journal_title=Sci Rep; citation_year=2017; citation_volume=7; citation_issue=1; citation_pages=17731" /><meta name="citation_reference" content="citation_title=Predicting drug–target interaction using positive-unlabeled learning; citation_author=Lan W; citation_author=Wang J; citation_author=Li M; citation_journal_title=Neurocomputing; citation_year=2016; citation_volume=206; citation_pages=50-7; " /><meta name="citation_reference" content="citation_title=Gaussian interaction profile kernels for predicting drug–target interaction; citation_author=van Laarhoven T; citation_author=Nabuurs SB; citation_author=Marchiori E; citation_journal_title=Bioinformatics; citation_year=2011; citation_volume=27; citation_issue=21; citation_pages=3036-43; " /><meta name="citation_reference" content="citation_title=Manifold regularization: a geometric framework for learning from labeled and unlabeled examples; citation_author=Belkin M; citation_author=Niyogi P; citation_author=Sindhwani V; citation_journal_title=J Mach Learn Res; citation_year=2006; citation_volume=7; citation_pages=2399-434; " /><meta name="citation_reference" content="citation_title=An eigenvalue transformation technique for predicting drug–target interaction; citation_author=Kuang Q; citation_author=Xu X; citation_author=Li R; citation_journal_title=Sci Rep; citation_year=2015; citation_volume=5; citation_pages=13867" /><meta name="citation_reference" content=" Allapalli Bharadwaja. Similarity based learning method for drug target interaction prediction. PhD thesis , 2014 Electronic Theses and Dissertations. 5245. https://scholar.uwindsor.ca/etd/5245. " /><meta name="citation_reference" content="citation_title=Improved prediction of drug–target interactions using regularized least squares integrating with kernel fusion technique; citation_author=Hao M; citation_author=Wang Y; citation_author=Bryant SH; citation_journal_title=Anal Chim Acta; citation_year=2016; citation_volume=909; citation_pages=41-50; " /><meta name="citation_reference" content="citation_title=A multiple kernel learning algorithm for drug–target interaction prediction; citation_author=Nascimento ACA; citation_author=Prudêncio RBC; citation_author=Costa IG; citation_journal_title=BMC Bioinformatics; citation_year=2016; citation_volume=17; citation_issue=1; citation_pages=46" /><meta name="citation_reference" content="citation_title=SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines; citation_author=He T; citation_author=Heidemeyer M; citation_author=Ban F; citation_journal_title=J Chem; citation_year=2017; citation_volume=9; citation_issue=1; citation_pages=24" /><meta name="citation_reference" content="citation_title=A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition; citation_author=Sharma A; citation_author=Lyons J; citation_author=Dehzangi A; citation_journal_title=J Theor Biol; citation_year=2013; citation_volume=320; citation_pages=41-6; " /><meta name="citation_reference" content="citation_title=RFDT: a rotation forest-based predictor for predicting drug–target interactions using drug structure and protein sequence information; citation_author=Wang L; citation_author=You Z-H; citation_author=Chen X; citation_journal_title=Curr Protein Pept Sci; citation_year=2018; citation_volume=19; citation_issue=5; citation_pages=445-54; " /><meta name="citation_reference" content="citation_title=The effects of pruning methods on the predictive accuracy of induced decision trees; citation_author=Esposito F; citation_author=Malerba D; citation_author=Semeraro G; citation_journal_title=Appl Stoch Model Bus Ind; citation_year=1999; citation_volume=15; citation_issue=4; citation_pages=277-99; " /><meta name="citation_reference" content="citation_title=Random projection ensemble classifiers; citation_author=Schclar A; citation_author=Rokach L; citation_publisher=Springer, Heidelberg, Germany; citation_title=International Conference on Enterprise Information Systems; citation_year=2009; citation_pages=309-16; " /><meta name="citation_reference" content="citation_title=DrugRPE: random projection ensemble approach to drug–target interaction prediction; citation_author=Zhang J; citation_author=Zhu M; citation_author=Chen P; citation_journal_title=Neurocomputing; citation_year=2017; citation_volume=228; citation_pages=256-62; " /><meta name="citation_reference" content="citation_title=PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints; citation_author=Yap CW; citation_journal_title=J Comput Chem; citation_year=2011; citation_volume=32; citation_issue=7; citation_pages=1466-74; " /><meta name="citation_reference" content="citation_title=Link mining for kernel-based compound–protein interaction predictions using a chemogenomics approach; citation_author=Ohue M; citation_author=Yamazaki T; citation_author=Ban T; citation_publisher=Springer, Cham, Switzerland; citation_title=International Conference on Intelligent Computing; citation_year=2017; citation_pages=549-58; " /><meta name="citation_reference" content="citation_title=DASPfind: new efficient method to predict drug–target interactions; citation_author=Ba-Alawi W; citation_author=Soufan O; citation_author=Essack M; citation_journal_title=J Chem; citation_year=2016; citation_volume=8; citation_issue=1; citation_pages=15" /><meta name="citation_reference" content="citation_title=Using the tops-mode approach to fit multi-target qsar models for tyrosine kinases inhibitors; citation_author=Marzaro G; citation_author=Chilin A; citation_author=Guiotto A; citation_journal_title=Eur J Med Chem; citation_year=2011; citation_volume=46; citation_issue=6; citation_pages=2185-92; " /><meta name="citation_reference" content="citation_title=In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences; citation_author=Li Z; citation_author=Han P; citation_author=You Z-H; citation_journal_title=Sci Rep; citation_year=2017; citation_volume=7; citation_issue=1; citation_pages=11174" /><meta name="citation_reference" content="citation_title=Representative vector machines: a unified framework for classical classifiers; citation_author=Gui J; citation_author=Liu T; citation_author=Tao D; citation_journal_title=IEEE Trans Cybernet; citation_year=2015; citation_volume=46; citation_issue=8; citation_pages=1877-88; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction via class imbalance-aware ensemble learning; citation_author=Ezzat A; citation_author=Wu M; citation_author=Li X-L; citation_journal_title=BMC Bioinformatics; citation_year=2016; citation_volume=17; citation_issue=19; citation_pages=509" /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction using ensemble learning and dimensionality reduction; citation_author=Ezzat A; citation_author=Wu M; citation_author=Li X-L; citation_journal_title=Methods; citation_year=2017; citation_volume=129; citation_pages=81-8; " /><meta name="citation_reference" content="citation_title=Computational prediction of drug–target interactions via ensemble learning; citation_author=Ezzat A; citation_author=Wu M; citation_author=Li X; citation_author=Kwoh C-K; citation_publisher=Springer, New York, N.Y. : Humana Press : Springer,; citation_title=Computational Methods for Drug Repurposing; citation_year=2019; citation_pages=239-54; " /><meta name="citation_reference" content="citation_title=SIMPLS: an alternative approach to partial least squares regression; citation_author=De Jong S; citation_journal_title=Chemom Intel Lab Syst; citation_year=1993; citation_volume=18; citation_issue=3; citation_pages=251-63; " /><meta name="citation_reference" content=" Belkin M,Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems , NIPS,   Vancouver, BC, CA.   2002 , 585 – 91. " /><meta name="citation_reference" content="citation_title=An ensemble learning approach for improving drug–target interactions prediction; citation_author=Zhang R; citation_publisher=Springer, Cham, Switzerland; citation_title=Proceedings of the 4th International Conference on Computer Engineering and Networks; citation_year=2015; citation_pages=433-42; " /><meta name="citation_reference" content="citation_title=DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank; citation_author=Yuan Q; citation_author=Gao J; citation_author=Wu D; citation_journal_title=Bioinformatics; citation_year=2016; citation_volume=32; citation_issue=12; citation_pages=i18-27; " /><meta name="citation_reference" content="citation_title=BE-DTI: ensemble framework for drug target interaction prediction using dimensionality reduction and active learning; citation_author=Sharma A; citation_author=Rani R; citation_journal_title=Comput Methods Programs Biomed; citation_year=2018; citation_volume=165; citation_pages=151-62; " /><meta name="citation_reference" content="citation_title=Predicting drug–target interactions using probabilistic matrix factorization; citation_author=Cobanoglu MC; citation_author=Liu C; citation_author=Hu F; citation_journal_title=J Chem Inf Model; citation_year=2013; citation_volume=53; citation_issue=12; citation_pages=3399-409; " /><meta name="citation_reference" content="citation_title=Drug target prediction by multi-view low rank embedding; citation_author=Li L; citation_author=Cai M; citation_journal_title=IEEE/ACM Trans Comput Biol Bioinform; citation_year=2017; citation_volume=16; citation_issue=5; citation_pages=1712-1721; " /><meta name="citation_reference" content="citation_title=Mixture of manifolds clustering via low rank embedding; citation_author=Liu R; citation_author=Hao R; citation_author=Su Z; citation_journal_title=J Inform Comput Sci; citation_year=2011; citation_volume=8; citation_pages=725-37; " /><meta name="citation_reference" content="citation_title=Collaborative matrix factorization with multiple similarities for predicting drug–target interactions; citation_author=Zheng X; citation_author=Ding H; citation_author=Mamitsuka H; citation_publisher=ACM, Chicago, Illinois, USA.; citation_title=Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; citation_year=2013; citation_pages=1025-33; " /><meta name="citation_reference" content="citation_title=Convex and semi-nonnegative matrix factorizations; citation_author=Ding CH; citation_author=Li T; citation_author=Jordan MI; citation_journal_title=IEEE Trans Pattern Anal Mach Intell; citation_year=2010; citation_volume=32; citation_issue=1; citation_pages=45-55; " /><meta name="citation_reference" content="citation_title=Singular value decomposition and least squares solutions; citation_author=Golub GH; citation_author=Reinsch C; citation_publisher=Springer, Berlin, Heidelberg; citation_title=Linear Algebra; citation_year=1971; citation_pages=134-51; " /><meta name="citation_reference" content="citation_title=Generalized low rank approximations of matrices; citation_author=Ye J; citation_journal_title=Mach Learn; citation_year=2005; citation_volume=61; citation_issue=1–3; citation_pages=167-91; " /><meta name="citation_reference" content=" Mnih A,Salakhutdinov RR. Probabilistic matrix factorization. In: Advances in Neural Information Processing Systems , NIPS,   Vancouver, BC, CA.   2008 , 1257 – 64. " /><meta name="citation_reference" content="citation_title=Neighborhood regularized logistic matrix factorization for drug–target interaction prediction; citation_author=Liu Y; citation_author=Wu M; citation_author=Miao C; citation_journal_title=PLoS Comput Biol; citation_year=2016; citation_volume=12; citation_issue=2; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction via dual laplacian graph regularized matrix completion; citation_author=Wang M; citation_author=Tang C; citation_author=Chen J; citation_journal_title=Biomed Res Int; citation_year=2018; citation_volume=2018; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction with graph regularized matrix factorization; citation_author=Ezzat A; citation_author=Zhao P; citation_author=Wu M; citation_journal_title=IEEE/ACM Trans Comput Biol Bioinform; citation_year=2017; citation_volume=14; citation_issue=3; citation_pages=646-56; " /><meta name="citation_reference" content="citation_title=Extremely randomized trees; citation_author=Geurts P; citation_author=Ernst D; citation_author=Wehenkel L; citation_journal_title=Mach Learn; citation_year=2006; citation_volume=63; citation_issue=1; citation_pages=3-42; " /><meta name="citation_reference" content="citation_title=A systematic prediction of drug–target interactions using molecular fingerprints and protein sequences; citation_author=Huang Y-A; citation_author=You Z-H; citation_author=Chen X; citation_journal_title=Curr Protein Pept Sci; citation_year=2018; citation_volume=19; citation_issue=5; citation_pages=468-78; " /><meta name="citation_reference" content="citation_title=BPR: Bayesian personalized ranking from implicit feedback; citation_author=Rendle S; citation_author=Freudenthaler C; citation_author=Gantner Z; citation_publisher=AUAI Press, McGill, Canada; citation_title=Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence; citation_year=2009; citation_pages=452-61; " /><meta name="citation_reference" content="citation_title=VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization; citation_author=Bolgár B; citation_author=Antal P; citation_journal_title=BMC Bioinformatics; citation_year=2017; citation_volume=18; citation_issue=1; citation_pages=440" /><meta name="citation_reference" content="citation_title=Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization; citation_author=Gönen M; citation_journal_title=Bioinformatics; citation_year=2012; citation_volume=28; citation_issue=18; citation_pages=2304-10; " /><meta name="citation_reference" content="citation_title=Prediction of drug–target interactions and drug repositioning via network-based inference; citation_author=Cheng F; citation_author=Liu C; citation_author=Jiang J; citation_journal_title=PLoS Comput Biol; citation_year=2012; citation_volume=8; citation_issue=5; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction by random walk on the heterogeneous network; citation_author=Chen X; citation_author=Liu M-X; citation_author=Yan G-Y; citation_journal_title=Mol Biosyst; citation_year=2012; citation_volume=8; citation_issue=7; citation_pages=1970-8; " /><meta name="citation_reference" content="citation_title=A network integration approach for drug–target interaction prediction and computational drug repositioning from heterogeneous information; citation_author=Luo Y; citation_author=Zhao X; citation_author=Zhou J; citation_journal_title=Nat Commun; citation_year=2017; citation_volume=8; citation_issue=1; citation_pages=573" /><meta name="citation_reference" content="citation_title=Predicting drug-target on heterogeneous network with co-rank; citation_author=Huang Y; citation_author=Zhu L; citation_author=Tan H; citation_publisher=Springer, Cham, Switzerland; citation_title=International Conference on Computer Engineering and Networks; citation_year=2018; citation_pages=571-81; " /><meta name="citation_reference" content="citation_title=Predicting drug–target interactions with multi-information fusion; citation_author=Peng L; citation_author=Liao B; citation_author=Zhu W; citation_journal_title=IEEE J Biomed Health Inform; citation_year=2015; citation_volume=21; citation_issue=2; citation_pages=561-72; " /><meta name="citation_reference" content=" Wright J, Ganesh A, Rao S , et al. Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: Advances in Neural Information Processing Systems , NIPS,   Vancouver, BC, CA.   2009 , 2080 – 8. " /><meta name="citation_reference" content="citation_title=NRLMF$\beta $: beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug–target interaction prediction; citation_author=Ban T; citation_author=Ohue M; citation_author=Akiyama Y; citation_journal_title=Biochem Biophys Rep; citation_year=2019; citation_volume=18; citation_pages=100615" /><meta name="citation_reference" content="citation_title=Optimizing drug–target interaction prediction based on random walk on heterogeneous networks; citation_author=Seal A; citation_author=Ahn Y-Y; citation_author=Wild DJ; citation_journal_title=J Chem; citation_year=2015; citation_volume=7; citation_issue=1; citation_pages=40" /><meta name="citation_reference" content="citation_title=Walking the interactome for prioritization of candidate disease genes; citation_author=Köhler S; citation_author=Bauer S; citation_author=Horn D; citation_journal_title=Am J Hum Genet; citation_year=2008; citation_volume=82; citation_issue=4; citation_pages=949-58; " /><meta name="citation_reference" content="citation_title=Predicting drug–target interactions using restricted boltzmann machines; citation_author=Wang Y; citation_author=Zeng J; citation_journal_title=Bioinformatics; citation_year=2013; citation_volume=29; citation_issue=13; citation_pages=i126-34; " /><meta name="citation_reference" content="citation_title=Ranking chemical structures for drug discovery: a new machine learning approach; citation_author=Agarwal S; citation_author=Dugar D; citation_author=Sengupta S; citation_journal_title=J Chem Inf Model; citation_year=2010; citation_volume=50; citation_issue=5; citation_pages=716-31; " /><meta name="citation_reference" content="citation_title=From ranknet to lambdarank to lambdamart: an overview; citation_author=Burges CJ; citation_journal_title=Learning; citation_year=2010; citation_volume=11; citation_issue=23–581; citation_pages=81" /><meta name="citation_reference" content="citation_title=NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions; citation_author=Wan F; citation_author=Hong L; citation_author=Xiao A; citation_journal_title=Bioinformatics; citation_year=2018; citation_volume=35; citation_issue=1; citation_pages=104-11; " /><meta name="citation_reference" content="citation_title=A kernel matrix dimension reduction method for predicting drug–target interaction; citation_author=Kuang Q; citation_author=Li Y; citation_author=Wu Y; citation_journal_title=Chemom Intel Lab Syst; citation_year=2017; citation_volume=162; citation_pages=104-10; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction through domain-tuned network-based inference; citation_author=Alaimo S; citation_author=Pulvirenti A; citation_author=Giugno R; citation_journal_title=Bioinformatics; citation_year=2013; citation_volume=29; citation_issue=16; citation_pages=2004-8; " /><meta name="citation_reference" content="citation_title=Bipartite network projection and personal recommendation; citation_author=Zhou T; citation_author=Ren J; citation_author=Medo M; citation_journal_title=Phys Rev E; citation_year=2007; citation_volume=76; citation_issue=4; citation_pages=046115" /><meta name="citation_reference" content="citation_title=Solving the apparent diversity-accuracy dilemma of recommender systems; citation_author=Zhou T; citation_author=Kuscsik Z; citation_author=Liu J-G; citation_journal_title=Proc Natl Acad Sci; citation_year=2010; citation_volume=107; citation_issue=10; citation_pages=4511-5; " /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction using Doubly Graph Regularized Matrix Completion; citation_author=Mongia A; citation_author=Majumdar A; citation_year=2018; citation_pages=455642" /><meta name="citation_reference" content="citation_title=Drug–target interaction prediction using multi graph regularized nuclear norm minimization; citation_author=Mongia A; citation_author=Majumdar A; citation_year=2018; " /><meta name="citation_reference" content=" Kadiyala SS. Application of machine learning in drug discovery. PhD thesis , 2018. " /><meta name="citation_reference" content="citation_title=Prediction of drug–target interaction networks from the integration of protein sequences and drug chemical structures; citation_author=Meng F-R; citation_author=You Z-H; citation_author=Chen X; citation_journal_title=Molecules; citation_year=2017; citation_volume=22; citation_issue=7; citation_pages=1119" /><meta name="citation_reference" content="citation_title=Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers; citation_author=Tabei Y; citation_author=Pauwels E; citation_author=Stoven V; citation_journal_title=Bioinformatics; citation_year=2012; citation_volume=28; citation_issue=18; citation_pages=i487-94; " /><meta name="citation_reference" content="citation_title=Dual-regularized one-class collaborative filtering; citation_author=Yao Y; citation_author=Tong H; citation_author=Yan G; citation_publisher=ACM, NY, USA; citation_title=Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management; citation_year=2014; citation_pages=759-68; " /><meta name="citation_reference" content="citation_title=Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem; citation_author=Lim H; citation_author=Gray P; citation_author=Xie L; citation_journal_title=Sci Rep; citation_year=2016; citation_volume=6; citation_pages=38860" /><meta name="citation_reference" content="citation_title=Predicting drug–target interaction using deep matrix factorization; citation_author=Manoochehri HE; citation_author=Nourani M; citation_publisher=IEEE, NY, USA; citation_title=2018 IEEE Biomedical Circuits and Systems Conference (BioCAS); citation_year=2018; citation_pages=1-4; " /><meta name="citation_reference" content=" Xue H-J, Dai X, Zhang J , et al. Deep matrix factorization models for recommender systems. IJCAI , 2017 , 3203 – 9. " /><meta name="citation_reference" content="citation_title=CoDe-DTI: Collaborative deep learning-based drug–target interaction prediction; citation_author=Yasuo N; citation_author=Nakashima Y; citation_author=Sekijima M; citation_publisher=IEEE, NY, USA; citation_title=2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM); citation_year=2018; citation_pages=792-7; " /><meta name="citation_reference" content="citation_title=COPICAT: a software system for predicting interactions between proteins and chemical compounds; citation_author=Sakakibara Y; citation_author=Hachiya T; citation_author=Uchida M; citation_journal_title=Bioinformatics; citation_year=2012; citation_volume=28; citation_issue=5; citation_pages=745-6; " /><meta name="citation_reference" content="citation_title=PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies; citation_author=Cao D-S; citation_author=Liang Y-Z; citation_author=Yan J; citation_journal_title=J Chem Inf Model; citation_year=2013; citation_volume=53; citation_issue=11; citation_pages=3086-96; " /><meta name="citation_reference" content="citation_title=Genome-scale screening of drug-target associations relevant to Ki using a chemogenomics approach; citation_author=Cao D-S; citation_author=Liang Y-Z; citation_author=Deng Z; citation_journal_title=PloS One; citation_year=2013; citation_volume=8; citation_issue=4; " /><meta name="citation_reference" content="citation_title=Igpcr-drug: a web server for predicting interaction between gpcrs and drugs in cellular networking; citation_author=Xiao X; citation_author=Min J-L; citation_author=Wang P; citation_author=Chou KC; citation_journal_title=PloS One; citation_year=2013; citation_volume=8; citation_issue=8; " /><meta name="citation_reference" content="citation_title=Theoretical and experimental biology in one; citation_author=Lin S-X; citation_author=Lapointe J; citation_journal_title=J Biomed Sci Eng; citation_year=2013; citation_volume=6; citation_issue=04; citation_pages=435-42; " /><meta name="citation_reference" content="citation_title=A fuzzy K-nearest neighbor algorithm; citation_author=Keller JM; citation_author=Gray MR; citation_author=Givens JA; citation_journal_title=IEEE Trans Syst Man Cybern; citation_year=1985; citation_issue=4; citation_pages=580-5; " /><meta name="citation_reference" content="citation_title=Prediction of protein structural classes; citation_author=Chou K-C; citation_author=Zhang C-T; citation_journal_title=Crit Rev Biochem Mol Biol; citation_year=1995; citation_volume=30; citation_issue=4; citation_pages=275-349; " /><meta name="citation_reference" content="citation_title=DINIES: drug–target interaction network inference engine based on supervised analysis; citation_author=Yamanishi Y; citation_author=Kotera M; citation_author=Moriya Y; citation_journal_title=Nucleic Acids Res; citation_year=2014; citation_volume=42; citation_issue=W1; citation_pages=W39-45; " /><meta name="citation_reference" content="citation_title=Mapping adverse drug reactions in chemical space; citation_author=Scheiber J; citation_author=Jenkins JL; citation_author=Sukuru SCK; citation_journal_title=J Med Chem; citation_year=2009; citation_volume=52; citation_issue=9; citation_pages=3103-7; " /><meta name="citation_reference" content="citation_title=Netpredictor: R and Shiny package to perform drug-target network analysis and prediction of missing links; citation_author=Seal A; citation_author=Wild DJ; citation_journal_title=BMC Bioinformatics; citation_year=2018; citation_volume=19; citation_issue=1; citation_pages=265" /><meta name="citation_reference" content="citation_title=Open-source chemogenomic data-driven algorithms for predicting drug–target interactions; citation_author=Hao M; citation_author=Bryant SH; citation_author=Wang Y; citation_journal_title=Brief Bioinform; citation_year=2019; citation_volume=20; citation_issue=4; citation_pages=1465-1474; " /><meta name="citation_reference" content="citation_title=Predicting drug–target interactions by dual-network integrated logistic matrix factorization; citation_author=Hao M; citation_author=Bryant SH; citation_author=Wang Y; citation_journal_title=Nature News,; citation_year=2017; citation_volume=7; citation_pages=40376" /><meta name="citation_reference" content="citation_title=KEGG: new perspectives on genomes, pathways, diseases and drugs; citation_author=Kanehisa M; citation_author=Furumichi M; citation_author=Tanabe M; citation_journal_title=Nucleic Acids Res; citation_year=2016; citation_volume=45; citation_issue=D1; citation_pages=D353-61; " /><meta name="citation_reference" content="citation_title=From genomics to chemical genomics: new developments in KEGG; citation_author=Kanehisa M; citation_author=Goto S; citation_author=Hattori M; citation_journal_title=Nucleic Acids Res; citation_year=2006; citation_volume=34; citation_issue=suppl_1; citation_pages=D354-7; " /><meta name="citation_reference" content="citation_title=KEGG for linking genomes to life and the environment; citation_author=Kanehisa M; citation_author=Araki M; citation_author=Goto S; citation_journal_title=Nucleic Acids Res; citation_year=2007; citation_volume=36; citation_issue=suppl_1; citation_pages=D480-4; " /><meta name="citation_reference" content="citation_title=The chembl bioactivity database: an update; citation_author=Bento AP; citation_author=Gaulton A; citation_author=Hersey A; citation_journal_title=Nucleic Acids Res; citation_year=2014; citation_volume=42; citation_issue=D1; citation_pages=D1083-90; " /><meta name="citation_reference" content="citation_title=The ChEMBL database in 2017; citation_author=Gaulton A; citation_author=Hersey A; citation_author=Nowotka M; citation_journal_title=Nucleic Acids Res; citation_year=2016; citation_volume=45; citation_issue=D1; citation_pages=D945-54; " /><meta name="citation_reference" content="citation_title=ChEMBL: a large-scale bioactivity database for drug discovery; citation_author=Gaulton A; citation_author=Bellis LJ; citation_author=Bento AP; citation_journal_title=Nucleic Acids Res; citation_year=2011; citation_volume=40; citation_issue=D1; citation_pages=D1100-7; " /><meta name="citation_reference" content="citation_title=The IUPHAR/BPS guide to pharmacology: an expert-driven knowledgebase of drug targets and their ligands; citation_author=Pawson AJ; citation_author=Sharman JL; citation_author=Benson HE; citation_journal_title=Nucleic Acids Res; citation_year=2013; citation_volume=42; citation_issue=D1; citation_pages=D1098-106; " /><meta name="citation_reference" content="citation_title=Supertarget and matador: resources for exploring drug-target relationships; citation_author=Günther S; citation_author=Kuhn M; citation_author=Dunkel M; citation_journal_title=Nucleic Acids Res; citation_year=2007; citation_volume=36; citation_issue=suppl_1; citation_pages=D919-22; " /><meta name="citation_reference" content="citation_title=Drugbank 3.0: a comprehensive resource for ‘omics’ research on drugs; citation_author=Knox C; citation_author=Law V; citation_author=Jewison T; citation_journal_title=Nucleic Acids Res; citation_year=2010; citation_volume=39; citation_issue=suppl_1; citation_pages=D1035-41; " /><meta name="citation_reference" content="citation_title=Drugbank 4.0: shedding new light on drug metabolism; citation_author=Law V; citation_author=Knox C; citation_author=Djoumbou Y; citation_journal_title=Nucleic Acids Res; citation_year=2013; citation_volume=42; citation_issue=D1; citation_pages=D1091-7; " /><meta name="citation_reference" content="citation_title=Drugbank 5.0: a major update to the drugbank database for 2018; citation_author=Wishart DS; citation_author=Feunang YD; citation_author=Guo AC; citation_journal_title=Nucleic Acids Res; citation_year=2017; citation_volume=46; citation_issue=D1; citation_pages=D1074-82; " /><meta name="citation_reference" content="citation_title=DrugBank: a comprehensive resource for in silico drug discovery and exploration; citation_author=Wishart DS; citation_author=Knox C; citation_author=Guo AC; citation_journal_title=Nucleic Acids Res; citation_year=2006; citation_volume=34; citation_issue=suppl_1; citation_pages=D668-72; " /><meta name="citation_reference" content="citation_title=DrugBank: a knowledgebase for drugs, drug actions and drug targets; citation_author=Wishart DS; citation_author=Knox C; citation_author=Guo AC; citation_journal_title=Nucleic Acids Res; citation_year=2007; citation_volume=36; citation_issue=suppl_1; citation_pages=D901-6; " /><meta name="citation_reference" content="citation_title=TTD: therapeutic target database; citation_author=Chen X; citation_author=Ji ZL; citation_author=Chen YZ; citation_journal_title=Nucleic Acids Res; citation_year=2002; citation_volume=30; citation_issue=1; citation_pages=412-5; " /><meta name="citation_reference" content="citation_title=STITCH 2: an interaction network database for small molecules and proteins; citation_author=Kuhn M; citation_author=Szklarczyk D; citation_author=Franceschini A; citation_journal_title=Nucleic Acids Res; citation_year=2009; citation_volume=38; citation_issue=suppl_1; citation_pages=D552-6; " /><meta name="citation_reference" content="citation_title=STITCH 3: zooming in on protein–chemical interactions; citation_author=Kuhn M; citation_author=Szklarczyk D; citation_author=Franceschini A; citation_journal_title=Nucleic Acids Res; citation_year=2011; citation_volume=40; citation_issue=D1; citation_pages=D876-80; " /><meta name="citation_reference" content="citation_title=STITCH 4: integration of protein–chemical interactions with user data; citation_author=Kuhn M; citation_author=Szklarczyk D; citation_author=Pletscher-Frankild S; citation_journal_title=Nucleic Acids Res; citation_year=2013; citation_volume=42; citation_issue=D1; citation_pages=D401-7; " /><meta name="citation_reference" content="citation_title=STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data; citation_author=Szklarczyk D; citation_author=Santos A; citation_author=von Mering C; citation_journal_title=Nucleic Acids Res; citation_year=2015; citation_volume=44; citation_issue=D1; citation_pages=D380-4; " /><meta name="citation_reference" content="citation_title=STITCH: interaction networks of chemicals and proteins; citation_author=Kuhn M; citation_author=von Mering C; citation_author=Campillos M; citation_journal_title=Nucleic Acids Res; citation_year=2007; citation_volume=36; citation_issue=suppl_1; citation_pages=D684-8; " /><meta name="citation_reference" content="citation_title=ChemProt-3.0: a global chemical biology diseases mapping; citation_author=Kringelum J; citation_author=Kjaerulff SK; citation_author=Brunak S; citation_journal_title=Database; citation_year=2016; citation_volume=2016; " /><meta name="citation_reference" content="citation_title=DGIdb 3.0: a redesign and expansion of the drug–gene interaction database; citation_author=Cotto KC; citation_author=Wagner AH; citation_author=Feng Y-Y; citation_journal_title=Nucleic Acids Res; citation_year=2017; citation_volume=46; citation_issue=D1; citation_pages=D1068-73; " /><meta name="citation_reference" content="citation_title=ChemProt-2.0: visual navigation in a disease chemical biology database; citation_author=Kim Kjærulff S; citation_author=Wich L; citation_author=Kringelum J; citation_journal_title=Nucleic Acids Res; citation_year=2012; citation_volume=41; citation_issue=D1; citation_pages=D464-9; " /><meta name="citation_reference" content="citation_title=ChemProt: a disease chemical biology database; citation_author=Taboureau O; citation_author=Nielsen SK; citation_author=Audouze K; citation_journal_title=Nucleic Acids Res; citation_year=2010; citation_volume=39; citation_issue=suppl_1; citation_pages=D367-72; " /><meta name="citation_reference" content="citation_title=BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology; citation_author=Gilson MK; citation_author=Liu T; citation_author=Baitaluk M; citation_journal_title=Nucleic Acids Res; citation_year=2015; citation_volume=44; citation_issue=D1; citation_pages=D1045-53; " /><meta name="citation_reference" content="citation_title=Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for cns drug discovery; citation_author=Roth BL; citation_author=Lopez E; citation_author=Beischel S; citation_journal_title=Pharmacol Ther; citation_year=2004; citation_volume=102; citation_issue=2; citation_pages=99-110; " /><meta name="citation_reference" content="citation_title=PharmGKB: the pharmacogenetics knowledge base; citation_author=Hewett M; citation_author=Oliver DE; citation_author=Rubin DL; citation_journal_title=Nucleic Acids Res; citation_year=2002; citation_volume=30; citation_issue=1; citation_pages=163-5; " /><meta name="citation_reference" content="citation_title=Genomic databases and resources at the national center for biotechnology information; citation_author=Tatusova T; citation_publisher=Springer, New York, USA.; citation_journal_title=Data Mining Techniques for the Life Sciences; citation_year=2010; citation_pages=17-44; " /><meta name="citation_reference" content="citation_title=Comparative toxicogenomics database: a knowledgebase and discovery tool for chemical–gene–disease networks; citation_author=Davis AP; citation_author=Murphy CG; citation_author=Saraceni-Richards CA; citation_journal_title=Nucleic Acids Res; citation_year=2008; citation_volume=37; citation_issue=suppl_1; citation_pages=D786-92; " /><meta name="citation_reference" content="citation_title=WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery; citation_author=Olah M; citation_author=Rad R; citation_author=Ostopovici L; citation_journal_title=Chemical Biology: From Small Molecules to Systems Biology and Drug Design; citation_year=2007; citation_volume=1; citation_pages=760-86; " /><meta name="citation_reference" content="citation_title=DGIdb 2.0: mining clinically relevant drug–gene interactions; citation_author=Wagner AH; citation_author=Coffman AC; citation_author=Ainscough BJ; citation_journal_title=Nucleic Acids Res; citation_year=2015; citation_volume=44; citation_issue=D1; citation_pages=D1036-44; " /><meta name="citation_reference" content="citation_title=DGIdb: mining the druggable genome; citation_author=Griffith M; citation_author=Griffith OL; citation_author=Coffman AC; citation_journal_title=Nat Methods; citation_year=2013; citation_volume=10; citation_issue=12; citation_pages=1209" /><meta name="citation_reference" content="citation_title=The mintact project—intact as a common curation platform for 11 molecular interaction databases; citation_author=Orchard S; citation_author=Ammari M; citation_author=Aranda B; citation_journal_title=Nucleic Acids Res; citation_year=2013; citation_volume=42; citation_issue=D1; citation_pages=D358-63; " /><meta name="citation_reference" content="citation_title=Developing a biocuration workflow for agbase, a non-model organism database; citation_author=Pillai L; citation_author=Chouvarine P; citation_author=Tudor CO; citation_journal_title=Database; citation_year=2012; citation_volume=2012; " /><meta name="citation_reference" content="citation_title=AgBase: a unified resource for functional analysis in agriculture; citation_author=McCarthy FM; citation_author=Bridges SM; citation_author=Wang N; citation_journal_title=Nucleic Acids Res; citation_year=2006; citation_volume=35; citation_issue=suppl_1; citation_pages=D599-603; " /><meta name="citation_reference" content="citation_title=AgBase: supporting functional modeling in agricultural organisms; citation_author=McCarthy FM; citation_author=Gresham CR; citation_author=Buza TJ; citation_journal_title=Nucleic Acids Res; citation_year=2010; citation_volume=39; citation_issue=suppl_1; citation_pages=D497-506; " /><meta name="citation_reference" content="citation_title=AgBase: a functional genomics resource for agriculture; citation_author=McCarthy FM; citation_author=Wang N; citation_author=Magee GB; citation_journal_title=BMC Genomics; citation_year=2006; citation_volume=7; citation_issue=1; citation_pages=229" /><meta name="citation_reference" content="citation_title=MINT, the molecular interaction database: 2012 update; citation_author=Licata L; citation_author=Briganti L; citation_author=Peluso D; citation_journal_title=Nucleic Acids Res; citation_year=2011; citation_volume=40; citation_issue=D1; citation_pages=D857-61; " /><meta name="citation_reference" content="citation_title=MINT, the molecular interaction database: 2009 update; citation_author=Ceol A; citation_author=Chatr Aryamontri A; citation_author=Licata L; citation_journal_title=Nucleic Acids Res; citation_year=2009; citation_volume=38; citation_issue=suppl_1; citation_pages=D532-9; " /><meta name="citation_reference" content="citation_title=MINT: the molecular interaction database; citation_author=Chatr-Aryamontri A; citation_author=Ceol A; citation_author=Palazzi LM; citation_journal_title=Nucleic Acids Res; citation_year=2006; citation_volume=35; citation_issue=suppl_1; citation_pages=D572-4; " /><meta name="citation_reference" content="citation_title=MINT: a molecular interaction database; citation_author=Zanzoni A; citation_author=Montecchi-Palazzi L; citation_author=Quondam M; citation_journal_title=FEBS Lett; citation_year=2002; citation_volume=513; citation_issue=1; citation_pages=135-40; " /><meta name="citation_reference" content="citation_title=The UniProt-GO annotation database in 2011; citation_author=Dimmer EC; citation_author=Huntley RP; citation_author=Alam-Faruque Y; citation_journal_title=Nucleic Acids Res; citation_year=2011; citation_volume=40; citation_issue=D1; citation_pages=D565-70; " /><meta name="citation_reference" content="citation_title=Integrated interactions database: tissue-specific view of the human and model organism interactomes; citation_author=Kotlyar M; citation_author=Pastrello C; citation_author=Sheahan N; citation_journal_title=Nucleic Acids Res; citation_year=2015; citation_volume=44; citation_issue=D1; citation_pages=D536-41; " /><meta name="citation_reference" content="citation_title=MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities; citation_author=Launay G; citation_author=Salza R; citation_author=Multedo D; citation_journal_title=Nucleic Acids Res; citation_year=2014; citation_volume=43; citation_issue=D1; citation_pages=D321-7; " /><meta name="citation_reference" content="citation_title=InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation; citation_author=Breuer K; citation_author=Foroushani AK; citation_author=Laird MR; citation_journal_title=Nucleic Acids Res; citation_year=2012; citation_volume=41; citation_issue=D1; citation_pages=D1228-33; " /><meta name="citation_reference" content="citation_title=Protein interaction data curation: the international molecular exchange (IMEx) consortium; citation_author=Orchard S; citation_author=Kerrien S; citation_author=Abbani S; citation_journal_title=Nat Methods; citation_year=2012; citation_volume=9; citation_issue=4; citation_pages=345" /><meta name="citation_reference" content="citation_title=PubChem substance and compound databases; citation_author=Kim S; citation_author=Thiessen PA; citation_author=Bolton EE; citation_journal_title=Nucleic Acids Res; citation_year=2015; citation_volume=44; citation_issue=D1; citation_pages=D1202-13; " /><meta name="citation_reference" content="citation_title=The RCSB protein data bank: a redesigned query system and relational database based on the mmCIF schema; citation_author=Deshpande N; citation_author=Addess KJ; citation_author=Bluhm WF; citation_journal_title=Nucleic Acids Res; citation_year=2005; citation_volume=33; citation_issue=suppl_1; citation_pages=D233-7; " /><meta name="citation_reference" content="citation_title=SuperLigands—a database of ligand structures derived from the protein data bank; citation_author=Michalsky E; citation_author=Dunkel M; citation_author=Goede A; citation_journal_title=BMC Bioinformatics; citation_year=2005; citation_volume=6; citation_issue=1; citation_pages=122" /><meta name="citation_reference" content="citation_title=Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics; citation_author=Li YH; citation_author=Yu CY; citation_author=Li XX; citation_journal_title=Nucleic Acids Res; citation_year=2017; citation_volume=46; citation_issue=D1; citation_pages=D1121-7; " /><meta name="citation_reference" content="citation_title=Brenda in 2019: a European ELIXIR core data resource; citation_author=Jeske L; citation_author=Placzek S; citation_author=Schomburg I; citation_journal_title=Nucleic Acids Res; citation_year=2018; citation_volume=47; citation_issue=D1; citation_pages=D542-9; " /><meta name="citation_reference" content="citation_title=SuperDRUG2: a one stop resource for approved/marketed drugs; citation_author=Siramshetty VB; citation_author=Eckert OA; citation_author=Gohlke B-O; citation_journal_title=Nucleic Acids Res; citation_year=2017; citation_volume=46; citation_issue=D1; citation_pages=D1137-43; " /><meta name="citation_reference" content="citation_title=DrugCentral 2018: an update; citation_author=Ursu O; citation_author=Holmes J; citation_author=Bologa CG; citation_journal_title=Nucleic Acids Res; citation_year=2018; citation_volume=47; citation_issue=D1; citation_pages=D963-70; " /><meta name="citation_reference" content="citation_title=DrugCentral: online drug compendium; citation_author=Ursu O; citation_author=Holmes J; citation_author=Knockel J; citation_journal_title=Nucleic Acids Res; citation_year=2016; citation_pages=gkw993" /><meta name="citation_reference" content="citation_title=PDID: database of molecular-level putative protein–drug interactions in the structural human proteome; citation_author=Wang C; citation_author=Hu G; citation_author=Wang K; citation_journal_title=Bioinformatics; citation_year=2015; citation_volume=32; citation_issue=4; citation_pages=579-86; " /><meta name="citation_reference" content="citation_title=Pharos: collating protein information to shed light on the druggable genome; citation_author=Nguyen D-T; citation_author=Mathias S; citation_author=Bologa C; citation_journal_title=Nucleic Acids Res; citation_year=2016; citation_volume=45; citation_issue=D1; citation_pages=D995-D1002; " /><meta name="citation_reference" content="citation_title=ECOdrug: a database connecting drugs and conservation of their targets across species; citation_author=Verbruggen B; citation_author=Gunnarsson L; citation_author=Kristiansson E; citation_journal_title=Nucleic Acids Res; citation_year=2017; citation_volume=46; citation_issue=D1; citation_pages=D930-6; " /><meta name="citation_reference" content="citation_title=BRENDA, the enzyme database: updates and major new developments; citation_author=Schomburg I; citation_author=Chang A; citation_author=Ebeling C; citation_journal_title=Nucleic Acids Res; citation_year=2004; citation_volume=32; citation_issue=suppl_1; citation_pages=D431-3; " /><meta name="citation_reference" content="citation_title=A comprehensive map of molecular drug targets; citation_author=Santos R; citation_author=Ursu O; citation_author=Gaulton A; citation_journal_title=Nat Rev Drug Discov; citation_year=2017; citation_volume=16; citation_issue=1; citation_pages=19" /><meta name="citation_reference" content="citation_title=Finding protein targets for small biologically relevant ligands across fold space using inverse ligand binding predictions; citation_author=Hu G; citation_author=Gao J; citation_author=Wang K; citation_journal_title=Structure; citation_year=2012; citation_volume=20; citation_issue=11; citation_pages=1815-22; " /><meta name="citation_reference" content="citation_title=eFindSite: enhanced fingerprint-based virtual screening against predicted ligand binding sites in protein models; citation_author=Feinstein WP; citation_author=Brylinski M; citation_journal_title=Mol Inform; citation_year=2014; citation_volume=33; citation_issue=2; citation_pages=135-50; " /><meta name="citation_reference" content="citation_title=eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands; citation_author=Brylinski M; citation_author=Feinstein WP; citation_journal_title=J Comput Aided Mol Des; citation_year=2013; citation_volume=27; citation_issue=6; citation_pages=551-67; " /><meta name="citation_reference" content="citation_title=The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins; citation_author=Rouillard AD; citation_author=Gundersen GW; citation_author=Fernandez NF; citation_journal_title=Database; citation_year=2016; citation_volume=2016; " /><meta name="citation_reference" content="citation_title=PubChem and CHEMBL beyond Lipinski; citation_author=Capecchi A; citation_author=Awale M; citation_author=Probst D; citation_journal_title=Mol inform; citation_year=2019; citation_volume=38; citation_issue=5; citation_pages=1900016" /><meta name="citation_reference" content="citation_title=BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities; citation_author=Liu T; citation_author=Lin Y; citation_author=Wen X; citation_journal_title=Nucleic Acids Res; citation_year=2006; citation_volume=35; citation_issue=suppl_1; citation_pages=D198-201; " /><meta name="citation_reference" content="citation_title=BindingDB: a web-accessible molecular recognition database; citation_author=Chen X; citation_author=Liu M; citation_author=Gilson MK; citation_journal_title=Comb Chem High Throughput Screen; citation_year=2001; citation_volume=4; citation_issue=8; citation_pages=719-25; " /><meta name="citation_reference" content="citation_title=BindingDB: a protein-ligand database for drug discovery; citation_author=Nicola G; citation_author=Liu T; citation_author=Hwang L; citation_author=Gilson M; citation_journal_title=Biophys J; citation_year=2012; citation_volume=102; citation_issue=3; citation_pages=61a" /><meta name="citation_reference" content="citation_title=PDB-wide collection of binding data: current status of the pdbbind database; citation_author=Liu Z; citation_author=Li Y; citation_author=Han L; citation_journal_title=Bioinformatics; citation_year=2014; citation_volume=31; citation_issue=3; citation_pages=405-12; " /><meta name="citation_reference" content="citation_title=The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches?; citation_author=Roth BL; citation_author=Lopez E; citation_author=Patel S; citation_journal_title=Neuroscientist; citation_year=2000; citation_volume=6; citation_issue=4; citation_pages=252-62; " /><meta name="citation_reference" content="citation_title=Conditional ranking on relational data; citation_author=Pahikkala T; citation_author=Waegeman W; citation_author=Airola A; citation_publisher=Springer, Heidelberg, Germany; citation_title=Joint European Conference on Machine Learning and Knowledge Discovery in Databases; citation_year=2010; citation_pages=499-514; " /><meta name="citation_reference" content="citation_title=Efficient regularized least-squares algorithms for conditional ranking on relational data; citation_author=Pahikkala T; citation_author=Airola A; citation_author=Stock M; citation_journal_title=Mach Learn; citation_year=2013; citation_volume=93; citation_issue=2–3; citation_pages=321-56; " /><meta name="citation_reference" content="citation_title=Nuclear norm of higher-order tensors; citation_author=Friedland S; citation_author=Lim L-H; citation_journal_title=Math Comput; citation_year=2018; citation_volume=87; citation_issue=311; citation_pages=1255-81; " /><meta name="citation_reference" content="citation_author=Fazel M.; citation_author=Hindi, H.; citation_author=Boyd, S.; citation_title=Rank minimization and applications in system theory; citation_year=2004; citation_volume=4,; citation_pages=3273-3278; " /><meta name="citation_reference" content="citation_title=Exact matrix completion via convex optimization; citation_author=Candès EJ; citation_author=Benjamin R; citation_journal_title=Found Comput Math; citation_volume=9; citation_issue=6; citation_pages=717-72; " /><meta name="citation_reference" content="citation_title=Navigating the kinome; citation_author=Metz JT; citation_author=Johnson EF; citation_author=Soni NB; citation_journal_title=Nat Chem Biol; citation_year=2011; citation_volume=7; citation_issue=4; citation_pages=200" /><meta name="citation_reference" content="citation_title=Comprehensive analysis of kinase inhibitor selectivity; citation_author=Davis MI; citation_author=Hunt JP; citation_author=Herrgard S; citation_journal_title=Nat Biotechnol; citation_year=2011; citation_volume=29; citation_issue=11; citation_pages=1046" /><meta name="citation_reference" content="citation_title=The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands; citation_author=Southan C; citation_author=Sharman JL; citation_author=Benson HE; citation_journal_title=Nucleic Acids Res; citation_year=2015; citation_volume=44; citation_issue=D1; citation_pages=D1054-68; " /><meta name="citation_reference" content="citation_title=Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis; citation_author=Tang J; citation_author=Szwajda A; citation_author=Shakyawar S; citation_journal_title=J Chem Inf Model; citation_year=2014; citation_volume=54; citation_issue=3; citation_pages=735-43; " /><meta name="citation_fulltext_world_readable" content="" /><meta name="citation_pdf_url" content="https://academic.oup.com/bib/article-pdf/22/1/247/35935006/bbz157.pdf" /><meta name="description" content="Abstract. The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop n" /><meta name="citation_xml_url" content="https://academic.oup.com/bib/article-xml/22/1/247/5681786" /> <link rel="canonical" href="https://academic.oup.com/bib/article/22/1/247/5681786" /> <meta name="citation_fulltext_world_readable" /> <meta name="product_code" content="J_bib_2000_01_264" /> <meta name="product_code" content="J_BIB_2020_03_13" /> <meta name="product_code" content="J_BIB_2021_01_12" /> <meta name="product_code" content="J_BIB_2000_01_9999" /> <meta name="product_code" content="J_bib_2009_01_192" /> <meta name="product_code" content="J_BIB_2020_09_13" /> <meta name="product_code" content="J_BIB_2020_12_13" /> <meta name="product_code" content="J_BIB_2020_06_13" /> <meta name="product_code" content="J_BIB_2020_05_13" /> <meta name="product_code" content="bib_oa_flip_archive_free" /> <meta name="product_code" content="J_BIB_2020_04_13" /> <meta name="product_code" content="bib_FBI_12m" /> <meta name="product_code" content="OPEN_ACCESS" /> <meta name="product_code" content="J_BIB_2020_07_13" /> <meta name="product_code" content="j_ALLJOURNALS" /> <meta name="product_code" content="J_BIB_2020_10_13" /> <meta name="product_code" content="J_BIB_2020_11_13" /> <meta name="product_code" content="SOLR_FACET_FREE" /> <meta name="product_code" content="J_5681786" /> <meta name="product_code" content="I_126867" /> <script> var SCM = SCM || {}; SCM.pubGradeAdsEnabled = true; SCM.pubGradeJSLibrary = 'https://cdn.pbgrd.com/core-oup-new.js'; </script> <script async="async" src="https://securepubads.g.doubleclick.net/tag/js/gpt.js"></script> <script> var googletag = googletag || {}; googletag.cmd = googletag.cmd || []; </script> <script type='text/javascript'> var gptAdSlots = []; googletag.cmd.push(function() { var mapping_ad1 = googletag.sizeMapping() .addSize([1024, 0], [[970, 90], [728, 90]]) .addSize([768, 0], [728, 90]) .addSize([0, 0], [320, 50]) .build(); gptAdSlots["ad1"] = googletag.defineSlot('/116097782/bib_Behind_Ad1', [[970, 90], [728, 90], [320, 50]], 'adBlockHeader') .defineSizeMapping(mapping_ad1) .addService(googletag.pubads()); var mapping_ad2 = googletag.sizeMapping() .addSize([768, 0], [[300, 250], [300, 600], [160, 600]]) .build(); gptAdSlots["ad2"] = googletag.defineSlot('/116097782/bib_Behind_Ad2', [[300, 250], [160, 600], [300, 600]], 'adBlockMainBodyTop') .defineSizeMapping(mapping_ad2) .addService(googletag.pubads()); var mapping_ad3 = googletag.sizeMapping() .addSize([768, 0], [[300, 250], [300, 600], [160, 600]]) .build(); gptAdSlots["ad3"] = googletag.defineSlot('/116097782/bib_Behind_Ad3', [[300, 250], [160, 600], [300, 600]], 'adBlockMainBodyBottom') .defineSizeMapping(mapping_ad3) .addService(googletag.pubads()); var mapping_ad4 = googletag.sizeMapping() .addSize([0,0], [320, 50]) .addSize([768, 0], [728, 90]) .build(); gptAdSlots["ad4"] = googletag.defineSlot('/116097782/bib_Behind_Ad4', [728, 90], 'adBlockFooter') .defineSizeMapping(mapping_ad4) .addService(googletag.pubads()); var mapping_ad6 = googletag.sizeMapping() .addSize([1024, 0], [[970, 90], [728, 90]]) .addSize([768, 0], [728, 90]) .addSize([0, 0], [320, 50]) .build(); gptAdSlots["ad6"] = googletag.defineSlot('/116097782/bib_Behind_Ad6', [[728, 90], [970, 90]], 'adBlockStickyFooter') .defineSizeMapping(mapping_ad6) .addService(googletag.pubads()); gptAdSlots["adInterstitial"] = googletag.defineOutOfPageSlot('/116097782/bib_Interstitial_Ad', googletag.enums.OutOfPageFormat.INTERSTITIAL) .addService(googletag.pubads()); googletag.pubads().addEventListener('slotRenderEnded', function (event) { if (!event.isEmpty) { $('.js-' + event.slot.getSlotElementId()).each(function () { if ($(this).find('iframe').length) { $(this).removeClass('hide'); } }); } }); googletag.pubads().addEventListener('impressionViewable', function (event) { if (!event.isEmpty) { $('.js-' + event.slot.getSlotElementId()).each(function () { var $adblockDiv = $(this).find('.js-adblock'); var $adText = $(this).find('.js-adblock-advertisement-text'); if ($adblockDiv && $adblockDiv.is(':visible') && $adblockDiv.find('*').length > 1) { $adText.removeClass('hide'); App.CenterAdBlock.Init($adblockDiv, $adText); } else { $adText.addClass('hide'); } //Initialize logic for Sticky Footer Ad var $stickyFooterDiv = $(this).parents('.js-sticky-footer-ad'); if ($stickyFooterDiv && $stickyFooterDiv.is(':visible') && $stickyFooterDiv.find('*').length > 1) { App.StickyFooterAd.Init(); } }); } }); googletag.pubads().setTargeting("jnlspage", "article"); googletag.pubads().setTargeting("jnlsurl", "bib/article/22/1/247/5681786"); googletag.pubads().enableSingleRequest(); googletag.pubads().disableInitialLoad(); googletag.pubads().collapseEmptyDivs(); }); </script> <input type="hidden" class="hfInterstitial" data-interstitiallinks="bib/issue,bib/advance-articles,bib/advance-article,bib/supplements,bib/article,bib/article-abstract,bib/pages" data-subdomain="bib" /> <script type="text/javascript"> googletag.cmd.push(function () { googletag.pubads().setTargeting("jnlsdoi", "10.1093/bib/bbz157"); googletag.enableServices(); }); </script> <script type="text/javascript"> var NTPT_PGEXTRA= 'event_type=full-text&discipline_ot_level_1=Science and Mathematics&discipline_ot_level_2=Biological Sciences&supplier_tag=SC_Journals&object_type=Article&taxonomy=taxId%3a39%7ctaxLabel%3aAcademicSubjects%7cnodeId%3aSCI01060%7cnodeLabel%3aBioinformatics+and+Computational+Biology%7cnodeLevel%3a3&siteid=bib&authzrequired=false&doi=10.1093/bib/bbz157'; </script> <script src="https://scholar.google.com/scholar_js/casa.js" async></script> </head> <body data-sitename="briefingsinbioinformatics" class="off-canvas pg_Article pg_article " theme-bib data-sitestyletemplate="Journal" > <noscript> <iframe src="https://www.googletagmanager.com/ns.html?id=GTM-W6DD7HV" height="0" width="0" style="display:none;visibility:hidden"></iframe> </noscript> <a href="#skipNav" class="skipnav">Skip to Main Content</a> <input id="hdnSiteID" name="hdnSiteID" type="hidden" value="5143" /><input id="hdnAdDelaySeconds" name="hdnAdDelaySeconds" type="hidden" value="5000" /><input id="hdnAdConfigurationTop" name="hdnAdConfigurationTop" type="hidden" value="scrolldelay" /><input id="hdnAdConfigurationRightRail" name="hdnAdConfigurationRightRail" type="hidden" value="sticky" /> <div class="master-container js-master-container"> <section class="master-header row js-master-header vt-site-page-header"> <div class="widget widget-SitePageHeader widget-instance-SitePageHeader"> <div class="ad-banner js-ad-banner-header"> <div class="widget widget-AdBlock widget-instance-HeaderAd"> <div class="js-adBlock-parent-wrap adblock-parent-wrap"> <div class="adBlockHeader-wrap js-adBlockHeader hide"> <div id="adBlockHeader" class="js-adblock at-adblock" data-lazy-load-margin="150"> <script> googletag.cmd.push(function () { googletag.display('adBlockHeader'); }); </script> </div> <div class="advertisement-text at-adblock js-adblock-advertisement-text hide">Advertisement</div> </div> </div> </div> </div> <div class="oup-header sigma "> <div class="center-inner-row"> <div class="oup-header-logo"> <a href="/"> <img src="//oup.silverchair-cdn.com/UI/app/svg/umbrella/oxford-academic-logo.svg" alt="Oxford Academic" class="oup-header-image at-oup-header-image " /> </a> </div> <div class="widget widget-CustomNavLinks widget-instance-CustomNavLinksDeskTop"> <div class="custom-nav-links-box"> <div class="custom-nav-link"> <a href="/journals">Journals</a> </div> <div class="custom-nav-link"> <a href="/books">Books</a> </div> </div> </div> <ul class="oup-header-menu account-menu sigma-account-menu "> <li class="oup-header-menu-item mobile"> <a href="javascript:;" class="mobile-dropdown-toggle mobile-search-toggle"> <i class="icon-menu_search"><span class="screenreader-text">Search Menu</span></i> </a> </li> <li class="oup-header-menu-item mobile info-icon-menu-item"> <a href="/pages/information" target="_blank" class="at-info-button sigma-info-wrapper" role="button"> <img class="sigma-info-icon" src="//oup.silverchair-cdn.com/UI/app/svg/i.svg" alt="Information" /> </a> </li> <li class="oup-header-menu-item mobile account-icon-menu-item"> <a href="javascript:;" class="account-button js-account-button at-account-button " role="button" data-turnawayparams="journal%3dbib"> <img class="sigma-account-icon" src="//oup.silverchair-cdn.com/UI/app/svg/account.svg" alt="Account" /> </a> </li> <li class="oup-header-menu-item mobile"> <a href="javascript:;" class="mobile-dropdown-toggle mobile-nav-toggle"> <i class="icon-menu_hamburger"><span class="screenreader-text">Menu</span></i> </a> </li> <li class="oup-header-menu-item desktop info-icon-menu-item"> <a href="/pages/information" target="_blank" class="at-info-button sigma-info-wrapper" role="button"> <img class="sigma-info-icon" src="//oup.silverchair-cdn.com/UI/app/svg/i.svg" alt="Information" /> </a> </li> <li class="oup-header-menu-item desktop account-icon-menu-item"> <a href="javascript:;" class="account-button js-account-button at-account-button sigma-logo-wrapper" role="button" data-turnawayparams="journal%3dbib"> <img class="sigma-account-icon" src="//oup.silverchair-cdn.com/UI/app/svg/account.svg" alt="Account" /> </a> </li> <li class="oup-header-menu-item desktop account-icon-menu-item"> <div class="widget widget-SeamlessAccess widget-instance-SitePageHeader"> <a href="javascript:;" class="js-shibboleth-action seamless-access-button seamless-button-header button-call-to-action at-institutional-sign-in" rel="nofollow" data-action-type="" data-entity-id=""> <span class="seamless-access-text">Sign in through your institution</span> </a> </div> </li> </ul> <div class="login-box-placeholder js-login-box-placeholder hide"> <div class="spinner"></div> </div> </div> </div> <div class="dropdown-panel-wrap"> <div class="dropdown-panel mobile-search-dropdown"> <div class="mobile-search-inner-wrap"> <div class="navbar-search"> <div class="mobile-microsite-search"> <label for="SitePageHeader-mobile-navbar-search-filter" class="screenreader-text js-mobile-navbar-search-filter-label"> Navbar Search Filter </label> <select class="mobile-navbar-search-filter js-mobile-navbar-search-filter at-navbar-search-filter" id="SitePageHeader-mobile-navbar-search-filter"> <option class="navbar-search-filter-option at-navbar-search-filter-option" value="">Briefings in Bioinformatics</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Issue">This issue</option> <optgroup class="navbar-search-optgroup" label="Search across Oxford Academic"> <option class="navbar-search-filter-option at-navbar-search-filter-option" value="AcademicSubjects/SCI01060">Bioinformatics and Computational Biology</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Books">Books</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Journals">Journals</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Umbrella">Oxford Academic</option> </optgroup> </select> <label for="SitePageHeader-mobile-microsite-search-term" class="screenreader-text js-mobile-microsite-search-term-label"> Mobile Enter search term </label> <input class="mobile-search-input mobile-microsite-search-term js-mobile-microsite-search-term at-microsite-search-term" type="text" maxlength="255" placeholder="Search" id="SitePageHeader-mobile-microsite-search-term"> <a href="javascript:;" class="mobile-microsite-search-icon mobile-search-submit icon-menu_search"> <span class="screenreader-text">Search</span> </a> </div> </div> </div> </div> <div class="dropdown-panel mobile-nav-dropdown"> <ul class="site-menu site-menu-lvl-0 at-site-menu"> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700552"> <a href="/bib/issue" class="nav-link"> Issues </a> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700549"> <a href="javascript:;" class="nav-link js-nav-dropdown at-nav-dropdown" role="button" aria-expanded="false"> Submit <i class="desktop-nav-arrow icon-general-arrow-filled-down arrow-icon"></i> </a> <i class="mobile-nav-arrow icon-general_arrow-down"></i> <ul class="site-menu site-menu-lvl-1 at-site-menu"> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700553"> <a href="/bib/pages/General_Instructions" class="nav-link"> Author Guidelines </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700554"> <a href="http://mc.manuscriptcentral.com/bib" class="nav-link"> Submission Site </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700555"> <a href="https://academic.oup.com/bib/pages/open-access" class="nav-link"> Open Access </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700556"> <a href="https://academic.oup.com/bib/pages/why-publish-with-briefings-in-bioinformatics" class="nav-link"> Reasons to publish with us </a> </li> </ul> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700557"> <a href="/my-account/email-alerts" class="nav-link"> Alerts </a> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700550"> <a href="javascript:;" class="nav-link js-nav-dropdown at-nav-dropdown" role="button" aria-expanded="false"> About <i class="desktop-nav-arrow icon-general-arrow-filled-down arrow-icon"></i> </a> <i class="mobile-nav-arrow icon-general_arrow-down"></i> <ul class="site-menu site-menu-lvl-1 at-site-menu"> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700558"> <a href="/bib/pages/About" class="nav-link"> About Briefings in Bioinformatics </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700559"> <a href="http://science-and-mathematics-careernetwork.oxfordjournals.org/jobseeker/search/results/?t730=&amp;search=&amp;t732=470054&amp;t731=&amp;t733=&amp;t735=&amp;t737=&amp;max=25&amp;site_id=20106" class="nav-link"> Journals Career Network </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700560"> <a href="/bib/pages/Editorial_Board" class="nav-link"> Editorial Board </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700561"> <a href="https://academic.oup.com/advertising-and-corporate-services/pages/bib-media-kit" class="nav-link"> Advertising and Corporate Services </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700562"> <a href="https://academic.oup.com/pages/self_archiving_policy_c" class="nav-link"> Self-Archiving Policy </a> </li> </ul> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700551"> <a href="javascript:;" class="nav-link js-nav-dropdown at-nav-dropdown" role="button" aria-expanded="false"> More Content <i class="desktop-nav-arrow icon-general-arrow-filled-down arrow-icon"></i> </a> <i class="mobile-nav-arrow icon-general_arrow-down"></i> <ul class="site-menu site-menu-lvl-1 at-site-menu"> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700563"> <a href="https://academic.oup.com/bib/pages/special-issues" class="nav-link"> Special Issues </a> </li> </ul> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-custom"> <a href="/journals" class="nav-link">Journals on Oxford Academic</a> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-custom"> <a href="/books" class="nav-link">Books on Oxford Academic</a> </li> </ul> </div> </div> <div class="journal-header journal-bg"> <div class="center-inner-row"> <a href="/bib" class="journal-logo-container"> <img id="logo-BriefingsinBioinformatics" class="journal-logo" src="//oup.silverchair-cdn.com/data/SiteBuilderAssets/Live/Images/bib/bib_title526563102.svg" alt="Briefings in Bioinformatics" /> </a> <div class="society-logo-block"> </div> </div> </div> <div class="navbar"> <div class="center-inner-row"> <nav class="navbar-menu"> <ul class="site-menu site-menu-lvl-0 at-site-menu"> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700552"> <a href="/bib/issue" class="nav-link"> Issues </a> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700549"> <a href="javascript:;" class="nav-link js-nav-dropdown at-nav-dropdown" role="button" aria-expanded="false"> Submit <i class="desktop-nav-arrow icon-general-arrow-filled-down arrow-icon"></i> </a> <i class="mobile-nav-arrow icon-general_arrow-down"></i> <ul class="site-menu site-menu-lvl-1 at-site-menu"> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700553"> <a href="/bib/pages/General_Instructions" class="nav-link"> Author Guidelines </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700554"> <a href="http://mc.manuscriptcentral.com/bib" class="nav-link"> Submission Site </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700555"> <a href="https://academic.oup.com/bib/pages/open-access" class="nav-link"> Open Access </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700556"> <a href="https://academic.oup.com/bib/pages/why-publish-with-briefings-in-bioinformatics" class="nav-link"> Reasons to publish with us </a> </li> </ul> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700557"> <a href="/my-account/email-alerts" class="nav-link"> Alerts </a> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700550"> <a href="javascript:;" class="nav-link js-nav-dropdown at-nav-dropdown" role="button" aria-expanded="false"> About <i class="desktop-nav-arrow icon-general-arrow-filled-down arrow-icon"></i> </a> <i class="mobile-nav-arrow icon-general_arrow-down"></i> <ul class="site-menu site-menu-lvl-1 at-site-menu"> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700558"> <a href="/bib/pages/About" class="nav-link"> About Briefings in Bioinformatics </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700559"> <a href="http://science-and-mathematics-careernetwork.oxfordjournals.org/jobseeker/search/results/?t730=&amp;search=&amp;t732=470054&amp;t731=&amp;t733=&amp;t735=&amp;t737=&amp;max=25&amp;site_id=20106" class="nav-link"> Journals Career Network </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700560"> <a href="/bib/pages/Editorial_Board" class="nav-link"> Editorial Board </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700561"> <a href="https://academic.oup.com/advertising-and-corporate-services/pages/bib-media-kit" class="nav-link"> Advertising and Corporate Services </a> </li> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700562"> <a href="https://academic.oup.com/pages/self_archiving_policy_c" class="nav-link"> Self-Archiving Policy </a> </li> </ul> </li> <li class="site-menu-item site-menu-lvl-0 at-site-menu-item" id="site-menu-item-1700551"> <a href="javascript:;" class="nav-link js-nav-dropdown at-nav-dropdown" role="button" aria-expanded="false"> More Content <i class="desktop-nav-arrow icon-general-arrow-filled-down arrow-icon"></i> </a> <i class="mobile-nav-arrow icon-general_arrow-down"></i> <ul class="site-menu site-menu-lvl-1 at-site-menu"> <li class="site-menu-item site-menu-lvl-1 at-site-menu-item" id="site-menu-item-1700563"> <a href="https://academic.oup.com/bib/pages/special-issues" class="nav-link"> Special Issues </a> </li> </ul> </li> </ul> </nav> <div class="navbar-search-container js-navbar-search-container"> <a href="javascript:;" class="navbar-search-close js_close-navsearch">Close</a> <div class="navbar-search"> <div class="microsite-search"> <label for="SitePageHeader-navbar-search-filter" class="screenreader-text js-navbar-search-filter-label"> Navbar Search Filter </label> <select class="navbar-search-filter js-navbar-search-filter at-navbar-search-filter" id="SitePageHeader-navbar-search-filter"> <option class="navbar-search-filter-option at-navbar-search-filter-option" value="">Briefings in Bioinformatics</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Issue">This issue</option> <optgroup class="navbar-search-optgroup" label="Search across Oxford Academic"> <option class="navbar-search-filter-option at-navbar-search-filter-option" value="AcademicSubjects/SCI01060">Bioinformatics and Computational Biology</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Books">Books</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Journals">Journals</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Umbrella">Oxford Academic</option> </optgroup> </select> <label for="SitePageHeader-microsite-search-term" class="screenreader-text js-microsite-search-term-label"> Enter search term </label> <input class="navbar-search-input microsite-search-term js-microsite-search-term at-microsite-search-term" type="text" maxlength="255" placeholder="Search" id="SitePageHeader-microsite-search-term"> <a href="javascript:;" class="microsite-search-icon navbar-search-submit icon-menu_search"> <span class="screenreader-text">Search</span> </a> </div> </div> <input id="hfCurrentBookSearch" name="hfCurrentBookSearch" type="hidden" value="" /><input id="hfCurrentBookScope" name="hfCurrentBookScope" type="hidden" value="CurrentBook" /><input id="hfBookSiteScope" name="hfBookSiteScope" type="hidden" value="Books" /><input id="hfSeriesScope" name="hfSeriesScope" type="hidden" value="taxWithOr" /><input id="hfParentSiteName" name="hfParentSiteName" type="hidden" value="Oxford Academic" /><input id="hfParentSiteUrl" name="hfParentSiteUrl" type="hidden" value="academic.oup.com" /><input id="hfSiteID" name="hfSiteID" type="hidden" value="5143" /><input id="hfParentSiteID" name="hfParentSiteID" type="hidden" value="191" /><input id="hfJournalSiteScope" name="hfJournalSiteScope" type="hidden" value="Journals" /><input id="hfParentSiteScope" name="hfParentSiteScope" type="hidden" value="Parent" /><input id="hfDefaultSearchURL" name="hfDefaultSearchURL" type="hidden" value="search-results?page=1&amp;q=" /><input id="hfIssueSearch" name="hfIssueSearch" type="hidden" value="&amp;fl_IssueID=126867" /><input id="hfIssueSiteScope" name="hfIssueSiteScope" type="hidden" value="Issue" /><input id="hfUmbrellaScope" name="hfUmbrellaScope" type="hidden" value="Umbrella" /><input id="hfUmbrellaSiteUrl" name="hfUmbrellaSiteUrl" type="hidden" value="academic.oup.com" /><input id="hfUmbrellaSiteId" name="hfUmbrellaSiteId" type="hidden" value="191" /><input id="hfDefaultAdvancedSearchUrl" name="hfDefaultAdvancedSearchUrl" type="hidden" value="advanced-search?page=1&amp;q=" /><input id="hfTaggedCollectionScope" name="hfTaggedCollectionScope" type="hidden" value="" /> <div class="navbar-search-advanced"><a href="/bib/advanced-search" class="advanced-search js-advanced-search">Advanced Search</a></div> </div> <div class="navbar-search-collapsed"><a href="javascript:;" class="icon-menu_search js_expand-navsearch"><span class="screenreader-text">Search Menu</span></a></div> </div> </div> <input type="hidden" name="searchScope" id="hfSolrJournalID" value="" /> <input type="hidden" id="hfSolrJournalName" value="" /> <input type="hidden" id="hfSolrMaxAllowSearchChar" value="100" /> <input type="hidden" id="hfJournalShortName" value="" /> <input type="hidden" id="hfSearchPlaceholder" value="" /> <input type="hidden" name="hfGlobalSearchSiteURL" id="hfGlobalSearchSiteURL" value="" /> <input type="hidden" name="hfSearchSiteURL" id="hfSiteURL" value="academic.oup.com/bib" /> <input type="hidden" name="RedirectSiteUrl" id="RedirectSiteUrl" value="httpszazjzjacademiczwoupzwcom" /> <script type="text/javascript"> (function () { var hfSiteUrl = document.getElementById('hfSiteURL'); var siteUrl = hfSiteUrl.value; var subdomainIndex = siteUrl.indexOf('/'); hfSiteUrl.value = location.host + (subdomainIndex >= 0 ? siteUrl.substring(subdomainIndex) : ''); })(); </script> <input id="routename" name="RouteName" type="hidden" value="bib" /> </div> </section> <div class="widget widget-SitewideBanner widget-instance-"> </div> <div id="main" class="content-main js-main ui-base"> <section class="master-main row"> <div class="center-inner-row no-overflow"> <div id="skipNav" tabindex="-1"></div> <div class="page-column-wrap"> <div id="InfoColumn" class="page-column page-column--left js-left-nav-col"> <div class="mobile-content-topbar hide"> <button class="toggle-left-col toggle-left-col__article">Article Navigation</button> </div> <div class="info-inner-wrap js-left-nav"> <button class="toggle-left-col__close btn-as-icon icon-general-close"> <span class="screenreader-text">Close mobile search navigation</span> </button> <div class="responsive-nav-title">Article Navigation</div> <div class="info-widget-wrap"> <div class="widget widget-IssueInfo widget-instance-OUP_IssueInfo_Article"> <div id="issueInfo-OUP_IssueInfo_Article" class="article-info-wrap clearfix"> <i class="icon-general-close mobile-nav-btn nav-open"></i> <a class="article-issue-link" href="/bib/issue/22/1"> <div class="article-issue-img"> <img id="issueImage" class="fb-featured-image" src="https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/Issue/22/1/2/m_cover.jpeg?Expires=1736033389&amp;Signature=mHc2C36-E40mcUr788kzzPBsWmK~yHHV7YJmGK802jYg7P9ej9a~ZDWGgNUVfccgUkedOHCaLdA1MrGoyu7HwXJtGLUyOgBiMF9ivvQS0cu-h4f3wIRO9ilBZxcmmR7He8sXWaP70O5dS11LQLc-Bw-msGWzUt2WloVSe0IYX8oU2CjfC-gYTev1Em0tbcRiQeQTWjEyD9QDYAIRdmnxMeb6PUaBkFI56T3CBXxHPt5u7BxwyQXd-Bp6Yd56Wb8Cd-dUHPKeEUurvH4kkNmG76leNDyNUO2kPw9ei3wp0B8-kkKjJMVDOUP4VxhWPwzGdXHhVUl0fBHNHJUqnKBTRg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" alt="Issue Cover" /> </div> <div class="article-issue-info"> <div class="volume-issue__wrap"> <div class="volume trailing-comma">Volume 22</div> <div class="issue">Issue 1</div> </div> <div class="ii-pub-date"> January 2021 </div> </div> </a> </div> </div> <div class="content-nav"> <div class="widget widget-ArticleJumpLinks widget-instance-OUP_ArticleJumpLinks_Widget"> <h3 class="contents-title" >Article Contents</h3> <ul class="jumplink-list js-jumplink-list"> <li class="section-jump-link head-1" link-destination="225532389"> <div class="section-jump-link__link-wrap"> <a class="js-jumplink scrollTo" href="#225532389">Abstract</a> </div> </li> <li class="section-jump-link head-1" link-destination="225532391"> <div class="section-jump-link__link-wrap"> <a class="js-jumplink scrollTo" href="#225532391">1 Introduction</a> </div> </li> <li class="section-jump-link head-1" link-destination="225532399"> <div class="section-jump-link__link-wrap"> <a class="js-jumplink scrollTo" href="#225532399">2 Machine learning methods used in DTI prediction</a> </div> </li> <li class="section-jump-link head-1" link-destination="225532445"> <div class="section-jump-link__link-wrap"> <a class="js-jumplink scrollTo" href="#225532445">3 Databases used in DTIpPrediction</a> </div> </li> <li class="section-jump-link head-1" link-destination="225532503"> <div class="section-jump-link__link-wrap"> <a class="js-jumplink scrollTo" href="#225532503">4 DTI database challenges and future work</a> </div> </li> <li class="section-jump-link head-1" link-destination="225532513"> <div class="section-jump-link__link-wrap"> <a class="js-jumplink scrollTo" href="#225532513">5 Summary of materials and methodologies</a> </div> </li> <li class="section-jump-link head-1" link-destination="225532517"> <div class="section-jump-link__link-wrap"> <a class="js-jumplink scrollTo" href="#225532517">Funding</a> </div> </li> <li class="section-jump-link head-1 backReferenceLink" link-destination="225532530"> <div class="section-jump-link__link-wrap"> <a class="js-jumplink scrollTo" href="#225532530">References</a> </div> </li> </ul> </div> </div> <div class="widget widget-ArticleNavLinks widget-instance-OUP_ArticleNavLinks_Article"> <ul class="inline-list"> <li class="prev arrow"> <a href="/bib/article/22/1/232/5700591">&lt; Previous</a> </li> <li class="next arrow"> <a href="/bib/article/22/1/270/5685758">Next &gt;</a> </li> </ul> </div> </div> </div> </div> <div class="sticky-toolbar js-sticky-toolbar"></div> <div id="ContentColumn" class="page-column page-column--center"> <div class="article-browse-top article-browse-mobile-nav js-mobile-nav"> <div class="article-browse-mobile-nav-inner js-mobile-nav-inner"> <button class="toggle-left-col toggle-left-col__article btn-as-link"> Article Navigation </button> </div> </div> <div class="article-browse-top article-browse-mobile-nav mobile-sticky-toolbar js-mobile-nav-sticky"> <div class="article-browse-mobile-nav-inner"> <button class="toggle-left-col toggle-left-col__article btn-as-link"> Article Navigation </button> </div> </div> <div class="content-inner-wrap"> <div class="widget widget-ArticleTopInfo widget-instance-OUP_ArticleTop_Info_Widget"> <div class="module-widget article-top-widget"> <div class="access-state-logos all-viewports"> <span class="journal-info__format-label">Journal Article</span> </div> <div class="widget-items"> <div class="title-wrap"> <h1 class="wi-article-title article-title-main accessible-content-title at-articleTitle"> Machine learning approaches and databases for prediction of drug–target interaction: a survey paper <i class='icon-availability_open' title='Open Access' ></i> </h1> </div> <div class="wi-authors at-ArticleAuthors"> <div class="al-authors-list"> <span class="al-author-name-more js-flyout-wrap"> <button type="button" class="linked-name js-linked-name-trigger btn-as-link">Maryam Bagherian</button><span class='delimiter'>, </span> <span class="al-author-info-wrap arrow-up"> <div class="info-card-author authorInfo_OUP_ArticleTop_Info_Widget"> <div class="name-role-wrap"> <div class="info-card-name"> Maryam Bagherian <span class="info-card-footnote"><span class="xrefLink" id="jumplink-cor1"></span><a href="javascript:;" reveal-id="cor1" data-open="cor1" class="link link-ref link-reveal xref-default"><!----></a></span> </div> </div> <div class="info-card-affilitation"> <div class="aff"><div class="institution">Department of Computational Medicine and Bioinformatics</div>, University of Michigan, Ann Arbor, MI, 48109, USA</div> </div> <div class="info-author-correspondence"> <div content-id="cor1">Corresponding author: Maryam Bagherian and Kayvan Najarian, Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA. E-mail: <a href="mailto:bmaryam@umich.edu" target="_blank">bmaryam@umich.edu</a></div> </div> <div class="info-card-search-label"> Search for other works by this author on: </div> <div class="info-card-search info-card-search-internal"> <a href="/bib/search-results?f_Authors=Maryam+Bagherian" rel="nofollow">Oxford Academic</a> </div> <div class="info-card-search info-card-search-pubmed"> <a href="http://www.ncbi.nlm.nih.gov/pubmed?cmd=search&amp;term=Bagherian M">PubMed</a> </div> <div class="info-card-search info-card-search-google"> <a href="http://scholar.google.com/scholar?q=author:%22Bagherian Maryam%22">Google Scholar</a> </div> </div> </span> </span> <span class="al-author-name-more js-flyout-wrap"> <button type="button" class="linked-name js-linked-name-trigger btn-as-link">Elyas Sabeti</button><span class='delimiter'>, </span> <span class="al-author-info-wrap arrow-up"> <div class="info-card-author authorInfo_OUP_ArticleTop_Info_Widget"> <div class="name-role-wrap"> <div class="info-card-name"> Elyas Sabeti </div> </div> <div class="info-card-affilitation"> <div class="aff"><div class="institution">Michigan Institute for Data Science</div>, University of Michigan, Ann Arbor, MI, 48109, USA</div> </div> <div class="info-card-search-label"> Search for other works by this author on: </div> <div class="info-card-search info-card-search-internal"> <a href="/bib/search-results?f_Authors=Elyas+Sabeti" rel="nofollow">Oxford Academic</a> </div> <div class="info-card-search info-card-search-pubmed"> <a href="http://www.ncbi.nlm.nih.gov/pubmed?cmd=search&amp;term=Sabeti E">PubMed</a> </div> <div class="info-card-search info-card-search-google"> <a href="http://scholar.google.com/scholar?q=author:%22Sabeti Elyas%22">Google Scholar</a> </div> </div> </span> </span> <span class="al-author-name-more js-flyout-wrap"> <button type="button" class="linked-name js-linked-name-trigger btn-as-link">Kai Wang</button><span class='delimiter'>, </span> <span class="al-author-info-wrap arrow-up"> <div class="info-card-author authorInfo_OUP_ArticleTop_Info_Widget"> <div class="name-role-wrap"> <div class="info-card-name"> Kai Wang </div> </div> <div class="info-card-affilitation"> <div class="aff"><div class="institution">Department of Biostatistics</div>, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA</div> </div> <div class="info-card-search-label"> Search for other works by this author on: </div> <div class="info-card-search info-card-search-internal"> <a href="/bib/search-results?f_Authors=Kai+Wang" rel="nofollow">Oxford Academic</a> </div> <div class="info-card-search info-card-search-pubmed"> <a href="http://www.ncbi.nlm.nih.gov/pubmed?cmd=search&amp;term=Wang K">PubMed</a> </div> <div class="info-card-search info-card-search-google"> <a href="http://scholar.google.com/scholar?q=author:%22Wang Kai%22">Google Scholar</a> </div> </div> </span> </span> <span class="al-author-name-more js-flyout-wrap"> <button type="button" class="linked-name js-linked-name-trigger btn-as-link">Maureen A Sartor</button><span class='delimiter'>, </span> <span class="al-author-info-wrap arrow-up"> <div class="info-card-author authorInfo_OUP_ArticleTop_Info_Widget"> <div class="name-role-wrap"> <div class="info-card-name"> Maureen A Sartor </div> </div> <div class="info-card-affilitation"> <div class="aff"><div class="institution">Department of Pathology</div>, University of Michigan, Ann Arbor, MI, 48109, USA</div> </div> <div class="info-card-search-label"> Search for other works by this author on: </div> <div class="info-card-search info-card-search-internal"> <a href="/bib/search-results?f_Authors=Maureen+A+Sartor" rel="nofollow">Oxford Academic</a> </div> <div class="info-card-search info-card-search-pubmed"> <a href="http://www.ncbi.nlm.nih.gov/pubmed?cmd=search&amp;term=Sartor M">PubMed</a> </div> <div class="info-card-search info-card-search-google"> <a href="http://scholar.google.com/scholar?q=author:%22Sartor Maureen A%22">Google Scholar</a> </div> </div> </span> </span> <span class="al-author-name-more js-flyout-wrap"> <button type="button" class="linked-name js-linked-name-trigger btn-as-link">Zaneta Nikolovska-Coleska</button><span class='delimiter'>, </span> <span class="al-author-info-wrap arrow-up"> <div class="info-card-author authorInfo_OUP_ArticleTop_Info_Widget"> <div class="name-role-wrap"> <div class="info-card-name"> Zaneta Nikolovska-Coleska </div> </div> <div class="info-card-affilitation"> <div class="aff"><div class="institution">Department of Emergency Medicine</div>, Medical School, University of Michigan, Ann Arbor, MI, 48109, USA</div> </div> <div class="info-card-search-label"> Search for other works by this author on: </div> <div class="info-card-search info-card-search-internal"> <a href="/bib/search-results?f_Authors=Zaneta+Nikolovska-Coleska" rel="nofollow">Oxford Academic</a> </div> <div class="info-card-search info-card-search-pubmed"> <a href="http://www.ncbi.nlm.nih.gov/pubmed?cmd=search&amp;term=Nikolovska-Coleska Z">PubMed</a> </div> <div class="info-card-search info-card-search-google"> <a href="http://scholar.google.com/scholar?q=author:%22Nikolovska-Coleska Zaneta%22">Google Scholar</a> </div> </div> </span> </span> <span class="al-author-name-more js-flyout-wrap"> <button type="button" class="linked-name js-linked-name-trigger btn-as-link">Kayvan Najarian</button><span class='delimiter'></span> <span class="al-author-info-wrap arrow-up"> <div class="info-card-author authorInfo_OUP_ArticleTop_Info_Widget"> <div class="name-role-wrap"> <div class="info-card-name"> Kayvan Najarian </div> </div> <div class="info-card-affilitation"> <div class="aff"><div class="institution">Department of Electrical Engineering and Computer Science</div>, College of Engineering, University of Michigan, Ann Arbor, MI, 48109, USA</div> </div> <div class="info-card-search-label"> Search for other works by this author on: </div> <div class="info-card-search info-card-search-internal"> <a href="/bib/search-results?f_Authors=Kayvan+Najarian" rel="nofollow">Oxford Academic</a> </div> <div class="info-card-search info-card-search-pubmed"> <a href="http://www.ncbi.nlm.nih.gov/pubmed?cmd=search&amp;term=Najarian K">PubMed</a> </div> <div class="info-card-search info-card-search-google"> <a href="http://scholar.google.com/scholar?q=author:%22Najarian Kayvan%22">Google Scholar</a> </div> </div> </span> </span> </div> </div> <div class="pub-history-wrap clearfix js-history-dropdown-wrap"> <div class="pub-history-row clearfix"> <div class="ww-citation-primary"><em>Briefings in Bioinformatics</em>, Volume 22, Issue 1, January 2021, Pages 247–269, <a href='https://doi.org/10.1093/bib/bbz157'>https://doi.org/10.1093/bib/bbz157</a></div> </div> <div class="pub-history-row clearfix"> <div class="ww-citation-date-wrap"> <div class="citation-label">Published:</div> <div class="citation-date">17 January 2020</div> </div> <a href="javascript:;" class="history-label js-history-dropdown-trigger st-article-history at-ArticleHistory"> <span>Article history</span><i class="icon-general-arrow-filled-down arrow-icon"></i> </a> </div> <div class="ww-history js-history-entries-wrap at-history-entries-wrap"> <div class="history-entry at-history-entry"> <div class="wi-state">Received:</div> <div class="wi-date">04 September 2019</div> </div> <div class="history-entry at-history-entry"> <div class="wi-state">Revision received:</div> <div class="wi-date">01 November 2019</div> </div> <div class="history-entry at-history-entry"> <div class="wi-state">Accepted:</div> <div class="wi-date">07 November 2019</div> </div> <div class="history-entry at-history-entry"> <div class="wi-state">Published:</div> <div class="wi-date">17 January 2020</div> </div> </div> </div> </div> </div> <script> $(document).ready(function () { $('.article-top-widget').on('click', '.ati-toggle-trigger', function () { $(this).find('.icon-general-add, .icon-minus').toggleClass('icon-minus icon-general-add'); $(this).siblings('.ati-toggle-content').toggleClass('hide'); }); // In Chrome, an anchor tag with target="_blank" and a "mailto:" href opens a new tab/window as well as the email client // I suspect this behavior will be corrected in the future // Remove the target="_blank" $('ul.wi-affiliationList').find('a[href^="mailto:"]').each(function () { $(this).removeAttr('target'); }); }); </script> </div> <div class="widget widget-ArticleLinks widget-instance-OUP_Article_Links_Widget"> </div> <div class="article-body js-content-body"> <div class="toolbar-wrap js-toolbar-wrap"> <div class="toolbar-inner-wrap"> <ul id="Toolbar" role="navigation"> <li class="toolbar-item item-pdf js-item-pdf "> <a class="al-link pdf article-pdfLink" data-article-id="5681786" href="/bib/article-pdf/22/1/247/35935006/bbz157.pdf"> <img src=//oup.silverchair-cdn.com/UI/app/svg/pdf.svg alt="pdf" /><span class="pdf-link-text">PDF</span> </a> </li> <li class="toolbar-item item-link item-split-view"> <a href="javascript:;" class="split-view js-split-view st-split-view at-split-view" target=""> <i class="icon-menu-split"></i> Split View </a> </li> <li class="toolbar-item item-with-dropdown item-views"> <a class="at-views-dropdown drop-trigger" href="javascript:;" data-dropdown="FilterDrop" aria-haspopup="true"> <i class="icon-menu_views"></i> <div class="toolbar-label"> <div class="toolbar-text">Views</div> <i class="icon-general-arrow-filled-down arrow-icon"></i> </div> </a> <ul id="ViewsDrop" class="f-dropdown js-dropdown-content" data-dropdown-content aria-label="submenu"> <div class="arrow-up"></div> <li class="article-content-filter js-article-content-filter" data-content-filter="article-content"> <a href="javascript:;"><span>Article contents</span></a> </li> <li class="at-figures-tables article-content-filter js-article-content-filter" data-content-filter="figures-tables"> <a href="javascript:;"><span>Figures &amp; tables</span></a> </li> <li class="article-content-filter js-article-content-filter" data-content-filter="video"> <a href="javascript:;"><span>Video</span></a> </li> <li class="article-content-filter js-article-content-filter" data-content-filter="audio"> <a href="javascript:;"><span>Audio</span></a> </li> <li class="article-content-filter js-article-content-filter" data-content-filter="supplementary-data"> <a href="javascript:;"><span>Supplementary Data</span></a> </li> </ul> </li> <li class="toolbar-item item-cite js-item-cite"> <div class="widget widget-ToolboxGetCitation widget-instance-OUP_Get_Citation"> <a href="#" class="js-cite-button at-CiteButton" data-reveal-id="getCitation" data-reveal> <i class="icon-read-more"></i> <span>Cite</span> </a> <div id="getCitation" class="reveal-modal js-citation-modal" data-reveal> <h3 class="modal-title">Cite</h3> <div class="oxford-citation-text"> <p>Maryam Bagherian, Elyas Sabeti, Kai Wang, Maureen A Sartor, Zaneta Nikolovska-Coleska, Kayvan Najarian, Machine learning approaches and databases for prediction of drug–target interaction: a survey paper, <em>Briefings in Bioinformatics</em>, Volume 22, Issue 1, January 2021, Pages 247–269, <a href="https://doi.org/10.1093/bib/bbz157">https://doi.org/10.1093/bib/bbz157</a></p> </div> <div class="citation-download-wrap"> <form action="/Citation/Download" method="get" id="citationModal"> <input type="hidden" name="resourceId" value="5681786" /> <input type="hidden" name="resourceType" value="3" /> <label for="selectFormat" class="hide js-citation-format-label">Select Format</label> <select required name="citationFormat" class="citation-download-format js-citation-format" id="selectFormat"> <option selected disabled >Select format</option> <option value="0" >.ris (Mendeley, Papers, Zotero)</option> <option value="1" >.enw (EndNote)</option> <option value="2" >.bibtex (BibTex)</option> <option value="3" >.txt (Medlars, RefWorks)</option> </select> <button class="btn citation-download-link disabled" type="submit">Download citation</button> </form> </div> <a class="close-reveal-modal" href="javascript:;"><i class="icon-general-close"></i><span class="screenreader-text">Close</span></a> </div> </div> </li> <li class="toolbar-item item-tools"> <div class="widget widget-ToolboxPermissions widget-instance-OUP_Get_Permissions"> <div class="module-widget"> <a href="https://s100.copyright.com/AppDispatchServlet?publisherName=OUP&amp;publication=1477-4054&amp;title=Machine%20learning%20approaches%20and%20databases%20for%20prediction%20of%20drug%E2%80%93target%20interaction%3A%20a%20survey%20paper&amp;publicationDate=2020-01-17&amp;volumeNum=22&amp;issueNum=1&amp;author=Bagherian%2C%20Maryam%3B%20Sabeti%2C%20Elyas&amp;startPage=247&amp;endPage=269&amp;contentId=10.1093%2Fbib%2Fbbz157&amp;oa=CC%20BY-NC&amp;copyright=%C2%A9%20The%20Author%28s%29%202020.%20Published%20by%20Oxford%20University%20Press.&amp;orderBeanReset=True" id="PermissionsLink" class="" target="_blank"> <i class="icon-menu_permissions"> <span class="screenreader-text">Permissions Icon</span> </i> Permissions </a> </div> </div> </li> <li class="toolbar-item item-with-dropdown item-share"> <a href="javascript:;" class="drop-trigger js-toolbar-dropdown at-ShareButton" data-dropdown="ShareDrop"> <i class="icon-menu_share"><span class="screenreader-text">Share Icon</span></i> <span class="toolbar-label"> <span class="toolbar-text">Share</span> <i class="arrow-icon icon-general-arrow-filled-down js-toolbar-arrow-icon"></i> </span> </a> <ul id="ShareDrop" class="addthis_toolbox addthis_default_style addthis_20x20_style f-dropdown js-dropdown-content" data-dropdown-content> <li> <a class="st-custom-button addthis_button_facebook js-share-link" data-network="facebook" data-title="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" data-url="https://academic.oup.com/bib/article/22/1/247/5681786" data-email-subject="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" href="javascript:;"><span>Facebook</span></a> </li> <li> <a class="st-custom-button addthis_button_twitter js-share-link" data-network="twitter" data-title="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" data-url="https://academic.oup.com/bib/article/22/1/247/5681786" data-email-subject="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" href="javascript:;"><span>Twitter</span></a> </li> <li> <a class="st-custom-button addthis_button_linkedin js-share-link" data-network="linkedin" data-title="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" data-url="https://academic.oup.com/bib/article/22/1/247/5681786" data-email-subject="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" href="javascript:;"><span>LinkedIn</span></a> </li> <li> <a class="st-custom-button addthis_button_email js-share-link" data-network="email" data-title="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" data-url="https://academic.oup.com/bib/article/22/1/247/5681786" data-email-subject="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper" href="javascript:;"><span>Email</span></a> </li> </ul> </li> </ul> <div class="toolbar-search"> <div class="widget widget-SitePageHeader widget-instance-OUP_ArticleToolbarSearchBox"> <div class="dropdown-panel-wrap"> <div class="dropdown-panel mobile-search-dropdown"> <div class="mobile-search-inner-wrap"> <div class="navbar-search"> <div class="mobile-microsite-search"> <label for="OUP_ArticleToolbarSearchBox-mobile-navbar-search-filter" class="screenreader-text js-mobile-navbar-search-filter-label"> Navbar Search Filter </label> <select class="mobile-navbar-search-filter js-mobile-navbar-search-filter at-navbar-search-filter" id="OUP_ArticleToolbarSearchBox-mobile-navbar-search-filter"> <option class="navbar-search-filter-option at-navbar-search-filter-option" value="">Briefings in Bioinformatics</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Issue">This issue</option> <optgroup class="navbar-search-optgroup" label="Search across Oxford Academic"> <option class="navbar-search-filter-option at-navbar-search-filter-option" value="AcademicSubjects/SCI01060">Bioinformatics and Computational Biology</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Books">Books</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Journals">Journals</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Umbrella">Oxford Academic</option> </optgroup> </select> <label for="OUP_ArticleToolbarSearchBox-mobile-microsite-search-term" class="screenreader-text js-mobile-microsite-search-term-label"> Mobile Enter search term </label> <input class="mobile-search-input mobile-microsite-search-term js-mobile-microsite-search-term at-microsite-search-term" type="text" maxlength="255" placeholder="Search" id="OUP_ArticleToolbarSearchBox-mobile-microsite-search-term"> <a href="javascript:;" class="mobile-microsite-search-icon mobile-search-submit icon-menu_search"> <span class="screenreader-text">Search</span> </a> </div> </div> </div> </div> <div class="dropdown-panel mobile-nav-dropdown"> </div> </div> <div class="navbar"> <div class="center-inner-row"> <nav class="navbar-menu"> </nav> <div class="navbar-search-container js-navbar-search-container"> <a href="javascript:;" class="navbar-search-close js_close-navsearch">Close</a> <div class="navbar-search"> <div class="microsite-search"> <label for="OUP_ArticleToolbarSearchBox-navbar-search-filter" class="screenreader-text js-navbar-search-filter-label"> Navbar Search Filter </label> <select class="navbar-search-filter js-navbar-search-filter at-navbar-search-filter" id="OUP_ArticleToolbarSearchBox-navbar-search-filter"> <option class="navbar-search-filter-option at-navbar-search-filter-option" value="">Briefings in Bioinformatics</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Issue">This issue</option> <optgroup class="navbar-search-optgroup" label="Search across Oxford Academic"> <option class="navbar-search-filter-option at-navbar-search-filter-option" value="AcademicSubjects/SCI01060">Bioinformatics and Computational Biology</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Books">Books</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Journals">Journals</option><option class="navbar-search-filter-option at-navbar-search-filter-option" value="Umbrella">Oxford Academic</option> </optgroup> </select> <label for="OUP_ArticleToolbarSearchBox-microsite-search-term" class="screenreader-text js-microsite-search-term-label"> Enter search term </label> <input class="navbar-search-input microsite-search-term js-microsite-search-term at-microsite-search-term" type="text" maxlength="255" placeholder="Search" id="OUP_ArticleToolbarSearchBox-microsite-search-term"> <a href="javascript:;" class="microsite-search-icon navbar-search-submit icon-menu_search"> <span class="screenreader-text">Search</span> </a> </div> </div> <div class="navbar-search-advanced"><a href="/bib/advanced-search" class="advanced-search js-advanced-search">Advanced Search</a></div> </div> <div class="navbar-search-collapsed"><a href="javascript:;" class="icon-menu_search js_expand-navsearch"><span class="screenreader-text">Search Menu</span></a></div> </div> </div> <input id="routename" name="RouteName" type="hidden" value="bib" /> </div> </div> </div> </div> <div id="ContentTab" class="content active"> <div class="widget widget-ArticleFulltext widget-instance-OUP_Article_FullText_Widget"> <div class="module-widget"> <div class="widget-items" data-widgetname="ArticleFulltext"> <h2 scrollto-destination=225532389 id="225532389" class="abstract-title js-splitscreen-abstract-title" >Abstract</h2> <section class="abstract"><p class="chapter-para">The task of predicting the interactions between drugs and targets plays a key role in the process of drug discovery. There is a need to develop novel and efficient prediction approaches in order to avoid costly and laborious yet not-always-deterministic experiments to determine drug–target interactions (DTIs) by experiments alone. These approaches should be capable of identifying the potential DTIs in a timely manner. In this article, we describe the data required for the task of DTI prediction followed by a comprehensive catalog consisting of machine learning methods and databases, which have been proposed and utilized to predict DTIs. The advantages and disadvantages of each set of methods are also briefly discussed. Lastly, the challenges one may face in prediction of DTI using machine learning approaches are highlighted and we conclude by shedding some lights on important future research directions.</p></section> <div class="article-metadata-panel clearfix at-ArticleMetadata"></div> <div class="kwd-group"><a class="kwd-part kwd-main" href="javascript:;" data-keyword="&quot;Machine learning&quot;">Machine learning</a>, <a class="kwd-part kwd-main" href="javascript:;" data-keyword="&quot;drug–target interaction prediction&quot;">drug–target interaction prediction</a>, <a class="kwd-part kwd-main" href="javascript:;" data-keyword="&quot;DTI software&quot;">DTI software</a>, <a class="kwd-part kwd-main" href="javascript:;" data-keyword="&quot;DTI database&quot;">DTI database</a></div> <h2 scrollto-destination=225532391 id="225532391" class="section-title js-splitscreen-section-title" data-legacy-id=sec1>1 Introduction</h2> <p class="chapter-para">In recent years, pharmaceutical scientists have been highly focused on novel drug development strategies that rely on knowledge about existing drugs [<span class="xrefLink" id="jumplink-ref1 ref2 ref3 ref4 ref5"></span><a href="javascript:;" reveal-id="ref1 ref2 ref3 ref4 ref5" data-open="ref1 ref2 ref3 ref4 ref5" class="link link-ref link-reveal xref-bibr">1–5</a>]. Indeed, the difficulty of the drug discovery task lies in the rarity of existing drug–gene interactions [<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>], and a major risk is in unexpected/unintended interaction of drugs with off-target proteins, i.e. side effects [<span class="xrefLink" id="jumplink-ref7 ref8 ref9"></span><a href="javascript:;" reveal-id="ref7 ref8 ref9" data-open="ref7 ref8 ref9" class="link link-ref link-reveal xref-bibr">7–9</a>]. While most of these side effects are undesired and harmful, occasionally they lead to interesting therapeutic discoveries. For instance, minoxidil was primarily developed to treat ulcers, and Sildenafil (Viagra) was developed to treat angina; however, they are currently used for treatment of hair loss and erectile dysfunction, respectively. As such, novel drug development strategies are currently the principle focus of many pharmacologists. It has been reported that several terms such as drug repositioning, drug repurposing, drug reprofiling, drug redirecting, drug rediscovery and drug delivery have been used in the literature to describe these novel drug development strategies [<span class="xrefLink" id="jumplink-ref3"></span><a href="javascript:;" reveal-id="ref3" data-open="ref3" class="link link-ref link-reveal xref-bibr">3</a>]. While various definitions have been used for these terms [<span class="xrefLink" id="jumplink-ref3"></span><a href="javascript:;" reveal-id="ref3" data-open="ref3" class="link link-ref link-reveal xref-bibr">3</a>], drug repositioning usually refers to the studies that reinvestigate existing drugs that failed approval for new therapeutic indications [<span class="xrefLink" id="jumplink-ref10"></span><a href="javascript:;" reveal-id="ref10" data-open="ref10" class="link link-ref link-reveal xref-bibr">10</a>], while drug repurposing suggests the application of already approved drugs and compounds to treat a different disease [<span class="xrefLink" id="jumplink-ref11"></span><a href="javascript:;" reveal-id="ref11" data-open="ref11" class="link link-ref link-reveal xref-bibr">11</a>, <span class="xrefLink" id="jumplink-ref12"></span><a href="javascript:;" reveal-id="ref12" data-open="ref12" class="link link-ref link-reveal xref-bibr">12</a>].</p> <a id="225532393" scrollto-destination="225532393"></a> <div data-id="f1" data-content-id="f1" class="fig fig-section js-fig-section" swap-content-for-modal="true"><div class="graphic-wrap"><img class="content-image" src="https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f1.jpeg?Expires=1734462476&amp;Signature=v790t7SE6ca55Xus9UdnOcls79fhnOwDGXW0vcw0-CaA5cYFPsn8c3kIO~nz1lfbibvC6xLHXm-1JrnFq4UzBfDKM5w3CBp-UO~W0FcJvnSBzcKt~EHRAJMYqcoCWsYziudcki2~aqGaHDQpHM-0i8LaGHAtC2KmCNTf5lP2t9CAjet76flKMR1sc1cCvdrvBUDuLQ-tvcklbehj8sKBftttCyJIGFBTZDFzt2NIOH4HTbbyKZiweRAgMgIJ8ESbblF5Cbm~SzvUwdAyeRRax-vBvT30NMWEjn9XQ-O6c1cOzfSFRGx4Ux5BHTZAAjrr3dPi5W8fPsILZMjdRZliJg__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" alt="An overview of the present work." data-path-from-xml="bbz157f1.tif" /><div class="graphic-bottom"><div class="label fig-label" id="label-225532393"><strong>Figure 1</strong></div><div class="caption fig-caption"><p class="chapter-para">An overview of the present work.</p></div><div class="ajax-articleAbstract-exclude-regex fig-orig original-slide figure-button-wrap"><a class="fig-view-orig js-view-large at-figureViewLarge openInAnotherWindow" role="button" aria-describedby="label-225532393" href="/view-large/figure/225532393/bbz157f1.tif" data-path-from-xml="bbz157f1.tif" target="_blank">Open in new tab</a><a class="download-slide" role="button" aria-describedby="label-225532393" data-section="225532393" href="/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/bbz157f1.jpeg?Expires=1734462476&Signature=QkoEUoBy38dmKKDB9bP-O2fYSNIf1UnhxHagVKRLLTZl9f9bgjSduMDuWb09Jj6~EWFpkjpg~ZCzxwe7XlPWkbeT~DKhyAMG0MMbWfcmGh5DcEqSsQ96qg6qsPciu5IYdGlm~IPDNsmnivDAifRmgNAgxqz~IY-0TRQvNPyvujar58VIe4vQMlkfxo2Z46GAJftwoZaRMOyUsA-D6Q3e302B3c6Izqc-nFqQaZmKUFWzNq4EWAACuTom3gtZ3EeNzz~4ooPMhM9NByQtufB5wXNxoCFOgG01T1DwqyVZE65CzO7QL7PAAICU91akKsKRgXjHiv6LFkFjZGKdSVMMmA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA&sec=225532393&ar=5681786&xsltPath=~/UI/app/XSLT&imagename=&siteId=5143" data-path-from-xml="bbz157f1.tif">Download slide</a></div></div></div></div><p class="chapter-para">A major step in the drug discovery process is to identify interactions between drugs and targets (e.g. genes), which can be reliably performed by <em>in vitro</em> experiments. In order to reduce temporal and monetary costs,<em>in silico</em> approaches are gaining more attention [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>]. As such, instead of an exhausting <em>in vitro</em> search, virtual screening is initially performed and possible candidates are then experimentally verified [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>]. Generally, there are two principle approaches for <em>in silico</em> prediction of drug–target interaction (DTI, also refered to as compound–protein interactions): docking simulations and machine learning methods [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>]. In docking simulations, the 3D structure of drug molecules and targets are considered and potential binding sites are identified. While biologically well accepted, the docking simulation process is time-consuming [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>]. Additionally, this process cannot be applied if the 3D structure of the protein is unknown [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>]. For instance, for a class of proteins called G-protein-coupled receptors (GPCR), very few structures have been crystallized (orphan GPCR) [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>, <span class="xrefLink" id="jumplink-ref15"></span><a href="javascript:;" reveal-id="ref15" data-open="ref15" class="link link-ref link-reveal xref-bibr">15</a>], so docking simulations cannot be applied. To tackle this issue, chemogenomics was introduced as a way to aim at mining the entire chemical space for interaction with the biological space (also refered to as genomic space), instead of considering each protein target independently from other proteins [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>, <span class="xrefLink" id="jumplink-ref16"></span><a href="javascript:;" reveal-id="ref16" data-open="ref16" class="link link-ref link-reveal xref-bibr">16</a>, <span class="xrefLink" id="jumplink-ref17"></span><a href="javascript:;" reveal-id="ref17" data-open="ref17" class="link link-ref link-reveal xref-bibr">17</a>].</p><p class="chapter-para">The aim of chemogenomics research is to relate this chemical space of possible compounds with the genomic space in order to identify potentially useful compounds such as imaging probes and drug leads [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>]. Chemogenomics approaches are usually categorized as ligand based, target based and target–ligand [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>, <span class="xrefLink" id="jumplink-ref17"></span><a href="javascript:;" reveal-id="ref17" data-open="ref17" class="link link-ref link-reveal xref-bibr">17</a>], all of which are based on similarities between members proteins and targets. In fact, this salient similarity-based point of view of chemogenomics allowed the machine learning approaches to be suitable for prediction of DTIs. In machine learning methods [<span class="xrefLink" id="jumplink-ref18"></span><a href="javascript:;" reveal-id="ref18" data-open="ref18" class="link link-ref link-reveal xref-bibr">18</a>], knowledge about drugs, targets and already confirmed DTIs are translated into features that are used to train a predictive model, which in turn is used to predict interactions between new drugs and/or new targets. The main assumption of these studies is that if drug <span class="inline-formula no-formula-id">|$d$|</span> is interacting with protein <span class="inline-formula no-formula-id">|$p$|⁠</span>, then (i) drug compounds similar to <span class="inline-formula no-formula-id">|$d$|</span> are likely to interact with protein <span class="inline-formula no-formula-id">|$p$|⁠</span>, (ii) proteins similar to <span class="inline-formula no-formula-id">|$p$|</span> are likely to interact with drug <span class="inline-formula no-formula-id">|$d$|</span> and (iii) drug compounds similar to <span class="inline-formula no-formula-id">|$d$|</span> are likely to interact with proteins similar to <span class="inline-formula no-formula-id">|$p$|⁠</span>. The similarities between drug compounds and protein sequences are usually measured by kernels specifically designed for this purpose [<span class="xrefLink" id="jumplink-ref19"></span><a href="javascript:;" reveal-id="ref19" data-open="ref19" class="link link-ref link-reveal xref-bibr">19</a>]. In practice, based on the availability of knowledge about interacting drug compounds and target proteins, the DTI prediction problem can be categorized into four classes: (i) known drug versus known target, (ii) known drug versus new target candidate, (iii) new drug candidate versus known target and (iv) new drug candidate versus new target candidate. While the ultimate goal of the machine learning methods is interaction prediction for new drug and target candidates, most of the methods in the literature are limited to the 1st three classes.</p><p class="chapter-para">In this paper, the state of the art methods, which used machine learning methods for prediction of DTIs, are reviewed. The following studies were excluded:</p><ul class="list-simple"><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span> studies that do not use machine learning methods for prediction or (e.g. [<span class="xrefLink" id="jumplink-ref20 ref21 ref22 ref23 ref24 ref25"></span><a href="javascript:;" reveal-id="ref20 ref21 ref22 ref23 ref24 ref25" data-open="ref20 ref21 ref22 ref23 ref24 ref25" class="link link-ref link-reveal xref-bibr">20–25</a>]).</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span> studies that focus on bioactivity (quantitative structure–activity relationship (SAR), proteochemometric) relationships (e.g. [<span class="xrefLink" id="jumplink-ref26 ref27 ref28 ref29 ref30 ref31 ref32"></span><a href="javascript:;" reveal-id="ref26 ref27 ref28 ref29 ref30 ref31 ref32" data-open="ref26 ref27 ref28 ref29 ref30 ref31 ref32" class="link link-ref link-reveal xref-bibr">26–32</a>]).</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span> studies that rely on 3D structures of targets (e.g. [<span class="xrefLink" id="jumplink-ref33 ref34 ref35 ref36"></span><a href="javascript:;" reveal-id="ref33 ref34 ref35 ref36" data-open="ref33 ref34 ref35 ref36" class="link link-ref link-reveal xref-bibr">33–36</a>]).</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span> studies that consider only the genomic space or chemical space (e.g. [<span class="xrefLink" id="jumplink-ref4"></span><a href="javascript:;" reveal-id="ref4" data-open="ref4" class="link link-ref link-reveal xref-bibr">4</a>, <span class="xrefLink" id="jumplink-ref37 ref38 ref39 ref40 ref41 ref42 ref43 ref44 ref45 ref46 ref47 ref48 ref49 ref50 ref51 ref52"></span><a href="javascript:;" reveal-id="ref37 ref38 ref39 ref40 ref41 ref42 ref43 ref44 ref45 ref46 ref47 ref48 ref49 ref50 ref51 ref52" data-open="ref37 ref38 ref39 ref40 ref41 ref42 ref43 ref44 ref45 ref46 ref47 ref48 ref49 ref50 ref51 ref52" class="link link-ref link-reveal xref-bibr">37–52</a>]).</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span> studies that focus on gene expression for drug response (e.g. [<span class="xrefLink" id="jumplink-ref53 ref54 ref55 ref56 ref57 ref58"></span><a href="javascript:;" reveal-id="ref53 ref54 ref55 ref56 ref57 ref58" data-open="ref53 ref54 ref55 ref56 ref57 ref58" class="link link-ref link-reveal xref-bibr">53–58</a>]).</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span> studies that only use side effect similarities or only predict side effects (e.g. [<span class="xrefLink" id="jumplink-ref59 ref60 ref61 ref62 ref63"></span><a href="javascript:;" reveal-id="ref59 ref60 ref61 ref62 ref63" data-open="ref59 ref60 ref61 ref62 ref63" class="link link-ref link-reveal xref-bibr">59–63</a>]).</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span> studies that use disease–gene associations (e.g. [<span class="xrefLink" id="jumplink-ref64 ref65 ref66 ref67"></span><a href="javascript:;" reveal-id="ref64 ref65 ref66 ref67" data-open="ref64 ref65 ref66 ref67" class="link link-ref link-reveal xref-bibr">64–67</a>]).</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span> studies that focus on drug–drug interactions or protein–protein interactions (PPI) (e.g. [<span class="xrefLink" id="jumplink-ref68 ref69 ref70 ref71 ref72"></span><a href="javascript:;" reveal-id="ref68 ref69 ref70 ref71 ref72" data-open="ref68 ref69 ref70 ref71 ref72" class="link link-ref link-reveal xref-bibr">68–72</a>])</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span> studies that use biomedical documents from which information is extracted by text mining techniques (e.g. [<span class="xrefLink" id="jumplink-ref73"></span><a href="javascript:;" reveal-id="ref73" data-open="ref73" class="link link-ref link-reveal xref-bibr">73</a>]).</p></li></ul><p class="chapter-para">It is worth mentioning that the machine learning methods used in DTI prediction can be thought of as a broader problem of ‘link predictions’ in complex networks [<span class="xrefLink" id="jumplink-ref74"></span><a href="javascript:;" reveal-id="ref74" data-open="ref74" class="link link-ref link-reveal xref-bibr">74</a>]. A section is dedicated to summarize the databases used in these studies as well. An overview of the paper is illustrated in Figure <span class="xrefLink" id="jumplink-f1"></span><a href="javascript:;" data-modal-source-id="f1" class="link xref-fig">1</a>.</p> <h2 scrollto-destination=225532399 id="225532399" class="section-title js-splitscreen-section-title" data-legacy-id=sec2>2 Machine learning methods used in DTI prediction</h2> <p class="chapter-para">Although all the DTI prediction frameworks that uses machine learning are summarized in this manuscript, recent methods that use matrix factorization algorithms have outperformed other methods in terms of efficiency. These methods take advantage of the recommender system approaches [<span class="xrefLink" id="jumplink-ref75"></span><a href="javascript:;" reveal-id="ref75" data-open="ref75" class="link link-ref link-reveal xref-bibr">75</a>, <span class="xrefLink" id="jumplink-ref76"></span><a href="javascript:;" reveal-id="ref76" data-open="ref76" class="link link-ref link-reveal xref-bibr">76</a>], while using both chemical and genomic information is optimal for the DTI prediction problem. This problem is very similar to the famous Netflix challenge [<span class="xrefLink" id="jumplink-ref77"></span><a href="javascript:;" reveal-id="ref77" data-open="ref77" class="link link-ref link-reveal xref-bibr">77</a>].</p> <a id="225532401" scrollto-destination="225532401"></a> <div data-id="f2" data-content-id="f2" class="fig fig-section js-fig-section" swap-content-for-modal="true"><div class="graphic-wrap"><img class="content-image" src="https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f2.jpeg?Expires=1734462476&amp;Signature=Ya6301jGjhQHeN6RXA9e4nZPJbzWiGyRjHgjFHjcTX52YQHUAj12EPk0leJe1V6nG~aaX-C~Z7GPB7oK7AZF2NKJEfq04gwNoELxDS4Ww4r8OdfLuYISdI9nQsyNvvd-JLNwZhTz~fm0ZR5l0i8ITDDVDHbsNqyWkSelt74LyPn-EkaxokNeqhpBQ75RpkQboxCr7PmsTZ89ZR8rSXJM38V0zPmHhaGPOzfC~ee9RrIFkG7A9uQWPNGHHjHyEe5z4FkxZiLxjVr6qca0qO2~u~CkpuQuV86mP~ctZY3QL75zIekoEAHxc7BQKVvc6ttKYdSpnnwsZEXSkzX9SNaFAw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" alt="Machine learning methods used in DTI prediction can be categorized into six main branches. A short description of each group of methods are provided is Section 2. Here the machine learning methods are classified into similarity/distance based methods where itself consists of three subgroups. All approaches that employ kernels, trees, boosted methods, random and rotation forrest, support vector machines, etc. are listed in feature-based group. Deep learning, matrix factorization and network based methods from the other three groups. Any combination of the methods listed above is considered in the category of hybrid methods." data-path-from-xml="bbz157f2.tif" /><div class="graphic-bottom"><div class="label fig-label" id="label-225532401"><strong>Figure 2</strong></div><div class="caption fig-caption"><p class="chapter-para">Machine learning methods used in DTI prediction can be categorized into six main branches. A short description of each group of methods are provided is Section <span class="xrefLink" id="jumplink-sec2"></span><a href="#sec2" class="sectionLink xref-sec js-xref-sec">2</a>. Here the machine learning methods are classified into similarity/distance based methods where itself consists of three subgroups. All approaches that employ kernels, trees, boosted methods, random and rotation forrest, support vector machines, etc. are listed in feature-based group. Deep learning, matrix factorization and network based methods from the other three groups. Any combination of the methods listed above is considered in the category of hybrid methods.</p></div><div class="ajax-articleAbstract-exclude-regex fig-orig original-slide figure-button-wrap"><a class="fig-view-orig js-view-large at-figureViewLarge openInAnotherWindow" role="button" aria-describedby="label-225532401" href="/view-large/figure/225532401/bbz157f2.tif" data-path-from-xml="bbz157f2.tif" target="_blank">Open in new tab</a><a class="download-slide" role="button" aria-describedby="label-225532401" data-section="225532401" href="/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/bbz157f2.jpeg?Expires=1734462476&Signature=jCuKMNTMDsvXbejwfCefb~U80Be7sUZ-RaWoR357RfIG4DEsU487aBBbgFY6FYs-cvGan~nUsTWU6IuY3qXUIZCC5WN2e~fdF4kZXFGo6Irfrv4c963U91mVLUT0lDC3rzC81qryZcDExbL4k3keemIDeVy3jzxAQXNCZ3SdS7zfM2uybICnlIYXMT9JVDWW-gW7UldYPNrsOhgY6OFnkbDNDfZYTFaR26JVrz46b2B816tZ0yC3JYMatkg04TeXtkib1HVgnl8~MO2ES-VUpMW4LzoLECZepfad~KRDI9PKL7n8gzbrMGhoY7fhJFdnjpm3xZiCW7hwyrnfQeW7hw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA&sec=225532401&ar=5681786&xsltPath=~/UI/app/XSLT&imagename=&siteId=5143" data-path-from-xml="bbz157f2.tif">Download slide</a></div></div></div></div><p class="chapter-para">Machine learning methods used in DTI prediction date back to an early work in pharmacological DTI prediction [<span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>]. While the focus of their work was not specifically ‘drug discovery’, they aimed at finding a ranked list of molecule ligands that bind with each orphan GPCR where due to lack of crystallized 3D structures, docking simulation could not be used [<span class="xrefLink" id="jumplink-ref15"></span><a href="javascript:;" reveal-id="ref15" data-open="ref15" class="link link-ref link-reveal xref-bibr">15</a>]. Here, the machine learning approaches have been categorized into six groups (Figure <span class="xrefLink" id="jumplink-sec2"></span><a href="#sec2" class="sectionLink xref-sec js-xref-sec">2</a>). In the coming section, a description of each category along with a list of methods for each is provided. Moreover, advantages and disadvantages of each group of methods are briefly discussed.</p> <h3 scrollto-destination=225532403 id="225532403" class="section-title js-splitscreen-section-title" data-legacy-id=sec2a>2.1 Previous review papers</h3> <p class="chapter-para">There have been few reviews on DTI prediction with various emphases [<span class="xrefLink" id="jumplink-ref79 ref80 ref81 ref82 ref83"></span><a href="javascript:;" reveal-id="ref79 ref80 ref81 ref82 ref83" data-open="ref79 ref80 ref81 ref82 ref83" class="link link-ref link-reveal xref-bibr">79–83</a>]; however, none of these studies had a machine learning focus. For previous reviews on machine learning methods for DTI prediction, please see [<span class="xrefLink" id="jumplink-ref84 ref85 ref86 ref87 ref88 ref89 ref90 ref91 ref92 ref93 ref94"></span><a href="javascript:;" reveal-id="ref84 ref85 ref86 ref87 ref88 ref89 ref90 ref91 ref92 ref93 ref94" data-open="ref84 ref85 ref86 ref87 ref88 ref89 ref90 ref91 ref92 ref93 ref94" class="link link-ref link-reveal xref-bibr">84–94</a>]. In particular, [<span class="xrefLink" id="jumplink-ref84"></span><a href="javascript:;" reveal-id="ref84" data-open="ref84" class="link link-ref link-reveal xref-bibr">84</a>] is a brief review of similarity-based machine learning methods used for DTI prediction. As reported in this work, similarity-based approaches have four advantages: (i) the ydo not need feature extraction and feature selection, (ii) similarity measure kernels for both drugs and genes have been fully studied before, (iii) they can be easily incorporated with kernel-based learning methods such as support vector machine (SVM), (iv) they can be used to connect chemical space and the genomic space. In [<span class="xrefLink" id="jumplink-ref85"></span><a href="javascript:;" reveal-id="ref85" data-open="ref85" class="link link-ref link-reveal xref-bibr">85</a>], the focus of the review is on the methods that use both drug chemical structure and target protein sequence to predict DTIs. Mousavian <em>et al.</em> [<span class="xrefLink" id="jumplink-ref90"></span><a href="javascript:;" reveal-id="ref90" data-open="ref90" class="link link-ref link-reveal xref-bibr">90</a>] reviewed machine learning-based methods from supervised and semi-supervised perspectives. Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref91"></span><a href="javascript:;" reveal-id="ref91" data-open="ref91" class="link link-ref link-reveal xref-bibr">91</a>] reviewed the well-known databases, web servers and computational models used for DTI prediction. In this paper, computational approaches are divided into network-based methods and machine learning-based methods. Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref92"></span><a href="javascript:;" reveal-id="ref92" data-open="ref92" class="link link-ref link-reveal xref-bibr">92</a>] provided an ‘empirical’ overview on chemogenomic DTI prediction methods and the databases used. In their work, the chemogenomic methodologies are separated into five models: neighborhood models, bipartite local models, network diffusion models, matrix factorization models and feature-based classification models. Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref87"></span><a href="javascript:;" reveal-id="ref87" data-open="ref87" class="link link-ref link-reveal xref-bibr">87</a>] reviewed the machine learning methods and databases that used chemogenomic approaches of DTI prediction. As such, based on the way negative samples are handled, chemogenomic approaches are divided into two categories: (i) supervised learning methods such as similarity-based and feature-based methods, (ii) semi-supervised learning methods. Kurgan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref88"></span><a href="javascript:;" reveal-id="ref88" data-open="ref88" class="link link-ref link-reveal xref-bibr">88</a>] wrote one of the most comprehensive surveys of DTI predictions before April 2018. Sachdev <em>et al.</em> [<span class="xrefLink" id="jumplink-ref93"></span><a href="javascript:;" reveal-id="ref93" data-open="ref93" class="link link-ref link-reveal xref-bibr">93</a>] reviewed feature-based chemogenomic approaches (excluding similarity-based chemogenomic approaches) used for DTI prediction. In this survey, feature-based methods are categorized as: (i) SVM-based methods, (ii) ensemble-based methods (methods that employ decision tree or random forest) and (iii) miscellaneous techniques (neither SVM-based nor ensemble-based). Sercinoglu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref94"></span><a href="javascript:;" reveal-id="ref94" data-open="ref94" class="link link-ref link-reveal xref-bibr">94</a>] reviewed all the available databases for drug repurposing.</p> <h3 scrollto-destination=225532405 id="225532405" class="section-title js-splitscreen-section-title" data-legacy-id=sec2b>2.2 Similarity/distance-based methods</h3> <p class="chapter-para">The most popular group of methods used for DTI prediction incorporate drug–drug and target–target similarity measures through similarity or distance functions that are utilized to perform the prediction. These methods have been proposed and employed by several authors, mainly [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref95 ref96 ref97 ref98 ref99 ref100 ref101 ref102 ref103 ref104 ref105 ref106 ref107 ref108 ref109"></span><a href="javascript:;" reveal-id="ref95 ref96 ref97 ref98 ref99 ref100 ref101 ref102 ref103 ref104 ref105 ref106 ref107 ref108 ref109" data-open="ref95 ref96 ref97 ref98 ref99 ref100 ref101 ref102 ref103 ref104 ref105 ref106 ref107 ref108 ref109" class="link link-ref link-reveal xref-bibr">95–109</a>].</p><div class="&#xA; block-child-p&#xA; ">Generally, the methods consist of a similarity score scheme for either drug–drug, target–target or drug–target associations based on a known pair of drug–drug and target–target similarity measures. Similarily, the similarity measure could be obtained by a distance function that defines how similar (or here ‘close’) a new drug is with respect to the known pairs. There are several ways to define the ‘nearness’ through a distance function for nearest neighbor (NN) algorithms [<span class="xrefLink" id="jumplink-ref96"></span><a href="javascript:;" reveal-id="ref96" data-open="ref96" class="link link-ref link-reveal xref-bibr">96</a>, <span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>] among which the Euclidean distance is well known. For instance, authors in [<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>] employed the following definition for the NN algorithm; assuming two vector spaces (aka sample spaces) <span class="inline-formula no-formula-id">|$V_1$|</span> and <span class="inline-formula no-formula-id">|$V_2$|⁠</span>, with the same dimension, the distance (nearness) of the two samples is denoted by <span class="inline-formula no-formula-id">|$\mathbf D(V_1,V_2)$|⁠</span>, where <div class="formula-wrap"><div class="disp-formula" id="jumplink-" content-id=""><div class="tex-math display-math">$$\begin{equation*} \mathbf D(V_1,V_2)= 1- \frac{V_1\cdot V_2}{||V_1||\,||V_2||}, \end{equation*}$$</div></div></div>where <span class="inline-formula no-formula-id">|$(\,\cdot \,)$|</span> and <span class="inline-formula no-formula-id">|$||\cdot ||$|</span> denote the inner product and the Euclidean norm, respectively. One could easily verify that <span class="inline-formula no-formula-id">|$\mathbf{D}$|</span> is indeed a distance function satisfying the definition of the distance.</div><p class="chapter-para">In addition to the above, the similarity/distance function could be also defined based on the pharmacological similarity of drugs and genomic similarity of protein sequences as well as the topological properties of a multipartite network of the existing drugs and protein targets [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>, <span class="xrefLink" id="jumplink-ref110"></span><a href="javascript:;" reveal-id="ref110" data-open="ref110" class="link link-ref link-reveal xref-bibr">110</a>]. To this end, authors in [<span class="xrefLink" id="jumplink-ref95"></span><a href="javascript:;" reveal-id="ref95" data-open="ref95" class="link link-ref link-reveal xref-bibr">95</a>] defined five drug–drug similarity measures as chemical based, ligand based, expression based, side effect based and annotation based. The main disadvantage of this group of methods lies in the fact that only a small number of drugs and their interactions are known while there exists copious unlabeled data among the datasets (see Section <span class="xrefLink" id="jumplink-sec3"></span><a href="#sec3" class="sectionLink xref-sec js-xref-sec">3</a>). Even though some efforts have attempted to deal with the lack of labeled data [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>, <span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>, <span class="xrefLink" id="jumplink-ref111"></span><a href="javascript:;" reveal-id="ref111" data-open="ref111" class="link link-ref link-reveal xref-bibr">111</a>, <span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>], the challenge has not yet been overcome. A comprehensive list of the methods proposed based on similarity/distance is provided in Table <span class="xrefLink" id="jumplink-TB1"></span><a href="javascript:;" reveal-id="TB1" data-open="TB1" class="link link-reveal link-table xref-fig">1</a>.</p> <a id="225532409" scrollto-destination="225532409"></a> <div content-id="TB1" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB1" data-id="TB1"><span class="label title-label" id="label-42547">Table 1</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532409" aria-describedby="label-42547"> Open in new tab </a></div><div class="caption caption-id-" id="caption-42547"><p class="chapter-para">Similarity/distance-based methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-42547" aria-describedby="&#xA; caption-42547"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>SITAR</td><td>Similarity-based Inference of drug-TARgets</td><td>A prediction scheme that integrates multiple drug–drug and gene–gene similarity measures to facilitate the prediction task using logistic regression [<span class="xrefLink" id="jumplink-ref95"></span><a href="javascript:;" reveal-id="ref95" data-open="ref95" class="link link-ref link-reveal xref-bibr">95</a>].</td></tr><tr><td>SRP</td><td>Similarity-Rank-based Predictor</td><td>A lazy supervised non-parametric model using quantitative index to measure the tendency of interacting similar drugs and similar targets to predict DTIs. [<span class="xrefLink" id="jumplink-ref97"></span><a href="javascript:;" reveal-id="ref97" data-open="ref97" class="link link-ref link-reveal xref-bibr">97</a>].</td></tr><tr><td>ECkNN /HLM</td><td>K-Nearest Neighbor Regression with Error Correction or Hubness-aware Local Models</td><td>A kNN method with an error correction method (hubness-aware regression technique) in order to alleviate the detrimental effect of bad hubs [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>, <span class="xrefLink" id="jumplink-ref99"></span><a href="javascript:;" reveal-id="ref99" data-open="ref99" class="link link-ref link-reveal xref-bibr">99</a>] (with substantially different labels from those instances [<span class="xrefLink" id="jumplink-ref100"></span><a href="javascript:;" reveal-id="ref100" data-open="ref100" class="link link-ref link-reveal xref-bibr">100</a>]).</td></tr><tr><td>NP, WP</td><td>Nearest Profile &amp; Weighted Profile</td><td>Given a test drug candidate, it finds a known drug sharing the highest similarity with the test drug, and predict the test drug to interact with target known to interact with the nearest drug [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>, <span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>].</td></tr><tr><td>MDTI</td><td>MultiviewDTI</td><td>A clustirng algorithm, based on spectral clustring, integrating drug data and target data from both structural and chemical views and the known DTIs [<span class="xrefLink" id="jumplink-ref103"></span><a href="javascript:;" reveal-id="ref103" data-open="ref103" class="link link-ref link-reveal xref-bibr">103</a>].</td></tr><tr><td>STC</td><td>Super-Target Clustering</td><td>A clustering of similar targets by introducing the concept ot super target to handle the missing interactions. [<span class="xrefLink" id="jumplink-ref104"></span><a href="javascript:;" reveal-id="ref104" data-open="ref104" class="link link-ref link-reveal xref-bibr">104</a>].</td></tr><tr><td>LPLNI, LPLNI-II</td><td>Label Propagation method with Linear Neighborhood Information</td><td>A framework in which first drug–drug linear neighborhood similarity is calculated, then the manifold of drugs are taken as similarities and finally unobserved DTIs are predicted using drug–drug similarities, interaction profiles and label propagation [<span class="xrefLink" id="jumplink-ref105"></span><a href="javascript:;" reveal-id="ref105" data-open="ref105" class="link link-ref link-reveal xref-bibr">105</a>].</td></tr><tr><td>WNN-GIP, RLS-WNN</td><td>Weighted Nearest Neighbors-GIP</td><td>A weighted NN algorithm directly incorporated into the GIP method, for constructing an interaction score profile for a new drug compound using information about known compounds [<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>].</td></tr><tr><td>BLM</td><td>Bipartite Local Models</td><td>In a bipartite graph model, predicts presence or absence of edges between drug and target using local models trained on known drugs and targets [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>, <span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>, <span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>, <span class="xrefLink" id="jumplink-ref108"></span><a href="javascript:;" reveal-id="ref108" data-open="ref108" class="link link-ref link-reveal xref-bibr">108</a>].</td></tr><tr><td>BLM-NII</td><td>BLM with Neighbor-based Interaction-profile Inferring</td><td>An inferring integrated into the BLM method to handle the new candidate problem of pure BLM [<span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>].</td></tr><tr><td>WBRDTI</td><td>Weighted Bayesian Ranking method</td><td>An improvement of BRDTI method by incorporating inteaction weights for unknown DTs calculated based on known neighboring DTs [<span class="xrefLink" id="jumplink-ref109"></span><a href="javascript:;" reveal-id="ref109" data-open="ref109" class="link link-ref link-reveal xref-bibr">109</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>SITAR</td><td>Similarity-based Inference of drug-TARgets</td><td>A prediction scheme that integrates multiple drug–drug and gene–gene similarity measures to facilitate the prediction task using logistic regression [<span class="xrefLink" id="jumplink-ref95"></span><a href="javascript:;" reveal-id="ref95" data-open="ref95" class="link link-ref link-reveal xref-bibr">95</a>].</td></tr><tr><td>SRP</td><td>Similarity-Rank-based Predictor</td><td>A lazy supervised non-parametric model using quantitative index to measure the tendency of interacting similar drugs and similar targets to predict DTIs. [<span class="xrefLink" id="jumplink-ref97"></span><a href="javascript:;" reveal-id="ref97" data-open="ref97" class="link link-ref link-reveal xref-bibr">97</a>].</td></tr><tr><td>ECkNN /HLM</td><td>K-Nearest Neighbor Regression with Error Correction or Hubness-aware Local Models</td><td>A kNN method with an error correction method (hubness-aware regression technique) in order to alleviate the detrimental effect of bad hubs [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>, <span class="xrefLink" id="jumplink-ref99"></span><a href="javascript:;" reveal-id="ref99" data-open="ref99" class="link link-ref link-reveal xref-bibr">99</a>] (with substantially different labels from those instances [<span class="xrefLink" id="jumplink-ref100"></span><a href="javascript:;" reveal-id="ref100" data-open="ref100" class="link link-ref link-reveal xref-bibr">100</a>]).</td></tr><tr><td>NP, WP</td><td>Nearest Profile &amp; Weighted Profile</td><td>Given a test drug candidate, it finds a known drug sharing the highest similarity with the test drug, and predict the test drug to interact with target known to interact with the nearest drug [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>, <span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>].</td></tr><tr><td>MDTI</td><td>MultiviewDTI</td><td>A clustirng algorithm, based on spectral clustring, integrating drug data and target data from both structural and chemical views and the known DTIs [<span class="xrefLink" id="jumplink-ref103"></span><a href="javascript:;" reveal-id="ref103" data-open="ref103" class="link link-ref link-reveal xref-bibr">103</a>].</td></tr><tr><td>STC</td><td>Super-Target Clustering</td><td>A clustering of similar targets by introducing the concept ot super target to handle the missing interactions. [<span class="xrefLink" id="jumplink-ref104"></span><a href="javascript:;" reveal-id="ref104" data-open="ref104" class="link link-ref link-reveal xref-bibr">104</a>].</td></tr><tr><td>LPLNI, LPLNI-II</td><td>Label Propagation method with Linear Neighborhood Information</td><td>A framework in which first drug–drug linear neighborhood similarity is calculated, then the manifold of drugs are taken as similarities and finally unobserved DTIs are predicted using drug–drug similarities, interaction profiles and label propagation [<span class="xrefLink" id="jumplink-ref105"></span><a href="javascript:;" reveal-id="ref105" data-open="ref105" class="link link-ref link-reveal xref-bibr">105</a>].</td></tr><tr><td>WNN-GIP, RLS-WNN</td><td>Weighted Nearest Neighbors-GIP</td><td>A weighted NN algorithm directly incorporated into the GIP method, for constructing an interaction score profile for a new drug compound using information about known compounds [<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>].</td></tr><tr><td>BLM</td><td>Bipartite Local Models</td><td>In a bipartite graph model, predicts presence or absence of edges between drug and target using local models trained on known drugs and targets [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>, <span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>, <span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>, <span class="xrefLink" id="jumplink-ref108"></span><a href="javascript:;" reveal-id="ref108" data-open="ref108" class="link link-ref link-reveal xref-bibr">108</a>].</td></tr><tr><td>BLM-NII</td><td>BLM with Neighbor-based Interaction-profile Inferring</td><td>An inferring integrated into the BLM method to handle the new candidate problem of pure BLM [<span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>].</td></tr><tr><td>WBRDTI</td><td>Weighted Bayesian Ranking method</td><td>An improvement of BRDTI method by incorporating inteaction weights for unknown DTs calculated based on known neighboring DTs [<span class="xrefLink" id="jumplink-ref109"></span><a href="javascript:;" reveal-id="ref109" data-open="ref109" class="link link-ref link-reveal xref-bibr">109</a>].</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB1" data-id="TB1"><span class="label title-label" id="label-42547">Table 1</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532409" aria-describedby="label-42547"> Open in new tab </a></div><div class="caption caption-id-" id="caption-42547"><p class="chapter-para">Similarity/distance-based methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-42547" aria-describedby="&#xA; caption-42547"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>SITAR</td><td>Similarity-based Inference of drug-TARgets</td><td>A prediction scheme that integrates multiple drug–drug and gene–gene similarity measures to facilitate the prediction task using logistic regression [<span class="xrefLink" id="jumplink-ref95"></span><a href="javascript:;" reveal-id="ref95" data-open="ref95" class="link link-ref link-reveal xref-bibr">95</a>].</td></tr><tr><td>SRP</td><td>Similarity-Rank-based Predictor</td><td>A lazy supervised non-parametric model using quantitative index to measure the tendency of interacting similar drugs and similar targets to predict DTIs. [<span class="xrefLink" id="jumplink-ref97"></span><a href="javascript:;" reveal-id="ref97" data-open="ref97" class="link link-ref link-reveal xref-bibr">97</a>].</td></tr><tr><td>ECkNN /HLM</td><td>K-Nearest Neighbor Regression with Error Correction or Hubness-aware Local Models</td><td>A kNN method with an error correction method (hubness-aware regression technique) in order to alleviate the detrimental effect of bad hubs [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>, <span class="xrefLink" id="jumplink-ref99"></span><a href="javascript:;" reveal-id="ref99" data-open="ref99" class="link link-ref link-reveal xref-bibr">99</a>] (with substantially different labels from those instances [<span class="xrefLink" id="jumplink-ref100"></span><a href="javascript:;" reveal-id="ref100" data-open="ref100" class="link link-ref link-reveal xref-bibr">100</a>]).</td></tr><tr><td>NP, WP</td><td>Nearest Profile &amp; Weighted Profile</td><td>Given a test drug candidate, it finds a known drug sharing the highest similarity with the test drug, and predict the test drug to interact with target known to interact with the nearest drug [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>, <span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>].</td></tr><tr><td>MDTI</td><td>MultiviewDTI</td><td>A clustirng algorithm, based on spectral clustring, integrating drug data and target data from both structural and chemical views and the known DTIs [<span class="xrefLink" id="jumplink-ref103"></span><a href="javascript:;" reveal-id="ref103" data-open="ref103" class="link link-ref link-reveal xref-bibr">103</a>].</td></tr><tr><td>STC</td><td>Super-Target Clustering</td><td>A clustering of similar targets by introducing the concept ot super target to handle the missing interactions. [<span class="xrefLink" id="jumplink-ref104"></span><a href="javascript:;" reveal-id="ref104" data-open="ref104" class="link link-ref link-reveal xref-bibr">104</a>].</td></tr><tr><td>LPLNI, LPLNI-II</td><td>Label Propagation method with Linear Neighborhood Information</td><td>A framework in which first drug–drug linear neighborhood similarity is calculated, then the manifold of drugs are taken as similarities and finally unobserved DTIs are predicted using drug–drug similarities, interaction profiles and label propagation [<span class="xrefLink" id="jumplink-ref105"></span><a href="javascript:;" reveal-id="ref105" data-open="ref105" class="link link-ref link-reveal xref-bibr">105</a>].</td></tr><tr><td>WNN-GIP, RLS-WNN</td><td>Weighted Nearest Neighbors-GIP</td><td>A weighted NN algorithm directly incorporated into the GIP method, for constructing an interaction score profile for a new drug compound using information about known compounds [<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>].</td></tr><tr><td>BLM</td><td>Bipartite Local Models</td><td>In a bipartite graph model, predicts presence or absence of edges between drug and target using local models trained on known drugs and targets [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>, <span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>, <span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>, <span class="xrefLink" id="jumplink-ref108"></span><a href="javascript:;" reveal-id="ref108" data-open="ref108" class="link link-ref link-reveal xref-bibr">108</a>].</td></tr><tr><td>BLM-NII</td><td>BLM with Neighbor-based Interaction-profile Inferring</td><td>An inferring integrated into the BLM method to handle the new candidate problem of pure BLM [<span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>].</td></tr><tr><td>WBRDTI</td><td>Weighted Bayesian Ranking method</td><td>An improvement of BRDTI method by incorporating inteaction weights for unknown DTs calculated based on known neighboring DTs [<span class="xrefLink" id="jumplink-ref109"></span><a href="javascript:;" reveal-id="ref109" data-open="ref109" class="link link-ref link-reveal xref-bibr">109</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>SITAR</td><td>Similarity-based Inference of drug-TARgets</td><td>A prediction scheme that integrates multiple drug–drug and gene–gene similarity measures to facilitate the prediction task using logistic regression [<span class="xrefLink" id="jumplink-ref95"></span><a href="javascript:;" reveal-id="ref95" data-open="ref95" class="link link-ref link-reveal xref-bibr">95</a>].</td></tr><tr><td>SRP</td><td>Similarity-Rank-based Predictor</td><td>A lazy supervised non-parametric model using quantitative index to measure the tendency of interacting similar drugs and similar targets to predict DTIs. [<span class="xrefLink" id="jumplink-ref97"></span><a href="javascript:;" reveal-id="ref97" data-open="ref97" class="link link-ref link-reveal xref-bibr">97</a>].</td></tr><tr><td>ECkNN /HLM</td><td>K-Nearest Neighbor Regression with Error Correction or Hubness-aware Local Models</td><td>A kNN method with an error correction method (hubness-aware regression technique) in order to alleviate the detrimental effect of bad hubs [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>, <span class="xrefLink" id="jumplink-ref99"></span><a href="javascript:;" reveal-id="ref99" data-open="ref99" class="link link-ref link-reveal xref-bibr">99</a>] (with substantially different labels from those instances [<span class="xrefLink" id="jumplink-ref100"></span><a href="javascript:;" reveal-id="ref100" data-open="ref100" class="link link-ref link-reveal xref-bibr">100</a>]).</td></tr><tr><td>NP, WP</td><td>Nearest Profile &amp; Weighted Profile</td><td>Given a test drug candidate, it finds a known drug sharing the highest similarity with the test drug, and predict the test drug to interact with target known to interact with the nearest drug [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>, <span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>].</td></tr><tr><td>MDTI</td><td>MultiviewDTI</td><td>A clustirng algorithm, based on spectral clustring, integrating drug data and target data from both structural and chemical views and the known DTIs [<span class="xrefLink" id="jumplink-ref103"></span><a href="javascript:;" reveal-id="ref103" data-open="ref103" class="link link-ref link-reveal xref-bibr">103</a>].</td></tr><tr><td>STC</td><td>Super-Target Clustering</td><td>A clustering of similar targets by introducing the concept ot super target to handle the missing interactions. [<span class="xrefLink" id="jumplink-ref104"></span><a href="javascript:;" reveal-id="ref104" data-open="ref104" class="link link-ref link-reveal xref-bibr">104</a>].</td></tr><tr><td>LPLNI, LPLNI-II</td><td>Label Propagation method with Linear Neighborhood Information</td><td>A framework in which first drug–drug linear neighborhood similarity is calculated, then the manifold of drugs are taken as similarities and finally unobserved DTIs are predicted using drug–drug similarities, interaction profiles and label propagation [<span class="xrefLink" id="jumplink-ref105"></span><a href="javascript:;" reveal-id="ref105" data-open="ref105" class="link link-ref link-reveal xref-bibr">105</a>].</td></tr><tr><td>WNN-GIP, RLS-WNN</td><td>Weighted Nearest Neighbors-GIP</td><td>A weighted NN algorithm directly incorporated into the GIP method, for constructing an interaction score profile for a new drug compound using information about known compounds [<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>].</td></tr><tr><td>BLM</td><td>Bipartite Local Models</td><td>In a bipartite graph model, predicts presence or absence of edges between drug and target using local models trained on known drugs and targets [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>, <span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>, <span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>, <span class="xrefLink" id="jumplink-ref108"></span><a href="javascript:;" reveal-id="ref108" data-open="ref108" class="link link-ref link-reveal xref-bibr">108</a>].</td></tr><tr><td>BLM-NII</td><td>BLM with Neighbor-based Interaction-profile Inferring</td><td>An inferring integrated into the BLM method to handle the new candidate problem of pure BLM [<span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>].</td></tr><tr><td>WBRDTI</td><td>Weighted Bayesian Ranking method</td><td>An improvement of BRDTI method by incorporating inteaction weights for unknown DTs calculated based on known neighboring DTs [<span class="xrefLink" id="jumplink-ref109"></span><a href="javascript:;" reveal-id="ref109" data-open="ref109" class="link link-ref link-reveal xref-bibr">109</a>].</td></tr></tbody></table></div></div></div> <h3 scrollto-destination=225532410 id="225532410" class="section-title js-splitscreen-section-title" data-legacy-id=sec2c>2.3 Deep learning methods</h3> <p class="chapter-para">Deep learning is becoming more and more popular given its great performance in many areas, such as speech recognition, image recognition and natural language processing. Applying deep leaning methods to drug discovery has been consistently increasing in recent years [<span class="xrefLink" id="jumplink-ref113"></span><a href="javascript:;" reveal-id="ref113" data-open="ref113" class="link link-ref link-reveal xref-bibr">113</a>, <span class="xrefLink" id="jumplink-ref114"></span><a href="javascript:;" reveal-id="ref114" data-open="ref114" class="link link-ref link-reveal xref-bibr">114</a>].</p><p class="chapter-para">Deep learning approaches appear to overcome certain limitations by reducing the loss of feature information in predicting DTIs. One of the drawbacks in using deep learning methods lays in the fact that there is not always sufficient information available in order to perform deep learning methods. Recently, in order to deal with high dimensional and oftentimes noisy data in DTI predictions in general and in drug repurposing in particular, authors in [<span class="xrefLink" id="jumplink-ref115 ref116 ref117"></span><a href="javascript:;" reveal-id="ref115 ref116 ref117" data-open="ref115 ref116 ref117" class="link link-ref link-reveal xref-bibr">115–117</a>] proposed and developed deep learning algorithms in the DTI’s machine learning approaches.</p><p class="chapter-para">Most of the deep learning-based DTI prediction methods consist of two major steps: generating feature vectors and then applying deep learning to known DTIs. Usually, three types of properties (i.e. biological, topological and physico-chemical information) of drugs and/or targets can be used for generating feature vectors/matrix for deep learning based DTI methods. In recently published works [<span class="xrefLink" id="jumplink-ref116 ref117 ref118 ref119 ref120 ref121 ref122"></span><a href="javascript:;" reveal-id="ref116 ref117 ref118 ref119 ref120 ref121 ref122" data-open="ref116 ref117 ref118 ref119 ref120 ref121 ref122" class="link link-ref link-reveal xref-bibr">116–122</a>], methods such as deep belief neural networks [<span class="xrefLink" id="jumplink-ref118"></span><a href="javascript:;" reveal-id="ref118" data-open="ref118" class="link link-ref link-reveal xref-bibr">118</a>, <span class="xrefLink" id="jumplink-ref119"></span><a href="javascript:;" reveal-id="ref119" data-open="ref119" class="link link-ref link-reveal xref-bibr">119</a>], convolutional neural networks [<span class="xrefLink" id="jumplink-ref120"></span><a href="javascript:;" reveal-id="ref120" data-open="ref120" class="link link-ref link-reveal xref-bibr">120</a>, <span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>] and multiple layer perceptrons [<span class="xrefLink" id="jumplink-ref121"></span><a href="javascript:;" reveal-id="ref121" data-open="ref121" class="link link-ref link-reveal xref-bibr">121</a>, <span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>] were used to establish DTI prediction programs.</p><p class="chapter-para">In [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>], instead of using a bipartite network to represent the DTI, a Tripartite Linked Network [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>], derived from the existing linked open datasets in the biomedical domain [<span class="xrefLink" id="jumplink-ref125"></span><a href="javascript:;" reveal-id="ref125" data-open="ref125" class="link link-ref link-reveal xref-bibr">125</a>] were used for new DTI predictions. One advantage of methods employing deep learning over the state-of-the-art feature extraction methods and SVM classifiers is the ability to mine the hidden interactions between drugs and targets.</p><p class="chapter-para">Although all of the aforementioned deep learning methods show good performance, there is room for improvement in several aspects. First, creating robust negative datasets for supervised deep learning method is a challenging task. Most previously published deep learning based DTI prediction programs are supervised machine learning methods, so how to establish an unbiased negative DTI dataset for model fitting and testing is a key step. In addition, DTI prediction is to discover new DTIs. How to select real no-interaction drug–target pairs is a tricky task. Second, with more and more different types of drug/target data available, how to incorporate heterogonous data into high-dimensional features from drug and/or target for deep learning methods is also a challenge. Last but not least, deep learning methods that show great performance on the testing dataset do not mean they also can achieve great performance in real drug discovery. More details about applying deep learning in drug discovery can be found in [<span class="xrefLink" id="jumplink-ref126"></span><a href="javascript:;" reveal-id="ref126" data-open="ref126" class="link link-ref link-reveal xref-bibr">126</a>]. In Table <span class="xrefLink" id="jumplink-TB2"></span><a href="javascript:;" reveal-id="TB2" data-open="TB2" class="link link-reveal link-table xref-fig">2</a>, a brief list of deep learning-based methods mentioned in this paper is provided.</p> <a id="225532416" scrollto-destination="225532416"></a> <div content-id="TB2" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB2" data-id="TB2"><span class="label title-label" id="label-26185">Table 2</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532416" aria-describedby="label-26185"> Open in new tab </a></div><div class="caption caption-id-" id="caption-26185"><p class="chapter-para">Deep learning methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-26185" aria-describedby="&#xA; caption-26185"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>DeepDTIs</td><td>Deep Learning in predicting DTIs</td><td>A deep-learning approach utilizing DBN [<span class="xrefLink" id="jumplink-ref123"></span><a href="javascript:;" reveal-id="ref123" data-open="ref123" class="link link-ref link-reveal xref-bibr">123</a>] to abstract raw input vectors and predict new DTIs between FDA approved drugs and targets [<span class="xrefLink" id="jumplink-ref118"></span><a href="javascript:;" reveal-id="ref118" data-open="ref118" class="link link-ref link-reveal xref-bibr">118</a>].</td></tr><tr><td>DeepWalk</td><td></td><td>A deep learning similarity-based DTI prediction method based on the topology of multipartite network of the existing drugs and targets [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>].</td></tr><tr><td>AutoDNP</td><td>Stacked Autoencoder Deep Neural Network</td><td>A deep learning computational method with an ensemble classifier using stacked Autoencoder.[<span class="xrefLink" id="jumplink-ref116"></span><a href="javascript:;" reveal-id="ref116" data-open="ref116" class="link link-ref link-reveal xref-bibr">116</a>].</td></tr><tr><td>DeepConv-DTI</td><td>Deep learning with convolution-DTI</td><td>A deep learning method capturing local residue patterns of proteins participating in DTIs[<span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>].</td></tr><tr><td>LASSO-DNN</td><td>Least absolute shrinkage and selection operator-Deep Neural Network</td><td>A deep learning method based on features extracted from the LASSO regression models fitted using the protein-specific and drug-specific features respectively [<span class="xrefLink" id="jumplink-ref121"></span><a href="javascript:;" reveal-id="ref121" data-open="ref121" class="link link-ref link-reveal xref-bibr">121</a>].</td></tr><tr><td>DeepDTA</td><td>Deep DT Binding Affinity Prediction</td><td>A deep learning-based model using only character representations (raw sequence information) for both drugs and targets simply [<span class="xrefLink" id="jumplink-ref120"></span><a href="javascript:;" reveal-id="ref120" data-open="ref120" class="link link-ref link-reveal xref-bibr">120</a>].</td></tr><tr><td>DeepNP</td><td>Deep Neural Representation</td><td>An interpretable end-to-end deep learning architecture to predict DTIs from low level representations [<span class="xrefLink" id="jumplink-ref119"></span><a href="javascript:;" reveal-id="ref119" data-open="ref119" class="link link-ref link-reveal xref-bibr">119</a>].</td></tr><tr><td>DeepTrans</td><td>Deep Transcriptome data</td><td>A framework for DTI prediction based on transcriptome data in the L1000 database gathered from drug perturbation and gene knockout trials [<span class="xrefLink" id="jumplink-ref124"></span><a href="javascript:;" reveal-id="ref124" data-open="ref124" class="link link-ref link-reveal xref-bibr">124</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>DeepDTIs</td><td>Deep Learning in predicting DTIs</td><td>A deep-learning approach utilizing DBN [<span class="xrefLink" id="jumplink-ref123"></span><a href="javascript:;" reveal-id="ref123" data-open="ref123" class="link link-ref link-reveal xref-bibr">123</a>] to abstract raw input vectors and predict new DTIs between FDA approved drugs and targets [<span class="xrefLink" id="jumplink-ref118"></span><a href="javascript:;" reveal-id="ref118" data-open="ref118" class="link link-ref link-reveal xref-bibr">118</a>].</td></tr><tr><td>DeepWalk</td><td></td><td>A deep learning similarity-based DTI prediction method based on the topology of multipartite network of the existing drugs and targets [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>].</td></tr><tr><td>AutoDNP</td><td>Stacked Autoencoder Deep Neural Network</td><td>A deep learning computational method with an ensemble classifier using stacked Autoencoder.[<span class="xrefLink" id="jumplink-ref116"></span><a href="javascript:;" reveal-id="ref116" data-open="ref116" class="link link-ref link-reveal xref-bibr">116</a>].</td></tr><tr><td>DeepConv-DTI</td><td>Deep learning with convolution-DTI</td><td>A deep learning method capturing local residue patterns of proteins participating in DTIs[<span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>].</td></tr><tr><td>LASSO-DNN</td><td>Least absolute shrinkage and selection operator-Deep Neural Network</td><td>A deep learning method based on features extracted from the LASSO regression models fitted using the protein-specific and drug-specific features respectively [<span class="xrefLink" id="jumplink-ref121"></span><a href="javascript:;" reveal-id="ref121" data-open="ref121" class="link link-ref link-reveal xref-bibr">121</a>].</td></tr><tr><td>DeepDTA</td><td>Deep DT Binding Affinity Prediction</td><td>A deep learning-based model using only character representations (raw sequence information) for both drugs and targets simply [<span class="xrefLink" id="jumplink-ref120"></span><a href="javascript:;" reveal-id="ref120" data-open="ref120" class="link link-ref link-reveal xref-bibr">120</a>].</td></tr><tr><td>DeepNP</td><td>Deep Neural Representation</td><td>An interpretable end-to-end deep learning architecture to predict DTIs from low level representations [<span class="xrefLink" id="jumplink-ref119"></span><a href="javascript:;" reveal-id="ref119" data-open="ref119" class="link link-ref link-reveal xref-bibr">119</a>].</td></tr><tr><td>DeepTrans</td><td>Deep Transcriptome data</td><td>A framework for DTI prediction based on transcriptome data in the L1000 database gathered from drug perturbation and gene knockout trials [<span class="xrefLink" id="jumplink-ref124"></span><a href="javascript:;" reveal-id="ref124" data-open="ref124" class="link link-ref link-reveal xref-bibr">124</a>].</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB2" data-id="TB2"><span class="label title-label" id="label-26185">Table 2</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532416" aria-describedby="label-26185"> Open in new tab </a></div><div class="caption caption-id-" id="caption-26185"><p class="chapter-para">Deep learning methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-26185" aria-describedby="&#xA; caption-26185"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>DeepDTIs</td><td>Deep Learning in predicting DTIs</td><td>A deep-learning approach utilizing DBN [<span class="xrefLink" id="jumplink-ref123"></span><a href="javascript:;" reveal-id="ref123" data-open="ref123" class="link link-ref link-reveal xref-bibr">123</a>] to abstract raw input vectors and predict new DTIs between FDA approved drugs and targets [<span class="xrefLink" id="jumplink-ref118"></span><a href="javascript:;" reveal-id="ref118" data-open="ref118" class="link link-ref link-reveal xref-bibr">118</a>].</td></tr><tr><td>DeepWalk</td><td></td><td>A deep learning similarity-based DTI prediction method based on the topology of multipartite network of the existing drugs and targets [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>].</td></tr><tr><td>AutoDNP</td><td>Stacked Autoencoder Deep Neural Network</td><td>A deep learning computational method with an ensemble classifier using stacked Autoencoder.[<span class="xrefLink" id="jumplink-ref116"></span><a href="javascript:;" reveal-id="ref116" data-open="ref116" class="link link-ref link-reveal xref-bibr">116</a>].</td></tr><tr><td>DeepConv-DTI</td><td>Deep learning with convolution-DTI</td><td>A deep learning method capturing local residue patterns of proteins participating in DTIs[<span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>].</td></tr><tr><td>LASSO-DNN</td><td>Least absolute shrinkage and selection operator-Deep Neural Network</td><td>A deep learning method based on features extracted from the LASSO regression models fitted using the protein-specific and drug-specific features respectively [<span class="xrefLink" id="jumplink-ref121"></span><a href="javascript:;" reveal-id="ref121" data-open="ref121" class="link link-ref link-reveal xref-bibr">121</a>].</td></tr><tr><td>DeepDTA</td><td>Deep DT Binding Affinity Prediction</td><td>A deep learning-based model using only character representations (raw sequence information) for both drugs and targets simply [<span class="xrefLink" id="jumplink-ref120"></span><a href="javascript:;" reveal-id="ref120" data-open="ref120" class="link link-ref link-reveal xref-bibr">120</a>].</td></tr><tr><td>DeepNP</td><td>Deep Neural Representation</td><td>An interpretable end-to-end deep learning architecture to predict DTIs from low level representations [<span class="xrefLink" id="jumplink-ref119"></span><a href="javascript:;" reveal-id="ref119" data-open="ref119" class="link link-ref link-reveal xref-bibr">119</a>].</td></tr><tr><td>DeepTrans</td><td>Deep Transcriptome data</td><td>A framework for DTI prediction based on transcriptome data in the L1000 database gathered from drug perturbation and gene knockout trials [<span class="xrefLink" id="jumplink-ref124"></span><a href="javascript:;" reveal-id="ref124" data-open="ref124" class="link link-ref link-reveal xref-bibr">124</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>DeepDTIs</td><td>Deep Learning in predicting DTIs</td><td>A deep-learning approach utilizing DBN [<span class="xrefLink" id="jumplink-ref123"></span><a href="javascript:;" reveal-id="ref123" data-open="ref123" class="link link-ref link-reveal xref-bibr">123</a>] to abstract raw input vectors and predict new DTIs between FDA approved drugs and targets [<span class="xrefLink" id="jumplink-ref118"></span><a href="javascript:;" reveal-id="ref118" data-open="ref118" class="link link-ref link-reveal xref-bibr">118</a>].</td></tr><tr><td>DeepWalk</td><td></td><td>A deep learning similarity-based DTI prediction method based on the topology of multipartite network of the existing drugs and targets [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>].</td></tr><tr><td>AutoDNP</td><td>Stacked Autoencoder Deep Neural Network</td><td>A deep learning computational method with an ensemble classifier using stacked Autoencoder.[<span class="xrefLink" id="jumplink-ref116"></span><a href="javascript:;" reveal-id="ref116" data-open="ref116" class="link link-ref link-reveal xref-bibr">116</a>].</td></tr><tr><td>DeepConv-DTI</td><td>Deep learning with convolution-DTI</td><td>A deep learning method capturing local residue patterns of proteins participating in DTIs[<span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>].</td></tr><tr><td>LASSO-DNN</td><td>Least absolute shrinkage and selection operator-Deep Neural Network</td><td>A deep learning method based on features extracted from the LASSO regression models fitted using the protein-specific and drug-specific features respectively [<span class="xrefLink" id="jumplink-ref121"></span><a href="javascript:;" reveal-id="ref121" data-open="ref121" class="link link-ref link-reveal xref-bibr">121</a>].</td></tr><tr><td>DeepDTA</td><td>Deep DT Binding Affinity Prediction</td><td>A deep learning-based model using only character representations (raw sequence information) for both drugs and targets simply [<span class="xrefLink" id="jumplink-ref120"></span><a href="javascript:;" reveal-id="ref120" data-open="ref120" class="link link-ref link-reveal xref-bibr">120</a>].</td></tr><tr><td>DeepNP</td><td>Deep Neural Representation</td><td>An interpretable end-to-end deep learning architecture to predict DTIs from low level representations [<span class="xrefLink" id="jumplink-ref119"></span><a href="javascript:;" reveal-id="ref119" data-open="ref119" class="link link-ref link-reveal xref-bibr">119</a>].</td></tr><tr><td>DeepTrans</td><td>Deep Transcriptome data</td><td>A framework for DTI prediction based on transcriptome data in the L1000 database gathered from drug perturbation and gene knockout trials [<span class="xrefLink" id="jumplink-ref124"></span><a href="javascript:;" reveal-id="ref124" data-open="ref124" class="link link-ref link-reveal xref-bibr">124</a>].</td></tr></tbody></table></div></div></div> <a id="225532417" scrollto-destination="225532417"></a> <div content-id="TB3" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB3" data-id="TB3"><span class="label title-label" id="label-26185">Table 3</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532417" aria-describedby="label-26185"> Open in new tab </a></div><div class="caption caption-id-" id="caption-26185"><p class="chapter-para">Feature-based methods: part I</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-26185" aria-describedby="&#xA; caption-26185"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>SVM, KSVM, MH-SVM</td><td>Support Vector Machine</td><td>A support vector machine constructs a hyperplane or set of hyperplanes, which can be used for prediction of presence or absence of interaction between drugs and targets [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>, <span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>, <span class="xrefLink" id="jumplink-ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141"></span><a href="javascript:;" reveal-id="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141" data-open="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141" class="link link-ref link-reveal xref-bibr">127–141</a>].</td></tr><tr><td>BGL/KRM</td><td>Bipartite Graph Learning or Kernel Regression-based Method</td><td>In a bipartite graph model, predicts the presence or absence of edges between drug and target based on graph-based similarity to known drugs and targets in a unified Euclidean space of chemical and genomic space called pharmacological space [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref142"></span><a href="javascript:;" reveal-id="ref142" data-open="ref142" class="link link-ref link-reveal xref-bibr">142</a>, <span class="xrefLink" id="jumplink-ref143"></span><a href="javascript:;" reveal-id="ref143" data-open="ref143" class="link link-ref link-reveal xref-bibr">143</a>].</td></tr><tr><td>NetLapRLS</td><td>RLS with kernels derived from known DTIs</td><td>The improved version of LapRLS by incorporating a new kernel established from the known DTI network [<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>].</td></tr><tr><td>PKR</td><td>Pairwise Kernel Regression</td><td>A regression model similar to KRM without requirement of any unified chemical and genomic space [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>].</td></tr><tr><td>RF, DDR</td><td>Random Forest</td><td>A robust model against the overfitting problem of traditional statistical methods that performs more efficiently for large-scale databases [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref131"></span><a href="javascript:;" reveal-id="ref131" data-open="ref131" class="link link-ref link-reveal xref-bibr">131</a>, <span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>, <span class="xrefLink" id="jumplink-ref145"></span><a href="javascript:;" reveal-id="ref145" data-open="ref145" class="link link-ref link-reveal xref-bibr">145</a>] (using [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>, <span class="xrefLink" id="jumplink-ref146 ref147 ref148 ref149 ref150"></span><a href="javascript:;" reveal-id="ref146 ref147 ref148 ref149 ref150" data-open="ref146 ref147 ref148 ref149 ref150" class="link link-ref link-reveal xref-bibr">146–150</a>]).</td></tr><tr><td>iDTI-ESBoost</td><td></td><td>A prediction model for identification of DTIs using evolutionary and structural features [<span class="xrefLink" id="jumplink-ref151"></span><a href="javascript:;" reveal-id="ref151" data-open="ref151" class="link link-ref link-reveal xref-bibr">151</a>].</td></tr><tr><td>PUDT</td><td>Positive-Unlabeled learning for DT prediction</td><td>A framework treating unknown DTI as unlabeled samples and using weighted SVM predictor [<span class="xrefLink" id="jumplink-ref152"></span><a href="javascript:;" reveal-id="ref152" data-open="ref152" class="link link-ref link-reveal xref-bibr">152</a>].</td></tr><tr><td>GIP</td><td>RLS with Gaussian interaction profile kernel</td><td>An RLS algorithm that incorporates the topology of known DTI network as source information through GIP kernel [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref153"></span><a href="javascript:;" reveal-id="ref153" data-open="ref153" class="link link-ref link-reveal xref-bibr">153</a>].</td></tr><tr><td>RLS</td><td>Regularized Least Square, also RLS-Kron, RLS-avg, LapRLS, KRLS, RLS-KF, KronRLS-MKL</td><td>A semi-supervised framework that incorporates known DTIs and unknown DTIs in a general-purpose learner.[<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>, <span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>, <span class="xrefLink" id="jumplink-ref153 ref154 ref155 ref156 ref157 ref158"></span><a href="javascript:;" reveal-id="ref153 ref154 ref155 ref156 ref157 ref158" data-open="ref153 ref154 ref155 ref156 ref157 ref158" class="link link-ref link-reveal xref-bibr">153–158</a>].</td></tr><tr><td></td><td>SimBoost, SimBoostQuant</td><td>A non-linear method for continuous DT binding affinity prediction and an extended version SimBoostQuant, using quantile regression to estimate a prediction interval as a measure of confidence. [<span class="xrefLink" id="jumplink-ref159"></span><a href="javascript:;" reveal-id="ref159" data-open="ref159" class="link link-ref link-reveal xref-bibr">159</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>SVM, KSVM, MH-SVM</td><td>Support Vector Machine</td><td>A support vector machine constructs a hyperplane or set of hyperplanes, which can be used for prediction of presence or absence of interaction between drugs and targets [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>, <span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>, <span class="xrefLink" id="jumplink-ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141"></span><a href="javascript:;" reveal-id="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141" data-open="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141" class="link link-ref link-reveal xref-bibr">127–141</a>].</td></tr><tr><td>BGL/KRM</td><td>Bipartite Graph Learning or Kernel Regression-based Method</td><td>In a bipartite graph model, predicts the presence or absence of edges between drug and target based on graph-based similarity to known drugs and targets in a unified Euclidean space of chemical and genomic space called pharmacological space [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref142"></span><a href="javascript:;" reveal-id="ref142" data-open="ref142" class="link link-ref link-reveal xref-bibr">142</a>, <span class="xrefLink" id="jumplink-ref143"></span><a href="javascript:;" reveal-id="ref143" data-open="ref143" class="link link-ref link-reveal xref-bibr">143</a>].</td></tr><tr><td>NetLapRLS</td><td>RLS with kernels derived from known DTIs</td><td>The improved version of LapRLS by incorporating a new kernel established from the known DTI network [<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>].</td></tr><tr><td>PKR</td><td>Pairwise Kernel Regression</td><td>A regression model similar to KRM without requirement of any unified chemical and genomic space [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>].</td></tr><tr><td>RF, DDR</td><td>Random Forest</td><td>A robust model against the overfitting problem of traditional statistical methods that performs more efficiently for large-scale databases [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref131"></span><a href="javascript:;" reveal-id="ref131" data-open="ref131" class="link link-ref link-reveal xref-bibr">131</a>, <span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>, <span class="xrefLink" id="jumplink-ref145"></span><a href="javascript:;" reveal-id="ref145" data-open="ref145" class="link link-ref link-reveal xref-bibr">145</a>] (using [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>, <span class="xrefLink" id="jumplink-ref146 ref147 ref148 ref149 ref150"></span><a href="javascript:;" reveal-id="ref146 ref147 ref148 ref149 ref150" data-open="ref146 ref147 ref148 ref149 ref150" class="link link-ref link-reveal xref-bibr">146–150</a>]).</td></tr><tr><td>iDTI-ESBoost</td><td></td><td>A prediction model for identification of DTIs using evolutionary and structural features [<span class="xrefLink" id="jumplink-ref151"></span><a href="javascript:;" reveal-id="ref151" data-open="ref151" class="link link-ref link-reveal xref-bibr">151</a>].</td></tr><tr><td>PUDT</td><td>Positive-Unlabeled learning for DT prediction</td><td>A framework treating unknown DTI as unlabeled samples and using weighted SVM predictor [<span class="xrefLink" id="jumplink-ref152"></span><a href="javascript:;" reveal-id="ref152" data-open="ref152" class="link link-ref link-reveal xref-bibr">152</a>].</td></tr><tr><td>GIP</td><td>RLS with Gaussian interaction profile kernel</td><td>An RLS algorithm that incorporates the topology of known DTI network as source information through GIP kernel [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref153"></span><a href="javascript:;" reveal-id="ref153" data-open="ref153" class="link link-ref link-reveal xref-bibr">153</a>].</td></tr><tr><td>RLS</td><td>Regularized Least Square, also RLS-Kron, RLS-avg, LapRLS, KRLS, RLS-KF, KronRLS-MKL</td><td>A semi-supervised framework that incorporates known DTIs and unknown DTIs in a general-purpose learner.[<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>, <span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>, <span class="xrefLink" id="jumplink-ref153 ref154 ref155 ref156 ref157 ref158"></span><a href="javascript:;" reveal-id="ref153 ref154 ref155 ref156 ref157 ref158" data-open="ref153 ref154 ref155 ref156 ref157 ref158" class="link link-ref link-reveal xref-bibr">153–158</a>].</td></tr><tr><td></td><td>SimBoost, SimBoostQuant</td><td>A non-linear method for continuous DT binding affinity prediction and an extended version SimBoostQuant, using quantile regression to estimate a prediction interval as a measure of confidence. [<span class="xrefLink" id="jumplink-ref159"></span><a href="javascript:;" reveal-id="ref159" data-open="ref159" class="link link-ref link-reveal xref-bibr">159</a>].</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB3" data-id="TB3"><span class="label title-label" id="label-26185">Table 3</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532417" aria-describedby="label-26185"> Open in new tab </a></div><div class="caption caption-id-" id="caption-26185"><p class="chapter-para">Feature-based methods: part I</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-26185" aria-describedby="&#xA; caption-26185"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>SVM, KSVM, MH-SVM</td><td>Support Vector Machine</td><td>A support vector machine constructs a hyperplane or set of hyperplanes, which can be used for prediction of presence or absence of interaction between drugs and targets [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>, <span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>, <span class="xrefLink" id="jumplink-ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141"></span><a href="javascript:;" reveal-id="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141" data-open="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141" class="link link-ref link-reveal xref-bibr">127–141</a>].</td></tr><tr><td>BGL/KRM</td><td>Bipartite Graph Learning or Kernel Regression-based Method</td><td>In a bipartite graph model, predicts the presence or absence of edges between drug and target based on graph-based similarity to known drugs and targets in a unified Euclidean space of chemical and genomic space called pharmacological space [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref142"></span><a href="javascript:;" reveal-id="ref142" data-open="ref142" class="link link-ref link-reveal xref-bibr">142</a>, <span class="xrefLink" id="jumplink-ref143"></span><a href="javascript:;" reveal-id="ref143" data-open="ref143" class="link link-ref link-reveal xref-bibr">143</a>].</td></tr><tr><td>NetLapRLS</td><td>RLS with kernels derived from known DTIs</td><td>The improved version of LapRLS by incorporating a new kernel established from the known DTI network [<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>].</td></tr><tr><td>PKR</td><td>Pairwise Kernel Regression</td><td>A regression model similar to KRM without requirement of any unified chemical and genomic space [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>].</td></tr><tr><td>RF, DDR</td><td>Random Forest</td><td>A robust model against the overfitting problem of traditional statistical methods that performs more efficiently for large-scale databases [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref131"></span><a href="javascript:;" reveal-id="ref131" data-open="ref131" class="link link-ref link-reveal xref-bibr">131</a>, <span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>, <span class="xrefLink" id="jumplink-ref145"></span><a href="javascript:;" reveal-id="ref145" data-open="ref145" class="link link-ref link-reveal xref-bibr">145</a>] (using [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>, <span class="xrefLink" id="jumplink-ref146 ref147 ref148 ref149 ref150"></span><a href="javascript:;" reveal-id="ref146 ref147 ref148 ref149 ref150" data-open="ref146 ref147 ref148 ref149 ref150" class="link link-ref link-reveal xref-bibr">146–150</a>]).</td></tr><tr><td>iDTI-ESBoost</td><td></td><td>A prediction model for identification of DTIs using evolutionary and structural features [<span class="xrefLink" id="jumplink-ref151"></span><a href="javascript:;" reveal-id="ref151" data-open="ref151" class="link link-ref link-reveal xref-bibr">151</a>].</td></tr><tr><td>PUDT</td><td>Positive-Unlabeled learning for DT prediction</td><td>A framework treating unknown DTI as unlabeled samples and using weighted SVM predictor [<span class="xrefLink" id="jumplink-ref152"></span><a href="javascript:;" reveal-id="ref152" data-open="ref152" class="link link-ref link-reveal xref-bibr">152</a>].</td></tr><tr><td>GIP</td><td>RLS with Gaussian interaction profile kernel</td><td>An RLS algorithm that incorporates the topology of known DTI network as source information through GIP kernel [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref153"></span><a href="javascript:;" reveal-id="ref153" data-open="ref153" class="link link-ref link-reveal xref-bibr">153</a>].</td></tr><tr><td>RLS</td><td>Regularized Least Square, also RLS-Kron, RLS-avg, LapRLS, KRLS, RLS-KF, KronRLS-MKL</td><td>A semi-supervised framework that incorporates known DTIs and unknown DTIs in a general-purpose learner.[<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>, <span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>, <span class="xrefLink" id="jumplink-ref153 ref154 ref155 ref156 ref157 ref158"></span><a href="javascript:;" reveal-id="ref153 ref154 ref155 ref156 ref157 ref158" data-open="ref153 ref154 ref155 ref156 ref157 ref158" class="link link-ref link-reveal xref-bibr">153–158</a>].</td></tr><tr><td></td><td>SimBoost, SimBoostQuant</td><td>A non-linear method for continuous DT binding affinity prediction and an extended version SimBoostQuant, using quantile regression to estimate a prediction interval as a measure of confidence. [<span class="xrefLink" id="jumplink-ref159"></span><a href="javascript:;" reveal-id="ref159" data-open="ref159" class="link link-ref link-reveal xref-bibr">159</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>SVM, KSVM, MH-SVM</td><td>Support Vector Machine</td><td>A support vector machine constructs a hyperplane or set of hyperplanes, which can be used for prediction of presence or absence of interaction between drugs and targets [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>, <span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>, <span class="xrefLink" id="jumplink-ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141"></span><a href="javascript:;" reveal-id="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141" data-open="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141" class="link link-ref link-reveal xref-bibr">127–141</a>].</td></tr><tr><td>BGL/KRM</td><td>Bipartite Graph Learning or Kernel Regression-based Method</td><td>In a bipartite graph model, predicts the presence or absence of edges between drug and target based on graph-based similarity to known drugs and targets in a unified Euclidean space of chemical and genomic space called pharmacological space [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref142"></span><a href="javascript:;" reveal-id="ref142" data-open="ref142" class="link link-ref link-reveal xref-bibr">142</a>, <span class="xrefLink" id="jumplink-ref143"></span><a href="javascript:;" reveal-id="ref143" data-open="ref143" class="link link-ref link-reveal xref-bibr">143</a>].</td></tr><tr><td>NetLapRLS</td><td>RLS with kernels derived from known DTIs</td><td>The improved version of LapRLS by incorporating a new kernel established from the known DTI network [<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>].</td></tr><tr><td>PKR</td><td>Pairwise Kernel Regression</td><td>A regression model similar to KRM without requirement of any unified chemical and genomic space [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>].</td></tr><tr><td>RF, DDR</td><td>Random Forest</td><td>A robust model against the overfitting problem of traditional statistical methods that performs more efficiently for large-scale databases [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref131"></span><a href="javascript:;" reveal-id="ref131" data-open="ref131" class="link link-ref link-reveal xref-bibr">131</a>, <span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>, <span class="xrefLink" id="jumplink-ref145"></span><a href="javascript:;" reveal-id="ref145" data-open="ref145" class="link link-ref link-reveal xref-bibr">145</a>] (using [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>, <span class="xrefLink" id="jumplink-ref146 ref147 ref148 ref149 ref150"></span><a href="javascript:;" reveal-id="ref146 ref147 ref148 ref149 ref150" data-open="ref146 ref147 ref148 ref149 ref150" class="link link-ref link-reveal xref-bibr">146–150</a>]).</td></tr><tr><td>iDTI-ESBoost</td><td></td><td>A prediction model for identification of DTIs using evolutionary and structural features [<span class="xrefLink" id="jumplink-ref151"></span><a href="javascript:;" reveal-id="ref151" data-open="ref151" class="link link-ref link-reveal xref-bibr">151</a>].</td></tr><tr><td>PUDT</td><td>Positive-Unlabeled learning for DT prediction</td><td>A framework treating unknown DTI as unlabeled samples and using weighted SVM predictor [<span class="xrefLink" id="jumplink-ref152"></span><a href="javascript:;" reveal-id="ref152" data-open="ref152" class="link link-ref link-reveal xref-bibr">152</a>].</td></tr><tr><td>GIP</td><td>RLS with Gaussian interaction profile kernel</td><td>An RLS algorithm that incorporates the topology of known DTI network as source information through GIP kernel [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref153"></span><a href="javascript:;" reveal-id="ref153" data-open="ref153" class="link link-ref link-reveal xref-bibr">153</a>].</td></tr><tr><td>RLS</td><td>Regularized Least Square, also RLS-Kron, RLS-avg, LapRLS, KRLS, RLS-KF, KronRLS-MKL</td><td>A semi-supervised framework that incorporates known DTIs and unknown DTIs in a general-purpose learner.[<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>, <span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>, <span class="xrefLink" id="jumplink-ref153 ref154 ref155 ref156 ref157 ref158"></span><a href="javascript:;" reveal-id="ref153 ref154 ref155 ref156 ref157 ref158" data-open="ref153 ref154 ref155 ref156 ref157 ref158" class="link link-ref link-reveal xref-bibr">153–158</a>].</td></tr><tr><td></td><td>SimBoost, SimBoostQuant</td><td>A non-linear method for continuous DT binding affinity prediction and an extended version SimBoostQuant, using quantile regression to estimate a prediction interval as a measure of confidence. [<span class="xrefLink" id="jumplink-ref159"></span><a href="javascript:;" reveal-id="ref159" data-open="ref159" class="link link-ref link-reveal xref-bibr">159</a>].</td></tr></tbody></table></div></div></div> <h3 scrollto-destination=225532418 id="225532418" class="section-title js-splitscreen-section-title" data-legacy-id=sec2d>2.4 Feature-based methods</h3> <div class="&#xA; block-child-p&#xA; ">The vast majority of machine learning methods performing DTI prediction fall into this category. It is a broad range of methods including SVM, tree-based methods and other kernel-based methods. Any pairs of drugs and targets would be represented in terms of feature vectors with certain length, often with binary labels that classify the pair vectors into two classes with positive and negative interaction. In other words, assuming feature space <span class="inline-formula no-formula-id">|$\mathbf F$|</span> where <div class="formula-wrap"><div class="disp-formula" id="jumplink-" content-id=""><div class="tex-math display-math">$$\begin{equation*} \mathbf F= \bigg\{f:=d\oplus t\, \Big|\, d=[d_1, d_2, \cdots, d_n] \ \&amp;\,\, t=[t_1, t_2, \cdots, t_m] \bigg\},\notag \end{equation*}$$</div></div></div> where <span class="inline-formula no-formula-id">|$d$|</span> and <span class="inline-formula no-formula-id">|$t$|</span> denote the target and drug feature vectors of length <span class="inline-formula no-formula-id">|$n$|</span> and <span class="inline-formula no-formula-id">|$m$|⁠</span>, respectively.</div><p class="chapter-para">Once the feature space is defined, assorted machine learning methods can be established to perform the DTI prediction task [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>, <span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>, <span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>, <span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>, <span class="xrefLink" id="jumplink-ref89"></span><a href="javascript:;" reveal-id="ref89" data-open="ref89" class="link link-ref link-reveal xref-bibr">89</a>, <span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>, <span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>, <span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>, <span class="xrefLink" id="jumplink-ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141 ref142 ref143 ref144 ref145 ref146 ref147 ref148 ref149 ref150 ref151 ref152 ref153 ref154 ref155 ref156 ref157 ref158 ref159 ref160 ref161 ref162 ref163 ref164 ref165 ref166 ref167 ref168 ref169 ref170 ref171 ref172 ref173 ref174 ref175 ref176 ref177 ref178"></span><a href="javascript:;" reveal-id="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141 ref142 ref143 ref144 ref145 ref146 ref147 ref148 ref149 ref150 ref151 ref152 ref153 ref154 ref155 ref156 ref157 ref158 ref159 ref160 ref161 ref162 ref163 ref164 ref165 ref166 ref167 ref168 ref169 ref170 ref171 ref172 ref173 ref174 ref175 ref176 ref177 ref178" data-open="ref127 ref128 ref129 ref130 ref131 ref132 ref133 ref134 ref135 ref136 ref137 ref138 ref139 ref140 ref141 ref142 ref143 ref144 ref145 ref146 ref147 ref148 ref149 ref150 ref151 ref152 ref153 ref154 ref155 ref156 ref157 ref158 ref159 ref160 ref161 ref162 ref163 ref164 ref165 ref166 ref167 ref168 ref169 ref170 ref171 ref172 ref173 ref174 ref175 ref176 ref177 ref178" class="link link-ref link-reveal xref-bibr">127–178</a>]. The lack of 3D structures of membrane proteins prevents extracting the main features, which otherwise would have yielded to better prediction performances. Tables <span class="xrefLink" id="jumplink-TB3"></span><a href="javascript:;" reveal-id="TB3" data-open="TB3" class="link link-reveal link-table xref-fig">3</a> and <span class="xrefLink" id="jumplink-TB4"></span><a href="javascript:;" reveal-id="TB4" data-open="TB4" class="link link-reveal link-table xref-fig">4</a> provides a broad list of feature-based methods along with a short description and the papers in which those methods were proposed and employed.</p> <a id="225532421" scrollto-destination="225532421"></a> <div content-id="TB4" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB4" data-id="TB4"><span class="label title-label" id="label-26185">Table 4</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532421" aria-describedby="label-26185"> Open in new tab </a></div><div class="caption caption-id-" id="caption-26185"><p class="chapter-para">Feature-based methods: part II</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-26185" aria-describedby="&#xA; caption-26185"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>RFDT</td><td>Rotation Forest-based DTI prediction</td><td>A computational model based on the assumptions that the protein sequences are encoded as Position Specific Scoring Matrix (PSSM) [<span class="xrefLink" id="jumplink-ref160"></span><a href="javascript:;" reveal-id="ref160" data-open="ref160" class="link link-ref link-reveal xref-bibr">160</a>] descriptor and the drug molecules are encoded as fingerprint feature vector [<span class="xrefLink" id="jumplink-ref161"></span><a href="javascript:;" reveal-id="ref161" data-open="ref161" class="link link-ref link-reveal xref-bibr">161</a>].</td></tr><tr><td>DrugRPE</td><td></td><td>A random projection ensemble approach for based on the REPTree algorithm [<span class="xrefLink" id="jumplink-ref162"></span><a href="javascript:;" reveal-id="ref162" data-open="ref162" class="link link-ref link-reveal xref-bibr">162</a>] and using random projection [<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>, <span class="xrefLink" id="jumplink-ref162"></span><a href="javascript:;" reveal-id="ref162" data-open="ref162" class="link link-ref link-reveal xref-bibr">162</a>, <span class="xrefLink" id="jumplink-ref163"></span><a href="javascript:;" reveal-id="ref163" data-open="ref163" class="link link-ref link-reveal xref-bibr">163</a>, <span class="xrefLink" id="jumplink-ref163 ref164 ref165"></span><a href="javascript:;" reveal-id="ref163 ref164 ref165" data-open="ref163 ref164 ref165" class="link link-ref link-reveal xref-bibr">163–165</a>].</td></tr><tr><td>CGBVS</td><td>ChemoGenomics-Based Virtual Screening</td><td>A kernel-based state-of-the-art method using virtual screening (VS) [<span class="xrefLink" id="jumplink-ref89"></span><a href="javascript:;" reveal-id="ref89" data-open="ref89" class="link link-ref link-reveal xref-bibr">89</a>] and pairwise kernel method (PKM) [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>] [<span class="xrefLink" id="jumplink-ref166"></span><a href="javascript:;" reveal-id="ref166" data-open="ref166" class="link link-ref link-reveal xref-bibr">166</a>].</td></tr><tr><td></td><td>DASPfind</td><td>A computational DTI prediction method relying on the topological structure of the heterogeneous graph interaction model [<span class="xrefLink" id="jumplink-ref167"></span><a href="javascript:;" reveal-id="ref167" data-open="ref167" class="link link-ref link-reveal xref-bibr">167</a>].</td></tr><tr><td>SAR</td><td>Structure-Activity Relationship method</td><td>A screening of chemical compounds method for classification problem of DTIs using protein sequences and drug topological structures [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>, <span class="xrefLink" id="jumplink-ref168"></span><a href="javascript:;" reveal-id="ref168" data-open="ref168" class="link link-ref link-reveal xref-bibr">168</a>].</td></tr><tr><td>DVM</td><td>Discriminative Vector Machine</td><td>A classifier and a method by formulating the DTIs as an extended SAR classification problem [<span class="xrefLink" id="jumplink-ref169"></span><a href="javascript:;" reveal-id="ref169" data-open="ref169" class="link link-ref link-reveal xref-bibr">169</a>] (using principal component analysis (PCA) method [<span class="xrefLink" id="jumplink-ref170"></span><a href="javascript:;" reveal-id="ref170" data-open="ref170" class="link link-ref link-reveal xref-bibr">170</a>]).</td></tr><tr><td>EnsL</td><td>Ensemble Learning (with dimensionality reduction, or class imbalance-aware)</td><td>A framework predicts DTI based on average voting of its base classifiers: Decision Tree (EnsemDT) [<span class="xrefLink" id="jumplink-ref171 ref172 ref173"></span><a href="javascript:;" reveal-id="ref171 ref172 ref173" data-open="ref171 ref172 ref173" class="link link-ref link-reveal xref-bibr">171–173</a>] (based on Singular Value Decomposition (SVD), Partial Least Squares (PLS) [<span class="xrefLink" id="jumplink-ref174"></span><a href="javascript:;" reveal-id="ref174" data-open="ref174" class="link link-ref link-reveal xref-bibr">174</a>] and Laplacian Eigenmaps (LapEig) [<span class="xrefLink" id="jumplink-ref175"></span><a href="javascript:;" reveal-id="ref175" data-open="ref175" class="link link-ref link-reveal xref-bibr">175</a>]),Kernel Ridge Regression (EnsemKRR), Random Forest (EnsemRF) [<span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>], stacked (EnsemSTACK) [<span class="xrefLink" id="jumplink-ref176"></span><a href="javascript:;" reveal-id="ref176" data-open="ref176" class="link link-ref link-reveal xref-bibr">176</a>], DrugE-Rank [<span class="xrefLink" id="jumplink-ref177"></span><a href="javascript:;" reveal-id="ref177" data-open="ref177" class="link link-ref link-reveal xref-bibr">177</a>].</td></tr><tr><td>BE-DTI</td><td>Bagging-based Ensemble method</td><td>A bagging-based ensemble framework that involves dimensionality reduction and active learning [<span class="xrefLink" id="jumplink-ref178"></span><a href="javascript:;" reveal-id="ref178" data-open="ref178" class="link link-ref link-reveal xref-bibr">178</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>RFDT</td><td>Rotation Forest-based DTI prediction</td><td>A computational model based on the assumptions that the protein sequences are encoded as Position Specific Scoring Matrix (PSSM) [<span class="xrefLink" id="jumplink-ref160"></span><a href="javascript:;" reveal-id="ref160" data-open="ref160" class="link link-ref link-reveal xref-bibr">160</a>] descriptor and the drug molecules are encoded as fingerprint feature vector [<span class="xrefLink" id="jumplink-ref161"></span><a href="javascript:;" reveal-id="ref161" data-open="ref161" class="link link-ref link-reveal xref-bibr">161</a>].</td></tr><tr><td>DrugRPE</td><td></td><td>A random projection ensemble approach for based on the REPTree algorithm [<span class="xrefLink" id="jumplink-ref162"></span><a href="javascript:;" reveal-id="ref162" data-open="ref162" class="link link-ref link-reveal xref-bibr">162</a>] and using random projection [<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>, <span class="xrefLink" id="jumplink-ref162"></span><a href="javascript:;" reveal-id="ref162" data-open="ref162" class="link link-ref link-reveal xref-bibr">162</a>, <span class="xrefLink" id="jumplink-ref163"></span><a href="javascript:;" reveal-id="ref163" data-open="ref163" class="link link-ref link-reveal xref-bibr">163</a>, <span class="xrefLink" id="jumplink-ref163 ref164 ref165"></span><a href="javascript:;" reveal-id="ref163 ref164 ref165" data-open="ref163 ref164 ref165" class="link link-ref link-reveal xref-bibr">163–165</a>].</td></tr><tr><td>CGBVS</td><td>ChemoGenomics-Based Virtual Screening</td><td>A kernel-based state-of-the-art method using virtual screening (VS) [<span class="xrefLink" id="jumplink-ref89"></span><a href="javascript:;" reveal-id="ref89" data-open="ref89" class="link link-ref link-reveal xref-bibr">89</a>] and pairwise kernel method (PKM) [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>] [<span class="xrefLink" id="jumplink-ref166"></span><a href="javascript:;" reveal-id="ref166" data-open="ref166" class="link link-ref link-reveal xref-bibr">166</a>].</td></tr><tr><td></td><td>DASPfind</td><td>A computational DTI prediction method relying on the topological structure of the heterogeneous graph interaction model [<span class="xrefLink" id="jumplink-ref167"></span><a href="javascript:;" reveal-id="ref167" data-open="ref167" class="link link-ref link-reveal xref-bibr">167</a>].</td></tr><tr><td>SAR</td><td>Structure-Activity Relationship method</td><td>A screening of chemical compounds method for classification problem of DTIs using protein sequences and drug topological structures [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>, <span class="xrefLink" id="jumplink-ref168"></span><a href="javascript:;" reveal-id="ref168" data-open="ref168" class="link link-ref link-reveal xref-bibr">168</a>].</td></tr><tr><td>DVM</td><td>Discriminative Vector Machine</td><td>A classifier and a method by formulating the DTIs as an extended SAR classification problem [<span class="xrefLink" id="jumplink-ref169"></span><a href="javascript:;" reveal-id="ref169" data-open="ref169" class="link link-ref link-reveal xref-bibr">169</a>] (using principal component analysis (PCA) method [<span class="xrefLink" id="jumplink-ref170"></span><a href="javascript:;" reveal-id="ref170" data-open="ref170" class="link link-ref link-reveal xref-bibr">170</a>]).</td></tr><tr><td>EnsL</td><td>Ensemble Learning (with dimensionality reduction, or class imbalance-aware)</td><td>A framework predicts DTI based on average voting of its base classifiers: Decision Tree (EnsemDT) [<span class="xrefLink" id="jumplink-ref171 ref172 ref173"></span><a href="javascript:;" reveal-id="ref171 ref172 ref173" data-open="ref171 ref172 ref173" class="link link-ref link-reveal xref-bibr">171–173</a>] (based on Singular Value Decomposition (SVD), Partial Least Squares (PLS) [<span class="xrefLink" id="jumplink-ref174"></span><a href="javascript:;" reveal-id="ref174" data-open="ref174" class="link link-ref link-reveal xref-bibr">174</a>] and Laplacian Eigenmaps (LapEig) [<span class="xrefLink" id="jumplink-ref175"></span><a href="javascript:;" reveal-id="ref175" data-open="ref175" class="link link-ref link-reveal xref-bibr">175</a>]),Kernel Ridge Regression (EnsemKRR), Random Forest (EnsemRF) [<span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>], stacked (EnsemSTACK) [<span class="xrefLink" id="jumplink-ref176"></span><a href="javascript:;" reveal-id="ref176" data-open="ref176" class="link link-ref link-reveal xref-bibr">176</a>], DrugE-Rank [<span class="xrefLink" id="jumplink-ref177"></span><a href="javascript:;" reveal-id="ref177" data-open="ref177" class="link link-ref link-reveal xref-bibr">177</a>].</td></tr><tr><td>BE-DTI</td><td>Bagging-based Ensemble method</td><td>A bagging-based ensemble framework that involves dimensionality reduction and active learning [<span class="xrefLink" id="jumplink-ref178"></span><a href="javascript:;" reveal-id="ref178" data-open="ref178" class="link link-ref link-reveal xref-bibr">178</a>].</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB4" data-id="TB4"><span class="label title-label" id="label-26185">Table 4</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532421" aria-describedby="label-26185"> Open in new tab </a></div><div class="caption caption-id-" id="caption-26185"><p class="chapter-para">Feature-based methods: part II</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-26185" aria-describedby="&#xA; caption-26185"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>RFDT</td><td>Rotation Forest-based DTI prediction</td><td>A computational model based on the assumptions that the protein sequences are encoded as Position Specific Scoring Matrix (PSSM) [<span class="xrefLink" id="jumplink-ref160"></span><a href="javascript:;" reveal-id="ref160" data-open="ref160" class="link link-ref link-reveal xref-bibr">160</a>] descriptor and the drug molecules are encoded as fingerprint feature vector [<span class="xrefLink" id="jumplink-ref161"></span><a href="javascript:;" reveal-id="ref161" data-open="ref161" class="link link-ref link-reveal xref-bibr">161</a>].</td></tr><tr><td>DrugRPE</td><td></td><td>A random projection ensemble approach for based on the REPTree algorithm [<span class="xrefLink" id="jumplink-ref162"></span><a href="javascript:;" reveal-id="ref162" data-open="ref162" class="link link-ref link-reveal xref-bibr">162</a>] and using random projection [<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>, <span class="xrefLink" id="jumplink-ref162"></span><a href="javascript:;" reveal-id="ref162" data-open="ref162" class="link link-ref link-reveal xref-bibr">162</a>, <span class="xrefLink" id="jumplink-ref163"></span><a href="javascript:;" reveal-id="ref163" data-open="ref163" class="link link-ref link-reveal xref-bibr">163</a>, <span class="xrefLink" id="jumplink-ref163 ref164 ref165"></span><a href="javascript:;" reveal-id="ref163 ref164 ref165" data-open="ref163 ref164 ref165" class="link link-ref link-reveal xref-bibr">163–165</a>].</td></tr><tr><td>CGBVS</td><td>ChemoGenomics-Based Virtual Screening</td><td>A kernel-based state-of-the-art method using virtual screening (VS) [<span class="xrefLink" id="jumplink-ref89"></span><a href="javascript:;" reveal-id="ref89" data-open="ref89" class="link link-ref link-reveal xref-bibr">89</a>] and pairwise kernel method (PKM) [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>] [<span class="xrefLink" id="jumplink-ref166"></span><a href="javascript:;" reveal-id="ref166" data-open="ref166" class="link link-ref link-reveal xref-bibr">166</a>].</td></tr><tr><td></td><td>DASPfind</td><td>A computational DTI prediction method relying on the topological structure of the heterogeneous graph interaction model [<span class="xrefLink" id="jumplink-ref167"></span><a href="javascript:;" reveal-id="ref167" data-open="ref167" class="link link-ref link-reveal xref-bibr">167</a>].</td></tr><tr><td>SAR</td><td>Structure-Activity Relationship method</td><td>A screening of chemical compounds method for classification problem of DTIs using protein sequences and drug topological structures [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>, <span class="xrefLink" id="jumplink-ref168"></span><a href="javascript:;" reveal-id="ref168" data-open="ref168" class="link link-ref link-reveal xref-bibr">168</a>].</td></tr><tr><td>DVM</td><td>Discriminative Vector Machine</td><td>A classifier and a method by formulating the DTIs as an extended SAR classification problem [<span class="xrefLink" id="jumplink-ref169"></span><a href="javascript:;" reveal-id="ref169" data-open="ref169" class="link link-ref link-reveal xref-bibr">169</a>] (using principal component analysis (PCA) method [<span class="xrefLink" id="jumplink-ref170"></span><a href="javascript:;" reveal-id="ref170" data-open="ref170" class="link link-ref link-reveal xref-bibr">170</a>]).</td></tr><tr><td>EnsL</td><td>Ensemble Learning (with dimensionality reduction, or class imbalance-aware)</td><td>A framework predicts DTI based on average voting of its base classifiers: Decision Tree (EnsemDT) [<span class="xrefLink" id="jumplink-ref171 ref172 ref173"></span><a href="javascript:;" reveal-id="ref171 ref172 ref173" data-open="ref171 ref172 ref173" class="link link-ref link-reveal xref-bibr">171–173</a>] (based on Singular Value Decomposition (SVD), Partial Least Squares (PLS) [<span class="xrefLink" id="jumplink-ref174"></span><a href="javascript:;" reveal-id="ref174" data-open="ref174" class="link link-ref link-reveal xref-bibr">174</a>] and Laplacian Eigenmaps (LapEig) [<span class="xrefLink" id="jumplink-ref175"></span><a href="javascript:;" reveal-id="ref175" data-open="ref175" class="link link-ref link-reveal xref-bibr">175</a>]),Kernel Ridge Regression (EnsemKRR), Random Forest (EnsemRF) [<span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>], stacked (EnsemSTACK) [<span class="xrefLink" id="jumplink-ref176"></span><a href="javascript:;" reveal-id="ref176" data-open="ref176" class="link link-ref link-reveal xref-bibr">176</a>], DrugE-Rank [<span class="xrefLink" id="jumplink-ref177"></span><a href="javascript:;" reveal-id="ref177" data-open="ref177" class="link link-ref link-reveal xref-bibr">177</a>].</td></tr><tr><td>BE-DTI</td><td>Bagging-based Ensemble method</td><td>A bagging-based ensemble framework that involves dimensionality reduction and active learning [<span class="xrefLink" id="jumplink-ref178"></span><a href="javascript:;" reveal-id="ref178" data-open="ref178" class="link link-ref link-reveal xref-bibr">178</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>RFDT</td><td>Rotation Forest-based DTI prediction</td><td>A computational model based on the assumptions that the protein sequences are encoded as Position Specific Scoring Matrix (PSSM) [<span class="xrefLink" id="jumplink-ref160"></span><a href="javascript:;" reveal-id="ref160" data-open="ref160" class="link link-ref link-reveal xref-bibr">160</a>] descriptor and the drug molecules are encoded as fingerprint feature vector [<span class="xrefLink" id="jumplink-ref161"></span><a href="javascript:;" reveal-id="ref161" data-open="ref161" class="link link-ref link-reveal xref-bibr">161</a>].</td></tr><tr><td>DrugRPE</td><td></td><td>A random projection ensemble approach for based on the REPTree algorithm [<span class="xrefLink" id="jumplink-ref162"></span><a href="javascript:;" reveal-id="ref162" data-open="ref162" class="link link-ref link-reveal xref-bibr">162</a>] and using random projection [<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>, <span class="xrefLink" id="jumplink-ref162"></span><a href="javascript:;" reveal-id="ref162" data-open="ref162" class="link link-ref link-reveal xref-bibr">162</a>, <span class="xrefLink" id="jumplink-ref163"></span><a href="javascript:;" reveal-id="ref163" data-open="ref163" class="link link-ref link-reveal xref-bibr">163</a>, <span class="xrefLink" id="jumplink-ref163 ref164 ref165"></span><a href="javascript:;" reveal-id="ref163 ref164 ref165" data-open="ref163 ref164 ref165" class="link link-ref link-reveal xref-bibr">163–165</a>].</td></tr><tr><td>CGBVS</td><td>ChemoGenomics-Based Virtual Screening</td><td>A kernel-based state-of-the-art method using virtual screening (VS) [<span class="xrefLink" id="jumplink-ref89"></span><a href="javascript:;" reveal-id="ref89" data-open="ref89" class="link link-ref link-reveal xref-bibr">89</a>] and pairwise kernel method (PKM) [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>] [<span class="xrefLink" id="jumplink-ref166"></span><a href="javascript:;" reveal-id="ref166" data-open="ref166" class="link link-ref link-reveal xref-bibr">166</a>].</td></tr><tr><td></td><td>DASPfind</td><td>A computational DTI prediction method relying on the topological structure of the heterogeneous graph interaction model [<span class="xrefLink" id="jumplink-ref167"></span><a href="javascript:;" reveal-id="ref167" data-open="ref167" class="link link-ref link-reveal xref-bibr">167</a>].</td></tr><tr><td>SAR</td><td>Structure-Activity Relationship method</td><td>A screening of chemical compounds method for classification problem of DTIs using protein sequences and drug topological structures [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>, <span class="xrefLink" id="jumplink-ref168"></span><a href="javascript:;" reveal-id="ref168" data-open="ref168" class="link link-ref link-reveal xref-bibr">168</a>].</td></tr><tr><td>DVM</td><td>Discriminative Vector Machine</td><td>A classifier and a method by formulating the DTIs as an extended SAR classification problem [<span class="xrefLink" id="jumplink-ref169"></span><a href="javascript:;" reveal-id="ref169" data-open="ref169" class="link link-ref link-reveal xref-bibr">169</a>] (using principal component analysis (PCA) method [<span class="xrefLink" id="jumplink-ref170"></span><a href="javascript:;" reveal-id="ref170" data-open="ref170" class="link link-ref link-reveal xref-bibr">170</a>]).</td></tr><tr><td>EnsL</td><td>Ensemble Learning (with dimensionality reduction, or class imbalance-aware)</td><td>A framework predicts DTI based on average voting of its base classifiers: Decision Tree (EnsemDT) [<span class="xrefLink" id="jumplink-ref171 ref172 ref173"></span><a href="javascript:;" reveal-id="ref171 ref172 ref173" data-open="ref171 ref172 ref173" class="link link-ref link-reveal xref-bibr">171–173</a>] (based on Singular Value Decomposition (SVD), Partial Least Squares (PLS) [<span class="xrefLink" id="jumplink-ref174"></span><a href="javascript:;" reveal-id="ref174" data-open="ref174" class="link link-ref link-reveal xref-bibr">174</a>] and Laplacian Eigenmaps (LapEig) [<span class="xrefLink" id="jumplink-ref175"></span><a href="javascript:;" reveal-id="ref175" data-open="ref175" class="link link-ref link-reveal xref-bibr">175</a>]),Kernel Ridge Regression (EnsemKRR), Random Forest (EnsemRF) [<span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>], stacked (EnsemSTACK) [<span class="xrefLink" id="jumplink-ref176"></span><a href="javascript:;" reveal-id="ref176" data-open="ref176" class="link link-ref link-reveal xref-bibr">176</a>], DrugE-Rank [<span class="xrefLink" id="jumplink-ref177"></span><a href="javascript:;" reveal-id="ref177" data-open="ref177" class="link link-ref link-reveal xref-bibr">177</a>].</td></tr><tr><td>BE-DTI</td><td>Bagging-based Ensemble method</td><td>A bagging-based ensemble framework that involves dimensionality reduction and active learning [<span class="xrefLink" id="jumplink-ref178"></span><a href="javascript:;" reveal-id="ref178" data-open="ref178" class="link link-ref link-reveal xref-bibr">178</a>].</td></tr></tbody></table></div></div></div> <a id="225532422" scrollto-destination="225532422"></a> <div data-id="f3" data-content-id="f3" class="fig fig-section js-fig-section" swap-content-for-modal="true"><div class="graphic-wrap"><img class="content-image" src="https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f3.jpeg?Expires=1734462476&amp;Signature=qPcc1i5sYm7Z17QCf5a~WT11B204g5a9ajVMAd7hziK3bE8dQASCJwXxWSxOU12609Q9NZvyn8JeKKQgl--BIXO1Hh86KoIYGw56be9mQhGYnGuTsyOEg~Odal0Di8eW87kVZzPOtCDs8fhEvdWKgAYtb8GpBTyVbCXjByFRgnXXXNCRyDPe6q219CyX02wANQ6fqxfUC58MKJN3GvLgVqWSkH3pUffbB5UKlcSRhzHAYayuzDz~dkrza9VBJy1lalDNtXJpMz4lPhcp5YvV4TOPxpNx4uyTboZlJiK1BaVDJNQjcC31VXj1IgzuT4nCmO8JzsW~46gzoWGBWNUdxw__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" alt="Matrix factorization method." data-path-from-xml="bbz157f3.tif" /><div class="graphic-bottom"><div class="label fig-label" id="label-225532422"><strong>Figure 3</strong></div><div class="caption fig-caption"><p class="chapter-para">Matrix factorization method.</p></div><div class="ajax-articleAbstract-exclude-regex fig-orig original-slide figure-button-wrap"><a class="fig-view-orig js-view-large at-figureViewLarge openInAnotherWindow" role="button" aria-describedby="label-225532422" href="/view-large/figure/225532422/bbz157f3.tif" data-path-from-xml="bbz157f3.tif" target="_blank">Open in new tab</a><a class="download-slide" role="button" aria-describedby="label-225532422" data-section="225532422" href="/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/bbz157f3.jpeg?Expires=1734462476&Signature=H2h3d4-6aX69zEYqeXgKH71q2aDFCKTE3hYtq8e0NPY-xSlH3LSjqtLzLAxhV-HlE~yzFdFlT8abDpw0OSVPVDrL33L2-UiCOkw2zlUWyelZZluH0080jzg96bPJftxzd5ElrdRrfu0CiM3725nofgzkgRzD7hcDozq7DoItqOKN~xCJODq3SoWpsAKfzG5W9cT7InlChDZIFIpPIiVG3kTFzUagrWP3-O1gBajXgPNv1DQhmiFazpFAWYUotK1Ujivp0-J7Ethj6ky7vlwjmjGBM6QT-Hqjoepm2WC9aWrRKXgGRSka-N2thi7XEpPrOyUEGLlTd3VdY1tE0pxSSw__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA&sec=225532422&ar=5681786&xsltPath=~/UI/app/XSLT&imagename=&siteId=5143" data-path-from-xml="bbz157f3.tif">Download slide</a></div></div></div></div> <h3 scrollto-destination=225532423 id="225532423" class="section-title js-splitscreen-section-title" data-legacy-id=sec2e>2.5 Matrix factorization methods</h3> <div class="&#xA; block-child-p&#xA; ">The matrix factorization methods have been shown to outperform other groups of machine learning methods in the prediction of DTI. Given an interaction matrix <span class="inline-formula no-formula-id">|$X_{n\times m}$|⁠</span>, <div class="formula-wrap"><div class="disp-formula" id="jumplink-" content-id=""><div class="tex-math display-math">$$\begin{equation} X_{n\times m}= \begin{pmatrix} x_{11}&amp; \cdots &amp;x_{1m}\\ \vdots&amp; \vdots&amp;\vdots\\ x_{n1}&amp; \cdots &amp;x_{nm}, \end{pmatrix} \notag \end{equation}$$</div></div></div> for <span class="inline-formula no-formula-id">|$i=1:n$|</span> and <span class="inline-formula no-formula-id">|$j=1:m$|⁠</span>, one may define <div class="formula-wrap"><div class="disp-formula" id="jumplink-" content-id=""><div class="tex-math display-math">$$\begin{align*} x_{ij} &amp; =\begin{cases} 1 &amp; \textrm{if drug}\ d_{i}\ \textrm{and target}\ t_{j}\ \textrm{interact}\\ 0 &amp; \textrm{in the absence of any known interaction} \end{cases} \end{align*}$$</div></div></div>the primarily goal in DTI prediction is to decompose matrix <span class="inline-formula no-formula-id">|$X_{n\times m}$|</span> into two matrices, <span class="inline-formula no-formula-id">|$Y_{n\times k}$|</span> and <span class="inline-formula no-formula-id">|$Z_{m\times k}$|⁠</span>, where <span class="inline-formula no-formula-id">|$X\simeq Y Z^{T}$|</span> with <span class="inline-formula no-formula-id">|$k&lt;n,m$|</span> (Figure <span class="xrefLink" id="jumplink-f3"></span><a href="javascript:;" data-modal-source-id="f3" class="link xref-fig">3</a>). Here <span class="inline-formula no-formula-id">|$Z^T$|</span> denotes the transposed matrix of <span class="inline-formula no-formula-id">|$Z$|⁠</span>. This will factorize matrix <span class="inline-formula no-formula-id">|$X_{n\times m}$|</span> into two matrices with lower orders (i.e. rank reduction), which make it easier to perform the matrix completion techniques in order to handle the missing data.</div><p class="chapter-para">In contrast to most machine learning methods used for DTI prediction that need (2D) drug structural similarities, certain matrix factorization methods do not rely on chemical similarity or drug similarities and instead utilize collaborative filtering algorithms, among which one could name probabilistic matrix factorization (PMF) [<span class="xrefLink" id="jumplink-ref179"></span><a href="javascript:;" reveal-id="ref179" data-open="ref179" class="link link-ref link-reveal xref-bibr">179</a>]. Some other methods are inspired by the idea of low-rank embedding (LRE) [<span class="xrefLink" id="jumplink-ref180"></span><a href="javascript:;" reveal-id="ref180" data-open="ref180" class="link link-ref link-reveal xref-bibr">180</a>, <span class="xrefLink" id="jumplink-ref181"></span><a href="javascript:;" reveal-id="ref181" data-open="ref181" class="link link-ref link-reveal xref-bibr">181</a>] with the goal of finding a low-rank representation <span class="inline-formula no-formula-id">|$R$|</span> of the dataset <span class="inline-formula no-formula-id">|$X$|</span> by an optimization problem and then fixing <span class="inline-formula no-formula-id">|$R$|</span> and minimizing the reconstruction error in the embedded space in a way that the pointwise linear reconstruction (local structure of original samples) is preserved.</p><p class="chapter-para">In this group of methods, it is assumed that the drugs and targets are lying in the same distance space such that the distance among drugs and targets can be used to measure the strength of their interactions. Therefore, both drugs and targets can be embedded in a common low-dimensional subspace with some constraints.</p><p class="chapter-para">Although this group of methods has been shown to be more reliable than the others, rapid growth in the quantity and variety of data related to a certain drug and/or a target far exceeds the capacity of matrix-based data representations and many current analysis algorithms. A solution to this issue has been proposed in Section <span class="xrefLink" id="jumplink-sec4"></span><a href="#sec4" class="sectionLink xref-sec js-xref-sec">4</a>. In Table <span class="xrefLink" id="jumplink-TB5"></span><a href="javascript:;" reveal-id="TB5" data-open="TB5" class="link link-reveal link-table xref-fig">5</a>, the matrix factorization methods and the paper(s) in which they are proposed, developed and employed are listed.</p> <a id="225532428" scrollto-destination="225532428"></a> <div content-id="TB5" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB5" data-id="TB5"><span class="label title-label" id="label-26185">Table 5</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532428" aria-describedby="label-26185"> Open in new tab </a></div><div class="caption caption-id-" id="caption-26185"><p class="chapter-para">Matrix factorization methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-26185" aria-describedby="&#xA; caption-26185"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>MSCMF</td><td>Multiple Similarities one-Class Matrix Factorization</td><td>An approach to approximate the input DTI matrix by two low-rank matrices, which share the same feature space and are generated by the weighted similarity matrices of drugs and those of targets, respectively [<span class="xrefLink" id="jumplink-ref182"></span><a href="javascript:;" reveal-id="ref182" data-open="ref182" class="link link-ref link-reveal xref-bibr">182</a>] using [<span class="xrefLink" id="jumplink-ref183 ref184 ref185 ref186"></span><a href="javascript:;" reveal-id="ref183 ref184 ref185 ref186" data-open="ref183 ref184 ref185 ref186" class="link link-ref link-reveal xref-bibr">183–186</a>].</td></tr><tr><td>NRLMF</td><td>Neighborhood Regularized Logistic Matrix Factorization</td><td>A mode that integrates logistic matrix factorization with neighborhood regularization for DTI prediction [<span class="xrefLink" id="jumplink-ref187"></span><a href="javascript:;" reveal-id="ref187" data-open="ref187" class="link link-ref link-reveal xref-bibr">187</a>].</td></tr><tr><td>PMF</td><td>Probabilistic Matrix Factorization</td><td>A collaborative filtering method that decomposes the DT bipartite connectivity matrix as a product of two matrices of latent variables that will be used for prediction, irrespective of the drug or target similarities [<span class="xrefLink" id="jumplink-ref179"></span><a href="javascript:;" reveal-id="ref179" data-open="ref179" class="link link-ref link-reveal xref-bibr">179</a>].</td></tr><tr><td>DLGRMC</td><td>Dual Laplacian Graph Regularized Matrix Completion</td><td>An optimization framework for low-rank approximation of interaction matrix based on matrix completion in which drug similarity and target similarity are used as dual Laplacian graph regularization term [<span class="xrefLink" id="jumplink-ref188"></span><a href="javascript:;" reveal-id="ref188" data-open="ref188" class="link link-ref link-reveal xref-bibr">188</a>].</td></tr><tr><td>GRMF-WGRMF</td><td>Graph Regularized Matrix Factorization and Weighted GRMF</td><td>Two manifold learners for extracting low-dimensional non-linear manifolds of DTI bipartite graph [<span class="xrefLink" id="jumplink-ref189"></span><a href="javascript:;" reveal-id="ref189" data-open="ref189" class="link link-ref link-reveal xref-bibr">189</a>].</td></tr><tr><td>Pseudo-SMR</td><td>Pseudo Substitution Matrix Representation</td><td>An extension to SAR classification problem[<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>], employing a python package called <a class="link link-uri openInAnotherWindow" href="http://scikit-learn" target="_blank">scikit-learn</a> for machine learning to implement Extremely Randomized Tree (ER-Tree) introduced in [<span class="xrefLink" id="jumplink-ref190"></span><a href="javascript:;" reveal-id="ref190" data-open="ref190" class="link link-ref link-reveal xref-bibr">190</a>, <span class="xrefLink" id="jumplink-ref191"></span><a href="javascript:;" reveal-id="ref191" data-open="ref191" class="link link-ref link-reveal xref-bibr">191</a>].</td></tr><tr><td>BRDTI</td><td>Bayesian Ranking method</td><td>A method based on Bayesian Personalized Ranking matrix factorization (BPR) that incorporates target bias and content alignment for drug and target similarities [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>, <span class="xrefLink" id="jumplink-ref99"></span><a href="javascript:;" reveal-id="ref99" data-open="ref99" class="link link-ref link-reveal xref-bibr">99</a>, <span class="xrefLink" id="jumplink-ref192"></span><a href="javascript:;" reveal-id="ref192" data-open="ref192" class="link link-ref link-reveal xref-bibr">192</a>].</td></tr><tr><td>LRE, SLRE, MLRE</td><td>Low Rank Embedding</td><td>An algorithm of finding a low-rank representation (by optimization problem) and fixing and minimizing the reconstruction error in th embedded space in a way that the pointwise linear reconstruction (local structure of original samples) is preserved [<span class="xrefLink" id="jumplink-ref181"></span><a href="javascript:;" reveal-id="ref181" data-open="ref181" class="link link-ref link-reveal xref-bibr">181</a>]. LRE for an arbitrary view (structure or chemical) is called SLRE and for multiview is called MLRE [<span class="xrefLink" id="jumplink-ref180"></span><a href="javascript:;" reveal-id="ref180" data-open="ref180" class="link link-ref link-reveal xref-bibr">180</a>].</td></tr><tr><td>VB-MK-LMF</td><td>Variational Bayesian Multiple Kernel Logistic Matrix Factorization</td><td>A method integrating multiple kernel learning, weighted observations, graph Laplacian regularization and explicit modeling of probabilities of binary DTIs [<span class="xrefLink" id="jumplink-ref193"></span><a href="javascript:;" reveal-id="ref193" data-open="ref193" class="link link-ref link-reveal xref-bibr">193</a>].</td></tr><tr><td>KBMF, KBMF2K</td><td>Kernelized Bayesian Matrix Factorization</td><td>A method for factorizing the interaction score matrix in terms of kernel matrices (similarity matrices), which can be used as DTI predictors for new drugs and protein KBMF2K [<span class="xrefLink" id="jumplink-ref194"></span><a href="javascript:;" reveal-id="ref194" data-open="ref194" class="link link-ref link-reveal xref-bibr">194</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>MSCMF</td><td>Multiple Similarities one-Class Matrix Factorization</td><td>An approach to approximate the input DTI matrix by two low-rank matrices, which share the same feature space and are generated by the weighted similarity matrices of drugs and those of targets, respectively [<span class="xrefLink" id="jumplink-ref182"></span><a href="javascript:;" reveal-id="ref182" data-open="ref182" class="link link-ref link-reveal xref-bibr">182</a>] using [<span class="xrefLink" id="jumplink-ref183 ref184 ref185 ref186"></span><a href="javascript:;" reveal-id="ref183 ref184 ref185 ref186" data-open="ref183 ref184 ref185 ref186" class="link link-ref link-reveal xref-bibr">183–186</a>].</td></tr><tr><td>NRLMF</td><td>Neighborhood Regularized Logistic Matrix Factorization</td><td>A mode that integrates logistic matrix factorization with neighborhood regularization for DTI prediction [<span class="xrefLink" id="jumplink-ref187"></span><a href="javascript:;" reveal-id="ref187" data-open="ref187" class="link link-ref link-reveal xref-bibr">187</a>].</td></tr><tr><td>PMF</td><td>Probabilistic Matrix Factorization</td><td>A collaborative filtering method that decomposes the DT bipartite connectivity matrix as a product of two matrices of latent variables that will be used for prediction, irrespective of the drug or target similarities [<span class="xrefLink" id="jumplink-ref179"></span><a href="javascript:;" reveal-id="ref179" data-open="ref179" class="link link-ref link-reveal xref-bibr">179</a>].</td></tr><tr><td>DLGRMC</td><td>Dual Laplacian Graph Regularized Matrix Completion</td><td>An optimization framework for low-rank approximation of interaction matrix based on matrix completion in which drug similarity and target similarity are used as dual Laplacian graph regularization term [<span class="xrefLink" id="jumplink-ref188"></span><a href="javascript:;" reveal-id="ref188" data-open="ref188" class="link link-ref link-reveal xref-bibr">188</a>].</td></tr><tr><td>GRMF-WGRMF</td><td>Graph Regularized Matrix Factorization and Weighted GRMF</td><td>Two manifold learners for extracting low-dimensional non-linear manifolds of DTI bipartite graph [<span class="xrefLink" id="jumplink-ref189"></span><a href="javascript:;" reveal-id="ref189" data-open="ref189" class="link link-ref link-reveal xref-bibr">189</a>].</td></tr><tr><td>Pseudo-SMR</td><td>Pseudo Substitution Matrix Representation</td><td>An extension to SAR classification problem[<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>], employing a python package called <a class="link link-uri openInAnotherWindow" href="http://scikit-learn" target="_blank">scikit-learn</a> for machine learning to implement Extremely Randomized Tree (ER-Tree) introduced in [<span class="xrefLink" id="jumplink-ref190"></span><a href="javascript:;" reveal-id="ref190" data-open="ref190" class="link link-ref link-reveal xref-bibr">190</a>, <span class="xrefLink" id="jumplink-ref191"></span><a href="javascript:;" reveal-id="ref191" data-open="ref191" class="link link-ref link-reveal xref-bibr">191</a>].</td></tr><tr><td>BRDTI</td><td>Bayesian Ranking method</td><td>A method based on Bayesian Personalized Ranking matrix factorization (BPR) that incorporates target bias and content alignment for drug and target similarities [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>, <span class="xrefLink" id="jumplink-ref99"></span><a href="javascript:;" reveal-id="ref99" data-open="ref99" class="link link-ref link-reveal xref-bibr">99</a>, <span class="xrefLink" id="jumplink-ref192"></span><a href="javascript:;" reveal-id="ref192" data-open="ref192" class="link link-ref link-reveal xref-bibr">192</a>].</td></tr><tr><td>LRE, SLRE, MLRE</td><td>Low Rank Embedding</td><td>An algorithm of finding a low-rank representation (by optimization problem) and fixing and minimizing the reconstruction error in th embedded space in a way that the pointwise linear reconstruction (local structure of original samples) is preserved [<span class="xrefLink" id="jumplink-ref181"></span><a href="javascript:;" reveal-id="ref181" data-open="ref181" class="link link-ref link-reveal xref-bibr">181</a>]. LRE for an arbitrary view (structure or chemical) is called SLRE and for multiview is called MLRE [<span class="xrefLink" id="jumplink-ref180"></span><a href="javascript:;" reveal-id="ref180" data-open="ref180" class="link link-ref link-reveal xref-bibr">180</a>].</td></tr><tr><td>VB-MK-LMF</td><td>Variational Bayesian Multiple Kernel Logistic Matrix Factorization</td><td>A method integrating multiple kernel learning, weighted observations, graph Laplacian regularization and explicit modeling of probabilities of binary DTIs [<span class="xrefLink" id="jumplink-ref193"></span><a href="javascript:;" reveal-id="ref193" data-open="ref193" class="link link-ref link-reveal xref-bibr">193</a>].</td></tr><tr><td>KBMF, KBMF2K</td><td>Kernelized Bayesian Matrix Factorization</td><td>A method for factorizing the interaction score matrix in terms of kernel matrices (similarity matrices), which can be used as DTI predictors for new drugs and protein KBMF2K [<span class="xrefLink" id="jumplink-ref194"></span><a href="javascript:;" reveal-id="ref194" data-open="ref194" class="link link-ref link-reveal xref-bibr">194</a>].</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB5" data-id="TB5"><span class="label title-label" id="label-26185">Table 5</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532428" aria-describedby="label-26185"> Open in new tab </a></div><div class="caption caption-id-" id="caption-26185"><p class="chapter-para">Matrix factorization methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-26185" aria-describedby="&#xA; caption-26185"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>MSCMF</td><td>Multiple Similarities one-Class Matrix Factorization</td><td>An approach to approximate the input DTI matrix by two low-rank matrices, which share the same feature space and are generated by the weighted similarity matrices of drugs and those of targets, respectively [<span class="xrefLink" id="jumplink-ref182"></span><a href="javascript:;" reveal-id="ref182" data-open="ref182" class="link link-ref link-reveal xref-bibr">182</a>] using [<span class="xrefLink" id="jumplink-ref183 ref184 ref185 ref186"></span><a href="javascript:;" reveal-id="ref183 ref184 ref185 ref186" data-open="ref183 ref184 ref185 ref186" class="link link-ref link-reveal xref-bibr">183–186</a>].</td></tr><tr><td>NRLMF</td><td>Neighborhood Regularized Logistic Matrix Factorization</td><td>A mode that integrates logistic matrix factorization with neighborhood regularization for DTI prediction [<span class="xrefLink" id="jumplink-ref187"></span><a href="javascript:;" reveal-id="ref187" data-open="ref187" class="link link-ref link-reveal xref-bibr">187</a>].</td></tr><tr><td>PMF</td><td>Probabilistic Matrix Factorization</td><td>A collaborative filtering method that decomposes the DT bipartite connectivity matrix as a product of two matrices of latent variables that will be used for prediction, irrespective of the drug or target similarities [<span class="xrefLink" id="jumplink-ref179"></span><a href="javascript:;" reveal-id="ref179" data-open="ref179" class="link link-ref link-reveal xref-bibr">179</a>].</td></tr><tr><td>DLGRMC</td><td>Dual Laplacian Graph Regularized Matrix Completion</td><td>An optimization framework for low-rank approximation of interaction matrix based on matrix completion in which drug similarity and target similarity are used as dual Laplacian graph regularization term [<span class="xrefLink" id="jumplink-ref188"></span><a href="javascript:;" reveal-id="ref188" data-open="ref188" class="link link-ref link-reveal xref-bibr">188</a>].</td></tr><tr><td>GRMF-WGRMF</td><td>Graph Regularized Matrix Factorization and Weighted GRMF</td><td>Two manifold learners for extracting low-dimensional non-linear manifolds of DTI bipartite graph [<span class="xrefLink" id="jumplink-ref189"></span><a href="javascript:;" reveal-id="ref189" data-open="ref189" class="link link-ref link-reveal xref-bibr">189</a>].</td></tr><tr><td>Pseudo-SMR</td><td>Pseudo Substitution Matrix Representation</td><td>An extension to SAR classification problem[<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>], employing a python package called <a class="link link-uri openInAnotherWindow" href="http://scikit-learn" target="_blank">scikit-learn</a> for machine learning to implement Extremely Randomized Tree (ER-Tree) introduced in [<span class="xrefLink" id="jumplink-ref190"></span><a href="javascript:;" reveal-id="ref190" data-open="ref190" class="link link-ref link-reveal xref-bibr">190</a>, <span class="xrefLink" id="jumplink-ref191"></span><a href="javascript:;" reveal-id="ref191" data-open="ref191" class="link link-ref link-reveal xref-bibr">191</a>].</td></tr><tr><td>BRDTI</td><td>Bayesian Ranking method</td><td>A method based on Bayesian Personalized Ranking matrix factorization (BPR) that incorporates target bias and content alignment for drug and target similarities [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>, <span class="xrefLink" id="jumplink-ref99"></span><a href="javascript:;" reveal-id="ref99" data-open="ref99" class="link link-ref link-reveal xref-bibr">99</a>, <span class="xrefLink" id="jumplink-ref192"></span><a href="javascript:;" reveal-id="ref192" data-open="ref192" class="link link-ref link-reveal xref-bibr">192</a>].</td></tr><tr><td>LRE, SLRE, MLRE</td><td>Low Rank Embedding</td><td>An algorithm of finding a low-rank representation (by optimization problem) and fixing and minimizing the reconstruction error in th embedded space in a way that the pointwise linear reconstruction (local structure of original samples) is preserved [<span class="xrefLink" id="jumplink-ref181"></span><a href="javascript:;" reveal-id="ref181" data-open="ref181" class="link link-ref link-reveal xref-bibr">181</a>]. LRE for an arbitrary view (structure or chemical) is called SLRE and for multiview is called MLRE [<span class="xrefLink" id="jumplink-ref180"></span><a href="javascript:;" reveal-id="ref180" data-open="ref180" class="link link-ref link-reveal xref-bibr">180</a>].</td></tr><tr><td>VB-MK-LMF</td><td>Variational Bayesian Multiple Kernel Logistic Matrix Factorization</td><td>A method integrating multiple kernel learning, weighted observations, graph Laplacian regularization and explicit modeling of probabilities of binary DTIs [<span class="xrefLink" id="jumplink-ref193"></span><a href="javascript:;" reveal-id="ref193" data-open="ref193" class="link link-ref link-reveal xref-bibr">193</a>].</td></tr><tr><td>KBMF, KBMF2K</td><td>Kernelized Bayesian Matrix Factorization</td><td>A method for factorizing the interaction score matrix in terms of kernel matrices (similarity matrices), which can be used as DTI predictors for new drugs and protein KBMF2K [<span class="xrefLink" id="jumplink-ref194"></span><a href="javascript:;" reveal-id="ref194" data-open="ref194" class="link link-ref link-reveal xref-bibr">194</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>MSCMF</td><td>Multiple Similarities one-Class Matrix Factorization</td><td>An approach to approximate the input DTI matrix by two low-rank matrices, which share the same feature space and are generated by the weighted similarity matrices of drugs and those of targets, respectively [<span class="xrefLink" id="jumplink-ref182"></span><a href="javascript:;" reveal-id="ref182" data-open="ref182" class="link link-ref link-reveal xref-bibr">182</a>] using [<span class="xrefLink" id="jumplink-ref183 ref184 ref185 ref186"></span><a href="javascript:;" reveal-id="ref183 ref184 ref185 ref186" data-open="ref183 ref184 ref185 ref186" class="link link-ref link-reveal xref-bibr">183–186</a>].</td></tr><tr><td>NRLMF</td><td>Neighborhood Regularized Logistic Matrix Factorization</td><td>A mode that integrates logistic matrix factorization with neighborhood regularization for DTI prediction [<span class="xrefLink" id="jumplink-ref187"></span><a href="javascript:;" reveal-id="ref187" data-open="ref187" class="link link-ref link-reveal xref-bibr">187</a>].</td></tr><tr><td>PMF</td><td>Probabilistic Matrix Factorization</td><td>A collaborative filtering method that decomposes the DT bipartite connectivity matrix as a product of two matrices of latent variables that will be used for prediction, irrespective of the drug or target similarities [<span class="xrefLink" id="jumplink-ref179"></span><a href="javascript:;" reveal-id="ref179" data-open="ref179" class="link link-ref link-reveal xref-bibr">179</a>].</td></tr><tr><td>DLGRMC</td><td>Dual Laplacian Graph Regularized Matrix Completion</td><td>An optimization framework for low-rank approximation of interaction matrix based on matrix completion in which drug similarity and target similarity are used as dual Laplacian graph regularization term [<span class="xrefLink" id="jumplink-ref188"></span><a href="javascript:;" reveal-id="ref188" data-open="ref188" class="link link-ref link-reveal xref-bibr">188</a>].</td></tr><tr><td>GRMF-WGRMF</td><td>Graph Regularized Matrix Factorization and Weighted GRMF</td><td>Two manifold learners for extracting low-dimensional non-linear manifolds of DTI bipartite graph [<span class="xrefLink" id="jumplink-ref189"></span><a href="javascript:;" reveal-id="ref189" data-open="ref189" class="link link-ref link-reveal xref-bibr">189</a>].</td></tr><tr><td>Pseudo-SMR</td><td>Pseudo Substitution Matrix Representation</td><td>An extension to SAR classification problem[<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>], employing a python package called <a class="link link-uri openInAnotherWindow" href="http://scikit-learn" target="_blank">scikit-learn</a> for machine learning to implement Extremely Randomized Tree (ER-Tree) introduced in [<span class="xrefLink" id="jumplink-ref190"></span><a href="javascript:;" reveal-id="ref190" data-open="ref190" class="link link-ref link-reveal xref-bibr">190</a>, <span class="xrefLink" id="jumplink-ref191"></span><a href="javascript:;" reveal-id="ref191" data-open="ref191" class="link link-ref link-reveal xref-bibr">191</a>].</td></tr><tr><td>BRDTI</td><td>Bayesian Ranking method</td><td>A method based on Bayesian Personalized Ranking matrix factorization (BPR) that incorporates target bias and content alignment for drug and target similarities [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>, <span class="xrefLink" id="jumplink-ref99"></span><a href="javascript:;" reveal-id="ref99" data-open="ref99" class="link link-ref link-reveal xref-bibr">99</a>, <span class="xrefLink" id="jumplink-ref192"></span><a href="javascript:;" reveal-id="ref192" data-open="ref192" class="link link-ref link-reveal xref-bibr">192</a>].</td></tr><tr><td>LRE, SLRE, MLRE</td><td>Low Rank Embedding</td><td>An algorithm of finding a low-rank representation (by optimization problem) and fixing and minimizing the reconstruction error in th embedded space in a way that the pointwise linear reconstruction (local structure of original samples) is preserved [<span class="xrefLink" id="jumplink-ref181"></span><a href="javascript:;" reveal-id="ref181" data-open="ref181" class="link link-ref link-reveal xref-bibr">181</a>]. LRE for an arbitrary view (structure or chemical) is called SLRE and for multiview is called MLRE [<span class="xrefLink" id="jumplink-ref180"></span><a href="javascript:;" reveal-id="ref180" data-open="ref180" class="link link-ref link-reveal xref-bibr">180</a>].</td></tr><tr><td>VB-MK-LMF</td><td>Variational Bayesian Multiple Kernel Logistic Matrix Factorization</td><td>A method integrating multiple kernel learning, weighted observations, graph Laplacian regularization and explicit modeling of probabilities of binary DTIs [<span class="xrefLink" id="jumplink-ref193"></span><a href="javascript:;" reveal-id="ref193" data-open="ref193" class="link link-ref link-reveal xref-bibr">193</a>].</td></tr><tr><td>KBMF, KBMF2K</td><td>Kernelized Bayesian Matrix Factorization</td><td>A method for factorizing the interaction score matrix in terms of kernel matrices (similarity matrices), which can be used as DTI predictors for new drugs and protein KBMF2K [<span class="xrefLink" id="jumplink-ref194"></span><a href="javascript:;" reveal-id="ref194" data-open="ref194" class="link link-ref link-reveal xref-bibr">194</a>].</td></tr></tbody></table></div></div></div> <h3 scrollto-destination=225532429 id="225532429" class="section-title js-splitscreen-section-title" data-legacy-id=sec2f>2.6 Network-based methods</h3> <p class="chapter-para">The network-based methods refer to those that utilize graph-based techniques in order to perform the task of DTI prediction (Figure <span class="xrefLink" id="jumplink-f4"></span><a href="javascript:;" data-modal-source-id="f4" class="link xref-fig">4</a>). Among the methods is network-based inference (NBI) for DTI prediction, which is among the simplest yet most reliable inference methods and uses only DT bipartite network topology similarity [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>].</p> <a id="225532431" scrollto-destination="225532431"></a> <div data-id="f4" data-content-id="f4" class="fig fig-section js-fig-section" swap-content-for-modal="true"><div class="graphic-wrap"><img class="content-image" src="https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f4.jpeg?Expires=1734462476&amp;Signature=0OdGfLioYXXZDkRAAWP9RTy5AdcQmIvSK5u9viRwDT81r5uccMiAds8HsodtTdcC-RsHTPf3RT7Wyl95Uz~zhnLs8pR0yqWNqtzCOLsGPzFvGBOvoVEEt49MDCgqxo4Zr8-8s5bbsV6cxov90pHwUTAglMXm6XXlV-01wIISN6~zd~5HjwcO6~hfqSYqJeSUqiJ1MJQb6kyiCbHnsVOO-dWxntKxjK-cHezGZ2NwkyHRE5wOlBaTrO05VVwunAiHZV7F5uRbv-PFDDb0TC5wRPByy6i97U6S2MlFScVJjxHe1Nmx1aqaykKnFb7x93xc400AjVql0738ZlFto4IO1w__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" alt="Drug–target interaction heterogeneous network." data-path-from-xml="bbz157f4.tif" /><div class="graphic-bottom"><div class="label fig-label" id="label-225532431"><strong>Figure 4</strong></div><div class="caption fig-caption"><p class="chapter-para">Drug–target interaction heterogeneous network.</p></div><div class="ajax-articleAbstract-exclude-regex fig-orig original-slide figure-button-wrap"><a class="fig-view-orig js-view-large at-figureViewLarge openInAnotherWindow" role="button" aria-describedby="label-225532431" href="/view-large/figure/225532431/bbz157f4.tif" data-path-from-xml="bbz157f4.tif" target="_blank">Open in new tab</a><a class="download-slide" role="button" aria-describedby="label-225532431" data-section="225532431" href="/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/bbz157f4.jpeg?Expires=1734462476&Signature=j~kDVS4W-k~wnoWzeaIU6-1sIiBEkVbnqd-Dt3HnxSFaZPQYstjk14AVeeuEPrQ1OGE-tuGQnozjKkQz4Bv4quFBhzqLZkCmkh22-qPGYO1MHOfzP1DlKp~f5MHBF2v3Vh7m2v7TVs~Y1a5aBN-c6pIlYLGndPYMempXu-WjvPHgnaIRJf0Mhnbmdn7m9T3WdWuMvx0u2qdIMyxlHFc0p~cI0NCA-R4Ry2yX~m6jOSqtSa6F2GK93-FahmRmkqX04L4asjAOi29cA0HTELtoQQ~elXq8POTJsN3MbYyl9L6WHI5wZEjmtKXouo0DMpVkpov6QFXOIjkof58kzNrvDA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA&sec=225532431&ar=5681786&xsltPath=~/UI/app/XSLT&imagename=&siteId=5143" data-path-from-xml="bbz157f4.tif">Download slide</a></div></div></div></div><p class="chapter-para">Moreover, in certain methods three networks of protein–protein similarity, drug–drug similarity and known DTIs are integrated into a heterogeneous network and assumed similar drugs often target similar proteins [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>, <span class="xrefLink" id="jumplink-ref203"></span><a href="javascript:;" reveal-id="ref203" data-open="ref203" class="link link-ref link-reveal xref-bibr">203</a>]. A two-layer undirected graphical representation of the network could also be adopted in order to train to predict direct DTIs (usually caused by protein–ligand binding), indirect DTIs and drug mode of actions (binding interaction, activation interaction and inhibition interaction) in addition to performing the DTI prediction task. A pertinent example is proposed in [<span class="xrefLink" id="jumplink-ref204"></span><a href="javascript:;" reveal-id="ref204" data-open="ref204" class="link link-ref link-reveal xref-bibr">204</a>] using Restricted Boltzmann Machine (RBM) [<span class="xrefLink" id="jumplink-ref123"></span><a href="javascript:;" reveal-id="ref123" data-open="ref123" class="link link-ref link-reveal xref-bibr">123</a>]. A list of network-based methods with a short description for each method is provided in Table <span class="xrefLink" id="jumplink-TB6"></span><a href="javascript:;" reveal-id="TB6" data-open="TB6" class="link link-reveal link-table xref-fig">6</a>.</p> <a id="225532433" scrollto-destination="225532433"></a> <div content-id="TB6" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB6" data-id="TB6"><span class="label title-label" id="label-97946">Table 6</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532433" aria-describedby="label-97946"> Open in new tab </a></div><div class="caption caption-id-" id="caption-97946"><p class="chapter-para">Network-based methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-97946" aria-describedby="&#xA; caption-97946"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>NBI</td><td>Network-Based Inference</td><td>A method based on DT bipartite network topology similarity [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>].</td></tr><tr><td>NRWRH</td><td>Network-based Random Walk with Restart on the Heterogeneous network</td><td>A method based on the framework of RWR to infer potential DTIs on a bipartite graph network [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>].</td></tr><tr><td>NetCBP</td><td>Network-Consistency-based Prediction Method</td><td>A semi-supervised inference method, utilizing both labeled and unlabeled data [<span class="xrefLink" id="jumplink-ref111"></span><a href="javascript:;" reveal-id="ref111" data-open="ref111" class="link link-ref link-reveal xref-bibr">111</a>].</td></tr><tr><td>DTINet</td><td></td><td>A computational network integration pipeline for DTI prediction [<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>].</td></tr><tr><td>IN-RWR</td><td>inter/intra-network RWR or Co-rank</td><td>Two network prediction methods based on Co-rank algorithm that involves RWR on bipartite graph [<span class="xrefLink" id="jumplink-ref198"></span><a href="javascript:;" reveal-id="ref198" data-open="ref198" class="link link-ref link-reveal xref-bibr">198</a>].</td></tr><tr><td></td><td>NormMulInf</td><td>A method based on collaborative filtering that incorporates multiple available data sources related to drugs and targets can improve DTI prediction performance [<span class="xrefLink" id="jumplink-ref199"></span><a href="javascript:;" reveal-id="ref199" data-open="ref199" class="link link-ref link-reveal xref-bibr">199</a>] using robust PCA [<span class="xrefLink" id="jumplink-ref200"></span><a href="javascript:;" reveal-id="ref200" data-open="ref200" class="link link-ref link-reveal xref-bibr">200</a>].</td></tr><tr><td>NRLMF<span class="inline-formula no-formula-id">|$\beta $|</span></td><td>Beta-distribution-rescored NRLMF</td><td>An improved NRLMF algorithm that rescores the score of NRLMF as the expected value of the <span class="inline-formula no-formula-id">|$\beta $|</span>-distribution, which is determined based on interaction information and NRLMF score. [<span class="xrefLink" id="jumplink-ref201"></span><a href="javascript:;" reveal-id="ref201" data-open="ref201" class="link link-ref link-reveal xref-bibr">201</a>].</td></tr><tr><td>RWR</td><td>Random Walk with Restart</td><td>A method that requires a matrix inversion and provides a good relevance score between two nodes in a weighted graph of DTIs [<span class="xrefLink" id="jumplink-ref202"></span><a href="javascript:;" reveal-id="ref202" data-open="ref202" class="link link-ref link-reveal xref-bibr">202</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>NBI</td><td>Network-Based Inference</td><td>A method based on DT bipartite network topology similarity [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>].</td></tr><tr><td>NRWRH</td><td>Network-based Random Walk with Restart on the Heterogeneous network</td><td>A method based on the framework of RWR to infer potential DTIs on a bipartite graph network [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>].</td></tr><tr><td>NetCBP</td><td>Network-Consistency-based Prediction Method</td><td>A semi-supervised inference method, utilizing both labeled and unlabeled data [<span class="xrefLink" id="jumplink-ref111"></span><a href="javascript:;" reveal-id="ref111" data-open="ref111" class="link link-ref link-reveal xref-bibr">111</a>].</td></tr><tr><td>DTINet</td><td></td><td>A computational network integration pipeline for DTI prediction [<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>].</td></tr><tr><td>IN-RWR</td><td>inter/intra-network RWR or Co-rank</td><td>Two network prediction methods based on Co-rank algorithm that involves RWR on bipartite graph [<span class="xrefLink" id="jumplink-ref198"></span><a href="javascript:;" reveal-id="ref198" data-open="ref198" class="link link-ref link-reveal xref-bibr">198</a>].</td></tr><tr><td></td><td>NormMulInf</td><td>A method based on collaborative filtering that incorporates multiple available data sources related to drugs and targets can improve DTI prediction performance [<span class="xrefLink" id="jumplink-ref199"></span><a href="javascript:;" reveal-id="ref199" data-open="ref199" class="link link-ref link-reveal xref-bibr">199</a>] using robust PCA [<span class="xrefLink" id="jumplink-ref200"></span><a href="javascript:;" reveal-id="ref200" data-open="ref200" class="link link-ref link-reveal xref-bibr">200</a>].</td></tr><tr><td>NRLMF<span class="inline-formula no-formula-id">|$\beta $|</span></td><td>Beta-distribution-rescored NRLMF</td><td>An improved NRLMF algorithm that rescores the score of NRLMF as the expected value of the <span class="inline-formula no-formula-id">|$\beta $|</span>-distribution, which is determined based on interaction information and NRLMF score. [<span class="xrefLink" id="jumplink-ref201"></span><a href="javascript:;" reveal-id="ref201" data-open="ref201" class="link link-ref link-reveal xref-bibr">201</a>].</td></tr><tr><td>RWR</td><td>Random Walk with Restart</td><td>A method that requires a matrix inversion and provides a good relevance score between two nodes in a weighted graph of DTIs [<span class="xrefLink" id="jumplink-ref202"></span><a href="javascript:;" reveal-id="ref202" data-open="ref202" class="link link-ref link-reveal xref-bibr">202</a>].</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB6" data-id="TB6"><span class="label title-label" id="label-97946">Table 6</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532433" aria-describedby="label-97946"> Open in new tab </a></div><div class="caption caption-id-" id="caption-97946"><p class="chapter-para">Network-based methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-97946" aria-describedby="&#xA; caption-97946"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>NBI</td><td>Network-Based Inference</td><td>A method based on DT bipartite network topology similarity [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>].</td></tr><tr><td>NRWRH</td><td>Network-based Random Walk with Restart on the Heterogeneous network</td><td>A method based on the framework of RWR to infer potential DTIs on a bipartite graph network [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>].</td></tr><tr><td>NetCBP</td><td>Network-Consistency-based Prediction Method</td><td>A semi-supervised inference method, utilizing both labeled and unlabeled data [<span class="xrefLink" id="jumplink-ref111"></span><a href="javascript:;" reveal-id="ref111" data-open="ref111" class="link link-ref link-reveal xref-bibr">111</a>].</td></tr><tr><td>DTINet</td><td></td><td>A computational network integration pipeline for DTI prediction [<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>].</td></tr><tr><td>IN-RWR</td><td>inter/intra-network RWR or Co-rank</td><td>Two network prediction methods based on Co-rank algorithm that involves RWR on bipartite graph [<span class="xrefLink" id="jumplink-ref198"></span><a href="javascript:;" reveal-id="ref198" data-open="ref198" class="link link-ref link-reveal xref-bibr">198</a>].</td></tr><tr><td></td><td>NormMulInf</td><td>A method based on collaborative filtering that incorporates multiple available data sources related to drugs and targets can improve DTI prediction performance [<span class="xrefLink" id="jumplink-ref199"></span><a href="javascript:;" reveal-id="ref199" data-open="ref199" class="link link-ref link-reveal xref-bibr">199</a>] using robust PCA [<span class="xrefLink" id="jumplink-ref200"></span><a href="javascript:;" reveal-id="ref200" data-open="ref200" class="link link-ref link-reveal xref-bibr">200</a>].</td></tr><tr><td>NRLMF<span class="inline-formula no-formula-id">|$\beta $|</span></td><td>Beta-distribution-rescored NRLMF</td><td>An improved NRLMF algorithm that rescores the score of NRLMF as the expected value of the <span class="inline-formula no-formula-id">|$\beta $|</span>-distribution, which is determined based on interaction information and NRLMF score. [<span class="xrefLink" id="jumplink-ref201"></span><a href="javascript:;" reveal-id="ref201" data-open="ref201" class="link link-ref link-reveal xref-bibr">201</a>].</td></tr><tr><td>RWR</td><td>Random Walk with Restart</td><td>A method that requires a matrix inversion and provides a good relevance score between two nodes in a weighted graph of DTIs [<span class="xrefLink" id="jumplink-ref202"></span><a href="javascript:;" reveal-id="ref202" data-open="ref202" class="link link-ref link-reveal xref-bibr">202</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>NBI</td><td>Network-Based Inference</td><td>A method based on DT bipartite network topology similarity [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>].</td></tr><tr><td>NRWRH</td><td>Network-based Random Walk with Restart on the Heterogeneous network</td><td>A method based on the framework of RWR to infer potential DTIs on a bipartite graph network [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>].</td></tr><tr><td>NetCBP</td><td>Network-Consistency-based Prediction Method</td><td>A semi-supervised inference method, utilizing both labeled and unlabeled data [<span class="xrefLink" id="jumplink-ref111"></span><a href="javascript:;" reveal-id="ref111" data-open="ref111" class="link link-ref link-reveal xref-bibr">111</a>].</td></tr><tr><td>DTINet</td><td></td><td>A computational network integration pipeline for DTI prediction [<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>].</td></tr><tr><td>IN-RWR</td><td>inter/intra-network RWR or Co-rank</td><td>Two network prediction methods based on Co-rank algorithm that involves RWR on bipartite graph [<span class="xrefLink" id="jumplink-ref198"></span><a href="javascript:;" reveal-id="ref198" data-open="ref198" class="link link-ref link-reveal xref-bibr">198</a>].</td></tr><tr><td></td><td>NormMulInf</td><td>A method based on collaborative filtering that incorporates multiple available data sources related to drugs and targets can improve DTI prediction performance [<span class="xrefLink" id="jumplink-ref199"></span><a href="javascript:;" reveal-id="ref199" data-open="ref199" class="link link-ref link-reveal xref-bibr">199</a>] using robust PCA [<span class="xrefLink" id="jumplink-ref200"></span><a href="javascript:;" reveal-id="ref200" data-open="ref200" class="link link-ref link-reveal xref-bibr">200</a>].</td></tr><tr><td>NRLMF<span class="inline-formula no-formula-id">|$\beta $|</span></td><td>Beta-distribution-rescored NRLMF</td><td>An improved NRLMF algorithm that rescores the score of NRLMF as the expected value of the <span class="inline-formula no-formula-id">|$\beta $|</span>-distribution, which is determined based on interaction information and NRLMF score. [<span class="xrefLink" id="jumplink-ref201"></span><a href="javascript:;" reveal-id="ref201" data-open="ref201" class="link link-ref link-reveal xref-bibr">201</a>].</td></tr><tr><td>RWR</td><td>Random Walk with Restart</td><td>A method that requires a matrix inversion and provides a good relevance score between two nodes in a weighted graph of DTIs [<span class="xrefLink" id="jumplink-ref202"></span><a href="javascript:;" reveal-id="ref202" data-open="ref202" class="link link-ref link-reveal xref-bibr">202</a>].</td></tr></tbody></table></div></div></div> <h3 scrollto-destination=225532434 id="225532434" class="section-title js-splitscreen-section-title" data-legacy-id=sec2g>2.7 Hybrid methods</h3> <p class="chapter-para">Hybrid methods refer to all the approaches in which any combination of the feature-based, matrix factorization, deep learning and network-based methods are exploited. This can extend the capability of a prediction algorithm by integrating different sets of information. The hybrid methods in general serve two purposes; they address the problems of unknown interaction in DTIs as well as taking the most advantage of machine learning methods, simultaneously. For instance, authors in [<span class="xrefLink" id="jumplink-ref177"></span><a href="javascript:;" reveal-id="ref177" data-open="ref177" class="link link-ref link-reveal xref-bibr">177</a>] proposed a method integrating feature-based and similarity-based machine learning approaches [<span class="xrefLink" id="jumplink-ref205"></span><a href="javascript:;" reveal-id="ref205" data-open="ref205" class="link link-ref link-reveal xref-bibr">205</a>, <span class="xrefLink" id="jumplink-ref206"></span><a href="javascript:;" reveal-id="ref206" data-open="ref206" class="link link-ref link-reveal xref-bibr">206</a>]. The hybrid methods performed superior to other state-of-the-art methods by optimizing the feature extraction process by extracting the complex hidden features of drugs and targets [<span class="xrefLink" id="jumplink-ref134"></span><a href="javascript:;" reveal-id="ref134" data-open="ref134" class="link link-ref link-reveal xref-bibr">134</a>, <span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>, <span class="xrefLink" id="jumplink-ref172"></span><a href="javascript:;" reveal-id="ref172" data-open="ref172" class="link link-ref link-reveal xref-bibr">172</a>, <span class="xrefLink" id="jumplink-ref173"></span><a href="javascript:;" reveal-id="ref173" data-open="ref173" class="link link-ref link-reveal xref-bibr">173</a>, <span class="xrefLink" id="jumplink-ref182"></span><a href="javascript:;" reveal-id="ref182" data-open="ref182" class="link link-ref link-reveal xref-bibr">182</a>, <span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>, <span class="xrefLink" id="jumplink-ref201"></span><a href="javascript:;" reveal-id="ref201" data-open="ref201" class="link link-ref link-reveal xref-bibr">201</a>, <span class="xrefLink" id="jumplink-ref207"></span><a href="javascript:;" reveal-id="ref207" data-open="ref207" class="link link-ref link-reveal xref-bibr">207</a>, <span class="xrefLink" id="jumplink-ref208"></span><a href="javascript:;" reveal-id="ref208" data-open="ref208" class="link link-ref link-reveal xref-bibr">208</a>]. Integrating two machine learning methods in DTI prediction often has a leverage in terms of results as they fully exploit the potential of two methods, simultaneously. However, one should be able to deal with the high complexity (either computational or operational) caused by integrating two groups of methods. A short description of such methods are listed in Table <span class="xrefLink" id="jumplink-TB7"></span><a href="javascript:;" reveal-id="TB7" data-open="TB7" class="link link-reveal link-table xref-fig">7</a>.</p> <a id="225532436" scrollto-destination="225532436"></a> <div content-id="TB7" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB7" data-id="TB7"><span class="label title-label" id="label-97946">Table 7</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532436" aria-describedby="label-97946"> Open in new tab </a></div><div class="caption caption-id-" id="caption-97946"><p class="chapter-para">Hybrid methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-97946" aria-describedby="&#xA; caption-97946"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>DT-Hybrid</td><td>Domain tuned-hybrid</td><td>An extended NBI technique that incorporates domain-based knowledge such as drug similarities and target similarities [<span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>] (also look [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>, <span class="xrefLink" id="jumplink-ref210"></span><a href="javascript:;" reveal-id="ref210" data-open="ref210" class="link link-ref link-reveal xref-bibr">210</a>, <span class="xrefLink" id="jumplink-ref210"></span><a href="javascript:;" reveal-id="ref210" data-open="ref210" class="link link-ref link-reveal xref-bibr">210</a>, <span class="xrefLink" id="jumplink-ref211"></span><a href="javascript:;" reveal-id="ref211" data-open="ref211" class="link link-ref link-reveal xref-bibr">211</a>, <span class="xrefLink" id="jumplink-ref211"></span><a href="javascript:;" reveal-id="ref211" data-open="ref211" class="link link-ref link-reveal xref-bibr">211</a>?? ] for extension of the capability of recommender systems).</td></tr><tr><td>KMDR</td><td>Kernel Matrix Dimension Reduction</td><td>A framework for construction of link similarity matrix from kernel matrix and feature transformation for DTI prediction [<span class="xrefLink" id="jumplink-ref208"></span><a href="javascript:;" reveal-id="ref208" data-open="ref208" class="link link-ref link-reveal xref-bibr">208</a>].</td></tr><tr><td>MGRNNM, DGRMC</td><td>Multi Graph Regularized Nuclear Norm Minimization</td><td>A computational method that adds multiple drug–graph and target–graph Laplacian regularization terms to the standard matrix completion framework to predict DTIs [<span class="xrefLink" id="jumplink-ref212"></span><a href="javascript:;" reveal-id="ref212" data-open="ref212" class="link link-ref link-reveal xref-bibr">212</a>, <span class="xrefLink" id="jumplink-ref213"></span><a href="javascript:;" reveal-id="ref213" data-open="ref213" class="link link-ref link-reveal xref-bibr">213</a>].</td></tr><tr><td>WLNM</td><td>Weisfeiler-Lehman Neural Machine</td><td>An algorithm for extraction of the adjacency matrix that represents the interactions between potential drugs and targets [<span class="xrefLink" id="jumplink-ref214"></span><a href="javascript:;" reveal-id="ref214" data-open="ref214" class="link link-ref link-reveal xref-bibr">214</a>].</td></tr><tr><td>PDTPS</td><td>Predicting Drug Targets with Protein Sequence</td><td>A framework based on Relevance Vector Machine that integrates Bi-gram probabilities, PSSM and PCA [<span class="xrefLink" id="jumplink-ref215"></span><a href="javascript:;" reveal-id="ref215" data-open="ref215" class="link link-ref link-reveal xref-bibr">215</a>].</td></tr><tr><td></td><td><span class="inline-formula no-formula-id">|$L_{1}$|</span>-regularized Classifier</td><td>A regularized classifiers over the tensor product space of DT pairs for extracting informative and biologically meaningful features for DTI prediction [<span class="xrefLink" id="jumplink-ref216"></span><a href="javascript:;" reveal-id="ref216" data-open="ref216" class="link link-ref link-reveal xref-bibr">216</a>].</td></tr><tr><td>RBM</td><td>Restricted Boltzmann Machine</td><td>A two-layer undirected graphical model to represent a multidimensional DTI network and encode different types of DTIs [<span class="xrefLink" id="jumplink-ref204"></span><a href="javascript:;" reveal-id="ref204" data-open="ref204" class="link link-ref link-reveal xref-bibr">204</a>].</td></tr><tr><td>LRF-DTI</td><td>Lasso-based Random Forest method</td><td>A method of DTI prediction based on Lasso dimensionality reduction and random forest predictor [<span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>].</td></tr><tr><td>COSINE</td><td>COld Start INtEractions</td><td>A statistical dual-regularized, one-class collaborative filtering method [<span class="xrefLink" id="jumplink-ref217"></span><a href="javascript:;" reveal-id="ref217" data-open="ref217" class="link link-ref link-reveal xref-bibr">217</a>] framework and a corresponding computational method for multi-target virtual screening using one-class collaborative filtering technique that can employ either logistic or linear factorization [<span class="xrefLink" id="jumplink-ref218"></span><a href="javascript:;" reveal-id="ref218" data-open="ref218" class="link link-ref link-reveal xref-bibr">218</a>].</td></tr><tr><td>DMF</td><td>Deep Matrix Factorization</td><td>A deep learning approach in the context of recommendation systems to extract the non-linearity of latent variables [<span class="xrefLink" id="jumplink-ref219"></span><a href="javascript:;" reveal-id="ref219" data-open="ref219" class="link link-ref link-reveal xref-bibr">219</a>] (DMF was originally introduced in [<span class="xrefLink" id="jumplink-ref220"></span><a href="javascript:;" reveal-id="ref220" data-open="ref220" class="link link-ref link-reveal xref-bibr">220</a>] as a deep learning method in the context of recommendation systems to extract the non-linearity of latent variables).</td></tr><tr><td>CoDe-DTI</td><td>COllaborative DEep learning-based DTI predictor</td><td>A method using both PMF and a denoising autoencoder [<span class="xrefLink" id="jumplink-ref221"></span><a href="javascript:;" reveal-id="ref221" data-open="ref221" class="link link-ref link-reveal xref-bibr">221</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>DT-Hybrid</td><td>Domain tuned-hybrid</td><td>An extended NBI technique that incorporates domain-based knowledge such as drug similarities and target similarities [<span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>] (also look [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>, <span class="xrefLink" id="jumplink-ref210"></span><a href="javascript:;" reveal-id="ref210" data-open="ref210" class="link link-ref link-reveal xref-bibr">210</a>, <span class="xrefLink" id="jumplink-ref210"></span><a href="javascript:;" reveal-id="ref210" data-open="ref210" class="link link-ref link-reveal xref-bibr">210</a>, <span class="xrefLink" id="jumplink-ref211"></span><a href="javascript:;" reveal-id="ref211" data-open="ref211" class="link link-ref link-reveal xref-bibr">211</a>, <span class="xrefLink" id="jumplink-ref211"></span><a href="javascript:;" reveal-id="ref211" data-open="ref211" class="link link-ref link-reveal xref-bibr">211</a>?? ] for extension of the capability of recommender systems).</td></tr><tr><td>KMDR</td><td>Kernel Matrix Dimension Reduction</td><td>A framework for construction of link similarity matrix from kernel matrix and feature transformation for DTI prediction [<span class="xrefLink" id="jumplink-ref208"></span><a href="javascript:;" reveal-id="ref208" data-open="ref208" class="link link-ref link-reveal xref-bibr">208</a>].</td></tr><tr><td>MGRNNM, DGRMC</td><td>Multi Graph Regularized Nuclear Norm Minimization</td><td>A computational method that adds multiple drug–graph and target–graph Laplacian regularization terms to the standard matrix completion framework to predict DTIs [<span class="xrefLink" id="jumplink-ref212"></span><a href="javascript:;" reveal-id="ref212" data-open="ref212" class="link link-ref link-reveal xref-bibr">212</a>, <span class="xrefLink" id="jumplink-ref213"></span><a href="javascript:;" reveal-id="ref213" data-open="ref213" class="link link-ref link-reveal xref-bibr">213</a>].</td></tr><tr><td>WLNM</td><td>Weisfeiler-Lehman Neural Machine</td><td>An algorithm for extraction of the adjacency matrix that represents the interactions between potential drugs and targets [<span class="xrefLink" id="jumplink-ref214"></span><a href="javascript:;" reveal-id="ref214" data-open="ref214" class="link link-ref link-reveal xref-bibr">214</a>].</td></tr><tr><td>PDTPS</td><td>Predicting Drug Targets with Protein Sequence</td><td>A framework based on Relevance Vector Machine that integrates Bi-gram probabilities, PSSM and PCA [<span class="xrefLink" id="jumplink-ref215"></span><a href="javascript:;" reveal-id="ref215" data-open="ref215" class="link link-ref link-reveal xref-bibr">215</a>].</td></tr><tr><td></td><td><span class="inline-formula no-formula-id">|$L_{1}$|</span>-regularized Classifier</td><td>A regularized classifiers over the tensor product space of DT pairs for extracting informative and biologically meaningful features for DTI prediction [<span class="xrefLink" id="jumplink-ref216"></span><a href="javascript:;" reveal-id="ref216" data-open="ref216" class="link link-ref link-reveal xref-bibr">216</a>].</td></tr><tr><td>RBM</td><td>Restricted Boltzmann Machine</td><td>A two-layer undirected graphical model to represent a multidimensional DTI network and encode different types of DTIs [<span class="xrefLink" id="jumplink-ref204"></span><a href="javascript:;" reveal-id="ref204" data-open="ref204" class="link link-ref link-reveal xref-bibr">204</a>].</td></tr><tr><td>LRF-DTI</td><td>Lasso-based Random Forest method</td><td>A method of DTI prediction based on Lasso dimensionality reduction and random forest predictor [<span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>].</td></tr><tr><td>COSINE</td><td>COld Start INtEractions</td><td>A statistical dual-regularized, one-class collaborative filtering method [<span class="xrefLink" id="jumplink-ref217"></span><a href="javascript:;" reveal-id="ref217" data-open="ref217" class="link link-ref link-reveal xref-bibr">217</a>] framework and a corresponding computational method for multi-target virtual screening using one-class collaborative filtering technique that can employ either logistic or linear factorization [<span class="xrefLink" id="jumplink-ref218"></span><a href="javascript:;" reveal-id="ref218" data-open="ref218" class="link link-ref link-reveal xref-bibr">218</a>].</td></tr><tr><td>DMF</td><td>Deep Matrix Factorization</td><td>A deep learning approach in the context of recommendation systems to extract the non-linearity of latent variables [<span class="xrefLink" id="jumplink-ref219"></span><a href="javascript:;" reveal-id="ref219" data-open="ref219" class="link link-ref link-reveal xref-bibr">219</a>] (DMF was originally introduced in [<span class="xrefLink" id="jumplink-ref220"></span><a href="javascript:;" reveal-id="ref220" data-open="ref220" class="link link-ref link-reveal xref-bibr">220</a>] as a deep learning method in the context of recommendation systems to extract the non-linearity of latent variables).</td></tr><tr><td>CoDe-DTI</td><td>COllaborative DEep learning-based DTI predictor</td><td>A method using both PMF and a denoising autoencoder [<span class="xrefLink" id="jumplink-ref221"></span><a href="javascript:;" reveal-id="ref221" data-open="ref221" class="link link-ref link-reveal xref-bibr">221</a>].</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB7" data-id="TB7"><span class="label title-label" id="label-97946">Table 7</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532436" aria-describedby="label-97946"> Open in new tab </a></div><div class="caption caption-id-" id="caption-97946"><p class="chapter-para">Hybrid methods</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-97946" aria-describedby="&#xA; caption-97946"><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>DT-Hybrid</td><td>Domain tuned-hybrid</td><td>An extended NBI technique that incorporates domain-based knowledge such as drug similarities and target similarities [<span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>] (also look [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>, <span class="xrefLink" id="jumplink-ref210"></span><a href="javascript:;" reveal-id="ref210" data-open="ref210" class="link link-ref link-reveal xref-bibr">210</a>, <span class="xrefLink" id="jumplink-ref210"></span><a href="javascript:;" reveal-id="ref210" data-open="ref210" class="link link-ref link-reveal xref-bibr">210</a>, <span class="xrefLink" id="jumplink-ref211"></span><a href="javascript:;" reveal-id="ref211" data-open="ref211" class="link link-ref link-reveal xref-bibr">211</a>, <span class="xrefLink" id="jumplink-ref211"></span><a href="javascript:;" reveal-id="ref211" data-open="ref211" class="link link-ref link-reveal xref-bibr">211</a>?? ] for extension of the capability of recommender systems).</td></tr><tr><td>KMDR</td><td>Kernel Matrix Dimension Reduction</td><td>A framework for construction of link similarity matrix from kernel matrix and feature transformation for DTI prediction [<span class="xrefLink" id="jumplink-ref208"></span><a href="javascript:;" reveal-id="ref208" data-open="ref208" class="link link-ref link-reveal xref-bibr">208</a>].</td></tr><tr><td>MGRNNM, DGRMC</td><td>Multi Graph Regularized Nuclear Norm Minimization</td><td>A computational method that adds multiple drug–graph and target–graph Laplacian regularization terms to the standard matrix completion framework to predict DTIs [<span class="xrefLink" id="jumplink-ref212"></span><a href="javascript:;" reveal-id="ref212" data-open="ref212" class="link link-ref link-reveal xref-bibr">212</a>, <span class="xrefLink" id="jumplink-ref213"></span><a href="javascript:;" reveal-id="ref213" data-open="ref213" class="link link-ref link-reveal xref-bibr">213</a>].</td></tr><tr><td>WLNM</td><td>Weisfeiler-Lehman Neural Machine</td><td>An algorithm for extraction of the adjacency matrix that represents the interactions between potential drugs and targets [<span class="xrefLink" id="jumplink-ref214"></span><a href="javascript:;" reveal-id="ref214" data-open="ref214" class="link link-ref link-reveal xref-bibr">214</a>].</td></tr><tr><td>PDTPS</td><td>Predicting Drug Targets with Protein Sequence</td><td>A framework based on Relevance Vector Machine that integrates Bi-gram probabilities, PSSM and PCA [<span class="xrefLink" id="jumplink-ref215"></span><a href="javascript:;" reveal-id="ref215" data-open="ref215" class="link link-ref link-reveal xref-bibr">215</a>].</td></tr><tr><td></td><td><span class="inline-formula no-formula-id">|$L_{1}$|</span>-regularized Classifier</td><td>A regularized classifiers over the tensor product space of DT pairs for extracting informative and biologically meaningful features for DTI prediction [<span class="xrefLink" id="jumplink-ref216"></span><a href="javascript:;" reveal-id="ref216" data-open="ref216" class="link link-ref link-reveal xref-bibr">216</a>].</td></tr><tr><td>RBM</td><td>Restricted Boltzmann Machine</td><td>A two-layer undirected graphical model to represent a multidimensional DTI network and encode different types of DTIs [<span class="xrefLink" id="jumplink-ref204"></span><a href="javascript:;" reveal-id="ref204" data-open="ref204" class="link link-ref link-reveal xref-bibr">204</a>].</td></tr><tr><td>LRF-DTI</td><td>Lasso-based Random Forest method</td><td>A method of DTI prediction based on Lasso dimensionality reduction and random forest predictor [<span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>].</td></tr><tr><td>COSINE</td><td>COld Start INtEractions</td><td>A statistical dual-regularized, one-class collaborative filtering method [<span class="xrefLink" id="jumplink-ref217"></span><a href="javascript:;" reveal-id="ref217" data-open="ref217" class="link link-ref link-reveal xref-bibr">217</a>] framework and a corresponding computational method for multi-target virtual screening using one-class collaborative filtering technique that can employ either logistic or linear factorization [<span class="xrefLink" id="jumplink-ref218"></span><a href="javascript:;" reveal-id="ref218" data-open="ref218" class="link link-ref link-reveal xref-bibr">218</a>].</td></tr><tr><td>DMF</td><td>Deep Matrix Factorization</td><td>A deep learning approach in the context of recommendation systems to extract the non-linearity of latent variables [<span class="xrefLink" id="jumplink-ref219"></span><a href="javascript:;" reveal-id="ref219" data-open="ref219" class="link link-ref link-reveal xref-bibr">219</a>] (DMF was originally introduced in [<span class="xrefLink" id="jumplink-ref220"></span><a href="javascript:;" reveal-id="ref220" data-open="ref220" class="link link-ref link-reveal xref-bibr">220</a>] as a deep learning method in the context of recommendation systems to extract the non-linearity of latent variables).</td></tr><tr><td>CoDe-DTI</td><td>COllaborative DEep learning-based DTI predictor</td><td>A method using both PMF and a denoising autoencoder [<span class="xrefLink" id="jumplink-ref221"></span><a href="javascript:;" reveal-id="ref221" data-open="ref221" class="link link-ref link-reveal xref-bibr">221</a>].</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Abbreviations</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithms</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>escription<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>DT-Hybrid</td><td>Domain tuned-hybrid</td><td>An extended NBI technique that incorporates domain-based knowledge such as drug similarities and target similarities [<span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>] (also look [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>, <span class="xrefLink" id="jumplink-ref210"></span><a href="javascript:;" reveal-id="ref210" data-open="ref210" class="link link-ref link-reveal xref-bibr">210</a>, <span class="xrefLink" id="jumplink-ref210"></span><a href="javascript:;" reveal-id="ref210" data-open="ref210" class="link link-ref link-reveal xref-bibr">210</a>, <span class="xrefLink" id="jumplink-ref211"></span><a href="javascript:;" reveal-id="ref211" data-open="ref211" class="link link-ref link-reveal xref-bibr">211</a>, <span class="xrefLink" id="jumplink-ref211"></span><a href="javascript:;" reveal-id="ref211" data-open="ref211" class="link link-ref link-reveal xref-bibr">211</a>?? ] for extension of the capability of recommender systems).</td></tr><tr><td>KMDR</td><td>Kernel Matrix Dimension Reduction</td><td>A framework for construction of link similarity matrix from kernel matrix and feature transformation for DTI prediction [<span class="xrefLink" id="jumplink-ref208"></span><a href="javascript:;" reveal-id="ref208" data-open="ref208" class="link link-ref link-reveal xref-bibr">208</a>].</td></tr><tr><td>MGRNNM, DGRMC</td><td>Multi Graph Regularized Nuclear Norm Minimization</td><td>A computational method that adds multiple drug–graph and target–graph Laplacian regularization terms to the standard matrix completion framework to predict DTIs [<span class="xrefLink" id="jumplink-ref212"></span><a href="javascript:;" reveal-id="ref212" data-open="ref212" class="link link-ref link-reveal xref-bibr">212</a>, <span class="xrefLink" id="jumplink-ref213"></span><a href="javascript:;" reveal-id="ref213" data-open="ref213" class="link link-ref link-reveal xref-bibr">213</a>].</td></tr><tr><td>WLNM</td><td>Weisfeiler-Lehman Neural Machine</td><td>An algorithm for extraction of the adjacency matrix that represents the interactions between potential drugs and targets [<span class="xrefLink" id="jumplink-ref214"></span><a href="javascript:;" reveal-id="ref214" data-open="ref214" class="link link-ref link-reveal xref-bibr">214</a>].</td></tr><tr><td>PDTPS</td><td>Predicting Drug Targets with Protein Sequence</td><td>A framework based on Relevance Vector Machine that integrates Bi-gram probabilities, PSSM and PCA [<span class="xrefLink" id="jumplink-ref215"></span><a href="javascript:;" reveal-id="ref215" data-open="ref215" class="link link-ref link-reveal xref-bibr">215</a>].</td></tr><tr><td></td><td><span class="inline-formula no-formula-id">|$L_{1}$|</span>-regularized Classifier</td><td>A regularized classifiers over the tensor product space of DT pairs for extracting informative and biologically meaningful features for DTI prediction [<span class="xrefLink" id="jumplink-ref216"></span><a href="javascript:;" reveal-id="ref216" data-open="ref216" class="link link-ref link-reveal xref-bibr">216</a>].</td></tr><tr><td>RBM</td><td>Restricted Boltzmann Machine</td><td>A two-layer undirected graphical model to represent a multidimensional DTI network and encode different types of DTIs [<span class="xrefLink" id="jumplink-ref204"></span><a href="javascript:;" reveal-id="ref204" data-open="ref204" class="link link-ref link-reveal xref-bibr">204</a>].</td></tr><tr><td>LRF-DTI</td><td>Lasso-based Random Forest method</td><td>A method of DTI prediction based on Lasso dimensionality reduction and random forest predictor [<span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>].</td></tr><tr><td>COSINE</td><td>COld Start INtEractions</td><td>A statistical dual-regularized, one-class collaborative filtering method [<span class="xrefLink" id="jumplink-ref217"></span><a href="javascript:;" reveal-id="ref217" data-open="ref217" class="link link-ref link-reveal xref-bibr">217</a>] framework and a corresponding computational method for multi-target virtual screening using one-class collaborative filtering technique that can employ either logistic or linear factorization [<span class="xrefLink" id="jumplink-ref218"></span><a href="javascript:;" reveal-id="ref218" data-open="ref218" class="link link-ref link-reveal xref-bibr">218</a>].</td></tr><tr><td>DMF</td><td>Deep Matrix Factorization</td><td>A deep learning approach in the context of recommendation systems to extract the non-linearity of latent variables [<span class="xrefLink" id="jumplink-ref219"></span><a href="javascript:;" reveal-id="ref219" data-open="ref219" class="link link-ref link-reveal xref-bibr">219</a>] (DMF was originally introduced in [<span class="xrefLink" id="jumplink-ref220"></span><a href="javascript:;" reveal-id="ref220" data-open="ref220" class="link link-ref link-reveal xref-bibr">220</a>] as a deep learning method in the context of recommendation systems to extract the non-linearity of latent variables).</td></tr><tr><td>CoDe-DTI</td><td>COllaborative DEep learning-based DTI predictor</td><td>A method using both PMF and a denoising autoencoder [<span class="xrefLink" id="jumplink-ref221"></span><a href="javascript:;" reveal-id="ref221" data-open="ref221" class="link link-ref link-reveal xref-bibr">221</a>].</td></tr></tbody></table></div></div></div> <h3 scrollto-destination=225532437 id="225532437" class="section-title js-splitscreen-section-title" data-legacy-id=sec2h>2.8 Software and packages</h3> <p class="chapter-para">Sakakibara <em>et al.</em> [<span class="xrefLink" id="jumplink-ref222"></span><a href="javascript:;" reveal-id="ref222" data-open="ref222" class="link link-ref link-reveal xref-bibr">222</a>] developed a web service called Comprehensive Predictor of Interactions between Chemical compounds And Target proteins based on their previous works [<span class="xrefLink" id="jumplink-ref127"></span><a href="javascript:;" reveal-id="ref127" data-open="ref127" class="link link-ref link-reveal xref-bibr">127</a>, <span class="xrefLink" id="jumplink-ref129"></span><a href="javascript:;" reveal-id="ref129" data-open="ref129" class="link link-ref link-reveal xref-bibr">129</a>] that uses SVM as the DTI predictor. This server seems to be no longer available.</p><p class="chapter-para">Cao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref223"></span><a href="javascript:;" reveal-id="ref223" data-open="ref223" class="link link-ref link-reveal xref-bibr">223</a>] developed a Python package called PyDPI based on Random Forest [<span class="xrefLink" id="jumplink-ref150"></span><a href="javascript:;" reveal-id="ref150" data-open="ref150" class="link link-ref link-reveal xref-bibr">150</a>] that integrates chemoinformatics, bioinformatics, proteochemometrics and chemogenomics for DTI prediction. The proposed framework involves the selection of molecular features and uses predefined dictionaries for classification. This package can be used to construct web-based servers and provides an interface for databases such as Kyoto Encyclopedia of Genes and Genomes (KEGG), PubChem, Drugbank and Uniprot. The same group in the same year [<span class="xrefLink" id="jumplink-ref224"></span><a href="javascript:;" reveal-id="ref224" data-open="ref224" class="link link-ref link-reveal xref-bibr">224</a>] also developed a web-based server called PreDPI-Ki (which seems to be no longer available) based on a random forest predictor that takes binding affinities of DT pairs into account in order to better predict interactions.</p> <a id="225532440" scrollto-destination="225532440"></a> <div content-id="TB8" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB8" data-id="TB8"><span class="label title-label" id="label-97946">Table 8</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532440" aria-describedby="label-97946"> Open in new tab </a></div><div class="caption caption-id-" id="caption-97946"><p class="chapter-para">DTI databases</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-97946" aria-describedby="&#xA; caption-97946"><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of int.</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Predicted DTIs</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Search fun.</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>ChEMBL</td><td>Dec 2018</td><td>12 482</td><td>1 879 206</td><td>15 504 603</td><td>✗</td><td>✓</td></tr><tr><td>ChemProt 3.0</td><td>Dec 2015</td><td>&gt;20 000</td><td>&gt;1 700 000</td><td>-</td><td>✗</td><td>✓</td></tr><tr><td>DGIdb 3.0</td><td>Nov 2017</td><td>41 100</td><td>9495</td><td>29 783</td><td>✗</td><td>✓</td></tr><tr><td>DrugBank</td><td>Apr 2019</td><td>5175</td><td>13 338</td><td>26 932</td><td>✗</td><td>✓</td></tr><tr><td>GtoPdb</td><td>Jun 2019</td><td>2926</td><td>9718</td><td>&gt;50 000</td><td>✗</td><td>✓</td></tr><tr><td>IntAct</td><td>May 2019</td><td>102 508</td><td>10 849</td><td>593 007</td><td>✗</td><td>✓</td></tr><tr><td>KEGG</td><td>May 2019</td><td>-</td><td>-</td><td>-</td><td>✗</td><td>✓</td></tr><tr><td>LINCS</td><td>2016</td><td>1469</td><td>41 847</td><td>-</td><td>✗</td><td>✗</td></tr><tr><td>PROMISCUOUS</td><td>May 2011</td><td>6548</td><td>5258</td><td>23 702</td><td>✗</td><td>✓</td></tr><tr><td>STITCH</td><td>Jan 2016</td><td>&gt;9 600 000</td><td>&gt;430 000</td><td>-</td><td>✓</td><td>✓</td></tr><tr><td>SuperTarget</td><td>Oct 2011</td><td>&gt;6000</td><td>&gt;196 000</td><td>&gt;330 000</td><td>✗</td><td>✓</td></tr><tr><td>TTD</td><td>Sep 2017</td><td>3101</td><td>34 019</td><td>-</td><td>✗</td><td>✓</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of int.</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Predicted DTIs</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Search fun.</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>ChEMBL</td><td>Dec 2018</td><td>12 482</td><td>1 879 206</td><td>15 504 603</td><td>✗</td><td>✓</td></tr><tr><td>ChemProt 3.0</td><td>Dec 2015</td><td>&gt;20 000</td><td>&gt;1 700 000</td><td>-</td><td>✗</td><td>✓</td></tr><tr><td>DGIdb 3.0</td><td>Nov 2017</td><td>41 100</td><td>9495</td><td>29 783</td><td>✗</td><td>✓</td></tr><tr><td>DrugBank</td><td>Apr 2019</td><td>5175</td><td>13 338</td><td>26 932</td><td>✗</td><td>✓</td></tr><tr><td>GtoPdb</td><td>Jun 2019</td><td>2926</td><td>9718</td><td>&gt;50 000</td><td>✗</td><td>✓</td></tr><tr><td>IntAct</td><td>May 2019</td><td>102 508</td><td>10 849</td><td>593 007</td><td>✗</td><td>✓</td></tr><tr><td>KEGG</td><td>May 2019</td><td>-</td><td>-</td><td>-</td><td>✗</td><td>✓</td></tr><tr><td>LINCS</td><td>2016</td><td>1469</td><td>41 847</td><td>-</td><td>✗</td><td>✗</td></tr><tr><td>PROMISCUOUS</td><td>May 2011</td><td>6548</td><td>5258</td><td>23 702</td><td>✗</td><td>✓</td></tr><tr><td>STITCH</td><td>Jan 2016</td><td>&gt;9 600 000</td><td>&gt;430 000</td><td>-</td><td>✓</td><td>✓</td></tr><tr><td>SuperTarget</td><td>Oct 2011</td><td>&gt;6000</td><td>&gt;196 000</td><td>&gt;330 000</td><td>✗</td><td>✓</td></tr><tr><td>TTD</td><td>Sep 2017</td><td>3101</td><td>34 019</td><td>-</td><td>✗</td><td>✓</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB8" data-id="TB8"><span class="label title-label" id="label-97946">Table 8</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532440" aria-describedby="label-97946"> Open in new tab </a></div><div class="caption caption-id-" id="caption-97946"><p class="chapter-para">DTI databases</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-97946" aria-describedby="&#xA; caption-97946"><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of int.</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Predicted DTIs</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Search fun.</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>ChEMBL</td><td>Dec 2018</td><td>12 482</td><td>1 879 206</td><td>15 504 603</td><td>✗</td><td>✓</td></tr><tr><td>ChemProt 3.0</td><td>Dec 2015</td><td>&gt;20 000</td><td>&gt;1 700 000</td><td>-</td><td>✗</td><td>✓</td></tr><tr><td>DGIdb 3.0</td><td>Nov 2017</td><td>41 100</td><td>9495</td><td>29 783</td><td>✗</td><td>✓</td></tr><tr><td>DrugBank</td><td>Apr 2019</td><td>5175</td><td>13 338</td><td>26 932</td><td>✗</td><td>✓</td></tr><tr><td>GtoPdb</td><td>Jun 2019</td><td>2926</td><td>9718</td><td>&gt;50 000</td><td>✗</td><td>✓</td></tr><tr><td>IntAct</td><td>May 2019</td><td>102 508</td><td>10 849</td><td>593 007</td><td>✗</td><td>✓</td></tr><tr><td>KEGG</td><td>May 2019</td><td>-</td><td>-</td><td>-</td><td>✗</td><td>✓</td></tr><tr><td>LINCS</td><td>2016</td><td>1469</td><td>41 847</td><td>-</td><td>✗</td><td>✗</td></tr><tr><td>PROMISCUOUS</td><td>May 2011</td><td>6548</td><td>5258</td><td>23 702</td><td>✗</td><td>✓</td></tr><tr><td>STITCH</td><td>Jan 2016</td><td>&gt;9 600 000</td><td>&gt;430 000</td><td>-</td><td>✓</td><td>✓</td></tr><tr><td>SuperTarget</td><td>Oct 2011</td><td>&gt;6000</td><td>&gt;196 000</td><td>&gt;330 000</td><td>✗</td><td>✓</td></tr><tr><td>TTD</td><td>Sep 2017</td><td>3101</td><td>34 019</td><td>-</td><td>✗</td><td>✓</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of int.</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Predicted DTIs</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Search fun.</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>ChEMBL</td><td>Dec 2018</td><td>12 482</td><td>1 879 206</td><td>15 504 603</td><td>✗</td><td>✓</td></tr><tr><td>ChemProt 3.0</td><td>Dec 2015</td><td>&gt;20 000</td><td>&gt;1 700 000</td><td>-</td><td>✗</td><td>✓</td></tr><tr><td>DGIdb 3.0</td><td>Nov 2017</td><td>41 100</td><td>9495</td><td>29 783</td><td>✗</td><td>✓</td></tr><tr><td>DrugBank</td><td>Apr 2019</td><td>5175</td><td>13 338</td><td>26 932</td><td>✗</td><td>✓</td></tr><tr><td>GtoPdb</td><td>Jun 2019</td><td>2926</td><td>9718</td><td>&gt;50 000</td><td>✗</td><td>✓</td></tr><tr><td>IntAct</td><td>May 2019</td><td>102 508</td><td>10 849</td><td>593 007</td><td>✗</td><td>✓</td></tr><tr><td>KEGG</td><td>May 2019</td><td>-</td><td>-</td><td>-</td><td>✗</td><td>✓</td></tr><tr><td>LINCS</td><td>2016</td><td>1469</td><td>41 847</td><td>-</td><td>✗</td><td>✗</td></tr><tr><td>PROMISCUOUS</td><td>May 2011</td><td>6548</td><td>5258</td><td>23 702</td><td>✗</td><td>✓</td></tr><tr><td>STITCH</td><td>Jan 2016</td><td>&gt;9 600 000</td><td>&gt;430 000</td><td>-</td><td>✓</td><td>✓</td></tr><tr><td>SuperTarget</td><td>Oct 2011</td><td>&gt;6000</td><td>&gt;196 000</td><td>&gt;330 000</td><td>✗</td><td>✓</td></tr><tr><td>TTD</td><td>Sep 2017</td><td>3101</td><td>34 019</td><td>-</td><td>✗</td><td>✓</td></tr></tbody></table></div></div></div><p class="chapter-para">Xiao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref225"></span><a href="javascript:;" reveal-id="ref225" data-open="ref225" class="link link-ref link-reveal xref-bibr">225</a>] established a web server called iGPCR-drug, which is accessible at iGPCR-drug. Moreover, they developed a sequence-based classifier also called iGPCR-drug. In the predictor, the drug compound is formulated by a 2D fingerprint via a 256D vector, GPCRs by the pseudo amino acid composition [<span class="xrefLink" id="jumplink-ref226"></span><a href="javascript:;" reveal-id="ref226" data-open="ref226" class="link link-ref link-reveal xref-bibr">226</a>] generated with the gray model theory and the prediction engine is operated by the fuzzy K-nearest neighbor (KNN) classification method [<span class="xrefLink" id="jumplink-ref227"></span><a href="javascript:;" reveal-id="ref227" data-open="ref227" class="link link-ref link-reveal xref-bibr">227</a>]. The authors validated their method with the jackknife test [<span class="xrefLink" id="jumplink-ref228"></span><a href="javascript:;" reveal-id="ref228" data-open="ref228" class="link link-ref link-reveal xref-bibr">228</a>].</p><p class="chapter-para">Yamanishi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref229"></span><a href="javascript:;" reveal-id="ref229" data-open="ref229" class="link link-ref link-reveal xref-bibr">229</a>] designed a web server called <a class="link link-uri openInAnotherWindow" href="http://DINIES" target="_blank">DINIES</a> (DTI network inference engine based on supervised analysis) for predicting DTI using various types of biological data such as chemical structures, protein domain and drug side effects (note that studies that primarily focused on side effect are excluded in this paper [<span class="xrefLink" id="jumplink-ref59 ref60 ref61 ref62"></span><a href="javascript:;" reveal-id="ref59 ref60 ref61 ref62" data-open="ref59 ref60 ref61 ref62" class="link link-ref link-reveal xref-bibr">59–62</a>]) and three supervised algorithms (BGL [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>, <span class="xrefLink" id="jumplink-ref143"></span><a href="javascript:;" reveal-id="ref143" data-open="ref143" class="link link-ref link-reveal xref-bibr">143</a>], BLM [<span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>] and pairwise kernel regression [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>]). This is due to the work by Scheiber <em>et al.</em> [<span class="xrefLink" id="jumplink-ref230"></span><a href="javascript:;" reveal-id="ref230" data-open="ref230" class="link link-ref link-reveal xref-bibr">230</a>] that enables the calculation of correlation between any drug compound and pharmacological effects in chemical space. While the training can be performed using KEGG DRUG database, the principle advantage of their web server is the flexibility of the input data, as long as it’s represented a similarity matrix or gene/drug profile.</p><p class="chapter-para">Seal <em>et al.</em> [<span class="xrefLink" id="jumplink-ref231"></span><a href="javascript:;" reveal-id="ref231" data-open="ref231" class="link link-ref link-reveal xref-bibr">231</a>] developed a standalone R and Shiny package called Netpredictor based on Random Walk with Restart (NRWRH) [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>, <span class="xrefLink" id="jumplink-ref202"></span><a href="javascript:;" reveal-id="ref202" data-open="ref202" class="link link-ref link-reveal xref-bibr">202</a>] and NBI [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>, <span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>] to predict any missing links between drugs, proteins and drug–proteins in any unipartite or bipartite. The main advantage of this package is the friendly user interface that is provided by package installation.</p><p class="chapter-para">Hao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref232"></span><a href="javascript:;" reveal-id="ref232" data-open="ref232" class="link link-ref link-reveal xref-bibr">232</a>] review, compare and reimplemented five state-of-the-art methods (BLM [<span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>], KronRLS-MKL [<span class="xrefLink" id="jumplink-ref158"></span><a href="javascript:;" reveal-id="ref158" data-open="ref158" class="link link-ref link-reveal xref-bibr">158</a>], DT-Hybrid [<span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>], the proposed method by Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref104"></span><a href="javascript:;" reveal-id="ref104" data-open="ref104" class="link link-ref link-reveal xref-bibr">104</a>] and DNILMF [<span class="xrefLink" id="jumplink-ref233"></span><a href="javascript:;" reveal-id="ref233" data-open="ref233" class="link link-ref link-reveal xref-bibr">233</a>]) and published the source codes in R.</p> <h2 scrollto-destination=225532445 id="225532445" class="section-title js-splitscreen-section-title" data-legacy-id=sec3>3 Databases used in DTIpPrediction</h2> <p class="chapter-para">To support the above methods, many drug-related databases have been established. These databases contain different types of drug-related information and are critical resources for DTI predictions in silico. In this paper, we review all popular used databases associated with this topic. Based on the content of these databases, we classify them into four categories, DTI databases, drug-centered or target centered databases, drug–target binding affinity databases and supporting databases.</p> <h3 scrollto-destination=225532447 id="225532447" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a>3.1 DTI databases</h3> <p class="chapter-para">DTI databases are established for collecting DTIs and other related information. In this paper, we list 11 databases in this category. Within these databases, some are not directly proposed as ‘DTI’ databases, but the data contained can be used for DTI research. For example, KEGG is an extensive database that covers many types of biological data from genes/proteins to biological pathways and human diseases. In KEGG [<span class="xrefLink" id="jumplink-ref234"></span><a href="javascript:;" reveal-id="ref234" data-open="ref234" class="link link-ref link-reveal xref-bibr">234</a>], two subdatabases, KEGGDRUG [<span class="xrefLink" id="jumplink-ref235"></span><a href="javascript:;" reveal-id="ref235" data-open="ref235" class="link link-ref link-reveal xref-bibr">235</a>] and KEGGBRITE [<span class="xrefLink" id="jumplink-ref236"></span><a href="javascript:;" reveal-id="ref236" data-open="ref236" class="link link-ref link-reveal xref-bibr">236</a>] contain data that can be used for DTI predictions. ChEMBL [<span class="xrefLink" id="jumplink-ref237 ref238 ref239"></span><a href="javascript:;" reveal-id="ref237 ref238 ref239" data-open="ref237 ref238 ref239" class="link link-ref link-reveal xref-bibr">237–239</a>] is also not specifically a ‘drug-target’ database and it was established based on collecting bioactive compounds. However, combined with targets and other related biological information, this database can also be used in drug-target repositioning and repurposing. Similar to ChEMBL [<span class="xrefLink" id="jumplink-ref237 ref238 ref239"></span><a href="javascript:;" reveal-id="ref237 ref238 ref239" data-open="ref237 ref238 ref239" class="link link-ref link-reveal xref-bibr">237–239</a>], IntAct [<span class="xrefLink" id="jumplink-ref240"></span><a href="javascript:;" reveal-id="ref240" data-open="ref240" class="link link-ref link-reveal xref-bibr">240</a>] is a database that contains molecular interactions and can be used for drug research. LINCS is different from the aforementioned two databases. This data portal contains biochemistry data that aims to understand changes in gene expression and cellular processes that are caused by different perturbing agents. Many of the perturbing agents used in LINCS are drugs, so this is also a great data source for DTI research. Other databases included in this group are SuperTarget [<span class="xrefLink" id="jumplink-ref241"></span><a href="javascript:;" reveal-id="ref241" data-open="ref241" class="link link-ref link-reveal xref-bibr">241</a>], Guide to PHARMACOLOGY (GtoPdb) [<span class="xrefLink" id="jumplink-ref240"></span><a href="javascript:;" reveal-id="ref240" data-open="ref240" class="link link-ref link-reveal xref-bibr">240</a>], DrugBank [<span class="xrefLink" id="jumplink-ref242 ref243 ref244 ref245 ref246"></span><a href="javascript:;" reveal-id="ref242 ref243 ref244 ref245 ref246" data-open="ref242 ref243 ref244 ref245 ref246" class="link link-ref link-reveal xref-bibr">242–246</a>], Therapeutic Targets Database (TTD) [<span class="xrefLink" id="jumplink-ref247"></span><a href="javascript:;" reveal-id="ref247" data-open="ref247" class="link link-ref link-reveal xref-bibr">247</a>], STITCH [<span class="xrefLink" id="jumplink-ref248 ref249 ref250 ref251 ref252"></span><a href="javascript:;" reveal-id="ref248 ref249 ref250 ref251 ref252" data-open="ref248 ref249 ref250 ref251 ref252" class="link link-ref link-reveal xref-bibr">248–252</a>], ChemProt 3.0 [<span class="xrefLink" id="jumplink-ref253"></span><a href="javascript:;" reveal-id="ref253" data-open="ref253" class="link link-ref link-reveal xref-bibr">253</a>] and DGIdb 3.0 [<span class="xrefLink" id="jumplink-ref254"></span><a href="javascript:;" reveal-id="ref254" data-open="ref254" class="link link-ref link-reveal xref-bibr">254</a>]. The general information for these databases is summarized in Table <span class="xrefLink" id="jumplink-TB8"></span><a href="javascript:;" reveal-id="TB8" data-open="TB8" class="link link-reveal link-table xref-fig">8</a>.</p> <h4 scrollto-destination=225532449 id="225532449" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a1>3.1.1 ChEMBL</h4> <p class="chapter-para">The data stored in the ChEMBL database [<span class="xrefLink" id="jumplink-ref237 ref238 ref239"></span><a href="javascript:;" reveal-id="ref237 ref238 ref239" data-open="ref237 ref238 ref239" class="link link-ref link-reveal xref-bibr">237–239</a>] were manually extracted from published literatures. This database was published by European Molecular Biology Laboratory (EMBL)-European Bioinformatics Institute in 2002. Since the latest update in 2018, this database contains more than 1.9 million chemical compounds. Within these compounds, over 10 thousand drugs and more than 12 thousand targets are included in ChEMBL.</p> <h4 scrollto-destination=225532451 id="225532451" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a2>3.1.2 ChemProt 3.0</h4> <p class="chapter-para">ChemProt [<span class="xrefLink" id="jumplink-ref253"></span><a href="javascript:;" reveal-id="ref253" data-open="ref253" class="link link-ref link-reveal xref-bibr">253</a>, <span class="xrefLink" id="jumplink-ref255"></span><a href="javascript:;" reveal-id="ref255" data-open="ref255" class="link link-ref link-reveal xref-bibr">255</a>, <span class="xrefLink" id="jumplink-ref256"></span><a href="javascript:;" reveal-id="ref256" data-open="ref256" class="link link-ref link-reveal xref-bibr">256</a>] was proposed as a disease chemical biology database that integrated data from multiple chemical–protein annotation databases and disease-associated PPI. The first release of ChemProt was in 2011, which collected data from eight public databases, i.e. ChEMBL [<span class="xrefLink" id="jumplink-ref238"></span><a href="javascript:;" reveal-id="ref238" data-open="ref238" class="link link-ref link-reveal xref-bibr">238</a>], BindingDB [<span class="xrefLink" id="jumplink-ref257"></span><a href="javascript:;" reveal-id="ref257" data-open="ref257" class="link link-ref link-reveal xref-bibr">257</a>], PDSP Ki database [<span class="xrefLink" id="jumplink-ref258"></span><a href="javascript:;" reveal-id="ref258" data-open="ref258" class="link link-ref link-reveal xref-bibr">258</a>], DrugBank [<span class="xrefLink" id="jumplink-ref244"></span><a href="javascript:;" reveal-id="ref244" data-open="ref244" class="link link-ref link-reveal xref-bibr">244</a>], PharmGKB [<span class="xrefLink" id="jumplink-ref259"></span><a href="javascript:;" reveal-id="ref259" data-open="ref259" class="link link-ref link-reveal xref-bibr">259</a>], PubChem bioassay [<span class="xrefLink" id="jumplink-ref260"></span><a href="javascript:;" reveal-id="ref260" data-open="ref260" class="link link-ref link-reveal xref-bibr">260</a>], CTD [<span class="xrefLink" id="jumplink-ref261"></span><a href="javascript:;" reveal-id="ref261" data-open="ref261" class="link link-ref link-reveal xref-bibr">261</a>] and STITCH [<span class="xrefLink" id="jumplink-ref248"></span><a href="javascript:;" reveal-id="ref248" data-open="ref248" class="link link-ref link-reveal xref-bibr">248</a>] and two commercial databases, WOMBAT and WOMBAT-PK [<span class="xrefLink" id="jumplink-ref262"></span><a href="javascript:;" reveal-id="ref262" data-open="ref262" class="link link-ref link-reveal xref-bibr">262</a>]. The second update of ChemProt was in 2012 integrated therapeutic effects and adverse drug reactions into the 2.0 version. The latest update (version 3.0) was released in 2015. The third version updated the disease chemical biology data. In addition, several computational methods, such as network biology based enrichment analysis, were also incorporated.</p> <h4 scrollto-destination=225532453 id="225532453" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a3>3.1.3 DGIdb 3.0</h4> <p class="chapter-para">The first release (in 2013) of DGIdb integrated 13 data sources that cover information in disease-related human genes, drugs, drug interactions and potential druggability [<span class="xrefLink" id="jumplink-ref263"></span><a href="javascript:;" reveal-id="ref263" data-open="ref263" class="link link-ref link-reveal xref-bibr">263</a>, <span class="xrefLink" id="jumplink-ref264"></span><a href="javascript:;" reveal-id="ref264" data-open="ref264" class="link link-ref link-reveal xref-bibr">264</a>]. The latest update of DGIdb was in 2017 and in total 30 data sources are included in the 3.0 version [<span class="xrefLink" id="jumplink-ref254"></span><a href="javascript:;" reveal-id="ref254" data-open="ref254" class="link link-ref link-reveal xref-bibr">254</a>]. Six new data sources were added and nine of the previous data sources were updated.</p> <h4 scrollto-destination=225532455 id="225532455" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a4>3.1.4 DrugBank</h4> <p class="chapter-para">DrugBank [<span class="xrefLink" id="jumplink-ref242 ref243 ref244 ref245 ref246"></span><a href="javascript:;" reveal-id="ref242 ref243 ref244 ref245 ref246" data-open="ref242 ref243 ref244 ref245 ref246" class="link link-ref link-reveal xref-bibr">242–246</a>] is one of the most popular databasesand has been widely used as a drug reference resource. This database was first released in 2006. As a database both in bioinformatics and cheminformatics, DrugBank contains detailed drug data with comprehensive drug target information. The DTI relationships in DrugBank were originally collected from textbooks, published articles and other electronic databases. All data can be freely downloaded from DrugBank.</p> <h4 scrollto-destination=225532457 id="225532457" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a5>3.1.5 GtoPdb</h4> <p class="chapter-para">This database was established by the International Union of Basic and Clinical Pharmacology/British Pharmacological Society. The GtoPdb [<span class="xrefLink" id="jumplink-ref240"></span><a href="javascript:;" reveal-id="ref240" data-open="ref240" class="link link-ref link-reveal xref-bibr">240</a>] contains the ligand–activity–target relationships data that were collected from pharmacological and medicine chemistry literature.</p> <h4 scrollto-destination=225532459 id="225532459" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a6>3.1.6 IntAct</h4> <p class="chapter-para">IntAct [<span class="xrefLink" id="jumplink-ref265"></span><a href="javascript:;" reveal-id="ref265" data-open="ref265" class="link link-ref link-reveal xref-bibr">265</a>] is an open source database of molecular interactions populated by data from literature and other data sources. In total, 11 molecular interaction databases (including IntAct) were incorporated into IntAct including AgBase [<span class="xrefLink" id="jumplink-ref266 ref267 ref268 ref269"></span><a href="javascript:;" reveal-id="ref266 ref267 ref268 ref269" data-open="ref266 ref267 ref268 ref269" class="link link-ref link-reveal xref-bibr">266–269</a>], MINT [<span class="xrefLink" id="jumplink-ref270 ref271 ref272 ref273"></span><a href="javascript:;" reveal-id="ref270 ref271 ref272 ref273" data-open="ref270 ref271 ref272 ref273" class="link link-ref link-reveal xref-bibr">270–273</a>], UniProt [<span class="xrefLink" id="jumplink-ref274"></span><a href="javascript:;" reveal-id="ref274" data-open="ref274" class="link link-ref link-reveal xref-bibr">274</a>][41], I2D [<span class="xrefLink" id="jumplink-ref275"></span><a href="javascript:;" reveal-id="ref275" data-open="ref275" class="link link-ref link-reveal xref-bibr">275</a>], MBINFO, MatrixDB [<span class="xrefLink" id="jumplink-ref276"></span><a href="javascript:;" reveal-id="ref276" data-open="ref276" class="link link-ref link-reveal xref-bibr">276</a>], Molecular Connections, InnateDN [<span class="xrefLink" id="jumplink-ref277"></span><a href="javascript:;" reveal-id="ref277" data-open="ref277" class="link link-ref link-reveal xref-bibr">277</a>], IMEx [<span class="xrefLink" id="jumplink-ref278"></span><a href="javascript:;" reveal-id="ref278" data-open="ref278" class="link link-ref link-reveal xref-bibr">278</a>] and <a class="link link-uri openInAnotherWindow" href="http://GOA" target="_blank">GOA</a>.</p> <h4 scrollto-destination=225532461 id="225532461" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a7>3.1.7 KEGG</h4> <p class="chapter-para">KEGG is a comprehensive database that provides many types of knowledge about genes and genomes [<span class="xrefLink" id="jumplink-ref234"></span><a href="javascript:;" reveal-id="ref234" data-open="ref234" class="link link-ref link-reveal xref-bibr">234</a>, <span class="xrefLink" id="jumplink-ref235"></span><a href="javascript:;" reveal-id="ref235" data-open="ref235" class="link link-ref link-reveal xref-bibr">235</a>]. The whole database can be summarized in four major categories. The first one is systems information, contains three databases: KEGG PATHWAY, KEGG BRITE, and KEGG MODULE. The second category contain genomic information. In this group, four databases are included: KEGG ORTHOLOGY, KEGG GENOME, KEGG GENES and KEGG SSDB. The third category holds the chemical information. Five databases are in this category: KEGG COMPOUND, KEGG GLYCAN, KEGG REACTION, KEGG RCLASS and KEGG ENZYME. The last category is health information that covers four databases: KEGG DISEASE, KEGGDRUG, KEGG DGROUP and KEGG ENVIRON. The KEGG DGROUP database contains information regarding drug interaction networks including DTIs, drug metabolism and indirect interactions with enzymes and target genes.</p> <h4 scrollto-destination=225532463 id="225532463" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a8>3.1.8 LINCS</h4> <p class="chapter-para">The LINCS program aims to establish a network-based landscape to describe how different perturbing agents influence cellular processes. In total, there are 398 datasets collected in the LINCS database including fluorescence imaging, ELISA and ATAC-seq data, etc. The majority datasets (177 datasets) in LINCS are KINOMEscan kinase-small molecule binding assays. This assay is used to measure binding interactions between test compounds.</p> <h4 scrollto-destination=225532465 id="225532465" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a9>3.1.9 PROMISCUOUS</h4> <p class="chapter-para">PROMISCUOUS was established in 2011 and proposed as a database for network-based drug repositioning. This database contains three different types of data: drugs, proteins and side effects. The protein data are extracted from UniProt and incorporated with the 3D structure information from Protein Data Bank (PDB). Drugs and side effects are extracted and incorporated from SuperDrug and SIDER, respectively. In addition to DTIs and drug side effects linkages, PROMISCUOUS also includes data on drug–drug similarities and PPI.</p> <h4 scrollto-destination=225532467 id="225532467" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a10>3.1.10 STITCH</h4> <p class="chapter-para">STITCH [<span class="xrefLink" id="jumplink-ref248 ref249 ref250 ref251 ref252"></span><a href="javascript:;" reveal-id="ref248 ref249 ref250 ref251 ref252" data-open="ref248 ref249 ref250 ref251 ref252" class="link link-ref link-reveal xref-bibr">248–252</a>] is a database that stores information for interactions between proteins and small molecules. The interaction data are collected from predicted results, other databases (e.g. PubChem [<span class="xrefLink" id="jumplink-ref279"></span><a href="javascript:;" reveal-id="ref279" data-open="ref279" class="link link-ref link-reveal xref-bibr">279</a>]), and literature. The first release of STITCH was in 2008.</p> <h4 scrollto-destination=225532469 id="225532469" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a11>3.1.11 SuperTarget</h4> <p class="chapter-para">SuperTarget [<span class="xrefLink" id="jumplink-ref241"></span><a href="javascript:;" reveal-id="ref241" data-open="ref241" class="link link-ref link-reveal xref-bibr">241</a>] is a database that covers DTI information with drug metabolism, pathways and Gene Ontology (GO) terms. Medical indications and adverse drug effects are also included in this database. The DTIs information in this database were extracted starting with text mining from 15 million public literature listed in PubMed. Also, potential drug–target relations were also extracted from Medline. Furthermore, the relationships of DTIs from other databases (i.e. DrugBank [<span class="xrefLink" id="jumplink-ref244"></span><a href="javascript:;" reveal-id="ref244" data-open="ref244" class="link link-ref link-reveal xref-bibr">244</a>], KEGG [<span class="xrefLink" id="jumplink-ref234"></span><a href="javascript:;" reveal-id="ref234" data-open="ref234" class="link link-ref link-reveal xref-bibr">234</a>], PDB [<span class="xrefLink" id="jumplink-ref280"></span><a href="javascript:;" reveal-id="ref280" data-open="ref280" class="link link-ref link-reveal xref-bibr">280</a>], SuperLigands [<span class="xrefLink" id="jumplink-ref281"></span><a href="javascript:;" reveal-id="ref281" data-open="ref281" class="link link-ref link-reveal xref-bibr">281</a>] and TTD [<span class="xrefLink" id="jumplink-ref282"></span><a href="javascript:;" reveal-id="ref282" data-open="ref282" class="link link-ref link-reveal xref-bibr">282</a>]) were also used to obtain any missed DTIs that were not included from the previous two strategies.</p> <h4 scrollto-destination=225532471 id="225532471" class="section-title js-splitscreen-section-title" data-legacy-id=sec3a12>3.1.12 TTD</h4> <p class="chapter-para">TTD provides therapeutic proteins, nucleic acid targets and corresponding drug information [<span class="xrefLink" id="jumplink-ref247"></span><a href="javascript:;" reveal-id="ref247" data-open="ref247" class="link link-ref link-reveal xref-bibr">247</a>]. This database was first described in 2002. The data in TTD was mainly collected from literature. Other databases that contains DTIs information (e.g. KEGG) were also cross-linked to TTD.</p> <h3 scrollto-destination=225532473 id="225532473" class="section-title js-splitscreen-section-title" data-legacy-id=sec3n>3.2 Drug-centered or target-centered databases</h3> <p class="chapter-para">In this category, six databases are included. They are BRENDA [<span class="xrefLink" id="jumplink-ref283"></span><a href="javascript:;" reveal-id="ref283" data-open="ref283" class="link link-ref link-reveal xref-bibr">283</a>], PubChem [<span class="xrefLink" id="jumplink-ref279"></span><a href="javascript:;" reveal-id="ref279" data-open="ref279" class="link link-ref link-reveal xref-bibr">279</a>], SuperDRUG2 [<span class="xrefLink" id="jumplink-ref284"></span><a href="javascript:;" reveal-id="ref284" data-open="ref284" class="link link-ref link-reveal xref-bibr">284</a>], DrugCentral [<span class="xrefLink" id="jumplink-ref285"></span><a href="javascript:;" reveal-id="ref285" data-open="ref285" class="link link-ref link-reveal xref-bibr">285</a>, <span class="xrefLink" id="jumplink-ref286"></span><a href="javascript:;" reveal-id="ref286" data-open="ref286" class="link link-ref link-reveal xref-bibr">286</a>], PDID [<span class="xrefLink" id="jumplink-ref287"></span><a href="javascript:;" reveal-id="ref287" data-open="ref287" class="link link-ref link-reveal xref-bibr">287</a>], Pharos [<span class="xrefLink" id="jumplink-ref288"></span><a href="javascript:;" reveal-id="ref288" data-open="ref288" class="link link-ref link-reveal xref-bibr">288</a>] and ECOdrug [<span class="xrefLink" id="jumplink-ref289"></span><a href="javascript:;" reveal-id="ref289" data-open="ref289" class="link link-ref link-reveal xref-bibr">289</a>].</p><p class="chapter-para">Among these databases, SuperDRUG2 and DrugCentral are proposed as ‘drug-centered’ databases. Since PubChem is a database established on collecting millions of chemical compounds, in this paper, we also list this one as a ‘drug-centered’ database. PDID and Pharos are classified as ‘target-centered’ databases. We also included BRENDA as a ‘target database’. The huge amount of enzymes and related ligands stored in BRENDA can be used as targets in DTI research. In addition, we also list ECOdrug here as a target-centered database. Different from the aforementioned ones, this database contains target information in non-human model species. Relative information can be found in Table <span class="xrefLink" id="jumplink-TB9"></span><a href="javascript:;" reveal-id="TB9" data-open="TB9" class="link link-reveal link-table xref-fig">9</a>.</p> <a id="225532476" scrollto-destination="225532476"></a> <div content-id="TB9" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB9" data-id="TB9"><span class="label title-label" id="label-97946">Table 9</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532476" aria-describedby="label-97946"> Open in new tab </a></div><div class="caption caption-id-" id="caption-97946"><p class="chapter-para">Drug-centered or Target-centered databases</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-97946" aria-describedby="&#xA; caption-97946"><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Type</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/Compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Predicted DTIs</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>BRENDA</td><td>Jan 2019</td><td>Target centered</td><td>&gt;84 000</td><td>&gt;205 000</td><td>✗</td></tr><tr><td>DrugCentral</td><td>Apr,2019</td><td>Drug centered</td><td>-</td><td>4543</td><td>✗</td></tr><tr><td>ECOdrug</td><td>Oct 2017</td><td>Target centered</td><td>-</td><td>-</td><td>✗</td></tr><tr><td>PDID</td><td>Apr 2015</td><td>Target centered</td><td>3746</td><td>51</td><td>✓</td></tr><tr><td>Pharos</td><td>Nov 2018</td><td>Target centered</td><td>20 244</td><td>130 166</td><td>✗</td></tr><tr><td>PubChem</td><td>Mar 2019</td><td>Drug centered</td><td>79 622</td><td>96 157 016</td><td>✗</td></tr><tr><td>SuperDRUG2</td><td>Mar 2018</td><td>Drug centered</td><td>4456</td><td>4605</td><td>✓</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Type</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/Compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Predicted DTIs</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>BRENDA</td><td>Jan 2019</td><td>Target centered</td><td>&gt;84 000</td><td>&gt;205 000</td><td>✗</td></tr><tr><td>DrugCentral</td><td>Apr,2019</td><td>Drug centered</td><td>-</td><td>4543</td><td>✗</td></tr><tr><td>ECOdrug</td><td>Oct 2017</td><td>Target centered</td><td>-</td><td>-</td><td>✗</td></tr><tr><td>PDID</td><td>Apr 2015</td><td>Target centered</td><td>3746</td><td>51</td><td>✓</td></tr><tr><td>Pharos</td><td>Nov 2018</td><td>Target centered</td><td>20 244</td><td>130 166</td><td>✗</td></tr><tr><td>PubChem</td><td>Mar 2019</td><td>Drug centered</td><td>79 622</td><td>96 157 016</td><td>✗</td></tr><tr><td>SuperDRUG2</td><td>Mar 2018</td><td>Drug centered</td><td>4456</td><td>4605</td><td>✓</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB9" data-id="TB9"><span class="label title-label" id="label-97946">Table 9</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532476" aria-describedby="label-97946"> Open in new tab </a></div><div class="caption caption-id-" id="caption-97946"><p class="chapter-para">Drug-centered or Target-centered databases</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-97946" aria-describedby="&#xA; caption-97946"><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Type</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/Compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Predicted DTIs</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>BRENDA</td><td>Jan 2019</td><td>Target centered</td><td>&gt;84 000</td><td>&gt;205 000</td><td>✗</td></tr><tr><td>DrugCentral</td><td>Apr,2019</td><td>Drug centered</td><td>-</td><td>4543</td><td>✗</td></tr><tr><td>ECOdrug</td><td>Oct 2017</td><td>Target centered</td><td>-</td><td>-</td><td>✗</td></tr><tr><td>PDID</td><td>Apr 2015</td><td>Target centered</td><td>3746</td><td>51</td><td>✓</td></tr><tr><td>Pharos</td><td>Nov 2018</td><td>Target centered</td><td>20 244</td><td>130 166</td><td>✗</td></tr><tr><td>PubChem</td><td>Mar 2019</td><td>Drug centered</td><td>79 622</td><td>96 157 016</td><td>✗</td></tr><tr><td>SuperDRUG2</td><td>Mar 2018</td><td>Drug centered</td><td>4456</td><td>4605</td><td>✓</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Type</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/Compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Predicted DTIs</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>BRENDA</td><td>Jan 2019</td><td>Target centered</td><td>&gt;84 000</td><td>&gt;205 000</td><td>✗</td></tr><tr><td>DrugCentral</td><td>Apr,2019</td><td>Drug centered</td><td>-</td><td>4543</td><td>✗</td></tr><tr><td>ECOdrug</td><td>Oct 2017</td><td>Target centered</td><td>-</td><td>-</td><td>✗</td></tr><tr><td>PDID</td><td>Apr 2015</td><td>Target centered</td><td>3746</td><td>51</td><td>✓</td></tr><tr><td>Pharos</td><td>Nov 2018</td><td>Target centered</td><td>20 244</td><td>130 166</td><td>✗</td></tr><tr><td>PubChem</td><td>Mar 2019</td><td>Drug centered</td><td>79 622</td><td>96 157 016</td><td>✗</td></tr><tr><td>SuperDRUG2</td><td>Mar 2018</td><td>Drug centered</td><td>4456</td><td>4605</td><td>✓</td></tr></tbody></table></div></div></div> <h4 scrollto-destination=225532477 id="225532477" class="section-title js-splitscreen-section-title" data-legacy-id=sec3n1>3.2.1 BRENDA</h4> <p class="chapter-para">BRENDA [<span class="xrefLink" id="jumplink-ref283"></span><a href="javascript:;" reveal-id="ref283" data-open="ref283" class="link link-ref link-reveal xref-bibr">283</a>, <span class="xrefLink" id="jumplink-ref290"></span><a href="javascript:;" reveal-id="ref290" data-open="ref290" class="link link-ref link-reveal xref-bibr">290</a>] is a comprehensive enzyme database that was first established in 1987. This database contains ˜84 000 enzymes and their corresponding enzyme–ligand related information. All data collected in this database was manually evaluated and extracted from ˜140 000 literature references based on the Enzyme Commission (EC) classification system of the International Union of Biochemistry and Molecular Biology. All compounds related to enzyme catalyzed reactions are labeled as ‘ligands’ in BRENDA, such as substrates, products, activators, inhibitors and cofactors. In total, about 205 000 enzyme ligands were collected and stored in the associated ligand database. Users can search the ligand database through the search box on the home page. BRENDA also provides download functionality for users to download all BRENDA data.</p> <h4 scrollto-destination=225532479 id="225532479" class="section-title js-splitscreen-section-title" data-legacy-id=sec3n2>3.2.2 DrugCentral</h4> <p class="chapter-para">DrugCentral is a comprehensive database that focuses on drug collection [<span class="xrefLink" id="jumplink-ref285"></span><a href="javascript:;" reveal-id="ref285" data-open="ref285" class="link link-ref link-reveal xref-bibr">285</a>, <span class="xrefLink" id="jumplink-ref286"></span><a href="javascript:;" reveal-id="ref286" data-open="ref286" class="link link-ref link-reveal xref-bibr">286</a>]. This database was released in 2016 and contains approved active pharmaceutical ingredients (drugs) from FDA and other regulatory agencies. For each drug, structure information, bioactivity and regulatory records, as well as pharmacologic actions and indications were incorporated. In this database, all drugs are simply classified into three categories, small molecule active ingredients, biological active ingredients and others.</p> <h4 scrollto-destination=225532481 id="225532481" class="section-title js-splitscreen-section-title" data-legacy-id=sec3n3>3.2.3 ECOdrug</h4> <p class="chapter-para">In drug discovery research, non-human model species are important in that they are used for drug testing. ECOdrug [<span class="xrefLink" id="jumplink-ref289"></span><a href="javascript:;" reveal-id="ref289" data-open="ref289" class="link link-ref link-reveal xref-bibr">289</a>] is a database that contains DTI data for 640 eukaryotic species. The data stored in ECOdrug can help researchers investigate the conservation of human drug targets across species. The drug information and drug targets are from previous research [<span class="xrefLink" id="jumplink-ref291"></span><a href="javascript:;" reveal-id="ref291" data-open="ref291" class="link link-ref link-reveal xref-bibr">291</a>] and DrugBank [<span class="xrefLink" id="jumplink-ref244"></span><a href="javascript:;" reveal-id="ref244" data-open="ref244" class="link link-ref link-reveal xref-bibr">244</a>].</p> <h4 scrollto-destination=225532483 id="225532483" class="section-title js-splitscreen-section-title" data-legacy-id=sec3n4>3.2.4 PDID</h4> <p class="chapter-para">PDID [<span class="xrefLink" id="jumplink-ref287"></span><a href="javascript:;" reveal-id="ref287" data-open="ref287" class="link link-ref link-reveal xref-bibr">287</a>] was released in 2014 and covers all known protein–drug interactions and predicted protein–drug interactions for the entire structural human proteome. The known interactions were extracted from DrugBank [<span class="xrefLink" id="jumplink-ref244"></span><a href="javascript:;" reveal-id="ref244" data-open="ref244" class="link link-ref link-reveal xref-bibr">244</a>], BindingDB [<span class="xrefLink" id="jumplink-ref257"></span><a href="javascript:;" reveal-id="ref257" data-open="ref257" class="link link-ref link-reveal xref-bibr">257</a>] and PDB [<span class="xrefLink" id="jumplink-ref280"></span><a href="javascript:;" reveal-id="ref280" data-open="ref280" class="link link-ref link-reveal xref-bibr">280</a>]. The predictions were made by using three different softwares (i.e. ILbind [<span class="xrefLink" id="jumplink-ref292"></span><a href="javascript:;" reveal-id="ref292" data-open="ref292" class="link link-ref link-reveal xref-bibr">292</a>], SMAP [<span class="xrefLink" id="jumplink-ref45"></span><a href="javascript:;" reveal-id="ref45" data-open="ref45" class="link link-ref link-reveal xref-bibr">45</a>] and eFindSite [<span class="xrefLink" id="jumplink-ref293"></span><a href="javascript:;" reveal-id="ref293" data-open="ref293" class="link link-ref link-reveal xref-bibr">293</a>, <span class="xrefLink" id="jumplink-ref294"></span><a href="javascript:;" reveal-id="ref294" data-open="ref294" class="link link-ref link-reveal xref-bibr">294</a>]).</p> <h4 scrollto-destination=225532485 id="225532485" class="section-title js-splitscreen-section-title" data-legacy-id=sec3n5>3.2.5 Pharos</h4> <p class="chapter-para">Pharos [<span class="xrefLink" id="jumplink-ref288"></span><a href="javascript:;" reveal-id="ref288" data-open="ref288" class="link link-ref link-reveal xref-bibr">288</a>] is a platform that was established for presenting the data in the Target Central Resource Database (TCRD). TCRD is a comprehensive database that was initially developed for discovering new druggable proteins.</p><p class="chapter-para">The data stored in TCRD came from many different sources. It includes biomedical literature, expression data, disease and phenotype association data, bioactivity data, DTI data and databases from Harmonizome [<span class="xrefLink" id="jumplink-ref295"></span><a href="javascript:;" reveal-id="ref295" data-open="ref295" class="link link-ref link-reveal xref-bibr">295</a>].</p> <h4 scrollto-destination=225532488 id="225532488" class="section-title js-splitscreen-section-title" data-legacy-id=sec3n6>3.2.6 PubChem</h4> <p class="chapter-para">PubChem [<span class="xrefLink" id="jumplink-ref279"></span><a href="javascript:;" reveal-id="ref279" data-open="ref279" class="link link-ref link-reveal xref-bibr">279</a>, <span class="xrefLink" id="jumplink-ref296"></span><a href="javascript:;" reveal-id="ref296" data-open="ref296" class="link link-ref link-reveal xref-bibr">296</a>] stores the information of chemical substances and corresponding biological actives. This database consists of three sub-databases: Substance, Compound and BioAssay. Substance is the primary repository to store chemical information provided from individual data contributors. The Compound database contains the unique chemical structures extracted from the Substance database. All biological related data of these chemical substance data are saved in the BioAssay database.</p> <h4 scrollto-destination=225532490 id="225532490" class="section-title js-splitscreen-section-title" data-legacy-id=sec3n7>3.2.7 SuperDRUG2</h4> <p class="chapter-para">SuperDRUG2 [<span class="xrefLink" id="jumplink-ref284"></span><a href="javascript:;" reveal-id="ref284" data-open="ref284" class="link link-ref link-reveal xref-bibr">284</a>] is proposed as a one-stop data source that offers all crucial features of approved and marketed drugs. The drug items in SuperDRUG2 are classified into two categories: small molecules and biological/other drugs. Several public resources like US FDA, CFDA and EMA, etc. were used for drug collections. Drug target information in SuperDRUG2 was extracted from DrugBank [<span class="xrefLink" id="jumplink-ref244"></span><a href="javascript:;" reveal-id="ref244" data-open="ref244" class="link link-ref link-reveal xref-bibr">244</a>], TTD [<span class="xrefLink" id="jumplink-ref247"></span><a href="javascript:;" reveal-id="ref247" data-open="ref247" class="link link-ref link-reveal xref-bibr">247</a>] and ChEMBL [<span class="xrefLink" id="jumplink-ref238"></span><a href="javascript:;" reveal-id="ref238" data-open="ref238" class="link link-ref link-reveal xref-bibr">238</a>]. Besides these drugs and targets information, SuperDRUG2 also provides 2D and 3D structure information of small molecule drugs, drug side effects, drug–drug interactions and drug pharmacokinetic parameters.</p> <h3 scrollto-destination=225532492 id="225532492" class="section-title js-splitscreen-section-title" data-legacy-id=sec3v>3.3 Binding affinity databases</h3> <p class="chapter-para">In this category, BindingDB [<span class="xrefLink" id="jumplink-ref257"></span><a href="javascript:;" reveal-id="ref257" data-open="ref257" class="link link-ref link-reveal xref-bibr">257</a>, <span class="xrefLink" id="jumplink-ref297 ref298 ref299"></span><a href="javascript:;" reveal-id="ref297 ref298 ref299" data-open="ref297 ref298 ref299" class="link link-ref link-reveal xref-bibr">297–299</a>], PDBBind [<span class="xrefLink" id="jumplink-ref300"></span><a href="javascript:;" reveal-id="ref300" data-open="ref300" class="link link-ref link-reveal xref-bibr">300</a>] and PDSP Ki [<span class="xrefLink" id="jumplink-ref301"></span><a href="javascript:;" reveal-id="ref301" data-open="ref301" class="link link-ref link-reveal xref-bibr">301</a>] are included. All of them contain the data on chemical-protein binding affinities. BindingDB is mainly focused on collection of binding affinity data between drugs (drug-like molecules) and target proteins. PDBbind is established based on binding affinity measurements of biomolecular complexes from PDB. PDSP Ki is similar to BindingDB, which also contains a large number of binding affinity data on DTIs. Table <span class="xrefLink" id="jumplink-TB10"></span><a href="javascript:;" reveal-id="TB10" data-open="TB10" class="link link-reveal link-table xref-fig">10</a> shows the relative information of these three databases.</p> <a id="225532494" scrollto-destination="225532494"></a> <div content-id="TB10" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB10" data-id="TB10"><span class="label title-label" id="label-81584">Table 10</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532494" aria-describedby="label-81584"> Open in new tab </a></div><div class="caption caption-id-" id="caption-81584"><p class="chapter-para">Binding affinity databases</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-81584" aria-describedby="&#xA; caption-81584"><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of DTI</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of TTI</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>BindingDB</td><td>May 2019</td><td>7269</td><td>733198</td><td>1651120</td><td>-</td></tr><tr><td>PDBBind</td><td>Jan 2018</td><td>-</td><td>-</td><td>16276</td><td>3312</td></tr><tr><td>PDSP Ki</td><td>2019</td><td>-</td><td>-</td><td>-</td><td>-</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of DTI</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of TTI</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>BindingDB</td><td>May 2019</td><td>7269</td><td>733198</td><td>1651120</td><td>-</td></tr><tr><td>PDBBind</td><td>Jan 2018</td><td>-</td><td>-</td><td>16276</td><td>3312</td></tr><tr><td>PDSP Ki</td><td>2019</td><td>-</td><td>-</td><td>-</td><td>-</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB10" data-id="TB10"><span class="label title-label" id="label-81584">Table 10</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532494" aria-describedby="label-81584"> Open in new tab </a></div><div class="caption caption-id-" id="caption-81584"><p class="chapter-para">Binding affinity databases</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-81584" aria-describedby="&#xA; caption-81584"><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of DTI</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of TTI</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>BindingDB</td><td>May 2019</td><td>7269</td><td>733198</td><td>1651120</td><td>-</td></tr><tr><td>PDBBind</td><td>Jan 2018</td><td>-</td><td>-</td><td>16276</td><td>3312</td></tr><tr><td>PDSP Ki</td><td>2019</td><td>-</td><td>-</td><td>-</td><td>-</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Latest updates</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of targets</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of drugs/compounds</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of DTI</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>No. of TTI</strong><span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>BindingDB</td><td>May 2019</td><td>7269</td><td>733198</td><td>1651120</td><td>-</td></tr><tr><td>PDBBind</td><td>Jan 2018</td><td>-</td><td>-</td><td>16276</td><td>3312</td></tr><tr><td>PDSP Ki</td><td>2019</td><td>-</td><td>-</td><td>-</td><td>-</td></tr></tbody></table></div></div></div> <a id="225532495" scrollto-destination="225532495"></a> <div data-id="f5" data-content-id="f5" class="fig fig-section js-fig-section" swap-content-for-modal="true"><div class="graphic-wrap"><img class="content-image" src="https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/m_bbz157f5.jpeg?Expires=1734462476&amp;Signature=IFQfzd4Up2tgAVJvqeuo~Hg-fdUiMUcnwcmC2gW3x2pO28GVC8~Qk26ljHUTH54atAfUXKoy1EEkGII2Ty5rcmZ6TYK4AjPv9DtJU14LOATYXf3cG0zdKvyWiEZ5dM5LRIDeNh-3Taag4psW7BfvGIoXfr8bb~m0CikzA~tD26aFfaIhyf7O5ITaigPuJKyR2Wp6xVl5EX5v8ZWEq9KtID-QwBfiWQ8Y9o2n2MIjwIY2DMsRSHfjxKHPytiQuKoDwid8Q985EFAYvUk~eyHF0X2UcQN6nu3p1HA2kwGdvHRSzOphcH2jNhHSA0PcaU0cC4MmTj~iyPtHUMQOfVTV-g__&amp;Key-Pair-Id=APKAIE5G5CRDK6RD3PGA" alt="Coupled matrix–matrix versus coupled tensor–matrix." data-path-from-xml="bbz157f5.tif" /><div class="graphic-bottom"><div class="label fig-label" id="label-225532495"><strong>Figure 5</strong></div><div class="caption fig-caption"><p class="chapter-para">Coupled matrix–matrix versus coupled tensor–matrix.</p></div><div class="ajax-articleAbstract-exclude-regex fig-orig original-slide figure-button-wrap"><a class="fig-view-orig js-view-large at-figureViewLarge openInAnotherWindow" role="button" aria-describedby="label-225532495" href="/view-large/figure/225532495/bbz157f5.tif" data-path-from-xml="bbz157f5.tif" target="_blank">Open in new tab</a><a class="download-slide" role="button" aria-describedby="label-225532495" data-section="225532495" href="/DownloadFile/DownloadImage.aspx?image=https://oup.silverchair-cdn.com/oup/backfile/Content_public/Journal/bib/22/1/10.1093_bib_bbz157/2/bbz157f5.jpeg?Expires=1734462476&Signature=e-DVE9qo5UdYE0zzdXmyO3KgIvwvHrFCiUzIw9yY0hJukaz~FMTYsPNdhcdb7oI~EjPZLtAJtXmN9vSlxJDJmi-0o7x69umA-GAap-qy4aLKVR-O-fl5uPfuWMet8EIPlekgPIhuIGQ3Xh5WmJdy4OoOGwmSNaJmspEfzCDT40hmIxKjMd9YCQbMkweMw1vLn8-0AI-nLQJKI8sLILZHST7MseOmheYV7~3K5e0yI2fSgUKrmvrdMHvVTECl4JaBHInEvfy46JSHEkQoe9PrEHPAA1HPIWPcEpljyz3DwO~TrCIzlSQMpJSuHKB905fjfKvE0lEBVcEtagAUICMfeA__&Key-Pair-Id=APKAIE5G5CRDK6RD3PGA&sec=225532495&ar=5681786&xsltPath=~/UI/app/XSLT&imagename=&siteId=5143" data-path-from-xml="bbz157f5.tif">Download slide</a></div></div></div></div> <a id="225532496" scrollto-destination="225532496"></a> <div content-id="TB11" class="table-modal table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB11" data-id="TB11"><span class="label title-label" id="label-81584">Table 11</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532496" aria-describedby="label-81584"> Open in new tab </a></div><div class="caption caption-id-" id="caption-81584"><p class="chapter-para">The summary of all algorithms and databases</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-81584" aria-describedby="&#xA; caption-81584"><thead><tr><th><strong>Study</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithm</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>Bock <em>et al.</em> [<span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>]</td><td>SVM</td><td>PDSP Ki, Swiss-Prot (UniProt), Ligand.Info, ExPASy</td></tr><tr><td>Faulon <em>et al.</em> [<span class="xrefLink" id="jumplink-ref130"></span><a href="javascript:;" reveal-id="ref130" data-open="ref130" class="link link-ref link-reveal xref-bibr">130</a>]</td><td>SVM</td><td>PTC, KEGG, DrugBank</td></tr><tr><td>Nagamine <em>et al.</em> [<span class="xrefLink" id="jumplink-ref129"></span><a href="javascript:;" reveal-id="ref129" data-open="ref129" class="link link-ref link-reveal xref-bibr">129</a>]</td><td>SVM</td><td>DrugBank, UniProt, PubChem, PDSP Ki, GLIDA</td></tr><tr><td>Nagamine <em>et al.</em> [<span class="xrefLink" id="jumplink-ref127"></span><a href="javascript:;" reveal-id="ref127" data-open="ref127" class="link link-ref link-reveal xref-bibr">127</a>]</td><td>SVM</td><td>DrugBank, UniProt, NIST05, CE-MS</td></tr><tr><td>Wassermann <em>et al.</em> [<span class="xrefLink" id="jumplink-ref128"></span><a href="javascript:;" reveal-id="ref128" data-open="ref128" class="link link-ref link-reveal xref-bibr">128</a>]</td><td>SVM</td><td>MEROPS, CutDB, SCOP, MDDR, PDB, BindingDB</td></tr><tr><td>Jacob <em>et al.</em> [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>]</td><td>SVM</td><td>KEGG BRITE</td></tr><tr><td>Cao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Liu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref138"></span><a href="javascript:;" reveal-id="ref138" data-open="ref138" class="link link-ref link-reveal xref-bibr">138</a>]</td><td>SVM</td><td>DrugBank, Matador, STITCH, PubChem, SIDER</td></tr><tr><td>Mousavian <em>et al.</em> [<span class="xrefLink" id="jumplink-ref136"></span><a href="javascript:;" reveal-id="ref136" data-open="ref136" class="link link-ref link-reveal xref-bibr">136</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Shen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref135"></span><a href="javascript:;" reveal-id="ref135" data-open="ref135" class="link link-ref link-reveal xref-bibr">135</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ding <em>et al.</em> [<span class="xrefLink" id="jumplink-ref134"></span><a href="javascript:;" reveal-id="ref134" data-open="ref134" class="link link-ref link-reveal xref-bibr">134</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, ChEMBL, Matador</td></tr><tr><td>Yamanishi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref143"></span><a href="javascript:;" reveal-id="ref143" data-open="ref143" class="link link-ref link-reveal xref-bibr">143</a>]</td><td>BGL</td><td>KEGG DRUG, KEGG LIGAND, KEGG GENES, KEGG BRITE, BRENDA, SuperTarget, DrugBank, JAPIC</td></tr><tr><td>Yamanishi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>]</td><td>BGL or KRM, NN</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Bleakley <em>et al.</em> [<span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>]</td><td>BLM, KRM, NN</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>He <em>et al.</em> [<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>]</td><td>NN</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Xia <em>et al.</em> [<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>]</td><td>LaRLS, NetLapRLS</td><td>KEGG LIGAND, KEGG GENES</td></tr><tr><td>Van Laarhoven <em>et al.</em> [<span class="xrefLink" id="jumplink-ref153"></span><a href="javascript:;" reveal-id="ref153" data-open="ref153" class="link link-ref link-reveal xref-bibr">153</a>]</td><td>GIP, RLS</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Perlman <em>et al.</em> [<span class="xrefLink" id="jumplink-ref95"></span><a href="javascript:;" reveal-id="ref95" data-open="ref95" class="link link-ref link-reveal xref-bibr">95</a>]</td><td>SITAR</td><td>KEGG DRUG, DrugBank, DCDB, SuperTarget, REACTOME, CTD</td></tr><tr><td>Takarabe <em>et al.</em> [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>]</td><td>PKR</td><td>AERS, SIDER, JAPIC, KEGG DRUG, KEGG GENES</td></tr><tr><td>Gonen [<span class="xrefLink" id="jumplink-ref194"></span><a href="javascript:;" reveal-id="ref194" data-open="ref194" class="link link-ref link-reveal xref-bibr">194</a>]</td><td>KBMF</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Cheng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>]</td><td>NBI, TBSI, DBSI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>]</td><td>NRWRH</td><td>KEGG LIGAND, KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Mei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>]</td><td>BLM-NII</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Yu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref131"></span><a href="javascript:;" reveal-id="ref131" data-open="ref131" class="link link-ref link-reveal xref-bibr">131</a>]</td><td>SVM, RF</td><td>DrugBank</td></tr><tr><td>Tabei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref216"></span><a href="javascript:;" reveal-id="ref216" data-open="ref216" class="link link-ref link-reveal xref-bibr">216</a>]</td><td><span class="inline-formula no-formula-id">|$L_{1}$|</span>-regularized</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref204"></span><a href="javascript:;" reveal-id="ref204" data-open="ref204" class="link link-ref link-reveal xref-bibr">204</a>]</td><td>RBM</td><td>MATADOR, STITCH</td></tr><tr><td>Zheng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref182"></span><a href="javascript:;" reveal-id="ref182" data-open="ref182" class="link link-ref link-reveal xref-bibr">182</a>]</td><td>MSCMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Van Laarhoven <em>et al.</em> [<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>]</td><td>WNN-GIP</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Cobanoglu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref179"></span><a href="javascript:;" reveal-id="ref179" data-open="ref179" class="link link-ref link-reveal xref-bibr">179</a>]</td><td>PMF</td><td>DrugBank</td></tr><tr><td>Alaimo <em>et al.</em> [<span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>]</td><td>DT-Hybrid</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>])</td></tr><tr><td>Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref111"></span><a href="javascript:;" reveal-id="ref111" data-open="ref111" class="link link-ref link-reveal xref-bibr">111</a>]</td><td>NetCBP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Tabei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref139"></span><a href="javascript:;" reveal-id="ref139" data-open="ref139" class="link link-ref link-reveal xref-bibr">139</a>]</td><td>MH-SVM</td><td>STITCH, PubChem, UniProt, PFAM</td></tr><tr><td>Pahikkala <em>et al.</em> [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>]</td><td>RF, RLS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Niu et al. [<span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>]</td><td>EnsemRF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Bharadwaja [<span class="xrefLink" id="jumplink-ref156"></span><a href="javascript:;" reveal-id="ref156" data-open="ref156" class="link link-ref link-reveal xref-bibr">156</a>]</td><td>KRLS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kuang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref155"></span><a href="javascript:;" reveal-id="ref155" data-open="ref155" class="link link-ref link-reveal xref-bibr">155</a>]</td><td>RLS-Kron</td><td>DrugBank, KEGG LIGAND, UniProt</td></tr><tr><td>Peng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref199"></span><a href="javascript:;" reveal-id="ref199" data-open="ref199" class="link link-ref link-reveal xref-bibr">199</a>]</td><td>NormMulInf</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang [<span class="xrefLink" id="jumplink-ref176"></span><a href="javascript:;" reveal-id="ref176" data-open="ref176" class="link link-ref link-reveal xref-bibr">176</a>]</td><td>EnsemSTACK</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Seal <em>et al.</em> [<span class="xrefLink" id="jumplink-ref202"></span><a href="javascript:;" reveal-id="ref202" data-open="ref202" class="link link-ref link-reveal xref-bibr">202</a>]</td><td>RWR</td><td>DrugBank, ChEMBL</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref104"></span><a href="javascript:;" reveal-id="ref104" data-open="ref104" class="link link-ref link-reveal xref-bibr">104</a>]</td><td>Super-Target Clustering</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref97"></span><a href="javascript:;" reveal-id="ref97" data-open="ref97" class="link link-ref link-reveal xref-bibr">97</a>]</td><td>SRP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref152"></span><a href="javascript:;" reveal-id="ref152" data-open="ref152" class="link link-ref link-reveal xref-bibr">152</a>]</td><td>PUDT</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND</td></tr><tr><td>Liu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref187"></span><a href="javascript:;" reveal-id="ref187" data-open="ref187" class="link link-ref link-reveal xref-bibr">187</a>]</td><td>NRLMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, ChEMBL, KEGG LIGAND</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref171"></span><a href="javascript:;" reveal-id="ref171" data-open="ref171" class="link link-ref link-reveal xref-bibr">171</a>]</td><td>EnsemDT</td><td>DrugBank</td></tr><tr><td>Ba-alawi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref167"></span><a href="javascript:;" reveal-id="ref167" data-open="ref167" class="link link-ref link-reveal xref-bibr">167</a>]</td><td>DASPfind</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Yuan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref177"></span><a href="javascript:;" reveal-id="ref177" data-open="ref177" class="link link-ref link-reveal xref-bibr">177</a>]</td><td>DrugE-Rank</td><td>DrugBank</td></tr><tr><td>Hao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref157"></span><a href="javascript:;" reveal-id="ref157" data-open="ref157" class="link link-ref link-reveal xref-bibr">157</a>]</td><td>RLS-KF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Nascimento <em>et al.</em> [<span class="xrefLink" id="jumplink-ref158"></span><a href="javascript:;" reveal-id="ref158" data-open="ref158" class="link link-ref link-reveal xref-bibr">158</a>]</td><td>KronRLS-MKL</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lim <em>et al.</em> [<span class="xrefLink" id="jumplink-ref218"></span><a href="javascript:;" reveal-id="ref218" data-open="ref218" class="link link-ref link-reveal xref-bibr">218</a>]</td><td>COSINE</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Buza <em>et al.</em> [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>]</td><td>ECkNN, HLM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase, KEGG GENES</td></tr><tr><td>Peska <em>et al.</em> [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>]</td><td>BPR, BRDTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase</td></tr><tr><td>Meng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref215"></span><a href="javascript:;" reveal-id="ref215" data-open="ref215" class="link link-ref link-reveal xref-bibr">215</a>]</td><td>PDTPS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref105"></span><a href="javascript:;" reveal-id="ref105" data-open="ref105" class="link link-ref link-reveal xref-bibr">105</a>]</td><td>LPLNI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref172"></span><a href="javascript:;" reveal-id="ref172" data-open="ref172" class="link link-ref link-reveal xref-bibr">172</a>, <span class="xrefLink" id="jumplink-ref173"></span><a href="javascript:;" reveal-id="ref173" data-open="ref173" class="link link-ref link-reveal xref-bibr">173</a>]</td><td>EnsemDT, EnsemKRR</td><td>DrugBank ([<span class="xrefLink" id="jumplink-ref171"></span><a href="javascript:;" reveal-id="ref171" data-open="ref171" class="link link-ref link-reveal xref-bibr">171</a>]), KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref189"></span><a href="javascript:;" reveal-id="ref189" data-open="ref189" class="link link-ref link-reveal xref-bibr">189</a>]</td><td>GRMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kuang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref208"></span><a href="javascript:;" reveal-id="ref208" data-open="ref208" class="link link-ref link-reveal xref-bibr">208</a>]</td><td>KMDR</td><td>DrugBank, KEGG LIGAND, UniProt</td></tr><tr><td>Olayan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref145"></span><a href="javascript:;" reveal-id="ref145" data-open="ref145" class="link link-ref link-reveal xref-bibr">145</a>]</td><td>RF (DDR)</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref103"></span><a href="javascript:;" reveal-id="ref103" data-open="ref103" class="link link-ref link-reveal xref-bibr">103</a>]</td><td>MultiviewDTI</td><td>DrugBank</td></tr><tr><td>Li <em>et al.</em> [<span class="xrefLink" id="jumplink-ref180"></span><a href="javascript:;" reveal-id="ref180" data-open="ref180" class="link link-ref link-reveal xref-bibr">180</a>]</td><td>LRE</td><td>DrugBank, KEGG</td></tr><tr><td>Wen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref118"></span><a href="javascript:;" reveal-id="ref118" data-open="ref118" class="link link-ref link-reveal xref-bibr">118</a>]</td><td>DeepDTIs</td><td>DrugBank</td></tr><tr><td>Luo <em>et al.</em> [<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>]</td><td>DTINet</td><td>DrugBank, HPRD</td></tr><tr><td>Zong <em>et al.</em> [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>]</td><td>DeepWalk</td><td>DrugBank</td></tr><tr><td>He <em>et al.</em> [<span class="xrefLink" id="jumplink-ref159"></span><a href="javascript:;" reveal-id="ref159" data-open="ref159" class="link link-ref link-reveal xref-bibr">159</a>]</td><td>SimBoost, SimBoostQuant</td><td>Kinome Datasets in [<span class="xrefLink" id="jumplink-ref307"></span><a href="javascript:;" reveal-id="ref307" data-open="ref307" class="link link-ref link-reveal xref-bibr">307</a>, <span class="xrefLink" id="jumplink-ref308"></span><a href="javascript:;" reveal-id="ref308" data-open="ref308" class="link link-ref link-reveal xref-bibr">308</a>]</td></tr><tr><td>Li <em>et al.</em> [<span class="xrefLink" id="jumplink-ref169"></span><a href="javascript:;" reveal-id="ref169" data-open="ref169" class="link link-ref link-reveal xref-bibr">169</a>]</td><td>DVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref164"></span><a href="javascript:;" reveal-id="ref164" data-open="ref164" class="link link-ref link-reveal xref-bibr">164</a>]</td><td>DrugRPE</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>])</td></tr><tr><td>Rayhan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref151"></span><a href="javascript:;" reveal-id="ref151" data-open="ref151" class="link link-ref link-reveal xref-bibr">151</a>]</td><td>iDTI-ESBoost</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Hao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref233"></span><a href="javascript:;" reveal-id="ref233" data-open="ref233" class="link link-ref link-reveal xref-bibr">233</a>]</td><td>DNILMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG GENES, KEGG DRUG, KEGG COMPOUND</td></tr><tr><td>Ohue <em>et al.</em> [<span class="xrefLink" id="jumplink-ref166"></span><a href="javascript:;" reveal-id="ref166" data-open="ref166" class="link link-ref link-reveal xref-bibr">166</a>]</td><td>CGBVS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref188"></span><a href="javascript:;" reveal-id="ref188" data-open="ref188" class="link link-ref link-reveal xref-bibr">188</a>]</td><td>DLGRMC</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND, KEGG GENES</td></tr><tr><td>Sharma <em>et al.</em> [<span class="xrefLink" id="jumplink-ref178"></span><a href="javascript:;" reveal-id="ref178" data-open="ref178" class="link link-ref link-reveal xref-bibr">178</a>]</td><td>BE-DTI’</td><td>DrugBank, KEGG</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref109"></span><a href="javascript:;" reveal-id="ref109" data-open="ref109" class="link link-ref link-reveal xref-bibr">109</a>]</td><td>WBRDTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase</td></tr><tr><td>Huang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref198"></span><a href="javascript:;" reveal-id="ref198" data-open="ref198" class="link link-ref link-reveal xref-bibr">198</a>]</td><td>IN-RWR, Co-rank</td><td>DrugBank, DGIdb, TTD</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>]</td><td>LRF-DTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kadiyala [<span class="xrefLink" id="jumplink-ref214"></span><a href="javascript:;" reveal-id="ref214" data-open="ref214" class="link link-ref link-reveal xref-bibr">214</a>]</td><td>WLNM</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>])</td></tr><tr><td>Manoochehri <em>et al.</em> [<span class="xrefLink" id="jumplink-ref219"></span><a href="javascript:;" reveal-id="ref219" data-open="ref219" class="link link-ref link-reveal xref-bibr">219</a>]</td><td>DMF</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>])</td></tr><tr><td>Mongia <em>et al.</em> [<span class="xrefLink" id="jumplink-ref212"></span><a href="javascript:;" reveal-id="ref212" data-open="ref212" class="link link-ref link-reveal xref-bibr">212</a>, <span class="xrefLink" id="jumplink-ref213"></span><a href="javascript:;" reveal-id="ref213" data-open="ref213" class="link link-ref link-reveal xref-bibr">213</a>]</td><td>MGRNNM, DGRMC</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref207"></span><a href="javascript:;" reveal-id="ref207" data-open="ref207" class="link link-ref link-reveal xref-bibr">207</a>]</td><td>NeoDTI</td><td>DrugBank, HPRD ([<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>])</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref116"></span><a href="javascript:;" reveal-id="ref116" data-open="ref116" class="link link-ref link-reveal xref-bibr">116</a>]</td><td>AutoDNP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Huang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref191"></span><a href="javascript:;" reveal-id="ref191" data-open="ref191" class="link link-ref link-reveal xref-bibr">191</a>]</td><td>Pseudo-SMR</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref161"></span><a href="javascript:;" reveal-id="ref161" data-open="ref161" class="link link-ref link-reveal xref-bibr">161</a>]</td><td>RFDT</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ban <em>et al.</em> [<span class="xrefLink" id="jumplink-ref201"></span><a href="javascript:;" reveal-id="ref201" data-open="ref201" class="link link-ref link-reveal xref-bibr">201</a>]</td><td>NRLMF<span class="inline-formula no-formula-id">|$\beta $|</span></td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND, KEGG GENES</td></tr><tr><td>Bolgar <em>et al.</em> [<span class="xrefLink" id="jumplink-ref193"></span><a href="javascript:;" reveal-id="ref193" data-open="ref193" class="link link-ref link-reveal xref-bibr">193</a>]</td><td>VB-MK-LMF</td><td>KEGG DRUG,KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lee <em>et al.</em>[<span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>]</td><td>DeepConv-DTI</td><td>DrugBank 4.0 [<span class="xrefLink" id="jumplink-ref243"></span><a href="javascript:;" reveal-id="ref243" data-open="ref243" class="link link-ref link-reveal xref-bibr">243</a>],KEGG, International Union of Basic and Clinical Pharmacology (IUPHAR) [<span class="xrefLink" id="jumplink-ref309"></span><a href="javascript:;" reveal-id="ref309" data-open="ref309" class="link link-ref link-reveal xref-bibr">309</a>]</td></tr><tr><td>You <em>et al.</em> [<span class="xrefLink" id="jumplink-ref121"></span><a href="javascript:;" reveal-id="ref121" data-open="ref121" class="link link-ref link-reveal xref-bibr">121</a>]</td><td>LASSO-DNN</td><td>Drugbank</td></tr><tr><td>Özgür <em>et al.</em> [<span class="xrefLink" id="jumplink-ref120"></span><a href="javascript:;" reveal-id="ref120" data-open="ref120" class="link link-ref link-reveal xref-bibr">120</a>]</td><td>DeepDTA</td><td>Kinase [<span class="xrefLink" id="jumplink-ref308"></span><a href="javascript:;" reveal-id="ref308" data-open="ref308" class="link link-ref link-reveal xref-bibr">308</a>], KIBA [<span class="xrefLink" id="jumplink-ref310"></span><a href="javascript:;" reveal-id="ref310" data-open="ref310" class="link link-ref link-reveal xref-bibr">310</a>]</td></tr><tr><td>Gao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref119"></span><a href="javascript:;" reveal-id="ref119" data-open="ref119" class="link link-ref link-reveal xref-bibr">119</a>]</td><td>DeepNP</td><td>BindingDB [<span class="xrefLink" id="jumplink-ref257"></span><a href="javascript:;" reveal-id="ref257" data-open="ref257" class="link link-ref link-reveal xref-bibr">257</a>]</td></tr><tr><td>Xie <em>et al.</em> [<span class="xrefLink" id="jumplink-ref124"></span><a href="javascript:;" reveal-id="ref124" data-open="ref124" class="link link-ref link-reveal xref-bibr">124</a>]</td><td>DeepTrans</td><td>DrugBank</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Study</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithm</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>Bock <em>et al.</em> [<span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>]</td><td>SVM</td><td>PDSP Ki, Swiss-Prot (UniProt), Ligand.Info, ExPASy</td></tr><tr><td>Faulon <em>et al.</em> [<span class="xrefLink" id="jumplink-ref130"></span><a href="javascript:;" reveal-id="ref130" data-open="ref130" class="link link-ref link-reveal xref-bibr">130</a>]</td><td>SVM</td><td>PTC, KEGG, DrugBank</td></tr><tr><td>Nagamine <em>et al.</em> [<span class="xrefLink" id="jumplink-ref129"></span><a href="javascript:;" reveal-id="ref129" data-open="ref129" class="link link-ref link-reveal xref-bibr">129</a>]</td><td>SVM</td><td>DrugBank, UniProt, PubChem, PDSP Ki, GLIDA</td></tr><tr><td>Nagamine <em>et al.</em> [<span class="xrefLink" id="jumplink-ref127"></span><a href="javascript:;" reveal-id="ref127" data-open="ref127" class="link link-ref link-reveal xref-bibr">127</a>]</td><td>SVM</td><td>DrugBank, UniProt, NIST05, CE-MS</td></tr><tr><td>Wassermann <em>et al.</em> [<span class="xrefLink" id="jumplink-ref128"></span><a href="javascript:;" reveal-id="ref128" data-open="ref128" class="link link-ref link-reveal xref-bibr">128</a>]</td><td>SVM</td><td>MEROPS, CutDB, SCOP, MDDR, PDB, BindingDB</td></tr><tr><td>Jacob <em>et al.</em> [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>]</td><td>SVM</td><td>KEGG BRITE</td></tr><tr><td>Cao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Liu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref138"></span><a href="javascript:;" reveal-id="ref138" data-open="ref138" class="link link-ref link-reveal xref-bibr">138</a>]</td><td>SVM</td><td>DrugBank, Matador, STITCH, PubChem, SIDER</td></tr><tr><td>Mousavian <em>et al.</em> [<span class="xrefLink" id="jumplink-ref136"></span><a href="javascript:;" reveal-id="ref136" data-open="ref136" class="link link-ref link-reveal xref-bibr">136</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Shen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref135"></span><a href="javascript:;" reveal-id="ref135" data-open="ref135" class="link link-ref link-reveal xref-bibr">135</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ding <em>et al.</em> [<span class="xrefLink" id="jumplink-ref134"></span><a href="javascript:;" reveal-id="ref134" data-open="ref134" class="link link-ref link-reveal xref-bibr">134</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, ChEMBL, Matador</td></tr><tr><td>Yamanishi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref143"></span><a href="javascript:;" reveal-id="ref143" data-open="ref143" class="link link-ref link-reveal xref-bibr">143</a>]</td><td>BGL</td><td>KEGG DRUG, KEGG LIGAND, KEGG GENES, KEGG BRITE, BRENDA, SuperTarget, DrugBank, JAPIC</td></tr><tr><td>Yamanishi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>]</td><td>BGL or KRM, NN</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Bleakley <em>et al.</em> [<span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>]</td><td>BLM, KRM, NN</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>He <em>et al.</em> [<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>]</td><td>NN</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Xia <em>et al.</em> [<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>]</td><td>LaRLS, NetLapRLS</td><td>KEGG LIGAND, KEGG GENES</td></tr><tr><td>Van Laarhoven <em>et al.</em> [<span class="xrefLink" id="jumplink-ref153"></span><a href="javascript:;" reveal-id="ref153" data-open="ref153" class="link link-ref link-reveal xref-bibr">153</a>]</td><td>GIP, RLS</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Perlman <em>et al.</em> [<span class="xrefLink" id="jumplink-ref95"></span><a href="javascript:;" reveal-id="ref95" data-open="ref95" class="link link-ref link-reveal xref-bibr">95</a>]</td><td>SITAR</td><td>KEGG DRUG, DrugBank, DCDB, SuperTarget, REACTOME, CTD</td></tr><tr><td>Takarabe <em>et al.</em> [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>]</td><td>PKR</td><td>AERS, SIDER, JAPIC, KEGG DRUG, KEGG GENES</td></tr><tr><td>Gonen [<span class="xrefLink" id="jumplink-ref194"></span><a href="javascript:;" reveal-id="ref194" data-open="ref194" class="link link-ref link-reveal xref-bibr">194</a>]</td><td>KBMF</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Cheng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>]</td><td>NBI, TBSI, DBSI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>]</td><td>NRWRH</td><td>KEGG LIGAND, KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Mei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>]</td><td>BLM-NII</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Yu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref131"></span><a href="javascript:;" reveal-id="ref131" data-open="ref131" class="link link-ref link-reveal xref-bibr">131</a>]</td><td>SVM, RF</td><td>DrugBank</td></tr><tr><td>Tabei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref216"></span><a href="javascript:;" reveal-id="ref216" data-open="ref216" class="link link-ref link-reveal xref-bibr">216</a>]</td><td><span class="inline-formula no-formula-id">|$L_{1}$|</span>-regularized</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref204"></span><a href="javascript:;" reveal-id="ref204" data-open="ref204" class="link link-ref link-reveal xref-bibr">204</a>]</td><td>RBM</td><td>MATADOR, STITCH</td></tr><tr><td>Zheng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref182"></span><a href="javascript:;" reveal-id="ref182" data-open="ref182" class="link link-ref link-reveal xref-bibr">182</a>]</td><td>MSCMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Van Laarhoven <em>et al.</em> [<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>]</td><td>WNN-GIP</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Cobanoglu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref179"></span><a href="javascript:;" reveal-id="ref179" data-open="ref179" class="link link-ref link-reveal xref-bibr">179</a>]</td><td>PMF</td><td>DrugBank</td></tr><tr><td>Alaimo <em>et al.</em> [<span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>]</td><td>DT-Hybrid</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>])</td></tr><tr><td>Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref111"></span><a href="javascript:;" reveal-id="ref111" data-open="ref111" class="link link-ref link-reveal xref-bibr">111</a>]</td><td>NetCBP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Tabei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref139"></span><a href="javascript:;" reveal-id="ref139" data-open="ref139" class="link link-ref link-reveal xref-bibr">139</a>]</td><td>MH-SVM</td><td>STITCH, PubChem, UniProt, PFAM</td></tr><tr><td>Pahikkala <em>et al.</em> [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>]</td><td>RF, RLS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Niu et al. [<span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>]</td><td>EnsemRF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Bharadwaja [<span class="xrefLink" id="jumplink-ref156"></span><a href="javascript:;" reveal-id="ref156" data-open="ref156" class="link link-ref link-reveal xref-bibr">156</a>]</td><td>KRLS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kuang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref155"></span><a href="javascript:;" reveal-id="ref155" data-open="ref155" class="link link-ref link-reveal xref-bibr">155</a>]</td><td>RLS-Kron</td><td>DrugBank, KEGG LIGAND, UniProt</td></tr><tr><td>Peng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref199"></span><a href="javascript:;" reveal-id="ref199" data-open="ref199" class="link link-ref link-reveal xref-bibr">199</a>]</td><td>NormMulInf</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang [<span class="xrefLink" id="jumplink-ref176"></span><a href="javascript:;" reveal-id="ref176" data-open="ref176" class="link link-ref link-reveal xref-bibr">176</a>]</td><td>EnsemSTACK</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Seal <em>et al.</em> [<span class="xrefLink" id="jumplink-ref202"></span><a href="javascript:;" reveal-id="ref202" data-open="ref202" class="link link-ref link-reveal xref-bibr">202</a>]</td><td>RWR</td><td>DrugBank, ChEMBL</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref104"></span><a href="javascript:;" reveal-id="ref104" data-open="ref104" class="link link-ref link-reveal xref-bibr">104</a>]</td><td>Super-Target Clustering</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref97"></span><a href="javascript:;" reveal-id="ref97" data-open="ref97" class="link link-ref link-reveal xref-bibr">97</a>]</td><td>SRP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref152"></span><a href="javascript:;" reveal-id="ref152" data-open="ref152" class="link link-ref link-reveal xref-bibr">152</a>]</td><td>PUDT</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND</td></tr><tr><td>Liu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref187"></span><a href="javascript:;" reveal-id="ref187" data-open="ref187" class="link link-ref link-reveal xref-bibr">187</a>]</td><td>NRLMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, ChEMBL, KEGG LIGAND</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref171"></span><a href="javascript:;" reveal-id="ref171" data-open="ref171" class="link link-ref link-reveal xref-bibr">171</a>]</td><td>EnsemDT</td><td>DrugBank</td></tr><tr><td>Ba-alawi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref167"></span><a href="javascript:;" reveal-id="ref167" data-open="ref167" class="link link-ref link-reveal xref-bibr">167</a>]</td><td>DASPfind</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Yuan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref177"></span><a href="javascript:;" reveal-id="ref177" data-open="ref177" class="link link-ref link-reveal xref-bibr">177</a>]</td><td>DrugE-Rank</td><td>DrugBank</td></tr><tr><td>Hao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref157"></span><a href="javascript:;" reveal-id="ref157" data-open="ref157" class="link link-ref link-reveal xref-bibr">157</a>]</td><td>RLS-KF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Nascimento <em>et al.</em> [<span class="xrefLink" id="jumplink-ref158"></span><a href="javascript:;" reveal-id="ref158" data-open="ref158" class="link link-ref link-reveal xref-bibr">158</a>]</td><td>KronRLS-MKL</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lim <em>et al.</em> [<span class="xrefLink" id="jumplink-ref218"></span><a href="javascript:;" reveal-id="ref218" data-open="ref218" class="link link-ref link-reveal xref-bibr">218</a>]</td><td>COSINE</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Buza <em>et al.</em> [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>]</td><td>ECkNN, HLM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase, KEGG GENES</td></tr><tr><td>Peska <em>et al.</em> [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>]</td><td>BPR, BRDTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase</td></tr><tr><td>Meng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref215"></span><a href="javascript:;" reveal-id="ref215" data-open="ref215" class="link link-ref link-reveal xref-bibr">215</a>]</td><td>PDTPS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref105"></span><a href="javascript:;" reveal-id="ref105" data-open="ref105" class="link link-ref link-reveal xref-bibr">105</a>]</td><td>LPLNI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref172"></span><a href="javascript:;" reveal-id="ref172" data-open="ref172" class="link link-ref link-reveal xref-bibr">172</a>, <span class="xrefLink" id="jumplink-ref173"></span><a href="javascript:;" reveal-id="ref173" data-open="ref173" class="link link-ref link-reveal xref-bibr">173</a>]</td><td>EnsemDT, EnsemKRR</td><td>DrugBank ([<span class="xrefLink" id="jumplink-ref171"></span><a href="javascript:;" reveal-id="ref171" data-open="ref171" class="link link-ref link-reveal xref-bibr">171</a>]), KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref189"></span><a href="javascript:;" reveal-id="ref189" data-open="ref189" class="link link-ref link-reveal xref-bibr">189</a>]</td><td>GRMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kuang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref208"></span><a href="javascript:;" reveal-id="ref208" data-open="ref208" class="link link-ref link-reveal xref-bibr">208</a>]</td><td>KMDR</td><td>DrugBank, KEGG LIGAND, UniProt</td></tr><tr><td>Olayan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref145"></span><a href="javascript:;" reveal-id="ref145" data-open="ref145" class="link link-ref link-reveal xref-bibr">145</a>]</td><td>RF (DDR)</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref103"></span><a href="javascript:;" reveal-id="ref103" data-open="ref103" class="link link-ref link-reveal xref-bibr">103</a>]</td><td>MultiviewDTI</td><td>DrugBank</td></tr><tr><td>Li <em>et al.</em> [<span class="xrefLink" id="jumplink-ref180"></span><a href="javascript:;" reveal-id="ref180" data-open="ref180" class="link link-ref link-reveal xref-bibr">180</a>]</td><td>LRE</td><td>DrugBank, KEGG</td></tr><tr><td>Wen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref118"></span><a href="javascript:;" reveal-id="ref118" data-open="ref118" class="link link-ref link-reveal xref-bibr">118</a>]</td><td>DeepDTIs</td><td>DrugBank</td></tr><tr><td>Luo <em>et al.</em> [<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>]</td><td>DTINet</td><td>DrugBank, HPRD</td></tr><tr><td>Zong <em>et al.</em> [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>]</td><td>DeepWalk</td><td>DrugBank</td></tr><tr><td>He <em>et al.</em> [<span class="xrefLink" id="jumplink-ref159"></span><a href="javascript:;" reveal-id="ref159" data-open="ref159" class="link link-ref link-reveal xref-bibr">159</a>]</td><td>SimBoost, SimBoostQuant</td><td>Kinome Datasets in [<span class="xrefLink" id="jumplink-ref307"></span><a href="javascript:;" reveal-id="ref307" data-open="ref307" class="link link-ref link-reveal xref-bibr">307</a>, <span class="xrefLink" id="jumplink-ref308"></span><a href="javascript:;" reveal-id="ref308" data-open="ref308" class="link link-ref link-reveal xref-bibr">308</a>]</td></tr><tr><td>Li <em>et al.</em> [<span class="xrefLink" id="jumplink-ref169"></span><a href="javascript:;" reveal-id="ref169" data-open="ref169" class="link link-ref link-reveal xref-bibr">169</a>]</td><td>DVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref164"></span><a href="javascript:;" reveal-id="ref164" data-open="ref164" class="link link-ref link-reveal xref-bibr">164</a>]</td><td>DrugRPE</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>])</td></tr><tr><td>Rayhan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref151"></span><a href="javascript:;" reveal-id="ref151" data-open="ref151" class="link link-ref link-reveal xref-bibr">151</a>]</td><td>iDTI-ESBoost</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Hao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref233"></span><a href="javascript:;" reveal-id="ref233" data-open="ref233" class="link link-ref link-reveal xref-bibr">233</a>]</td><td>DNILMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG GENES, KEGG DRUG, KEGG COMPOUND</td></tr><tr><td>Ohue <em>et al.</em> [<span class="xrefLink" id="jumplink-ref166"></span><a href="javascript:;" reveal-id="ref166" data-open="ref166" class="link link-ref link-reveal xref-bibr">166</a>]</td><td>CGBVS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref188"></span><a href="javascript:;" reveal-id="ref188" data-open="ref188" class="link link-ref link-reveal xref-bibr">188</a>]</td><td>DLGRMC</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND, KEGG GENES</td></tr><tr><td>Sharma <em>et al.</em> [<span class="xrefLink" id="jumplink-ref178"></span><a href="javascript:;" reveal-id="ref178" data-open="ref178" class="link link-ref link-reveal xref-bibr">178</a>]</td><td>BE-DTI’</td><td>DrugBank, KEGG</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref109"></span><a href="javascript:;" reveal-id="ref109" data-open="ref109" class="link link-ref link-reveal xref-bibr">109</a>]</td><td>WBRDTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase</td></tr><tr><td>Huang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref198"></span><a href="javascript:;" reveal-id="ref198" data-open="ref198" class="link link-ref link-reveal xref-bibr">198</a>]</td><td>IN-RWR, Co-rank</td><td>DrugBank, DGIdb, TTD</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>]</td><td>LRF-DTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kadiyala [<span class="xrefLink" id="jumplink-ref214"></span><a href="javascript:;" reveal-id="ref214" data-open="ref214" class="link link-ref link-reveal xref-bibr">214</a>]</td><td>WLNM</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>])</td></tr><tr><td>Manoochehri <em>et al.</em> [<span class="xrefLink" id="jumplink-ref219"></span><a href="javascript:;" reveal-id="ref219" data-open="ref219" class="link link-ref link-reveal xref-bibr">219</a>]</td><td>DMF</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>])</td></tr><tr><td>Mongia <em>et al.</em> [<span class="xrefLink" id="jumplink-ref212"></span><a href="javascript:;" reveal-id="ref212" data-open="ref212" class="link link-ref link-reveal xref-bibr">212</a>, <span class="xrefLink" id="jumplink-ref213"></span><a href="javascript:;" reveal-id="ref213" data-open="ref213" class="link link-ref link-reveal xref-bibr">213</a>]</td><td>MGRNNM, DGRMC</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref207"></span><a href="javascript:;" reveal-id="ref207" data-open="ref207" class="link link-ref link-reveal xref-bibr">207</a>]</td><td>NeoDTI</td><td>DrugBank, HPRD ([<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>])</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref116"></span><a href="javascript:;" reveal-id="ref116" data-open="ref116" class="link link-ref link-reveal xref-bibr">116</a>]</td><td>AutoDNP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Huang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref191"></span><a href="javascript:;" reveal-id="ref191" data-open="ref191" class="link link-ref link-reveal xref-bibr">191</a>]</td><td>Pseudo-SMR</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref161"></span><a href="javascript:;" reveal-id="ref161" data-open="ref161" class="link link-ref link-reveal xref-bibr">161</a>]</td><td>RFDT</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ban <em>et al.</em> [<span class="xrefLink" id="jumplink-ref201"></span><a href="javascript:;" reveal-id="ref201" data-open="ref201" class="link link-ref link-reveal xref-bibr">201</a>]</td><td>NRLMF<span class="inline-formula no-formula-id">|$\beta $|</span></td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND, KEGG GENES</td></tr><tr><td>Bolgar <em>et al.</em> [<span class="xrefLink" id="jumplink-ref193"></span><a href="javascript:;" reveal-id="ref193" data-open="ref193" class="link link-ref link-reveal xref-bibr">193</a>]</td><td>VB-MK-LMF</td><td>KEGG DRUG,KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lee <em>et al.</em>[<span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>]</td><td>DeepConv-DTI</td><td>DrugBank 4.0 [<span class="xrefLink" id="jumplink-ref243"></span><a href="javascript:;" reveal-id="ref243" data-open="ref243" class="link link-ref link-reveal xref-bibr">243</a>],KEGG, International Union of Basic and Clinical Pharmacology (IUPHAR) [<span class="xrefLink" id="jumplink-ref309"></span><a href="javascript:;" reveal-id="ref309" data-open="ref309" class="link link-ref link-reveal xref-bibr">309</a>]</td></tr><tr><td>You <em>et al.</em> [<span class="xrefLink" id="jumplink-ref121"></span><a href="javascript:;" reveal-id="ref121" data-open="ref121" class="link link-ref link-reveal xref-bibr">121</a>]</td><td>LASSO-DNN</td><td>Drugbank</td></tr><tr><td>Özgür <em>et al.</em> [<span class="xrefLink" id="jumplink-ref120"></span><a href="javascript:;" reveal-id="ref120" data-open="ref120" class="link link-ref link-reveal xref-bibr">120</a>]</td><td>DeepDTA</td><td>Kinase [<span class="xrefLink" id="jumplink-ref308"></span><a href="javascript:;" reveal-id="ref308" data-open="ref308" class="link link-ref link-reveal xref-bibr">308</a>], KIBA [<span class="xrefLink" id="jumplink-ref310"></span><a href="javascript:;" reveal-id="ref310" data-open="ref310" class="link link-ref link-reveal xref-bibr">310</a>]</td></tr><tr><td>Gao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref119"></span><a href="javascript:;" reveal-id="ref119" data-open="ref119" class="link link-ref link-reveal xref-bibr">119</a>]</td><td>DeepNP</td><td>BindingDB [<span class="xrefLink" id="jumplink-ref257"></span><a href="javascript:;" reveal-id="ref257" data-open="ref257" class="link link-ref link-reveal xref-bibr">257</a>]</td></tr><tr><td>Xie <em>et al.</em> [<span class="xrefLink" id="jumplink-ref124"></span><a href="javascript:;" reveal-id="ref124" data-open="ref124" class="link link-ref link-reveal xref-bibr">124</a>]</td><td>DeepTrans</td><td>DrugBank</td></tr></tbody></table></div></div></div><div class="table-full-width-wrap"><div class="table-wrap table-wide standard-table"><div class="table-wrap-title" id="TB11" data-id="TB11"><span class="label title-label" id="label-81584">Table 11</span><div class="&#xA; graphic-wrap table-open-button-wrap&#xA; "><a class="fig-view-orig at-tableViewLarge openInAnotherWindow btn js-view-large" role="button" target="_blank" href="&#xA; /view-large/225532496" aria-describedby="label-81584"> Open in new tab </a></div><div class="caption caption-id-" id="caption-81584"><p class="chapter-para">The summary of all algorithms and databases</p></div> </div><div class="table-overflow"><table role="table" aria-labelledby="&#xA; label-81584" aria-describedby="&#xA; caption-81584"><thead><tr><th><strong>Study</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithm</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>Bock <em>et al.</em> [<span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>]</td><td>SVM</td><td>PDSP Ki, Swiss-Prot (UniProt), Ligand.Info, ExPASy</td></tr><tr><td>Faulon <em>et al.</em> [<span class="xrefLink" id="jumplink-ref130"></span><a href="javascript:;" reveal-id="ref130" data-open="ref130" class="link link-ref link-reveal xref-bibr">130</a>]</td><td>SVM</td><td>PTC, KEGG, DrugBank</td></tr><tr><td>Nagamine <em>et al.</em> [<span class="xrefLink" id="jumplink-ref129"></span><a href="javascript:;" reveal-id="ref129" data-open="ref129" class="link link-ref link-reveal xref-bibr">129</a>]</td><td>SVM</td><td>DrugBank, UniProt, PubChem, PDSP Ki, GLIDA</td></tr><tr><td>Nagamine <em>et al.</em> [<span class="xrefLink" id="jumplink-ref127"></span><a href="javascript:;" reveal-id="ref127" data-open="ref127" class="link link-ref link-reveal xref-bibr">127</a>]</td><td>SVM</td><td>DrugBank, UniProt, NIST05, CE-MS</td></tr><tr><td>Wassermann <em>et al.</em> [<span class="xrefLink" id="jumplink-ref128"></span><a href="javascript:;" reveal-id="ref128" data-open="ref128" class="link link-ref link-reveal xref-bibr">128</a>]</td><td>SVM</td><td>MEROPS, CutDB, SCOP, MDDR, PDB, BindingDB</td></tr><tr><td>Jacob <em>et al.</em> [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>]</td><td>SVM</td><td>KEGG BRITE</td></tr><tr><td>Cao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Liu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref138"></span><a href="javascript:;" reveal-id="ref138" data-open="ref138" class="link link-ref link-reveal xref-bibr">138</a>]</td><td>SVM</td><td>DrugBank, Matador, STITCH, PubChem, SIDER</td></tr><tr><td>Mousavian <em>et al.</em> [<span class="xrefLink" id="jumplink-ref136"></span><a href="javascript:;" reveal-id="ref136" data-open="ref136" class="link link-ref link-reveal xref-bibr">136</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Shen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref135"></span><a href="javascript:;" reveal-id="ref135" data-open="ref135" class="link link-ref link-reveal xref-bibr">135</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ding <em>et al.</em> [<span class="xrefLink" id="jumplink-ref134"></span><a href="javascript:;" reveal-id="ref134" data-open="ref134" class="link link-ref link-reveal xref-bibr">134</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, ChEMBL, Matador</td></tr><tr><td>Yamanishi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref143"></span><a href="javascript:;" reveal-id="ref143" data-open="ref143" class="link link-ref link-reveal xref-bibr">143</a>]</td><td>BGL</td><td>KEGG DRUG, KEGG LIGAND, KEGG GENES, KEGG BRITE, BRENDA, SuperTarget, DrugBank, JAPIC</td></tr><tr><td>Yamanishi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>]</td><td>BGL or KRM, NN</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Bleakley <em>et al.</em> [<span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>]</td><td>BLM, KRM, NN</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>He <em>et al.</em> [<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>]</td><td>NN</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Xia <em>et al.</em> [<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>]</td><td>LaRLS, NetLapRLS</td><td>KEGG LIGAND, KEGG GENES</td></tr><tr><td>Van Laarhoven <em>et al.</em> [<span class="xrefLink" id="jumplink-ref153"></span><a href="javascript:;" reveal-id="ref153" data-open="ref153" class="link link-ref link-reveal xref-bibr">153</a>]</td><td>GIP, RLS</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Perlman <em>et al.</em> [<span class="xrefLink" id="jumplink-ref95"></span><a href="javascript:;" reveal-id="ref95" data-open="ref95" class="link link-ref link-reveal xref-bibr">95</a>]</td><td>SITAR</td><td>KEGG DRUG, DrugBank, DCDB, SuperTarget, REACTOME, CTD</td></tr><tr><td>Takarabe <em>et al.</em> [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>]</td><td>PKR</td><td>AERS, SIDER, JAPIC, KEGG DRUG, KEGG GENES</td></tr><tr><td>Gonen [<span class="xrefLink" id="jumplink-ref194"></span><a href="javascript:;" reveal-id="ref194" data-open="ref194" class="link link-ref link-reveal xref-bibr">194</a>]</td><td>KBMF</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Cheng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>]</td><td>NBI, TBSI, DBSI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>]</td><td>NRWRH</td><td>KEGG LIGAND, KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Mei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>]</td><td>BLM-NII</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Yu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref131"></span><a href="javascript:;" reveal-id="ref131" data-open="ref131" class="link link-ref link-reveal xref-bibr">131</a>]</td><td>SVM, RF</td><td>DrugBank</td></tr><tr><td>Tabei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref216"></span><a href="javascript:;" reveal-id="ref216" data-open="ref216" class="link link-ref link-reveal xref-bibr">216</a>]</td><td><span class="inline-formula no-formula-id">|$L_{1}$|</span>-regularized</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref204"></span><a href="javascript:;" reveal-id="ref204" data-open="ref204" class="link link-ref link-reveal xref-bibr">204</a>]</td><td>RBM</td><td>MATADOR, STITCH</td></tr><tr><td>Zheng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref182"></span><a href="javascript:;" reveal-id="ref182" data-open="ref182" class="link link-ref link-reveal xref-bibr">182</a>]</td><td>MSCMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Van Laarhoven <em>et al.</em> [<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>]</td><td>WNN-GIP</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Cobanoglu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref179"></span><a href="javascript:;" reveal-id="ref179" data-open="ref179" class="link link-ref link-reveal xref-bibr">179</a>]</td><td>PMF</td><td>DrugBank</td></tr><tr><td>Alaimo <em>et al.</em> [<span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>]</td><td>DT-Hybrid</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>])</td></tr><tr><td>Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref111"></span><a href="javascript:;" reveal-id="ref111" data-open="ref111" class="link link-ref link-reveal xref-bibr">111</a>]</td><td>NetCBP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Tabei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref139"></span><a href="javascript:;" reveal-id="ref139" data-open="ref139" class="link link-ref link-reveal xref-bibr">139</a>]</td><td>MH-SVM</td><td>STITCH, PubChem, UniProt, PFAM</td></tr><tr><td>Pahikkala <em>et al.</em> [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>]</td><td>RF, RLS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Niu et al. [<span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>]</td><td>EnsemRF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Bharadwaja [<span class="xrefLink" id="jumplink-ref156"></span><a href="javascript:;" reveal-id="ref156" data-open="ref156" class="link link-ref link-reveal xref-bibr">156</a>]</td><td>KRLS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kuang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref155"></span><a href="javascript:;" reveal-id="ref155" data-open="ref155" class="link link-ref link-reveal xref-bibr">155</a>]</td><td>RLS-Kron</td><td>DrugBank, KEGG LIGAND, UniProt</td></tr><tr><td>Peng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref199"></span><a href="javascript:;" reveal-id="ref199" data-open="ref199" class="link link-ref link-reveal xref-bibr">199</a>]</td><td>NormMulInf</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang [<span class="xrefLink" id="jumplink-ref176"></span><a href="javascript:;" reveal-id="ref176" data-open="ref176" class="link link-ref link-reveal xref-bibr">176</a>]</td><td>EnsemSTACK</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Seal <em>et al.</em> [<span class="xrefLink" id="jumplink-ref202"></span><a href="javascript:;" reveal-id="ref202" data-open="ref202" class="link link-ref link-reveal xref-bibr">202</a>]</td><td>RWR</td><td>DrugBank, ChEMBL</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref104"></span><a href="javascript:;" reveal-id="ref104" data-open="ref104" class="link link-ref link-reveal xref-bibr">104</a>]</td><td>Super-Target Clustering</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref97"></span><a href="javascript:;" reveal-id="ref97" data-open="ref97" class="link link-ref link-reveal xref-bibr">97</a>]</td><td>SRP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref152"></span><a href="javascript:;" reveal-id="ref152" data-open="ref152" class="link link-ref link-reveal xref-bibr">152</a>]</td><td>PUDT</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND</td></tr><tr><td>Liu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref187"></span><a href="javascript:;" reveal-id="ref187" data-open="ref187" class="link link-ref link-reveal xref-bibr">187</a>]</td><td>NRLMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, ChEMBL, KEGG LIGAND</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref171"></span><a href="javascript:;" reveal-id="ref171" data-open="ref171" class="link link-ref link-reveal xref-bibr">171</a>]</td><td>EnsemDT</td><td>DrugBank</td></tr><tr><td>Ba-alawi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref167"></span><a href="javascript:;" reveal-id="ref167" data-open="ref167" class="link link-ref link-reveal xref-bibr">167</a>]</td><td>DASPfind</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Yuan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref177"></span><a href="javascript:;" reveal-id="ref177" data-open="ref177" class="link link-ref link-reveal xref-bibr">177</a>]</td><td>DrugE-Rank</td><td>DrugBank</td></tr><tr><td>Hao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref157"></span><a href="javascript:;" reveal-id="ref157" data-open="ref157" class="link link-ref link-reveal xref-bibr">157</a>]</td><td>RLS-KF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Nascimento <em>et al.</em> [<span class="xrefLink" id="jumplink-ref158"></span><a href="javascript:;" reveal-id="ref158" data-open="ref158" class="link link-ref link-reveal xref-bibr">158</a>]</td><td>KronRLS-MKL</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lim <em>et al.</em> [<span class="xrefLink" id="jumplink-ref218"></span><a href="javascript:;" reveal-id="ref218" data-open="ref218" class="link link-ref link-reveal xref-bibr">218</a>]</td><td>COSINE</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Buza <em>et al.</em> [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>]</td><td>ECkNN, HLM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase, KEGG GENES</td></tr><tr><td>Peska <em>et al.</em> [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>]</td><td>BPR, BRDTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase</td></tr><tr><td>Meng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref215"></span><a href="javascript:;" reveal-id="ref215" data-open="ref215" class="link link-ref link-reveal xref-bibr">215</a>]</td><td>PDTPS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref105"></span><a href="javascript:;" reveal-id="ref105" data-open="ref105" class="link link-ref link-reveal xref-bibr">105</a>]</td><td>LPLNI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref172"></span><a href="javascript:;" reveal-id="ref172" data-open="ref172" class="link link-ref link-reveal xref-bibr">172</a>, <span class="xrefLink" id="jumplink-ref173"></span><a href="javascript:;" reveal-id="ref173" data-open="ref173" class="link link-ref link-reveal xref-bibr">173</a>]</td><td>EnsemDT, EnsemKRR</td><td>DrugBank ([<span class="xrefLink" id="jumplink-ref171"></span><a href="javascript:;" reveal-id="ref171" data-open="ref171" class="link link-ref link-reveal xref-bibr">171</a>]), KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref189"></span><a href="javascript:;" reveal-id="ref189" data-open="ref189" class="link link-ref link-reveal xref-bibr">189</a>]</td><td>GRMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kuang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref208"></span><a href="javascript:;" reveal-id="ref208" data-open="ref208" class="link link-ref link-reveal xref-bibr">208</a>]</td><td>KMDR</td><td>DrugBank, KEGG LIGAND, UniProt</td></tr><tr><td>Olayan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref145"></span><a href="javascript:;" reveal-id="ref145" data-open="ref145" class="link link-ref link-reveal xref-bibr">145</a>]</td><td>RF (DDR)</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref103"></span><a href="javascript:;" reveal-id="ref103" data-open="ref103" class="link link-ref link-reveal xref-bibr">103</a>]</td><td>MultiviewDTI</td><td>DrugBank</td></tr><tr><td>Li <em>et al.</em> [<span class="xrefLink" id="jumplink-ref180"></span><a href="javascript:;" reveal-id="ref180" data-open="ref180" class="link link-ref link-reveal xref-bibr">180</a>]</td><td>LRE</td><td>DrugBank, KEGG</td></tr><tr><td>Wen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref118"></span><a href="javascript:;" reveal-id="ref118" data-open="ref118" class="link link-ref link-reveal xref-bibr">118</a>]</td><td>DeepDTIs</td><td>DrugBank</td></tr><tr><td>Luo <em>et al.</em> [<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>]</td><td>DTINet</td><td>DrugBank, HPRD</td></tr><tr><td>Zong <em>et al.</em> [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>]</td><td>DeepWalk</td><td>DrugBank</td></tr><tr><td>He <em>et al.</em> [<span class="xrefLink" id="jumplink-ref159"></span><a href="javascript:;" reveal-id="ref159" data-open="ref159" class="link link-ref link-reveal xref-bibr">159</a>]</td><td>SimBoost, SimBoostQuant</td><td>Kinome Datasets in [<span class="xrefLink" id="jumplink-ref307"></span><a href="javascript:;" reveal-id="ref307" data-open="ref307" class="link link-ref link-reveal xref-bibr">307</a>, <span class="xrefLink" id="jumplink-ref308"></span><a href="javascript:;" reveal-id="ref308" data-open="ref308" class="link link-ref link-reveal xref-bibr">308</a>]</td></tr><tr><td>Li <em>et al.</em> [<span class="xrefLink" id="jumplink-ref169"></span><a href="javascript:;" reveal-id="ref169" data-open="ref169" class="link link-ref link-reveal xref-bibr">169</a>]</td><td>DVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref164"></span><a href="javascript:;" reveal-id="ref164" data-open="ref164" class="link link-ref link-reveal xref-bibr">164</a>]</td><td>DrugRPE</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>])</td></tr><tr><td>Rayhan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref151"></span><a href="javascript:;" reveal-id="ref151" data-open="ref151" class="link link-ref link-reveal xref-bibr">151</a>]</td><td>iDTI-ESBoost</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Hao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref233"></span><a href="javascript:;" reveal-id="ref233" data-open="ref233" class="link link-ref link-reveal xref-bibr">233</a>]</td><td>DNILMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG GENES, KEGG DRUG, KEGG COMPOUND</td></tr><tr><td>Ohue <em>et al.</em> [<span class="xrefLink" id="jumplink-ref166"></span><a href="javascript:;" reveal-id="ref166" data-open="ref166" class="link link-ref link-reveal xref-bibr">166</a>]</td><td>CGBVS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref188"></span><a href="javascript:;" reveal-id="ref188" data-open="ref188" class="link link-ref link-reveal xref-bibr">188</a>]</td><td>DLGRMC</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND, KEGG GENES</td></tr><tr><td>Sharma <em>et al.</em> [<span class="xrefLink" id="jumplink-ref178"></span><a href="javascript:;" reveal-id="ref178" data-open="ref178" class="link link-ref link-reveal xref-bibr">178</a>]</td><td>BE-DTI’</td><td>DrugBank, KEGG</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref109"></span><a href="javascript:;" reveal-id="ref109" data-open="ref109" class="link link-ref link-reveal xref-bibr">109</a>]</td><td>WBRDTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase</td></tr><tr><td>Huang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref198"></span><a href="javascript:;" reveal-id="ref198" data-open="ref198" class="link link-ref link-reveal xref-bibr">198</a>]</td><td>IN-RWR, Co-rank</td><td>DrugBank, DGIdb, TTD</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>]</td><td>LRF-DTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kadiyala [<span class="xrefLink" id="jumplink-ref214"></span><a href="javascript:;" reveal-id="ref214" data-open="ref214" class="link link-ref link-reveal xref-bibr">214</a>]</td><td>WLNM</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>])</td></tr><tr><td>Manoochehri <em>et al.</em> [<span class="xrefLink" id="jumplink-ref219"></span><a href="javascript:;" reveal-id="ref219" data-open="ref219" class="link link-ref link-reveal xref-bibr">219</a>]</td><td>DMF</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>])</td></tr><tr><td>Mongia <em>et al.</em> [<span class="xrefLink" id="jumplink-ref212"></span><a href="javascript:;" reveal-id="ref212" data-open="ref212" class="link link-ref link-reveal xref-bibr">212</a>, <span class="xrefLink" id="jumplink-ref213"></span><a href="javascript:;" reveal-id="ref213" data-open="ref213" class="link link-ref link-reveal xref-bibr">213</a>]</td><td>MGRNNM, DGRMC</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref207"></span><a href="javascript:;" reveal-id="ref207" data-open="ref207" class="link link-ref link-reveal xref-bibr">207</a>]</td><td>NeoDTI</td><td>DrugBank, HPRD ([<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>])</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref116"></span><a href="javascript:;" reveal-id="ref116" data-open="ref116" class="link link-ref link-reveal xref-bibr">116</a>]</td><td>AutoDNP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Huang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref191"></span><a href="javascript:;" reveal-id="ref191" data-open="ref191" class="link link-ref link-reveal xref-bibr">191</a>]</td><td>Pseudo-SMR</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref161"></span><a href="javascript:;" reveal-id="ref161" data-open="ref161" class="link link-ref link-reveal xref-bibr">161</a>]</td><td>RFDT</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ban <em>et al.</em> [<span class="xrefLink" id="jumplink-ref201"></span><a href="javascript:;" reveal-id="ref201" data-open="ref201" class="link link-ref link-reveal xref-bibr">201</a>]</td><td>NRLMF<span class="inline-formula no-formula-id">|$\beta $|</span></td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND, KEGG GENES</td></tr><tr><td>Bolgar <em>et al.</em> [<span class="xrefLink" id="jumplink-ref193"></span><a href="javascript:;" reveal-id="ref193" data-open="ref193" class="link link-ref link-reveal xref-bibr">193</a>]</td><td>VB-MK-LMF</td><td>KEGG DRUG,KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lee <em>et al.</em>[<span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>]</td><td>DeepConv-DTI</td><td>DrugBank 4.0 [<span class="xrefLink" id="jumplink-ref243"></span><a href="javascript:;" reveal-id="ref243" data-open="ref243" class="link link-ref link-reveal xref-bibr">243</a>],KEGG, International Union of Basic and Clinical Pharmacology (IUPHAR) [<span class="xrefLink" id="jumplink-ref309"></span><a href="javascript:;" reveal-id="ref309" data-open="ref309" class="link link-ref link-reveal xref-bibr">309</a>]</td></tr><tr><td>You <em>et al.</em> [<span class="xrefLink" id="jumplink-ref121"></span><a href="javascript:;" reveal-id="ref121" data-open="ref121" class="link link-ref link-reveal xref-bibr">121</a>]</td><td>LASSO-DNN</td><td>Drugbank</td></tr><tr><td>Özgür <em>et al.</em> [<span class="xrefLink" id="jumplink-ref120"></span><a href="javascript:;" reveal-id="ref120" data-open="ref120" class="link link-ref link-reveal xref-bibr">120</a>]</td><td>DeepDTA</td><td>Kinase [<span class="xrefLink" id="jumplink-ref308"></span><a href="javascript:;" reveal-id="ref308" data-open="ref308" class="link link-ref link-reveal xref-bibr">308</a>], KIBA [<span class="xrefLink" id="jumplink-ref310"></span><a href="javascript:;" reveal-id="ref310" data-open="ref310" class="link link-ref link-reveal xref-bibr">310</a>]</td></tr><tr><td>Gao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref119"></span><a href="javascript:;" reveal-id="ref119" data-open="ref119" class="link link-ref link-reveal xref-bibr">119</a>]</td><td>DeepNP</td><td>BindingDB [<span class="xrefLink" id="jumplink-ref257"></span><a href="javascript:;" reveal-id="ref257" data-open="ref257" class="link link-ref link-reveal xref-bibr">257</a>]</td></tr><tr><td>Xie <em>et al.</em> [<span class="xrefLink" id="jumplink-ref124"></span><a href="javascript:;" reveal-id="ref124" data-open="ref124" class="link link-ref link-reveal xref-bibr">124</a>]</td><td>DeepTrans</td><td>DrugBank</td></tr></tbody></table></div><div class="table-modal"><table><thead><tr><th><strong>Study</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>Algorithm</strong><span aria-hidden="true" style="display: none;"> . </span></th><th><strong>D</strong>atabase<span aria-hidden="true" style="display: none;"> . </span></th></tr></thead><tbody><tr><td>Bock <em>et al.</em> [<span class="xrefLink" id="jumplink-ref78"></span><a href="javascript:;" reveal-id="ref78" data-open="ref78" class="link link-ref link-reveal xref-bibr">78</a>]</td><td>SVM</td><td>PDSP Ki, Swiss-Prot (UniProt), Ligand.Info, ExPASy</td></tr><tr><td>Faulon <em>et al.</em> [<span class="xrefLink" id="jumplink-ref130"></span><a href="javascript:;" reveal-id="ref130" data-open="ref130" class="link link-ref link-reveal xref-bibr">130</a>]</td><td>SVM</td><td>PTC, KEGG, DrugBank</td></tr><tr><td>Nagamine <em>et al.</em> [<span class="xrefLink" id="jumplink-ref129"></span><a href="javascript:;" reveal-id="ref129" data-open="ref129" class="link link-ref link-reveal xref-bibr">129</a>]</td><td>SVM</td><td>DrugBank, UniProt, PubChem, PDSP Ki, GLIDA</td></tr><tr><td>Nagamine <em>et al.</em> [<span class="xrefLink" id="jumplink-ref127"></span><a href="javascript:;" reveal-id="ref127" data-open="ref127" class="link link-ref link-reveal xref-bibr">127</a>]</td><td>SVM</td><td>DrugBank, UniProt, NIST05, CE-MS</td></tr><tr><td>Wassermann <em>et al.</em> [<span class="xrefLink" id="jumplink-ref128"></span><a href="javascript:;" reveal-id="ref128" data-open="ref128" class="link link-ref link-reveal xref-bibr">128</a>]</td><td>SVM</td><td>MEROPS, CutDB, SCOP, MDDR, PDB, BindingDB</td></tr><tr><td>Jacob <em>et al.</em> [<span class="xrefLink" id="jumplink-ref14"></span><a href="javascript:;" reveal-id="ref14" data-open="ref14" class="link link-ref link-reveal xref-bibr">14</a>]</td><td>SVM</td><td>KEGG BRITE</td></tr><tr><td>Cao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref137"></span><a href="javascript:;" reveal-id="ref137" data-open="ref137" class="link link-ref link-reveal xref-bibr">137</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Liu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref138"></span><a href="javascript:;" reveal-id="ref138" data-open="ref138" class="link link-ref link-reveal xref-bibr">138</a>]</td><td>SVM</td><td>DrugBank, Matador, STITCH, PubChem, SIDER</td></tr><tr><td>Mousavian <em>et al.</em> [<span class="xrefLink" id="jumplink-ref136"></span><a href="javascript:;" reveal-id="ref136" data-open="ref136" class="link link-ref link-reveal xref-bibr">136</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Shen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref135"></span><a href="javascript:;" reveal-id="ref135" data-open="ref135" class="link link-ref link-reveal xref-bibr">135</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ding <em>et al.</em> [<span class="xrefLink" id="jumplink-ref134"></span><a href="javascript:;" reveal-id="ref134" data-open="ref134" class="link link-ref link-reveal xref-bibr">134</a>]</td><td>SVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, ChEMBL, Matador</td></tr><tr><td>Yamanishi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref143"></span><a href="javascript:;" reveal-id="ref143" data-open="ref143" class="link link-ref link-reveal xref-bibr">143</a>]</td><td>BGL</td><td>KEGG DRUG, KEGG LIGAND, KEGG GENES, KEGG BRITE, BRENDA, SuperTarget, DrugBank, JAPIC</td></tr><tr><td>Yamanishi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref13"></span><a href="javascript:;" reveal-id="ref13" data-open="ref13" class="link link-ref link-reveal xref-bibr">13</a>]</td><td>BGL or KRM, NN</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Bleakley <em>et al.</em> [<span class="xrefLink" id="jumplink-ref101"></span><a href="javascript:;" reveal-id="ref101" data-open="ref101" class="link link-ref link-reveal xref-bibr">101</a>]</td><td>BLM, KRM, NN</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>He <em>et al.</em> [<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>]</td><td>NN</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Xia <em>et al.</em> [<span class="xrefLink" id="jumplink-ref6"></span><a href="javascript:;" reveal-id="ref6" data-open="ref6" class="link link-ref link-reveal xref-bibr">6</a>]</td><td>LaRLS, NetLapRLS</td><td>KEGG LIGAND, KEGG GENES</td></tr><tr><td>Van Laarhoven <em>et al.</em> [<span class="xrefLink" id="jumplink-ref153"></span><a href="javascript:;" reveal-id="ref153" data-open="ref153" class="link link-ref link-reveal xref-bibr">153</a>]</td><td>GIP, RLS</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Perlman <em>et al.</em> [<span class="xrefLink" id="jumplink-ref95"></span><a href="javascript:;" reveal-id="ref95" data-open="ref95" class="link link-ref link-reveal xref-bibr">95</a>]</td><td>SITAR</td><td>KEGG DRUG, DrugBank, DCDB, SuperTarget, REACTOME, CTD</td></tr><tr><td>Takarabe <em>et al.</em> [<span class="xrefLink" id="jumplink-ref9"></span><a href="javascript:;" reveal-id="ref9" data-open="ref9" class="link link-ref link-reveal xref-bibr">9</a>]</td><td>PKR</td><td>AERS, SIDER, JAPIC, KEGG DRUG, KEGG GENES</td></tr><tr><td>Gonen [<span class="xrefLink" id="jumplink-ref194"></span><a href="javascript:;" reveal-id="ref194" data-open="ref194" class="link link-ref link-reveal xref-bibr">194</a>]</td><td>KBMF</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Cheng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>]</td><td>NBI, TBSI, DBSI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref196"></span><a href="javascript:;" reveal-id="ref196" data-open="ref196" class="link link-ref link-reveal xref-bibr">196</a>]</td><td>NRWRH</td><td>KEGG LIGAND, KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Mei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref107"></span><a href="javascript:;" reveal-id="ref107" data-open="ref107" class="link link-ref link-reveal xref-bibr">107</a>]</td><td>BLM-NII</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Yu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref131"></span><a href="javascript:;" reveal-id="ref131" data-open="ref131" class="link link-ref link-reveal xref-bibr">131</a>]</td><td>SVM, RF</td><td>DrugBank</td></tr><tr><td>Tabei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref216"></span><a href="javascript:;" reveal-id="ref216" data-open="ref216" class="link link-ref link-reveal xref-bibr">216</a>]</td><td><span class="inline-formula no-formula-id">|$L_{1}$|</span>-regularized</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref204"></span><a href="javascript:;" reveal-id="ref204" data-open="ref204" class="link link-ref link-reveal xref-bibr">204</a>]</td><td>RBM</td><td>MATADOR, STITCH</td></tr><tr><td>Zheng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref182"></span><a href="javascript:;" reveal-id="ref182" data-open="ref182" class="link link-ref link-reveal xref-bibr">182</a>]</td><td>MSCMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Van Laarhoven <em>et al.</em> [<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>]</td><td>WNN-GIP</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Cobanoglu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref179"></span><a href="javascript:;" reveal-id="ref179" data-open="ref179" class="link link-ref link-reveal xref-bibr">179</a>]</td><td>PMF</td><td>DrugBank</td></tr><tr><td>Alaimo <em>et al.</em> [<span class="xrefLink" id="jumplink-ref209"></span><a href="javascript:;" reveal-id="ref209" data-open="ref209" class="link link-ref link-reveal xref-bibr">209</a>]</td><td>DT-Hybrid</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref195"></span><a href="javascript:;" reveal-id="ref195" data-open="ref195" class="link link-ref link-reveal xref-bibr">195</a>])</td></tr><tr><td>Chen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref111"></span><a href="javascript:;" reveal-id="ref111" data-open="ref111" class="link link-ref link-reveal xref-bibr">111</a>]</td><td>NetCBP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Tabei <em>et al.</em> [<span class="xrefLink" id="jumplink-ref139"></span><a href="javascript:;" reveal-id="ref139" data-open="ref139" class="link link-ref link-reveal xref-bibr">139</a>]</td><td>MH-SVM</td><td>STITCH, PubChem, UniProt, PFAM</td></tr><tr><td>Pahikkala <em>et al.</em> [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>]</td><td>RF, RLS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Niu et al. [<span class="xrefLink" id="jumplink-ref112"></span><a href="javascript:;" reveal-id="ref112" data-open="ref112" class="link link-ref link-reveal xref-bibr">112</a>]</td><td>EnsemRF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Bharadwaja [<span class="xrefLink" id="jumplink-ref156"></span><a href="javascript:;" reveal-id="ref156" data-open="ref156" class="link link-ref link-reveal xref-bibr">156</a>]</td><td>KRLS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kuang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref155"></span><a href="javascript:;" reveal-id="ref155" data-open="ref155" class="link link-ref link-reveal xref-bibr">155</a>]</td><td>RLS-Kron</td><td>DrugBank, KEGG LIGAND, UniProt</td></tr><tr><td>Peng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref199"></span><a href="javascript:;" reveal-id="ref199" data-open="ref199" class="link link-ref link-reveal xref-bibr">199</a>]</td><td>NormMulInf</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang [<span class="xrefLink" id="jumplink-ref176"></span><a href="javascript:;" reveal-id="ref176" data-open="ref176" class="link link-ref link-reveal xref-bibr">176</a>]</td><td>EnsemSTACK</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Seal <em>et al.</em> [<span class="xrefLink" id="jumplink-ref202"></span><a href="javascript:;" reveal-id="ref202" data-open="ref202" class="link link-ref link-reveal xref-bibr">202</a>]</td><td>RWR</td><td>DrugBank, ChEMBL</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref104"></span><a href="javascript:;" reveal-id="ref104" data-open="ref104" class="link link-ref link-reveal xref-bibr">104</a>]</td><td>Super-Target Clustering</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref97"></span><a href="javascript:;" reveal-id="ref97" data-open="ref97" class="link link-ref link-reveal xref-bibr">97</a>]</td><td>SRP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref152"></span><a href="javascript:;" reveal-id="ref152" data-open="ref152" class="link link-ref link-reveal xref-bibr">152</a>]</td><td>PUDT</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND</td></tr><tr><td>Liu <em>et al.</em> [<span class="xrefLink" id="jumplink-ref187"></span><a href="javascript:;" reveal-id="ref187" data-open="ref187" class="link link-ref link-reveal xref-bibr">187</a>]</td><td>NRLMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, ChEMBL, KEGG LIGAND</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref171"></span><a href="javascript:;" reveal-id="ref171" data-open="ref171" class="link link-ref link-reveal xref-bibr">171</a>]</td><td>EnsemDT</td><td>DrugBank</td></tr><tr><td>Ba-alawi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref167"></span><a href="javascript:;" reveal-id="ref167" data-open="ref167" class="link link-ref link-reveal xref-bibr">167</a>]</td><td>DASPfind</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Yuan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref177"></span><a href="javascript:;" reveal-id="ref177" data-open="ref177" class="link link-ref link-reveal xref-bibr">177</a>]</td><td>DrugE-Rank</td><td>DrugBank</td></tr><tr><td>Hao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref157"></span><a href="javascript:;" reveal-id="ref157" data-open="ref157" class="link link-ref link-reveal xref-bibr">157</a>]</td><td>RLS-KF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Nascimento <em>et al.</em> [<span class="xrefLink" id="jumplink-ref158"></span><a href="javascript:;" reveal-id="ref158" data-open="ref158" class="link link-ref link-reveal xref-bibr">158</a>]</td><td>KronRLS-MKL</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lim <em>et al.</em> [<span class="xrefLink" id="jumplink-ref218"></span><a href="javascript:;" reveal-id="ref218" data-open="ref218" class="link link-ref link-reveal xref-bibr">218</a>]</td><td>COSINE</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Buza <em>et al.</em> [<span class="xrefLink" id="jumplink-ref98"></span><a href="javascript:;" reveal-id="ref98" data-open="ref98" class="link link-ref link-reveal xref-bibr">98</a>]</td><td>ECkNN, HLM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase, KEGG GENES</td></tr><tr><td>Peska <em>et al.</em> [<span class="xrefLink" id="jumplink-ref2"></span><a href="javascript:;" reveal-id="ref2" data-open="ref2" class="link link-ref link-reveal xref-bibr">2</a>]</td><td>BPR, BRDTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase</td></tr><tr><td>Meng <em>et al.</em> [<span class="xrefLink" id="jumplink-ref215"></span><a href="javascript:;" reveal-id="ref215" data-open="ref215" class="link link-ref link-reveal xref-bibr">215</a>]</td><td>PDTPS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref105"></span><a href="javascript:;" reveal-id="ref105" data-open="ref105" class="link link-ref link-reveal xref-bibr">105</a>]</td><td>LPLNI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref172"></span><a href="javascript:;" reveal-id="ref172" data-open="ref172" class="link link-ref link-reveal xref-bibr">172</a>, <span class="xrefLink" id="jumplink-ref173"></span><a href="javascript:;" reveal-id="ref173" data-open="ref173" class="link link-ref link-reveal xref-bibr">173</a>]</td><td>EnsemDT, EnsemKRR</td><td>DrugBank ([<span class="xrefLink" id="jumplink-ref171"></span><a href="javascript:;" reveal-id="ref171" data-open="ref171" class="link link-ref link-reveal xref-bibr">171</a>]), KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ezzat <em>et al.</em> [<span class="xrefLink" id="jumplink-ref189"></span><a href="javascript:;" reveal-id="ref189" data-open="ref189" class="link link-ref link-reveal xref-bibr">189</a>]</td><td>GRMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kuang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref208"></span><a href="javascript:;" reveal-id="ref208" data-open="ref208" class="link link-ref link-reveal xref-bibr">208</a>]</td><td>KMDR</td><td>DrugBank, KEGG LIGAND, UniProt</td></tr><tr><td>Olayan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref145"></span><a href="javascript:;" reveal-id="ref145" data-open="ref145" class="link link-ref link-reveal xref-bibr">145</a>]</td><td>RF (DDR)</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref103"></span><a href="javascript:;" reveal-id="ref103" data-open="ref103" class="link link-ref link-reveal xref-bibr">103</a>]</td><td>MultiviewDTI</td><td>DrugBank</td></tr><tr><td>Li <em>et al.</em> [<span class="xrefLink" id="jumplink-ref180"></span><a href="javascript:;" reveal-id="ref180" data-open="ref180" class="link link-ref link-reveal xref-bibr">180</a>]</td><td>LRE</td><td>DrugBank, KEGG</td></tr><tr><td>Wen <em>et al.</em> [<span class="xrefLink" id="jumplink-ref118"></span><a href="javascript:;" reveal-id="ref118" data-open="ref118" class="link link-ref link-reveal xref-bibr">118</a>]</td><td>DeepDTIs</td><td>DrugBank</td></tr><tr><td>Luo <em>et al.</em> [<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>]</td><td>DTINet</td><td>DrugBank, HPRD</td></tr><tr><td>Zong <em>et al.</em> [<span class="xrefLink" id="jumplink-ref117"></span><a href="javascript:;" reveal-id="ref117" data-open="ref117" class="link link-ref link-reveal xref-bibr">117</a>]</td><td>DeepWalk</td><td>DrugBank</td></tr><tr><td>He <em>et al.</em> [<span class="xrefLink" id="jumplink-ref159"></span><a href="javascript:;" reveal-id="ref159" data-open="ref159" class="link link-ref link-reveal xref-bibr">159</a>]</td><td>SimBoost, SimBoostQuant</td><td>Kinome Datasets in [<span class="xrefLink" id="jumplink-ref307"></span><a href="javascript:;" reveal-id="ref307" data-open="ref307" class="link link-ref link-reveal xref-bibr">307</a>, <span class="xrefLink" id="jumplink-ref308"></span><a href="javascript:;" reveal-id="ref308" data-open="ref308" class="link link-ref link-reveal xref-bibr">308</a>]</td></tr><tr><td>Li <em>et al.</em> [<span class="xrefLink" id="jumplink-ref169"></span><a href="javascript:;" reveal-id="ref169" data-open="ref169" class="link link-ref link-reveal xref-bibr">169</a>]</td><td>DVM</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Zhang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref164"></span><a href="javascript:;" reveal-id="ref164" data-open="ref164" class="link link-ref link-reveal xref-bibr">164</a>]</td><td>DrugRPE</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref102"></span><a href="javascript:;" reveal-id="ref102" data-open="ref102" class="link link-ref link-reveal xref-bibr">102</a>])</td></tr><tr><td>Rayhan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref151"></span><a href="javascript:;" reveal-id="ref151" data-open="ref151" class="link link-ref link-reveal xref-bibr">151</a>]</td><td>iDTI-ESBoost</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Hao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref233"></span><a href="javascript:;" reveal-id="ref233" data-open="ref233" class="link link-ref link-reveal xref-bibr">233</a>]</td><td>DNILMF</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG GENES, KEGG DRUG, KEGG COMPOUND</td></tr><tr><td>Ohue <em>et al.</em> [<span class="xrefLink" id="jumplink-ref166"></span><a href="javascript:;" reveal-id="ref166" data-open="ref166" class="link link-ref link-reveal xref-bibr">166</a>]</td><td>CGBVS</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref188"></span><a href="javascript:;" reveal-id="ref188" data-open="ref188" class="link link-ref link-reveal xref-bibr">188</a>]</td><td>DLGRMC</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND, KEGG GENES</td></tr><tr><td>Sharma <em>et al.</em> [<span class="xrefLink" id="jumplink-ref178"></span><a href="javascript:;" reveal-id="ref178" data-open="ref178" class="link link-ref link-reveal xref-bibr">178</a>]</td><td>BE-DTI’</td><td>DrugBank, KEGG</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref109"></span><a href="javascript:;" reveal-id="ref109" data-open="ref109" class="link link-ref link-reveal xref-bibr">109</a>]</td><td>WBRDTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, Kinase</td></tr><tr><td>Huang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref198"></span><a href="javascript:;" reveal-id="ref198" data-open="ref198" class="link link-ref link-reveal xref-bibr">198</a>]</td><td>IN-RWR, Co-rank</td><td>DrugBank, DGIdb, TTD</td></tr><tr><td>Shi <em>et al.</em> [<span class="xrefLink" id="jumplink-ref144"></span><a href="javascript:;" reveal-id="ref144" data-open="ref144" class="link link-ref link-reveal xref-bibr">144</a>]</td><td>LRF-DTI</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Kadiyala [<span class="xrefLink" id="jumplink-ref214"></span><a href="javascript:;" reveal-id="ref214" data-open="ref214" class="link link-ref link-reveal xref-bibr">214</a>]</td><td>WLNM</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>])</td></tr><tr><td>Manoochehri <em>et al.</em> [<span class="xrefLink" id="jumplink-ref219"></span><a href="javascript:;" reveal-id="ref219" data-open="ref219" class="link link-ref link-reveal xref-bibr">219</a>]</td><td>DMF</td><td>KEGG BRITE, KEGG LIGAND, KEGG GENES, BRENDA, SuperTarget, DrugBank ([<span class="xrefLink" id="jumplink-ref106"></span><a href="javascript:;" reveal-id="ref106" data-open="ref106" class="link link-ref link-reveal xref-bibr">106</a>])</td></tr><tr><td>Mongia <em>et al.</em> [<span class="xrefLink" id="jumplink-ref212"></span><a href="javascript:;" reveal-id="ref212" data-open="ref212" class="link link-ref link-reveal xref-bibr">212</a>, <span class="xrefLink" id="jumplink-ref213"></span><a href="javascript:;" reveal-id="ref213" data-open="ref213" class="link link-ref link-reveal xref-bibr">213</a>]</td><td>MGRNNM, DGRMC</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wan <em>et al.</em> [<span class="xrefLink" id="jumplink-ref207"></span><a href="javascript:;" reveal-id="ref207" data-open="ref207" class="link link-ref link-reveal xref-bibr">207</a>]</td><td>NeoDTI</td><td>DrugBank, HPRD ([<span class="xrefLink" id="jumplink-ref197"></span><a href="javascript:;" reveal-id="ref197" data-open="ref197" class="link link-ref link-reveal xref-bibr">197</a>])</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref116"></span><a href="javascript:;" reveal-id="ref116" data-open="ref116" class="link link-ref link-reveal xref-bibr">116</a>]</td><td>AutoDNP</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Huang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref191"></span><a href="javascript:;" reveal-id="ref191" data-open="ref191" class="link link-ref link-reveal xref-bibr">191</a>]</td><td>Pseudo-SMR</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Wang <em>et al.</em> [<span class="xrefLink" id="jumplink-ref161"></span><a href="javascript:;" reveal-id="ref161" data-open="ref161" class="link link-ref link-reveal xref-bibr">161</a>]</td><td>RFDT</td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Ban <em>et al.</em> [<span class="xrefLink" id="jumplink-ref201"></span><a href="javascript:;" reveal-id="ref201" data-open="ref201" class="link link-ref link-reveal xref-bibr">201</a>]</td><td>NRLMF<span class="inline-formula no-formula-id">|$\beta $|</span></td><td>KEGG BRITE, BRENDA, SuperTarget, DrugBank, KEGG LIGAND, KEGG GENES</td></tr><tr><td>Bolgar <em>et al.</em> [<span class="xrefLink" id="jumplink-ref193"></span><a href="javascript:;" reveal-id="ref193" data-open="ref193" class="link link-ref link-reveal xref-bibr">193</a>]</td><td>VB-MK-LMF</td><td>KEGG DRUG,KEGG BRITE, BRENDA, SuperTarget, DrugBank</td></tr><tr><td>Lee <em>et al.</em>[<span class="xrefLink" id="jumplink-ref122"></span><a href="javascript:;" reveal-id="ref122" data-open="ref122" class="link link-ref link-reveal xref-bibr">122</a>]</td><td>DeepConv-DTI</td><td>DrugBank 4.0 [<span class="xrefLink" id="jumplink-ref243"></span><a href="javascript:;" reveal-id="ref243" data-open="ref243" class="link link-ref link-reveal xref-bibr">243</a>],KEGG, International Union of Basic and Clinical Pharmacology (IUPHAR) [<span class="xrefLink" id="jumplink-ref309"></span><a href="javascript:;" reveal-id="ref309" data-open="ref309" class="link link-ref link-reveal xref-bibr">309</a>]</td></tr><tr><td>You <em>et al.</em> [<span class="xrefLink" id="jumplink-ref121"></span><a href="javascript:;" reveal-id="ref121" data-open="ref121" class="link link-ref link-reveal xref-bibr">121</a>]</td><td>LASSO-DNN</td><td>Drugbank</td></tr><tr><td>Özgür <em>et al.</em> [<span class="xrefLink" id="jumplink-ref120"></span><a href="javascript:;" reveal-id="ref120" data-open="ref120" class="link link-ref link-reveal xref-bibr">120</a>]</td><td>DeepDTA</td><td>Kinase [<span class="xrefLink" id="jumplink-ref308"></span><a href="javascript:;" reveal-id="ref308" data-open="ref308" class="link link-ref link-reveal xref-bibr">308</a>], KIBA [<span class="xrefLink" id="jumplink-ref310"></span><a href="javascript:;" reveal-id="ref310" data-open="ref310" class="link link-ref link-reveal xref-bibr">310</a>]</td></tr><tr><td>Gao <em>et al.</em> [<span class="xrefLink" id="jumplink-ref119"></span><a href="javascript:;" reveal-id="ref119" data-open="ref119" class="link link-ref link-reveal xref-bibr">119</a>]</td><td>DeepNP</td><td>BindingDB [<span class="xrefLink" id="jumplink-ref257"></span><a href="javascript:;" reveal-id="ref257" data-open="ref257" class="link link-ref link-reveal xref-bibr">257</a>]</td></tr><tr><td>Xie <em>et al.</em> [<span class="xrefLink" id="jumplink-ref124"></span><a href="javascript:;" reveal-id="ref124" data-open="ref124" class="link link-ref link-reveal xref-bibr">124</a>]</td><td>DeepTrans</td><td>DrugBank</td></tr></tbody></table></div></div></div> <h4 scrollto-destination=225532497 id="225532497" class="section-title js-splitscreen-section-title" data-legacy-id=sec3v1>3.3.1 BindingDB</h4> <p class="chapter-para">BindingDB [<span class="xrefLink" id="jumplink-ref257"></span><a href="javascript:;" reveal-id="ref257" data-open="ref257" class="link link-ref link-reveal xref-bibr">257</a>, <span class="xrefLink" id="jumplink-ref297 ref298 ref299"></span><a href="javascript:;" reveal-id="ref297 ref298 ref299" data-open="ref297 ref298 ref299" class="link link-ref link-reveal xref-bibr">297–299</a>] is a repository that contains experimental protein–small molecule interaction information. All of these data were extracted from scientific literature and US patents. In addition, other databases (e.g. ChEMBL [<span class="xrefLink" id="jumplink-ref238"></span><a href="javascript:;" reveal-id="ref238" data-open="ref238" class="link link-ref link-reveal xref-bibr">238</a>], PubChem [<span class="xrefLink" id="jumplink-ref296"></span><a href="javascript:;" reveal-id="ref296" data-open="ref296" class="link link-ref link-reveal xref-bibr">296</a>], etc.) are also linked with BindingDB.</p> <h4 scrollto-destination=225532499 id="225532499" class="section-title js-splitscreen-section-title" data-legacy-id=sec3v2>3.3.2 PDBbind</h4> <p class="chapter-para">PDBbind [<span class="xrefLink" id="jumplink-ref300"></span><a href="javascript:;" reveal-id="ref300" data-open="ref300" class="link link-ref link-reveal xref-bibr">300</a>] was first released in 2004 and the purpose of this database is to bridge the gap between protein structural information and energetic properties. The data stored in PDBbind were classified by the biomolecular complex data from PDB. Then, the binding affinity data were collected from the associated literature on PDB. PDBbind has regular updates with the growth of PDB database.</p> <h4 scrollto-destination=225532501 id="225532501" class="section-title js-splitscreen-section-title" data-legacy-id=sec3v3>3.3.3 PDSP Ki</h4> <p class="chapter-para">PDSP Ki [<span class="xrefLink" id="jumplink-ref301"></span><a href="javascript:;" reveal-id="ref301" data-open="ref301" class="link link-ref link-reveal xref-bibr">301</a>] is a public database that stored binding affinities data of drugs/chemical compounds for four different types of proteins, i.e. receptors, neurotransmitter transporters, ion channels and enzymes. This database was developed and maintained by University of North Carolina at Chapel Hill. Search function for both drugs and targets are provided.</p> <h2 scrollto-destination=225532503 id="225532503" class="section-title js-splitscreen-section-title" data-legacy-id=sec4>4 DTI database challenges and future work</h2> <p class="chapter-para">The challenges in making reliable predictions of DTI can be classified into two main categories: the challenges concerning the databases and those concerning computations. Oftentimes, one may overcome the computational difficulties using different prediction methods depending on the nature of the problem. However, major challenges arise due to the source of the databases. Here, we provide some challenges of the first type, also discussed by authors in [<span class="xrefLink" id="jumplink-ref88"></span><a href="javascript:;" reveal-id="ref88" data-open="ref88" class="link link-ref link-reveal xref-bibr">88</a>, <span class="xrefLink" id="jumplink-ref92"></span><a href="javascript:;" reveal-id="ref92" data-open="ref92" class="link link-ref link-reveal xref-bibr">92</a>], followed by some suggestions on how to deal with the challenges in future work.</p> <h3 scrollto-destination=225532505 id="225532505" class="section-title js-splitscreen-section-title" data-legacy-id=sec4a>4.1 Database challenges and future work</h3> <p class="chapter-para">Almost all the methods used in DTI prediction, particularly similarity-based methods, heavily rely on assertions concerning similar drugs and similar targets, the type of database used for the prediction plays a significant role. In terms of databases, lacking a uniform definition of drugs and targets as well as a consistent way of calling and identifying compounds and biomolecules, overlapping with at least one other source in the pool, adopting different identifiers to represent drug and targets are among the main challenges [<span class="xrefLink" id="jumplink-ref88"></span><a href="javascript:;" reveal-id="ref88" data-open="ref88" class="link link-ref link-reveal xref-bibr">88</a>, <span class="xrefLink" id="jumplink-ref92"></span><a href="javascript:;" reveal-id="ref92" data-open="ref92" class="link link-ref link-reveal xref-bibr">92</a>]. Additionally, incorporating heterogenous data in a database is another challenge to be pointed out. Not all the drugs and targets included in a database have 3D structures and GO/PPI sequences, respectively, which makes similarity scores. As a consequence, the resulting data could vary even if the same literature is used.</p><div class="&#xA; block-child-p&#xA; ">Future predictions should rely on more comprehensive internal databases, which would require a significant effort to map and curate data across the sources that utilize different ways to define, name and identify the drugs and targets. From the data perspective, there is an issue of datasets being of a binary nature; i.e. given an interaction matrix <span class="inline-formula no-formula-id">|$X_{n\times m}$|⁠</span>, for <span class="inline-formula no-formula-id">|$i=1,\ldots ,n$|</span> and <span class="inline-formula no-formula-id">|$j=1,\ldots ,m$|⁠</span>, one may define <div class="formula-wrap"><div class="disp-formula" id="jumplink-" content-id=""><div class="tex-math display-math">$$\begin{align*} x_{ij} &amp; =\begin{cases} 1 &amp; \textrm{if drug}\ d_{i}\ \textrm{and target}\ t_{j}\ \textrm{interact}\\ 0 &amp; \textrm{in the absence of any known interaction.} \end{cases} \end{align*}$$</div></div></div>This causes a significant problem. Some of the 0’s in <span class="inline-formula no-formula-id">|$X_{n\times m}$|</span> may be interactions that are yet undiscovered, which may throw off the training process for the different classifiers. Another point is that in reality DT pairs have binding affinities that vary over a spectrum (interactions are not binary on/off). One suggestion to overcome this challenge is to utilize datasets with continuous values representing DT binding affinities. This have been previously proposed by authors in [<span class="xrefLink" id="jumplink-ref5"></span><a href="javascript:;" reveal-id="ref5" data-open="ref5" class="link link-ref link-reveal xref-bibr">5</a>, <span class="xrefLink" id="jumplink-ref131"></span><a href="javascript:;" reveal-id="ref131" data-open="ref131" class="link link-ref link-reveal xref-bibr">131</a>, <span class="xrefLink" id="jumplink-ref153"></span><a href="javascript:;" reveal-id="ref153" data-open="ref153" class="link link-ref link-reveal xref-bibr">153</a>, <span class="xrefLink" id="jumplink-ref302"></span><a href="javascript:;" reveal-id="ref302" data-open="ref302" class="link link-ref link-reveal xref-bibr">302</a>, <span class="xrefLink" id="jumplink-ref303"></span><a href="javascript:;" reveal-id="ref303" data-open="ref303" class="link link-ref link-reveal xref-bibr">303</a>]. Our suggestion is to replace each <span class="inline-formula no-formula-id">|$x_{ij}$|</span> with continuous-valued parameters. Based on the probability of interaction, one may define <span class="inline-formula no-formula-id">|$x_{ij}=\mu $|</span> where <span class="inline-formula no-formula-id">|$\mu \in \left [0,1\right ]$|⁠</span>. 0, as it should, indicates no interaction while 1 denotes complete interaction. Any number within <span class="inline-formula no-formula-id">|$\left (0,1\right )$|</span> represents the probability that drug <span class="inline-formula no-formula-id">|$d_{i}$|</span> and target <span class="inline-formula no-formula-id">|$t_{j}$|</span> interact.</div><p class="chapter-para">The trend of using such continuous-valued datasets may eventually catch on as it is more useful and more meaningful, in the sense that it represents the reality better than the binary datasets that have been used in the majority of previous work in DTI prediction. The main challenge, however, lies in the fact that to date, there is a large number of small molecule compounds that have not yet been used as drugs and for the majority of them, their interaction proles with proteins are still unknown.</p><p class="chapter-para">Future work on DTI predictions could be categorized in two main approaches. Modifications and suggestions toward the databases in general seem inescapable. On the one hand, the databases should be combined together to collect the most complete set of known drug–protein interactions. On the other hand, the sources should regularly be updated and disseminated, which results in improvements and completeness. A larger number of source databases should be integrated to derive the internal database.</p> <h3 scrollto-destination=225532510 id="225532510" class="section-title js-splitscreen-section-title" data-legacy-id=sec4b>4.2 DTI prediction method challenges and future work</h3> <p class="chapter-para">Future research should focus on methods that combine multiple similarities. The ensemble-based models that combine multiple types of similarities are likely to provide more accurate results than the methods that use one similarity. For instance, repurposed drugs have been identified via retrospective clinical analysis (e.g. reviewing side effects), pharmacological analysis or simply serendipity. Given the surprisingly successful early examples (repurposing minoxidil from hypertension to hair loss, sildenafil from angina to erectile dysfunction and thalidomide from morning sickness to multiple myeloma), research is now focusing on how best to adopt a more comprehensive, systematic approach. In addition, a great amount of work is invested to identify molecular drivers of disease development, progression and treatment resistance, providing many candidate targets for drugs across the spectrum of human disease. However, a majority of these molecular drivers have no known drug to target them. Thus, a comprehensive, improved methodology for predicting DTIs would have great benefit. Due to challenges listed in Section <span class="xrefLink" id="jumplink-sec4a"></span><a href="#sec4a" class="sectionLink xref-sec js-xref-sec">4.1</a>, current knowledge of which cellular molecules are targeted by a drug is scarce and is derived from various, sometimes complementary sources.</p><p class="chapter-para">As per the formulation of the problem, appropriate representation of datasets seems crucial for gaining insight and effectiveness in DTI predictions. In Big Data applications it is common that data is sparse (mostly zeros) and partially missing. Missing data imputation, especially in the context of sparse, noisy data, is therefore a central problem. To infer the missing entries from the known ones, reasonable assumptions should be made based on commonly observed challenges in the structure of data. Considering matrix factorization methods in predicting DTIs, a common situation is a matrix with missing entries (such as the famous Netflix problem.) Under the assumption that the completed matrix has low rank, the low-rank matrix completion problem is NP hard and highly non-convex [<span class="xrefLink" id="jumplink-ref304"></span><a href="javascript:;" reveal-id="ref304" data-open="ref304" class="link link-ref link-reveal xref-bibr">304</a>], but there are various algorithms that work under certain assumptions of the data. One approach to low rank matrix completion is to use the nuclear norm as a convex relaxation of the matrix rank, and use semidefinite programming to find a completion that minimizes the nuclear norm (see [<span class="xrefLink" id="jumplink-ref305"></span><a href="javascript:;" reveal-id="ref305" data-open="ref305" class="link link-ref link-reveal xref-bibr">305</a>, <span class="xrefLink" id="jumplink-ref306"></span><a href="javascript:;" reveal-id="ref306" data-open="ref306" class="link link-ref link-reveal xref-bibr">306</a>]). Although the low-rank matrix completion problem does not depend on any metric, most approaches utilize some kind of metric (such as the nuclear norm, the Euclidean metric or an <span class="inline-formula no-formula-id">|$\ell _p$|</span>-norm). Such approaches may perform well in completion of certain matrix types but do not cover all types of matrices. Moreover, the structure of the data may be more complicated than a matrix with dimension <span class="inline-formula no-formula-id">|$d=2$|⁠</span>. To this end, it is our belief that coupled matrices and tensors are very powerful tools to visualize DT data while maintaining the structural information. For <span class="inline-formula no-formula-id">|$d \geq 3$|⁠</span>, such a dataset is a tensor (a multidimensional array) of order <span class="inline-formula no-formula-id">|$d$|⁠</span>. Tensors are ubiquitous in Big Data. The importance of using tensors in Big Data is illustrated by the fact that they preserve the structure of the data and allow more effective data analysis by incorporating the structure throughout the process. An illustration of coupled matrix–matrix versus coupled tensor–matrix completion is shown in Figure <span class="xrefLink" id="jumplink-f5"></span><a href="javascript:;" data-modal-source-id="f5" class="link xref-fig">5</a>.</p> <h2 scrollto-destination=225532513 id="225532513" class="section-title js-splitscreen-section-title" data-legacy-id=sec5>5 Summary of materials and methodologies</h2> <p class="chapter-para">Table <span class="xrefLink" id="jumplink-TB11"></span><a href="javascript:;" reveal-id="TB11" data-open="TB11" class="link link-reveal link-table xref-fig">11</a> summarizes all the methods we reviewed in this paper along with the databases.</p><div id="box01" class="boxed-text boxed-matter no-caption"><div class=" sec"><div class="title">Key Points</div><ul class="list-simple"><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span>  <strong>Machine learning:</strong> To our best knowledge, this manuscript is the first which provides a comprehensive list of all the machine learning methods that have been proposed, developed and employed to carry out the task of DTI prediction. A classification of these methods along with advantages and disadvantages of each class of method have been provided.</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span>  <strong>D</strong>TI software and packages: A list and a short description of all the key software used in DTI predictions is provided. This could help future research, based on their approach to the problem, by helping researchers decide which software and packages suit their problem the best.</p></li><li><p class="chapter-para"><span class="inline-formula no-formula-id">|$\bullet $|</span>  <strong>D</strong>TI databases: One of the main challenges in the prediction of DTIs is the fact that not all the interactions between drugs and targets are known. In fact, the number of unknown interactions far exceeds the number of known interactions. As a partial solution, a comprehensive list of all databases along with the most recent update dates and the focus are provided.</p></li></ul></div></div> <h2 scrollto-destination=225532517 id="225532517" class="backacknowledgements-title js-splitscreen-backacknowledgements-title" data-legacy-id=ack1>Funding</h2> <p class="chapter-para">Michigan Lifestage Environmental Exposures and Disease (M-LEEaD) National Institute of Environmental Health Sciences (NIEHS) Core Center (grant P30 ES017885).</p><p class="chapter-para"><strong>Maryam Bagherian</strong> is a postdoctoral research fellow at Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor. Her Ph.D. degree is in applied mathematics and her research includes mathematical physics and mathematical biology.</p><p class="chapter-para"><strong>Elyas Sabeti</strong> is a postdoctoral research fellow at the Michigan Institute for Data Science, University of Michigan, Ann Arbor. He conducts research on data science methodology and its application in healthcare research.</p><p class="chapter-para"><strong>Maureen Sartor</strong> is an associate professor at Department of Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor.</p><p class="chapter-para"><strong>Zaneta Nikolovska-Coleska</strong> is an associate professor at the Department of Pathology, University of Michigan, Ann Arbor.</p><p class="chapter-para"><strong>Kayvan Najarian</strong> is a Professor at Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor. His research focuses on signal/image processing and machine learning methods for medical applications.</p> <h2 scrollto-destination=225532530 id="225532530" class="backreferences-title js-splitscreen-backreferences-title" data-legacy-id=bib1>References</h2> <div class="ref-list js-splitview-ref-list"><div content-id="ref1" class="js-splitview-ref-item" data-legacy-id="ref1"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref1" href="javascript:;" aria-label="jumplink-ref1" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref1" class="ref-content " data-id="ref1"><span class="label title-label">1.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Raju</div>   <div class="given-names">TN</div></span></span>. <div class="article-title">The nobel chronicles</div>. <div class="source ">The Lancet</div>  <div class="year">2000</div>;<div class="volume">355</div>:<div class="fpage">1022</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20nobel%20chronicles&amp;author=TN%20Raju&amp;publication_year=2000&amp;journal=The%20Lancet&amp;volume=355&amp;pages=1022" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/S0140-6736(05)74775-9" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2FS0140-6736(05)74775-9" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2FS0140-6736(05)74775-9"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20nobel%20chronicles&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref2" class="js-splitview-ref-item" data-legacy-id="ref2"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref2" href="javascript:;" aria-label="jumplink-ref2" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref2" class="ref-content " data-id="ref2"><span class="label title-label">2.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Peska</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Buza</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Koller</div>   <div class="given-names">J</div></span></span>. <div class="article-title">Drug-target interaction prediction: a bayesian ranking approach</div>. <div class="source ">Comput Methods Programs Biomed</div>  <div class="year">2017</div>;<div class="volume">152</div>:<div class="fpage">15</div>–<div class="lpage">21</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug-target%20interaction%20prediction%3A%20a%20bayesian%20ranking%20approach&amp;author=L%20Peska&amp;author=K%20Buza&amp;author=J%20Koller&amp;publication_year=2017&amp;journal=Comput%20Methods%20Programs%20Biomed&amp;volume=152&amp;pages=15-21" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.cmpb.2017.09.003" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.cmpb.2017.09.003" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.cmpb.2017.09.003"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/29054256" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug-target%20interaction%20prediction%3A%20a%20bayesian%20ranking%20approach&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref3" class="js-splitview-ref-item" data-legacy-id="ref3"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref3" href="javascript:;" aria-label="jumplink-ref3" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref3" class="ref-content " data-id="ref3"><span class="label title-label">3.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Langedijk</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Mantel-Teeuwisse</div>   <div class="given-names">AK</div></span>, <span class="name string-name"><div class="surname">Slijkerman</div>   <div class="given-names">DS</div></span></span>, et al. . <div class="article-title">Drug repositioning and repurposing: terminology and definitions in literature</div>. <div class="source ">Drug Discov Today</div>  <div class="year">2015</div>;<div class="volume">20</div>(<div class="issue">8</div>):<div class="fpage">1027</div>–<div class="lpage">34</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20repositioning%20and%20repurposing%3A%20terminology%20and%20definitions%20in%20literature&amp;author=J%20Langedijk&amp;author=AK%20Mantel-Teeuwisse&amp;author=DS%20Slijkerman&amp;publication_year=2015&amp;journal=Drug%20Discov%20Today&amp;volume=20&amp;pages=1027-34" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.drudis.2015.05.001" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.drudis.2015.05.001" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.drudis.2015.05.001"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/25975957" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20repositioning%20and%20repurposing%3A%20terminology%20and%20definitions%20in%20literature&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref4" class="js-splitview-ref-item" data-legacy-id="ref4"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref4" href="javascript:;" aria-label="jumplink-ref4" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref4" class="ref-content " data-id="ref4"><span class="label title-label">4.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Keiser</div>   <div class="given-names">MJ</div></span>, <span class="name string-name"><div class="surname">Setola</div>   <div class="given-names">V</div></span>, <span class="name string-name"><div class="surname">Irwin</div>   <div class="given-names">JJ</div></span></span>, et al. . <div class="article-title">Predicting new molecular targets for known drugs</div>. <div class="source ">Nature</div>  <div class="year">2009</div>;<div class="volume">462</div>(<div class="issue">7270</div>):<div class="fpage">175</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20new%20molecular%20targets%20for%20known%20drugs&amp;author=MJ%20Keiser&amp;author=V%20Setola&amp;author=JJ%20Irwin&amp;publication_year=2009&amp;journal=Nature&amp;volume=462&amp;pages=175" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nature08506" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnature08506" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnature08506"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19881490" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20new%20molecular%20targets%20for%20known%20drugs&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref5" class="js-splitview-ref-item" data-legacy-id="ref5"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref5" href="javascript:;" aria-label="jumplink-ref5" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref5" class="ref-content " data-id="ref5"><span class="label title-label">5.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Pahikkala</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Airola</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Pietilä</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Toward more realistic drug-target interaction predictions</div>. <div class="source ">Brief Bioinform</div>  <div class="year">2014</div>;<div class="volume">16</div>(<div class="issue">2</div>):<div class="fpage">325</div>–<div class="lpage">37</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Toward%20more%20realistic%20drug-target%20interaction%20predictions&amp;author=T%20Pahikkala&amp;author=A%20Airola&amp;author=S%20Pietil%C3%A4&amp;publication_year=2014&amp;journal=Brief%20Bioinform&amp;volume=16&amp;pages=325-37" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bib/bbu010" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbib%2Fbbu010" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbib%2Fbbu010"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24723570" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Toward%20more%20realistic%20drug-target%20interaction%20predictions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref6" class="js-splitview-ref-item" data-legacy-id="ref6"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref6" href="javascript:;" aria-label="jumplink-ref6" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref6" class="ref-content " data-id="ref6"><span class="label title-label">6.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Xia</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">L-Y</div></span>, <span class="name string-name"><div class="surname">Zhou</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces</div>. <div class="source ">BMC Syst Biol</div>  <div class="year">2010</div>;<div class="volume">4</div>:<div class="fpage">S6</div>. <div class="comment">BioMed Central</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Semi-supervised%20drug-protein%20interaction%20prediction%20from%20heterogeneous%20biological%20spaces&amp;author=Z%20Xia&amp;author=L-Y%20Wu&amp;author=X%20Zhou&amp;publication_year=2010&amp;journal=BMC%20Syst%20Biol&amp;volume=4&amp;pages=S6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/1752-0509-4-S2-S6" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2F1752-0509-4-S2-S6" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2F1752-0509-4-S2-S6"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/20840733" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Semi-supervised%20drug-protein%20interaction%20prediction%20from%20heterogeneous%20biological%20spaces&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref7" class="js-splitview-ref-item" data-legacy-id="ref7"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref7" href="javascript:;" aria-label="jumplink-ref7" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref7" class="ref-content " data-id="ref7"><span class="label title-label">7.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Blagg</div>   <div class="given-names">J</div></span></span>. <div class="article-title">Structure–activity relationships for in vitro and in vivo toxicity</div>. <div class="source ">Annu Rep Med Chem</div>  <div class="year">2006</div>;<div class="volume">41</div>:<div class="fpage">353</div>–<div class="lpage">68</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Structure%E2%80%93activity%20relationships%20for%20in%20vitro%20and%20in%20vivo%20toxicity&amp;author=J%20Blagg&amp;publication_year=2006&amp;journal=Annu%20Rep%20Med%20Chem&amp;volume=41&amp;pages=353-68" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Structure%e2%80%93activity+relationships+for+in+vitro+and+in+vivo+toxicity&amp;aulast=Blagg&amp;title=Annu+Rep+Med+Chem&amp;date=2006&amp;spage=353&amp;epage=68&amp;volume=41" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Structure%E2%80%93activity%20relationships%20for%20in%20vitro%20and%20in%20vivo%20toxicity&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref8" class="js-splitview-ref-item" data-legacy-id="ref8"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref8" href="javascript:;" aria-label="jumplink-ref8" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref8" class="ref-content " data-id="ref8"><span class="label title-label">8.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Whitebread</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Hamon</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Bojanic</div>   <div class="given-names">D</div></span></span>, et al. . <div class="article-title">Keynote review: in vitro safety pharmacology profiling: an essential tool for successful drug development</div>. <div class="source ">Drug Discov Today</div>  <div class="year">2005</div>;<div class="volume">10</div>(<div class="issue">21</div>):<div class="fpage">1421</div>–<div class="lpage">33</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Keynote%20review%3A%20in%20vitro%20safety%20pharmacology%20profiling%3A%20an%20essential%20tool%20for%20successful%20drug%20development&amp;author=S%20Whitebread&amp;author=J%20Hamon&amp;author=D%20Bojanic&amp;publication_year=2005&amp;journal=Drug%20Discov%20Today&amp;volume=10&amp;pages=1421-33" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/S1359-6446(05)03632-9" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2FS1359-6446(05)03632-9" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2FS1359-6446(05)03632-9"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16243262" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Keynote%20review%3A%20in%20vitro%20safety%20pharmacology%20profiling%3A%20an%20essential%20tool%20for%20successful%20drug%20development&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref9" class="js-splitview-ref-item" data-legacy-id="ref9"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref9" href="javascript:;" aria-label="jumplink-ref9" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref9" class="ref-content " data-id="ref9"><span class="label title-label">9.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Takarabe</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Kotera</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Nishimura</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">Drug target prediction using adverse event report systems: a pharmacogenomic approach</div>. <div class="source ">Bioinformatics</div>  <div class="year">2012</div>;<div class="volume">28</div>(<div class="issue">18</div>):<div class="fpage">i611</div>–<div class="lpage">8</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20target%20prediction%20using%20adverse%20event%20report%20systems%3A%20a%20pharmacogenomic%20approach&amp;author=M%20Takarabe&amp;author=M%20Kotera&amp;author=Y%20Nishimura&amp;publication_year=2012&amp;journal=Bioinformatics&amp;volume=28&amp;pages=i611-8" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/bts413" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbts413" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbts413"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22962489" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20target%20prediction%20using%20adverse%20event%20report%20systems%3A%20a%20pharmacogenomic%20approach&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref10" class="js-splitview-ref-item" data-legacy-id="ref10"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref10" href="javascript:;" aria-label="jumplink-ref10" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref10" class="ref-content " data-id="ref10"><span class="label title-label">10.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Dudley</div>   <div class="given-names">JT</div></span>, <span class="name string-name"><div class="surname">Deshpande</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Butte</div>   <div class="given-names">AJ</div></span></span>. <div class="article-title">Exploiting drug–disease relationships for computational drug repositioning</div>. <div class="source ">Brief Bioinform</div>  <div class="year">2011</div>;<div class="volume">12</div>(<div class="issue">4</div>):<div class="fpage">303</div>–<div class="lpage">11</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Exploiting%20drug%E2%80%93disease%20relationships%20for%20computational%20drug%20repositioning&amp;author=JT%20Dudley&amp;author=T%20Deshpande&amp;author=AJ%20Butte&amp;publication_year=2011&amp;journal=Brief%20Bioinform&amp;volume=12&amp;pages=303-11" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bib/bbr013" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbib%2Fbbr013" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbib%2Fbbr013"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21690101" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Exploiting%20drug%E2%80%93disease%20relationships%20for%20computational%20drug%20repositioning&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref11" class="js-splitview-ref-item" data-legacy-id="ref11"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref11" href="javascript:;" aria-label="jumplink-ref11" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref11" class="ref-content " data-id="ref11"><span class="label title-label">11.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Swamidass</div>   <div class="given-names">SJ</div></span></span>. <div class="article-title">Mining small-molecule screens to repurpose drugs</div>. <div class="source ">Brief Bioinform</div>  <div class="year">2011</div>;<div class="volume">12</div>(<div class="issue">4</div>):<div class="fpage">327</div>–<div class="lpage">35</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Mining%20small-molecule%20screens%20to%20repurpose%20drugs&amp;author=SJ%20Swamidass&amp;publication_year=2011&amp;journal=Brief%20Bioinform&amp;volume=12&amp;pages=327-35" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bib/bbr028" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbib%2Fbbr028" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbib%2Fbbr028"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21715466" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Mining%20small-molecule%20screens%20to%20repurpose%20drugs&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref12" class="js-splitview-ref-item" data-legacy-id="ref12"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref12" href="javascript:;" aria-label="jumplink-ref12" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref12" class="ref-content " data-id="ref12"><span class="label title-label">12.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Moriaud</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Richard</div>   <div class="given-names">SB</div></span>, <span class="name string-name"><div class="surname">Adcock</div>   <div class="given-names">SA</div></span></span>, et al. . <div class="article-title">Identify drug repurposing candidates by mining the protein data bank</div>. <div class="source ">Brief Bioinform</div>  <div class="year">2011</div>;<div class="volume">12</div>(<div class="issue">4</div>):<div class="fpage">336</div>–<div class="lpage">40</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Identify%20drug%20repurposing%20candidates%20by%20mining%20the%20protein%20data%20bank&amp;author=F%20Moriaud&amp;author=SB%20Richard&amp;author=SA%20Adcock&amp;publication_year=2011&amp;journal=Brief%20Bioinform&amp;volume=12&amp;pages=336-40" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bib/bbr017" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbib%2Fbbr017" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbib%2Fbbr017"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21768131" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Identify%20drug%20repurposing%20candidates%20by%20mining%20the%20protein%20data%20bank&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref13" class="js-splitview-ref-item" data-legacy-id="ref13"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref13" href="javascript:;" aria-label="jumplink-ref13" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref13" class="ref-content " data-id="ref13"><span class="label title-label">13.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yamanishi</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Araki</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Gutteridge</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">Prediction of drug–target interaction networks from the integration of chemical and genomic spaces</div>. <div class="source ">Bioinformatics</div>  <div class="year">2008</div>;<div class="volume">24</div>(<div class="issue">13</div>):<div class="fpage">i232</div>–<div class="lpage">40</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Prediction%20of%20drug%E2%80%93target%20interaction%20networks%20from%20the%20integration%20of%20chemical%20and%20genomic%20spaces&amp;author=Y%20Yamanishi&amp;author=M%20Araki&amp;author=A%20Gutteridge&amp;publication_year=2008&amp;journal=Bioinformatics&amp;volume=24&amp;pages=i232-40" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btn162" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtn162" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtn162"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18586719" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Prediction%20of%20drug%E2%80%93target%20interaction%20networks%20from%20the%20integration%20of%20chemical%20and%20genomic%20spaces&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref14" class="js-splitview-ref-item" data-legacy-id="ref14"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref14" href="javascript:;" aria-label="jumplink-ref14" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref14" class="ref-content " data-id="ref14"><span class="label title-label">14.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Jacob</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Vert</div>   <div class="given-names">J-P</div></span></span>. <div class="article-title">Protein-ligand interaction prediction: an improved chemogenomics approach</div>. <div class="source ">Bioinformatics</div>  <div class="year">2008</div>;<div class="volume">24</div>(<div class="issue">19</div>):<div class="fpage">2149</div>–<div class="lpage">56</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Protein-ligand%20interaction%20prediction%3A%20an%20improved%20chemogenomics%20approach&amp;author=L%20Jacob&amp;author=J-P%20Vert&amp;publication_year=2008&amp;journal=Bioinformatics&amp;volume=24&amp;pages=2149-56" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btn409" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtn409" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtn409"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18676415" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Protein-ligand%20interaction%20prediction%3A%20an%20improved%20chemogenomics%20approach&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref15" class="js-splitview-ref-item" data-legacy-id="ref15"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref15" href="javascript:;" aria-label="jumplink-ref15" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref15" class="ref-content " data-id="ref15"><span class="label title-label">15.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ballesteros</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Palczewski</div>   <div class="given-names">K</div></span></span>. <div class="article-title">G protein-coupled receptor drug discovery: implications from the crystal structure of rhodopsin</div>. <div class="source ">Curr Opin Drug Discov Devel</div>  <div class="year">2001</div>;<div class="volume">4</div>(<div class="issue">5</div>):<div class="fpage">561</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=G%20protein-coupled%20receptor%20drug%20discovery%3A%20implications%20from%20the%20crystal%20structure%20of%20rhodopsin&amp;author=J%20Ballesteros&amp;author=K%20Palczewski&amp;publication_year=2001&amp;journal=Curr%20Opin%20Drug%20Discov%20Devel&amp;volume=4&amp;pages=561" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/12825452" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=G+protein-coupled+receptor+drug+discovery%3a+implications+from+the+crystal+structure+of+rhodopsin&amp;aulast=Ballesteros&amp;title=Curr+Opin+Drug+Discov+Devel&amp;date=2001&amp;spage=561&amp;volume=4&amp;issue=5" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:G%20protein-coupled%20receptor%20drug%20discovery%3A%20implications%20from%20the%20crystal%20structure%20of%20rhodopsin&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref16" class="js-splitview-ref-item" data-legacy-id="ref16"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref16" href="javascript:;" aria-label="jumplink-ref16" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref16" class="ref-content " data-id="ref16"><span class="label title-label">16.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Klabunde</div>   <div class="given-names">T</div></span></span>. <div class="article-title">Chemogenomic approaches to drug discovery: similar receptors bind similar ligands</div>. <div class="source ">Br J Pharmacol</div>  <div class="year">2007</div>;<div class="volume">152</div>(<div class="issue">1</div>):<div class="fpage">5</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Chemogenomic%20approaches%20to%20drug%20discovery%3A%20similar%20receptors%20bind%20similar%20ligands&amp;author=T%20Klabunde&amp;publication_year=2007&amp;journal=Br%20J%20Pharmacol&amp;volume=152&amp;pages=5-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/sj.bjp.0707308" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fsj.bjp.0707308" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fsj.bjp.0707308"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17533415" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Chemogenomic%20approaches%20to%20drug%20discovery%3A%20similar%20receptors%20bind%20similar%20ligands&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref17" class="js-splitview-ref-item" data-legacy-id="ref17"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref17" href="javascript:;" aria-label="jumplink-ref17" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref17" class="ref-content " data-id="ref17"><span class="label title-label">17.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Rognan</div>   <div class="given-names">D</div></span></span>. <div class="article-title">Chemogenomic approaches to rational drug design</div>. <div class="source ">Br J Pharmacol</div>  <div class="year">2007</div>;<div class="volume">152</div>(<div class="issue">1</div>):<div class="fpage">38</div>–<div class="lpage">52</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Chemogenomic%20approaches%20to%20rational%20drug%20design&amp;author=D%20Rognan&amp;publication_year=2007&amp;journal=Br%20J%20Pharmacol&amp;volume=152&amp;pages=38-52" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/sj.bjp.0707307" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fsj.bjp.0707307" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fsj.bjp.0707307"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17533416" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Chemogenomic%20approaches%20to%20rational%20drug%20design&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref18" class="js-splitview-ref-item" data-legacy-id="ref18"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref18" href="javascript:;" aria-label="jumplink-ref18" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref18" class="ref-content " data-id="ref18"><span class="label title-label">18.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Nath</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Kumari</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">Chaube</div>   <div class="given-names">R</div></span></span>. <div class="article-title">Prediction of human drug targets and their interactions using machine learning methods: current and future perspectives</div>. In: <div class="source ">Computational Drug Discovery and Design</div>. <div class="comment">Springer</div>, <div class="publisher-loc">NY, USA.</div>  <div class="year">2018</div>, <div class="fpage">21</div>–<div class="lpage">30</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Prediction%20of%20human%20drug%20targets%20and%20their%20interactions%20using%20machine%20learning%20methods%3A%20current%20and%20future%20perspectives&amp;author=A%20Nath&amp;author=P%20Kumari&amp;author=R%20Chaube&amp;publication_year=2018&amp;journal=Computational%20Drug%20Discovery%20and%20Design&amp;volume=&amp;pages=21-30" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Prediction+of+human+drug+targets+and+their+interactions+using+machine+learning+methods%3a+current+and+future+perspectives&amp;aulast=Nath&amp;title=Computational+Drug+Discovery+and+Design&amp;date=2018&amp;spage=21&amp;epage=30" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Prediction%20of%20human%20drug%20targets%20and%20their%20interactions%20using%20machine%20learning%20methods%3A%20current%20and%20future%20perspectives&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref19" class="js-splitview-ref-item" data-legacy-id="ref19"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref19" href="javascript:;" aria-label="jumplink-ref19" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref19" class="ref-content " data-id="ref19"><span class="label title-label">19.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Schölkopf</div>   <div class="given-names">B</div></span>, <span class="name string-name"><div class="surname">Tsuda</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Vert</div>   <div class="given-names">J-P</div></span></span>. <div class="source ">Kernel Methods in Computational Biology</div>. <div class="publisher-loc">Cambridge, MA</div>: <div class="publisher-name">MIT Press</div>, <div class="year">2004</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Kernel%20Methods%20in%20Computational%20Biology&amp;author=B%20Sch%C3%B6lkopf&amp;author=K%20Tsuda&amp;author=J-P%20Vert&amp;publication_year=2004&amp;book=Kernel%20Methods%20in%20Computational%20Biology" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.7551/mitpress/4057.001.0001" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.7551%2Fmitpress%2F4057.001.0001" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.7551%2Fmitpress%2F4057.001.0001"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Kernel%20Methods%20in%20Computational%20Biology&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Kernel%20Methods%20in%20Computational%20Biology&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Kernel%20Methods%20in%20Computational%20Biology">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref20" class="js-splitview-ref-item" data-legacy-id="ref20"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref20" href="javascript:;" aria-label="jumplink-ref20" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref20" class="ref-content " data-id="ref20"><span class="label title-label">20.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yildirim</div>   <div class="given-names">MA</div></span>, <span class="name string-name"><div class="surname">Goh</div>   <div class="given-names">K-I</div></span>, <span class="name string-name"><div class="surname">Cusick</div>   <div class="given-names">ME</div></span></span>, et al. . <div class="article-title">Drug-target network</div>. <div class="source ">Nat Biotechnol</div>  <div class="year">2007</div>;<div class="volume">25</div>(<div class="issue">10</div>):<div class="fpage">1119</div>–<div class="lpage">26</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug-target%20network&amp;author=MA%20Yildirim&amp;author=K-I%20Goh&amp;author=ME%20Cusick&amp;publication_year=2007&amp;journal=Nat%20Biotechnol&amp;volume=25&amp;pages=1119-26" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nbt1338" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnbt1338" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnbt1338"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17921997" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug-target%20network&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref21" class="js-splitview-ref-item" data-legacy-id="ref21"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref21" href="javascript:;" aria-label="jumplink-ref21" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref21" class="ref-content " data-id="ref21"><span class="label title-label">21.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Iorio</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Bosotti</div>   <div class="given-names">R</div></span>, <span class="name string-name"><div class="surname">Scacheri</div>   <div class="given-names">E</div></span></span>, et al. . <div class="article-title">Discovery of drug mode of action and drug repositioning from transcriptional responses</div>. <div class="source ">Proc Natl Acad Sci</div>  <div class="year">2010</div>;<div class="volume">107</div>(<div class="issue">33</div>):<div class="fpage">14621</div>–<div class="lpage">6</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Discovery%20of%20drug%20mode%20of%20action%20and%20drug%20repositioning%20from%20transcriptional%20responses&amp;author=F%20Iorio&amp;author=R%20Bosotti&amp;author=E%20Scacheri&amp;publication_year=2010&amp;journal=Proc%20Natl%20Acad%20Sci&amp;volume=107&amp;pages=14621-6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1073/pnas.1000138107" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1073%2Fpnas.1000138107" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1073%2Fpnas.1000138107"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/20679242" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Discovery%20of%20drug%20mode%20of%20action%20and%20drug%20repositioning%20from%20transcriptional%20responses&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref22" class="js-splitview-ref-item" data-legacy-id="ref22"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref22" href="javascript:;" aria-label="jumplink-ref22" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref22" class="ref-content " data-id="ref22"><span class="label title-label">22.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yamanishi</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Pauwels</div>   <div class="given-names">E</div></span>, <span class="name string-name"><div class="surname">Saigo</div>   <div class="given-names">H</div></span></span>, et al. . <div class="article-title">Extracting sets of chemical substructures and protein domains governing drug-target interactions</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2011</div>;<div class="volume">51</div>(<div class="issue">5</div>):<div class="fpage">1183</div>–<div class="lpage">94</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Extracting%20sets%20of%20chemical%20substructures%20and%20protein%20domains%20governing%20drug-target%20interactions&amp;author=Y%20Yamanishi&amp;author=E%20Pauwels&amp;author=H%20Saigo&amp;publication_year=2011&amp;journal=J%20Chem%20Inf%20Model&amp;volume=51&amp;pages=1183-94" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci100476q" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci100476q" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci100476q"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21506615" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Extracting%20sets%20of%20chemical%20substructures%20and%20protein%20domains%20governing%20drug-target%20interactions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref23" class="js-splitview-ref-item" data-legacy-id="ref23"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref23" href="javascript:;" aria-label="jumplink-ref23" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref23" class="ref-content " data-id="ref23"><span class="label title-label">23.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">B</div></span>, <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Wild</div>   <div class="given-names">DJ</div></span></span>. <div class="article-title">Assessing drug target association using semantic linked data</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2012</div>;<div class="volume">8</div>(<div class="issue">7</div>):e1002574.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Assessing%20drug%20target%20association%20using%20semantic%20linked%20data&amp;author=B%20Chen&amp;author=Y%20Ding&amp;author=DJ%20Wild&amp;publication_year=2012&amp;journal=PLoS%20Comput%20Biol&amp;volume=8&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Assessing+drug+target+association+using+semantic+linked+data&amp;aulast=Chen&amp;title=PLoS+Comput+Biol&amp;date=2012&amp;volume=8&amp;issue=7" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Assessing%20drug%20target%20association%20using%20semantic%20linked%20data&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref24" class="js-splitview-ref-item" data-legacy-id="ref24"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref24" href="javascript:;" aria-label="jumplink-ref24" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref24" class="ref-content " data-id="ref24"><span class="label title-label">24.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Cheng</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">SDTNBI: an integrated network and chemoinformatics tool for systematic prediction of drug–target interactions and drug repositioning</div>. <div class="source ">Brief Bioinform</div>  <div class="year">2016</div>;<div class="volume">18</div>(<div class="issue">2</div>):<div class="fpage">333</div>–<div class="lpage">47</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=SDTNBI%3A%20an%20integrated%20network%20and%20chemoinformatics%20tool%20for%20systematic%20prediction%20of%20drug%E2%80%93target%20interactions%20and%20drug%20repositioning&amp;author=Z%20Wu&amp;author=F%20Cheng&amp;author=J%20Li&amp;publication_year=2016&amp;journal=Brief%20Bioinform&amp;volume=18&amp;pages=333-47" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=SDTNBI%3a+an+integrated+network+and+chemoinformatics+tool+for+systematic+prediction+of+drug%e2%80%93target+interactions+and+drug+repositioning&amp;aulast=Wu&amp;title=Brief+Bioinform&amp;date=2016&amp;spage=333&amp;epage=47&amp;volume=18&amp;issue=2" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:SDTNBI%3A%20an%20integrated%20network%20and%20chemoinformatics%20tool%20for%20systematic%20prediction%20of%20drug%E2%80%93target%20interactions%20and%20drug%20repositioning&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref25" class="js-splitview-ref-item" data-legacy-id="ref25"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref25" href="javascript:;" aria-label="jumplink-ref25" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref25" class="ref-content " data-id="ref25"><span class="label title-label">25.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Bansal</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Srivastava</div>   <div class="given-names">PA</div></span>, <span class="name string-name"><div class="surname">Singh</div>   <div class="given-names">TR</div></span></span>. <div class="article-title">An integrative approach to develop computational pipeline for drug–target interaction network analysis</div>. <div class="source ">Sci Rep</div>  <div class="year">2018</div>;<div class="volume">8</div>(<div class="issue">1</div>):<div class="fpage">10238</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=An%20integrative%20approach%20to%20develop%20computational%20pipeline%20for%20drug%E2%80%93target%20interaction%20network%20analysis&amp;author=A%20Bansal&amp;author=PA%20Srivastava&amp;author=TR%20Singh&amp;publication_year=2018&amp;journal=Sci%20Rep&amp;volume=8&amp;pages=10238" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/s41598-018-28577-6" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fs41598-018-28577-6" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fs41598-018-28577-6"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/29980766" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:An%20integrative%20approach%20to%20develop%20computational%20pipeline%20for%20drug%E2%80%93target%20interaction%20network%20analysis&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref26" class="js-splitview-ref-item" data-legacy-id="ref26"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref26" href="javascript:;" aria-label="jumplink-ref26" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref26" class="ref-content " data-id="ref26"><span class="label title-label">26.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Swann</div>   <div class="given-names">SL</div></span>, <span class="name string-name"><div class="surname">Brown</div>   <div class="given-names">SP</div></span>, <span class="name string-name"><div class="surname">Muchmore</div>   <div class="given-names">SW</div></span></span>, et al. . <div class="article-title">A unified, probabilistic framework for structure-and ligand-based virtual screening</div>. <div class="source ">J Med Chem</div>  <div class="year">2011</div>;<div class="volume">54</div>(<div class="issue">5</div>):<div class="fpage">1223</div>–<div class="lpage">32</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20unified%2C%20probabilistic%20framework%20for%20structure-and%20ligand-based%20virtual%20screening&amp;author=SL%20Swann&amp;author=SP%20Brown&amp;author=SW%20Muchmore&amp;publication_year=2011&amp;journal=J%20Med%20Chem&amp;volume=54&amp;pages=1223-32" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/jm1013677" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fjm1013677" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fjm1013677"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21309579" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20unified%2C%20probabilistic%20framework%20for%20structure-and%20ligand-based%20virtual%20screening&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref27" class="js-splitview-ref-item" data-legacy-id="ref27"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref27" href="javascript:;" aria-label="jumplink-ref27" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref27" class="ref-content " data-id="ref27"><span class="label title-label">27.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cheng</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">Q</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Bryant</div>   <div class="given-names">SH</div></span></span>. <div class="article-title">Identifying compound-target associations by combining bioactivity profile similarity search and public databases mining</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2011</div>;<div class="volume">51</div>(<div class="issue">9</div>):<div class="fpage">2440</div>–<div class="lpage">8</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Identifying%20compound-target%20associations%20by%20combining%20bioactivity%20profile%20similarity%20search%20and%20public%20databases%20mining&amp;author=T%20Cheng&amp;author=Q%20Li&amp;author=Y%20Wang&amp;author=SH%20Bryant&amp;publication_year=2011&amp;journal=J%20Chem%20Inf%20Model&amp;volume=51&amp;pages=2440-8" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci200192v" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci200192v" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci200192v"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21834535" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Identifying%20compound-target%20associations%20by%20combining%20bioactivity%20profile%20similarity%20search%20and%20public%20databases%20mining&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref28" class="js-splitview-ref-item" data-legacy-id="ref28"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref28" href="javascript:;" aria-label="jumplink-ref28" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref28" class="ref-content " data-id="ref28"><span class="label title-label">28.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cheng</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">W</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">Z</div></span></span>, et al. . <div class="article-title">Prediction of polypharmacological profiles of drugs by the integration of chemical, side effect, and therapeutic space</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2013</div>;<div class="volume">53</div>(<div class="issue">4</div>):<div class="fpage">753</div>–<div class="lpage">62</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Prediction%20of%20polypharmacological%20profiles%20of%20drugs%20by%20the%20integration%20of%20chemical%2C%20side%20effect%2C%20and%20therapeutic%20space&amp;author=F%20Cheng&amp;author=W%20Li&amp;author=Z%20Wu&amp;publication_year=2013&amp;journal=J%20Chem%20Inf%20Model&amp;volume=53&amp;pages=753-62" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci400010x" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci400010x" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci400010x"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23527559" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Prediction%20of%20polypharmacological%20profiles%20of%20drugs%20by%20the%20integration%20of%20chemical%2C%20side%20effect%2C%20and%20therapeutic%20space&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref29" class="js-splitview-ref-item" data-legacy-id="ref29"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref29" href="javascript:;" aria-label="jumplink-ref29" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref29" class="ref-content " data-id="ref29"><span class="label title-label">29.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">van Westen</div>   <div class="given-names">GJ</div></span>, <span class="name string-name"><div class="surname">Wegner</div>   <div class="given-names">JK</div></span>, <span class="name string-name"><div class="surname">IJzerman</div>   <div class="given-names">AP</div></span></span>, et al. . <div class="article-title">Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets</div>. <div class="source "><em>MedChemComm</em></div>  <div class="year">2011</div>;<div class="volume">2</div>(<div class="issue">1</div>):<div class="fpage">16</div>–<div class="lpage">30</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Proteochemometric%20modeling%20as%20a%20tool%20to%20design%20selective%20compounds%20and%20for%20extrapolating%20to%20novel%20targets&amp;author=GJ%20van%20Westen&amp;author=JK%20Wegner&amp;author=AP%20IJzerman&amp;publication_year=2011&amp;journal=MedChemComm&amp;volume=2&amp;pages=16-30" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1039/C0MD00165A" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1039%2FC0MD00165A" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1039%2FC0MD00165A"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Proteochemometric%20modeling%20as%20a%20tool%20to%20design%20selective%20compounds%20and%20for%20extrapolating%20to%20novel%20targets&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref30" class="js-splitview-ref-item" data-legacy-id="ref30"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref30" href="javascript:;" aria-label="jumplink-ref30" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref30" class="ref-content " data-id="ref30"><span class="label title-label">30.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Paricharak</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Cortés-Ciriano</div>   <div class="given-names">I</div></span>, <span class="name string-name"><div class="surname">IJzerman</div>   <div class="given-names">AP</div></span></span>, et al. . <div class="article-title">Proteochemometric modelling coupled to in silico target prediction: an integrated approach for the simultaneous prediction of polypharmacology and binding affinity/potency of small molecules</div>. <div class="source ">J Chem</div>  <div class="year">2015</div>;<div class="volume">7</div>(<div class="issue">1</div>):<div class="fpage">15</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Proteochemometric%20modelling%20coupled%20to%20in%20silico%20target%20prediction%3A%20an%20integrated%20approach%20for%20the%20simultaneous%20prediction%20of%20polypharmacology%20and%20binding%20affinity%2Fpotency%20of%20small%20molecules&amp;author=S%20Paricharak&amp;author=I%20Cort%C3%A9s-Ciriano&amp;author=AP%20IJzerman&amp;publication_year=2015&amp;journal=J%20Chem&amp;volume=7&amp;pages=15" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s13321-015-0063-9" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs13321-015-0063-9" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs13321-015-0063-9"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Proteochemometric%20modelling%20coupled%20to%20in%20silico%20target%20prediction%3A%20an%20integrated%20approach%20for%20the%20simultaneous%20prediction%20of%20polypharmacology%20and%20binding%20affinity%2Fpotency%20of%20small%20molecules&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref31" class="js-splitview-ref-item" data-legacy-id="ref31"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref31" href="javascript:;" aria-label="jumplink-ref31" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref31" class="ref-content " data-id="ref31"><span class="label title-label">31.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yang</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Simm</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Lam</div>   <div class="given-names">CC</div></span></span>, et al. . <div class="article-title">Linking drug target and pathway activation for effective therapy using multi-task learning</div>. <div class="source "><em>Sci Rep</em></div>  <div class="year">2018</div>;<div class="volume">8</div>:<div class="fpage">8322</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Linking%20drug%20target%20and%20pathway%20activation%20for%20effective%20therapy%20using%20multi-task%20learning&amp;author=M%20Yang&amp;author=J%20Simm&amp;author=CC%20Lam&amp;publication_year=2018&amp;journal=Sci%20Rep&amp;volume=8&amp;pages=8322" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/s41598-018-25947-y" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fs41598-018-25947-y" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fs41598-018-25947-y"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/29844324" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Linking%20drug%20target%20and%20pathway%20activation%20for%20effective%20therapy%20using%20multi-task%20learning&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref32" class="js-splitview-ref-item" data-legacy-id="ref32"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref32" href="javascript:;" aria-label="jumplink-ref32" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref32" class="ref-content " data-id="ref32"><span class="label title-label">32.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Fu</div>   <div class="given-names">G</div></span>, <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Seal</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">Predicting drug target interactions using meta-path-based semantic network analysis</div>. <div class="source ">BMC Bioinformatics</div>  <div class="year">2016</div>;<div class="volume">17</div>(<div class="issue">1</div>):<div class="fpage">160</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%20target%20interactions%20using%20meta-path-based%20semantic%20network%20analysis&amp;author=G%20Fu&amp;author=Y%20Ding&amp;author=A%20Seal&amp;publication_year=2016&amp;journal=BMC%20Bioinformatics&amp;volume=17&amp;pages=160" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s12859-016-1005-x" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs12859-016-1005-x" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs12859-016-1005-x"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27071755" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%20target%20interactions%20using%20meta-path-based%20semantic%20network%20analysis&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref33" class="js-splitview-ref-item" data-legacy-id="ref33"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref33" href="javascript:;" aria-label="jumplink-ref33" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref33" class="ref-content " data-id="ref33"><span class="label title-label">33.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">González-Díaz</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Prado-Prado</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">García-Mera</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">Mind-best: web server for drugs and target discovery; design, synthesis, and assay of MAO-B inhibitors and theoretical-experimental study of G3PDH protein from Trichomonas gallinae</div>. <div class="source ">J Proteome Res</div>  <div class="year">2011</div>;<div class="volume">10</div>(<div class="issue">4</div>):<div class="fpage">1698</div>–<div class="lpage">718</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Mind-best%3A%20web%20server%20for%20drugs%20and%20target%20discovery%3B%20design%2C%20synthesis%2C%20and%20assay%20of%20MAO-B%20inhibitors%20and%20theoretical-experimental%20study%20of%20G3PDH%20protein%20from%20Trichomonas%20gallinae&amp;author=H%20Gonz%C3%A1lez-D%C3%ADaz&amp;author=F%20Prado-Prado&amp;author=X%20Garc%C3%ADa-Mera&amp;publication_year=2011&amp;journal=J%20Proteome%20Res&amp;volume=10&amp;pages=1698-718" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/pr101009e" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fpr101009e" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fpr101009e"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21184613" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Mind-best%3A%20web%20server%20for%20drugs%20and%20target%20discovery%3B%20design%2C%20synthesis%2C%20and%20assay%20of%20MAO-B%20inhibitors%20and%20theoretical-experimental%20study%20of%20G3PDH%20protein%20from%20Trichomonas%20gallinae&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref34" class="js-splitview-ref-item" data-legacy-id="ref34"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref34" href="javascript:;" aria-label="jumplink-ref34" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref34" class="ref-content " data-id="ref34"><span class="label title-label">34.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Xie</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Evangelidis</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Xie</div>   <div class="given-names">L</div></span></span>, et al. . <div class="article-title">Drug discovery using chemical systems biology: weak inhibition of multiple kinases may contribute to the anti-cancer effect of nelfinavir</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2011</div>;<div class="volume">7</div>(<div class="issue">4</div>):e1002037.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20discovery%20using%20chemical%20systems%20biology%3A%20weak%20inhibition%20of%20multiple%20kinases%20may%20contribute%20to%20the%20anti-cancer%20effect%20of%20nelfinavir&amp;author=L%20Xie&amp;author=T%20Evangelidis&amp;author=L%20Xie&amp;publication_year=2011&amp;journal=PLoS%20Comput%20Biol&amp;volume=7&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Drug+discovery+using+chemical+systems+biology%3a+weak+inhibition+of+multiple+kinases+may+contribute+to+the+anti-cancer+effect+of+nelfinavir&amp;aulast=Xie&amp;title=PLoS+Comput+Biol&amp;date=2011&amp;volume=7&amp;issue=4" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20discovery%20using%20chemical%20systems%20biology%3A%20weak%20inhibition%20of%20multiple%20kinases%20may%20contribute%20to%20the%20anti-cancer%20effect%20of%20nelfinavir&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref35" class="js-splitview-ref-item" data-legacy-id="ref35"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref35" href="javascript:;" aria-label="jumplink-ref35" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref35" class="ref-content " data-id="ref35"><span class="label title-label">35.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Gao</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Kang</div>   <div class="given-names">L</div></span></span>, et al. . <div class="article-title">Tarfisdock: a web server for identifying drug targets with docking approach</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2006</div>;<div class="volume">34</div>(<div class="issue">suppl_2</div>):<div class="fpage">W219</div>–<div class="lpage">24</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Tarfisdock%3A%20a%20web%20server%20for%20identifying%20drug%20targets%20with%20docking%20approach&amp;author=H%20Li&amp;author=Z%20Gao&amp;author=L%20Kang&amp;publication_year=2006&amp;journal=Nucleic%20Acids%20Res&amp;volume=34&amp;pages=W219-24" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkl114" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkl114" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkl114"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16844997" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Tarfisdock%3A%20a%20web%20server%20for%20identifying%20drug%20targets%20with%20docking%20approach&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref36" class="js-splitview-ref-item" data-legacy-id="ref36"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref36" href="javascript:;" aria-label="jumplink-ref36" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref36" class="ref-content " data-id="ref36"><span class="label title-label">36.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yang</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">Exploring off-targets and off-systems for adverse drug reactions via chemical-protein interactome–clozapine-induced agranulocytosis as a case study</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2011</div>;<div class="volume">7</div>(<div class="issue">3</div>):e1002016.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Exploring%20off-targets%20and%20off-systems%20for%20adverse%20drug%20reactions%20via%20chemical-protein%20interactome%E2%80%93clozapine-induced%20agranulocytosis%20as%20a%20case%20study&amp;author=L%20Yang&amp;author=K%20Wang&amp;author=J%20Chen&amp;publication_year=2011&amp;journal=PLoS%20Comput%20Biol&amp;volume=7&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Exploring+off-targets+and+off-systems+for+adverse+drug+reactions+via+chemical-protein+interactome%e2%80%93clozapine-induced+agranulocytosis+as+a+case+study&amp;aulast=Yang&amp;title=PLoS+Comput+Biol&amp;date=2011&amp;volume=7&amp;issue=3" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Exploring%20off-targets%20and%20off-systems%20for%20adverse%20drug%20reactions%20via%20chemical-protein%20interactome%E2%80%93clozapine-induced%20agranulocytosis%20as%20a%20case%20study&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref37" class="js-splitview-ref-item" data-legacy-id="ref37"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref37" href="javascript:;" aria-label="jumplink-ref37" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref37" class="ref-content " data-id="ref37"><span class="label title-label">37.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Hansen</div>   <div class="given-names">NT</div></span>, <span class="name string-name"><div class="surname">Brunak</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Altman</div>   <div class="given-names">R</div></span></span>. <div class="article-title">Generating genome-scale candidate gene lists for pharmacogenomics</div>. <div class="source ">Clin Pharmacol Ther</div>  <div class="year">2009</div>;<div class="volume">86</div>(<div class="issue">2</div>):<div class="fpage">183</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Generating%20genome-scale%20candidate%20gene%20lists%20for%20pharmacogenomics&amp;author=NT%20Hansen&amp;author=S%20Brunak&amp;author=R%20Altman&amp;publication_year=2009&amp;journal=Clin%20Pharmacol%20Ther&amp;volume=86&amp;pages=183-9" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/clpt.2009.42" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fclpt.2009.42" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fclpt.2009.42"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19369935" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Generating%20genome-scale%20candidate%20gene%20lists%20for%20pharmacogenomics&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref38" class="js-splitview-ref-item" data-legacy-id="ref38"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref38" href="javascript:;" aria-label="jumplink-ref38" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref38" class="ref-content " data-id="ref38"><span class="label title-label">38.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Keiser</div>   <div class="given-names">MJ</div></span>, <span class="name string-name"><div class="surname">Roth</div>   <div class="given-names">BL</div></span>, <span class="name string-name"><div class="surname">Armbruster</div>   <div class="given-names">BN</div></span></span>, et al. . <div class="article-title">Relating protein pharmacology by ligand chemistry</div>. <div class="source ">Nat Biotechnol</div>  <div class="year">2007</div>;<div class="volume">25</div>(<div class="issue">2</div>):<div class="fpage">197</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Relating%20protein%20pharmacology%20by%20ligand%20chemistry&amp;author=MJ%20Keiser&amp;author=BL%20Roth&amp;author=BN%20Armbruster&amp;publication_year=2007&amp;journal=Nat%20Biotechnol&amp;volume=25&amp;pages=197" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nbt1284" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnbt1284" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnbt1284"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17287757" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Relating%20protein%20pharmacology%20by%20ligand%20chemistry&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref39" class="js-splitview-ref-item" data-legacy-id="ref39"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref39" href="javascript:;" aria-label="jumplink-ref39" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref39" class="ref-content " data-id="ref39"><span class="label title-label">39.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Butina</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Segall</div>   <div class="given-names">MD</div></span>, <span class="name string-name"><div class="surname">Frankcombe</div>   <div class="given-names">K</div></span></span>. <div class="article-title">Predicting adme properties in silico: methods and models</div>. <div class="source ">Drug Discov Today</div>  <div class="year">2002</div>;<div class="volume">7</div>(<div class="issue">11</div>):<div class="fpage">S83</div>–<div class="lpage">8</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20adme%20properties%20in%20silico%3A%20methods%20and%20models&amp;author=D%20Butina&amp;author=MD%20Segall&amp;author=K%20Frankcombe&amp;publication_year=2002&amp;journal=Drug%20Discov%20Today&amp;volume=7&amp;pages=S83-8" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/S1359-6446(02)02288-2" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2FS1359-6446(02)02288-2" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2FS1359-6446(02)02288-2"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/12047885" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20adme%20properties%20in%20silico%3A%20methods%20and%20models&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref40" class="js-splitview-ref-item" data-legacy-id="ref40"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref40" href="javascript:;" aria-label="jumplink-ref40" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref40" class="ref-content " data-id="ref40"><span class="label title-label">40.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Byvatov</div>   <div class="given-names">E</div></span>, <span class="name string-name"><div class="surname">Fechner</div>   <div class="given-names">U</div></span>, <span class="name string-name"><div class="surname">Sadowski</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">Comparison of support vector machine and artificial neural network systems for drug/nondrug classification</div>. <div class="source ">J Chem Inf Comput Sci</div>  <div class="year">2003</div>;<div class="volume">43</div>(<div class="issue">6</div>):<div class="fpage">1882</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Comparison%20of%20support%20vector%20machine%20and%20artificial%20neural%20network%20systems%20for%20drug%2Fnondrug%20classification&amp;author=E%20Byvatov&amp;author=U%20Fechner&amp;author=J%20Sadowski&amp;publication_year=2003&amp;journal=J%20Chem%20Inf%20Comput%20Sci&amp;volume=43&amp;pages=1882-9" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci0341161" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci0341161" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci0341161"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/14632437" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Comparison%20of%20support%20vector%20machine%20and%20artificial%20neural%20network%20systems%20for%20drug%2Fnondrug%20classification&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref41" class="js-splitview-ref-item" data-legacy-id="ref41"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref41" href="javascript:;" aria-label="jumplink-ref41" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref41" class="ref-content " data-id="ref41"><span class="label title-label">41.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">YY</div></span>, <span class="name string-name"><div class="surname">An</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Jones</div>   <div class="given-names">SJ</div></span></span>. <div class="article-title">A computational approach to finding novel targets for existing drugs</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2011</div>;<div class="volume">7</div>(<div class="issue">9</div>):e1002139.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20computational%20approach%20to%20finding%20novel%20targets%20for%20existing%20drugs&amp;author=YY%20Li&amp;author=J%20An&amp;author=SJ%20Jones&amp;publication_year=2011&amp;journal=PLoS%20Comput%20Biol&amp;volume=7&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=A+computational+approach+to+finding+novel+targets+for+existing+drugs&amp;aulast=Li&amp;title=PLoS+Comput+Biol&amp;date=2011&amp;volume=7&amp;issue=9" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20computational%20approach%20to%20finding%20novel%20targets%20for%20existing%20drugs&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref42" class="js-splitview-ref-item" data-legacy-id="ref42"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref42" href="javascript:;" aria-label="jumplink-ref42" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref42" class="ref-content " data-id="ref42"><span class="label title-label">42.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Hopkins</div>   <div class="given-names">AL</div></span></span>. <div class="article-title">Network pharmacology: the next paradigm in drug discovery</div>. <div class="source ">Nat Chem Biol</div>  <div class="year">2008</div>;<div class="volume">4</div>(<div class="issue">11</div>):<div class="fpage">682</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Network%20pharmacology%3A%20the%20next%20paradigm%20in%20drug%20discovery&amp;author=AL%20Hopkins&amp;publication_year=2008&amp;journal=Nat%20Chem%20Biol&amp;volume=4&amp;pages=682" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nchembio.118" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnchembio.118" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnchembio.118"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18936753" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Network%20pharmacology%3A%20the%20next%20paradigm%20in%20drug%20discovery&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref43" class="js-splitview-ref-item" data-legacy-id="ref43"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref43" href="javascript:;" aria-label="jumplink-ref43" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref43" class="ref-content " data-id="ref43"><span class="label title-label">43.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">YY</div></span>, <span class="name string-name"><div class="surname">Jones</div>   <div class="given-names">SJ</div></span></span>. <div class="article-title">Drug repositioning for personalized medicine</div>. <div class="source ">Genome Med</div>  <div class="year">2012</div>;<div class="volume">4</div>(<div class="issue">3</div>):<div class="fpage">27</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20repositioning%20for%20personalized%20medicine&amp;author=YY%20Li&amp;author=SJ%20Jones&amp;publication_year=2012&amp;journal=Genome%20Med&amp;volume=4&amp;pages=27" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/gm326" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fgm326" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fgm326"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22494857" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20repositioning%20for%20personalized%20medicine&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref44" class="js-splitview-ref-item" data-legacy-id="ref44"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref44" href="javascript:;" aria-label="jumplink-ref44" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref44" class="ref-content " data-id="ref44"><span class="label title-label">44.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kinnings</div>   <div class="given-names">SL</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">N</div></span>, <span class="name string-name"><div class="surname">Buchmeier</div>   <div class="given-names">N</div></span></span>, et al. . <div class="article-title">Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2009</div>;<div class="volume">5</div>(<div class="issue">7</div>):e1000423.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20discovery%20using%20chemical%20systems%20biology%3A%20repositioning%20the%20safe%20medicine%20Comtan%20to%20treat%20multi-drug%20and%20extensively%20drug%20resistant%20tuberculosis&amp;author=SL%20Kinnings&amp;author=N%20Liu&amp;author=N%20Buchmeier&amp;publication_year=2009&amp;journal=PLoS%20Comput%20Biol&amp;volume=5&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Drug+discovery+using+chemical+systems+biology%3a+repositioning+the+safe+medicine+Comtan+to+treat+multi-drug+and+extensively+drug+resistant+tuberculosis&amp;aulast=Kinnings&amp;title=PLoS+Comput+Biol&amp;date=2009&amp;volume=5&amp;issue=7" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20discovery%20using%20chemical%20systems%20biology%3A%20repositioning%20the%20safe%20medicine%20Comtan%20to%20treat%20multi-drug%20and%20extensively%20drug%20resistant%20tuberculosis&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref45" class="js-splitview-ref-item" data-legacy-id="ref45"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref45" href="javascript:;" aria-label="jumplink-ref45" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref45" class="ref-content " data-id="ref45"><span class="label title-label">45.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Xie</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Bourne</div>   <div class="given-names">PE</div></span></span>. <div class="article-title">Detecting evolutionary relationships across existing fold space, using sequence order-independent profile–profile alignments</div>. <div class="source ">Proc Natl Acad Sci</div>  <div class="year">2008</div>;<div class="volume">105</div>(<div class="issue">14</div>):<div class="fpage">5441</div>–<div class="lpage">6</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Detecting%20evolutionary%20relationships%20across%20existing%20fold%20space%2C%20using%20sequence%20order-independent%20profile%E2%80%93profile%20alignments&amp;author=L%20Xie&amp;author=PE%20Bourne&amp;publication_year=2008&amp;journal=Proc%20Natl%20Acad%20Sci&amp;volume=105&amp;pages=5441-6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1073/pnas.0704422105" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1073%2Fpnas.0704422105" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1073%2Fpnas.0704422105"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18385384" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Detecting%20evolutionary%20relationships%20across%20existing%20fold%20space%2C%20using%20sequence%20order-independent%20profile%E2%80%93profile%20alignments&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref46" class="js-splitview-ref-item" data-legacy-id="ref46"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref46" href="javascript:;" aria-label="jumplink-ref46" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref46" class="ref-content " data-id="ref46"><span class="label title-label">46.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Gottlieb</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Stein</div>   <div class="given-names">GY</div></span>, <span class="name string-name"><div class="surname">Ruppin</div>   <div class="given-names">E</div></span></span>, et al. . <div class="article-title">Predict: a method for inferring novel drug indications with application to personalized medicine</div>. <div class="source ">Mol Syst Biol</div>  <div class="year">2011</div>;<div class="volume">7</div>(<div class="issue">1</div>):<div class="fpage">496</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predict%3A%20a%20method%20for%20inferring%20novel%20drug%20indications%20with%20application%20to%20personalized%20medicine&amp;author=A%20Gottlieb&amp;author=GY%20Stein&amp;author=E%20Ruppin&amp;publication_year=2011&amp;journal=Mol%20Syst%20Biol&amp;volume=7&amp;pages=496" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/msb.2011.26" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fmsb.2011.26" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fmsb.2011.26"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21654673" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predict%3A%20a%20method%20for%20inferring%20novel%20drug%20indications%20with%20application%20to%20personalized%20medicine&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref47" class="js-splitview-ref-item" data-legacy-id="ref47"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref47" href="javascript:;" aria-label="jumplink-ref47" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref47" class="ref-content " data-id="ref47"><span class="label title-label">47.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Mahé</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">Ueda</div>   <div class="given-names">N</div></span>, <span class="name string-name"><div class="surname">Akutsu</div>   <div class="given-names">T</div></span></span>, et al. . <div class="article-title">Graph kernels for molecular structure- activity relationship analysis with support vector machines</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2005</div>;<div class="volume">45</div>(<div class="issue">4</div>):<div class="fpage">939</div>–<div class="lpage">51</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Graph%20kernels%20for%20molecular%20structure-%20activity%20relationship%20analysis%20with%20support%20vector%20machines&amp;author=P%20Mah%C3%A9&amp;author=N%20Ueda&amp;author=T%20Akutsu&amp;publication_year=2005&amp;journal=J%20Chem%20Inf%20Model&amp;volume=45&amp;pages=939-51" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci050039t" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci050039t" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci050039t"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16045288" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Graph%20kernels%20for%20molecular%20structure-%20activity%20relationship%20analysis%20with%20support%20vector%20machines&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref48" class="js-splitview-ref-item" data-legacy-id="ref48"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref48" href="javascript:;" aria-label="jumplink-ref48" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref48" class="ref-content " data-id="ref48"><span class="label title-label">48.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Koutsoukas</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Lowe</div>   <div class="given-names">R</div></span>, <span class="name string-name"><div class="surname">KalantarMotamedi</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">In silico target predictions: defining a benchmarking data set and comparison of performance of the multiclass Naïve Bayes and Parzen–Rosenblatt window</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2013</div>;<div class="volume">53</div>(<div class="issue">8</div>):<div class="fpage">1957</div>–<div class="lpage">66</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=In%20silico%20target%20predictions%3A%20defining%20a%20benchmarking%20data%20set%20and%20comparison%20of%20performance%20of%20the%20multiclass%20Na%C3%AFve%20Bayes%20and%20Parzen%E2%80%93Rosenblatt%20window&amp;author=A%20Koutsoukas&amp;author=R%20Lowe&amp;author=Y%20KalantarMotamedi&amp;publication_year=2013&amp;journal=J%20Chem%20Inf%20Model&amp;volume=53&amp;pages=1957-66" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci300435j" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci300435j" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci300435j"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23829430" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:In%20silico%20target%20predictions%3A%20defining%20a%20benchmarking%20data%20set%20and%20comparison%20of%20performance%20of%20the%20multiclass%20Na%C3%AFve%20Bayes%20and%20Parzen%E2%80%93Rosenblatt%20window&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref49" class="js-splitview-ref-item" data-legacy-id="ref49"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref49" href="javascript:;" aria-label="jumplink-ref49" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref49" class="ref-content " data-id="ref49"><span class="label title-label">49.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Jamali</div>   <div class="given-names">AA</div></span>, <span class="name string-name"><div class="surname">Ferdousi</div>   <div class="given-names">R</div></span>, <span class="name string-name"><div class="surname">Razzaghi</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Drugminer: comparative analysis of machine learning algorithms for prediction of potential druggable proteins</div>. <div class="source ">Drug Discov Today</div>  <div class="year">2016</div>;<div class="volume">21</div>(<div class="issue">5</div>):<div class="fpage">718</div>–<div class="lpage">24</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drugminer%3A%20comparative%20analysis%20of%20machine%20learning%20algorithms%20for%20prediction%20of%20potential%20druggable%20proteins&amp;author=AA%20Jamali&amp;author=R%20Ferdousi&amp;author=S%20Razzaghi&amp;publication_year=2016&amp;journal=Drug%20Discov%20Today&amp;volume=21&amp;pages=718-24" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.drudis.2016.01.007" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.drudis.2016.01.007" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.drudis.2016.01.007"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26821132" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drugminer%3A%20comparative%20analysis%20of%20machine%20learning%20algorithms%20for%20prediction%20of%20potential%20druggable%20proteins&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref50" class="js-splitview-ref-item" data-legacy-id="ref50"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref50" href="javascript:;" aria-label="jumplink-ref50" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref50" class="ref-content " data-id="ref50"><span class="label title-label">50.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Peón</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Naulaerts</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Ballester</div>   <div class="given-names">PJ</div></span></span>. <div class="article-title">Predicting the reliability of drug-target interaction predictions with maximum coverage of target space</div>. <div class="source ">Sci Rep</div>  <div class="year">2017</div>;<div class="volume">7</div>(<div class="issue">1</div>):<div class="fpage">3820</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20the%20reliability%20of%20drug-target%20interaction%20predictions%20with%20maximum%20coverage%20of%20target%20space&amp;author=A%20Pe%C3%B3n&amp;author=S%20Naulaerts&amp;author=PJ%20Ballester&amp;publication_year=2017&amp;journal=Sci%20Rep&amp;volume=7&amp;pages=3820" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/s41598-017-04264-w" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fs41598-017-04264-w" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fs41598-017-04264-w"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28630414" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20the%20reliability%20of%20drug-target%20interaction%20predictions%20with%20maximum%20coverage%20of%20target%20space&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref51" class="js-splitview-ref-item" data-legacy-id="ref51"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref51" href="javascript:;" aria-label="jumplink-ref51" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref51" class="ref-content " data-id="ref51"><span class="label title-label">51.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Fang</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Cai</div>   <div class="given-names">C</div></span></span>, et al. . <div class="article-title">Quantitative and systems pharmacology. 1. In silico prediction of drug–target interactions of natural products enables new targeted cancer therapy</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2017</div>;<div class="volume">57</div>(<div class="issue">11</div>):<div class="fpage">2657</div>–<div class="lpage">71</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Quantitative%20and%20systems%20pharmacology.%201.%20In%20silico%20prediction%20of%20drug%E2%80%93target%20interactions%20of%20natural%20products%20enables%20new%20targeted%20cancer%20therapy&amp;author=J%20Fang&amp;author=Z%20Wu&amp;author=C%20Cai&amp;publication_year=2017&amp;journal=J%20Chem%20Inf%20Model&amp;volume=57&amp;pages=2657-71" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/acs.jcim.7b00216" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Facs.jcim.7b00216" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Facs.jcim.7b00216"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28956927" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Quantitative%20and%20systems%20pharmacology.%201.%20In%20silico%20prediction%20of%20drug%E2%80%93target%20interactions%20of%20natural%20products%20enables%20new%20targeted%20cancer%20therapy&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref52" class="js-splitview-ref-item" data-legacy-id="ref52"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref52" href="javascript:;" aria-label="jumplink-ref52" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref52" class="ref-content " data-id="ref52"><span class="label title-label">52.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Qiu</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">P</div></span></span>, et al. . <div class="article-title">Computational drug discovery with dyadic positive-unlabeled learning</div>. In: <div class="source "><em>Proceedings of the 2017 SIAM International Conference on Data Mining</em></div>  <div class="publisher-loc">University City, Philadelphia, USA</div>. <div class="publisher-name">SIAM</div>, <div class="year">2017</div>, <div class="fpage">45</div>–<div class="lpage">53</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Proceedings%20of%20the%202017%20SIAM%20International%20Conference%20on%20Data%20Mining&amp;author=Y%20Liu&amp;author=S%20Qiu&amp;author=P%20Zhang&amp;publication_year=2017&amp;book=Proceedings%20of%20the%202017%20SIAM%20International%20Conference%20on%20Data%20Mining" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1137/1.9781611974973" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1137%2F1.9781611974973" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1137%2F1.9781611974973"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Proceedings%20of%20the%202017%20SIAM%20International%20Conference%20on%20Data%20Mining&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Proceedings%20of%20the%202017%20SIAM%20International%20Conference%20on%20Data%20Mining&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Proceedings%20of%20the%202017%20SIAM%20International%20Conference%20on%20Data%20Mining">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref53" class="js-splitview-ref-item" data-legacy-id="ref53"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref53" href="javascript:;" aria-label="jumplink-ref53" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref53" class="ref-content " data-id="ref53"><span class="label title-label">53.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kutalik</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Beckmann</div>   <div class="given-names">JS</div></span>, <span class="name string-name"><div class="surname">Bergmann</div>   <div class="given-names">S</div></span></span>. <div class="article-title">A modular approach for integrative analysis of large-scale gene-expression and drug-response data</div>. <div class="source ">Nat Biotechnol</div>  <div class="year">2008</div>;<div class="volume">26</div>(<div class="issue">5</div>):<div class="fpage">531</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20modular%20approach%20for%20integrative%20analysis%20of%20large-scale%20gene-expression%20and%20drug-response%20data&amp;author=Z%20Kutalik&amp;author=JS%20Beckmann&amp;author=S%20Bergmann&amp;publication_year=2008&amp;journal=Nat%20Biotechnol&amp;volume=26&amp;pages=531" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nbt1397" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnbt1397" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnbt1397"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18464786" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20modular%20approach%20for%20integrative%20analysis%20of%20large-scale%20gene-expression%20and%20drug-response%20data&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref54" class="js-splitview-ref-item" data-legacy-id="ref54"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref54" href="javascript:;" aria-label="jumplink-ref54" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref54" class="ref-content " data-id="ref54"><span class="label title-label">54.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ma</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Qian</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">Predicting cancer drug response by proteomic profiling</div>. <div class="source ">Clin Cancer Res</div>  <div class="year">2006</div>;<div class="volume">12</div>(<div class="issue">15</div>):<div class="fpage">4583</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20cancer%20drug%20response%20by%20proteomic%20profiling&amp;author=Y%20Ma&amp;author=Z%20Ding&amp;author=Y%20Qian&amp;publication_year=2006&amp;journal=Clin%20Cancer%20Res&amp;volume=12&amp;pages=4583-9" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1158/1078-0432.CCR-06-0290" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1158%2F1078-0432.CCR-06-0290" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1158%2F1078-0432.CCR-06-0290"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16899605" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20cancer%20drug%20response%20by%20proteomic%20profiling&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref55" class="js-splitview-ref-item" data-legacy-id="ref55"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref55" href="javascript:;" aria-label="jumplink-ref55" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref55" class="ref-content " data-id="ref55"><span class="label title-label">55.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Dudley</div>   <div class="given-names">JT</div></span>, <span class="name string-name"><div class="surname">Sirota</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Shenoy</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">Computational repositioning of the anticonvulsant topiramate for inflammatory bowel disease</div>. <div class="source ">Sci Transl Med</div>  <div class="year">2011</div>;<div class="volume">3</div>(<div class="issue">96</div>):<div class="fpage">96ra76</div>–<div class="lpage">6</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Computational%20repositioning%20of%20the%20anticonvulsant%20topiramate%20for%20inflammatory%20bowel%20disease&amp;author=JT%20Dudley&amp;author=M%20Sirota&amp;author=M%20Shenoy&amp;publication_year=2011&amp;journal=Sci%20Transl%20Med&amp;volume=3&amp;pages=96ra76-6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1126/scitranslmed.3002648" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1126%2Fscitranslmed.3002648" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1126%2Fscitranslmed.3002648"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21849664" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Computational%20repositioning%20of%20the%20anticonvulsant%20topiramate%20for%20inflammatory%20bowel%20disease&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref56" class="js-splitview-ref-item" data-legacy-id="ref56"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref56" href="javascript:;" aria-label="jumplink-ref56" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref56" class="ref-content " data-id="ref56"><span class="label title-label">56.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Sirota</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Dudley</div>   <div class="given-names">JT</div></span>, <span class="name string-name"><div class="surname">Kim</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">Discovery and preclinical validation of drug indications using compendia of public gene expression data</div>. <div class="source ">Sci Transl Med</div>  <div class="year">2011</div>;<div class="volume">3</div>(<div class="issue">96</div>):<div class="fpage">96ra77</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Discovery%20and%20preclinical%20validation%20of%20drug%20indications%20using%20compendia%20of%20public%20gene%20expression%20data&amp;author=M%20Sirota&amp;author=JT%20Dudley&amp;author=J%20Kim&amp;publication_year=2011&amp;journal=Sci%20Transl%20Med&amp;volume=3&amp;pages=96ra77-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1126/scitranslmed.3001318" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1126%2Fscitranslmed.3001318" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1126%2Fscitranslmed.3001318"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21849665" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Discovery%20and%20preclinical%20validation%20of%20drug%20indications%20using%20compendia%20of%20public%20gene%20expression%20data&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref57" class="js-splitview-ref-item" data-legacy-id="ref57"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref57" href="javascript:;" aria-label="jumplink-ref57" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref57" class="ref-content " data-id="ref57"><span class="label title-label">57.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yabuuchi</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Niijima</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Takematsu</div>   <div class="given-names">H</div></span></span>, et al. . <div class="article-title">Analysis of multiple compound–protein interactions reveals novel bioactive molecules</div>. <div class="source ">Mol Syst Biol</div>  <div class="year">2011</div>;<div class="volume">7</div>(<div class="issue">1</div>):<div class="fpage">472</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Analysis%20of%20multiple%20compound%E2%80%93protein%20interactions%20reveals%20novel%20bioactive%20molecules&amp;author=H%20Yabuuchi&amp;author=S%20Niijima&amp;author=H%20Takematsu&amp;publication_year=2011&amp;journal=Mol%20Syst%20Biol&amp;volume=7&amp;pages=472" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/msb.2011.5" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fmsb.2011.5" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fmsb.2011.5"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21364574" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Analysis%20of%20multiple%20compound%E2%80%93protein%20interactions%20reveals%20novel%20bioactive%20molecules&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref58" class="js-splitview-ref-item" data-legacy-id="ref58"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref58" href="javascript:;" aria-label="jumplink-ref58" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref58" class="ref-content " data-id="ref58"><span class="label title-label">58.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Lamb</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Crawford</div>   <div class="given-names">ED</div></span>, <span class="name string-name"><div class="surname">Peck</div>   <div class="given-names">D</div></span></span>, et al. . <div class="article-title">The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease</div>. <div class="source ">Science</div>  <div class="year">2006</div>;<div class="volume">313</div>(<div class="issue">5795</div>):<div class="fpage">1929</div>–<div class="lpage">35</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20connectivity%20map%3A%20using%20gene-expression%20signatures%20to%20connect%20small%20molecules%2C%20genes%2C%20and%20disease&amp;author=J%20Lamb&amp;author=ED%20Crawford&amp;author=D%20Peck&amp;publication_year=2006&amp;journal=Science&amp;volume=313&amp;pages=1929-35" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1126/science.1132939" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1126%2Fscience.1132939" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1126%2Fscience.1132939"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17008526" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20connectivity%20map%3A%20using%20gene-expression%20signatures%20to%20connect%20small%20molecules%2C%20genes%2C%20and%20disease&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref59" class="js-splitview-ref-item" data-legacy-id="ref59"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref59" href="javascript:;" aria-label="jumplink-ref59" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref59" class="ref-content " data-id="ref59"><span class="label title-label">59.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Campillos</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Kuhn</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Gavin</div>   <div class="given-names">A-C</div></span></span>, et al. . <div class="article-title">Drug target identification using side-effect similarity</div>. <div class="source ">Science</div>  <div class="year">2008</div>;<div class="volume">321</div>(<div class="issue">5886</div>):<div class="fpage">263</div>–<div class="lpage">6</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20target%20identification%20using%20side-effect%20similarity&amp;author=M%20Campillos&amp;author=M%20Kuhn&amp;author=A-C%20Gavin&amp;publication_year=2008&amp;journal=Science&amp;volume=321&amp;pages=263-6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1126/science.1158140" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1126%2Fscience.1158140" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1126%2Fscience.1158140"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18621671" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20target%20identification%20using%20side-effect%20similarity&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref60" class="js-splitview-ref-item" data-legacy-id="ref60"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref60" href="javascript:;" aria-label="jumplink-ref60" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref60" class="ref-content " data-id="ref60"><span class="label title-label">60.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Lounkine</div>   <div class="given-names">E</div></span>, <span class="name string-name"><div class="surname">Keiser</div>   <div class="given-names">MJ</div></span>, <span class="name string-name"><div class="surname">Whitebread</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Large-scale prediction and testing of drug activity on side-effect targets</div>. <div class="source ">Nature</div>  <div class="year">2012</div>;<div class="volume">486</div>(<div class="issue">7403</div>):<div class="fpage">361</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Large-scale%20prediction%20and%20testing%20of%20drug%20activity%20on%20side-effect%20targets&amp;author=E%20Lounkine&amp;author=MJ%20Keiser&amp;author=S%20Whitebread&amp;publication_year=2012&amp;journal=Nature&amp;volume=486&amp;pages=361" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nature11159" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnature11159" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnature11159"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22722194" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Large-scale%20prediction%20and%20testing%20of%20drug%20activity%20on%20side-effect%20targets&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref61" class="js-splitview-ref-item" data-legacy-id="ref61"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref61" href="javascript:;" aria-label="jumplink-ref61" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref61" class="ref-content " data-id="ref61"><span class="label title-label">61.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Pauwels</div>   <div class="given-names">E</div></span>, <span class="name string-name"><div class="surname">Stoven</div>   <div class="given-names">V</div></span>, <span class="name string-name"><div class="surname">Yamanishi</div>   <div class="given-names">Y</div></span></span>. <div class="article-title">Predicting drug side-effect profiles: a chemical fragment-based approach</div>. <div class="source ">BMC Bioinformatics</div>  <div class="year">2011</div>;<div class="volume">12</div>(<div class="issue">1</div>):<div class="fpage">169</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%20side-effect%20profiles%3A%20a%20chemical%20fragment-based%20approach&amp;author=E%20Pauwels&amp;author=V%20Stoven&amp;author=Y%20Yamanishi&amp;publication_year=2011&amp;journal=BMC%20Bioinformatics&amp;volume=12&amp;pages=169" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/1471-2105-12-169" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2F1471-2105-12-169" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2F1471-2105-12-169"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21586169" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%20side-effect%20profiles%3A%20a%20chemical%20fragment-based%20approach&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref62" class="js-splitview-ref-item" data-legacy-id="ref62"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref62" href="javascript:;" aria-label="jumplink-ref62" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref62" class="ref-content " data-id="ref62"><span class="label title-label">62.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Atias</div>   <div class="given-names">N</div></span>, <span class="name string-name"><div class="surname">Sharan</div>   <div class="given-names">R</div></span></span>. <div class="article-title">An algorithmic framework for predicting side effects of drugs</div>. <div class="source ">J Comput Biol</div>  <div class="year">2011</div>;<div class="volume">18</div>(<div class="issue">3</div>):<div class="fpage">207</div>–<div class="lpage">18</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=An%20algorithmic%20framework%20for%20predicting%20side%20effects%20of%20drugs&amp;author=N%20Atias&amp;author=R%20Sharan&amp;publication_year=2011&amp;journal=J%20Comput%20Biol&amp;volume=18&amp;pages=207-18" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1089/cmb.2010.0255" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1089%2Fcmb.2010.0255" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1089%2Fcmb.2010.0255"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21385029" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:An%20algorithmic%20framework%20for%20predicting%20side%20effects%20of%20drugs&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref63" class="js-splitview-ref-item" data-legacy-id="ref63"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref63" href="javascript:;" aria-label="jumplink-ref63" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref63" class="ref-content " data-id="ref63"><span class="label title-label">63.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Tang</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Guo</div>   <div class="given-names">F</div></span></span>. <div class="article-title">Identification of drug-side effect association via multiple information integration with centered kernel alignment</div>. <div class="source ">Neurocomputing</div>  <div class="year">2019</div>;<div class="volume">325</div>:<div class="fpage">211</div>–<div class="lpage">24</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Identification%20of%20drug-side%20effect%20association%20via%20multiple%20information%20integration%20with%20centered%20kernel%20alignment&amp;author=Y%20Ding&amp;author=J%20Tang&amp;author=F%20Guo&amp;publication_year=2019&amp;journal=Neurocomputing&amp;volume=325&amp;pages=211-24" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.neucom.2018.10.028" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.neucom.2018.10.028" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.neucom.2018.10.028"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Identification%20of%20drug-side%20effect%20association%20via%20multiple%20information%20integration%20with%20centered%20kernel%20alignment&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref64" class="js-splitview-ref-item" data-legacy-id="ref64"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref64" href="javascript:;" aria-label="jumplink-ref64" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref64" class="ref-content " data-id="ref64"><span class="label title-label">64.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chiang</div>   <div class="given-names">AP</div></span>, <span class="name string-name"><div class="surname">Butte</div>   <div class="given-names">AJ</div></span></span>. <div class="article-title">Systematic evaluation of drug–disease relationships to identify leads for novel drug uses</div>. <div class="source ">Clin Pharmacol Ther</div>  <div class="year">2009</div>;<div class="volume">86</div>(<div class="issue">5</div>):<div class="fpage">507</div>–<div class="lpage">10</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Systematic%20evaluation%20of%20drug%E2%80%93disease%20relationships%20to%20identify%20leads%20for%20novel%20drug%20uses&amp;author=AP%20Chiang&amp;author=AJ%20Butte&amp;publication_year=2009&amp;journal=Clin%20Pharmacol%20Ther&amp;volume=86&amp;pages=507-10" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/clpt.2009.103" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fclpt.2009.103" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fclpt.2009.103"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19571805" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Systematic%20evaluation%20of%20drug%E2%80%93disease%20relationships%20to%20identify%20leads%20for%20novel%20drug%20uses&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref65" class="js-splitview-ref-item" data-legacy-id="ref65"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref65" href="javascript:;" aria-label="jumplink-ref65" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref65" class="ref-content " data-id="ref65"><span class="label title-label">65.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yang</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Bai</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Ouyang</div>   <div class="given-names">Q</div></span></span>, et al. . <div class="article-title">Finding multiple target optimal intervention in disease-related molecular network</div>. <div class="source ">Mol Syst Biol</div>  <div class="year">2008</div>;<div class="volume">4</div>(<div class="issue">1</div>):<div class="fpage">228</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Finding%20multiple%20target%20optimal%20intervention%20in%20disease-related%20molecular%20network&amp;author=K%20Yang&amp;author=H%20Bai&amp;author=Q%20Ouyang&amp;publication_year=2008&amp;journal=Mol%20Syst%20Biol&amp;volume=4&amp;pages=228" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/msb.2008.60" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fmsb.2008.60" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fmsb.2008.60"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18985027" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Finding%20multiple%20target%20optimal%20intervention%20in%20disease-related%20molecular%20network&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref66" class="js-splitview-ref-item" data-legacy-id="ref66"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref66" href="javascript:;" aria-label="jumplink-ref66" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref66" class="ref-content " data-id="ref66"><span class="label title-label">66.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Zhu</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">JY</div></span></span>. <div class="article-title">Building disease-specific drug-protein connectivity maps from molecular interaction networks and PubMed abstracts</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2009</div>;<div class="volume">5</div>(<div class="issue">7</div>):e1000450.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Building%20disease-specific%20drug-protein%20connectivity%20maps%20from%20molecular%20interaction%20networks%20and%20PubMed%20abstracts&amp;author=J%20Li&amp;author=X%20Zhu&amp;author=JY%20Chen&amp;publication_year=2009&amp;journal=PLoS%20Comput%20Biol&amp;volume=5&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Building+disease-specific+drug-protein+connectivity+maps+from+molecular+interaction+networks+and+PubMed+abstracts&amp;aulast=Li&amp;title=PLoS+Comput+Biol&amp;date=2009&amp;volume=5&amp;issue=7" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Building%20disease-specific%20drug-protein%20connectivity%20maps%20from%20molecular%20interaction%20networks%20and%20PubMed%20abstracts&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref67" class="js-splitview-ref-item" data-legacy-id="ref67"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref67" href="javascript:;" aria-label="jumplink-ref67" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref67" class="ref-content " data-id="ref67"><span class="label title-label">67.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Emig</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Ivliev</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Pustovalova</div>   <div class="given-names">O</div></span></span>, et al. . <div class="article-title">Drug target prediction and repositioning using an integrated network-based approach</div>. <div class="source ">PLoS One</div>  <div class="year">2013</div>;<div class="volume">8</div>(<div class="issue">4</div>):e60618.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20target%20prediction%20and%20repositioning%20using%20an%20integrated%20network-based%20approach&amp;author=D%20Emig&amp;author=A%20Ivliev&amp;author=O%20Pustovalova&amp;publication_year=2013&amp;journal=PLoS%20One&amp;volume=8&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Drug+target+prediction+and+repositioning+using+an+integrated+network-based+approach&amp;aulast=Emig&amp;title=PLoS+One&amp;date=2013&amp;volume=8&amp;issue=4" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20target%20prediction%20and%20repositioning%20using%20an%20integrated%20network-based%20approach&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref68" class="js-splitview-ref-item" data-legacy-id="ref68"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref68" href="javascript:;" aria-label="jumplink-ref68" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref68" class="ref-content " data-id="ref68"><span class="label title-label">68.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Tatonetti</div>   <div class="given-names">NP</div></span>, <span class="name string-name"><div class="surname">Denny</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Murphy</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Detecting drug interactions from adverse-event reports: interaction between paroxetine and pravastatin increases blood glucose levels</div>. <div class="source ">Clin Pharmacol Ther</div>  <div class="year">2011</div>;<div class="volume">90</div>(<div class="issue">1</div>):<div class="fpage">133</div>–<div class="lpage">42</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Detecting%20drug%20interactions%20from%20adverse-event%20reports%3A%20interaction%20between%20paroxetine%20and%20pravastatin%20increases%20blood%20glucose%20levels&amp;author=NP%20Tatonetti&amp;author=J%20Denny&amp;author=S%20Murphy&amp;publication_year=2011&amp;journal=Clin%20Pharmacol%20Ther&amp;volume=90&amp;pages=133-42" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/clpt.2011.83" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fclpt.2011.83" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fclpt.2011.83"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21613990" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Detecting%20drug%20interactions%20from%20adverse-event%20reports%3A%20interaction%20between%20paroxetine%20and%20pravastatin%20increases%20blood%20glucose%20levels&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref69" class="js-splitview-ref-item" data-legacy-id="ref69"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref69" href="javascript:;" aria-label="jumplink-ref69" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref69" class="ref-content " data-id="ref69"><span class="label title-label">69.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Tatonetti</div>   <div class="given-names">NP</div></span>, <span class="name string-name"><div class="surname">Fernald</div>   <div class="given-names">GH</div></span>, <span class="name string-name"><div class="surname">Altman</div>   <div class="given-names">RB</div></span></span>. <div class="article-title">A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports</div>. <div class="source ">J Am Med Inform Assoc</div>  <div class="volume">19</div>(<div class="issue">1</div>):<div class="fpage">79</div>–<div class="lpage">85, 2011</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1136/amiajnl-2011-000214" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1136%2Famiajnl-2011-000214" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1136%2Famiajnl-2011-000214"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21676938" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20novel%20signal%20detection%20algorithm%20for%20identifying%20hidden%20drug-drug%20interactions%20in%20adverse%20event%20reports&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref70" class="js-splitview-ref-item" data-legacy-id="ref70"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref70" href="javascript:;" aria-label="jumplink-ref70" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref70" class="ref-content " data-id="ref70"><span class="label title-label">70.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zeng</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">An empirical study of features fusion techniques for protein–protein interaction prediction</div>. <div class="source ">Curr Bioinform</div>  <div class="year">2016</div>;<div class="volume">11</div>(<div class="issue">1</div>):<div class="fpage">4</div>–<div class="lpage">12</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=An%20empirical%20study%20of%20features%20fusion%20techniques%20for%20protein%E2%80%93protein%20interaction%20prediction&amp;author=J%20Zeng&amp;author=D%20Li&amp;author=Y%20Wu&amp;publication_year=2016&amp;journal=Curr%20Bioinform&amp;volume=11&amp;pages=4-12" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.2174/1574893611666151119221435" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.2174%2F1574893611666151119221435" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.2174%2F1574893611666151119221435"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:An%20empirical%20study%20of%20features%20fusion%20techniques%20for%20protein%E2%80%93protein%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref71" class="js-splitview-ref-item" data-legacy-id="ref71"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref71" href="javascript:;" aria-label="jumplink-ref71" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref71" class="ref-content " data-id="ref71"><span class="label title-label">71.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wei</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Xing</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">Zeng</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">Improved prediction of protein–protein interactions using novel negative samples, features, and an ensemble classifier</div>. <div class="source ">Artif Intell Med</div>  <div class="year">2017</div>;<div class="volume">83</div>:<div class="fpage">67</div>–<div class="lpage">74</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Improved%20prediction%20of%20protein%E2%80%93protein%20interactions%20using%20novel%20negative%20samples%2C%20features%2C%20and%20an%20ensemble%20classifier&amp;author=L%20Wei&amp;author=P%20Xing&amp;author=J%20Zeng&amp;publication_year=2017&amp;journal=Artif%20Intell%20Med&amp;volume=83&amp;pages=67-74" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.artmed.2017.03.001" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.artmed.2017.03.001" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.artmed.2017.03.001"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28320624" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Improved%20prediction%20of%20protein%E2%80%93protein%20interactions%20using%20novel%20negative%20samples%2C%20features%2C%20and%20an%20ensemble%20classifier&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref72" class="js-splitview-ref-item" data-legacy-id="ref72"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref72" href="javascript:;" aria-label="jumplink-ref72" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref72" class="ref-content " data-id="ref72"><span class="label title-label">72.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kim</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Jin</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Lee</div>   <div class="given-names">H</div></span></span>. <div class="article-title">Predicting drug–target interactions using drug–drug interactions</div>. <div class="source ">PloS One</div>  <div class="year">2013</div>;<div class="volume">8</div>(<div class="issue">11</div>):e80129.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interactions%20using%20drug%E2%80%93drug%20interactions&amp;author=S%20Kim&amp;author=D%20Jin&amp;author=H%20Lee&amp;publication_year=2013&amp;journal=PloS%20One&amp;volume=8&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Predicting+drug%e2%80%93target+interactions+using+drug%e2%80%93drug+interactions&amp;aulast=Kim&amp;title=PloS+One&amp;date=2013&amp;volume=8&amp;issue=11" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interactions%20using%20drug%E2%80%93drug%20interactions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref73" class="js-splitview-ref-item" data-legacy-id="ref73"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref73" href="javascript:;" aria-label="jumplink-ref73" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref73" class="ref-content " data-id="ref73"><span class="label title-label">73.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zhu</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Okuno</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Tsujimoto</div>   <div class="given-names">G</div></span></span>, et al. . <div class="article-title">A probabilistic model for mining implicit ‘chemical compound–gene’ relations from literature</div>. <div class="source ">Bioinformatics</div>  <div class="year">2005</div>;<div class="volume">21</div>(<div class="issue">suppl_2</div>):<div class="fpage">ii245</div>–<div class="lpage">51</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20probabilistic%20model%20for%20mining%20implicit%20%E2%80%98chemical%20compound%E2%80%93gene%E2%80%99%20relations%20from%20literature&amp;author=S%20Zhu&amp;author=Y%20Okuno&amp;author=G%20Tsujimoto&amp;publication_year=2005&amp;journal=Bioinformatics&amp;volume=21&amp;pages=ii245-51" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16204113" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=A+probabilistic+model+for+mining+implicit+%e2%80%98chemical+compound%e2%80%93gene%e2%80%99+relations+from+literature&amp;aulast=Zhu&amp;title=Bioinformatics&amp;date=2005&amp;spage=ii245&amp;epage=51&amp;volume=21&amp;issue=suppl_2" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20probabilistic%20model%20for%20mining%20implicit%20%E2%80%98chemical%20compound%E2%80%93gene%E2%80%99%20relations%20from%20literature&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref74" class="js-splitview-ref-item" data-legacy-id="ref74"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref74" href="javascript:;" aria-label="jumplink-ref74" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref74" class="ref-content " data-id="ref74"><span class="label title-label">74.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Lü</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Zhou</div>   <div class="given-names">T</div></span></span>. <div class="article-title">Link prediction in complex networks: a survey</div>. <div class="source ">Physica A</div>  <div class="year">2011</div>;<div class="volume">390</div>(<div class="issue">6</div>):<div class="fpage">1150</div>–<div class="lpage">70</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Link%20prediction%20in%20complex%20networks%3A%20a%20survey&amp;author=L%20L%C3%BC&amp;author=T%20Zhou&amp;publication_year=2011&amp;journal=Physica%20A&amp;volume=390&amp;pages=1150-70" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.physa.2010.11.027" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.physa.2010.11.027" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.physa.2010.11.027"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Link%20prediction%20in%20complex%20networks%3A%20a%20survey&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref75" class="js-splitview-ref-item" data-legacy-id="ref75"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref75" href="javascript:;" aria-label="jumplink-ref75" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref75" class="ref-content " data-id="ref75"><span class="label title-label">75.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Adomavicius</div>   <div class="given-names">G</div></span>, <span class="name string-name"><div class="surname">Tuzhilin</div>   <div class="given-names">A</div></span></span>. <div class="article-title">Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions</div>. <div class="source ">IEEE Trans Knowl Data Eng</div>  <div class="year">2005</div>;(<div class="issue">6</div>):<div class="fpage">734</div>–<div class="lpage">49</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Toward%20the%20next%20generation%20of%20recommender%20systems%3A%20a%20survey%20of%20the%20state-of-the-art%20and%20possible%20extensions&amp;author=G%20Adomavicius&amp;author=A%20Tuzhilin&amp;publication_year=2005&amp;journal=IEEE%20Trans%20Knowl%20Data%20Eng&amp;volume=&amp;pages=734-49" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Toward+the+next+generation+of+recommender+systems%3a+a+survey+of+the+state-of-the-art+and+possible+extensions&amp;aulast=Adomavicius&amp;title=IEEE+Trans+Knowl+Data+Eng&amp;date=2005&amp;spage=734&amp;epage=49&amp;issue=6" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Toward%20the%20next%20generation%20of%20recommender%20systems%3A%20a%20survey%20of%20the%20state-of-the-art%20and%20possible%20extensions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref76" class="js-splitview-ref-item" data-legacy-id="ref76"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref76" href="javascript:;" aria-label="jumplink-ref76" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref76" class="ref-content " data-id="ref76"><span class="label title-label">76.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Su</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Khoshgoftaar</div>   <div class="given-names">TM</div></span></span>. <div class="article-title">A survey of collaborative filtering techniques</div>. <div class="source ">Adv Artif Intell</div>  <div class="year">2009</div>;<div class="volume">2009</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20survey%20of%20collaborative%20filtering%20techniques&amp;author=X%20Su&amp;author=TM%20Khoshgoftaar&amp;publication_year=2009&amp;journal=Adv%20Artif%20Intell&amp;volume=2009&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=A+survey+of+collaborative+filtering+techniques&amp;aulast=Su&amp;title=Adv+Artif+Intell&amp;date=2009&amp;volume=2009" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20survey%20of%20collaborative%20filtering%20techniques&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref77" class="js-splitview-ref-item" data-legacy-id="ref77"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref77" href="javascript:;" aria-label="jumplink-ref77" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref77" class="ref-content " data-id="ref77"><span class="label title-label">77.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Nguyen</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Zhu</div>   <div class="given-names">M</div></span></span>. <div class="article-title">Content-boosted matrix factorization techniques for recommender systems</div>. <div class="source ">Stat Anal Data Min</div>  <div class="year">2013</div>;<div class="volume">6</div>(<div class="issue">4</div>):<div class="fpage">286</div>–<div class="lpage">301</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Content-boosted%20matrix%20factorization%20techniques%20for%20recommender%20systems&amp;author=J%20Nguyen&amp;author=M%20Zhu&amp;publication_year=2013&amp;journal=Stat%20Anal%20Data%20Min&amp;volume=6&amp;pages=286-301" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1002/sam.11184" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1002%2Fsam.11184" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1002%2Fsam.11184"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Content-boosted%20matrix%20factorization%20techniques%20for%20recommender%20systems&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref78" class="js-splitview-ref-item" data-legacy-id="ref78"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref78" href="javascript:;" aria-label="jumplink-ref78" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref78" class="ref-content " data-id="ref78"><span class="label title-label">78.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Bock</div>   <div class="given-names">JR</div></span>, <span class="name string-name"><div class="surname">Gough</div>   <div class="given-names">DA</div></span></span>. <div class="article-title">Virtual screen for ligands of orphan g protein-coupled receptors</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2005</div>;<div class="volume">45</div>(<div class="issue">5</div>):<div class="fpage">1402</div>–<div class="lpage">14</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Virtual%20screen%20for%20ligands%20of%20orphan%20g%20protein-coupled%20receptors&amp;author=JR%20Bock&amp;author=DA%20Gough&amp;publication_year=2005&amp;journal=J%20Chem%20Inf%20Model&amp;volume=45&amp;pages=1402-14" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci050006d" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci050006d" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci050006d"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16180917" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Virtual%20screen%20for%20ligands%20of%20orphan%20g%20protein-coupled%20receptors&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref79" class="js-splitview-ref-item" data-legacy-id="ref79"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref79" href="javascript:;" aria-label="jumplink-ref79" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref79" class="ref-content " data-id="ref79"><span class="label title-label">79.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kuhn</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Campillos</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">González</div>   <div class="given-names">P</div></span></span>, et al. . <div class="article-title">Large-scale prediction of drug–target relationships</div>. <div class="source ">FEBS Lett</div>  <div class="year">2008</div>;<div class="volume">582</div>(<div class="issue">8</div>):<div class="fpage">1283</div>–<div class="lpage">90</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Large-scale%20prediction%20of%20drug%E2%80%93target%20relationships&amp;author=M%20Kuhn&amp;author=M%20Campillos&amp;author=P%20Gonz%C3%A1lez&amp;publication_year=2008&amp;journal=FEBS%20Lett&amp;volume=582&amp;pages=1283-90" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.febslet.2008.02.024" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.febslet.2008.02.024" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.febslet.2008.02.024"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18291108" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Large-scale%20prediction%20of%20drug%E2%80%93target%20relationships&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref80" class="js-splitview-ref-item" data-legacy-id="ref80"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref80" href="javascript:;" aria-label="jumplink-ref80" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref80" class="ref-content " data-id="ref80"><span class="label title-label">80.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Iskar</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Zeller</div>   <div class="given-names">G</div></span>, <span class="name string-name"><div class="surname">Zhao</div>   <div class="given-names">X-M</div></span></span>, et al. . <div class="article-title">Drug discovery in the age of systems biology: the rise of computational approaches for data integration</div>. <div class="source ">Curr Opin Biotechnol</div>  <div class="year">2012</div>;<div class="volume">23</div>(<div class="issue">4</div>):<div class="fpage">609</div>–<div class="lpage">16</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20discovery%20in%20the%20age%20of%20systems%20biology%3A%20the%20rise%20of%20computational%20approaches%20for%20data%20integration&amp;author=M%20Iskar&amp;author=G%20Zeller&amp;author=X-M%20Zhao&amp;publication_year=2012&amp;journal=Curr%20Opin%20Biotechnol&amp;volume=23&amp;pages=609-16" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.copbio.2011.11.010" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.copbio.2011.11.010" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.copbio.2011.11.010"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22153034" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20discovery%20in%20the%20age%20of%20systems%20biology%3A%20the%20rise%20of%20computational%20approaches%20for%20data%20integration&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref81" class="js-splitview-ref-item" data-legacy-id="ref81"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref81" href="javascript:;" aria-label="jumplink-ref81" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref81" class="ref-content " data-id="ref81"><span class="label title-label">81.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Koutsoukas</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Simms</div>   <div class="given-names">B</div></span>, <span class="name string-name"><div class="surname">Kirchmair</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">From in silico target prediction to multi-target drug design: current databases, methods and applications</div>. <div class="source ">J Proteomics</div>  <div class="year">2011</div>;<div class="volume">74</div>(<div class="issue">12</div>):<div class="fpage">2554</div>–<div class="lpage">74</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=From%20in%20silico%20target%20prediction%20to%20multi-target%20drug%20design%3A%20current%20databases%2C%20methods%20and%20applications&amp;author=A%20Koutsoukas&amp;author=B%20Simms&amp;author=J%20Kirchmair&amp;publication_year=2011&amp;journal=J%20Proteomics&amp;volume=74&amp;pages=2554-74" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.jprot.2011.05.011" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.jprot.2011.05.011" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.jprot.2011.05.011"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21621023" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:From%20in%20silico%20target%20prediction%20to%20multi-target%20drug%20design%3A%20current%20databases%2C%20methods%20and%20applications&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref82" class="js-splitview-ref-item" data-legacy-id="ref82"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref82" href="javascript:;" aria-label="jumplink-ref82" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref82" class="ref-content " data-id="ref82"><span class="label title-label">82.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Dai</div>   <div class="given-names">Y-F</div></span>, <span class="name string-name"><div class="surname">Zhao</div>   <div class="given-names">X-M</div></span></span>. <div class="article-title">A survey on the computational approaches to identify drug targets in the postgenomic era</div>. <div class="source ">Biomed Res Int</div>  <div class="year">2015</div>;<div class="volume">2015</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20survey%20on%20the%20computational%20approaches%20to%20identify%20drug%20targets%20in%20the%20postgenomic%20era&amp;author=Y-F%20Dai&amp;author=X-M%20Zhao&amp;publication_year=2015&amp;journal=Biomed%20Res%20Int&amp;volume=2015&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=A+survey+on+the+computational+approaches+to+identify+drug+targets+in+the+postgenomic+era&amp;aulast=Dai&amp;title=Biomed+Res+Int&amp;date=2015&amp;volume=2015" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20survey%20on%20the%20computational%20approaches%20to%20identify%20drug%20targets%20in%20the%20postgenomic%20era&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref83" class="js-splitview-ref-item" data-legacy-id="ref83"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref83" href="javascript:;" aria-label="jumplink-ref83" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref83" class="ref-content " data-id="ref83"><span class="label title-label">83.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cichonska</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Rousu</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Aittokallio</div>   <div class="given-names">T</div></span></span>. <div class="article-title">Identification of drug candidates and repurposing opportunities through compound–target interaction networks</div>. <div class="source ">Expert Opin Drug Discovery</div>  <div class="year">2015</div>;<div class="volume">10</div>(<div class="issue">12</div>):<div class="fpage">1333</div>–<div class="lpage">45</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Identification%20of%20drug%20candidates%20and%20repurposing%20opportunities%20through%20compound%E2%80%93target%20interaction%20networks&amp;author=A%20Cichonska&amp;author=J%20Rousu&amp;author=T%20Aittokallio&amp;publication_year=2015&amp;journal=Expert%20Opin%20Drug%20Discovery&amp;volume=10&amp;pages=1333-45" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1517/17460441.2015.1096926" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1517%2F17460441.2015.1096926" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1517%2F17460441.2015.1096926"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Identification%20of%20drug%20candidates%20and%20repurposing%20opportunities%20through%20compound%E2%80%93target%20interaction%20networks&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref84" class="js-splitview-ref-item" data-legacy-id="ref84"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref84" href="javascript:;" aria-label="jumplink-ref84" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref84" class="ref-content " data-id="ref84"><span class="label title-label">84.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Takigawa</div>   <div class="given-names">I</div></span>, <span class="name string-name"><div class="surname">Mamitsuka</div>   <div class="given-names">H</div></span></span>, et al. . <div class="article-title">Similarity-based machine learning methods for predicting drug–target interactions: a brief review</div>. <div class="source ">Brief Bioinform</div>  <div class="year">2013</div>;<div class="volume">15</div>(<div class="issue">5</div>):<div class="fpage">734</div>–<div class="lpage">47</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Similarity-based%20machine%20learning%20methods%20for%20predicting%20drug%E2%80%93target%20interactions%3A%20a%20brief%20review&amp;author=H%20Ding&amp;author=I%20Takigawa&amp;author=H%20Mamitsuka&amp;publication_year=2013&amp;journal=Brief%20Bioinform&amp;volume=15&amp;pages=734-47" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bib/bbt056" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbib%2Fbbt056" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbib%2Fbbt056"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23933754" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Similarity-based%20machine%20learning%20methods%20for%20predicting%20drug%E2%80%93target%20interactions%3A%20a%20brief%20review&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref85" class="js-splitview-ref-item" data-legacy-id="ref85"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref85" href="javascript:;" aria-label="jumplink-ref85" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref85" class="ref-content " data-id="ref85"><span class="label title-label">85.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yamanishi</div>   <div class="given-names">Y</div></span></span>. <div class="article-title">Chemogenomic approaches to infer drug–target interaction networks</div>. In: <div class="source ">Data Mining for Systems Biology</div>. <div class="publisher-name">Springer</div>, <div class="publisher-loc">Totowa, NJ,</div>  <div class="year">2013</div>, <div class="fpage">97</div>–<div class="lpage">113</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Chemogenomic%20approaches%20to%20infer%20drug%E2%80%93target%20interaction%20networks&amp;author=Y%20Yamanishi&amp;publication_year=2013&amp;journal=Data%20Mining%20for%20Systems%20Biology&amp;volume=&amp;pages=97-113" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Chemogenomic+approaches+to+infer+drug%e2%80%93target+interaction+networks&amp;aulast=Yamanishi&amp;title=Data+Mining+for+Systems+Biology&amp;date=2013&amp;spage=97&amp;epage=113" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Chemogenomic%20approaches%20to%20infer%20drug%E2%80%93target%20interaction%20networks&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref86" class="js-splitview-ref-item" data-legacy-id="ref86"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref86" href="javascript:;" aria-label="jumplink-ref86" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref86" class="ref-content " data-id="ref86"><span class="label title-label">86.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">W</div></span>, <span class="name string-name"><div class="surname">Lin</div>   <div class="given-names">W</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">D</div></span></span>, et al. . <div class="article-title">Recent advances in the machine learning-based drug–target interaction prediction</div>. <div class="source ">Curr Drug Metab</div>  <div class="year">2019</div>;<div class="volume">20</div>(<div class="issue">3</div>):<div class="fpage">194</div>–<div class="lpage">202</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Recent%20advances%20in%20the%20machine%20learning-based%20drug%E2%80%93target%20interaction%20prediction&amp;author=W%20Zhang&amp;author=W%20Lin&amp;author=D%20Zhang&amp;publication_year=2019&amp;journal=Curr%20Drug%20Metab&amp;volume=20&amp;pages=194-202" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.2174/1389200219666180821094047" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.2174%2F1389200219666180821094047" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.2174%2F1389200219666180821094047"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/30129407" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Recent%20advances%20in%20the%20machine%20learning-based%20drug%E2%80%93target%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref87" class="js-splitview-ref-item" data-legacy-id="ref87"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref87" href="javascript:;" aria-label="jumplink-ref87" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref87" class="ref-content " data-id="ref87"><span class="label title-label">87.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">R</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Jin</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Machine learning for drug-target interaction prediction</div>. <div class="source ">Molecules</div>  <div class="year">2018</div>;<div class="volume">23</div>(<div class="issue">9</div>):<div class="fpage">2208</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Machine%20learning%20for%20drug-target%20interaction%20prediction&amp;author=R%20Chen&amp;author=X%20Liu&amp;author=S%20Jin&amp;publication_year=2018&amp;journal=Molecules&amp;volume=23&amp;pages=2208" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.3390/molecules23092208" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.3390%2Fmolecules23092208" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.3390%2Fmolecules23092208"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Machine%20learning%20for%20drug-target%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref88" class="js-splitview-ref-item" data-legacy-id="ref88"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref88" href="javascript:;" aria-label="jumplink-ref88" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref88" class="ref-content " data-id="ref88"><span class="label title-label">88.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Kurgan</div>   <div class="given-names">L</div></span></span>. <div class="article-title">Survey of similarity-based prediction of drug–protein interactions</div>. <div class="source ">Curr Med Chem</div>  <div class="year">2019</div>;<div class="volume">26</div>:<div class="fpage">1</div>. <a class="link" href="https://doi.org/10.2174/0929867326666190808154841" target="_blank">https://doi.org/10.2174/0929867326666190808154841</a></p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Survey%20of%20similarity-based%20prediction%20of%20drug%E2%80%93protein%20interactions&amp;author=C%20Wang&amp;author=L%20Kurgan&amp;publication_year=2019&amp;journal=Curr%20Med%20Chem&amp;volume=26&amp;pages=1" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.2174/092986732632191106124304" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.2174%2F092986732632191106124304" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.2174%2F092986732632191106124304"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Survey%20of%20similarity-based%20prediction%20of%20drug%E2%80%93protein%20interactions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref89" class="js-splitview-ref-item" data-legacy-id="ref89"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref89" href="javascript:;" aria-label="jumplink-ref89" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref89" class="ref-content " data-id="ref89"><span class="label title-label">89.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Lavecchia</div>   <div class="given-names">A</div></span></span>. <div class="article-title">Machine-learning approaches in drug discovery: methods and applications</div>. <div class="source ">Drug Discov Today</div>  <div class="year">2015</div>;<div class="volume">20</div>(<div class="issue">3</div>):<div class="fpage">318</div>–<div class="lpage">31</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Machine-learning%20approaches%20in%20drug%20discovery%3A%20methods%20and%20applications&amp;author=A%20Lavecchia&amp;publication_year=2015&amp;journal=Drug%20Discov%20Today&amp;volume=20&amp;pages=318-31" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.drudis.2014.10.012" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.drudis.2014.10.012" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.drudis.2014.10.012"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/25448759" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Machine-learning%20approaches%20in%20drug%20discovery%3A%20methods%20and%20applications&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref90" class="js-splitview-ref-item" data-legacy-id="ref90"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref90" href="javascript:;" aria-label="jumplink-ref90" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref90" class="ref-content " data-id="ref90"><span class="label title-label">90.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Mousavian</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Masoudi-Nejad</div>   <div class="given-names">A</div></span></span>. <div class="article-title">Drug–target interaction prediction via chemogenomic space: learning-based methods</div>. <div class="source ">Expert Opin Drug Metab Toxicol</div>  <div class="year">2014</div>;<div class="volume">10</div>(<div class="issue">9</div>):<div class="fpage">1273</div>–<div class="lpage">87</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20via%20chemogenomic%20space%3A%20learning-based%20methods&amp;author=Z%20Mousavian&amp;author=A%20Masoudi-Nejad&amp;publication_year=2014&amp;journal=Expert%20Opin%20Drug%20Metab%20Toxicol&amp;volume=10&amp;pages=1273-87" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1517/17425255.2014.950222" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1517%2F17425255.2014.950222" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1517%2F17425255.2014.950222"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/25112457" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20via%20chemogenomic%20space%3A%20learning-based%20methods&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref91" class="js-splitview-ref-item" data-legacy-id="ref91"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref91" href="javascript:;" aria-label="jumplink-ref91" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref91" class="ref-content " data-id="ref91"><span class="label title-label">91.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Yan</div>   <div class="given-names">CC</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">Drug–target interaction prediction: databases, web servers and computational models</div>. <div class="source ">Brief Bioinform</div>  <div class="year">2015</div>;<div class="volume">17</div>(<div class="issue">4</div>):<div class="fpage">696</div>–<div class="lpage">712</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%3A%20databases%2C%20web%20servers%20and%20computational%20models&amp;author=X%20Chen&amp;author=CC%20Yan&amp;author=X%20Zhang&amp;publication_year=2015&amp;journal=Brief%20Bioinform&amp;volume=17&amp;pages=696-712" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bib/bbv066" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbib%2Fbbv066" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbib%2Fbbv066"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26283676" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%3A%20databases%2C%20web%20servers%20and%20computational%20models&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref92" class="js-splitview-ref-item" data-legacy-id="ref92"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref92" href="javascript:;" aria-label="jumplink-ref92" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref92" class="ref-content " data-id="ref92"><span class="label title-label">92.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ezzat</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">X-L</div></span></span>, et al. . <div class="article-title">Computational prediction of drug-target interactions using chemogenomic approaches: an empirical survey</div>. <div class="source ">Brief Bioinform</div>  <div class="year">2018</div>;<div class="volume">8</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Computational%20prediction%20of%20drug-target%20interactions%20using%20chemogenomic%20approaches%3A%20an%20empirical%20survey&amp;author=A%20Ezzat&amp;author=M%20Wu&amp;author=X-L%20Li&amp;publication_year=2018&amp;journal=Brief%20Bioinform&amp;volume=8&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Computational+prediction+of+drug-target+interactions+using+chemogenomic+approaches%3a+an+empirical+survey&amp;aulast=Ezzat&amp;title=Brief+Bioinform&amp;date=2018&amp;volume=8" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Computational%20prediction%20of%20drug-target%20interactions%20using%20chemogenomic%20approaches%3A%20an%20empirical%20survey&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref93" class="js-splitview-ref-item" data-legacy-id="ref93"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref93" href="javascript:;" aria-label="jumplink-ref93" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref93" class="ref-content " data-id="ref93"><span class="label title-label">93.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Sachdev</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Gupta</div>   <div class="given-names">MK</div></span></span>. <div class="article-title">A comprehensive review of feature based methods for drug target interaction prediction</div>. <div class="source "><em>J Biomed Inform</em></div>, <div class="year">2019</div>, <div class="volume">93</div>:<div class="fpage">103159</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20comprehensive%20review%20of%20feature%20based%20methods%20for%20drug%20target%20interaction%20prediction&amp;author=K%20Sachdev&amp;author=MK%20Gupta&amp;publication_year=2019&amp;journal=J%20Biomed%20Inform&amp;volume=93&amp;pages=103159" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.jbi.2019.103159" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.jbi.2019.103159" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.jbi.2019.103159"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/30926470" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20comprehensive%20review%20of%20feature%20based%20methods%20for%20drug%20target%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref94" class="js-splitview-ref-item" data-legacy-id="ref94"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref94" href="javascript:;" aria-label="jumplink-ref94" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref94" class="ref-content " data-id="ref94"><span class="label title-label">94.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Serçinoğlu</div>   <div class="given-names">O</div></span>, <span class="name string-name"><div class="surname">Sarica</div>   <div class="given-names">PO</div></span></span>. <div class="article-title">In silico databases and tools for drug repurposing</div>. In: <div class="source "><em>In Silico Drug Design</em></div>. <div class="publisher-name">Elsevier</div>, <div class="publisher-loc">London, United Kingdom</div>, <div class="year">2019</div>, <div class="fpage">703</div>–<div class="lpage">42</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=In%20Silico%20Drug%20Design&amp;author=O%20Ser%C3%A7ino%C4%9Flu&amp;author=PO%20Sarica&amp;publication_year=2019&amp;book=In%20Silico%20Drug%20Design" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/B978-0-12-816125-8.00024-9" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2FB978-0-12-816125-8.00024-9" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2FB978-0-12-816125-8.00024-9"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=In%20Silico%20Drug%20Design&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:In%20Silico%20Drug%20Design&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=In%20Silico%20Drug%20Design">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref95" class="js-splitview-ref-item" data-legacy-id="ref95"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref95" href="javascript:;" aria-label="jumplink-ref95" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref95" class="ref-content " data-id="ref95"><span class="label title-label">95.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Perlman</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Gottlieb</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Atias</div>   <div class="given-names">N</div></span></span>, et al. . <div class="article-title">Combining drug and gene similarity measures for drug-target elucidation</div>. <div class="source ">J Comput Biol</div>  <div class="year">2011</div>;<div class="volume">18</div>(<div class="issue">2</div>):<div class="fpage">133</div>–<div class="lpage">45</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Combining%20drug%20and%20gene%20similarity%20measures%20for%20drug-target%20elucidation&amp;author=L%20Perlman&amp;author=A%20Gottlieb&amp;author=N%20Atias&amp;publication_year=2011&amp;journal=J%20Comput%20Biol&amp;volume=18&amp;pages=133-45" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1089/cmb.2010.0213" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1089%2Fcmb.2010.0213" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1089%2Fcmb.2010.0213"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21314453" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Combining%20drug%20and%20gene%20similarity%20measures%20for%20drug-target%20elucidation&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref96" class="js-splitview-ref-item" data-legacy-id="ref96"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref96" href="javascript:;" aria-label="jumplink-ref96" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref96" class="ref-content " data-id="ref96"><span class="label title-label">96.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Peng</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Long</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">C</div></span></span>. <div class="article-title">Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy</div>. <div class="source ">IEEE Trans Pattern Anal Mach Intell</div>  <div class="year">2005</div>;(<div class="issue">8</div>):<div class="fpage">1226</div>–<div class="lpage">38</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Feature%20selection%20based%20on%20mutual%20information%3A%20criteria%20of%20max-dependency%2C%20max-relevance%2C%20and%20min-redundancy&amp;author=H%20Peng&amp;author=F%20Long&amp;author=C%20Ding&amp;publication_year=2005&amp;journal=IEEE%20Trans%20Pattern%20Anal%20Mach%20Intell&amp;volume=&amp;pages=1226-38" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Feature+selection+based+on+mutual+information%3a+criteria+of+max-dependency%2c+max-relevance%2c+and+min-redundancy&amp;aulast=Peng&amp;title=IEEE+Trans+Pattern+Anal+Mach+Intell&amp;date=2005&amp;spage=1226&amp;epage=38&amp;issue=8" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Feature%20selection%20based%20on%20mutual%20information%3A%20criteria%20of%20max-dependency%2C%20max-relevance%2C%20and%20min-redundancy&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref97" class="js-splitview-ref-item" data-legacy-id="ref97"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref97" href="javascript:;" aria-label="jumplink-ref97" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref97" class="ref-content " data-id="ref97"><span class="label title-label">97.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Shi</div>   <div class="given-names">J-Y</div></span>, <span class="name string-name"><div class="surname">Yiu</div>   <div class="given-names">S-M</div></span></span>. <div class="article-title">SRP: a concise non-parametric similarity-rank-based model for predicting drug-target interactions</div>. In: <div class="source "><em>2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)</em></div>. <div class="publisher-name">IEEE</div>, <div class="publisher-loc">NY, USA,</div>  <div class="year">2015</div>, <div class="fpage">1636</div>–<div class="lpage">41</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=2015%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29&amp;author=J-Y%20Shi&amp;author=S-M%20Yiu&amp;publication_year=2015&amp;book=2015%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1109/BIBM.2015.7359921" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1109%2FBIBM.2015.7359921" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1109%2FBIBM.2015.7359921"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=2015%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:2015%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=2015%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref98" class="js-splitview-ref-item" data-legacy-id="ref98"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref98" href="javascript:;" aria-label="jumplink-ref98" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref98" class="ref-content " data-id="ref98"><span class="label title-label">98.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Buza</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Peška</div>   <div class="given-names">L</div></span></span>. <div class="article-title">Drug–target interaction prediction with bipartite local models and hubness-aware regression</div>. <div class="source ">Neurocomputing</div>  <div class="year">2017</div>;<div class="volume">260</div>:<div class="fpage">284</div>–<div class="lpage">93</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20with%20bipartite%20local%20models%20and%20hubness-aware%20regression&amp;author=K%20Buza&amp;author=L%20Pe%C5%A1ka&amp;publication_year=2017&amp;journal=Neurocomputing&amp;volume=260&amp;pages=284-93" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.neucom.2017.04.055" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.neucom.2017.04.055" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.neucom.2017.04.055"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20with%20bipartite%20local%20models%20and%20hubness-aware%20regression&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref99" class="js-splitview-ref-item" data-legacy-id="ref99"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref99" href="javascript:;" aria-label="jumplink-ref99" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref99" class="ref-content " data-id="ref99"><span class="label title-label">99.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Buza</div>   <div class="given-names">K</div></span></span>. <div class="article-title">Drug–target interaction prediction with hubness-aware machine learning</div>. In: <div class="source "><em>2016 IEEE 11th International Symposium on Applied Computational Intelligence and Informatics (SACI)</em></div>. <div class="publisher-name">IEEE</div>, <div class="publisher-loc">NY, USA</div>, <div class="year">2016</div>, <div class="fpage">437</div>–<div class="lpage">40</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=2016%20IEEE%2011th%20International%20Symposium%20on%20Applied%20Computational%20Intelligence%20and%20Informatics%20%28SACI%29&amp;author=K%20Buza&amp;publication_year=2016&amp;book=2016%20IEEE%2011th%20International%20Symposium%20on%20Applied%20Computational%20Intelligence%20and%20Informatics%20%28SACI%29" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1109/SACI.2016.7507416" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1109%2FSACI.2016.7507416" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1109%2FSACI.2016.7507416"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=2016%20IEEE%2011th%20International%20Symposium%20on%20Applied%20Computational%20Intelligence%20and%20Informatics%20%28SACI%29&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:2016%20IEEE%2011th%20International%20Symposium%20on%20Applied%20Computational%20Intelligence%20and%20Informatics%20%28SACI%29&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=2016%20IEEE%2011th%20International%20Symposium%20on%20Applied%20Computational%20Intelligence%20and%20Informatics%20%28SACI%29">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref100" class="js-splitview-ref-item" data-legacy-id="ref100"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref100" href="javascript:;" aria-label="jumplink-ref100" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref100" class="ref-content " data-id="ref100"><span class="label title-label">100.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Buza</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Nanopoulos</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Nagy</div>   <div class="given-names">G</div></span></span>. <div class="article-title">Nearest neighbor regression in the presence of bad hubs</div>. <div class="source ">Knowl-Based Syst</div>  <div class="year">2015</div>;<div class="volume">86</div>:<div class="fpage">250</div>–<div class="lpage">60</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Nearest%20neighbor%20regression%20in%20the%20presence%20of%20bad%20hubs&amp;author=K%20Buza&amp;author=A%20Nanopoulos&amp;author=G%20Nagy&amp;publication_year=2015&amp;journal=Knowl-Based%20Syst&amp;volume=86&amp;pages=250-60" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.knosys.2015.06.010" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.knosys.2015.06.010" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.knosys.2015.06.010"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Nearest%20neighbor%20regression%20in%20the%20presence%20of%20bad%20hubs&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref101" class="js-splitview-ref-item" data-legacy-id="ref101"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref101" href="javascript:;" aria-label="jumplink-ref101" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref101" class="ref-content " data-id="ref101"><span class="label title-label">101.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Bleakley</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Yamanishi</div>   <div class="given-names">Y</div></span></span>. <div class="article-title">Supervised prediction of drug–target interactions using bipartite local models</div>. <div class="source ">Bioinformatics</div>  <div class="year">2009</div>;<div class="volume">25</div>(<div class="issue">18</div>):<div class="fpage">2397</div>–<div class="lpage">403</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Supervised%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20bipartite%20local%20models&amp;author=K%20Bleakley&amp;author=Y%20Yamanishi&amp;publication_year=2009&amp;journal=Bioinformatics&amp;volume=25&amp;pages=2397-403" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btp433" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtp433" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtp433"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19605421" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Supervised%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20bipartite%20local%20models&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref102" class="js-splitview-ref-item" data-legacy-id="ref102"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref102" href="javascript:;" aria-label="jumplink-ref102" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref102" class="ref-content " data-id="ref102"><span class="label title-label">102.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">He</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Shi</div>   <div class="given-names">X-H</div></span></span>, et al. . <div class="article-title">Predicting drug–target interaction networks based on functional groups and biological features</div>. <div class="source ">PloS One</div>  <div class="year">2010</div>;<div class="volume">5</div>(<div class="issue">3</div>):e9603.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interaction%20networks%20based%20on%20functional%20groups%20and%20biological%20features&amp;author=Z%20He&amp;author=J%20Zhang&amp;author=X-H%20Shi&amp;publication_year=2010&amp;journal=PloS%20One&amp;volume=5&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Predicting+drug%e2%80%93target+interaction+networks+based+on+functional+groups+and+biological+features&amp;aulast=He&amp;title=PloS+One&amp;date=2010&amp;volume=5&amp;issue=3" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interaction%20networks%20based%20on%20functional%20groups%20and%20biological%20features&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref103" class="js-splitview-ref-item" data-legacy-id="ref103"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref103" href="javascript:;" aria-label="jumplink-ref103" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref103" class="ref-content " data-id="ref103"><span class="label title-label">103.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Ng</div>   <div class="given-names">MK</div></span></span>, et al. . <div class="article-title">Drug–target interaction prediction by integrating multiview network data</div>. <div class="source ">Comput Biol Chem</div>  <div class="year">2017</div>;<div class="volume">69</div>:<div class="fpage">185</div>–<div class="lpage">93</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20by%20integrating%20multiview%20network%20data&amp;author=X%20Zhang&amp;author=L%20Li&amp;author=MK%20Ng&amp;publication_year=2017&amp;journal=Comput%20Biol%20Chem&amp;volume=69&amp;pages=185-93" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.compbiolchem.2017.03.011" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.compbiolchem.2017.03.011" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.compbiolchem.2017.03.011"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28648470" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20by%20integrating%20multiview%20network%20data&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref104" class="js-splitview-ref-item" data-legacy-id="ref104"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref104" href="javascript:;" aria-label="jumplink-ref104" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref104" class="ref-content " data-id="ref104"><span class="label title-label">104.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Shi</div>   <div class="given-names">J-Y</div></span>, <span class="name string-name"><div class="surname">Yiu</div>   <div class="given-names">S-M</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">Predicting drug–target interaction for new drugs using enhanced similarity measures and super-target clustering</div>. <div class="source ">Methods</div>  <div class="year">2015</div>;<div class="volume">83</div>:<div class="fpage">98</div>–<div class="lpage">104</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interaction%20for%20new%20drugs%20using%20enhanced%20similarity%20measures%20and%20super-target%20clustering&amp;author=J-Y%20Shi&amp;author=S-M%20Yiu&amp;author=Y%20Li&amp;publication_year=2015&amp;journal=Methods&amp;volume=83&amp;pages=98-104" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.ymeth.2015.04.036" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.ymeth.2015.04.036" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.ymeth.2015.04.036"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/25957673" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interaction%20for%20new%20drugs%20using%20enhanced%20similarity%20measures%20and%20super-target%20clustering&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref105" class="js-splitview-ref-item" data-legacy-id="ref105"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref105" href="javascript:;" aria-label="jumplink-ref105" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref105" class="ref-content " data-id="ref105"><span class="label title-label">105.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">W</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">D</div></span></span>. <div class="article-title">Drug–target interaction prediction through label propagation with linear neighborhood information</div>. <div class="source ">Molecules</div>  <div class="year">2017</div>;<div class="volume">22</div>(<div class="issue">12</div>):<div class="fpage">2056</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20through%20label%20propagation%20with%20linear%20neighborhood%20information&amp;author=W%20Zhang&amp;author=Y%20Chen&amp;author=D%20Li&amp;publication_year=2017&amp;journal=Molecules&amp;volume=22&amp;pages=2056" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.3390/molecules22122056" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.3390%2Fmolecules22122056" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.3390%2Fmolecules22122056"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20through%20label%20propagation%20with%20linear%20neighborhood%20information&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref106" class="js-splitview-ref-item" data-legacy-id="ref106"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref106" href="javascript:;" aria-label="jumplink-ref106" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref106" class="ref-content " data-id="ref106"><span class="label title-label">106.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Van Laarhoven</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Marchiori</div>   <div class="given-names">E</div></span></span>. <div class="article-title">Predicting drug–target interactions for new drug compounds using a weighted nearest neighbor profile</div>. <div class="source ">PloS One</div>  <div class="year">2013</div>;<div class="volume">8</div>(<div class="issue">6</div>):e66952.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interactions%20for%20new%20drug%20compounds%20using%20a%20weighted%20nearest%20neighbor%20profile&amp;author=T%20Van%20Laarhoven&amp;author=E%20Marchiori&amp;publication_year=2013&amp;journal=PloS%20One&amp;volume=8&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Predicting+drug%e2%80%93target+interactions+for+new+drug+compounds+using+a+weighted+nearest+neighbor+profile&amp;aulast=Van+Laarhoven&amp;title=PloS+One&amp;date=2013&amp;volume=8&amp;issue=6" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interactions%20for%20new%20drug%20compounds%20using%20a%20weighted%20nearest%20neighbor%20profile&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref107" class="js-splitview-ref-item" data-legacy-id="ref107"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref107" href="javascript:;" aria-label="jumplink-ref107" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref107" class="ref-content " data-id="ref107"><span class="label title-label">107.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Mei</div>   <div class="given-names">J-P</div></span>, <span class="name string-name"><div class="surname">Kwoh</div>   <div class="given-names">C-K</div></span>, <span class="name string-name"><div class="surname">Yang</div>   <div class="given-names">P</div></span></span>, et al. . <div class="article-title">Drug–target interaction prediction by learning from local information and neighbors</div>. <div class="source ">Bioinformatics</div>  <div class="year">2012</div>;<div class="volume">29</div>(<div class="issue">2</div>):<div class="fpage">238</div>–<div class="lpage">45</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20by%20learning%20from%20local%20information%20and%20neighbors&amp;author=J-P%20Mei&amp;author=C-K%20Kwoh&amp;author=P%20Yang&amp;publication_year=2012&amp;journal=Bioinformatics&amp;volume=29&amp;pages=238-45" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/bts670" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbts670" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbts670"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23162055" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20by%20learning%20from%20local%20information%20and%20neighbors&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref108" class="js-splitview-ref-item" data-legacy-id="ref108"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref108" href="javascript:;" aria-label="jumplink-ref108" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref108" class="ref-content " data-id="ref108"><span class="label title-label">108.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Bleakley</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Biau</div>   <div class="given-names">G</div></span>, <span class="name string-name"><div class="surname">Vert</div>   <div class="given-names">J-P</div></span></span>. <div class="article-title">Supervised reconstruction of biological networks with local models</div>. <div class="source ">Bioinformatics</div>  <div class="year">2007</div>;<div class="volume">23</div>(<div class="issue">13</div>):<div class="fpage">i57</div>–<div class="lpage">65</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Supervised%20reconstruction%20of%20biological%20networks%20with%20local%20models&amp;author=K%20Bleakley&amp;author=G%20Biau&amp;author=J-P%20Vert&amp;publication_year=2007&amp;journal=Bioinformatics&amp;volume=23&amp;pages=i57-65" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btm204" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtm204" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtm204"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17646345" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Supervised%20reconstruction%20of%20biological%20networks%20with%20local%20models&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref109" class="js-splitview-ref-item" data-legacy-id="ref109"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref109" href="javascript:;" aria-label="jumplink-ref109" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref109" class="ref-content " data-id="ref109"><span class="label title-label">109.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Shi</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">J</div></span></span>. <div class="article-title">Drug–target interaction prediction with weighted Bayesian ranking</div>. In: <div class="source "><em>Proceedings of the 2nd International Conference on Biomedical Engineering and Bioinformatics</em></div>. <div class="publisher-name">ACM</div>, <div class="publisher-loc">London, United Kingdom</div>, <div class="year">2018</div>, <div class="fpage">19</div>–<div class="lpage">24</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Proceedings%20of%20the%202nd%20International%20Conference%20on%20Biomedical%20Engineering%20and%20Bioinformatics&amp;author=Z%20Shi&amp;author=J%20Li&amp;publication_year=2018&amp;book=Proceedings%20of%20the%202nd%20International%20Conference%20on%20Biomedical%20Engineering%20and%20Bioinformatics" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1145/3278198" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1145%2F3278198" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1145%2F3278198"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Proceedings%20of%20the%202nd%20International%20Conference%20on%20Biomedical%20Engineering%20and%20Bioinformatics&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Proceedings%20of%20the%202nd%20International%20Conference%20on%20Biomedical%20Engineering%20and%20Bioinformatics&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Proceedings%20of%20the%202nd%20International%20Conference%20on%20Biomedical%20Engineering%20and%20Bioinformatics">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref110" class="js-splitview-ref-item" data-legacy-id="ref110"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref110" href="javascript:;" aria-label="jumplink-ref110" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref110" class="ref-content " data-id="ref110"><span class="label title-label">110.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kohn</div>   <div class="given-names">LT</div></span>, <span class="name string-name"><div class="surname">Corrigan</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Donaldson</div>   <div class="given-names">MS</div></span></span>, et al. .<div class="source ">To Err is Human: Building a Safer Health System</div>, Vol. <div class="volume">6</div>. <div class="publisher-loc">Washington, DC</div>: <div class="publisher-name">National Academy Press</div>, <div class="year">2000</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=To%20Err%20is%20Human%3A%20Building%20a%20Safer%20Health%20System&amp;author=LT%20Kohn&amp;author=J%20Corrigan&amp;author=MS%20Donaldson&amp;publication_year=2000&amp;book=To%20Err%20is%20Human%3A%20Building%20a%20Safer%20Health%20System" target="_blank">Google Scholar</a></span></p><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=To%20Err%20is%20Human%3A%20Building%20a%20Safer%20Health%20System&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=book&amp;title=To+Err+is+Human%3a+Building+a+Safer+Health+System&amp;aulast=Kohn&amp;date=2000&amp;volume=6" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:To%20Err%20is%20Human%3A%20Building%20a%20Safer%20Health%20System&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=To%20Err%20is%20Human%3A%20Building%20a%20Safer%20Health%20System">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref111" class="js-splitview-ref-item" data-legacy-id="ref111"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref111" href="javascript:;" aria-label="jumplink-ref111" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref111" class="ref-content " data-id="ref111"><span class="label title-label">111.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">Z</div></span></span>. <div class="article-title">A semi-supervised method for drug–target interaction prediction with consistency in networks</div>. <div class="source ">PloS One</div>  <div class="year">2013</div>;<div class="volume">8</div>(<div class="issue">5</div>):e62975.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20semi-supervised%20method%20for%20drug%E2%80%93target%20interaction%20prediction%20with%20consistency%20in%20networks&amp;author=H%20Chen&amp;author=Z%20Zhang&amp;publication_year=2013&amp;journal=PloS%20One&amp;volume=8&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=A+semi-supervised+method+for+drug%e2%80%93target+interaction+prediction+with+consistency+in+networks&amp;aulast=Chen&amp;title=PloS+One&amp;date=2013&amp;volume=8&amp;issue=5" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20semi-supervised%20method%20for%20drug%E2%80%93target%20interaction%20prediction%20with%20consistency%20in%20networks&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref112" class="js-splitview-ref-item" data-legacy-id="ref112"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref112" href="javascript:;" aria-label="jumplink-ref112" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref112" class="ref-content " data-id="ref112"><span class="label title-label">112.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Niu</div>   <div class="given-names">YQ</div></span></span>. <div class="article-title">Supervised prediction of drug–target interactions by ensemble learning</div>. <div class="source ">J Chem Pharm Res</div>  <div class="year">2014</div>;<div class="volume">6</div>:<div class="fpage">1991</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Supervised%20prediction%20of%20drug%E2%80%93target%20interactions%20by%20ensemble%20learning&amp;author=YQ%20Niu&amp;publication_year=2014&amp;journal=J%20Chem%20Pharm%20Res&amp;volume=6&amp;pages=1991-9" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Supervised+prediction+of+drug%e2%80%93target+interactions+by+ensemble+learning&amp;aulast=Niu&amp;title=J+Chem+Pharm+Res&amp;date=2014&amp;spage=1991&amp;epage=9&amp;volume=6" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Supervised%20prediction%20of%20drug%E2%80%93target%20interactions%20by%20ensemble%20learning&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref113" class="js-splitview-ref-item" data-legacy-id="ref113"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref113" href="javascript:;" aria-label="jumplink-ref113" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref113" class="ref-content " data-id="ref113"><span class="label title-label">113.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Gawehn</div>   <div class="given-names">E</div></span>, <span class="name string-name"><div class="surname">Hiss</div>   <div class="given-names">JA</div></span>, <span class="name string-name"><div class="surname">Schneider</div>   <div class="given-names">G</div></span></span>. <div class="article-title">Deep learning in drug discovery</div>. <div class="source ">Mol Inform</div>  <div class="year">2016</div>;<div class="volume">35</div>(<div class="issue">1</div>):<div class="fpage">3</div>–<div class="lpage">14</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Deep%20learning%20in%20drug%20discovery&amp;author=E%20Gawehn&amp;author=JA%20Hiss&amp;author=G%20Schneider&amp;publication_year=2016&amp;journal=Mol%20Inform&amp;volume=35&amp;pages=3-14" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1002/minf.201501008" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1002%2Fminf.201501008" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1002%2Fminf.201501008"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27491648" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Deep%20learning%20in%20drug%20discovery&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref114" class="js-splitview-ref-item" data-legacy-id="ref114"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref114" href="javascript:;" aria-label="jumplink-ref114" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref114" class="ref-content " data-id="ref114"><span class="label title-label">114.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ekins</div>   <div class="given-names">S</div></span></span>. <div class="article-title">The next era: deep learning in pharmaceutical research</div>. <div class="source ">Pharm Res</div>  <div class="year">2016</div>;<div class="volume">33</div>(<div class="issue">11</div>):<div class="fpage">2594</div>–<div class="lpage">603</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20next%20era%3A%20deep%20learning%20in%20pharmaceutical%20research&amp;author=S%20Ekins&amp;publication_year=2016&amp;journal=Pharm%20Res&amp;volume=33&amp;pages=2594-603" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/s11095-016-2029-7" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2Fs11095-016-2029-7" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2Fs11095-016-2029-7"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27599991" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20next%20era%3A%20deep%20learning%20in%20pharmaceutical%20research&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref115" class="js-splitview-ref-item" data-legacy-id="ref115"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref115" href="javascript:;" aria-label="jumplink-ref115" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref115" class="ref-content " data-id="ref115"><span class="label title-label">115.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Napolitano</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Zhao</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Moreira</div>   <div class="given-names">VM</div></span></span>, et al. . <div class="article-title">Drug repositioning: a machine-learning approach through data integration</div>. <div class="source ">J Chem</div>  <div class="year">2013</div>;<div class="volume">5</div>(<div class="issue">1</div>):<div class="fpage">30</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20repositioning%3A%20a%20machine-learning%20approach%20through%20data%20integration&amp;author=F%20Napolitano&amp;author=Y%20Zhao&amp;author=VM%20Moreira&amp;publication_year=2013&amp;journal=J%20Chem&amp;volume=5&amp;pages=30" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/1758-2946-5-30" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2F1758-2946-5-30" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2F1758-2946-5-30"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20repositioning%3A%20a%20machine-learning%20approach%20through%20data%20integration&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref116" class="js-splitview-ref-item" data-legacy-id="ref116"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref116" href="javascript:;" aria-label="jumplink-ref116" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref116" class="ref-content " data-id="ref116"><span class="label title-label">116.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">You</div>   <div class="given-names">Z-H</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network</div>. <div class="source ">J Comput Biol</div>  <div class="year">2018</div>;<div class="volume">25</div>(<div class="issue">3</div>):<div class="fpage">361</div>–<div class="lpage">73</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20computational-based%20method%20for%20predicting%20drug%E2%80%93target%20interactions%20by%20using%20stacked%20autoencoder%20deep%20neural%20network&amp;author=L%20Wang&amp;author=Z-H%20You&amp;author=X%20Chen&amp;publication_year=2018&amp;journal=J%20Comput%20Biol&amp;volume=25&amp;pages=361-73" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1089/cmb.2017.0135" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1089%2Fcmb.2017.0135" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1089%2Fcmb.2017.0135"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28891684" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20computational-based%20method%20for%20predicting%20drug%E2%80%93target%20interactions%20by%20using%20stacked%20autoencoder%20deep%20neural%20network&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref117" class="js-splitview-ref-item" data-legacy-id="ref117"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref117" href="javascript:;" aria-label="jumplink-ref117" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref117" class="ref-content " data-id="ref117"><span class="label title-label">117.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zong</div>   <div class="given-names">N</div></span>, <span class="name string-name"><div class="surname">Kim</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Ngo</div>   <div class="given-names">V</div></span></span>, et al. . <div class="article-title">Deep mining heterogeneous networks of biomedical linked data to predict novel drug–target associations</div>. <div class="source ">Bioinformatics</div>  <div class="year">2017</div>;<div class="volume">33</div>(<div class="issue">15</div>):<div class="fpage">2337</div>–<div class="lpage">44</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Deep%20mining%20heterogeneous%20networks%20of%20biomedical%20linked%20data%20to%20predict%20novel%20drug%E2%80%93target%20associations&amp;author=N%20Zong&amp;author=H%20Kim&amp;author=V%20Ngo&amp;publication_year=2017&amp;journal=Bioinformatics&amp;volume=33&amp;pages=2337-44" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btx160" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtx160" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtx160"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28430977" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Deep%20mining%20heterogeneous%20networks%20of%20biomedical%20linked%20data%20to%20predict%20novel%20drug%E2%80%93target%20associations&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref118" class="js-splitview-ref-item" data-legacy-id="ref118"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref118" href="javascript:;" aria-label="jumplink-ref118" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref118" class="ref-content " data-id="ref118"><span class="label title-label">118.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wen</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Niu</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Deep-learning-based drug–target interaction prediction</div>. <div class="source ">J Proteome Res</div>  <div class="year">2017</div>;<div class="volume">16</div>(<div class="issue">4</div>):<div class="fpage">1401</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Deep-learning-based%20drug%E2%80%93target%20interaction%20prediction&amp;author=M%20Wen&amp;author=Z%20Zhang&amp;author=S%20Niu&amp;publication_year=2017&amp;journal=J%20Proteome%20Res&amp;volume=16&amp;pages=1401-9" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/acs.jproteome.6b00618" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Facs.jproteome.6b00618" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Facs.jproteome.6b00618"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28264154" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Deep-learning-based%20drug%E2%80%93target%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref119" class="js-splitview-ref-item" data-legacy-id="ref119"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref119" href="javascript:;" aria-label="jumplink-ref119" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref119" class="ref-content " data-id="ref119"><span class="label title-label">119.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Gao</div>   <div class="given-names">KY</div></span>, <span class="name string-name"><div class="surname">Fokoue</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Luo</div>   <div class="given-names">H</div></span></span>, et al. . <div class="article-title">Interpretable drug target prediction using deep neural representation</div>. <div class="source "><em>IJCAI</em></div>, <div class="year">2018</div>, <div class="fpage">3371</div>–<div class="lpage">7</div>.</p></div></div></div></div><div content-id="ref120" class="js-splitview-ref-item" data-legacy-id="ref120"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref120" href="javascript:;" aria-label="jumplink-ref120" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref120" class="ref-content " data-id="ref120"><span class="label title-label">120.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Öztürk</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Özgür</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Ozkirimli</div>   <div class="given-names">E</div></span></span>. <div class="article-title">DeepDTA: deep drug–target binding affinity prediction</div>. <div class="source ">Bioinformatics</div>  <div class="year">2018</div>;<div class="volume">34</div>(<div class="issue">17</div>):<div class="fpage">i821</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DeepDTA%3A%20deep%20drug%E2%80%93target%20binding%20affinity%20prediction&amp;author=H%20%C3%96zt%C3%BCrk&amp;author=A%20%C3%96zg%C3%BCr&amp;author=E%20Ozkirimli&amp;publication_year=2018&amp;journal=Bioinformatics&amp;volume=34&amp;pages=i821-9" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/bty593" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbty593" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbty593"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/30423097" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DeepDTA%3A%20deep%20drug%E2%80%93target%20binding%20affinity%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref121" class="js-splitview-ref-item" data-legacy-id="ref121"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref121" href="javascript:;" aria-label="jumplink-ref121" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref121" class="ref-content " data-id="ref121"><span class="label title-label">121.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">You</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">McLeod</div>   <div class="given-names">RD</div></span>, <span class="name string-name"><div class="surname">Hu</div>   <div class="given-names">P</div></span></span>. <div class="article-title">Predicting drug–target interaction network using deep learning model</div>. <div class="source ">Comput Biol Chem</div>  <div class="year">2019</div>;<div class="volume">80</div>:<div class="fpage">90</div>–<div class="lpage">101</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interaction%20network%20using%20deep%20learning%20model&amp;author=J%20You&amp;author=RD%20McLeod&amp;author=P%20Hu&amp;publication_year=2019&amp;journal=Comput%20Biol%20Chem&amp;volume=80&amp;pages=90-101" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.compbiolchem.2019.03.016" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.compbiolchem.2019.03.016" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.compbiolchem.2019.03.016"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/30939415" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interaction%20network%20using%20deep%20learning%20model&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref122" class="js-splitview-ref-item" data-legacy-id="ref122"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref122" href="javascript:;" aria-label="jumplink-ref122" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref122" class="ref-content " data-id="ref122"><span class="label title-label">122.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Lee</div>   <div class="given-names">I</div></span>, <span class="name string-name"><div class="surname">Keum</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Nam</div>   <div class="given-names">H</div></span></span>. <div class="article-title">DeepConv-DTI: prediction of drug-target interactions via deep learning with convolution on protein sequences</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2019</div>;<div class="volume">15</div>(<div class="issue">6</div>):e1007129.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DeepConv-DTI%3A%20prediction%20of%20drug-target%20interactions%20via%20deep%20learning%20with%20convolution%20on%20protein%20sequences&amp;author=I%20Lee&amp;author=J%20Keum&amp;author=H%20Nam&amp;publication_year=2019&amp;journal=PLoS%20Comput%20Biol&amp;volume=15&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=DeepConv-DTI%3a+prediction+of+drug-target+interactions+via+deep+learning+with+convolution+on+protein+sequences&amp;aulast=Lee&amp;title=PLoS+Comput+Biol&amp;date=2019&amp;volume=15&amp;issue=6" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DeepConv-DTI%3A%20prediction%20of%20drug-target%20interactions%20via%20deep%20learning%20with%20convolution%20on%20protein%20sequences&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref123" class="js-splitview-ref-item" data-legacy-id="ref123"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref123" href="javascript:;" aria-label="jumplink-ref123" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref123" class="ref-content " data-id="ref123"><span class="label title-label">123.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Hinton</div>   <div class="given-names">GE</div></span>, <span class="name string-name"><div class="surname">Salakhutdinov</div>   <div class="given-names">RR</div></span></span>. <div class="article-title">Reducing the dimensionality of data with neural networks</div>. <div class="source ">Science</div>  <div class="year">2006</div>;<div class="volume">313</div>(<div class="issue">5786</div>):<div class="fpage">504</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Reducing%20the%20dimensionality%20of%20data%20with%20neural%20networks&amp;author=GE%20Hinton&amp;author=RR%20Salakhutdinov&amp;publication_year=2006&amp;journal=Science&amp;volume=313&amp;pages=504-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1126/science.1127647" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1126%2Fscience.1127647" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1126%2Fscience.1127647"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16873662" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Reducing%20the%20dimensionality%20of%20data%20with%20neural%20networks&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref124" class="js-splitview-ref-item" data-legacy-id="ref124"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref124" href="javascript:;" aria-label="jumplink-ref124" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref124" class="ref-content " data-id="ref124"><span class="label title-label">124.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Xie</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">He</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Song</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">Deep learning-based transcriptome data classification for drug–target interaction prediction</div>. <div class="source ">BMC Genomics</div>  <div class="year">2018</div>;<div class="volume">19</div>(<div class="issue">7</div>):<div class="fpage">667</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Deep%20learning-based%20transcriptome%20data%20classification%20for%20drug%E2%80%93target%20interaction%20prediction&amp;author=L%20Xie&amp;author=S%20He&amp;author=X%20Song&amp;publication_year=2018&amp;journal=BMC%20Genomics&amp;volume=19&amp;pages=667" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s12864-018-5031-0" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs12864-018-5031-0" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs12864-018-5031-0"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/30255785" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Deep%20learning-based%20transcriptome%20data%20classification%20for%20drug%E2%80%93target%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref125" class="js-splitview-ref-item" data-legacy-id="ref125"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref125" href="javascript:;" aria-label="jumplink-ref125" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref125" class="ref-content " data-id="ref125"><span class="label title-label">125.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Bizer</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Heath</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Berners-Lee</div>   <div class="given-names">T</div></span></span>. <div class="article-title">Linked data—the story so far</div>. <div class="source ">Int J Semantic Web Inf Syst</div>  <div class="year">2009</div>;<div class="volume">5</div>:<div class="fpage">1</div>–<div class="lpage">22</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Linked%20data%E2%80%94the%20story%20so%20far&amp;author=C%20Bizer&amp;author=T%20Heath&amp;author=T%20Berners-Lee&amp;publication_year=2009&amp;journal=Int%20J%20Semantic%20Web%20Inf%20Syst&amp;volume=5&amp;pages=1-22" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Linked+data%e2%80%94the+story+so+far&amp;aulast=Bizer&amp;title=Int+J+Semantic+Web+Inf+Syst&amp;date=2009&amp;spage=1&amp;epage=22&amp;volume=5" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Linked%20data%E2%80%94the%20story%20so%20far&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref126" class="js-splitview-ref-item" data-legacy-id="ref126"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref126" href="javascript:;" aria-label="jumplink-ref126" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref126" class="ref-content " data-id="ref126"><span class="label title-label">126.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Rifaioglu</div>   <div class="given-names">AS</div></span>, <span class="name string-name"><div class="surname">Atas</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Martin</div>   <div class="given-names">MJ</div></span></span>, et al. . <div class="article-title">Recent applications of deep learning and machine intelligence on in silico drug discovery: methods, tools and databases</div>. <div class="source "><em>Brief Bioinform</em></div>, <div class="year">2018</div>;<div class="fpage">10</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Recent%20applications%20of%20deep%20learning%20and%20machine%20intelligence%20on%20in%20silico%20drug%20discovery%3A%20methods%2C%20tools%20and%20databases&amp;author=AS%20Rifaioglu&amp;author=H%20Atas&amp;author=MJ%20Martin&amp;publication_year=2018&amp;journal=Brief%20Bioinform&amp;volume=&amp;pages=10" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Recent+applications+of+deep+learning+and+machine+intelligence+on+in+silico+drug+discovery%3a+methods%2c+tools+and+databases&amp;aulast=Rifaioglu&amp;title=Brief+Bioinform&amp;date=2018&amp;spage=10" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Recent%20applications%20of%20deep%20learning%20and%20machine%20intelligence%20on%20in%20silico%20drug%20discovery%3A%20methods%2C%20tools%20and%20databases&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref127" class="js-splitview-ref-item" data-legacy-id="ref127"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref127" href="javascript:;" aria-label="jumplink-ref127" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref127" class="ref-content " data-id="ref127"><span class="label title-label">127.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Nagamine</div>   <div class="given-names">N</div></span>, <span class="name string-name"><div class="surname">Sakakibara</div>   <div class="given-names">Y</div></span></span>. <div class="article-title">Statistical prediction of protein–chemical interactions based on chemical structure and mass spectrometry data</div>. <div class="source ">Bioinformatics</div>  <div class="year">2007</div>;<div class="volume">23</div>(<div class="issue">15</div>):<div class="fpage">2004</div>–<div class="lpage">12</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Statistical%20prediction%20of%20protein%E2%80%93chemical%20interactions%20based%20on%20chemical%20structure%20and%20mass%20spectrometry%20data&amp;author=N%20Nagamine&amp;author=Y%20Sakakibara&amp;publication_year=2007&amp;journal=Bioinformatics&amp;volume=23&amp;pages=2004-12" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btm266" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtm266" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtm266"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17510168" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Statistical%20prediction%20of%20protein%E2%80%93chemical%20interactions%20based%20on%20chemical%20structure%20and%20mass%20spectrometry%20data&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref128" class="js-splitview-ref-item" data-legacy-id="ref128"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref128" href="javascript:;" aria-label="jumplink-ref128" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref128" class="ref-content " data-id="ref128"><span class="label title-label">128.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wassermann</div>   <div class="given-names">AM</div></span>, <span class="name string-name"><div class="surname">Geppert</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Bajorath</div>   <div class="given-names">J</div></span></span>. <div class="article-title">Ligand prediction for orphan targets using support vector machines and various target-ligand kernels is dominated by nearest neighbor effects</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2009</div>;<div class="volume">49</div>(<div class="issue">10</div>):<div class="fpage">2155</div>–<div class="lpage">67</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Ligand%20prediction%20for%20orphan%20targets%20using%20support%20vector%20machines%20and%20various%20target-ligand%20kernels%20is%20dominated%20by%20nearest%20neighbor%20effects&amp;author=AM%20Wassermann&amp;author=H%20Geppert&amp;author=J%20Bajorath&amp;publication_year=2009&amp;journal=J%20Chem%20Inf%20Model&amp;volume=49&amp;pages=2155-67" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci9002624" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci9002624" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci9002624"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19780576" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Ligand%20prediction%20for%20orphan%20targets%20using%20support%20vector%20machines%20and%20various%20target-ligand%20kernels%20is%20dominated%20by%20nearest%20neighbor%20effects&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref129" class="js-splitview-ref-item" data-legacy-id="ref129"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref129" href="javascript:;" aria-label="jumplink-ref129" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref129" class="ref-content " data-id="ref129"><span class="label title-label">129.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Nagamine</div>   <div class="given-names">N</div></span>, <span class="name string-name"><div class="surname">Shirakawa</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Minato</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">Integrating statistical predictions and experimental verifications for enhancing protein-chemical interaction predictions in virtual screening</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2009</div>;<div class="volume">5</div>(<div class="issue">6</div>):e1000397.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Integrating%20statistical%20predictions%20and%20experimental%20verifications%20for%20enhancing%20protein-chemical%20interaction%20predictions%20in%20virtual%20screening&amp;author=N%20Nagamine&amp;author=T%20Shirakawa&amp;author=Y%20Minato&amp;publication_year=2009&amp;journal=PLoS%20Comput%20Biol&amp;volume=5&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Integrating+statistical+predictions+and+experimental+verifications+for+enhancing+protein-chemical+interaction+predictions+in+virtual+screening&amp;aulast=Nagamine&amp;title=PLoS+Comput+Biol&amp;date=2009&amp;volume=5&amp;issue=6" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Integrating%20statistical%20predictions%20and%20experimental%20verifications%20for%20enhancing%20protein-chemical%20interaction%20predictions%20in%20virtual%20screening&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref130" class="js-splitview-ref-item" data-legacy-id="ref130"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref130" href="javascript:;" aria-label="jumplink-ref130" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref130" class="ref-content " data-id="ref130"><span class="label title-label">130.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Faulon</div>   <div class="given-names">J-L</div></span>, <span class="name string-name"><div class="surname">Misra</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Martin</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Genome scale enzyme–metabolite and drug–target interaction predictions using the signature molecular descriptor</div>. <div class="source ">Bioinformatics</div>  <div class="year">2007</div>;<div class="volume">24</div>(<div class="issue">2</div>):<div class="fpage">225</div>–<div class="lpage">33</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Genome%20scale%20enzyme%E2%80%93metabolite%20and%20drug%E2%80%93target%20interaction%20predictions%20using%20the%20signature%20molecular%20descriptor&amp;author=J-L%20Faulon&amp;author=M%20Misra&amp;author=S%20Martin&amp;publication_year=2007&amp;journal=Bioinformatics&amp;volume=24&amp;pages=225-33" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btm580" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtm580" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtm580"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18037612" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Genome%20scale%20enzyme%E2%80%93metabolite%20and%20drug%E2%80%93target%20interaction%20predictions%20using%20the%20signature%20molecular%20descriptor&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref131" class="js-splitview-ref-item" data-legacy-id="ref131"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref131" href="javascript:;" aria-label="jumplink-ref131" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref131" class="ref-content " data-id="ref131"><span class="label title-label">131.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yu</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Xu</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">A systematic prediction of multiple drug–target interactions from chemical, genomic, and pharmacological data</div>. <div class="source ">PloS One</div>  <div class="year">2012</div>;<div class="volume">7</div>(<div class="issue">5</div>):e37608.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20systematic%20prediction%20of%20multiple%20drug%E2%80%93target%20interactions%20from%20chemical%2C%20genomic%2C%20and%20pharmacological%20data&amp;author=H%20Yu&amp;author=J%20Chen&amp;author=X%20Xu&amp;publication_year=2012&amp;journal=PloS%20One&amp;volume=7&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=A+systematic+prediction+of+multiple+drug%e2%80%93target+interactions+from+chemical%2c+genomic%2c+and+pharmacological+data&amp;aulast=Yu&amp;title=PloS+One&amp;date=2012&amp;volume=7&amp;issue=5" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20systematic%20prediction%20of%20multiple%20drug%E2%80%93target%20interactions%20from%20chemical%2C%20genomic%2C%20and%20pharmacological%20data&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref132" class="js-splitview-ref-item" data-legacy-id="ref132"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref132" href="javascript:;" aria-label="jumplink-ref132" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref132" class="ref-content " data-id="ref132"><span class="label title-label">132.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">Y-C</div></span>, <span class="name string-name"><div class="surname">Yang</div>   <div class="given-names">Z-X</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">Computationally probing drug-protein interactions via support vector machine</div>. <div class="source ">Lett Drug Des Discov</div>  <div class="year">2010</div>;<div class="volume">7</div>(<div class="issue">5</div>):<div class="fpage">370</div>–<div class="lpage">8</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Computationally%20probing%20drug-protein%20interactions%20via%20support%20vector%20machine&amp;author=Y-C%20Wang&amp;author=Z-X%20Yang&amp;author=Y%20Wang&amp;publication_year=2010&amp;journal=Lett%20Drug%20Des%20Discov&amp;volume=7&amp;pages=370-8" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.2174/157018010791163433" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.2174%2F157018010791163433" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.2174%2F157018010791163433"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Computationally%20probing%20drug-protein%20interactions%20via%20support%20vector%20machine&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref133" class="js-splitview-ref-item" data-legacy-id="ref133"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref133" href="javascript:;" aria-label="jumplink-ref133" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref133" class="ref-content " data-id="ref133"><span class="label title-label">133.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Shang</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Jin</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Jiang</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">A method of drug target prediction based on SVM and its application</div>. <div class="source ">Prog Modern Biomed</div>  <div class="year">2012</div>;<div class="fpage">20</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20method%20of%20drug%20target%20prediction%20based%20on%20SVM%20and%20its%20application&amp;author=Z%20Shang&amp;author=L%20Jin&amp;author=Y%20Jiang&amp;publication_year=2012&amp;journal=Prog%20Modern%20Biomed&amp;volume=&amp;pages=20" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=A+method+of+drug+target+prediction+based+on+SVM+and+its+application&amp;aulast=Shang&amp;title=Prog+Modern+Biomed&amp;date=2012&amp;spage=20" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20method%20of%20drug%20target%20prediction%20based%20on%20SVM%20and%20its%20application&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref134" class="js-splitview-ref-item" data-legacy-id="ref134"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref134" href="javascript:;" aria-label="jumplink-ref134" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref134" class="ref-content " data-id="ref134"><span class="label title-label">134.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Tang</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Guo</div>   <div class="given-names">F</div></span></span>. <div class="article-title">Identification of drug–target interactions via multiple information integration</div>. <div class="source ">Inform Sci</div>  <div class="year">2017</div>;<div class="volume">418</div>:<div class="fpage">546</div>–<div class="lpage">60</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Identification%20of%20drug%E2%80%93target%20interactions%20via%20multiple%20information%20integration&amp;author=Y%20Ding&amp;author=J%20Tang&amp;author=F%20Guo&amp;publication_year=2017&amp;journal=Inform%20Sci&amp;volume=418&amp;pages=546-60" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.ins.2017.08.045" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.ins.2017.08.045" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.ins.2017.08.045"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Identification%20of%20drug%E2%80%93target%20interactions%20via%20multiple%20information%20integration&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref135" class="js-splitview-ref-item" data-legacy-id="ref135"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref135" href="javascript:;" aria-label="jumplink-ref135" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref135" class="ref-content " data-id="ref135"><span class="label title-label">135.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Shen</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Tang</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">An ameliorated prediction of drug–target interactions based on multi-scale discrete wavelet transform and network features</div>. <div class="source ">Int J Mol Sci</div>  <div class="year">2017</div>;<div class="volume">18</div>(<div class="issue">8</div>):<div class="fpage">1781</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=An%20ameliorated%20prediction%20of%20drug%E2%80%93target%20interactions%20based%20on%20multi-scale%20discrete%20wavelet%20transform%20and%20network%20features&amp;author=C%20Shen&amp;author=Y%20Ding&amp;author=J%20Tang&amp;publication_year=2017&amp;journal=Int%20J%20Mol%20Sci&amp;volume=18&amp;pages=1781" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.3390/ijms18081781" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.3390%2Fijms18081781" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.3390%2Fijms18081781"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:An%20ameliorated%20prediction%20of%20drug%E2%80%93target%20interactions%20based%20on%20multi-scale%20discrete%20wavelet%20transform%20and%20network%20features&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref136" class="js-splitview-ref-item" data-legacy-id="ref136"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref136" href="javascript:;" aria-label="jumplink-ref136" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref136" class="ref-content " data-id="ref136"><span class="label title-label">136.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Mousavian</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Khakabimamaghani</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Kavousi</div>   <div class="given-names">K</div></span></span>, et al. . <div class="article-title">Drug–target interaction prediction from PSSM based evolutionary information</div>. <div class="source ">J Pharmacol Toxicol Methods</div>  <div class="year">2016</div>;<div class="volume">78</div>:<div class="fpage">42</div>–<div class="lpage">51</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20from%20PSSM%20based%20evolutionary%20information&amp;author=Z%20Mousavian&amp;author=S%20Khakabimamaghani&amp;author=K%20Kavousi&amp;publication_year=2016&amp;journal=J%20Pharmacol%20Toxicol%20Methods&amp;volume=78&amp;pages=42-51" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.vascn.2015.11.002" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.vascn.2015.11.002" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.vascn.2015.11.002"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26592807" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20from%20PSSM%20based%20evolutionary%20information&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref137" class="js-splitview-ref-item" data-legacy-id="ref137"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref137" href="javascript:;" aria-label="jumplink-ref137" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref137" class="ref-content " data-id="ref137"><span class="label title-label">137.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cao</div>   <div class="given-names">D-S</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Xu</div>   <div class="given-names">Q-S</div></span></span>, et al. . <div class="article-title">Large-scale prediction of drug–target interactions using protein sequences and drug topological structures</div>. <div class="source ">Anal Chim Acta</div>  <div class="year">2012</div>;<div class="volume">752</div>:<div class="fpage">1</div>–<div class="lpage">10</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Large-scale%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20protein%20sequences%20and%20drug%20topological%20structures&amp;author=D-S%20Cao&amp;author=S%20Liu&amp;author=Q-S%20Xu&amp;publication_year=2012&amp;journal=Anal%20Chim%20Acta&amp;volume=752&amp;pages=1-10" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.aca.2012.09.021" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.aca.2012.09.021" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.aca.2012.09.021"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23101647" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Large-scale%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20protein%20sequences%20and%20drug%20topological%20structures&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref138" class="js-splitview-ref-item" data-legacy-id="ref138"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref138" href="javascript:;" aria-label="jumplink-ref138" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref138" class="ref-content " data-id="ref138"><span class="label title-label">138.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Sun</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Guan</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">Improving compound–protein interaction prediction by building up highly credible negative samples</div>. <div class="source ">Bioinformatics</div>  <div class="year">2015</div>;<div class="volume">31</div>(<div class="issue">12</div>):<div class="fpage">i221</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Improving%20compound%E2%80%93protein%20interaction%20prediction%20by%20building%20up%20highly%20credible%20negative%20samples&amp;author=H%20Liu&amp;author=J%20Sun&amp;author=J%20Guan&amp;publication_year=2015&amp;journal=Bioinformatics&amp;volume=31&amp;pages=i221-9" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btv256" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtv256" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtv256"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26072486" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Improving%20compound%E2%80%93protein%20interaction%20prediction%20by%20building%20up%20highly%20credible%20negative%20samples&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref139" class="js-splitview-ref-item" data-legacy-id="ref139"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref139" href="javascript:;" aria-label="jumplink-ref139" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref139" class="ref-content " data-id="ref139"><span class="label title-label">139.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Tabei</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Yamanishi</div>   <div class="given-names">Y</div></span></span>. <div class="article-title">Scalable prediction of compound–protein interactions using minwise hashing</div>. <div class="source ">BMC Syst Biol</div>  <div class="year">2013</div>;<div class="volume">7</div>(<div class="issue">6</div>):<div class="fpage">S3</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Scalable%20prediction%20of%20compound%E2%80%93protein%20interactions%20using%20minwise%20hashing&amp;author=Y%20Tabei&amp;author=Y%20Yamanishi&amp;publication_year=2013&amp;journal=BMC%20Syst%20Biol&amp;volume=7&amp;pages=S3" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/1752-0509-7-S6-S3" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2F1752-0509-7-S6-S3" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2F1752-0509-7-S6-S3"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24564870" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Scalable%20prediction%20of%20compound%E2%80%93protein%20interactions%20using%20minwise%20hashing&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref140" class="js-splitview-ref-item" data-legacy-id="ref140"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref140" href="javascript:;" aria-label="jumplink-ref140" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref140" class="ref-content " data-id="ref140"><span class="label title-label">140.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Shen</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Luo</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">Predicting protein–protein interactions based only on sequences information</div>. <div class="source ">Proc Natl Acad Sci</div>  <div class="year">2007</div>;<div class="volume">104</div>(<div class="issue">11</div>):<div class="fpage">4337</div>–<div class="lpage">41</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20protein%E2%80%93protein%20interactions%20based%20only%20on%20sequences%20information&amp;author=J%20Shen&amp;author=J%20Zhang&amp;author=X%20Luo&amp;publication_year=2007&amp;journal=Proc%20Natl%20Acad%20Sci&amp;volume=104&amp;pages=4337-41" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1073/pnas.0607879104" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1073%2Fpnas.0607879104" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1073%2Fpnas.0607879104"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17360525" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20protein%E2%80%93protein%20interactions%20based%20only%20on%20sequences%20information&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref141" class="js-splitview-ref-item" data-legacy-id="ref141"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref141" href="javascript:;" aria-label="jumplink-ref141" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref141" class="ref-content " data-id="ref141"><span class="label title-label">141.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cao</div>   <div class="given-names">D-S</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">L-X</div></span>, <span class="name string-name"><div class="surname">Tan</div>   <div class="given-names">G-S</div></span></span>, et al. . <div class="article-title">Computational prediction of drug–target interactions using chemical, biological, and network features</div>. <div class="source ">Mol Inform</div>  <div class="year">2014</div>;<div class="volume">33</div>(<div class="issue">10</div>):<div class="fpage">669</div>–<div class="lpage">81</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Computational%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20chemical%2C%20biological%2C%20and%20network%20features&amp;author=D-S%20Cao&amp;author=L-X%20Zhang&amp;author=G-S%20Tan&amp;publication_year=2014&amp;journal=Mol%20Inform&amp;volume=33&amp;pages=669-81" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1002/minf.201400009" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1002%2Fminf.201400009" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1002%2Fminf.201400009"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27485302" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Computational%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20chemical%2C%20biological%2C%20and%20network%20features&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref142" class="js-splitview-ref-item" data-legacy-id="ref142"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref142" href="javascript:;" aria-label="jumplink-ref142" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref142" class="ref-content " data-id="ref142"><span class="label title-label">142.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yamanishi</div>   <div class="given-names">Y</div></span></span>. <div class="article-title">Supervised bipartite graph inference</div>. In: <div class="source "><em>Advances in Neural Information Processing Systems</em></div>, <div class="publisher-name">NIPS, </div>  <div class="publisher-loc">Vancouver, BC, CA.</div>  <div class="year">2009</div>, <div class="fpage">1841</div>–<div class="lpage">8</div>.</p></div></div></div></div><div content-id="ref143" class="js-splitview-ref-item" data-legacy-id="ref143"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref143" href="javascript:;" aria-label="jumplink-ref143" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref143" class="ref-content " data-id="ref143"><span class="label title-label">143.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yamanishi</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Kotera</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Kanehisa</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">Drug–target interaction prediction from chemical, genomic and pharmacological data in an integrated framework</div>. <div class="source ">Bioinformatics</div>  <div class="year">2010</div>;<div class="volume">26</div>(<div class="issue">12</div>):<div class="fpage">i246</div>–<div class="lpage">54</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20from%20chemical%2C%20genomic%20and%20pharmacological%20data%20in%20an%20integrated%20framework&amp;author=Y%20Yamanishi&amp;author=M%20Kotera&amp;author=M%20Kanehisa&amp;publication_year=2010&amp;journal=Bioinformatics&amp;volume=26&amp;pages=i246-54" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btq176" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtq176" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtq176"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/20529913" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20from%20chemical%2C%20genomic%20and%20pharmacological%20data%20in%20an%20integrated%20framework&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref144" class="js-splitview-ref-item" data-legacy-id="ref144"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref144" href="javascript:;" aria-label="jumplink-ref144" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref144" class="ref-content " data-id="ref144"><span class="label title-label">144.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Shi</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">Predicting drug–target interactions using lasso with random forest based on evolutionary information and chemical structure</div>. <div class="source ">Genomics</div>  <div class="year">2018</div>;<div class="volume">111</div>(<div class="issue">6</div>):<div class="fpage">1839</div>–<div class="lpage">1852</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interactions%20using%20lasso%20with%20random%20forest%20based%20on%20evolutionary%20information%20and%20chemical%20structure&amp;author=H%20Shi&amp;author=S%20Liu&amp;author=J%20Chen&amp;publication_year=2018&amp;journal=Genomics&amp;volume=111&amp;pages=1839-1852" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.ygeno.2018.12.007" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.ygeno.2018.12.007" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.ygeno.2018.12.007"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/30550813" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interactions%20using%20lasso%20with%20random%20forest%20based%20on%20evolutionary%20information%20and%20chemical%20structure&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref145" class="js-splitview-ref-item" data-legacy-id="ref145"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref145" href="javascript:;" aria-label="jumplink-ref145" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref145" class="ref-content " data-id="ref145"><span class="label title-label">145.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Olayan</div>   <div class="given-names">RS</div></span>, <span class="name string-name"><div class="surname">Ashoor</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Bajic</div>   <div class="given-names">VB</div></span></span>. <div class="article-title">DDR: efficient computational method to predict drug–target interactions using graph mining and machine learning approaches</div>. <div class="source ">Bioinformatics</div>  <div class="year">2017</div>;<div class="volume">34</div>(<div class="issue">7</div>):<div class="fpage">1164</div>–<div class="lpage">73</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DDR%3A%20efficient%20computational%20method%20to%20predict%20drug%E2%80%93target%20interactions%20using%20graph%20mining%20and%20machine%20learning%20approaches&amp;author=RS%20Olayan&amp;author=H%20Ashoor&amp;author=VB%20Bajic&amp;publication_year=2017&amp;journal=Bioinformatics&amp;volume=34&amp;pages=1164-73" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btx731" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtx731" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtx731"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DDR%3A%20efficient%20computational%20method%20to%20predict%20drug%E2%80%93target%20interactions%20using%20graph%20mining%20and%20machine%20learning%20approaches&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref146" class="js-splitview-ref-item" data-legacy-id="ref146"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref146" href="javascript:;" aria-label="jumplink-ref146" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref146" class="ref-content " data-id="ref146"><span class="label title-label">146.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Jones</div>   <div class="given-names">DT</div></span></span>. <div class="article-title">Protein secondary structure prediction based on position-specific scoring matrices</div>. <div class="source ">J Mol Biol</div>  <div class="year">1999</div>;<div class="volume">292</div>(<div class="issue">2</div>):<div class="fpage">195</div>–<div class="lpage">202</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Protein%20secondary%20structure%20prediction%20based%20on%20position-specific%20scoring%20matrices&amp;author=DT%20Jones&amp;publication_year=1999&amp;journal=J%20Mol%20Biol&amp;volume=292&amp;pages=195-202" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1006/jmbi.1999.3091" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1006%2Fjmbi.1999.3091" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1006%2Fjmbi.1999.3091"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/10493868" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Protein%20secondary%20structure%20prediction%20based%20on%20position-specific%20scoring%20matrices&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref147" class="js-splitview-ref-item" data-legacy-id="ref147"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref147" href="javascript:;" aria-label="jumplink-ref147" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref147" class="ref-content " data-id="ref147"><span class="label title-label">147.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">O’Boyle</div>   <div class="given-names">NM</div></span>, <span class="name string-name"><div class="surname">Banck</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">James</div>   <div class="given-names">CA</div></span></span>, et al. . <div class="article-title">Open babel: an open chemical toolbox</div>. <div class="source ">J Chem</div>  <div class="year">2011</div>;<div class="volume">3</div>(<div class="issue">1</div>):<div class="fpage">33</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Open%20babel%3A%20an%20open%20chemical%20toolbox&amp;author=NM%20O%E2%80%99Boyle&amp;author=M%20Banck&amp;author=CA%20James&amp;publication_year=2011&amp;journal=J%20Chem&amp;volume=3&amp;pages=33" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/1758-2946-3-33" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2F1758-2946-3-33" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2F1758-2946-3-33"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Open%20babel%3A%20an%20open%20chemical%20toolbox&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref148" class="js-splitview-ref-item" data-legacy-id="ref148"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref148" href="javascript:;" aria-label="jumplink-ref148" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref148" class="ref-content " data-id="ref148"><span class="label title-label">148.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Tibshirani</div>   <div class="given-names">R</div></span></span>. <div class="article-title">Regression shrinkage and selection via the lasso: a retrospective</div>. <div class="source ">J R Stat Soc Series B Stat Methodol</div>  <div class="year">2011</div>;<div class="volume">73</div>(<div class="issue">3</div>):<div class="fpage">273</div>–<div class="lpage">82</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Regression%20shrinkage%20and%20selection%20via%20the%20lasso%3A%20a%20retrospective&amp;author=R%20Tibshirani&amp;publication_year=2011&amp;journal=J%20R%20Stat%20Soc%20Series%20B%20Stat%20Methodol&amp;volume=73&amp;pages=273-82" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1111/rssb.2011.73.issue-3" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1111%2Frssb.2011.73.issue-3" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1111%2Frssb.2011.73.issue-3"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Regression%20shrinkage%20and%20selection%20via%20the%20lasso%3A%20a%20retrospective&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref149" class="js-splitview-ref-item" data-legacy-id="ref149"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref149" href="javascript:;" aria-label="jumplink-ref149" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref149" class="ref-content " data-id="ref149"><span class="label title-label">149.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chawla</div>   <div class="given-names">NV</div></span>, <span class="name string-name"><div class="surname">Bowyer</div>   <div class="given-names">KW</div></span>, <span class="name string-name"><div class="surname">Hall</div>   <div class="given-names">LO</div></span></span>, et al. . <div class="article-title">Smote: synthetic minority over-sampling technique</div>. <div class="source ">J Artif Intell Res</div>  <div class="year">2002</div>;<div class="volume">16</div>:<div class="fpage">321</div>–<div class="lpage">57</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Smote%3A%20synthetic%20minority%20over-sampling%20technique&amp;author=NV%20Chawla&amp;author=KW%20Bowyer&amp;author=LO%20Hall&amp;publication_year=2002&amp;journal=J%20Artif%20Intell%20Res&amp;volume=16&amp;pages=321-57" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1613/jair.953" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1613%2Fjair.953" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1613%2Fjair.953"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Smote%3A%20synthetic%20minority%20over-sampling%20technique&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref150" class="js-splitview-ref-item" data-legacy-id="ref150"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref150" href="javascript:;" aria-label="jumplink-ref150" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref150" class="ref-content " data-id="ref150"><span class="label title-label">150.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Breiman</div>   <div class="given-names">L</div></span></span>. <div class="article-title">Random forests</div>. <div class="source ">Mach Learn</div>  <div class="year">2001</div>;<div class="volume">45</div>(<div class="issue">1</div>):<div class="fpage">5</div>–<div class="lpage">32</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Random%20forests&amp;author=L%20Breiman&amp;publication_year=2001&amp;journal=Mach%20Learn&amp;volume=45&amp;pages=5-32" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1023/A:1010933404324" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1023%2FA:1010933404324" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1023%2FA:1010933404324"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Random%20forests&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref151" class="js-splitview-ref-item" data-legacy-id="ref151"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref151" href="javascript:;" aria-label="jumplink-ref151" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref151" class="ref-content " data-id="ref151"><span class="label title-label">151.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Rayhan</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Ahmed</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Shatabda</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">iDTI-ESBoost: identification of drug target interaction using evolutionary and structural features with boosting</div>. <div class="source ">Sci Rep</div>  <div class="year">2017</div>;<div class="volume">7</div>(<div class="issue">1</div>):<div class="fpage">17731</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=iDTI-ESBoost%3A%20identification%20of%20drug%20target%20interaction%20using%20evolutionary%20and%20structural%20features%20with%20boosting&amp;author=F%20Rayhan&amp;author=S%20Ahmed&amp;author=S%20Shatabda&amp;publication_year=2017&amp;journal=Sci%20Rep&amp;volume=7&amp;pages=17731" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/s41598-017-18025-2" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fs41598-017-18025-2" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fs41598-017-18025-2"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/29255285" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:iDTI-ESBoost%3A%20identification%20of%20drug%20target%20interaction%20using%20evolutionary%20and%20structural%20features%20with%20boosting&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref152" class="js-splitview-ref-item" data-legacy-id="ref152"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref152" href="javascript:;" aria-label="jumplink-ref152" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref152" class="ref-content " data-id="ref152"><span class="label title-label">152.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Lan</div>   <div class="given-names">W</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">Predicting drug–target interaction using positive-unlabeled learning</div>. <div class="source ">Neurocomputing</div>  <div class="year">2016</div>;<div class="volume">206</div>:<div class="fpage">50</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interaction%20using%20positive-unlabeled%20learning&amp;author=W%20Lan&amp;author=J%20Wang&amp;author=M%20Li&amp;publication_year=2016&amp;journal=Neurocomputing&amp;volume=206&amp;pages=50-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.neucom.2016.03.080" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.neucom.2016.03.080" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.neucom.2016.03.080"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interaction%20using%20positive-unlabeled%20learning&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref153" class="js-splitview-ref-item" data-legacy-id="ref153"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref153" href="javascript:;" aria-label="jumplink-ref153" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref153" class="ref-content " data-id="ref153"><span class="label title-label">153.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">van Laarhoven</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Nabuurs</div>   <div class="given-names">SB</div></span>, <span class="name string-name"><div class="surname">Marchiori</div>   <div class="given-names">E</div></span></span>. <div class="article-title">Gaussian interaction profile kernels for predicting drug–target interaction</div>. <div class="source "><em>Bioinformatics</em></div>  <div class="year">2011</div>;<div class="volume">27</div>(<div class="issue">21</div>):<div class="fpage">3036</div>–<div class="lpage">43</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Gaussian%20interaction%20profile%20kernels%20for%20predicting%20drug%E2%80%93target%20interaction&amp;author=T%20van%20Laarhoven&amp;author=SB%20Nabuurs&amp;author=E%20Marchiori&amp;publication_year=2011&amp;journal=Bioinformatics&amp;volume=27&amp;pages=3036-43" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btr500" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtr500" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtr500"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21893517" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Gaussian%20interaction%20profile%20kernels%20for%20predicting%20drug%E2%80%93target%20interaction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref154" class="js-splitview-ref-item" data-legacy-id="ref154"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref154" href="javascript:;" aria-label="jumplink-ref154" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref154" class="ref-content " data-id="ref154"><span class="label title-label">154.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Belkin</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Niyogi</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">Sindhwani</div>   <div class="given-names">V</div></span></span>. <div class="article-title">Manifold regularization: a geometric framework for learning from labeled and unlabeled examples</div>. <div class="source ">J Mach Learn Res</div>  <div class="year">2006</div>;<div class="volume">7</div>:<div class="fpage">2399</div>–<div class="lpage">434</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Manifold%20regularization%3A%20a%20geometric%20framework%20for%20learning%20from%20labeled%20and%20unlabeled%20examples&amp;author=M%20Belkin&amp;author=P%20Niyogi&amp;author=V%20Sindhwani&amp;publication_year=2006&amp;journal=J%20Mach%20Learn%20Res&amp;volume=7&amp;pages=2399-434" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Manifold+regularization%3a+a+geometric+framework+for+learning+from+labeled+and+unlabeled+examples&amp;aulast=Belkin&amp;title=J+Mach+Learn+Res&amp;date=2006&amp;spage=2399&amp;epage=434&amp;volume=7" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Manifold%20regularization%3A%20a%20geometric%20framework%20for%20learning%20from%20labeled%20and%20unlabeled%20examples&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref155" class="js-splitview-ref-item" data-legacy-id="ref155"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref155" href="javascript:;" aria-label="jumplink-ref155" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref155" class="ref-content " data-id="ref155"><span class="label title-label">155.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kuang</div>   <div class="given-names">Q</div></span>, <span class="name string-name"><div class="surname">Xu</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">R</div></span></span>, et al. . <div class="article-title">An eigenvalue transformation technique for predicting drug–target interaction</div>. <div class="source ">Sci Rep</div>  <div class="year">2015</div>;<div class="volume">5</div>:<div class="fpage">13867</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=An%20eigenvalue%20transformation%20technique%20for%20predicting%20drug%E2%80%93target%20interaction&amp;author=Q%20Kuang&amp;author=X%20Xu&amp;author=R%20Li&amp;publication_year=2015&amp;journal=Sci%20Rep&amp;volume=5&amp;pages=13867" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/srep13867" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fsrep13867" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fsrep13867"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26350590" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:An%20eigenvalue%20transformation%20technique%20for%20predicting%20drug%E2%80%93target%20interaction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref156" class="js-splitview-ref-item" data-legacy-id="ref156"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref156" href="javascript:;" aria-label="jumplink-ref156" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref156" class="ref-content " data-id="ref156"><span class="label title-label">156.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Allapalli</div> <div class="given-names">Bharadwaja</div></span></span>. <div class="source ">Similarity based learning method for drug target interaction prediction</div>. <div class="comment">PhD thesis</div>, <div class="year">2014</div> Electronic Theses and Dissertations. 5245. <a class="link link-uri openInAnotherWindow" href="https://scholar.uwindsor.ca/etd/5245" target="_blank">https://scholar.uwindsor.ca/etd/5245</a>.</p></div></div></div></div><div content-id="ref157" class="js-splitview-ref-item" data-legacy-id="ref157"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref157" href="javascript:;" aria-label="jumplink-ref157" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref157" class="ref-content " data-id="ref157"><span class="label title-label">157.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Hao</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Bryant</div>   <div class="given-names">SH</div></span></span>. <div class="article-title">Improved prediction of drug–target interactions using regularized least squares integrating with kernel fusion technique</div>. <div class="source ">Anal Chim Acta</div>  <div class="year">2016</div>;<div class="volume">909</div>:<div class="fpage">41</div>–<div class="lpage">50</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Improved%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20regularized%20least%20squares%20integrating%20with%20kernel%20fusion%20technique&amp;author=M%20Hao&amp;author=Y%20Wang&amp;author=SH%20Bryant&amp;publication_year=2016&amp;journal=Anal%20Chim%20Acta&amp;volume=909&amp;pages=41-50" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.aca.2016.01.014" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.aca.2016.01.014" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.aca.2016.01.014"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26851083" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Improved%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20regularized%20least%20squares%20integrating%20with%20kernel%20fusion%20technique&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref158" class="js-splitview-ref-item" data-legacy-id="ref158"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref158" href="javascript:;" aria-label="jumplink-ref158" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref158" class="ref-content " data-id="ref158"><span class="label title-label">158.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Nascimento</div>   <div class="given-names">ACA</div></span>, <span class="name string-name"><div class="surname">Prudêncio</div>   <div class="given-names">RBC</div></span>, <span class="name string-name"><div class="surname">Costa</div>   <div class="given-names">IG</div></span></span>. <div class="article-title">A multiple kernel learning algorithm for drug–target interaction prediction</div>. <div class="source ">BMC Bioinformatics</div>  <div class="year">2016</div>;<div class="volume">17</div>(<div class="issue">1</div>):<div class="fpage">46</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20multiple%20kernel%20learning%20algorithm%20for%20drug%E2%80%93target%20interaction%20prediction&amp;author=ACA%20Nascimento&amp;author=RBC%20Prud%C3%AAncio&amp;author=IG%20Costa&amp;publication_year=2016&amp;journal=BMC%20Bioinformatics&amp;volume=17&amp;pages=46" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s12859-016-0890-3" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs12859-016-0890-3" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs12859-016-0890-3"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26801218" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20multiple%20kernel%20learning%20algorithm%20for%20drug%E2%80%93target%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref159" class="js-splitview-ref-item" data-legacy-id="ref159"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref159" href="javascript:;" aria-label="jumplink-ref159" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref159" class="ref-content " data-id="ref159"><span class="label title-label">159.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">He</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Heidemeyer</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Ban</div>   <div class="given-names">F</div></span></span>, et al. . <div class="article-title">SimBoost: a read-across approach for predicting drug–target binding affinities using gradient boosting machines</div>. <div class="source ">J Chem</div>  <div class="year">2017</div>;<div class="volume">9</div>(<div class="issue">1</div>):<div class="fpage">24</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=SimBoost%3A%20a%20read-across%20approach%20for%20predicting%20drug%E2%80%93target%20binding%20affinities%20using%20gradient%20boosting%20machines&amp;author=T%20He&amp;author=M%20Heidemeyer&amp;author=F%20Ban&amp;publication_year=2017&amp;journal=J%20Chem&amp;volume=9&amp;pages=24" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s13321-017-0209-z" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs13321-017-0209-z" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs13321-017-0209-z"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:SimBoost%3A%20a%20read-across%20approach%20for%20predicting%20drug%E2%80%93target%20binding%20affinities%20using%20gradient%20boosting%20machines&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref160" class="js-splitview-ref-item" data-legacy-id="ref160"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref160" href="javascript:;" aria-label="jumplink-ref160" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref160" class="ref-content " data-id="ref160"><span class="label title-label">160.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Sharma</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Lyons</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Dehzangi</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">A feature extraction technique using bi-gram probabilities of position specific scoring matrix for protein fold recognition</div>. <div class="source ">J Theor Biol</div>  <div class="year">2013</div>;<div class="volume">320</div>:<div class="fpage">41</div>–<div class="lpage">6</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20feature%20extraction%20technique%20using%20bi-gram%20probabilities%20of%20position%20specific%20scoring%20matrix%20for%20protein%20fold%20recognition&amp;author=A%20Sharma&amp;author=J%20Lyons&amp;author=A%20Dehzangi&amp;publication_year=2013&amp;journal=J%20Theor%20Biol&amp;volume=320&amp;pages=41-6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.jtbi.2012.12.008" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.jtbi.2012.12.008" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.jtbi.2012.12.008"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23246717" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20feature%20extraction%20technique%20using%20bi-gram%20probabilities%20of%20position%20specific%20scoring%20matrix%20for%20protein%20fold%20recognition&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref161" class="js-splitview-ref-item" data-legacy-id="ref161"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref161" href="javascript:;" aria-label="jumplink-ref161" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref161" class="ref-content " data-id="ref161"><span class="label title-label">161.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">You</div>   <div class="given-names">Z-H</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">RFDT: a rotation forest-based predictor for predicting drug–target interactions using drug structure and protein sequence information</div>. <div class="source ">Curr Protein Pept Sci</div>  <div class="year">2018</div>;<div class="volume">19</div>(<div class="issue">5</div>):<div class="fpage">445</div>–<div class="lpage">54</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=RFDT%3A%20a%20rotation%20forest-based%20predictor%20for%20predicting%20drug%E2%80%93target%20interactions%20using%20drug%20structure%20and%20protein%20sequence%20information&amp;author=L%20Wang&amp;author=Z-H%20You&amp;author=X%20Chen&amp;publication_year=2018&amp;journal=Curr%20Protein%20Pept%20Sci&amp;volume=19&amp;pages=445-54" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.2174/1389203718666161114111656" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.2174%2F1389203718666161114111656" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.2174%2F1389203718666161114111656"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27842479" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:RFDT%3A%20a%20rotation%20forest-based%20predictor%20for%20predicting%20drug%E2%80%93target%20interactions%20using%20drug%20structure%20and%20protein%20sequence%20information&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref162" class="js-splitview-ref-item" data-legacy-id="ref162"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref162" href="javascript:;" aria-label="jumplink-ref162" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref162" class="ref-content " data-id="ref162"><span class="label title-label">162.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Esposito</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Malerba</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Semeraro</div>   <div class="given-names">G</div></span></span>, et al. . <div class="article-title">The effects of pruning methods on the predictive accuracy of induced decision trees</div>. <div class="source ">Appl Stoch Model Bus Ind</div>  <div class="year">1999</div>;<div class="volume">15</div>(<div class="issue">4</div>):<div class="fpage">277</div>–<div class="lpage">99</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20effects%20of%20pruning%20methods%20on%20the%20predictive%20accuracy%20of%20induced%20decision%20trees&amp;author=F%20Esposito&amp;author=D%20Malerba&amp;author=G%20Semeraro&amp;publication_year=1999&amp;journal=Appl%20Stoch%20Model%20Bus%20Ind&amp;volume=15&amp;pages=277-99" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1002/(ISSN)1526-4025" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1002%2F(ISSN)1526-4025" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1002%2F(ISSN)1526-4025"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20effects%20of%20pruning%20methods%20on%20the%20predictive%20accuracy%20of%20induced%20decision%20trees&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref163" class="js-splitview-ref-item" data-legacy-id="ref163"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref163" href="javascript:;" aria-label="jumplink-ref163" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref163" class="ref-content " data-id="ref163"><span class="label title-label">163.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Schclar</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Rokach</div>   <div class="given-names">L</div></span></span>. <div class="article-title">Random projection ensemble classifiers</div>. In: <div class="source "><em>International Conference on Enterprise Information Systems</em></div>. <div class="publisher-name">Springer</div>, <div class="publisher-loc">Heidelberg, Germany</div>, <div class="year">2009</div>, <div class="fpage">309</div>–<div class="lpage">16</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=International%20Conference%20on%20Enterprise%20Information%20Systems&amp;author=A%20Schclar&amp;author=L%20Rokach&amp;publication_year=2009&amp;book=International%20Conference%20on%20Enterprise%20Information%20Systems" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/978-3-642-01347-8" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2F978-3-642-01347-8" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2F978-3-642-01347-8"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=International%20Conference%20on%20Enterprise%20Information%20Systems&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:International%20Conference%20on%20Enterprise%20Information%20Systems&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=International%20Conference%20on%20Enterprise%20Information%20Systems">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref164" class="js-splitview-ref-item" data-legacy-id="ref164"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref164" href="javascript:;" aria-label="jumplink-ref164" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref164" class="ref-content " data-id="ref164"><span class="label title-label">164.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Zhu</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">P</div></span></span>, et al. . <div class="article-title">DrugRPE: random projection ensemble approach to drug–target interaction prediction</div>. <div class="source ">Neurocomputing</div>  <div class="year">2017</div>;<div class="volume">228</div>:<div class="fpage">256</div>–<div class="lpage">62</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DrugRPE%3A%20random%20projection%20ensemble%20approach%20to%20drug%E2%80%93target%20interaction%20prediction&amp;author=J%20Zhang&amp;author=M%20Zhu&amp;author=P%20Chen&amp;publication_year=2017&amp;journal=Neurocomputing&amp;volume=228&amp;pages=256-62" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.neucom.2016.10.039" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.neucom.2016.10.039" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.neucom.2016.10.039"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DrugRPE%3A%20random%20projection%20ensemble%20approach%20to%20drug%E2%80%93target%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref165" class="js-splitview-ref-item" data-legacy-id="ref165"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref165" href="javascript:;" aria-label="jumplink-ref165" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref165" class="ref-content " data-id="ref165"><span class="label title-label">165.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yap</div>   <div class="given-names">CW</div></span></span>. <div class="article-title">PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints</div>. <div class="source ">J Comput Chem</div>  <div class="year">2011</div>;<div class="volume">32</div>(<div class="issue">7</div>):<div class="fpage">1466</div>–<div class="lpage">74</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=PaDEL-descriptor%3A%20an%20open%20source%20software%20to%20calculate%20molecular%20descriptors%20and%20fingerprints&amp;author=CW%20Yap&amp;publication_year=2011&amp;journal=J%20Comput%20Chem&amp;volume=32&amp;pages=1466-74" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1002/jcc.v32.7" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1002%2Fjcc.v32.7" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1002%2Fjcc.v32.7"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21425294" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:PaDEL-descriptor%3A%20an%20open%20source%20software%20to%20calculate%20molecular%20descriptors%20and%20fingerprints&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref166" class="js-splitview-ref-item" data-legacy-id="ref166"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref166" href="javascript:;" aria-label="jumplink-ref166" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref166" class="ref-content " data-id="ref166"><span class="label title-label">166.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ohue</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Yamazaki</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Ban</div>   <div class="given-names">T</div></span></span>, et al. . <div class="article-title">Link mining for kernel-based compound–protein interaction predictions using a chemogenomics approach</div>. In: <div class="source "><em>International Conference on Intelligent Computing</em></div>. <div class="publisher-name">Springer</div>, <div class="publisher-loc">Cham, Switzerland</div>, <div class="year">2017</div>, <div class="fpage">549</div>–<div class="lpage">58</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=International%20Conference%20on%20Intelligent%20Computing&amp;author=M%20Ohue&amp;author=T%20Yamazaki&amp;author=T%20Ban&amp;publication_year=2017&amp;book=International%20Conference%20on%20Intelligent%20Computing" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/978-3-319-63312-1" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2F978-3-319-63312-1" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2F978-3-319-63312-1"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=International%20Conference%20on%20Intelligent%20Computing&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:International%20Conference%20on%20Intelligent%20Computing&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=International%20Conference%20on%20Intelligent%20Computing">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref167" class="js-splitview-ref-item" data-legacy-id="ref167"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref167" href="javascript:;" aria-label="jumplink-ref167" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref167" class="ref-content " data-id="ref167"><span class="label title-label">167.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ba-Alawi</div>   <div class="given-names">W</div></span>, <span class="name string-name"><div class="surname">Soufan</div>   <div class="given-names">O</div></span>, <span class="name string-name"><div class="surname">Essack</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">DASPfind: new efficient method to predict drug–target interactions</div>. <div class="source ">J Chem</div>  <div class="year">2016</div>;<div class="volume">8</div>(<div class="issue">1</div>):<div class="fpage">15</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DASPfind%3A%20new%20efficient%20method%20to%20predict%20drug%E2%80%93target%20interactions&amp;author=W%20Ba-Alawi&amp;author=O%20Soufan&amp;author=M%20Essack&amp;publication_year=2016&amp;journal=J%20Chem&amp;volume=8&amp;pages=15" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s13321-016-0128-4" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs13321-016-0128-4" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs13321-016-0128-4"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DASPfind%3A%20new%20efficient%20method%20to%20predict%20drug%E2%80%93target%20interactions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref168" class="js-splitview-ref-item" data-legacy-id="ref168"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref168" href="javascript:;" aria-label="jumplink-ref168" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref168" class="ref-content " data-id="ref168"><span class="label title-label">168.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Marzaro</div>   <div class="given-names">G</div></span>, <span class="name string-name"><div class="surname">Chilin</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Guiotto</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">Using the tops-mode approach to fit multi-target qsar models for tyrosine kinases inhibitors</div>. <div class="source ">Eur J Med Chem</div>  <div class="year">2011</div>;<div class="volume">46</div>(<div class="issue">6</div>):<div class="fpage">2185</div>–<div class="lpage">92</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Using%20the%20tops-mode%20approach%20to%20fit%20multi-target%20qsar%20models%20for%20tyrosine%20kinases%20inhibitors&amp;author=G%20Marzaro&amp;author=A%20Chilin&amp;author=A%20Guiotto&amp;publication_year=2011&amp;journal=Eur%20J%20Med%20Chem&amp;volume=46&amp;pages=2185-92" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.ejmech.2011.02.072" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.ejmech.2011.02.072" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.ejmech.2011.02.072"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21447431" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Using%20the%20tops-mode%20approach%20to%20fit%20multi-target%20qsar%20models%20for%20tyrosine%20kinases%20inhibitors&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref169" class="js-splitview-ref-item" data-legacy-id="ref169"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref169" href="javascript:;" aria-label="jumplink-ref169" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref169" class="ref-content " data-id="ref169"><span class="label title-label">169.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Han</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">You</div>   <div class="given-names">Z-H</div></span></span>, et al. . <div class="article-title">In silico prediction of drug-target interaction networks based on drug chemical structure and protein sequences</div>. <div class="source ">Sci Rep</div>  <div class="year">2017</div>;<div class="volume">7</div>(<div class="issue">1</div>):<div class="fpage">11174</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=In%20silico%20prediction%20of%20drug-target%20interaction%20networks%20based%20on%20drug%20chemical%20structure%20and%20protein%20sequences&amp;author=Z%20Li&amp;author=P%20Han&amp;author=Z-H%20You&amp;publication_year=2017&amp;journal=Sci%20Rep&amp;volume=7&amp;pages=11174" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/s41598-017-10724-0" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fs41598-017-10724-0" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fs41598-017-10724-0"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28894115" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:In%20silico%20prediction%20of%20drug-target%20interaction%20networks%20based%20on%20drug%20chemical%20structure%20and%20protein%20sequences&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref170" class="js-splitview-ref-item" data-legacy-id="ref170"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref170" href="javascript:;" aria-label="jumplink-ref170" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref170" class="ref-content " data-id="ref170"><span class="label title-label">170.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Gui</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Tao</div>   <div class="given-names">D</div></span></span>, et al. . <div class="article-title">Representative vector machines: a unified framework for classical classifiers</div>. <div class="source ">IEEE Trans Cybernet</div>  <div class="year">2015</div>;<div class="volume">46</div>(<div class="issue">8</div>):<div class="fpage">1877</div>–<div class="lpage">88</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Representative%20vector%20machines%3A%20a%20unified%20framework%20for%20classical%20classifiers&amp;author=J%20Gui&amp;author=T%20Liu&amp;author=D%20Tao&amp;publication_year=2015&amp;journal=IEEE%20Trans%20Cybernet&amp;volume=46&amp;pages=1877-88" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1109/TCYB.2015.2457234" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1109%2FTCYB.2015.2457234" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1109%2FTCYB.2015.2457234"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Representative%20vector%20machines%3A%20a%20unified%20framework%20for%20classical%20classifiers&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref171" class="js-splitview-ref-item" data-legacy-id="ref171"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref171" href="javascript:;" aria-label="jumplink-ref171" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref171" class="ref-content " data-id="ref171"><span class="label title-label">171.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ezzat</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">X-L</div></span></span>, et al. . <div class="article-title">Drug–target interaction prediction via class imbalance-aware ensemble learning</div>. <div class="source ">BMC Bioinformatics</div>  <div class="year">2016</div>;<div class="volume">17</div>(<div class="issue">19</div>):<div class="fpage">509</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20via%20class%20imbalance-aware%20ensemble%20learning&amp;author=A%20Ezzat&amp;author=M%20Wu&amp;author=X-L%20Li&amp;publication_year=2016&amp;journal=BMC%20Bioinformatics&amp;volume=17&amp;pages=509" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s12859-016-1377-y" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs12859-016-1377-y" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs12859-016-1377-y"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28155697" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20via%20class%20imbalance-aware%20ensemble%20learning&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref172" class="js-splitview-ref-item" data-legacy-id="ref172"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref172" href="javascript:;" aria-label="jumplink-ref172" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref172" class="ref-content " data-id="ref172"><span class="label title-label">172.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ezzat</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">X-L</div></span></span>, et al. . <div class="article-title">Drug–target interaction prediction using ensemble learning and dimensionality reduction</div>. <div class="source ">Methods</div>  <div class="year">2017</div>;<div class="volume">129</div>:<div class="fpage">81</div>–<div class="lpage">8</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20using%20ensemble%20learning%20and%20dimensionality%20reduction&amp;author=A%20Ezzat&amp;author=M%20Wu&amp;author=X-L%20Li&amp;publication_year=2017&amp;journal=Methods&amp;volume=129&amp;pages=81-8" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.ymeth.2017.05.016" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.ymeth.2017.05.016" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.ymeth.2017.05.016"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28549952" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20using%20ensemble%20learning%20and%20dimensionality%20reduction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref173" class="js-splitview-ref-item" data-legacy-id="ref173"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref173" href="javascript:;" aria-label="jumplink-ref173" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref173" class="ref-content " data-id="ref173"><span class="label title-label">173.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ezzat</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Kwoh</div>   <div class="given-names">C-K</div></span></span>. <div class="article-title">Computational prediction of drug–target interactions via ensemble learning</div>. In: <div class="source "><em>Computational Methods for Drug Repurposing</em></div>. <div class="publisher-name">Springer</div>, <div class="publisher-loc">New York, N.Y. : Humana Press : Springer,</div>  <div class="year">2019</div>, <div class="fpage">239</div>–<div class="lpage">54</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Computational%20Methods%20for%20Drug%20Repurposing&amp;author=A%20Ezzat&amp;author=M%20Wu&amp;author=X%20Li&amp;author=C-K%20Kwoh&amp;publication_year=2019&amp;book=Computational%20Methods%20for%20Drug%20Repurposing" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/978-1-4939-8955-3" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2F978-1-4939-8955-3" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2F978-1-4939-8955-3"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Computational%20Methods%20for%20Drug%20Repurposing&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Computational%20Methods%20for%20Drug%20Repurposing&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Computational%20Methods%20for%20Drug%20Repurposing">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref174" class="js-splitview-ref-item" data-legacy-id="ref174"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref174" href="javascript:;" aria-label="jumplink-ref174" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref174" class="ref-content " data-id="ref174"><span class="label title-label">174.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">De Jong</div>   <div class="given-names">S</div></span></span>. <div class="article-title">SIMPLS: an alternative approach to partial least squares regression</div>. <div class="source "><em>Chemom Intel Lab Syst</em></div>  <div class="year">1993</div>;<div class="volume">18</div>(<div class="issue">3</div>):<div class="fpage">251</div>–<div class="lpage">63</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=SIMPLS%3A%20an%20alternative%20approach%20to%20partial%20least%20squares%20regression&amp;author=S%20De%20Jong&amp;publication_year=1993&amp;journal=Chemom%20Intel%20Lab%20Syst&amp;volume=18&amp;pages=251-63" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/0169-7439(93)85002-X" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2F0169-7439(93)85002-X" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2F0169-7439(93)85002-X"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:SIMPLS%3A%20an%20alternative%20approach%20to%20partial%20least%20squares%20regression&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref175" class="js-splitview-ref-item" data-legacy-id="ref175"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref175" href="javascript:;" aria-label="jumplink-ref175" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref175" class="ref-content " data-id="ref175"><span class="label title-label">175.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Belkin</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Niyogi</div>   <div class="given-names">P</div></span></span>. <div class="article-title">Laplacian eigenmaps and spectral techniques for embedding and clustering</div>. In: <div class="source "><em>Advances in Neural Information Processing Systems</em></div>, <div class="publisher-name">NIPS, </div>  <div class="publisher-loc">Vancouver, BC, CA.</div>  <div class="year">2002</div>, <div class="fpage">585</div>–<div class="lpage">91</div>.</p></div></div></div></div><div content-id="ref176" class="js-splitview-ref-item" data-legacy-id="ref176"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref176" href="javascript:;" aria-label="jumplink-ref176" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref176" class="ref-content " data-id="ref176"><span class="label title-label">176.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">R</div></span></span>. <div class="article-title">An ensemble learning approach for improving drug–target interactions prediction</div>. In: <div class="source "><em>Proceedings of the 4th International Conference on Computer Engineering and Networks</em></div>. <div class="publisher-name">Springer</div>, <div class="publisher-loc">Cham, Switzerland</div>, <div class="year">2015</div>, <div class="fpage">433</div>–<div class="lpage">42</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Proceedings%20of%20the%204th%20International%20Conference%20on%20Computer%20Engineering%20and%20Networks&amp;author=R%20Zhang&amp;publication_year=2015&amp;book=Proceedings%20of%20the%204th%20International%20Conference%20on%20Computer%20Engineering%20and%20Networks" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/978-3-319-11104-9" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2F978-3-319-11104-9" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2F978-3-319-11104-9"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Proceedings%20of%20the%204th%20International%20Conference%20on%20Computer%20Engineering%20and%20Networks&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Proceedings%20of%20the%204th%20International%20Conference%20on%20Computer%20Engineering%20and%20Networks&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Proceedings%20of%20the%204th%20International%20Conference%20on%20Computer%20Engineering%20and%20Networks">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref177" class="js-splitview-ref-item" data-legacy-id="ref177"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref177" href="javascript:;" aria-label="jumplink-ref177" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref177" class="ref-content " data-id="ref177"><span class="label title-label">177.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yuan</div>   <div class="given-names">Q</div></span>, <span class="name string-name"><div class="surname">Gao</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">D</div></span></span>, et al. . <div class="article-title">DrugE-Rank: improving drug–target interaction prediction of new candidate drugs or targets by ensemble learning to rank</div>. <div class="source ">Bioinformatics</div>  <div class="year">2016</div>;<div class="volume">32</div>(<div class="issue">12</div>):<div class="fpage">i18</div>–<div class="lpage">27</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DrugE-Rank%3A%20improving%20drug%E2%80%93target%20interaction%20prediction%20of%20new%20candidate%20drugs%20or%20targets%20by%20ensemble%20learning%20to%20rank&amp;author=Q%20Yuan&amp;author=J%20Gao&amp;author=D%20Wu&amp;publication_year=2016&amp;journal=Bioinformatics&amp;volume=32&amp;pages=i18-27" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btw244" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtw244" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtw244"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27307615" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DrugE-Rank%3A%20improving%20drug%E2%80%93target%20interaction%20prediction%20of%20new%20candidate%20drugs%20or%20targets%20by%20ensemble%20learning%20to%20rank&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref178" class="js-splitview-ref-item" data-legacy-id="ref178"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref178" href="javascript:;" aria-label="jumplink-ref178" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref178" class="ref-content " data-id="ref178"><span class="label title-label">178.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Sharma</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Rani</div>   <div class="given-names">R</div></span></span>. <div class="article-title">BE-DTI: ensemble framework for drug target interaction prediction using dimensionality reduction and active learning</div>. <div class="source ">Comput Methods Programs Biomed</div>  <div class="year">2018</div>;<div class="volume">165</div>:<div class="fpage">151</div>–<div class="lpage">62</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=BE-DTI%3A%20ensemble%20framework%20for%20drug%20target%20interaction%20prediction%20using%20dimensionality%20reduction%20and%20active%20learning&amp;author=A%20Sharma&amp;author=R%20Rani&amp;publication_year=2018&amp;journal=Comput%20Methods%20Programs%20Biomed&amp;volume=165&amp;pages=151-62" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.cmpb.2018.08.011" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.cmpb.2018.08.011" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.cmpb.2018.08.011"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/30337070" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:BE-DTI%3A%20ensemble%20framework%20for%20drug%20target%20interaction%20prediction%20using%20dimensionality%20reduction%20and%20active%20learning&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref179" class="js-splitview-ref-item" data-legacy-id="ref179"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref179" href="javascript:;" aria-label="jumplink-ref179" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref179" class="ref-content " data-id="ref179"><span class="label title-label">179.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cobanoglu</div>   <div class="given-names">MC</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Hu</div>   <div class="given-names">F</div></span></span>, et al. . <div class="article-title">Predicting drug–target interactions using probabilistic matrix factorization</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2013</div>;<div class="volume">53</div>(<div class="issue">12</div>):<div class="fpage">3399</div>–<div class="lpage">409</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interactions%20using%20probabilistic%20matrix%20factorization&amp;author=MC%20Cobanoglu&amp;author=C%20Liu&amp;author=F%20Hu&amp;publication_year=2013&amp;journal=J%20Chem%20Inf%20Model&amp;volume=53&amp;pages=3399-409" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci400219z" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci400219z" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci400219z"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24289468" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interactions%20using%20probabilistic%20matrix%20factorization&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref180" class="js-splitview-ref-item" data-legacy-id="ref180"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref180" href="javascript:;" aria-label="jumplink-ref180" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref180" class="ref-content " data-id="ref180"><span class="label title-label">180.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Cai</div>   <div class="given-names">M</div></span></span>. <div class="article-title">Drug target prediction by multi-view low rank embedding</div>. <div class="source ">IEEE/ACM Trans Comput Biol Bioinform</div>, <div class="year">2017</div>;<div class="volume">16</div>(<div class="issue">5</div>):<div class="fpage">1712</div>–<div class="lpage">1721</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%20target%20prediction%20by%20multi-view%20low%20rank%20embedding&amp;author=L%20Li&amp;author=M%20Cai&amp;publication_year=2017&amp;journal=IEEE%2FACM%20Trans%20Comput%20Biol%20Bioinform&amp;volume=16&amp;pages=1712-1721" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1109/TCBB.8857" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1109%2FTCBB.8857" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1109%2FTCBB.8857"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28541222" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%20target%20prediction%20by%20multi-view%20low%20rank%20embedding&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref181" class="js-splitview-ref-item" data-legacy-id="ref181"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref181" href="javascript:;" aria-label="jumplink-ref181" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref181" class="ref-content " data-id="ref181"><span class="label title-label">181.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">R</div></span>, <span class="name string-name"><div class="surname">Hao</div>   <div class="given-names">R</div></span>, <span class="name string-name"><div class="surname">Su</div>   <div class="given-names">Z</div></span></span>. <div class="article-title">Mixture of manifolds clustering via low rank embedding</div>. <div class="source ">J Inform Comput Sci</div>  <div class="year">2011</div>;<div class="volume">8</div>:<div class="fpage">725</div>–<div class="lpage">37</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Mixture%20of%20manifolds%20clustering%20via%20low%20rank%20embedding&amp;author=R%20Liu&amp;author=R%20Hao&amp;author=Z%20Su&amp;publication_year=2011&amp;journal=J%20Inform%20Comput%20Sci&amp;volume=8&amp;pages=725-37" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Mixture+of+manifolds+clustering+via+low+rank+embedding&amp;aulast=Liu&amp;title=J+Inform+Comput+Sci&amp;date=2011&amp;spage=725&amp;epage=37&amp;volume=8" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Mixture%20of%20manifolds%20clustering%20via%20low%20rank%20embedding&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref182" class="js-splitview-ref-item" data-legacy-id="ref182"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref182" href="javascript:;" aria-label="jumplink-ref182" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref182" class="ref-content " data-id="ref182"><span class="label title-label">182.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zheng</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Mamitsuka</div>   <div class="given-names">H</div></span></span>, et al. . <div class="article-title">Collaborative matrix factorization with multiple similarities for predicting drug–target interactions</div>. In: <div class="source "><em>Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining</em></div>. <div class="publisher-name">ACM</div>, <div class="publisher-loc">Chicago, Illinois, USA.</div>  <div class="year">2013</div>, <div class="fpage">1025</div>–<div class="lpage">33</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Proceedings%20of%20the%2019th%20ACM%20SIGKDD%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining&amp;author=X%20Zheng&amp;author=H%20Ding&amp;author=H%20Mamitsuka&amp;publication_year=2013&amp;book=Proceedings%20of%20the%2019th%20ACM%20SIGKDD%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1145/2487575" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1145%2F2487575" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1145%2F2487575"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Proceedings%20of%20the%2019th%20ACM%20SIGKDD%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Proceedings%20of%20the%2019th%20ACM%20SIGKDD%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Proceedings%20of%20the%2019th%20ACM%20SIGKDD%20International%20Conference%20on%20Knowledge%20Discovery%20and%20Data%20Mining">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref183" class="js-splitview-ref-item" data-legacy-id="ref183"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref183" href="javascript:;" aria-label="jumplink-ref183" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref183" class="ref-content " data-id="ref183"><span class="label title-label">183.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ding</div>   <div class="given-names">CH</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Jordan</div>   <div class="given-names">MI</div></span></span>. <div class="article-title">Convex and semi-nonnegative matrix factorizations</div>. <div class="source ">IEEE Trans Pattern Anal Mach Intell</div>  <div class="year">2010</div>;<div class="volume">32</div>(<div class="issue">1</div>):<div class="fpage">45</div>–<div class="lpage">55</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Convex%20and%20semi-nonnegative%20matrix%20factorizations&amp;author=CH%20Ding&amp;author=T%20Li&amp;author=MI%20Jordan&amp;publication_year=2010&amp;journal=IEEE%20Trans%20Pattern%20Anal%20Mach%20Intell&amp;volume=32&amp;pages=45-55" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1109/TPAMI.2008.277" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1109%2FTPAMI.2008.277" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1109%2FTPAMI.2008.277"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19926898" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Convex%20and%20semi-nonnegative%20matrix%20factorizations&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref184" class="js-splitview-ref-item" data-legacy-id="ref184"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref184" href="javascript:;" aria-label="jumplink-ref184" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref184" class="ref-content " data-id="ref184"><span class="label title-label">184.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Golub</div>   <div class="given-names">GH</div></span>, <span class="name string-name"><div class="surname">Reinsch</div>   <div class="given-names">C</div></span></span>. <div class="article-title">Singular value decomposition and least squares solutions</div>. In: <div class="source "><em>Linear Algebra</em></div>. <div class="publisher-name">Springer</div>, <div class="publisher-loc">Berlin, Heidelberg</div>, <div class="year">1971</div>, <div class="fpage">134</div>–<div class="lpage">51</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Linear%20Algebra&amp;author=GH%20Golub&amp;author=C%20Reinsch&amp;publication_year=1971&amp;book=Linear%20Algebra" target="_blank">Google Scholar</a></span></p><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Linear%20Algebra&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=book&amp;title=Linear+Algebra&amp;aulast=Golub&amp;date=1971&amp;spage=134&amp;epage=51" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Linear%20Algebra&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Linear%20Algebra">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref185" class="js-splitview-ref-item" data-legacy-id="ref185"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref185" href="javascript:;" aria-label="jumplink-ref185" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref185" class="ref-content " data-id="ref185"><span class="label title-label">185.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ye</div>   <div class="given-names">J</div></span></span>. <div class="article-title">Generalized low rank approximations of matrices</div>. <div class="source ">Mach Learn</div>  <div class="year">2005</div>;<div class="volume">61</div>(<div class="issue">1–3</div>):<div class="fpage">167</div>–<div class="lpage">91</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Generalized%20low%20rank%20approximations%20of%20matrices&amp;author=J%20Ye&amp;publication_year=2005&amp;journal=Mach%20Learn&amp;volume=61&amp;pages=167-91" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/s10994-005-3561-6" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2Fs10994-005-3561-6" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2Fs10994-005-3561-6"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Generalized%20low%20rank%20approximations%20of%20matrices&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref186" class="js-splitview-ref-item" data-legacy-id="ref186"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref186" href="javascript:;" aria-label="jumplink-ref186" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref186" class="ref-content " data-id="ref186"><span class="label title-label">186.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Mnih</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Salakhutdinov</div>   <div class="given-names">RR</div></span></span>. <div class="article-title">Probabilistic matrix factorization</div>. In: <div class="source "><em>Advances in Neural Information Processing Systems</em></div>, <div class="publisher-name">NIPS, </div>  <div class="publisher-loc">Vancouver, BC, CA.</div>  <div class="year">2008</div>, <div class="fpage">1257</div>–<div class="lpage">64</div>.</p></div></div></div></div><div content-id="ref187" class="js-splitview-ref-item" data-legacy-id="ref187"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref187" href="javascript:;" aria-label="jumplink-ref187" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref187" class="ref-content " data-id="ref187"><span class="label title-label">187.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Miao</div>   <div class="given-names">C</div></span></span>, et al. . <div class="article-title">Neighborhood regularized logistic matrix factorization for drug–target interaction prediction</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2016</div>;<div class="volume">12</div>(<div class="issue">2</div>):e1004760.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Neighborhood%20regularized%20logistic%20matrix%20factorization%20for%20drug%E2%80%93target%20interaction%20prediction&amp;author=Y%20Liu&amp;author=M%20Wu&amp;author=C%20Miao&amp;publication_year=2016&amp;journal=PLoS%20Comput%20Biol&amp;volume=12&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Neighborhood+regularized+logistic+matrix+factorization+for+drug%e2%80%93target+interaction+prediction&amp;aulast=Liu&amp;title=PLoS+Comput+Biol&amp;date=2016&amp;volume=12&amp;issue=2" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Neighborhood%20regularized%20logistic%20matrix%20factorization%20for%20drug%E2%80%93target%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref188" class="js-splitview-ref-item" data-legacy-id="ref188"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref188" href="javascript:;" aria-label="jumplink-ref188" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref188" class="ref-content " data-id="ref188"><span class="label title-label">188.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Tang</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">J</div></span></span>. <div class="article-title">Drug–target interaction prediction via dual laplacian graph regularized matrix completion</div>. <div class="source ">Biomed Res Int</div>  <div class="year">2018</div>;<div class="volume">2018</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20via%20dual%20laplacian%20graph%20regularized%20matrix%20completion&amp;author=M%20Wang&amp;author=C%20Tang&amp;author=J%20Chen&amp;publication_year=2018&amp;journal=Biomed%20Res%20Int&amp;volume=2018&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Drug%e2%80%93target+interaction+prediction+via+dual+laplacian+graph+regularized+matrix+completion&amp;aulast=Wang&amp;title=Biomed+Res+Int&amp;date=2018&amp;volume=2018" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20via%20dual%20laplacian%20graph%20regularized%20matrix%20completion&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref189" class="js-splitview-ref-item" data-legacy-id="ref189"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref189" href="javascript:;" aria-label="jumplink-ref189" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref189" class="ref-content " data-id="ref189"><span class="label title-label">189.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ezzat</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Zhao</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">Drug–target interaction prediction with graph regularized matrix factorization</div>. <div class="source ">IEEE/ACM Trans Comput Biol Bioinform</div>  <div class="year">2017</div>;<div class="volume">14</div>(<div class="issue">3</div>):<div class="fpage">646</div>–<div class="lpage">56</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20with%20graph%20regularized%20matrix%20factorization&amp;author=A%20Ezzat&amp;author=P%20Zhao&amp;author=M%20Wu&amp;publication_year=2017&amp;journal=IEEE%2FACM%20Trans%20Comput%20Biol%20Bioinform&amp;volume=14&amp;pages=646-56" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1109/TCBB.2016.2530062" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1109%2FTCBB.2016.2530062" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1109%2FTCBB.2016.2530062"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26890921" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20with%20graph%20regularized%20matrix%20factorization&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref190" class="js-splitview-ref-item" data-legacy-id="ref190"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref190" href="javascript:;" aria-label="jumplink-ref190" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref190" class="ref-content " data-id="ref190"><span class="label title-label">190.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Geurts</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">Ernst</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Wehenkel</div>   <div class="given-names">L</div></span></span>. <div class="article-title">Extremely randomized trees</div>. <div class="source ">Mach Learn</div>  <div class="year">2006</div>;<div class="volume">63</div>(<div class="issue">1</div>):<div class="fpage">3</div>–<div class="lpage">42</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Extremely%20randomized%20trees&amp;author=P%20Geurts&amp;author=D%20Ernst&amp;author=L%20Wehenkel&amp;publication_year=2006&amp;journal=Mach%20Learn&amp;volume=63&amp;pages=3-42" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/s10994-006-6226-1" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2Fs10994-006-6226-1" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2Fs10994-006-6226-1"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Extremely%20randomized%20trees&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref191" class="js-splitview-ref-item" data-legacy-id="ref191"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref191" href="javascript:;" aria-label="jumplink-ref191" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref191" class="ref-content " data-id="ref191"><span class="label title-label">191.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Huang</div>   <div class="given-names">Y-A</div></span>, <span class="name string-name"><div class="surname">You</div>   <div class="given-names">Z-H</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">X</div></span></span>. <div class="article-title">A systematic prediction of drug–target interactions using molecular fingerprints and protein sequences</div>. <div class="source ">Curr Protein Pept Sci</div>  <div class="year">2018</div>;<div class="volume">19</div>(<div class="issue">5</div>):<div class="fpage">468</div>–<div class="lpage">78</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20systematic%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20molecular%20fingerprints%20and%20protein%20sequences&amp;author=Y-A%20Huang&amp;author=Z-H%20You&amp;author=X%20Chen&amp;publication_year=2018&amp;journal=Curr%20Protein%20Pept%20Sci&amp;volume=19&amp;pages=468-78" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.2174/1389203718666161122103057" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.2174%2F1389203718666161122103057" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.2174%2F1389203718666161122103057"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27875970" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20systematic%20prediction%20of%20drug%E2%80%93target%20interactions%20using%20molecular%20fingerprints%20and%20protein%20sequences&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref192" class="js-splitview-ref-item" data-legacy-id="ref192"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref192" href="javascript:;" aria-label="jumplink-ref192" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref192" class="ref-content " data-id="ref192"><span class="label title-label">192.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Rendle</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Freudenthaler</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Gantner</div>   <div class="given-names">Z</div></span></span>, et al. . <div class="article-title">BPR: Bayesian personalized ranking from implicit feedback</div>. In: <div class="source "><em>Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence</em></div>. <div class="publisher-name">AUAI Press</div>, <div class="publisher-loc">McGill, Canada</div>, <div class="year">2009</div>, <div class="fpage">452</div>–<div class="lpage">61</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Proceedings%20of%20the%20Twenty-Fifth%20Conference%20on%20Uncertainty%20in%20Artificial%20Intelligence&amp;author=S%20Rendle&amp;author=C%20Freudenthaler&amp;author=Z%20Gantner&amp;publication_year=2009&amp;book=Proceedings%20of%20the%20Twenty-Fifth%20Conference%20on%20Uncertainty%20in%20Artificial%20Intelligence" target="_blank">Google Scholar</a></span></p><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Proceedings%20of%20the%20Twenty-Fifth%20Conference%20on%20Uncertainty%20in%20Artificial%20Intelligence&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=book&amp;title=Proceedings+of+the+Twenty-Fifth+Conference+on+Uncertainty+in+Artificial+Intelligence&amp;aulast=Rendle&amp;date=2009&amp;spage=452&amp;epage=61" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Proceedings%20of%20the%20Twenty-Fifth%20Conference%20on%20Uncertainty%20in%20Artificial%20Intelligence&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Proceedings%20of%20the%20Twenty-Fifth%20Conference%20on%20Uncertainty%20in%20Artificial%20Intelligence">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref193" class="js-splitview-ref-item" data-legacy-id="ref193"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref193" href="javascript:;" aria-label="jumplink-ref193" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref193" class="ref-content " data-id="ref193"><span class="label title-label">193.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Bolgár</div>   <div class="given-names">B</div></span>, <span class="name string-name"><div class="surname">Antal</div>   <div class="given-names">P</div></span></span>. <div class="article-title">VB-MK-LMF: fusion of drugs, targets and interactions using variational Bayesian multiple kernel logistic matrix factorization</div>. <div class="source ">BMC Bioinformatics</div>  <div class="year">2017</div>;<div class="volume">18</div>(<div class="issue">1</div>):<div class="fpage">440</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=VB-MK-LMF%3A%20fusion%20of%20drugs%2C%20targets%20and%20interactions%20using%20variational%20Bayesian%20multiple%20kernel%20logistic%20matrix%20factorization&amp;author=B%20Bolg%C3%A1r&amp;author=P%20Antal&amp;publication_year=2017&amp;journal=BMC%20Bioinformatics&amp;volume=18&amp;pages=440" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s12859-017-1845-z" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs12859-017-1845-z" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs12859-017-1845-z"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28978313" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:VB-MK-LMF%3A%20fusion%20of%20drugs%2C%20targets%20and%20interactions%20using%20variational%20Bayesian%20multiple%20kernel%20logistic%20matrix%20factorization&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref194" class="js-splitview-ref-item" data-legacy-id="ref194"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref194" href="javascript:;" aria-label="jumplink-ref194" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref194" class="ref-content " data-id="ref194"><span class="label title-label">194.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Gönen</div>   <div class="given-names">M</div></span></span>. <div class="article-title">Predicting drug–target interactions from chemical and genomic kernels using Bayesian matrix factorization</div>. <div class="source ">Bioinformatics</div>  <div class="year">2012</div>;<div class="volume">28</div>(<div class="issue">18</div>):<div class="fpage">2304</div>–<div class="lpage">10</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interactions%20from%20chemical%20and%20genomic%20kernels%20using%20Bayesian%20matrix%20factorization&amp;author=M%20G%C3%B6nen&amp;publication_year=2012&amp;journal=Bioinformatics&amp;volume=28&amp;pages=2304-10" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/bts360" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbts360" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbts360"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22730431" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interactions%20from%20chemical%20and%20genomic%20kernels%20using%20Bayesian%20matrix%20factorization&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref195" class="js-splitview-ref-item" data-legacy-id="ref195"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref195" href="javascript:;" aria-label="jumplink-ref195" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref195" class="ref-content " data-id="ref195"><span class="label title-label">195.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cheng</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Jiang</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">Prediction of drug–target interactions and drug repositioning via network-based inference</div>. <div class="source ">PLoS Comput Biol</div>  <div class="year">2012</div>;<div class="volume">8</div>(<div class="issue">5</div>):e1002503.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Prediction%20of%20drug%E2%80%93target%20interactions%20and%20drug%20repositioning%20via%20network-based%20inference&amp;author=F%20Cheng&amp;author=C%20Liu&amp;author=J%20Jiang&amp;publication_year=2012&amp;journal=PLoS%20Comput%20Biol&amp;volume=8&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Prediction+of+drug%e2%80%93target+interactions+and+drug+repositioning+via+network-based+inference&amp;aulast=Cheng&amp;title=PLoS+Comput+Biol&amp;date=2012&amp;volume=8&amp;issue=5" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Prediction%20of%20drug%E2%80%93target%20interactions%20and%20drug%20repositioning%20via%20network-based%20inference&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref196" class="js-splitview-ref-item" data-legacy-id="ref196"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref196" href="javascript:;" aria-label="jumplink-ref196" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref196" class="ref-content " data-id="ref196"><span class="label title-label">196.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">M-X</div></span>, <span class="name string-name"><div class="surname">Yan</div>   <div class="given-names">G-Y</div></span></span>. <div class="article-title">Drug–target interaction prediction by random walk on the heterogeneous network</div>. <div class="source ">Mol Biosyst</div>  <div class="year">2012</div>;<div class="volume">8</div>(<div class="issue">7</div>):<div class="fpage">1970</div>–<div class="lpage">8</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20by%20random%20walk%20on%20the%20heterogeneous%20network&amp;author=X%20Chen&amp;author=M-X%20Liu&amp;author=G-Y%20Yan&amp;publication_year=2012&amp;journal=Mol%20Biosyst&amp;volume=8&amp;pages=1970-8" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1039/c2mb00002d" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1039%2Fc2mb00002d" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1039%2Fc2mb00002d"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22538619" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20by%20random%20walk%20on%20the%20heterogeneous%20network&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref197" class="js-splitview-ref-item" data-legacy-id="ref197"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref197" href="javascript:;" aria-label="jumplink-ref197" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref197" class="ref-content " data-id="ref197"><span class="label title-label">197.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Luo</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Zhao</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Zhou</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">A network integration approach for drug–target interaction prediction and computational drug repositioning from heterogeneous information</div>. <div class="source ">Nat Commun</div>  <div class="year">2017</div>;<div class="volume">8</div>(<div class="issue">1</div>):<div class="fpage">573</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20network%20integration%20approach%20for%20drug%E2%80%93target%20interaction%20prediction%20and%20computational%20drug%20repositioning%20from%20heterogeneous%20information&amp;author=Y%20Luo&amp;author=X%20Zhao&amp;author=J%20Zhou&amp;publication_year=2017&amp;journal=Nat%20Commun&amp;volume=8&amp;pages=573" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/s41467-017-00680-8" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fs41467-017-00680-8" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fs41467-017-00680-8"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/28924171" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20network%20integration%20approach%20for%20drug%E2%80%93target%20interaction%20prediction%20and%20computational%20drug%20repositioning%20from%20heterogeneous%20information&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref198" class="js-splitview-ref-item" data-legacy-id="ref198"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref198" href="javascript:;" aria-label="jumplink-ref198" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref198" class="ref-content " data-id="ref198"><span class="label title-label">198.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Huang</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Zhu</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Tan</div>   <div class="given-names">H</div></span></span>, et al. . <div class="article-title">Predicting drug-target on heterogeneous network with co-rank</div>. In: <div class="source "><em>International Conference on Computer Engineering and Networks</em></div>. <div class="publisher-name">Springer</div>, <div class="publisher-loc">Cham, Switzerland</div>, <div class="year">2018</div>, <div class="fpage">571</div>–<div class="lpage">81</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=International%20Conference%20on%20Computer%20Engineering%20and%20Networks&amp;author=Y%20Huang&amp;author=L%20Zhu&amp;author=H%20Tan&amp;publication_year=2018&amp;book=International%20Conference%20on%20Computer%20Engineering%20and%20Networks" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/978-3-030-14680-1" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2F978-3-030-14680-1" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2F978-3-030-14680-1"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=International%20Conference%20on%20Computer%20Engineering%20and%20Networks&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:International%20Conference%20on%20Computer%20Engineering%20and%20Networks&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=International%20Conference%20on%20Computer%20Engineering%20and%20Networks">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref199" class="js-splitview-ref-item" data-legacy-id="ref199"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref199" href="javascript:;" aria-label="jumplink-ref199" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref199" class="ref-content " data-id="ref199"><span class="label title-label">199.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Peng</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Liao</div>   <div class="given-names">B</div></span>, <span class="name string-name"><div class="surname">Zhu</div>   <div class="given-names">W</div></span></span>, et al. . <div class="article-title">Predicting drug–target interactions with multi-information fusion</div>. <div class="source ">IEEE J Biomed Health Inform</div>  <div class="year">2015</div>;<div class="volume">21</div>(<div class="issue">2</div>):<div class="fpage">561</div>–<div class="lpage">72</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interactions%20with%20multi-information%20fusion&amp;author=L%20Peng&amp;author=B%20Liao&amp;author=W%20Zhu&amp;publication_year=2015&amp;journal=IEEE%20J%20Biomed%20Health%20Inform&amp;volume=21&amp;pages=561-72" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1109/JBHI.2015.2513200" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1109%2FJBHI.2015.2513200" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1109%2FJBHI.2015.2513200"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26731781" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interactions%20with%20multi-information%20fusion&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref200" class="js-splitview-ref-item" data-legacy-id="ref200"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref200" href="javascript:;" aria-label="jumplink-ref200" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref200" class="ref-content " data-id="ref200"><span class="label title-label">200.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wright</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Ganesh</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Rao</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization</div>. In: <div class="source "><em>Advances in Neural Information Processing Systems</em></div>, <div class="publisher-name">NIPS, </div>  <div class="publisher-loc">Vancouver, BC, CA.</div>  <div class="year">2009</div>, <div class="fpage">2080</div>–<div class="lpage">8</div>.</p></div></div></div></div><div content-id="ref201" class="js-splitview-ref-item" data-legacy-id="ref201"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref201" href="javascript:;" aria-label="jumplink-ref201" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref201" class="ref-content " data-id="ref201"><span class="label title-label">201.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ban</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Ohue</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Akiyama</div>   <div class="given-names">Y</div></span></span>. <div class="article-title">NRLMF<span class="inline-formula no-formula-id">|$\beta $|⁠</span>: beta-distribution-rescored neighborhood regularized logistic matrix factorization for improving the performance of drug–target interaction prediction</div>. <div class="source ">Biochem Biophys Rep</div>  <div class="year">2019</div>;<div class="volume">18</div>:<div class="fpage">100615</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=NRLMF%24%5Cbeta%20%24%3A%20beta-distribution-rescored%20neighborhood%20regularized%20logistic%20matrix%20factorization%20for%20improving%20the%20performance%20of%20drug%E2%80%93target%20interaction%20prediction&amp;author=T%20Ban&amp;author=M%20Ohue&amp;author=Y%20Akiyama&amp;publication_year=2019&amp;journal=Biochem%20Biophys%20Rep&amp;volume=18&amp;pages=100615" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/30793050" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=NRLMF%24%5cbeta+%24%3a+beta-distribution-rescored+neighborhood+regularized+logistic+matrix+factorization+for+improving+the+performance+of+drug%e2%80%93target+interaction+prediction&amp;aulast=Ban&amp;title=Biochem+Biophys+Rep&amp;date=2019&amp;spage=100615&amp;volume=18" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:NRLMF%24%5Cbeta%20%24%3A%20beta-distribution-rescored%20neighborhood%20regularized%20logistic%20matrix%20factorization%20for%20improving%20the%20performance%20of%20drug%E2%80%93target%20interaction%20prediction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref202" class="js-splitview-ref-item" data-legacy-id="ref202"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref202" href="javascript:;" aria-label="jumplink-ref202" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref202" class="ref-content " data-id="ref202"><span class="label title-label">202.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Seal</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Ahn</div>   <div class="given-names">Y-Y</div></span>, <span class="name string-name"><div class="surname">Wild</div>   <div class="given-names">DJ</div></span></span>. <div class="article-title">Optimizing drug–target interaction prediction based on random walk on heterogeneous networks</div>. <div class="source ">J Chem</div>  <div class="year">2015</div>;<div class="volume">7</div>(<div class="issue">1</div>):<div class="fpage">40</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Optimizing%20drug%E2%80%93target%20interaction%20prediction%20based%20on%20random%20walk%20on%20heterogeneous%20networks&amp;author=A%20Seal&amp;author=Y-Y%20Ahn&amp;author=DJ%20Wild&amp;publication_year=2015&amp;journal=J%20Chem&amp;volume=7&amp;pages=40" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s13321-015-0089-z" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs13321-015-0089-z" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs13321-015-0089-z"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Optimizing%20drug%E2%80%93target%20interaction%20prediction%20based%20on%20random%20walk%20on%20heterogeneous%20networks&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref203" class="js-splitview-ref-item" data-legacy-id="ref203"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref203" href="javascript:;" aria-label="jumplink-ref203" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref203" class="ref-content " data-id="ref203"><span class="label title-label">203.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Köhler</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Bauer</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Horn</div>   <div class="given-names">D</div></span></span>, et al. . <div class="article-title">Walking the interactome for prioritization of candidate disease genes</div>. <div class="source ">Am J Hum Genet</div>  <div class="year">2008</div>;<div class="volume">82</div>(<div class="issue">4</div>):<div class="fpage">949</div>–<div class="lpage">58</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Walking%20the%20interactome%20for%20prioritization%20of%20candidate%20disease%20genes&amp;author=S%20K%C3%B6hler&amp;author=S%20Bauer&amp;author=D%20Horn&amp;publication_year=2008&amp;journal=Am%20J%20Hum%20Genet&amp;volume=82&amp;pages=949-58" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.ajhg.2008.02.013" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.ajhg.2008.02.013" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.ajhg.2008.02.013"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18371930" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Walking%20the%20interactome%20for%20prioritization%20of%20candidate%20disease%20genes&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref204" class="js-splitview-ref-item" data-legacy-id="ref204"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref204" href="javascript:;" aria-label="jumplink-ref204" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref204" class="ref-content " data-id="ref204"><span class="label title-label">204.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Zeng</div>   <div class="given-names">J</div></span></span>. <div class="article-title">Predicting drug–target interactions using restricted boltzmann machines</div>. <div class="source ">Bioinformatics</div>  <div class="year">2013</div>;<div class="volume">29</div>(<div class="issue">13</div>):<div class="fpage">i126</div>–<div class="lpage">34</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interactions%20using%20restricted%20boltzmann%20machines&amp;author=Y%20Wang&amp;author=J%20Zeng&amp;publication_year=2013&amp;journal=Bioinformatics&amp;volume=29&amp;pages=i126-34" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btt234" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtt234" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtt234"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23812976" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interactions%20using%20restricted%20boltzmann%20machines&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref205" class="js-splitview-ref-item" data-legacy-id="ref205"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref205" href="javascript:;" aria-label="jumplink-ref205" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref205" class="ref-content " data-id="ref205"><span class="label title-label">205.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Agarwal</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Dugar</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Sengupta</div>   <div class="given-names">S</div></span></span>. <div class="article-title">Ranking chemical structures for drug discovery: a new machine learning approach</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2010</div>;<div class="volume">50</div>(<div class="issue">5</div>):<div class="fpage">716</div>–<div class="lpage">31</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Ranking%20chemical%20structures%20for%20drug%20discovery%3A%20a%20new%20machine%20learning%20approach&amp;author=S%20Agarwal&amp;author=D%20Dugar&amp;author=S%20Sengupta&amp;publication_year=2010&amp;journal=J%20Chem%20Inf%20Model&amp;volume=50&amp;pages=716-31" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci9003865" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci9003865" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci9003865"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/20387860" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Ranking%20chemical%20structures%20for%20drug%20discovery%3A%20a%20new%20machine%20learning%20approach&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref206" class="js-splitview-ref-item" data-legacy-id="ref206"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref206" href="javascript:;" aria-label="jumplink-ref206" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref206" class="ref-content " data-id="ref206"><span class="label title-label">206.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Burges</div>   <div class="given-names">CJ</div></span></span>. <div class="article-title">From ranknet to lambdarank to lambdamart: an overview</div>. <div class="source ">Learning</div>  <div class="year">2010</div>;<div class="volume">11</div>(<div class="issue">23–581</div>):<div class="fpage">81</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=From%20ranknet%20to%20lambdarank%20to%20lambdamart%3A%20an%20overview&amp;author=CJ%20Burges&amp;publication_year=2010&amp;journal=Learning&amp;volume=11&amp;pages=81" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=From+ranknet+to+lambdarank+to+lambdamart%3a+an+overview&amp;aulast=Burges&amp;title=Learning&amp;date=2010&amp;spage=81&amp;volume=11&amp;issue=23–581" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:From%20ranknet%20to%20lambdarank%20to%20lambdamart%3A%20an%20overview&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref207" class="js-splitview-ref-item" data-legacy-id="ref207"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref207" href="javascript:;" aria-label="jumplink-ref207" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref207" class="ref-content " data-id="ref207"><span class="label title-label">207.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wan</div>   <div class="given-names">F</div></span>, <span class="name string-name"><div class="surname">Hong</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Xiao</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">NeoDTI: neural integration of neighbor information from a heterogeneous network for discovering new drug–target interactions</div>. <div class="source ">Bioinformatics</div>  <div class="year">2018</div>;<div class="volume">35</div>(<div class="issue">1</div>):<div class="fpage">104</div>–<div class="lpage">11</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=NeoDTI%3A%20neural%20integration%20of%20neighbor%20information%20from%20a%20heterogeneous%20network%20for%20discovering%20new%20drug%E2%80%93target%20interactions&amp;author=F%20Wan&amp;author=L%20Hong&amp;author=A%20Xiao&amp;publication_year=2018&amp;journal=Bioinformatics&amp;volume=35&amp;pages=104-11" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/bty543" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbty543" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbty543"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:NeoDTI%3A%20neural%20integration%20of%20neighbor%20information%20from%20a%20heterogeneous%20network%20for%20discovering%20new%20drug%E2%80%93target%20interactions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref208" class="js-splitview-ref-item" data-legacy-id="ref208"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref208" href="javascript:;" aria-label="jumplink-ref208" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref208" class="ref-content " data-id="ref208"><span class="label title-label">208.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kuang</div>   <div class="given-names">Q</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Wu</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">A kernel matrix dimension reduction method for predicting drug–target interaction</div>. <div class="source ">Chemom Intel Lab Syst</div>  <div class="year">2017</div>;<div class="volume">162</div>:<div class="fpage">104</div>–<div class="lpage">10</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20kernel%20matrix%20dimension%20reduction%20method%20for%20predicting%20drug%E2%80%93target%20interaction&amp;author=Q%20Kuang&amp;author=Y%20Li&amp;author=Y%20Wu&amp;publication_year=2017&amp;journal=Chemom%20Intel%20Lab%20Syst&amp;volume=162&amp;pages=104-10" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.chemolab.2017.01.016" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.chemolab.2017.01.016" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.chemolab.2017.01.016"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20kernel%20matrix%20dimension%20reduction%20method%20for%20predicting%20drug%E2%80%93target%20interaction&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref209" class="js-splitview-ref-item" data-legacy-id="ref209"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref209" href="javascript:;" aria-label="jumplink-ref209" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref209" class="ref-content " data-id="ref209"><span class="label title-label">209.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Alaimo</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Pulvirenti</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Giugno</div>   <div class="given-names">R</div></span></span>, et al. . <div class="article-title">Drug–target interaction prediction through domain-tuned network-based inference</div>. <div class="source ">Bioinformatics</div>  <div class="year">2013</div>;<div class="volume">29</div>(<div class="issue">16</div>):<div class="fpage">2004</div>–<div class="lpage">8</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drug%E2%80%93target%20interaction%20prediction%20through%20domain-tuned%20network-based%20inference&amp;author=S%20Alaimo&amp;author=A%20Pulvirenti&amp;author=R%20Giugno&amp;publication_year=2013&amp;journal=Bioinformatics&amp;volume=29&amp;pages=2004-8" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btt307" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtt307" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtt307"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23720490" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20through%20domain-tuned%20network-based%20inference&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref210" class="js-splitview-ref-item" data-legacy-id="ref210"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref210" href="javascript:;" aria-label="jumplink-ref210" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref210" class="ref-content " data-id="ref210"><span class="label title-label">210.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zhou</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Ren</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Medo</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">Bipartite network projection and personal recommendation</div>. <div class="source ">Phys Rev E</div>  <div class="year">2007</div>;<div class="volume">76</div>(<div class="issue">4</div>):<div class="fpage">046115</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Bipartite%20network%20projection%20and%20personal%20recommendation&amp;author=T%20Zhou&amp;author=J%20Ren&amp;author=M%20Medo&amp;publication_year=2007&amp;journal=Phys%20Rev%20E&amp;volume=76&amp;pages=046115" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1103/PhysRevE.76.046115" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1103%2FPhysRevE.76.046115" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1103%2FPhysRevE.76.046115"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Bipartite%20network%20projection%20and%20personal%20recommendation&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref211" class="js-splitview-ref-item" data-legacy-id="ref211"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref211" href="javascript:;" aria-label="jumplink-ref211" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref211" class="ref-content " data-id="ref211"><span class="label title-label">211.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zhou</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Kuscsik</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">J-G</div></span></span>, et al. . <div class="article-title">Solving the apparent diversity-accuracy dilemma of recommender systems</div>. <div class="source ">Proc Natl Acad Sci</div>  <div class="year">2010</div>;<div class="volume">107</div>(<div class="issue">10</div>):<div class="fpage">4511</div>–<div class="lpage">5</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Solving%20the%20apparent%20diversity-accuracy%20dilemma%20of%20recommender%20systems&amp;author=T%20Zhou&amp;author=Z%20Kuscsik&amp;author=J-G%20Liu&amp;publication_year=2010&amp;journal=Proc%20Natl%20Acad%20Sci&amp;volume=107&amp;pages=4511-5" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1073/pnas.1000488107" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1073%2Fpnas.1000488107" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1073%2Fpnas.1000488107"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/20176968" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Solving%20the%20apparent%20diversity-accuracy%20dilemma%20of%20recommender%20systems&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref212" class="js-splitview-ref-item" data-legacy-id="ref212"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref212" href="javascript:;" aria-label="jumplink-ref212" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref212" class="ref-content " data-id="ref212"><span class="label title-label">212.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Mongia</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Majumdar</div>   <div class="given-names">A</div></span></span>. <div class="article-title">Drug–target interaction prediction using Doubly Graph Regularized Matrix Completion</div>. <div class="year">2018</div>. <div class="comment">BioRxiv</div>  <div class="fpage">455642</div>.</p><!--citationLinks: case 3--><div class="citation-links"><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Drug%e2%80%93target+interaction+prediction+using+Doubly+Graph+Regularized+Matrix+Completion&amp;aulast=Mongia&amp;title=&amp;date=2018&amp;spage=455642" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20using%20Doubly%20Graph%20Regularized%20Matrix%20Completion&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p></div></div></div></div></div><div content-id="ref213" class="js-splitview-ref-item" data-legacy-id="ref213"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref213" href="javascript:;" aria-label="jumplink-ref213" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref213" class="ref-content " data-id="ref213"><span class="label title-label">213.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Mongia</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Majumdar</div>   <div class="given-names">A</div></span></span>. <div class="article-title">Drug–target interaction prediction using multi graph regularized nuclear norm minimization</div>. <div class="year">2018</div>. <div class="comment">BioRxiv</div>  <div class="comment">455642</div>.</p><!--citationLinks: case 3--><div class="citation-links"><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Drug%e2%80%93target+interaction+prediction+using+multi+graph+regularized+nuclear+norm+minimization&amp;aulast=Mongia&amp;title=&amp;date=2018" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drug%E2%80%93target%20interaction%20prediction%20using%20multi%20graph%20regularized%20nuclear%20norm%20minimization&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p></div></div></div></div></div><div content-id="ref214" class="js-splitview-ref-item" data-legacy-id="ref214"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref214" href="javascript:;" aria-label="jumplink-ref214" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref214" class="ref-content " data-id="ref214"><span class="label title-label">214.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kadiyala</div>   <div class="given-names">SS</div></span></span>. <div class="source ">Application of machine learning in drug discovery</div>. <div class="comment">PhD thesis</div>, <div class="year">2018</div>.</p></div></div></div></div><div content-id="ref215" class="js-splitview-ref-item" data-legacy-id="ref215"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref215" href="javascript:;" aria-label="jumplink-ref215" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref215" class="ref-content " data-id="ref215"><span class="label title-label">215.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Meng</div>   <div class="given-names">F-R</div></span>, <span class="name string-name"><div class="surname">You</div>   <div class="given-names">Z-H</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">Prediction of drug–target interaction networks from the integration of protein sequences and drug chemical structures</div>. <div class="source ">Molecules</div>  <div class="year">2017</div>;<div class="volume">22</div>(<div class="issue">7</div>):<div class="fpage">1119</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Prediction%20of%20drug%E2%80%93target%20interaction%20networks%20from%20the%20integration%20of%20protein%20sequences%20and%20drug%20chemical%20structures&amp;author=F-R%20Meng&amp;author=Z-H%20You&amp;author=X%20Chen&amp;publication_year=2017&amp;journal=Molecules&amp;volume=22&amp;pages=1119" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.3390/molecules22071119" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.3390%2Fmolecules22071119" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.3390%2Fmolecules22071119"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Prediction%20of%20drug%E2%80%93target%20interaction%20networks%20from%20the%20integration%20of%20protein%20sequences%20and%20drug%20chemical%20structures&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref216" class="js-splitview-ref-item" data-legacy-id="ref216"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref216" href="javascript:;" aria-label="jumplink-ref216" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref216" class="ref-content " data-id="ref216"><span class="label title-label">216.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Tabei</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Pauwels</div>   <div class="given-names">E</div></span>, <span class="name string-name"><div class="surname">Stoven</div>   <div class="given-names">V</div></span></span>, et al. . <div class="article-title">Identification of chemogenomic features from drug–target interaction networks using interpretable classifiers</div>. <div class="source ">Bioinformatics</div>  <div class="year">2012</div>;<div class="volume">28</div>(<div class="issue">18</div>):<div class="fpage">i487</div>–<div class="lpage">94</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Identification%20of%20chemogenomic%20features%20from%20drug%E2%80%93target%20interaction%20networks%20using%20interpretable%20classifiers&amp;author=Y%20Tabei&amp;author=E%20Pauwels&amp;author=V%20Stoven&amp;publication_year=2012&amp;journal=Bioinformatics&amp;volume=28&amp;pages=i487-94" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/bts412" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbts412" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbts412"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22962471" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Identification%20of%20chemogenomic%20features%20from%20drug%E2%80%93target%20interaction%20networks%20using%20interpretable%20classifiers&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref217" class="js-splitview-ref-item" data-legacy-id="ref217"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref217" href="javascript:;" aria-label="jumplink-ref217" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref217" class="ref-content " data-id="ref217"><span class="label title-label">217.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yao</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Tong</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Yan</div>   <div class="given-names">G</div></span></span>, et al. . <div class="article-title">Dual-regularized one-class collaborative filtering</div>. In: <div class="source "><em>Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management</em></div>. <div class="publisher-name">ACM</div>, <div class="publisher-loc">NY, USA</div>, <div class="year">2014</div>, <div class="fpage">759</div>–<div class="lpage">68</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Proceedings%20of%20the%2023rd%20ACM%20International%20Conference%20on%20Conference%20on%20Information%20and%20Knowledge%20Management&amp;author=Y%20Yao&amp;author=H%20Tong&amp;author=G%20Yan&amp;publication_year=2014&amp;book=Proceedings%20of%20the%2023rd%20ACM%20International%20Conference%20on%20Conference%20on%20Information%20and%20Knowledge%20Management" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1145/2661829" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1145%2F2661829" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1145%2F2661829"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Proceedings%20of%20the%2023rd%20ACM%20International%20Conference%20on%20Conference%20on%20Information%20and%20Knowledge%20Management&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Proceedings%20of%20the%2023rd%20ACM%20International%20Conference%20on%20Conference%20on%20Information%20and%20Knowledge%20Management&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Proceedings%20of%20the%2023rd%20ACM%20International%20Conference%20on%20Conference%20on%20Information%20and%20Knowledge%20Management">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref218" class="js-splitview-ref-item" data-legacy-id="ref218"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref218" href="javascript:;" aria-label="jumplink-ref218" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref218" class="ref-content " data-id="ref218"><span class="label title-label">218.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Lim</div>   <div class="given-names">H</div></span>, <span class="name string-name"><div class="surname">Gray</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">Xie</div>   <div class="given-names">L</div></span></span>, et al. . <div class="article-title">Improved genome-scale multi-target virtual screening via a novel collaborative filtering approach to cold-start problem</div>. <div class="source ">Sci Rep</div>  <div class="year">2016</div>;<div class="volume">6</div>:<div class="fpage">38860</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Improved%20genome-scale%20multi-target%20virtual%20screening%20via%20a%20novel%20collaborative%20filtering%20approach%20to%20cold-start%20problem&amp;author=H%20Lim&amp;author=P%20Gray&amp;author=L%20Xie&amp;publication_year=2016&amp;journal=Sci%20Rep&amp;volume=6&amp;pages=38860" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/srep38860" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fsrep38860" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fsrep38860"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27958331" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Improved%20genome-scale%20multi-target%20virtual%20screening%20via%20a%20novel%20collaborative%20filtering%20approach%20to%20cold-start%20problem&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref219" class="js-splitview-ref-item" data-legacy-id="ref219"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref219" href="javascript:;" aria-label="jumplink-ref219" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref219" class="ref-content " data-id="ref219"><span class="label title-label">219.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Manoochehri</div>   <div class="given-names">HE</div></span>, <span class="name string-name"><div class="surname">Nourani</div>   <div class="given-names">M</div></span></span>. <div class="article-title">Predicting drug–target interaction using deep matrix factorization</div>. In: <div class="source "><em>2018 IEEE Biomedical Circuits and Systems Conference (BioCAS)</em></div>. <div class="publisher-name">IEEE</div>, <div class="publisher-loc">NY, USA</div>, <div class="year">2018</div>, <div class="fpage">1</div>–<div class="lpage">4</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=2018%20IEEE%20Biomedical%20Circuits%20and%20Systems%20Conference%20%28BioCAS%29&amp;author=HE%20Manoochehri&amp;author=M%20Nourani&amp;publication_year=2018&amp;book=2018%20IEEE%20Biomedical%20Circuits%20and%20Systems%20Conference%20%28BioCAS%29" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1109/BIOCAS.2018.8584817" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1109%2FBIOCAS.2018.8584817" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1109%2FBIOCAS.2018.8584817"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=2018%20IEEE%20Biomedical%20Circuits%20and%20Systems%20Conference%20%28BioCAS%29&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:2018%20IEEE%20Biomedical%20Circuits%20and%20Systems%20Conference%20%28BioCAS%29&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=2018%20IEEE%20Biomedical%20Circuits%20and%20Systems%20Conference%20%28BioCAS%29">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref220" class="js-splitview-ref-item" data-legacy-id="ref220"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref220" href="javascript:;" aria-label="jumplink-ref220" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref220" class="ref-content " data-id="ref220"><span class="label title-label">220.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Xue</div>   <div class="given-names">H-J</div></span>, <span class="name string-name"><div class="surname">Dai</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">Deep matrix factorization models for recommender systems</div>. <div class="source "><em>IJCAI</em></div>, <div class="year">2017</div>, <div class="fpage">3203</div>–<div class="lpage">9</div>.</p></div></div></div></div><div content-id="ref221" class="js-splitview-ref-item" data-legacy-id="ref221"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref221" href="javascript:;" aria-label="jumplink-ref221" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref221" class="ref-content " data-id="ref221"><span class="label title-label">221.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yasuo</div>   <div class="given-names">N</div></span>, <span class="name string-name"><div class="surname">Nakashima</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Sekijima</div>   <div class="given-names">M</div></span></span>. <div class="article-title">CoDe-DTI: Collaborative deep learning-based drug–target interaction prediction</div>. In: <div class="source "><em>2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)</em></div>. <div class="publisher-name">IEEE</div>, <div class="publisher-loc">NY, USA</div>, <div class="year">2018</div>, <div class="fpage">792</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=2018%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29&amp;author=N%20Yasuo&amp;author=Y%20Nakashima&amp;author=M%20Sekijima&amp;publication_year=2018&amp;book=2018%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1109/BIBM.2018.8621368" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1109%2FBIBM.2018.8621368" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1109%2FBIBM.2018.8621368"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=2018%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:2018%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=2018%20IEEE%20International%20Conference%20on%20Bioinformatics%20and%20Biomedicine%20%28BIBM%29">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref222" class="js-splitview-ref-item" data-legacy-id="ref222"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref222" href="javascript:;" aria-label="jumplink-ref222" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref222" class="ref-content " data-id="ref222"><span class="label title-label">222.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Sakakibara</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Hachiya</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Uchida</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">COPICAT: a software system for predicting interactions between proteins and chemical compounds</div>. <div class="source ">Bioinformatics</div>  <div class="year">2012</div>;<div class="volume">28</div>(<div class="issue">5</div>):<div class="fpage">745</div>–<div class="lpage">6</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=COPICAT%3A%20a%20software%20system%20for%20predicting%20interactions%20between%20proteins%20and%20chemical%20compounds&amp;author=Y%20Sakakibara&amp;author=T%20Hachiya&amp;author=M%20Uchida&amp;publication_year=2012&amp;journal=Bioinformatics&amp;volume=28&amp;pages=745-6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/bts031" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbts031" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbts031"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22257668" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:COPICAT%3A%20a%20software%20system%20for%20predicting%20interactions%20between%20proteins%20and%20chemical%20compounds&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref223" class="js-splitview-ref-item" data-legacy-id="ref223"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref223" href="javascript:;" aria-label="jumplink-ref223" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref223" class="ref-content " data-id="ref223"><span class="label title-label">223.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cao</div>   <div class="given-names">D-S</div></span>, <span class="name string-name"><div class="surname">Liang</div>   <div class="given-names">Y-Z</div></span>, <span class="name string-name"><div class="surname">Yan</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">PyDPI: freely available python package for chemoinformatics, bioinformatics, and chemogenomics studies</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2013</div>;<div class="volume">53</div>(<div class="issue">11</div>):<div class="fpage">3086</div>–<div class="lpage">96</div>. <div class="comment">PMID: 24047419</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=PyDPI%3A%20freely%20available%20python%20package%20for%20chemoinformatics%2C%20bioinformatics%2C%20and%20chemogenomics%20studies&amp;author=D-S%20Cao&amp;author=Y-Z%20Liang&amp;author=J%20Yan&amp;publication_year=2013&amp;journal=J%20Chem%20Inf%20Model&amp;volume=53&amp;pages=3086-96" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci400127q" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci400127q" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci400127q"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24047419" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:PyDPI%3A%20freely%20available%20python%20package%20for%20chemoinformatics%2C%20bioinformatics%2C%20and%20chemogenomics%20studies&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref224" class="js-splitview-ref-item" data-legacy-id="ref224"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref224" href="javascript:;" aria-label="jumplink-ref224" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref224" class="ref-content " data-id="ref224"><span class="label title-label">224.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cao</div>   <div class="given-names">D-S</div></span>, <span class="name string-name"><div class="surname">Liang</div>   <div class="given-names">Y-Z</div></span>, <span class="name string-name"><div class="surname">Deng</div>   <div class="given-names">Z</div></span></span>, et al. . <div class="article-title">Genome-scale screening of drug-target associations relevant to Ki using a chemogenomics approach</div>. <div class="source ">PloS One</div>  <div class="year">2013</div>;<div class="volume">8</div>(<div class="issue">4</div>):e57680.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Genome-scale%20screening%20of%20drug-target%20associations%20relevant%20to%20Ki%20using%20a%20chemogenomics%20approach&amp;author=D-S%20Cao&amp;author=Y-Z%20Liang&amp;author=Z%20Deng&amp;publication_year=2013&amp;journal=PloS%20One&amp;volume=8&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Genome-scale+screening+of+drug-target+associations+relevant+to+Ki+using+a+chemogenomics+approach&amp;aulast=Cao&amp;title=PloS+One&amp;date=2013&amp;volume=8&amp;issue=4" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Genome-scale%20screening%20of%20drug-target%20associations%20relevant%20to%20Ki%20using%20a%20chemogenomics%20approach&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref225" class="js-splitview-ref-item" data-legacy-id="ref225"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref225" href="javascript:;" aria-label="jumplink-ref225" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref225" class="ref-content " data-id="ref225"><span class="label title-label">225.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Xiao</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Min</div>   <div class="given-names">J-L</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">Chou</div>   <div class="given-names">KC</div></span></span>. <div class="article-title">Igpcr-drug: a web server for predicting interaction between gpcrs and drugs in cellular networking</div>. <div class="source ">PloS One</div>  <div class="year">2013</div>;<div class="volume">8</div>(<div class="issue">8</div>):e72234.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Igpcr-drug%3A%20a%20web%20server%20for%20predicting%20interaction%20between%20gpcrs%20and%20drugs%20in%20cellular%20networking&amp;author=X%20Xiao&amp;author=J-L%20Min&amp;author=P%20Wang&amp;author=KC%20Chou&amp;publication_year=2013&amp;journal=PloS%20One&amp;volume=8&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Igpcr-drug%3a+a+web+server+for+predicting+interaction+between+gpcrs+and+drugs+in+cellular+networking&amp;aulast=Xiao&amp;title=PloS+One&amp;date=2013&amp;volume=8&amp;issue=8" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Igpcr-drug%3A%20a%20web%20server%20for%20predicting%20interaction%20between%20gpcrs%20and%20drugs%20in%20cellular%20networking&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref226" class="js-splitview-ref-item" data-legacy-id="ref226"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref226" href="javascript:;" aria-label="jumplink-ref226" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref226" class="ref-content " data-id="ref226"><span class="label title-label">226.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Lin</div>   <div class="given-names">S-X</div></span>, <span class="name string-name"><div class="surname">Lapointe</div>   <div class="given-names">J</div></span></span>. <div class="article-title">Theoretical and experimental biology in one</div>. <div class="source ">J Biomed Sci Eng</div>  <div class="year">2013</div>;<div class="volume">6</div>(<div class="issue">04</div>):<div class="fpage">435</div>–<div class="lpage">42</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Theoretical%20and%20experimental%20biology%20in%20one&amp;author=S-X%20Lin&amp;author=J%20Lapointe&amp;publication_year=2013&amp;journal=J%20Biomed%20Sci%20Eng&amp;volume=6&amp;pages=435-42" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.4236/jbise.2013.64054" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.4236%2Fjbise.2013.64054" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.4236%2Fjbise.2013.64054"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Theoretical%20and%20experimental%20biology%20in%20one&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref227" class="js-splitview-ref-item" data-legacy-id="ref227"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref227" href="javascript:;" aria-label="jumplink-ref227" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref227" class="ref-content " data-id="ref227"><span class="label title-label">227.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Keller</div>   <div class="given-names">JM</div></span>, <span class="name string-name"><div class="surname">Gray</div>   <div class="given-names">MR</div></span>, <span class="name string-name"><div class="surname">Givens</div>   <div class="given-names">JA</div></span></span>. <div class="article-title">A fuzzy K-nearest neighbor algorithm</div>. <div class="source ">IEEE Trans Syst Man Cybern</div>  <div class="year">1985</div>;(<div class="issue">4</div>):<div class="fpage">580</div>–<div class="lpage">5</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20fuzzy%20K-nearest%20neighbor%20algorithm&amp;author=JM%20Keller&amp;author=MR%20Gray&amp;author=JA%20Givens&amp;publication_year=1985&amp;journal=IEEE%20Trans%20Syst%20Man%20Cybern&amp;volume=&amp;pages=580-5" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=A+fuzzy+K-nearest+neighbor+algorithm&amp;aulast=Keller&amp;title=IEEE+Trans+Syst+Man+Cybern&amp;date=1985&amp;spage=580&amp;epage=5&amp;issue=4" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20fuzzy%20K-nearest%20neighbor%20algorithm&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref228" class="js-splitview-ref-item" data-legacy-id="ref228"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref228" href="javascript:;" aria-label="jumplink-ref228" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref228" class="ref-content " data-id="ref228"><span class="label title-label">228.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chou</div>   <div class="given-names">K-C</div></span>, <span class="name string-name"><div class="surname">Zhang</div>   <div class="given-names">C-T</div></span></span>. <div class="article-title">Prediction of protein structural classes</div>. <div class="source ">Crit Rev Biochem Mol Biol</div>  <div class="year">1995</div>;<div class="volume">30</div>(<div class="issue">4</div>):<div class="fpage">275</div>–<div class="lpage">349</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Prediction%20of%20protein%20structural%20classes&amp;author=K-C%20Chou&amp;author=C-T%20Zhang&amp;publication_year=1995&amp;journal=Crit%20Rev%20Biochem%20Mol%20Biol&amp;volume=30&amp;pages=275-349" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.3109/10409239509083488" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.3109%2F10409239509083488" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.3109%2F10409239509083488"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/7587280" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Prediction%20of%20protein%20structural%20classes&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref229" class="js-splitview-ref-item" data-legacy-id="ref229"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref229" href="javascript:;" aria-label="jumplink-ref229" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref229" class="ref-content " data-id="ref229"><span class="label title-label">229.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Yamanishi</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Kotera</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Moriya</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">DINIES: drug–target interaction network inference engine based on supervised analysis</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2014</div>;<div class="volume">42</div>(<div class="issue">W1</div>):<div class="fpage">W39</div>–<div class="lpage">45</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DINIES%3A%20drug%E2%80%93target%20interaction%20network%20inference%20engine%20based%20on%20supervised%20analysis&amp;author=Y%20Yamanishi&amp;author=M%20Kotera&amp;author=Y%20Moriya&amp;publication_year=2014&amp;journal=Nucleic%20Acids%20Res&amp;volume=42&amp;pages=W39-45" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gku337" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgku337" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgku337"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24838565" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DINIES%3A%20drug%E2%80%93target%20interaction%20network%20inference%20engine%20based%20on%20supervised%20analysis&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref230" class="js-splitview-ref-item" data-legacy-id="ref230"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref230" href="javascript:;" aria-label="jumplink-ref230" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref230" class="ref-content " data-id="ref230"><span class="label title-label">230.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Scheiber</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Jenkins</div>   <div class="given-names">JL</div></span>, <span class="name string-name"><div class="surname">Sukuru</div>   <div class="given-names">SCK</div></span></span>, et al. . <div class="article-title">Mapping adverse drug reactions in chemical space</div>. <div class="source ">J Med Chem</div>  <div class="year">2009</div>;<div class="volume">52</div>(<div class="issue">9</div>):<div class="fpage">3103</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Mapping%20adverse%20drug%20reactions%20in%20chemical%20space&amp;author=J%20Scheiber&amp;author=JL%20Jenkins&amp;author=SCK%20Sukuru&amp;publication_year=2009&amp;journal=J%20Med%20Chem&amp;volume=52&amp;pages=3103-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/jm801546k" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fjm801546k" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fjm801546k"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19378990" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Mapping%20adverse%20drug%20reactions%20in%20chemical%20space&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref231" class="js-splitview-ref-item" data-legacy-id="ref231"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref231" href="javascript:;" aria-label="jumplink-ref231" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref231" class="ref-content " data-id="ref231"><span class="label title-label">231.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Seal</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Wild</div>   <div class="given-names">DJ</div></span></span>. <div class="article-title">Netpredictor: R and Shiny package to perform drug-target network analysis and prediction of missing links</div>. <div class="source ">BMC Bioinformatics</div>  <div class="year">2018</div>;<div class="volume">19</div>(<div class="issue">1</div>):<div class="fpage">265</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Netpredictor%3A%20R%20and%20Shiny%20package%20to%20perform%20drug-target%20network%20analysis%20and%20prediction%20of%20missing%20links&amp;author=A%20Seal&amp;author=DJ%20Wild&amp;publication_year=2018&amp;journal=BMC%20Bioinformatics&amp;volume=19&amp;pages=265" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/s12859-018-2254-7" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2Fs12859-018-2254-7" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2Fs12859-018-2254-7"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/30012095" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Netpredictor%3A%20R%20and%20Shiny%20package%20to%20perform%20drug-target%20network%20analysis%20and%20prediction%20of%20missing%20links&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref232" class="js-splitview-ref-item" data-legacy-id="ref232"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref232" href="javascript:;" aria-label="jumplink-ref232" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref232" class="ref-content " data-id="ref232"><span class="label title-label">232.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Hao</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Bryant</div>   <div class="given-names">SH</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">Y</div></span></span>. <div class="article-title">Open-source chemogenomic data-driven algorithms for predicting drug–target interactions</div>. <div class="source ">Brief Bioinform</div>  <div class="year">2019</div>;<div class="volume">20</div>(<div class="issue">4</div>):<div class="fpage">1465</div>–<div class="lpage">1474</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Open-source%20chemogenomic%20data-driven%20algorithms%20for%20predicting%20drug%E2%80%93target%20interactions&amp;author=M%20Hao&amp;author=SH%20Bryant&amp;author=Y%20Wang&amp;publication_year=2019&amp;journal=Brief%20Bioinform&amp;volume=20&amp;pages=1465-1474" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bib/bby010" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbib%2Fbby010" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbib%2Fbby010"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/29420684" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Open-source%20chemogenomic%20data-driven%20algorithms%20for%20predicting%20drug%E2%80%93target%20interactions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref233" class="js-splitview-ref-item" data-legacy-id="ref233"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref233" href="javascript:;" aria-label="jumplink-ref233" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref233" class="ref-content " data-id="ref233"><span class="label title-label">233.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Hao</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Bryant</div>   <div class="given-names">SH</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">Y</div></span></span>. <div class="article-title">Predicting drug–target interactions by dual-network integrated logistic matrix factorization</div>. <div class="source "><em>Nature News</em>,</div>  <div class="year">2017</div>;<div class="volume">7</div>:<div class="fpage">40376</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Predicting%20drug%E2%80%93target%20interactions%20by%20dual-network%20integrated%20logistic%20matrix%20factorization&amp;author=M%20Hao&amp;author=SH%20Bryant&amp;author=Y%20Wang&amp;publication_year=2017&amp;journal=Nature%20News%2C&amp;volume=7&amp;pages=40376" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Predicting+drug%e2%80%93target+interactions+by+dual-network+integrated+logistic+matrix+factorization&amp;aulast=Hao&amp;title=Nature+News%2c&amp;date=2017&amp;spage=40376&amp;volume=7" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Predicting%20drug%E2%80%93target%20interactions%20by%20dual-network%20integrated%20logistic%20matrix%20factorization&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref234" class="js-splitview-ref-item" data-legacy-id="ref234"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref234" href="javascript:;" aria-label="jumplink-ref234" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref234" class="ref-content " data-id="ref234"><span class="label title-label">234.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kanehisa</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Furumichi</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Tanabe</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">KEGG: new perspectives on genomes, pathways, diseases and drugs</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2016</div>;<div class="volume">45</div>(<div class="issue">D1</div>):<div class="fpage">D353</div>–<div class="lpage">61</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=KEGG%3A%20new%20perspectives%20on%20genomes%2C%20pathways%2C%20diseases%20and%20drugs&amp;author=M%20Kanehisa&amp;author=M%20Furumichi&amp;author=M%20Tanabe&amp;publication_year=2016&amp;journal=Nucleic%20Acids%20Res&amp;volume=45&amp;pages=D353-61" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkw1092" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkw1092" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkw1092"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27899662" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:KEGG%3A%20new%20perspectives%20on%20genomes%2C%20pathways%2C%20diseases%20and%20drugs&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref235" class="js-splitview-ref-item" data-legacy-id="ref235"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref235" href="javascript:;" aria-label="jumplink-ref235" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref235" class="ref-content " data-id="ref235"><span class="label title-label">235.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kanehisa</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Goto</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Hattori</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">From genomics to chemical genomics: new developments in KEGG</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2006</div>;<div class="volume">34</div>(<div class="issue">suppl_1</div>):<div class="fpage">D354</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=From%20genomics%20to%20chemical%20genomics%3A%20new%20developments%20in%20KEGG&amp;author=M%20Kanehisa&amp;author=S%20Goto&amp;author=M%20Hattori&amp;publication_year=2006&amp;journal=Nucleic%20Acids%20Res&amp;volume=34&amp;pages=D354-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkj102" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkj102" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkj102"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16381885" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:From%20genomics%20to%20chemical%20genomics%3A%20new%20developments%20in%20KEGG&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref236" class="js-splitview-ref-item" data-legacy-id="ref236"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref236" href="javascript:;" aria-label="jumplink-ref236" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref236" class="ref-content " data-id="ref236"><span class="label title-label">236.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kanehisa</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Araki</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Goto</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">KEGG for linking genomes to life and the environment</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2007</div>;<div class="volume">36</div>(<div class="issue">suppl_1</div>):<div class="fpage">D480</div>–<div class="lpage">4</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=KEGG%20for%20linking%20genomes%20to%20life%20and%20the%20environment&amp;author=M%20Kanehisa&amp;author=M%20Araki&amp;author=S%20Goto&amp;publication_year=2007&amp;journal=Nucleic%20Acids%20Res&amp;volume=36&amp;pages=D480-4" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkm882" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkm882" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkm882"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18077471" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:KEGG%20for%20linking%20genomes%20to%20life%20and%20the%20environment&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref237" class="js-splitview-ref-item" data-legacy-id="ref237"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref237" href="javascript:;" aria-label="jumplink-ref237" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref237" class="ref-content " data-id="ref237"><span class="label title-label">237.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Bento</div>   <div class="given-names">AP</div></span>, <span class="name string-name"><div class="surname">Gaulton</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Hersey</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">The chembl bioactivity database: an update</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2014</div>;<div class="volume">42</div>(<div class="issue">D1</div>):<div class="fpage">D1083</div>–<div class="lpage">90</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20chembl%20bioactivity%20database%3A%20an%20update&amp;author=AP%20Bento&amp;author=A%20Gaulton&amp;author=A%20Hersey&amp;publication_year=2014&amp;journal=Nucleic%20Acids%20Res&amp;volume=42&amp;pages=D1083-90" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkt1031" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkt1031" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkt1031"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24214965" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20chembl%20bioactivity%20database%3A%20an%20update&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref238" class="js-splitview-ref-item" data-legacy-id="ref238"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref238" href="javascript:;" aria-label="jumplink-ref238" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref238" class="ref-content " data-id="ref238"><span class="label title-label">238.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Gaulton</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Hersey</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Nowotka</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">The ChEMBL database in 2017</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2016</div>;<div class="volume">45</div>(<div class="issue">D1</div>):<div class="fpage">D945</div>–<div class="lpage">54</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20ChEMBL%20database%20in%202017&amp;author=A%20Gaulton&amp;author=A%20Hersey&amp;author=M%20Nowotka&amp;publication_year=2016&amp;journal=Nucleic%20Acids%20Res&amp;volume=45&amp;pages=D945-54" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkw1074" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkw1074" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkw1074"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27899562" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20ChEMBL%20database%20in%202017&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref239" class="js-splitview-ref-item" data-legacy-id="ref239"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref239" href="javascript:;" aria-label="jumplink-ref239" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref239" class="ref-content " data-id="ref239"><span class="label title-label">239.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Gaulton</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Bellis</div>   <div class="given-names">LJ</div></span>, <span class="name string-name"><div class="surname">Bento</div>   <div class="given-names">AP</div></span></span>, et al. . <div class="article-title">ChEMBL: a large-scale bioactivity database for drug discovery</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2011</div>;<div class="volume">40</div>(<div class="issue">D1</div>):<div class="fpage">D1100</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=ChEMBL%3A%20a%20large-scale%20bioactivity%20database%20for%20drug%20discovery&amp;author=A%20Gaulton&amp;author=LJ%20Bellis&amp;author=AP%20Bento&amp;publication_year=2011&amp;journal=Nucleic%20Acids%20Res&amp;volume=40&amp;pages=D1100-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkr777" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkr777" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkr777"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21948594" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:ChEMBL%3A%20a%20large-scale%20bioactivity%20database%20for%20drug%20discovery&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref240" class="js-splitview-ref-item" data-legacy-id="ref240"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref240" href="javascript:;" aria-label="jumplink-ref240" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref240" class="ref-content " data-id="ref240"><span class="label title-label">240.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Pawson</div>   <div class="given-names">AJ</div></span>, <span class="name string-name"><div class="surname">Sharman</div>   <div class="given-names">JL</div></span>, <span class="name string-name"><div class="surname">Benson</div>   <div class="given-names">HE</div></span></span>, et al. . <div class="article-title">The IUPHAR/BPS guide to pharmacology: an expert-driven knowledgebase of drug targets and their ligands</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2013</div>;<div class="volume">42</div>(<div class="issue">D1</div>):<div class="fpage">D1098</div>–<div class="lpage">106</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20IUPHAR%2FBPS%20guide%20to%20pharmacology%3A%20an%20expert-driven%20knowledgebase%20of%20drug%20targets%20and%20their%20ligands&amp;author=AJ%20Pawson&amp;author=JL%20Sharman&amp;author=HE%20Benson&amp;publication_year=2013&amp;journal=Nucleic%20Acids%20Res&amp;volume=42&amp;pages=D1098-106" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkt1143" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkt1143" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkt1143"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24234439" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20IUPHAR%2FBPS%20guide%20to%20pharmacology%3A%20an%20expert-driven%20knowledgebase%20of%20drug%20targets%20and%20their%20ligands&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref241" class="js-splitview-ref-item" data-legacy-id="ref241"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref241" href="javascript:;" aria-label="jumplink-ref241" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref241" class="ref-content " data-id="ref241"><span class="label title-label">241.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Günther</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Kuhn</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Dunkel</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">Supertarget and matador: resources for exploring drug-target relationships</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2007</div>;<div class="volume">36</div>(<div class="issue">suppl_1</div>):<div class="fpage">D919</div>–<div class="lpage">22</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Supertarget%20and%20matador%3A%20resources%20for%20exploring%20drug-target%20relationships&amp;author=S%20G%C3%BCnther&amp;author=M%20Kuhn&amp;author=M%20Dunkel&amp;publication_year=2007&amp;journal=Nucleic%20Acids%20Res&amp;volume=36&amp;pages=D919-22" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkm862" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkm862" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkm862"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17942422" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Supertarget%20and%20matador%3A%20resources%20for%20exploring%20drug-target%20relationships&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref242" class="js-splitview-ref-item" data-legacy-id="ref242"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref242" href="javascript:;" aria-label="jumplink-ref242" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref242" class="ref-content " data-id="ref242"><span class="label title-label">242.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Knox</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Law</div>   <div class="given-names">V</div></span>, <span class="name string-name"><div class="surname">Jewison</div>   <div class="given-names">T</div></span></span>, et al. . <div class="article-title">Drugbank 3.0: a comprehensive resource for ‘omics’ research on drugs</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2010</div>;<div class="volume">39</div>(<div class="issue">suppl_1</div>):<div class="fpage">D1035</div>–<div class="lpage">41</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drugbank%203.0%3A%20a%20comprehensive%20resource%20for%20%E2%80%98omics%E2%80%99%20research%20on%20drugs&amp;author=C%20Knox&amp;author=V%20Law&amp;author=T%20Jewison&amp;publication_year=2010&amp;journal=Nucleic%20Acids%20Res&amp;volume=39&amp;pages=D1035-41" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21059682" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Drugbank+3.0%3a+a+comprehensive+resource+for+%e2%80%98omics%e2%80%99+research+on+drugs&amp;aulast=Knox&amp;title=Nucleic+Acids+Res&amp;date=2010&amp;spage=D1035&amp;epage=41&amp;volume=39&amp;issue=suppl_1" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drugbank%203.0%3A%20a%20comprehensive%20resource%20for%20%E2%80%98omics%E2%80%99%20research%20on%20drugs&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref243" class="js-splitview-ref-item" data-legacy-id="ref243"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref243" href="javascript:;" aria-label="jumplink-ref243" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref243" class="ref-content " data-id="ref243"><span class="label title-label">243.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Law</div>   <div class="given-names">V</div></span>, <span class="name string-name"><div class="surname">Knox</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Djoumbou</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">Drugbank 4.0: shedding new light on drug metabolism</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2013</div>;<div class="volume">42</div>(<div class="issue">D1</div>):<div class="fpage">D1091</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drugbank%204.0%3A%20shedding%20new%20light%20on%20drug%20metabolism&amp;author=V%20Law&amp;author=C%20Knox&amp;author=Y%20Djoumbou&amp;publication_year=2013&amp;journal=Nucleic%20Acids%20Res&amp;volume=42&amp;pages=D1091-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkt1068" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkt1068" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkt1068"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24203711" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drugbank%204.0%3A%20shedding%20new%20light%20on%20drug%20metabolism&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref244" class="js-splitview-ref-item" data-legacy-id="ref244"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref244" href="javascript:;" aria-label="jumplink-ref244" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref244" class="ref-content " data-id="ref244"><span class="label title-label">244.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wishart</div>   <div class="given-names">DS</div></span>, <span class="name string-name"><div class="surname">Feunang</div>   <div class="given-names">YD</div></span>, <span class="name string-name"><div class="surname">Guo</div>   <div class="given-names">AC</div></span></span>, et al. . <div class="article-title">Drugbank 5.0: a major update to the drugbank database for 2018</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2017</div>;<div class="volume">46</div>(<div class="issue">D1</div>):<div class="fpage">D1074</div>–<div class="lpage">82</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Drugbank%205.0%3A%20a%20major%20update%20to%20the%20drugbank%20database%20for%202018&amp;author=DS%20Wishart&amp;author=YD%20Feunang&amp;author=AC%20Guo&amp;publication_year=2017&amp;journal=Nucleic%20Acids%20Res&amp;volume=46&amp;pages=D1074-82" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkx1037" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkx1037" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkx1037"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Drugbank%205.0%3A%20a%20major%20update%20to%20the%20drugbank%20database%20for%202018&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref245" class="js-splitview-ref-item" data-legacy-id="ref245"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref245" href="javascript:;" aria-label="jumplink-ref245" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref245" class="ref-content " data-id="ref245"><span class="label title-label">245.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wishart</div>   <div class="given-names">DS</div></span>, <span class="name string-name"><div class="surname">Knox</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Guo</div>   <div class="given-names">AC</div></span></span>, et al. . <div class="article-title">DrugBank: a comprehensive resource for in silico drug discovery and exploration</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2006</div>;<div class="volume">34</div>(<div class="issue">suppl_1</div>):<div class="fpage">D668</div>–<div class="lpage">72</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DrugBank%3A%20a%20comprehensive%20resource%20for%20in%20silico%20drug%20discovery%20and%20exploration&amp;author=DS%20Wishart&amp;author=C%20Knox&amp;author=AC%20Guo&amp;publication_year=2006&amp;journal=Nucleic%20Acids%20Res&amp;volume=34&amp;pages=D668-72" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkj067" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkj067" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkj067"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16381955" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DrugBank%3A%20a%20comprehensive%20resource%20for%20in%20silico%20drug%20discovery%20and%20exploration&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref246" class="js-splitview-ref-item" data-legacy-id="ref246"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref246" href="javascript:;" aria-label="jumplink-ref246" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref246" class="ref-content " data-id="ref246"><span class="label title-label">246.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wishart</div>   <div class="given-names">DS</div></span>, <span class="name string-name"><div class="surname">Knox</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Guo</div>   <div class="given-names">AC</div></span></span>, et al. . <div class="article-title">DrugBank: a knowledgebase for drugs, drug actions and drug targets</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2007</div>;<div class="volume">36</div>(<div class="issue">suppl_1</div>):<div class="fpage">D901</div>–<div class="lpage">6</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DrugBank%3A%20a%20knowledgebase%20for%20drugs%2C%20drug%20actions%20and%20drug%20targets&amp;author=DS%20Wishart&amp;author=C%20Knox&amp;author=AC%20Guo&amp;publication_year=2007&amp;journal=Nucleic%20Acids%20Res&amp;volume=36&amp;pages=D901-6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkm958" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkm958" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkm958"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18048412" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DrugBank%3A%20a%20knowledgebase%20for%20drugs%2C%20drug%20actions%20and%20drug%20targets&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref247" class="js-splitview-ref-item" data-legacy-id="ref247"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref247" href="javascript:;" aria-label="jumplink-ref247" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref247" class="ref-content " data-id="ref247"><span class="label title-label">247.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Ji</div>   <div class="given-names">ZL</div></span>, <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">YZ</div></span></span>. <div class="article-title">TTD: therapeutic target database</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2002</div>;<div class="volume">30</div>(<div class="issue">1</div>):<div class="fpage">412</div>–<div class="lpage">5</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=TTD%3A%20therapeutic%20target%20database&amp;author=X%20Chen&amp;author=ZL%20Ji&amp;author=YZ%20Chen&amp;publication_year=2002&amp;journal=Nucleic%20Acids%20Res&amp;volume=30&amp;pages=412-5" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/30.1.412" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2F30.1.412" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2F30.1.412"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/11752352" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:TTD%3A%20therapeutic%20target%20database&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref248" class="js-splitview-ref-item" data-legacy-id="ref248"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref248" href="javascript:;" aria-label="jumplink-ref248" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref248" class="ref-content " data-id="ref248"><span class="label title-label">248.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kuhn</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Szklarczyk</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Franceschini</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">STITCH 2: an interaction network database for small molecules and proteins</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2009</div>;<div class="volume">38</div>(<div class="issue">suppl_1</div>):<div class="fpage">D552</div>–<div class="lpage">6</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=STITCH%202%3A%20an%20interaction%20network%20database%20for%20small%20molecules%20and%20proteins&amp;author=M%20Kuhn&amp;author=D%20Szklarczyk&amp;author=A%20Franceschini&amp;publication_year=2009&amp;journal=Nucleic%20Acids%20Res&amp;volume=38&amp;pages=D552-6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkp937" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkp937" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkp937"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19897548" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:STITCH%202%3A%20an%20interaction%20network%20database%20for%20small%20molecules%20and%20proteins&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref249" class="js-splitview-ref-item" data-legacy-id="ref249"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref249" href="javascript:;" aria-label="jumplink-ref249" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref249" class="ref-content " data-id="ref249"><span class="label title-label">249.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kuhn</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Szklarczyk</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Franceschini</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">STITCH 3: zooming in on protein–chemical interactions</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2011</div>;<div class="volume">40</div>(<div class="issue">D1</div>):<div class="fpage">D876</div>–<div class="lpage">80</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=STITCH%203%3A%20zooming%20in%20on%20protein%E2%80%93chemical%20interactions&amp;author=M%20Kuhn&amp;author=D%20Szklarczyk&amp;author=A%20Franceschini&amp;publication_year=2011&amp;journal=Nucleic%20Acids%20Res&amp;volume=40&amp;pages=D876-80" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkr1011" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkr1011" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkr1011"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22075997" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:STITCH%203%3A%20zooming%20in%20on%20protein%E2%80%93chemical%20interactions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref250" class="js-splitview-ref-item" data-legacy-id="ref250"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref250" href="javascript:;" aria-label="jumplink-ref250" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref250" class="ref-content " data-id="ref250"><span class="label title-label">250.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kuhn</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Szklarczyk</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Pletscher-Frankild</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">STITCH 4: integration of protein–chemical interactions with user data</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2013</div>;<div class="volume">42</div>(<div class="issue">D1</div>):<div class="fpage">D401</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=STITCH%204%3A%20integration%20of%20protein%E2%80%93chemical%20interactions%20with%20user%20data&amp;author=M%20Kuhn&amp;author=D%20Szklarczyk&amp;author=S%20Pletscher-Frankild&amp;publication_year=2013&amp;journal=Nucleic%20Acids%20Res&amp;volume=42&amp;pages=D401-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkt1207" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkt1207" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkt1207"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24293645" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:STITCH%204%3A%20integration%20of%20protein%E2%80%93chemical%20interactions%20with%20user%20data&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref251" class="js-splitview-ref-item" data-legacy-id="ref251"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref251" href="javascript:;" aria-label="jumplink-ref251" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref251" class="ref-content " data-id="ref251"><span class="label title-label">251.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Szklarczyk</div>   <div class="given-names">D</div></span>, <span class="name string-name"><div class="surname">Santos</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">von Mering</div>   <div class="given-names">C</div></span></span>, et al. . <div class="article-title">STITCH 5: augmenting protein–chemical interaction networks with tissue and affinity data</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2015</div>;<div class="volume">44</div>(<div class="issue">D1</div>):<div class="fpage">D380</div>–<div class="lpage">4</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=STITCH%205%3A%20augmenting%20protein%E2%80%93chemical%20interaction%20networks%20with%20tissue%20and%20affinity%20data&amp;author=D%20Szklarczyk&amp;author=A%20Santos&amp;author=C%20von%20Mering&amp;publication_year=2015&amp;journal=Nucleic%20Acids%20Res&amp;volume=44&amp;pages=D380-4" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkv1277" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkv1277" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkv1277"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26590256" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:STITCH%205%3A%20augmenting%20protein%E2%80%93chemical%20interaction%20networks%20with%20tissue%20and%20affinity%20data&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref252" class="js-splitview-ref-item" data-legacy-id="ref252"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref252" href="javascript:;" aria-label="jumplink-ref252" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref252" class="ref-content " data-id="ref252"><span class="label title-label">252.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kuhn</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">von Mering</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Campillos</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">STITCH: interaction networks of chemicals and proteins</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2007</div>;<div class="volume">36</div>(<div class="issue">suppl_1</div>):<div class="fpage">D684</div>–<div class="lpage">8</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=STITCH%3A%20interaction%20networks%20of%20chemicals%20and%20proteins&amp;author=M%20Kuhn&amp;author=C%20von%20Mering&amp;author=M%20Campillos&amp;publication_year=2007&amp;journal=Nucleic%20Acids%20Res&amp;volume=36&amp;pages=D684-8" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkm795" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkm795" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkm795"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18084021" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:STITCH%3A%20interaction%20networks%20of%20chemicals%20and%20proteins&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref253" class="js-splitview-ref-item" data-legacy-id="ref253"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref253" href="javascript:;" aria-label="jumplink-ref253" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref253" class="ref-content " data-id="ref253"><span class="label title-label">253.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kringelum</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Kjaerulff</div>   <div class="given-names">SK</div></span>, <span class="name string-name"><div class="surname">Brunak</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">ChemProt-3.0: a global chemical biology diseases mapping</div>. <div class="source ">Database</div>  <div class="year">2016</div>;<div class="volume">2016</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=ChemProt-3.0%3A%20a%20global%20chemical%20biology%20diseases%20mapping&amp;author=J%20Kringelum&amp;author=SK%20Kjaerulff&amp;author=S%20Brunak&amp;publication_year=2016&amp;journal=Database&amp;volume=2016&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=ChemProt-3.0%3a+a+global+chemical+biology+diseases+mapping&amp;aulast=Kringelum&amp;title=Database&amp;date=2016&amp;volume=2016" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:ChemProt-3.0%3A%20a%20global%20chemical%20biology%20diseases%20mapping&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref254" class="js-splitview-ref-item" data-legacy-id="ref254"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref254" href="javascript:;" aria-label="jumplink-ref254" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref254" class="ref-content " data-id="ref254"><span class="label title-label">254.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Cotto</div>   <div class="given-names">KC</div></span>, <span class="name string-name"><div class="surname">Wagner</div>   <div class="given-names">AH</div></span>, <span class="name string-name"><div class="surname">Feng</div>   <div class="given-names">Y-Y</div></span></span>, et al. . <div class="article-title">DGIdb 3.0: a redesign and expansion of the drug–gene interaction database</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2017</div>;<div class="volume">46</div>(<div class="issue">D1</div>):<div class="fpage">D1068</div>–<div class="lpage">73</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DGIdb%203.0%3A%20a%20redesign%20and%20expansion%20of%20the%20drug%E2%80%93gene%20interaction%20database&amp;author=KC%20Cotto&amp;author=AH%20Wagner&amp;author=Y-Y%20Feng&amp;publication_year=2017&amp;journal=Nucleic%20Acids%20Res&amp;volume=46&amp;pages=D1068-73" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkx1143" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkx1143" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkx1143"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DGIdb%203.0%3A%20a%20redesign%20and%20expansion%20of%20the%20drug%E2%80%93gene%20interaction%20database&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref255" class="js-splitview-ref-item" data-legacy-id="ref255"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref255" href="javascript:;" aria-label="jumplink-ref255" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref255" class="ref-content " data-id="ref255"><span class="label title-label">255.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kim Kjærulff</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Wich</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Kringelum</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">ChemProt-2.0: visual navigation in a disease chemical biology database</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2012</div>;<div class="volume">41</div>(<div class="issue">D1</div>):<div class="fpage">D464</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=ChemProt-2.0%3A%20visual%20navigation%20in%20a%20disease%20chemical%20biology%20database&amp;author=S%20Kim%20Kj%C3%A6rulff&amp;author=L%20Wich&amp;author=J%20Kringelum&amp;publication_year=2012&amp;journal=Nucleic%20Acids%20Res&amp;volume=41&amp;pages=D464-9" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gks1166" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgks1166" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgks1166"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23185041" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:ChemProt-2.0%3A%20visual%20navigation%20in%20a%20disease%20chemical%20biology%20database&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref256" class="js-splitview-ref-item" data-legacy-id="ref256"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref256" href="javascript:;" aria-label="jumplink-ref256" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref256" class="ref-content " data-id="ref256"><span class="label title-label">256.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Taboureau</div>   <div class="given-names">O</div></span>, <span class="name string-name"><div class="surname">Nielsen</div>   <div class="given-names">SK</div></span>, <span class="name string-name"><div class="surname">Audouze</div>   <div class="given-names">K</div></span></span>, et al. . <div class="article-title">ChemProt: a disease chemical biology database</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2010</div>;<div class="volume">39</div>(<div class="issue">suppl_1</div>):<div class="fpage">D367</div>–<div class="lpage">72</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=ChemProt%3A%20a%20disease%20chemical%20biology%20database&amp;author=O%20Taboureau&amp;author=SK%20Nielsen&amp;author=K%20Audouze&amp;publication_year=2010&amp;journal=Nucleic%20Acids%20Res&amp;volume=39&amp;pages=D367-72" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/20935044" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=ChemProt%3a+a+disease+chemical+biology+database&amp;aulast=Taboureau&amp;title=Nucleic+Acids+Res&amp;date=2010&amp;spage=D367&amp;epage=72&amp;volume=39&amp;issue=suppl_1" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:ChemProt%3A%20a%20disease%20chemical%20biology%20database&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref257" class="js-splitview-ref-item" data-legacy-id="ref257"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref257" href="javascript:;" aria-label="jumplink-ref257" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref257" class="ref-content " data-id="ref257"><span class="label title-label">257.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Gilson</div>   <div class="given-names">MK</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Baitaluk</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">BindingDB in 2015: a public database for medicinal chemistry, computational chemistry and systems pharmacology</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2015</div>;<div class="volume">44</div>(<div class="issue">D1</div>):<div class="fpage">D1045</div>–<div class="lpage">53</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=BindingDB%20in%202015%3A%20a%20public%20database%20for%20medicinal%20chemistry%2C%20computational%20chemistry%20and%20systems%20pharmacology&amp;author=MK%20Gilson&amp;author=T%20Liu&amp;author=M%20Baitaluk&amp;publication_year=2015&amp;journal=Nucleic%20Acids%20Res&amp;volume=44&amp;pages=D1045-53" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkv1072" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkv1072" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkv1072"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26481362" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:BindingDB%20in%202015%3A%20a%20public%20database%20for%20medicinal%20chemistry%2C%20computational%20chemistry%20and%20systems%20pharmacology&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref258" class="js-splitview-ref-item" data-legacy-id="ref258"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref258" href="javascript:;" aria-label="jumplink-ref258" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref258" class="ref-content " data-id="ref258"><span class="label title-label">258.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Roth</div>   <div class="given-names">BL</div></span>, <span class="name string-name"><div class="surname">Lopez</div>   <div class="given-names">E</div></span>, <span class="name string-name"><div class="surname">Beischel</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Screening the receptorome to discover the molecular targets for plant-derived psychoactive compounds: a novel approach for cns drug discovery</div>. <div class="source ">Pharmacol Ther</div>  <div class="year">2004</div>;<div class="volume">102</div>(<div class="issue">2</div>):<div class="fpage">99</div>–<div class="lpage">110</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Screening%20the%20receptorome%20to%20discover%20the%20molecular%20targets%20for%20plant-derived%20psychoactive%20compounds%3A%20a%20novel%20approach%20for%20cns%20drug%20discovery&amp;author=BL%20Roth&amp;author=E%20Lopez&amp;author=S%20Beischel&amp;publication_year=2004&amp;journal=Pharmacol%20Ther&amp;volume=102&amp;pages=99-110" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.pharmthera.2004.03.004" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.pharmthera.2004.03.004" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.pharmthera.2004.03.004"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/15163592" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Screening%20the%20receptorome%20to%20discover%20the%20molecular%20targets%20for%20plant-derived%20psychoactive%20compounds%3A%20a%20novel%20approach%20for%20cns%20drug%20discovery&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref259" class="js-splitview-ref-item" data-legacy-id="ref259"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref259" href="javascript:;" aria-label="jumplink-ref259" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref259" class="ref-content " data-id="ref259"><span class="label title-label">259.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Hewett</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Oliver</div>   <div class="given-names">DE</div></span>, <span class="name string-name"><div class="surname">Rubin</div>   <div class="given-names">DL</div></span></span>, et al. . <div class="article-title">PharmGKB: the pharmacogenetics knowledge base</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2002</div>;<div class="volume">30</div>(<div class="issue">1</div>):<div class="fpage">163</div>–<div class="lpage">5</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=PharmGKB%3A%20the%20pharmacogenetics%20knowledge%20base&amp;author=M%20Hewett&amp;author=DE%20Oliver&amp;author=DL%20Rubin&amp;publication_year=2002&amp;journal=Nucleic%20Acids%20Res&amp;volume=30&amp;pages=163-5" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/30.1.163" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2F30.1.163" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2F30.1.163"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/11752281" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:PharmGKB%3A%20the%20pharmacogenetics%20knowledge%20base&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref260" class="js-splitview-ref-item" data-legacy-id="ref260"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref260" href="javascript:;" aria-label="jumplink-ref260" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref260" class="ref-content " data-id="ref260"><span class="label title-label">260.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Tatusova</div>   <div class="given-names">T</div></span></span>. <div class="article-title">Genomic databases and resources at the national center for biotechnology information</div>. <div class="source ">Data Mining Techniques for the Life Sciences</div>. <div class="publisher-name">Springer</div>, <div class="publisher-loc">New York, USA.</div>  <div class="year">2010</div>, <div class="fpage">17</div>–<div class="lpage">44</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Genomic%20databases%20and%20resources%20at%20the%20national%20center%20for%20biotechnology%20information&amp;author=T%20Tatusova&amp;publication_year=2010&amp;journal=Data%20Mining%20Techniques%20for%20the%20Life%20Sciences&amp;volume=&amp;pages=17-44" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Genomic+databases+and+resources+at+the+national+center+for+biotechnology+information&amp;aulast=Tatusova&amp;title=Data+Mining+Techniques+for+the+Life+Sciences&amp;date=2010&amp;spage=17&amp;epage=44" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Genomic%20databases%20and%20resources%20at%20the%20national%20center%20for%20biotechnology%20information&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref261" class="js-splitview-ref-item" data-legacy-id="ref261"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref261" href="javascript:;" aria-label="jumplink-ref261" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref261" class="ref-content " data-id="ref261"><span class="label title-label">261.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Davis</div>   <div class="given-names">AP</div></span>, <span class="name string-name"><div class="surname">Murphy</div>   <div class="given-names">CG</div></span>, <span class="name string-name"><div class="surname">Saraceni-Richards</div>   <div class="given-names">CA</div></span></span>, et al. . <div class="article-title">Comparative toxicogenomics database: a knowledgebase and discovery tool for chemical–gene–disease networks</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2008</div>;<div class="volume">37</div>(<div class="issue">suppl_1</div>):<div class="fpage">D786</div>–<div class="lpage">92</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Comparative%20toxicogenomics%20database%3A%20a%20knowledgebase%20and%20discovery%20tool%20for%20chemical%E2%80%93gene%E2%80%93disease%20networks&amp;author=AP%20Davis&amp;author=CG%20Murphy&amp;author=CA%20Saraceni-Richards&amp;publication_year=2008&amp;journal=Nucleic%20Acids%20Res&amp;volume=37&amp;pages=D786-92" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/18782832" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Comparative+toxicogenomics+database%3a+a+knowledgebase+and+discovery+tool+for+chemical%e2%80%93gene%e2%80%93disease+networks&amp;aulast=Davis&amp;title=Nucleic+Acids+Res&amp;date=2008&amp;spage=D786&amp;epage=92&amp;volume=37&amp;issue=suppl_1" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Comparative%20toxicogenomics%20database%3A%20a%20knowledgebase%20and%20discovery%20tool%20for%20chemical%E2%80%93gene%E2%80%93disease%20networks&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref262" class="js-splitview-ref-item" data-legacy-id="ref262"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref262" href="javascript:;" aria-label="jumplink-ref262" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref262" class="ref-content " data-id="ref262"><span class="label title-label">262.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Olah</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Rad</div>   <div class="given-names">R</div></span>, <span class="name string-name"><div class="surname">Ostopovici</div>   <div class="given-names">L</div></span></span>, et al. . <div class="article-title">WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery</div>. In: <div class="source ">Chemical Biology: From Small Molecules to Systems Biology and Drug Design</div>  <div class="year">2007</div>;<div class="volume">1</div>:<div class="fpage">760</div>–<div class="lpage">86</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=WOMBAT%20and%20WOMBAT-PK%3A%20bioactivity%20databases%20for%20lead%20and%20drug%20discovery&amp;author=M%20Olah&amp;author=R%20Rad&amp;author=L%20Ostopovici&amp;publication_year=2007&amp;journal=Chemical%20Biology%3A%20From%20Small%20Molecules%20to%20Systems%20Biology%20and%20Drug%20Design&amp;volume=1&amp;pages=760-86" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1002/9783527619375" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1002%2F9783527619375" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1002%2F9783527619375"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:WOMBAT%20and%20WOMBAT-PK%3A%20bioactivity%20databases%20for%20lead%20and%20drug%20discovery&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref263" class="js-splitview-ref-item" data-legacy-id="ref263"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref263" href="javascript:;" aria-label="jumplink-ref263" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref263" class="ref-content " data-id="ref263"><span class="label title-label">263.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wagner</div>   <div class="given-names">AH</div></span>, <span class="name string-name"><div class="surname">Coffman</div>   <div class="given-names">AC</div></span>, <span class="name string-name"><div class="surname">Ainscough</div>   <div class="given-names">BJ</div></span></span>, et al. . <div class="article-title">DGIdb 2.0: mining clinically relevant drug–gene interactions</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2015</div>;<div class="volume">44</div>(<div class="issue">D1</div>):<div class="fpage">D1036</div>–<div class="lpage">44</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DGIdb%202.0%3A%20mining%20clinically%20relevant%20drug%E2%80%93gene%20interactions&amp;author=AH%20Wagner&amp;author=AC%20Coffman&amp;author=BJ%20Ainscough&amp;publication_year=2015&amp;journal=Nucleic%20Acids%20Res&amp;volume=44&amp;pages=D1036-44" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkv1165" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkv1165" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkv1165"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26531824" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DGIdb%202.0%3A%20mining%20clinically%20relevant%20drug%E2%80%93gene%20interactions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref264" class="js-splitview-ref-item" data-legacy-id="ref264"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref264" href="javascript:;" aria-label="jumplink-ref264" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref264" class="ref-content " data-id="ref264"><span class="label title-label">264.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Griffith</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Griffith</div>   <div class="given-names">OL</div></span>, <span class="name string-name"><div class="surname">Coffman</div>   <div class="given-names">AC</div></span></span>, et al. . <div class="article-title">DGIdb: mining the druggable genome</div>. <div class="source ">Nat Methods</div>  <div class="year">2013</div>;<div class="volume">10</div>(<div class="issue">12</div>):<div class="fpage">1209</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DGIdb%3A%20mining%20the%20druggable%20genome&amp;author=M%20Griffith&amp;author=OL%20Griffith&amp;author=AC%20Coffman&amp;publication_year=2013&amp;journal=Nat%20Methods&amp;volume=10&amp;pages=1209" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nmeth.2689" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnmeth.2689" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnmeth.2689"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24122041" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DGIdb%3A%20mining%20the%20druggable%20genome&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref265" class="js-splitview-ref-item" data-legacy-id="ref265"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref265" href="javascript:;" aria-label="jumplink-ref265" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref265" class="ref-content " data-id="ref265"><span class="label title-label">265.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Orchard</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Ammari</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Aranda</div>   <div class="given-names">B</div></span></span>, et al. . <div class="article-title">The mintact project—intact as a common curation platform for 11 molecular interaction databases</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2013</div>;<div class="volume">42</div>(<div class="issue">D1</div>):<div class="fpage">D358</div>–<div class="lpage">63</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20mintact%20project%E2%80%94intact%20as%20a%20common%20curation%20platform%20for%2011%20molecular%20interaction%20databases&amp;author=S%20Orchard&amp;author=M%20Ammari&amp;author=B%20Aranda&amp;publication_year=2013&amp;journal=Nucleic%20Acids%20Res&amp;volume=42&amp;pages=D358-63" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkt1115" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkt1115" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkt1115"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24234451" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20mintact%20project%E2%80%94intact%20as%20a%20common%20curation%20platform%20for%2011%20molecular%20interaction%20databases&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref266" class="js-splitview-ref-item" data-legacy-id="ref266"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref266" href="javascript:;" aria-label="jumplink-ref266" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref266" class="ref-content " data-id="ref266"><span class="label title-label">266.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Pillai</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Chouvarine</div>   <div class="given-names">P</div></span>, <span class="name string-name"><div class="surname">Tudor</div>   <div class="given-names">CO</div></span></span>, et al. . <div class="article-title">Developing a biocuration workflow for agbase, a non-model organism database</div>. <div class="source ">Database</div>  <div class="year">2012</div>;<div class="volume">2012</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Developing%20a%20biocuration%20workflow%20for%20agbase%2C%20a%20non-model%20organism%20database&amp;author=L%20Pillai&amp;author=P%20Chouvarine&amp;author=CO%20Tudor&amp;publication_year=2012&amp;journal=Database&amp;volume=2012&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=Developing+a+biocuration+workflow+for+agbase%2c+a+non-model+organism+database&amp;aulast=Pillai&amp;title=Database&amp;date=2012&amp;volume=2012" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Developing%20a%20biocuration%20workflow%20for%20agbase%2C%20a%20non-model%20organism%20database&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref267" class="js-splitview-ref-item" data-legacy-id="ref267"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref267" href="javascript:;" aria-label="jumplink-ref267" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref267" class="ref-content " data-id="ref267"><span class="label title-label">267.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">McCarthy</div>   <div class="given-names">FM</div></span>, <span class="name string-name"><div class="surname">Bridges</div>   <div class="given-names">SM</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">N</div></span></span>, et al. . <div class="article-title">AgBase: a unified resource for functional analysis in agriculture</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2006</div>;<div class="volume">35</div>(<div class="issue">suppl_1</div>):<div class="fpage">D599</div>–<div class="lpage">603</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=AgBase%3A%20a%20unified%20resource%20for%20functional%20analysis%20in%20agriculture&amp;author=FM%20McCarthy&amp;author=SM%20Bridges&amp;author=N%20Wang&amp;publication_year=2006&amp;journal=Nucleic%20Acids%20Res&amp;volume=35&amp;pages=D599-603" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17135208" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=AgBase%3a+a+unified+resource+for+functional+analysis+in+agriculture&amp;aulast=McCarthy&amp;title=Nucleic+Acids+Res&amp;date=2006&amp;spage=D599&amp;epage=603&amp;volume=35&amp;issue=suppl_1" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:AgBase%3A%20a%20unified%20resource%20for%20functional%20analysis%20in%20agriculture&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref268" class="js-splitview-ref-item" data-legacy-id="ref268"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref268" href="javascript:;" aria-label="jumplink-ref268" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref268" class="ref-content " data-id="ref268"><span class="label title-label">268.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">McCarthy</div>   <div class="given-names">FM</div></span>, <span class="name string-name"><div class="surname">Gresham</div>   <div class="given-names">CR</div></span>, <span class="name string-name"><div class="surname">Buza</div>   <div class="given-names">TJ</div></span></span>, et al. . <div class="article-title">AgBase: supporting functional modeling in agricultural organisms</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2010</div>;<div class="volume">39</div>(<div class="issue">suppl_1</div>):<div class="fpage">D497</div>–<div class="lpage">506</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=AgBase%3A%20supporting%20functional%20modeling%20in%20agricultural%20organisms&amp;author=FM%20McCarthy&amp;author=CR%20Gresham&amp;author=TJ%20Buza&amp;publication_year=2010&amp;journal=Nucleic%20Acids%20Res&amp;volume=39&amp;pages=D497-506" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkq1115" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkq1115" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkq1115"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21075795" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:AgBase%3A%20supporting%20functional%20modeling%20in%20agricultural%20organisms&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref269" class="js-splitview-ref-item" data-legacy-id="ref269"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref269" href="javascript:;" aria-label="jumplink-ref269" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref269" class="ref-content " data-id="ref269"><span class="label title-label">269.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">McCarthy</div>   <div class="given-names">FM</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">N</div></span>, <span class="name string-name"><div class="surname">Magee</div>   <div class="given-names">GB</div></span></span>, et al. . <div class="article-title">AgBase: a functional genomics resource for agriculture</div>. <div class="source ">BMC Genomics</div>  <div class="year">2006</div>;<div class="volume">7</div>(<div class="issue">1</div>):<div class="fpage">229</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=AgBase%3A%20a%20functional%20genomics%20resource%20for%20agriculture&amp;author=FM%20McCarthy&amp;author=N%20Wang&amp;author=GB%20Magee&amp;publication_year=2006&amp;journal=BMC%20Genomics&amp;volume=7&amp;pages=229" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/1471-2164-7-229" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2F1471-2164-7-229" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2F1471-2164-7-229"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/16961921" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:AgBase%3A%20a%20functional%20genomics%20resource%20for%20agriculture&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref270" class="js-splitview-ref-item" data-legacy-id="ref270"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref270" href="javascript:;" aria-label="jumplink-ref270" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref270" class="ref-content " data-id="ref270"><span class="label title-label">270.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Licata</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Briganti</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Peluso</div>   <div class="given-names">D</div></span></span>, et al. . <div class="article-title">MINT, the molecular interaction database: 2012 update</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2011</div>;<div class="volume">40</div>(<div class="issue">D1</div>):<div class="fpage">D857</div>–<div class="lpage">61</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=MINT%2C%20the%20molecular%20interaction%20database%3A%202012%20update&amp;author=L%20Licata&amp;author=L%20Briganti&amp;author=D%20Peluso&amp;publication_year=2011&amp;journal=Nucleic%20Acids%20Res&amp;volume=40&amp;pages=D857-61" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkr930" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkr930" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkr930"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22096227" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:MINT%2C%20the%20molecular%20interaction%20database%3A%202012%20update&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref271" class="js-splitview-ref-item" data-legacy-id="ref271"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref271" href="javascript:;" aria-label="jumplink-ref271" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref271" class="ref-content " data-id="ref271"><span class="label title-label">271.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ceol</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Chatr Aryamontri</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Licata</div>   <div class="given-names">L</div></span></span>, et al. . <div class="article-title">MINT, the molecular interaction database: 2009 update</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2009</div>;<div class="volume">38</div>(<div class="issue">suppl_1</div>):<div class="fpage">D532</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=MINT%2C%20the%20molecular%20interaction%20database%3A%202009%20update&amp;author=A%20Ceol&amp;author=A%20Chatr%20Aryamontri&amp;author=L%20Licata&amp;publication_year=2009&amp;journal=Nucleic%20Acids%20Res&amp;volume=38&amp;pages=D532-9" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkp983" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkp983" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkp983"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/19897547" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:MINT%2C%20the%20molecular%20interaction%20database%3A%202009%20update&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref272" class="js-splitview-ref-item" data-legacy-id="ref272"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref272" href="javascript:;" aria-label="jumplink-ref272" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref272" class="ref-content " data-id="ref272"><span class="label title-label">272.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chatr-Aryamontri</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Ceol</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Palazzi</div>   <div class="given-names">LM</div></span></span>, et al. . <div class="article-title">MINT: the molecular interaction database</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2006</div>;<div class="volume">35</div>(<div class="issue">suppl_1</div>):<div class="fpage">D572</div>–<div class="lpage">4</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=MINT%3A%20the%20molecular%20interaction%20database&amp;author=A%20Chatr-Aryamontri&amp;author=A%20Ceol&amp;author=LM%20Palazzi&amp;publication_year=2006&amp;journal=Nucleic%20Acids%20Res&amp;volume=35&amp;pages=D572-4" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17135203" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=MINT%3a+the+molecular+interaction+database&amp;aulast=Chatr-Aryamontri&amp;title=Nucleic+Acids+Res&amp;date=2006&amp;spage=D572&amp;epage=4&amp;volume=35&amp;issue=suppl_1" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:MINT%3A%20the%20molecular%20interaction%20database&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref273" class="js-splitview-ref-item" data-legacy-id="ref273"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref273" href="javascript:;" aria-label="jumplink-ref273" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref273" class="ref-content " data-id="ref273"><span class="label title-label">273.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Zanzoni</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Montecchi-Palazzi</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Quondam</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">MINT: a molecular interaction database</div>. <div class="source ">FEBS Lett</div>  <div class="year">2002</div>;<div class="volume">513</div>(<div class="issue">1</div>):<div class="fpage">135</div>–<div class="lpage">40</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=MINT%3A%20a%20molecular%20interaction%20database&amp;author=A%20Zanzoni&amp;author=L%20Montecchi-Palazzi&amp;author=M%20Quondam&amp;publication_year=2002&amp;journal=FEBS%20Lett&amp;volume=513&amp;pages=135-40" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/S0014-5793(01)03293-8" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2FS0014-5793(01)03293-8" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2FS0014-5793(01)03293-8"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/11911893" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:MINT%3A%20a%20molecular%20interaction%20database&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref274" class="js-splitview-ref-item" data-legacy-id="ref274"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref274" href="javascript:;" aria-label="jumplink-ref274" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref274" class="ref-content " data-id="ref274"><span class="label title-label">274.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Dimmer</div>   <div class="given-names">EC</div></span>, <span class="name string-name"><div class="surname">Huntley</div>   <div class="given-names">RP</div></span>, <span class="name string-name"><div class="surname">Alam-Faruque</div>   <div class="given-names">Y</div></span></span>, et al. . <div class="article-title">The UniProt-GO annotation database in 2011</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2011</div>;<div class="volume">40</div>(<div class="issue">D1</div>):<div class="fpage">D565</div>–<div class="lpage">70</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20UniProt-GO%20annotation%20database%20in%202011&amp;author=EC%20Dimmer&amp;author=RP%20Huntley&amp;author=Y%20Alam-Faruque&amp;publication_year=2011&amp;journal=Nucleic%20Acids%20Res&amp;volume=40&amp;pages=D565-70" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkr1048" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkr1048" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkr1048"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22123736" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20UniProt-GO%20annotation%20database%20in%202011&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref275" class="js-splitview-ref-item" data-legacy-id="ref275"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref275" href="javascript:;" aria-label="jumplink-ref275" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref275" class="ref-content " data-id="ref275"><span class="label title-label">275.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kotlyar</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Pastrello</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Sheahan</div>   <div class="given-names">N</div></span></span>, et al. . <div class="article-title">Integrated interactions database: tissue-specific view of the human and model organism interactomes</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2015</div>;<div class="volume">44</div>(<div class="issue">D1</div>):<div class="fpage">D536</div>–<div class="lpage">41</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Integrated%20interactions%20database%3A%20tissue-specific%20view%20of%20the%20human%20and%20model%20organism%20interactomes&amp;author=M%20Kotlyar&amp;author=C%20Pastrello&amp;author=N%20Sheahan&amp;publication_year=2015&amp;journal=Nucleic%20Acids%20Res&amp;volume=44&amp;pages=D536-41" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkv1115" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkv1115" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkv1115"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26516188" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Integrated%20interactions%20database%3A%20tissue-specific%20view%20of%20the%20human%20and%20model%20organism%20interactomes&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref276" class="js-splitview-ref-item" data-legacy-id="ref276"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref276" href="javascript:;" aria-label="jumplink-ref276" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref276" class="ref-content " data-id="ref276"><span class="label title-label">276.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Launay</div>   <div class="given-names">G</div></span>, <span class="name string-name"><div class="surname">Salza</div>   <div class="given-names">R</div></span>, <span class="name string-name"><div class="surname">Multedo</div>   <div class="given-names">D</div></span></span>, et al. . <div class="article-title">MatrixDB, the extracellular matrix interaction database: updated content, a new navigator and expanded functionalities</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2014</div>;<div class="volume">43</div>(<div class="issue">D1</div>):<div class="fpage">D321</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=MatrixDB%2C%20the%20extracellular%20matrix%20interaction%20database%3A%20updated%20content%2C%20a%20new%20navigator%20and%20expanded%20functionalities&amp;author=G%20Launay&amp;author=R%20Salza&amp;author=D%20Multedo&amp;publication_year=2014&amp;journal=Nucleic%20Acids%20Res&amp;volume=43&amp;pages=D321-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gku1091" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgku1091" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgku1091"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/25378329" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:MatrixDB%2C%20the%20extracellular%20matrix%20interaction%20database%3A%20updated%20content%2C%20a%20new%20navigator%20and%20expanded%20functionalities&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref277" class="js-splitview-ref-item" data-legacy-id="ref277"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref277" href="javascript:;" aria-label="jumplink-ref277" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref277" class="ref-content " data-id="ref277"><span class="label title-label">277.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Breuer</div>   <div class="given-names">K</div></span>, <span class="name string-name"><div class="surname">Foroushani</div>   <div class="given-names">AK</div></span>, <span class="name string-name"><div class="surname">Laird</div>   <div class="given-names">MR</div></span></span>, et al. . <div class="article-title">InnateDB: systems biology of innate immunity and beyond—recent updates and continuing curation</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2012</div>;<div class="volume">41</div>(<div class="issue">D1</div>):<div class="fpage">D1228</div>–<div class="lpage">33</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=InnateDB%3A%20systems%20biology%20of%20innate%20immunity%20and%20beyond%E2%80%94recent%20updates%20and%20continuing%20curation&amp;author=K%20Breuer&amp;author=AK%20Foroushani&amp;author=MR%20Laird&amp;publication_year=2012&amp;journal=Nucleic%20Acids%20Res&amp;volume=41&amp;pages=D1228-33" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gks1147" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgks1147" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgks1147"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23180781" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:InnateDB%3A%20systems%20biology%20of%20innate%20immunity%20and%20beyond%E2%80%94recent%20updates%20and%20continuing%20curation&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref278" class="js-splitview-ref-item" data-legacy-id="ref278"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref278" href="javascript:;" aria-label="jumplink-ref278" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref278" class="ref-content " data-id="ref278"><span class="label title-label">278.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Orchard</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Kerrien</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Abbani</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Protein interaction data curation: the international molecular exchange (IMEx) consortium</div>. <div class="source ">Nat Methods</div>  <div class="year">2012</div>;<div class="volume">9</div>(<div class="issue">4</div>):<div class="fpage">345</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Protein%20interaction%20data%20curation%3A%20the%20international%20molecular%20exchange%20%28IMEx%29%20consortium&amp;author=S%20Orchard&amp;author=S%20Kerrien&amp;author=S%20Abbani&amp;publication_year=2012&amp;journal=Nat%20Methods&amp;volume=9&amp;pages=345" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nmeth.1931" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnmeth.1931" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnmeth.1931"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22453911" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Protein%20interaction%20data%20curation%3A%20the%20international%20molecular%20exchange%20%28IMEx%29%20consortium&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref279" class="js-splitview-ref-item" data-legacy-id="ref279"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref279" href="javascript:;" aria-label="jumplink-ref279" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref279" class="ref-content " data-id="ref279"><span class="label title-label">279.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Kim</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Thiessen</div>   <div class="given-names">PA</div></span>, <span class="name string-name"><div class="surname">Bolton</div>   <div class="given-names">EE</div></span></span>, et al. . <div class="article-title">PubChem substance and compound databases</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2015</div>;<div class="volume">44</div>(<div class="issue">D1</div>):<div class="fpage">D1202</div>–<div class="lpage">13</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=PubChem%20substance%20and%20compound%20databases&amp;author=S%20Kim&amp;author=PA%20Thiessen&amp;author=EE%20Bolton&amp;publication_year=2015&amp;journal=Nucleic%20Acids%20Res&amp;volume=44&amp;pages=D1202-13" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkv951" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkv951" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkv951"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26400175" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:PubChem%20substance%20and%20compound%20databases&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref280" class="js-splitview-ref-item" data-legacy-id="ref280"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref280" href="javascript:;" aria-label="jumplink-ref280" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref280" class="ref-content " data-id="ref280"><span class="label title-label">280.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Deshpande</div>   <div class="given-names">N</div></span>, <span class="name string-name"><div class="surname">Addess</div>   <div class="given-names">KJ</div></span>, <span class="name string-name"><div class="surname">Bluhm</div>   <div class="given-names">WF</div></span></span>, et al. . <div class="article-title">The RCSB protein data bank: a redesigned query system and relational database based on the mmCIF schema</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2005</div>;<div class="volume">33</div>(<div class="issue">suppl_1</div>):<div class="fpage">D233</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20RCSB%20protein%20data%20bank%3A%20a%20redesigned%20query%20system%20and%20relational%20database%20based%20on%20the%20mmCIF%20schema&amp;author=N%20Deshpande&amp;author=KJ%20Addess&amp;author=WF%20Bluhm&amp;publication_year=2005&amp;journal=Nucleic%20Acids%20Res&amp;volume=33&amp;pages=D233-7" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/15608185" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=The+RCSB+protein+data+bank%3a+a+redesigned+query+system+and+relational+database+based+on+the+mmCIF+schema&amp;aulast=Deshpande&amp;title=Nucleic+Acids+Res&amp;date=2005&amp;spage=D233&amp;epage=7&amp;volume=33&amp;issue=suppl_1" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20RCSB%20protein%20data%20bank%3A%20a%20redesigned%20query%20system%20and%20relational%20database%20based%20on%20the%20mmCIF%20schema&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref281" class="js-splitview-ref-item" data-legacy-id="ref281"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref281" href="javascript:;" aria-label="jumplink-ref281" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref281" class="ref-content " data-id="ref281"><span class="label title-label">281.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Michalsky</div>   <div class="given-names">E</div></span>, <span class="name string-name"><div class="surname">Dunkel</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Goede</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">SuperLigands—a database of ligand structures derived from the protein data bank</div>. <div class="source ">BMC Bioinformatics</div>  <div class="year">2005</div>;<div class="volume">6</div>(<div class="issue">1</div>):<div class="fpage">122</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=SuperLigands%E2%80%94a%20database%20of%20ligand%20structures%20derived%20from%20the%20protein%20data%20bank&amp;author=E%20Michalsky&amp;author=M%20Dunkel&amp;author=A%20Goede&amp;publication_year=2005&amp;journal=BMC%20Bioinformatics&amp;volume=6&amp;pages=122" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1186/1471-2105-6-122" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1186%2F1471-2105-6-122" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1186%2F1471-2105-6-122"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/15943884" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:SuperLigands%E2%80%94a%20database%20of%20ligand%20structures%20derived%20from%20the%20protein%20data%20bank&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref282" class="js-splitview-ref-item" data-legacy-id="ref282"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref282" href="javascript:;" aria-label="jumplink-ref282" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref282" class="ref-content " data-id="ref282"><span class="label title-label">282.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">YH</div></span>, <span class="name string-name"><div class="surname">Yu</div>   <div class="given-names">CY</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">XX</div></span></span>, et al. . <div class="article-title">Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2017</div>;<div class="volume">46</div>(<div class="issue">D1</div>):<div class="fpage">D1121</div>–<div class="lpage">7</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Therapeutic%20target%20database%20update%202018%3A%20enriched%20resource%20for%20facilitating%20bench-to-clinic%20research%20of%20targeted%20therapeutics&amp;author=YH%20Li&amp;author=CY%20Yu&amp;author=XX%20Li&amp;publication_year=2017&amp;journal=Nucleic%20Acids%20Res&amp;volume=46&amp;pages=D1121-7" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkx1076" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkx1076" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkx1076"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Therapeutic%20target%20database%20update%202018%3A%20enriched%20resource%20for%20facilitating%20bench-to-clinic%20research%20of%20targeted%20therapeutics&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref283" class="js-splitview-ref-item" data-legacy-id="ref283"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref283" href="javascript:;" aria-label="jumplink-ref283" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref283" class="ref-content " data-id="ref283"><span class="label title-label">283.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Jeske</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Placzek</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Schomburg</div>   <div class="given-names">I</div></span></span>, et al. . <div class="article-title">Brenda in 2019: a European ELIXIR core data resource</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2018</div>;<div class="volume">47</div>(<div class="issue">D1</div>):<div class="fpage">D542</div>–<div class="lpage">9</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Brenda%20in%202019%3A%20a%20European%20ELIXIR%20core%20data%20resource&amp;author=L%20Jeske&amp;author=S%20Placzek&amp;author=I%20Schomburg&amp;publication_year=2018&amp;journal=Nucleic%20Acids%20Res&amp;volume=47&amp;pages=D542-9" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gky1048" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgky1048" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgky1048"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Brenda%20in%202019%3A%20a%20European%20ELIXIR%20core%20data%20resource&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref284" class="js-splitview-ref-item" data-legacy-id="ref284"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref284" href="javascript:;" aria-label="jumplink-ref284" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref284" class="ref-content " data-id="ref284"><span class="label title-label">284.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Siramshetty</div>   <div class="given-names">VB</div></span>, <span class="name string-name"><div class="surname">Eckert</div>   <div class="given-names">OA</div></span>, <span class="name string-name"><div class="surname">Gohlke</div>   <div class="given-names">B-O</div></span></span>, et al. . <div class="article-title">SuperDRUG2: a one stop resource for approved/marketed drugs</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2017</div>;<div class="volume">46</div>(<div class="issue">D1</div>):<div class="fpage">D1137</div>–<div class="lpage">43</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=SuperDRUG2%3A%20a%20one%20stop%20resource%20for%20approved%2Fmarketed%20drugs&amp;author=VB%20Siramshetty&amp;author=OA%20Eckert&amp;author=B-O%20Gohlke&amp;publication_year=2017&amp;journal=Nucleic%20Acids%20Res&amp;volume=46&amp;pages=D1137-43" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkx1088" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkx1088" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkx1088"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:SuperDRUG2%3A%20a%20one%20stop%20resource%20for%20approved%2Fmarketed%20drugs&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref285" class="js-splitview-ref-item" data-legacy-id="ref285"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref285" href="javascript:;" aria-label="jumplink-ref285" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref285" class="ref-content " data-id="ref285"><span class="label title-label">285.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ursu</div>   <div class="given-names">O</div></span>, <span class="name string-name"><div class="surname">Holmes</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Bologa</div>   <div class="given-names">CG</div></span></span>, et al. . <div class="article-title">DrugCentral 2018: an update</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2018</div>;<div class="volume">47</div>(<div class="issue">D1</div>):<div class="fpage">D963</div>–<div class="lpage">70</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DrugCentral%202018%3A%20an%20update&amp;author=O%20Ursu&amp;author=J%20Holmes&amp;author=CG%20Bologa&amp;publication_year=2018&amp;journal=Nucleic%20Acids%20Res&amp;volume=47&amp;pages=D963-70" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gky963" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgky963" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgky963"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DrugCentral%202018%3A%20an%20update&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref286" class="js-splitview-ref-item" data-legacy-id="ref286"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref286" href="javascript:;" aria-label="jumplink-ref286" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref286" class="ref-content " data-id="ref286"><span class="label title-label">286.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Ursu</div>   <div class="given-names">O</div></span>, <span class="name string-name"><div class="surname">Holmes</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Knockel</div>   <div class="given-names">J</div></span></span>, et al. . <div class="article-title">DrugCentral: online drug compendium</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2016</div>;<div class="fpage">gkw993</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=DrugCentral%3A%20online%20drug%20compendium&amp;author=O%20Ursu&amp;author=J%20Holmes&amp;author=J%20Knockel&amp;publication_year=2016&amp;journal=Nucleic%20Acids%20Res&amp;volume=&amp;pages=gkw993" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=DrugCentral%3a+online+drug+compendium&amp;aulast=Ursu&amp;title=Nucleic+Acids+Res&amp;date=2016&amp;spage=gkw993" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:DrugCentral%3A%20online%20drug%20compendium&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref287" class="js-splitview-ref-item" data-legacy-id="ref287"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref287" href="javascript:;" aria-label="jumplink-ref287" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref287" class="ref-content " data-id="ref287"><span class="label title-label">287.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Hu</div>   <div class="given-names">G</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">K</div></span></span>, et al. . <div class="article-title">PDID: database of molecular-level putative protein–drug interactions in the structural human proteome</div>. <div class="source ">Bioinformatics</div>  <div class="year">2015</div>;<div class="volume">32</div>(<div class="issue">4</div>):<div class="fpage">579</div>–<div class="lpage">86</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=PDID%3A%20database%20of%20molecular-level%20putative%20protein%E2%80%93drug%20interactions%20in%20the%20structural%20human%20proteome&amp;author=C%20Wang&amp;author=G%20Hu&amp;author=K%20Wang&amp;publication_year=2015&amp;journal=Bioinformatics&amp;volume=32&amp;pages=579-86" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btv597" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtv597" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtv597"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26504143" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:PDID%3A%20database%20of%20molecular-level%20putative%20protein%E2%80%93drug%20interactions%20in%20the%20structural%20human%20proteome&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref288" class="js-splitview-ref-item" data-legacy-id="ref288"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref288" href="javascript:;" aria-label="jumplink-ref288" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref288" class="ref-content " data-id="ref288"><span class="label title-label">288.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Nguyen</div>   <div class="given-names">D-T</div></span>, <span class="name string-name"><div class="surname">Mathias</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Bologa</div>   <div class="given-names">C</div></span></span>, et al. . <div class="article-title">Pharos: collating protein information to shed light on the druggable genome</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2016</div>;<div class="volume">45</div>(<div class="issue">D1</div>):<div class="fpage">D995</div>–<div class="lpage">D1002</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Pharos%3A%20collating%20protein%20information%20to%20shed%20light%20on%20the%20druggable%20genome&amp;author=D-T%20Nguyen&amp;author=S%20Mathias&amp;author=C%20Bologa&amp;publication_year=2016&amp;journal=Nucleic%20Acids%20Res&amp;volume=45&amp;pages=D995-D1002" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkw1072" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkw1072" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkw1072"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27903890" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Pharos%3A%20collating%20protein%20information%20to%20shed%20light%20on%20the%20druggable%20genome&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref289" class="js-splitview-ref-item" data-legacy-id="ref289"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref289" href="javascript:;" aria-label="jumplink-ref289" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref289" class="ref-content " data-id="ref289"><span class="label title-label">289.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Verbruggen</div>   <div class="given-names">B</div></span>, <span class="name string-name"><div class="surname">Gunnarsson</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Kristiansson</div>   <div class="given-names">E</div></span></span>, et al. . <div class="article-title">ECOdrug: a database connecting drugs and conservation of their targets across species</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2017</div>;<div class="volume">46</div>(<div class="issue">D1</div>):<div class="fpage">D930</div>–<div class="lpage">6</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=ECOdrug%3A%20a%20database%20connecting%20drugs%20and%20conservation%20of%20their%20targets%20across%20species&amp;author=B%20Verbruggen&amp;author=L%20Gunnarsson&amp;author=E%20Kristiansson&amp;publication_year=2017&amp;journal=Nucleic%20Acids%20Res&amp;volume=46&amp;pages=D930-6" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkx1024" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkx1024" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkx1024"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:ECOdrug%3A%20a%20database%20connecting%20drugs%20and%20conservation%20of%20their%20targets%20across%20species&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref290" class="js-splitview-ref-item" data-legacy-id="ref290"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref290" href="javascript:;" aria-label="jumplink-ref290" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref290" class="ref-content " data-id="ref290"><span class="label title-label">290.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Schomburg</div>   <div class="given-names">I</div></span>, <span class="name string-name"><div class="surname">Chang</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Ebeling</div>   <div class="given-names">C</div></span></span>, et al. . <div class="article-title">BRENDA, the enzyme database: updates and major new developments</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2004</div>;<div class="volume">32</div>(<div class="issue">suppl_1</div>):<div class="fpage">D431</div>–<div class="lpage">3</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=BRENDA%2C%20the%20enzyme%20database%3A%20updates%20and%20major%20new%20developments&amp;author=I%20Schomburg&amp;author=A%20Chang&amp;author=C%20Ebeling&amp;publication_year=2004&amp;journal=Nucleic%20Acids%20Res&amp;volume=32&amp;pages=D431-3" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkh081" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkh081" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkh081"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/14681450" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:BRENDA%2C%20the%20enzyme%20database%3A%20updates%20and%20major%20new%20developments&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref291" class="js-splitview-ref-item" data-legacy-id="ref291"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref291" href="javascript:;" aria-label="jumplink-ref291" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref291" class="ref-content " data-id="ref291"><span class="label title-label">291.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Santos</div>   <div class="given-names">R</div></span>, <span class="name string-name"><div class="surname">Ursu</div>   <div class="given-names">O</div></span>, <span class="name string-name"><div class="surname">Gaulton</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">A comprehensive map of molecular drug targets</div>. <div class="source ">Nat Rev Drug Discov</div>  <div class="year">2017</div>;<div class="volume">16</div>(<div class="issue">1</div>):<div class="fpage">19</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=A%20comprehensive%20map%20of%20molecular%20drug%20targets&amp;author=R%20Santos&amp;author=O%20Ursu&amp;author=A%20Gaulton&amp;publication_year=2017&amp;journal=Nat%20Rev%20Drug%20Discov&amp;volume=16&amp;pages=19" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nrd.2016.230" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnrd.2016.230" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnrd.2016.230"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27910877" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:A%20comprehensive%20map%20of%20molecular%20drug%20targets&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref292" class="js-splitview-ref-item" data-legacy-id="ref292"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref292" href="javascript:;" aria-label="jumplink-ref292" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref292" class="ref-content " data-id="ref292"><span class="label title-label">292.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Hu</div>   <div class="given-names">G</div></span>, <span class="name string-name"><div class="surname">Gao</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Wang</div>   <div class="given-names">K</div></span></span>, et al. . <div class="article-title">Finding protein targets for small biologically relevant ligands across fold space using inverse ligand binding predictions</div>. <div class="source ">Structure</div>  <div class="year">2012</div>;<div class="volume">20</div>(<div class="issue">11</div>):<div class="fpage">1815</div>–<div class="lpage">22</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Finding%20protein%20targets%20for%20small%20biologically%20relevant%20ligands%20across%20fold%20space%20using%20inverse%20ligand%20binding%20predictions&amp;author=G%20Hu&amp;author=J%20Gao&amp;author=K%20Wang&amp;publication_year=2012&amp;journal=Structure&amp;volume=20&amp;pages=1815-22" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.str.2012.09.011" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.str.2012.09.011" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.str.2012.09.011"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23141694" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Finding%20protein%20targets%20for%20small%20biologically%20relevant%20ligands%20across%20fold%20space%20using%20inverse%20ligand%20binding%20predictions&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref293" class="js-splitview-ref-item" data-legacy-id="ref293"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref293" href="javascript:;" aria-label="jumplink-ref293" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref293" class="ref-content " data-id="ref293"><span class="label title-label">293.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Feinstein</div>   <div class="given-names">WP</div></span>, <span class="name string-name"><div class="surname">Brylinski</div>   <div class="given-names">M</div></span></span>. <div class="article-title">eFindSite: enhanced fingerprint-based virtual screening against predicted ligand binding sites in protein models</div>. <div class="source ">Mol Inform</div>  <div class="year">2014</div>;<div class="volume">33</div>(<div class="issue">2</div>):<div class="fpage">135</div>–<div class="lpage">50</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=eFindSite%3A%20enhanced%20fingerprint-based%20virtual%20screening%20against%20predicted%20ligand%20binding%20sites%20in%20protein%20models&amp;author=WP%20Feinstein&amp;author=M%20Brylinski&amp;publication_year=2014&amp;journal=Mol%20Inform&amp;volume=33&amp;pages=135-50" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1002/minf.v33.2" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1002%2Fminf.v33.2" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1002%2Fminf.v33.2"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/27485570" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:eFindSite%3A%20enhanced%20fingerprint-based%20virtual%20screening%20against%20predicted%20ligand%20binding%20sites%20in%20protein%20models&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref294" class="js-splitview-ref-item" data-legacy-id="ref294"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref294" href="javascript:;" aria-label="jumplink-ref294" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref294" class="ref-content " data-id="ref294"><span class="label title-label">294.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Brylinski</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Feinstein</div>   <div class="given-names">WP</div></span></span>. <div class="article-title">eFindSite: improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands</div>. <div class="source ">J Comput Aided Mol Des</div>  <div class="year">2013</div>;<div class="volume">27</div>(<div class="issue">6</div>):<div class="fpage">551</div>–<div class="lpage">67</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=eFindSite%3A%20improved%20prediction%20of%20ligand%20binding%20sites%20in%20protein%20models%20using%20meta-threading%2C%20machine%20learning%20and%20auxiliary%20ligands&amp;author=M%20Brylinski&amp;author=WP%20Feinstein&amp;publication_year=2013&amp;journal=J%20Comput%20Aided%20Mol%20Des&amp;volume=27&amp;pages=551-67" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/s10822-013-9663-5" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2Fs10822-013-9663-5" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2Fs10822-013-9663-5"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/23838840" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:eFindSite%3A%20improved%20prediction%20of%20ligand%20binding%20sites%20in%20protein%20models%20using%20meta-threading%2C%20machine%20learning%20and%20auxiliary%20ligands&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref295" class="js-splitview-ref-item" data-legacy-id="ref295"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref295" href="javascript:;" aria-label="jumplink-ref295" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref295" class="ref-content " data-id="ref295"><span class="label title-label">295.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Rouillard</div>   <div class="given-names">AD</div></span>, <span class="name string-name"><div class="surname">Gundersen</div>   <div class="given-names">GW</div></span>, <span class="name string-name"><div class="surname">Fernandez</div>   <div class="given-names">NF</div></span></span>, et al. . <div class="article-title">The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins</div>. <div class="source ">Database</div>  <div class="year">2016</div>;<div class="volume">2016</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20harmonizome%3A%20a%20collection%20of%20processed%20datasets%20gathered%20to%20serve%20and%20mine%20knowledge%20about%20genes%20and%20proteins&amp;author=AD%20Rouillard&amp;author=GW%20Gundersen&amp;author=NF%20Fernandez&amp;publication_year=2016&amp;journal=Database&amp;volume=2016&amp;pages=" target="_blank">Google Scholar</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=The+harmonizome%3a+a+collection+of+processed+datasets+gathered+to+serve+and+mine+knowledge+about+genes+and+proteins&amp;aulast=Rouillard&amp;title=Database&amp;date=2016&amp;volume=2016" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20harmonizome%3A%20a%20collection%20of%20processed%20datasets%20gathered%20to%20serve%20and%20mine%20knowledge%20about%20genes%20and%20proteins&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref296" class="js-splitview-ref-item" data-legacy-id="ref296"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref296" href="javascript:;" aria-label="jumplink-ref296" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref296" class="ref-content " data-id="ref296"><span class="label title-label">296.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Capecchi</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Awale</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Probst</div>   <div class="given-names">D</div></span></span>, et al. . <div class="article-title">PubChem and CHEMBL beyond Lipinski</div>. <div class="source ">Mol inform</div>  <div class="year">2019</div>;<div class="volume">38</div>(<div class="issue">5</div>):<div class="fpage">1900016</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=PubChem%20and%20CHEMBL%20beyond%20Lipinski&amp;author=A%20Capecchi&amp;author=M%20Awale&amp;author=D%20Probst&amp;publication_year=2019&amp;journal=Mol%20inform&amp;volume=38&amp;pages=1900016" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1002/minf.v38.5" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1002%2Fminf.v38.5" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1002%2Fminf.v38.5"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:PubChem%20and%20CHEMBL%20beyond%20Lipinski&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref297" class="js-splitview-ref-item" data-legacy-id="ref297"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref297" href="javascript:;" aria-label="jumplink-ref297" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref297" class="ref-content " data-id="ref297"><span class="label title-label">297.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Lin</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Wen</div>   <div class="given-names">X</div></span></span>, et al. . <div class="article-title">BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2006</div>;<div class="volume">35</div>(<div class="issue">suppl_1</div>):<div class="fpage">D198</div>–<div class="lpage">201</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=BindingDB%3A%20a%20web-accessible%20database%20of%20experimentally%20determined%20protein%E2%80%93ligand%20binding%20affinities&amp;author=T%20Liu&amp;author=Y%20Lin&amp;author=X%20Wen&amp;publication_year=2006&amp;journal=Nucleic%20Acids%20Res&amp;volume=35&amp;pages=D198-201" target="_blank">Google Scholar</a></span></p><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/17145705" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=article&amp;atitle=BindingDB%3a+a+web-accessible+database+of+experimentally+determined+protein%e2%80%93ligand+binding+affinities&amp;aulast=Liu&amp;title=Nucleic+Acids+Res&amp;date=2006&amp;spage=D198&amp;epage=201&amp;volume=35&amp;issue=suppl_1" href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:BindingDB%3A%20a%20web-accessible%20database%20of%20experimentally%20determined%20protein%E2%80%93ligand%20binding%20affinities&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref298" class="js-splitview-ref-item" data-legacy-id="ref298"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref298" href="javascript:;" aria-label="jumplink-ref298" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref298" class="ref-content " data-id="ref298"><span class="label title-label">298.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Chen</div>   <div class="given-names">X</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">M</div></span>, <span class="name string-name"><div class="surname">Gilson</div>   <div class="given-names">MK</div></span></span>. <div class="article-title">BindingDB: a web-accessible molecular recognition database</div>. <div class="source ">Comb Chem High Throughput Screen</div>  <div class="year">2001</div>;<div class="volume">4</div>(<div class="issue">8</div>):<div class="fpage">719</div>–<div class="lpage">25</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=BindingDB%3A%20a%20web-accessible%20molecular%20recognition%20database&amp;author=X%20Chen&amp;author=M%20Liu&amp;author=MK%20Gilson&amp;publication_year=2001&amp;journal=Comb%20Chem%20High%20Throughput%20Screen&amp;volume=4&amp;pages=719-25" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.2174/1386207013330670" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.2174%2F1386207013330670" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.2174%2F1386207013330670"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/11812264" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:BindingDB%3A%20a%20web-accessible%20molecular%20recognition%20database&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref299" class="js-splitview-ref-item" data-legacy-id="ref299"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref299" href="javascript:;" aria-label="jumplink-ref299" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref299" class="ref-content " data-id="ref299"><span class="label title-label">299.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Nicola</div>   <div class="given-names">G</div></span>, <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Hwang</div>   <div class="given-names">L</div></span>, <span class="name string-name"><div class="surname">Gilson</div>   <div class="given-names">M</div></span></span>. <div class="article-title">BindingDB: a protein-ligand database for drug discovery</div>. <div class="source ">Biophys J</div>  <div class="year">2012</div>;<div class="volume">102</div>(<div class="issue">3</div>):<div class="fpage">61a</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=BindingDB%3A%20a%20protein-ligand%20database%20for%20drug%20discovery&amp;author=G%20Nicola&amp;author=T%20Liu&amp;author=L%20Hwang&amp;author=M%20Gilson&amp;publication_year=2012&amp;journal=Biophys%20J&amp;volume=102&amp;pages=61a" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1016/j.bpj.2011.11.365" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1016%2Fj.bpj.2011.11.365" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1016%2Fj.bpj.2011.11.365"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:BindingDB%3A%20a%20protein-ligand%20database%20for%20drug%20discovery&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref300" class="js-splitview-ref-item" data-legacy-id="ref300"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref300" href="javascript:;" aria-label="jumplink-ref300" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref300" class="ref-content " data-id="ref300"><span class="label title-label">300.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Liu</div>   <div class="given-names">Z</div></span>, <span class="name string-name"><div class="surname">Li</div>   <div class="given-names">Y</div></span>, <span class="name string-name"><div class="surname">Han</div>   <div class="given-names">L</div></span></span>, et al. . <div class="article-title">PDB-wide collection of binding data: current status of the pdbbind database</div>. <div class="source ">Bioinformatics</div>  <div class="year">2014</div>;<div class="volume">31</div>(<div class="issue">3</div>):<div class="fpage">405</div>–<div class="lpage">12</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=PDB-wide%20collection%20of%20binding%20data%3A%20current%20status%20of%20the%20pdbbind%20database&amp;author=Z%20Liu&amp;author=Y%20Li&amp;author=L%20Han&amp;publication_year=2014&amp;journal=Bioinformatics&amp;volume=31&amp;pages=405-12" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/bioinformatics/btu626" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fbioinformatics%2Fbtu626" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fbioinformatics%2Fbtu626"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/25301850" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:PDB-wide%20collection%20of%20binding%20data%3A%20current%20status%20of%20the%20pdbbind%20database&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref301" class="js-splitview-ref-item" data-legacy-id="ref301"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref301" href="javascript:;" aria-label="jumplink-ref301" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref301" class="ref-content " data-id="ref301"><span class="label title-label">301.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Roth</div>   <div class="given-names">BL</div></span>, <span class="name string-name"><div class="surname">Lopez</div>   <div class="given-names">E</div></span>, <span class="name string-name"><div class="surname">Patel</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">The multiplicity of serotonin receptors: uselessly diverse molecules or an embarrassment of riches?</div>  <div class="source ">Neuroscientist</div>  <div class="year">2000</div>;<div class="volume">6</div>(<div class="issue">4</div>):<div class="fpage">252</div>–<div class="lpage">62</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20multiplicity%20of%20serotonin%20receptors%3A%20uselessly%20diverse%20molecules%20or%20an%20embarrassment%20of%20riches%3F&amp;author=BL%20Roth&amp;author=E%20Lopez&amp;author=S%20Patel&amp;publication_year=2000&amp;journal=Neuroscientist&amp;volume=6&amp;pages=252-62" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1177/107385840000600408" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1177%2F107385840000600408" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1177%2F107385840000600408"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20multiplicity%20of%20serotonin%20receptors%3A%20uselessly%20diverse%20molecules%20or%20an%20embarrassment%20of%20riches%3F&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref302" class="js-splitview-ref-item" data-legacy-id="ref302"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref302" href="javascript:;" aria-label="jumplink-ref302" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref302" class="ref-content " data-id="ref302"><span class="label title-label">302.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Pahikkala</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Waegeman</div>   <div class="given-names">W</div></span>, <span class="name string-name"><div class="surname">Airola</div>   <div class="given-names">A</div></span></span>, et al. . <div class="article-title">Conditional ranking on relational data</div>. In: <div class="source "><em>Joint European Conference on Machine Learning and Knowledge Discovery in Databases</em></div>. <div class="publisher-name">Springer</div>, <div class="publisher-loc">Heidelberg, Germany</div>, <div class="year">2010</div>, <div class="fpage">499</div>–<div class="lpage">514</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Joint%20European%20Conference%20on%20Machine%20Learning%20and%20Knowledge%20Discovery%20in%20Databases&amp;author=T%20Pahikkala&amp;author=W%20Waegeman&amp;author=A%20Airola&amp;publication_year=2010&amp;book=Joint%20European%20Conference%20on%20Machine%20Learning%20and%20Knowledge%20Discovery%20in%20Databases" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/978-3-642-15883-4" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2F978-3-642-15883-4" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2F978-3-642-15883-4"> </span></div><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Joint%20European%20Conference%20on%20Machine%20Learning%20and%20Knowledge%20Discovery%20in%20Databases&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Joint%20European%20Conference%20on%20Machine%20Learning%20and%20Knowledge%20Discovery%20in%20Databases&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Joint%20European%20Conference%20on%20Machine%20Learning%20and%20Knowledge%20Discovery%20in%20Databases">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref303" class="js-splitview-ref-item" data-legacy-id="ref303"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref303" href="javascript:;" aria-label="jumplink-ref303" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref303" class="ref-content " data-id="ref303"><span class="label title-label">303.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Pahikkala</div>   <div class="given-names">T</div></span>, <span class="name string-name"><div class="surname">Airola</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Stock</div>   <div class="given-names">M</div></span></span>, et al. . <div class="article-title">Efficient regularized least-squares algorithms for conditional ranking on relational data</div>. <div class="source ">Mach Learn</div>  <div class="year">2013</div>;<div class="volume">93</div>(<div class="issue">2–3</div>):<div class="fpage">321</div>–<div class="lpage">56</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Efficient%20regularized%20least-squares%20algorithms%20for%20conditional%20ranking%20on%20relational%20data&amp;author=T%20Pahikkala&amp;author=A%20Airola&amp;author=M%20Stock&amp;publication_year=2013&amp;journal=Mach%20Learn&amp;volume=93&amp;pages=321-56" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/s10994-013-5354-7" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2Fs10994-013-5354-7" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2Fs10994-013-5354-7"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Efficient%20regularized%20least-squares%20algorithms%20for%20conditional%20ranking%20on%20relational%20data&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref304" class="js-splitview-ref-item" data-legacy-id="ref304"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref304" href="javascript:;" aria-label="jumplink-ref304" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref304" class="ref-content " data-id="ref304"><span class="label title-label">304.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Friedland</div>   <div class="given-names">S</div></span>, <span class="name string-name"><div class="surname">Lim</div>   <div class="given-names">L-H</div></span></span>. <div class="article-title">Nuclear norm of higher-order tensors</div>. <div class="source ">Math Comput</div>  <div class="year">2018</div>;<div class="volume">87</div>(<div class="issue">311</div>):<div class="fpage">1255</div>–<div class="lpage">81</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Nuclear%20norm%20of%20higher-order%20tensors&amp;author=S%20Friedland&amp;author=L-H%20Lim&amp;publication_year=2018&amp;journal=Math%20Comput&amp;volume=87&amp;pages=1255-81" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1090/mcom/2018-87-311" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1090%2Fmcom%2F2018-87-311" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1090%2Fmcom%2F2018-87-311"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Nuclear%20norm%20of%20higher-order%20tensors&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref305" class="js-splitview-ref-item" data-legacy-id="ref305"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref305" href="javascript:;" aria-label="jumplink-ref305" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref305" class="ref-content " data-id="ref305"><span class="label title-label">305.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Fazel</div>, <div class="given-names">M.</div></span> and <span class="name string-name"><div class="surname">Hindi,</div>   <div class="given-names">H.</div></span> and <span class="name string-name"><div class="surname">Boyd,</div>   <div class="given-names">S.</div></span></span>, <div class="source ">Rank minimization and applications in system theory</div>. <div class="comment">Proceedings of the 2004 American control conference, IEEE,</div> vol. <div class="volume">4,</div> pp. <div class="fpage">3273</div>–<div class="lpage">3278</div>, <div class="year">2004</div>.</p><!--citationLinks: case 2--><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Rank%20minimization%20and%20applications%20in%20system%20theory&amp;author=M.%20Fazel&amp;author=H.%20Hindi%2C&amp;author=S.%20Boyd%2C&amp;publication_year=2004&amp;book=Rank%20minimization%20and%20applications%20in%20system%20theory" target="_blank">Google Scholar</a></span></p><p class="citation-links-compatibility"><span class="google-preview-ref-link js-google-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.google.com/search?q=Rank%20minimization%20and%20applications%20in%20system%20theory&amp;btnG=Search+Books&amp;tbm=bks&amp;tbo=1" target="_blank">Google Preview</a></span></p><div class="xslopenurl empty-target"><span class="js-inst-open-url-holders-nodoi"><a class="js-open-url-link" data-href-template="{targetURL}?sid=oup:orr&amp;genre=book&amp;title=Rank+minimization+and+applications+in+system+theory&amp;aulast=Fazel&amp;date=2004&amp;spage=3273&amp;epage=3278&amp;volume=4," href="javascript:;"><span class="screenreader-text">OpenURL Placeholder Text</span></a></span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Rank%20minimization%20and%20applications%20in%20system%20theory&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p><div class="copac-reference-ref-link js-copac-preview-ref-link" style="display:none" data-pubtype="book"><span class="inst-copac"><a class="openInAnotherWindow" target="_blank" href="http://copac.ac.uk/search?ti=Rank%20minimization%20and%20applications%20in%20system%20theory">COPAC</a></span></div> </div></div></div></div></div><div content-id="ref306" class="js-splitview-ref-item" data-legacy-id="ref306"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref306" href="javascript:;" aria-label="jumplink-ref306" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref306" class="ref-content " data-id="ref306"><span class="label title-label">306.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Candès</div>   <div class="given-names">EJ</div></span>, <span class="name string-name"><div class="surname">Benjamin</div>   <div class="given-names">R</div></span></span>. <div class="article-title">Exact matrix completion via convex optimization</div>. <div class="source ">Found Comput Math</div>  <div class="volume">9</div>(<div class="issue">6</div>):<div class="fpage">717</div>–<div class="lpage">72</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1007/s10208-009-9045-5" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1007%2Fs10208-009-9045-5" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1007%2Fs10208-009-9045-5"> </span></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Exact%20matrix%20completion%20via%20convex%20optimization&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref307" class="js-splitview-ref-item" data-legacy-id="ref307"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref307" href="javascript:;" aria-label="jumplink-ref307" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref307" class="ref-content " data-id="ref307"><span class="label title-label">307.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Metz</div>   <div class="given-names">JT</div></span>, <span class="name string-name"><div class="surname">Johnson</div>   <div class="given-names">EF</div></span>, <span class="name string-name"><div class="surname">Soni</div>   <div class="given-names">NB</div></span></span>, et al. . <div class="article-title">Navigating the kinome</div>. <div class="source ">Nat Chem Biol</div>  <div class="year">2011</div>;<div class="volume">7</div>(<div class="issue">4</div>):<div class="fpage">200</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Navigating%20the%20kinome&amp;author=JT%20Metz&amp;author=EF%20Johnson&amp;author=NB%20Soni&amp;publication_year=2011&amp;journal=Nat%20Chem%20Biol&amp;volume=7&amp;pages=200" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nchembio.530" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnchembio.530" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnchembio.530"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/21336281" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Navigating%20the%20kinome&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref308" class="js-splitview-ref-item" data-legacy-id="ref308"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref308" href="javascript:;" aria-label="jumplink-ref308" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref308" class="ref-content " data-id="ref308"><span class="label title-label">308.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Davis</div>   <div class="given-names">MI</div></span>, <span class="name string-name"><div class="surname">Hunt</div>   <div class="given-names">JP</div></span>, <span class="name string-name"><div class="surname">Herrgard</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Comprehensive analysis of kinase inhibitor selectivity</div>. <div class="source ">Nat Biotechnol</div>  <div class="year">2011</div>;<div class="volume">29</div>(<div class="issue">11</div>):<div class="fpage">1046</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Comprehensive%20analysis%20of%20kinase%20inhibitor%20selectivity&amp;author=MI%20Davis&amp;author=JP%20Hunt&amp;author=S%20Herrgard&amp;publication_year=2011&amp;journal=Nat%20Biotechnol&amp;volume=29&amp;pages=1046" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1038/nbt.1990" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1038%2Fnbt.1990" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1038%2Fnbt.1990"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/22037378" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Comprehensive%20analysis%20of%20kinase%20inhibitor%20selectivity&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref309" class="js-splitview-ref-item" data-legacy-id="ref309"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref309" href="javascript:;" aria-label="jumplink-ref309" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref309" class="ref-content " data-id="ref309"><span class="label title-label">309.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Southan</div>   <div class="given-names">C</div></span>, <span class="name string-name"><div class="surname">Sharman</div>   <div class="given-names">JL</div></span>, <span class="name string-name"><div class="surname">Benson</div>   <div class="given-names">HE</div></span></span>, et al. . <div class="article-title">The IUPHAR/BPS guide to PHARMACOLOGY in 2016: towards curated quantitative interactions between 1300 protein targets and 6000 ligands</div>. <div class="source ">Nucleic Acids Res</div>  <div class="year">2015</div>;<div class="volume">44</div>(<div class="issue">D1</div>):<div class="fpage">D1054</div>–<div class="lpage">68</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=The%20IUPHAR%2FBPS%20guide%20to%20PHARMACOLOGY%20in%202016%3A%20towards%20curated%20quantitative%20interactions%20between%201300%20protein%20targets%20and%206000%20ligands&amp;author=C%20Southan&amp;author=JL%20Sharman&amp;author=HE%20Benson&amp;publication_year=2015&amp;journal=Nucleic%20Acids%20Res&amp;volume=44&amp;pages=D1054-68" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1093/nar/gkv1037" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1093%2Fnar%2Fgkv1037" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1093%2Fnar%2Fgkv1037"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/26464438" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:The%20IUPHAR%2FBPS%20guide%20to%20PHARMACOLOGY%20in%202016%3A%20towards%20curated%20quantitative%20interactions%20between%201300%20protein%20targets%20and%206000%20ligands&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div><div content-id="ref310" class="js-splitview-ref-item" data-legacy-id="ref310"><div class="refLink-parent"><span class="refLink"><a name="jumplink-ref310" href="javascript:;" aria-label="jumplink-ref310" data-id=""></a></span></div><div class="ref false"><div id="ref-auto-ref310" class="ref-content " data-id="ref310"><span class="label title-label">310.</span><div class="mixed-citation citation"><p class="mixed-citation-compatibility"> <span class="person-group"> <span class="name string-name"><div class="surname">Tang</div>   <div class="given-names">J</div></span>, <span class="name string-name"><div class="surname">Szwajda</div>   <div class="given-names">A</div></span>, <span class="name string-name"><div class="surname">Shakyawar</div>   <div class="given-names">S</div></span></span>, et al. . <div class="article-title">Making sense of large-scale kinase inhibitor bioactivity data sets: a comparative and integrative analysis</div>. <div class="source ">J Chem Inf Model</div>  <div class="year">2014</div>;<div class="volume">54</div>(<div class="issue">3</div>):<div class="fpage">735</div>–<div class="lpage">43</div>.</p><!--citationLinks: case 1--><div class="citation-links"></div><div class="citation-links"><p class="citation-links-compatibility"><span class="google-scholar-ref-link"><a class="openInAnotherWindow" href="https://scholar.google.com/scholar_lookup?title=Making%20sense%20of%20large-scale%20kinase%20inhibitor%20bioactivity%20data%20sets%3A%20a%20comparative%20and%20integrative%20analysis&amp;author=J%20Tang&amp;author=A%20Szwajda&amp;author=S%20Shakyawar&amp;publication_year=2014&amp;journal=J%20Chem%20Inf%20Model&amp;volume=54&amp;pages=735-43" target="_blank">Google Scholar</a></span></p><div class="crossref-doi js-ref-link"><a class="openInAnotherWindow" href="http://dx.doi.org/10.1021/ci400709d" target="_blank">Crossref</a></div><div class="adsDoiReference hide"><a class="openInAnotherWindow" href="http://adsabs.harvard.edu/cgi-bin/basic_connect?qsearch=10.1021%2Fci400709d" target="_blank">Search ADS</a></div><div class="xslopenurl empty-target"><span class="inst-open-url-holders" data-targetId="10.1021%2Fci400709d"> </span></div><div class="pub-id"><a href="http://www.ncbi.nlm.nih.gov/pubmed/24521231" class="link link-pub-id openInAnotherWindow" target="_blank">PubMed</a></div><p class="citation-links-compatibility"><span class="worldcat-reference-ref-link js-worldcat-preview-ref-link" style="display:none"><a class="openInAnotherWindow" href="https://www.worldcat.org/search?q=ti:Making%20sense%20of%20large-scale%20kinase%20inhibitor%20bioactivity%20data%20sets%3A%20a%20comparative%20and%20integrative%20analysis&amp;qt=advanced&amp;dblist=638" target="_blank">WorldCat</a></span></p> </div></div></div></div></div></div> <!-- /foreach in Model.Sections --> <div class="widget widget-ArticlePubStateInfo widget-instance-OUP_ArticlePubStateInfo"> </div> <div class="article-metadata-standalone-panel clearfix"></div> <div class="copyright copyright-statement">© The Author(s) 2020. Published by Oxford University Press.</div><div class="license"><div class="license-p">This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (<a class="link link-uri openInAnotherWindow" href="http://creativecommons.org/licenses/by-nc/4.0/" target="_blank">http://creativecommons.org/licenses/by-nc/4.0/</a>), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com</div></div><!-- /foreach --> <span id="UserHasAccess" data-userHasAccess="True"></span> </div><!-- /.widget-items --> </div><!-- /.module-widget --> </div> <div class="widget widget-SolrResourceMetadata widget-instance-OUP_Article_ResourceMetadata_Widget"> <div class="article-metadata-panel solr-resource-metadata js-metadata-panel at-ContentMetadata"> <div class="article-metadata-tocSections"> <div class="article-metadata-tocSections-title">Issue Section:</div> <a href="/bib/search-results?f_TocHeadingTitleList=Review+Article">Review Article</a> </div> </div> </div> <div class="widget widget-EditorInformation widget-instance-OUP_Article_EditorInformation_Widget"> </div> <div id="ContentTabFilteredView"></div> <div class="downloadImagesppt js-download-images-ppt st-download-images-ppt"> <a id="lnkDownloadAllImages" class="js-download-all-images-link btn" href="/DownloadFile/DownloadImage.aspx?image=&amp;PPTtype=SlideSet&amp;ar=5681786&amp;xsltPath=~/UI/app/XSLT&amp;siteId=5143">Download all slides</a> </div> <div class="widget widget-ArticleDataRepositories widget-instance-Article_DryadLink"> </div> <div class="comments"> <div class="widget widget-UserCommentBody widget-instance-UserCommentBody_Article"> </div> <div class="widget widget-UserComment widget-instance-OUP_UserComment_Article"> </div> </div> </div> </div> </div> </div> <div id="Sidebar" class="page-column page-column--right"> <div class="widget widget-AdBlock widget-instance-ArticlePageTopSidebar"> <div class="js-adBlock-parent-wrap adblock-parent-wrap"> <div class="adBlockMainBodyTop-wrap js-adBlockMainBodyTop hide"> <div id="adBlockMainBodyTop" class="js-adblock at-adblock" data-lazy-load-margin="150"> <script> googletag.cmd.push(function () { googletag.display('adBlockMainBodyTop'); }); </script> </div> <div class="advertisement-text at-adblock js-adblock-advertisement-text hide">Advertisement</div> </div> </div> </div> <div class="widget widget-dynamic " data-count="1"> <div class="widget-dynamic-inner-wrap"> <div class="widget widget-dynamic " data-count="8"> <div class="widget-dynamic-inner-wrap"> <div class="widget widget-ArticleLevelMetrics widget-instance-Article_RightRailB0Article_RightRail_ArticleLevelMetrics"> <div class="artmet-wrapper horizontal-artmet"> <div class="contentmet-border"> <div class="contentmet-wrapper horizontal-contentmet"> <div class="contentmet-citations contentmet-badges-wrap js-contentmet-citations hide"> <h3 class="contentmet-text">Citations</h3> <div class="contentmet-item contentmet-dimensions"> <div class="widget widget-DimensionsBadge widget-instance-ArticleLevelMetrics_DimensionsBadge"> <span class="__dimensions_badge_embed__" data-doi="10.1093/bib/bbz157" data-legend="never" data-style="small_circle" data-hide-zero-citations="false"></span> <script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script> </div> </div> </div> <div class="contentmet-views contentmet-badges-wrap js-contentmet-views"> <h3 class="contentmet-text">Views</h3> <div class="contentmet-item circle-text circle-text-views"> <div class="contentmet-number">43,402</div> </div> </div> <div class="contentmet-item contentmet-badges-wrap"> <h3 class="contentmet-text">Altmetric</h3> <div class="contentmet-item contentmet-altmetric"> <div class="widget widget-AltmetricLink widget-instance-ArticleLevelMetrics_AltmetricLinkSummary"> <!-- Altmetrics --> <div id="altmetricEmbedId" runat="server" class='altmetric-embed' data-badge-type="donut" data-hide-no-mentions="false" data-doi="10.1093/bib/bbz157" ></div> <script type='text/javascript' src='https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js'></script> </div> </div> </div> <div class="contentmet-modal-trigger-wrap clearfix"> <a href="javascript:;" class="artmet-modal-trigger js-artmet-modal-trigger at-alm-metrics-modal-trigger" data-resource-id="5681786" data-resource-type="3"> <img class="contentmet-info-icon" src="//oup.silverchair-cdn.com/UI/app/svg/i.svg" alt="Information"> <span class="contentmet-more-info">More metrics information</span> </a> </div> </div> </div> <div class="artmet-modal js-artmet-modal" id="MetricsModal"> <div class="artmet-modal-contents js-metric-modal-contents at-alm-modal-contents"> <div class="artmet-full-wrap clearfix js-metric-full-wrap hide"> <div class="widget-title-1 artmet-widget-title-1">Metrics</div> <div class="artmet-item artmet-views-wrap"> <div class="artmet-views clearfix"> <div class="artmet-total-views"> <span class="artmet-text">Total Views</span> <span class="artmet-number">43,402</span> </div> <div class="artmet-breakdown-views-wrap"> <div class="artmet-breakdown-view breakdown-border"> <span class="artmet-number">34,234</span> <span class="artmet-text">Pageviews</span> </div> <div class="artmet-breakdown-view"> <span class="artmet-number">9,168</span> <span class="artmet-text">PDF Downloads</span> </div> </div> </div> <div class="artmet-views-since">Since 1/1/2020</div> </div> <script> var ChartistData = ChartistData || {}; ChartistData.data = { labels: ['Jan 2020', 'Feb 2020', 'Mar 2020', 'Apr 2020', 'May 2020', 'Jun 2020', 'Jul 2020', 'Aug 2020', 'Sep 2020', 'Oct 2020', 'Nov 2020', 'Dec 2020', 'Jan 2021', 'Feb 2021', 'Mar 2021', 'Apr 2021', 'May 2021', 'Jun 2021', 'Jul 2021', 'Aug 2021', 'Sep 2021', 'Oct 2021', 'Nov 2021', 'Dec 2021', 'Jan 2022', 'Feb 2022', 'Mar 2022', 'Apr 2022', 'May 2022', 'Jun 2022', 'Jul 2022', 'Aug 2022', 'Sep 2022', 'Oct 2022', 'Nov 2022', 'Dec 2022', 'Jan 2023', 'Feb 2023', 'Mar 2023', 'Apr 2023', 'May 2023', 'Jun 2023', 'Jul 2023', 'Aug 2023', 'Sep 2023', 'Oct 2023', 'Nov 2023', 'Dec 2023', 'Jan 2024', 'Feb 2024', 'Mar 2024', 'Apr 2024', 'May 2024', 'Jun 2024', 'Jul 2024', 'Aug 2024', 'Sep 2024', 'Oct 2024', 'Nov 2024'], series: [[969, 366, 363, 298, 307, 461, 551, 530, 2286, 871, 870, 612, 733, 1118, 1492, 1075, 1017, 938, 710, 733, 794, 891, 850, 923, 841, 791, 885, 790, 880, 686, 586, 585, 828, 745, 756, 550, 645, 756, 811, 711, 576, 579, 659, 670, 659, 639, 720, 774, 859, 692, 766, 693, 700, 524, 459, 419, 436, 528, 446]] }; </script> <div class="artmet-item artmet-chart"> <div class="ct-chart ct-octave js-ct-chart"></div> <div class="artmet-table"> <table> <thead> <tr> <th>Month:</th> <th>Total Views:</th> </tr> </thead> <tbody> <tr> <td>January 2020</td> <td>969</td> </tr> <tr> <td>February 2020</td> <td>366</td> </tr> <tr> <td>March 2020</td> <td>363</td> </tr> <tr> <td>April 2020</td> <td>298</td> </tr> <tr> <td>May 2020</td> <td>307</td> </tr> <tr> <td>June 2020</td> <td>461</td> </tr> <tr> <td>July 2020</td> <td>551</td> </tr> <tr> <td>August 2020</td> <td>530</td> </tr> <tr> <td>September 2020</td> <td>2,286</td> </tr> <tr> <td>October 2020</td> <td>871</td> </tr> <tr> <td>November 2020</td> <td>870</td> </tr> <tr> <td>December 2020</td> <td>612</td> </tr> <tr> <td>January 2021</td> <td>733</td> </tr> <tr> <td>February 2021</td> <td>1,118</td> </tr> <tr> <td>March 2021</td> <td>1,492</td> </tr> <tr> <td>April 2021</td> <td>1,075</td> </tr> <tr> <td>May 2021</td> <td>1,017</td> </tr> <tr> <td>June 2021</td> <td>938</td> </tr> <tr> <td>July 2021</td> <td>710</td> </tr> <tr> <td>August 2021</td> <td>733</td> </tr> <tr> <td>September 2021</td> <td>794</td> </tr> <tr> <td>October 2021</td> <td>891</td> </tr> <tr> <td>November 2021</td> <td>850</td> </tr> <tr> <td>December 2021</td> <td>923</td> </tr> <tr> <td>January 2022</td> <td>841</td> </tr> <tr> <td>February 2022</td> <td>791</td> </tr> <tr> <td>March 2022</td> <td>885</td> </tr> <tr> <td>April 2022</td> <td>790</td> </tr> <tr> <td>May 2022</td> <td>880</td> </tr> <tr> <td>June 2022</td> <td>686</td> </tr> <tr> <td>July 2022</td> <td>586</td> </tr> <tr> <td>August 2022</td> <td>585</td> </tr> <tr> <td>September 2022</td> <td>828</td> </tr> <tr> <td>October 2022</td> <td>745</td> </tr> <tr> <td>November 2022</td> <td>756</td> </tr> <tr> <td>December 2022</td> <td>550</td> </tr> <tr> <td>January 2023</td> <td>645</td> </tr> <tr> <td>February 2023</td> <td>756</td> </tr> <tr> <td>March 2023</td> <td>811</td> </tr> <tr> <td>April 2023</td> <td>711</td> </tr> <tr> <td>May 2023</td> <td>576</td> </tr> <tr> <td>June 2023</td> <td>579</td> </tr> <tr> <td>July 2023</td> <td>659</td> </tr> <tr> <td>August 2023</td> <td>670</td> </tr> <tr> <td>September 2023</td> <td>659</td> </tr> <tr> <td>October 2023</td> <td>639</td> </tr> <tr> <td>November 2023</td> <td>720</td> </tr> <tr> <td>December 2023</td> <td>774</td> </tr> <tr> <td>January 2024</td> <td>859</td> </tr> <tr> <td>February 2024</td> <td>692</td> </tr> <tr> <td>March 2024</td> <td>766</td> </tr> <tr> <td>April 2024</td> <td>693</td> </tr> <tr> <td>May 2024</td> <td>700</td> </tr> <tr> <td>June 2024</td> <td>524</td> </tr> <tr> <td>July 2024</td> <td>459</td> </tr> <tr> <td>August 2024</td> <td>419</td> </tr> <tr> <td>September 2024</td> <td>436</td> </tr> <tr> <td>October 2024</td> <td>528</td> </tr> <tr> <td>November 2024</td> <td>446</td> </tr> </tbody> </table> </div> </div> <div class="artmet-stats-wrap clearfix"> <div class="artmet-item artmet-citations hide"> <div class="widget-title-2 artmet-widget-title-2">Citations</div> <div class="artmet-badges-wrap artmet-dimensions"> <div class="widget widget-DimensionsBadge widget-instance-ArticleLevelMetrics_DimensionsBadgeDetails"> <span class="__dimensions_badge_embed__" data-doi="10.1093/bib/bbz157" data-legend="always" data-style="" data-hide-zero-citations="false"></span> <script async src="https://badge.dimensions.ai/badge.js" charset="utf-8"></script> </div> <span class="artmet-dimensions-text">Powered by Dimensions</span> </div> <div class="artmet-wos"> <span class="artmet-number"> <a href="https://www.webofscience.com/api/gateway?GWVersion=2&amp;SrcApp=silverchair&amp;SrcAuth=WosAPI&amp;KeyUT=WOS:000634950200020&amp;DestLinkType=CitingArticles&amp;DestApp=WOS_CPL" target="_blank">226</a> </span> <span class="artmet-text">Web of Science</span> </div> </div> <div class="artmet-item artmet-altmetric js-show-if-unknown"> <div class="widget-title-2 artmet-widget-title-2">Altmetrics</div> <div class="artmet-badges-wrap js-artmet-badges"> <div class="widget widget-AltmetricLink widget-instance-ArticleLevelMetrics_AltmetricLinkDetails"> <!-- Altmetrics --> <div id="altmetricEmbedId" runat="server" class='altmetric-embed' data-badge-type="donut" data-hide-no-mentions="false" data-doi="10.1093/bib/bbz157" data-badge-details = "right" ></div> <script type='text/javascript' src='https://d1bxh8uas1mnw7.cloudfront.net/assets/embed.js'></script> </div> </div> </div> </div> </div> <a class="artmet-close-modal js-artmet-close-modal">&#215;</a> </div> </div> </div> </div> <div class="widget widget-Alerts widget-instance-Article_RightRailB0Article_RightRail_Alerts"> <div class="alertsWidget"> <h3>Email alerts</h3> <div class="userAlert alertType-1"> <a href="javascript:;" class="js-user-alert" role="button" data-userLoggedIn="False" data-alertType="1" href="javascript:;">Article activity alert</a> </div> <div class="userAlert alertType-3"> <a href="javascript:;" class="js-user-alert" role="button" data-userLoggedIn="False" data-alertType="3" href="javascript:;">Advance article alerts</a> </div> <div class="userAlert alertType-5"> <a href="javascript:;" class="js-user-alert" role="button" data-userLoggedIn="False" data-alertType="5" href="javascript:;">New issue alert</a> </div> <div class="userAlert alertType-30"> <a href="javascript:;" class="js-user-alert" role="button" data-userLoggedIn="False" data-alertType="30" href="javascript:;">In progress issue alert</a> </div> <div class="userAlert alertType-MarketingLink"> <a href="javascript:;" class="js-user-alert" role="button" data-userLoggedIn="False" data-additionalUrl="/my-account/communication-preferences" href="javascript:;">Receive exclusive offers and updates from Oxford Academic</a> </div> <div class="userAlertSignUpModal reveal-modal small" data-reveal> <div class="userAlertSignUp at-userAlertSignUp"></div> <a href="javascript:;" role="button" aria-label="Close" class="close-reveal-modal" href="javascript:;"> <i class="icon-general-close"></i> </a> </div> </div> </div> <div class="widget widget-TrendMD widget-instance-Article_RightRailB0trendmd"> <div id="trendmd-suggestions"></div> <div class="options" data-suppress-if-hum-is-present="True"></div> </div> <div class="widget widget-ArticleCitedBy widget-instance-Article_RightRailB0Article_RightRail_ArticleCitedBy"> <div class="rail-widget_wrap vt-articles-cited-by"> <h3 class="article-cited-title">Citing articles via</h3> <div class="widget-links_wrap"> <div class="article-cited-link-wrap web-of-science"> <a href="https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=silverchair&SrcAuth=WosAPI&KeyUT=WOS:000634950200020&DestLinkType=CitingArticles&DestApp=WOS_CPL" target="_blank">Web of Science (226)</a> </div> <div class="article-cited-link-wrap google-scholar-url"> <a href="http://scholar.google.com/scholar?q=link:https%3A%2F%2Facademic.oup.com%2Fbib%2Farticle%2F22%2F1%2F247%2F5681786" target="_blank">Google Scholar</a> </div> </div> </div> </div> <div class="widget widget-ArticleListNewAndPopular widget-instance-Article_RightRailB0Article_RightRail_ArticleNewPopularCombined"> <ul class="articleListNewAndPopularCombinedView"> <li> <h3> <a href="javascript:;" class="articleListNewAndPopular-mode active" data-mode="MostRecent">Latest</a> </h3> </li> <li> <h3> <a href="javascript:;" class="articleListNewAndPopular-mode " data-mode="MostRead">Most Read</a> </h3> </li> <li> <h3> <a href="javascript:;" class="articleListNewAndPopular-mode " data-mode="MostCited">Most Cited</a> </h3> </li> </ul> <section class="articleListNewPopContent articleListNewAndPopular-ContentView-MostRecent hasContent"> <div id="newPopularList-Article_RightRailB0Article_RightRail_ArticleNewPopularCombined" class="fb"> <div class="widget-layout widget-layout--vert "> <div class="widget-columns widget-col-1"> <div class="col"> <div class="widget-dynamic-entry journalArticleItem at-widget-entry-SCL"> <span class="hfDoi" data-attribute="10.1093/bib/bbae623" aria-hidden="true"></span> <a class="journal-link" href="/bib/article/26/1/bbae623/7909474?searchresult=1"> <div class="widget-dynamic-journal-title"> FunlncModel: integrating multi-omic features from upstream and downstream regulatory networks into a machine learning framework to identify functional lncRNAs </div> </a> <div class="widget-dynamic-journal-image-synopsis"> <div class="widget-dynamic-journal-synopsis"> </div> </div> </div> <div class="widget-dynamic-entry journalArticleItem at-widget-entry-SCL"> <span class="hfDoi" data-attribute="10.1093/bib/bbae589" aria-hidden="true"></span> <a class="journal-link" href="/bib/article/26/1/bbae589/7908576?searchresult=1"> <div class="widget-dynamic-journal-title"> Deciphering the genetic interplay between depression and dysmenorrhea: a Mendelian randomization study </div> </a> <div class="widget-dynamic-journal-image-synopsis"> <div class="widget-dynamic-journal-synopsis"> </div> </div> </div> <div class="widget-dynamic-entry journalArticleItem at-widget-entry-SCL"> <span class="hfDoi" data-attribute="10.1093/bib/bbae627" aria-hidden="true"></span> <a class="journal-link" href="/bib/article/26/1/bbae627/7908821?searchresult=1"> <div class="widget-dynamic-journal-title"> The improved de Bruijn graph for multitask learning: predicting functions, subcellular localization, and interactions of noncoding RNAs </div> </a> <div class="widget-dynamic-journal-image-synopsis"> <div class="widget-dynamic-journal-synopsis"> </div> </div> </div> <div class="widget-dynamic-entry journalArticleItem at-widget-entry-SCL"> <span class="hfDoi" data-attribute="10.1093/bib/bbae616" aria-hidden="true"></span> <a class="journal-link" href="/bib/article/26/1/bbae616/7908783?searchresult=1"> <div class="widget-dynamic-journal-title"> miCGR: interpretable deep neural network for predicting both site-level and gene-level functional targets of microRNA </div> </a> <div class="widget-dynamic-journal-image-synopsis"> <div class="widget-dynamic-journal-synopsis"> </div> </div> </div> <div class="widget-dynamic-entry journalArticleItem at-widget-entry-SCL"> <span class="hfDoi" data-attribute="10.1093/bib/bbae611" aria-hidden="true"></span> <a class="journal-link" href="/bib/article/26/1/bbae611/7908782?searchresult=1"> <div class="widget-dynamic-journal-title"> LIMO-GCN: a linear model-integrated graph convolutional network for predicting Alzheimer disease genes </div> </a> <div class="widget-dynamic-journal-image-synopsis"> <div class="widget-dynamic-journal-synopsis"> </div> </div> </div> </div> </div> </div></div> </section> <section class="articleListNewPopContent articleListNewAndPopular-ContentView-MostRead hide"> </section> <section class="articleListNewPopContent articleListNewAndPopular-ContentView-MostCited hide"> </section> </div> <div class="widget widget-RelatedTaxonomies widget-instance-Article_RightRailB0Article_RightRail_RelatedTaxonomies"> <div class="widget-related-taxonomies-wrap vt-related-taxonomies"> <div class="widget-related-taxonomies_title">More from Oxford Academic</div> <div class="widget-related-taxonomies"> <a id="more-from-oa-AcademicSubjects_SCI01060" class="related-taxonomies-link" href="/search-results?tax=AcademicSubjects/SCI01060">Bioinformatics and Computational Biology</a> </div> <div class="widget-related-taxonomies"> <a id="more-from-oa-AcademicSubjects_SCI00960" class="related-taxonomies-link" href="/search-results?tax=AcademicSubjects/SCI00960">Biological Sciences</a> </div> <div class="widget-related-taxonomies"> <a id="more-from-oa-AcademicSubjects_SCI00010" class="related-taxonomies-link" href="/search-results?tax=AcademicSubjects/SCI00010">Science and Mathematics</a> </div> <div class="widget-related-taxonomies"> <a id="more-from-oa-format-Books" class="related-taxonomies-link" href="/books">Books</a> </div> <div class="widget-related-taxonomies"> <a id="more-from-oa-format-Journals" class="related-taxonomies-link" href="/journals">Journals</a> </div> </div> </div> </div> </div> </div> </div> <div class="widget widget-AdBlock widget-instance-ArticlePageTopMainBodyBottom"> <div class="js-adBlock-parent-wrap adblock-parent-wrap"> <div class="adBlockMainBodyBottom-wrap js-adBlockMainBodyBottom hide"> <div id="adBlockMainBodyBottom" class="js-adblock at-adblock js-adblock-lazy-loading" data-lazy-load-margin="150"> <script> googletag.cmd.push(function () { googletag.display('adBlockMainBodyBottom'); }); </script> </div> <div class="advertisement-text at-adblock js-adblock-advertisement-text hide">Advertisement</div> </div> </div> </div> </div> </div> <input id="hfArticleTitle" name="hfArticleTitle" type="hidden" value="Machine learning approaches and databases for prediction of drug–target interaction: a survey paper | Briefings in Bioinformatics | Oxford Academic" /> <input id="hfLeftNavStickyOffset" name="hfLeftNavStickyOffset" type="hidden" value="29" /> </div><!-- /.center-inner-row no-overflow --> </section> </div> <div class="mobile-mask"> </div> <section class="footer_wrap vt-site-footer"> <div class="ad-banner-footer sticky-footer-ad js-sticky-footer-ad"> <div class="widget widget-AdBlock widget-instance-StickyFooterAd"> <div class="js-adBlock-parent-wrap adblock-parent-wrap"> <div class="adBlockStickyFooter-wrap js-adBlockStickyFooter hide"> <div id="adBlockStickyFooter" class="js-adblock at-adblock" data-lazy-load-margin="150"> <script> googletag.cmd.push(function () { googletag.display('adBlockStickyFooter'); }); </script> </div> <div class="advertisement-text at-adblock js-adblock-advertisement-text hide">Advertisement</div> <button type="button" class="close-footer-ad js-close-footer-ad"> <span class="screenreader-text">close advertisement</span> </button> </div> </div> </div> </div> <div class="widget widget-SitePageFooter widget-instance-SitePageFooter"> <div class="ad-banner ad-banner-footer"> <div class="widget widget-AdBlock widget-instance-FooterAd"> <div class="js-adBlock-parent-wrap adblock-parent-wrap"> <div class="adBlockFooter-wrap js-adBlockFooter hide"> <div id="adBlockFooter" class="js-adblock at-adblock js-adblock-lazy-loading" data-lazy-load-margin="150"> <script> googletag.cmd.push(function () { googletag.display('adBlockFooter'); }); </script> </div> <div class="advertisement-text at-adblock js-adblock-advertisement-text hide">Advertisement</div> </div> </div> </div> </div> <div class="journal-footer journal-bg"> <div class="center-inner-row"> <div class="journal-footer-menu"> <ul> <li class="link-1"> <a href="/bib/pages/About">About Briefings in Bioinformatics</a> </li> <li class="link-2"> <a href="/bib/pages/Editorial_Board">Editorial Board</a> </li> <li class="link-3"> <a href="/bib/pages/General_Instructions">Author Guidelines</a> </li> <li class="link-4"> <a href="https://www.facebook.com/OUPAcademic">Facebook</a> </li> <li class="link-5"> <a href="https://twitter.com/oxfordjournals">X (formerly Twitter)</a> </li> </ul><ul><li class="link-1"> <a href="/bib/subscribe">Purchase</a> </li> <li class="link-2"> <a href="http://www.oxfordjournals.org/en/library-recommendation-form.html">Recommend to your Library</a> </li> <li class="link-3"> <a href="https://academic.oup.com/advertising-and-corporate-services/pages/bib-media-kit">Advertising and Corporate Services</a> </li> <li class="link-4"> <a href="http://science-and-mathematics-careernetwork.oxfordjournals.org/jobseeker/search/results/?t730=&amp;search=&amp;t732=470054&amp;t731=&amp;t733=&amp;t735=&amp;t737=&amp;max=25&amp;site_id=20106">Journals Career Network</a> </li> </ul> </div><!-- /.journal-footer-menu --> <div class="journal-footer-affiliations"> <!-- <h3>Affiliations</h3> --> <a href="" target=""> <img id="footer-logo-BriefingsinBioinformatics" class="journal-footer-affiliations-logo" src="//oup.silverchair-cdn.com/data/SiteBuilderAssets/Live/Images/bib/bib_f1526563102.svg" alt="Briefings in Bioinformatics" /> </a> </div><!-- /.journal-footer-affiliations --> <div class="journal-footer-colophon"> <ul> <li>Online ISSN 1477-4054</li> <li>Copyright &#169; 2024 Oxford University Press</li> </ul> </div><!-- /.journal-footer-colophon --> </div><!-- /.center-inner-row --> </div><!-- /.journal-footer --> </div> <div class="oup-footer"> <div class="center-inner-row"> <div class="widget widget-SelfServeContent widget-instance-OupUmbrellaFooterSelfServe"> <input type="hidden" class="SelfServeContentId" value="GlobalFooter_Links" /> <input type="hidden" class="SelfServeVersionId" value="0" /> <div class="oup-footer-row journal-links"> <div class="global-footer selfservelinks"> <ul> <li><a href="/pages/about-oxford-academic">About Oxford Academic</a></li> <li><a href="/pages/about-oxford-academic/publish-journals-with-us">Publish journals with us</a></li> <li><a href="/pages/about-oxford-academic/our-university-press-partners">University press partners</a></li> <li><a href="/pages/what-we-publish">What we publish</a></li> <li><a href="/pages/new-features">New features</a>&nbsp;</li> </ul> </div> <div class="global-footer selfservelinks"> <ul> <li><a href="/pages/authoring">Authoring</a></li> <li><a href="/pages/open-research/open-access">Open access</a></li> <li><a href="/pages/purchasing">Purchasing</a></li> <li><a href="/pages/institutional-account-management">Institutional account management</a></li> <li><a href="https://academic.oup.com/pages/purchasing/rights-and-permissions">Rights and permissions</a></li> </ul> </div> <div class="global-footer selfservelinks"> <ul> <li><a href="/pages/get-help-with-access">Get help with access</a></li> <li><a href="/pages/about-oxford-academic/accessibility">Accessibility</a></li> <li><a href="/pages/contact-us">Contact us</a></li> <li><a href="/pages/advertising">Advertising</a></li> <li><a href="/pages/media-enquiries">Media enquiries</a></li> </ul> </div> <div class="global-footer selfservelinks global-footer-external"> <ul> <li><a href="https://global.oup.com/">Oxford University Press</a></li> <li><a href="https://www.mynewsdesk.com/uk/oxford-university-press">News</a></li> <li><a href="https://languages.oup.com/">Oxford Languages</a></li> <li><a href="https://www.ox.ac.uk/">University of Oxford</a></li> </ul> </div> <div class="OUP-mission"> <p>Oxford University Press is a department of the University of Oxford. It furthers the University's objective of excellence in research, scholarship, and education by publishing worldwide</p> <img class="journal-footer-logo" src="//oup.silverchair-cdn.com/UI/app/svg/umbrella/oup-logo.svg" alt="Oxford University Press" width="150" height="42" /> </div> </div> <div class="oup-footer-row"> <div class="oup-footer-row-links"> <ul> <li>Copyright © 2024 Oxford University Press</li> <li><button id="Change-Preferences" type="button" onclick="window.top.document.dispatchEvent(new Event('changeConsent'))">Cookie settings</button></li> <li><a href="https://global.oup.com/cookiepolicy">Cookie policy</a></li> <li><a href="https://global.oup.com/privacy">Privacy policy</a></li> <li><a href="/pages/legal-and-policy/legal-notice">Legal notice</a></li> </ul> </div> </div> <style type="text/css"> /* Issue right column fix for tablet/mobile */ @media (max-width: 1200px) { .pg_issue .widget-instance-OUP_Issue { width: 100%; } } .sf-facet-list .sf-facet label, .sf-facet-list .taxonomy-label-wrap label { font-size: 0.9375rem; } .issue-pagination-wrap .pagination-container { float: right; } </style> </div> </div> </div> <div class="ss-ui-only"> </div> </section> </div> <div class="widget widget-SiteWideModals widget-instance-SiteWideModals"> <div id="revealModal" class="reveal-modal" data-reveal> <div id="revealContent"></div> <a class="close-reveal-modal" href="javascript:;"><i class="icon-general-close"></i><span class="screenreader-text">Close</span></a> </div> <div id="globalModalContainer" class="modal-global-container"> <div id="globalModalContent"> <div class="js-globalModalPlaceholder"></div> </div> <a class="close-modal js-close-modal" href="javascript:;"><i class="icon-general-close"><span class="screenreader-text">Close</span></i></a> </div> <div id="globalModalOverlay" class="modal-overlay js-modal-overlay"></div> <div id="NeedSubscription" class="reveal-modal small" data-reveal> <div class="subscription-needed"> <h5>This Feature Is Available To Subscribers Only</h5> <p><a href="/sign-in">Sign In</a> or <a href="/my-account/register?siteId=5143&amp;returnUrl=%2fbib%2farticle%2f22%2f1%2f247%2f5681786">Create an Account</a></p> </div> <a class="close-reveal-modal" href="javascript:;"><i class="icon-general-close"></i><span class="screenreader-text">Close</span></a> </div> <div id="noAccessReveal" class="reveal-modal tiny" data-reveal> <p>This PDF is available to Subscribers Only</p> <a class="hide-for-article-page" id="articleLinkToPurchase" data-reveal><span>View Article Abstract & Purchase Options</span></a> <div class="issue-purchase-modal"> <p>For full access to this pdf, sign in to an existing account, or purchase an annual subscription.</p> </div> <a class="close-reveal-modal" href="javascript:;"><i class="icon-general-close"></i><span class="screenreader-text">Close</span></a> </div> </div> <script type="text/javascript"> MathJax = { tex: { inlineMath: [['|$', '$|'], ['\\(', '\\)']] } }; </script> <script id="MathJax-script" async src="//cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script> <!-- CookiePro Default Categories --> <!-- When the Cookie Compliance code loads, if cookies for the associated group have consent... it will dynamically change the tag to: script type=text/JavaScript... the code inside the tags will then be recognized and run as normal. --> <script> var NTPT_PGEXTRA = 'event_type=full-text\u0026discipline_ot_level_1=Science and Mathematics\u0026discipline_ot_level_2=Biological Sciences\u0026supplier_tag=SC_Journals\u0026object_type=Article\u0026taxonomy=taxId%3a39%7ctaxLabel%3aAcademicSubjects%7cnodeId%3aSCI01060%7cnodeLabel%3aBioinformatics+and+Computational+Biology%7cnodeLevel%3a3\u0026siteid=bib\u0026authzrequired=false\u0026doi=10.1093/bib/bbz157'; </script> <!-- Copyright 2001-2010, IBM Corporation All rights reserved. --> <script type="text/javascript" src="//ouptag.scholarlyiq.com/ntpagetag.js" class="optanon-category-C0002"></script> <noscript> <img src="//ouptag.scholarlyiq.com/ntpagetag.gif?js=0" height="1" width="1" border="0" hspace="0" vspace="0" alt="Scholarly IQ" /> </noscript> <script type="text/javascript" src="//oup.silverchair-cdn.com/Themes/Client/app/jsdist/v-638669719712896271/site.min.js"></script> <script type="text/javascript" src="https://cdn.jsdelivr.net/chartist.js/latest/chartist.min.js"></script> <script type="text/javascript" src="//oup.silverchair-cdn.com/Themes/Client/app/jsdist/v-638669719629345371/article-page.min.js"></script> <div class="ad-banner js-ad-riser ad-banner-riser"> <div class="widget widget-AdBlock widget-instance-RiserAd"> </div> </div> <script src="//oup.silverchair-cdn.com/oup/scm.proxylogging.js"></script> <div class="end-of-page-js"></div> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10