CINXE.COM
Search results for: open field smart farm
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: open field smart farm</title> <meta name="description" content="Search results for: open field smart farm"> <meta name="keywords" content="open field smart farm"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="open field smart farm" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="open field smart farm"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 12617</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: open field smart farm</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12617</span> Design of Open Framework Based Smart ESS Profile for PV-ESS and UPS-ESS</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Young-Su%20Ryu">Young-Su Ryu</a>, <a href="https://publications.waset.org/abstracts/search?q=Won-Gi%20Jeon"> Won-Gi Jeon</a>, <a href="https://publications.waset.org/abstracts/search?q=Byoung-Chul%20Song"> Byoung-Chul Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Jae-Hong%20Park"> Jae-Hong Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Ki-Won%20Kwon"> Ki-Won Kwon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, an open framework based smart energy storage system (ESS) profile for photovoltaic (PV)-ESS and uninterruptible power supply (UPS)-ESS is proposed and designed. An open framework based smart ESS is designed and developed for unifying the different interfaces among manufacturers. The smart ESS operates under the profile which provides the specifications of peripheral devices such as different interfaces and to the open framework. The profile requires well systemicity and expandability for addible peripheral devices. Especially, the smart ESS should provide the expansion with existing systems such as UPS and the linkage with new renewable energy technology such as PV. This paper proposes and designs an open framework based smart ESS profile for PV-ESS and UPS-ESS. The designed profile provides the existing smart ESS and also the expandability of additional peripheral devices on smart ESS such as PV and UPS. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20storage%20system%20%28ESS%29" title="energy storage system (ESS)">energy storage system (ESS)</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20framework" title=" open framework"> open framework</a>, <a href="https://publications.waset.org/abstracts/search?q=profile" title=" profile"> profile</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic%20%28PV%29" title=" photovoltaic (PV)"> photovoltaic (PV)</a>, <a href="https://publications.waset.org/abstracts/search?q=uninterruptible%20power%20supply%20%28UPS%29" title=" uninterruptible power supply (UPS)"> uninterruptible power supply (UPS)</a> </p> <a href="https://publications.waset.org/abstracts/68041/design-of-open-framework-based-smart-ess-profile-for-pv-ess-and-ups-ess" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/68041.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">473</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12616</span> Decision-Making Strategies on Smart Dairy Farms: A Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=L.%20Krpalkova">L. Krpalkova</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20O%27%20Mahony"> N. O' Mahony</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Carvalho"> A. Carvalho</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Campbell"> S. Campbell</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Corkery"> G. Corkery</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Broderick"> E. Broderick</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Walsh"> J. Walsh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Farm management and operations will drastically change due to access to real-time data, real-time forecasting, and tracking of physical items in combination with Internet of Things developments to further automate farm operations. Dairy farms have embraced technological innovations and procured vast amounts of permanent data streams during the past decade; however, the integration of this information to improve the whole farm-based management and decision-making does not exist. It is now imperative to develop a system that can collect, integrate, manage, and analyse on-farm and off-farm data in real-time for practical and relevant environmental and economic actions. The developed systems, based on machine learning and artificial intelligence, need to be connected for useful output, a better understanding of the whole farming issue, and environmental impact. Evolutionary computing can be very effective in finding the optimal combination of sets of some objects and, finally, in strategy determination. The system of the future should be able to manage the dairy farm as well as an experienced dairy farm manager with a team of the best agricultural advisors. All these changes should bring resilience and sustainability to dairy farming as well as improving and maintaining good animal welfare and the quality of dairy products. This review aims to provide an insight into the state-of-the-art of big data applications and evolutionary computing in relation to smart dairy farming and identify the most important research and development challenges to be addressed in the future. Smart dairy farming influences every area of management, and its uptake has become a continuing trend. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=big%20data" title="big data">big data</a>, <a href="https://publications.waset.org/abstracts/search?q=evolutionary%20computing" title=" evolutionary computing"> evolutionary computing</a>, <a href="https://publications.waset.org/abstracts/search?q=cloud" title=" cloud"> cloud</a>, <a href="https://publications.waset.org/abstracts/search?q=precision%20technologies" title=" precision technologies"> precision technologies</a> </p> <a href="https://publications.waset.org/abstracts/130338/decision-making-strategies-on-smart-dairy-farms-a-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130338.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12615</span> Application of Wireless Sensor Networks: A Survey in Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sathapath%20Kilaso">Sathapath Kilaso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, Today, wireless sensor networks are an important technology that works with Internet of Things. It is receiving various data from many sensor. Then sent to processing or storing. By wireless network or through the Internet. The devices around us are intelligent, can receiving/transmitting and processing data and communicating through the system. There are many applications of wireless sensor networks, such as smart city, smart farm, environmental management, weather. This article will explore the use of wireless sensor networks in Thailand and collect data from Thai Thesis database in 2012-2017. How to Implementing Wireless Sensor Network Technology. Advantage from this study To know the usage wireless technology in many fields. This will be beneficial for future research. In this study was found the most widely used wireless sensor network in agriculture field. Especially for smart farms. And the second is the adoption of the environment. Such as weather stations and water inspection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wireless%20sensor%20network" title="wireless sensor network">wireless sensor network</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=survey" title=" survey"> survey</a>, <a href="https://publications.waset.org/abstracts/search?q=Adhoc%20Network" title=" Adhoc Network"> Adhoc Network</a> </p> <a href="https://publications.waset.org/abstracts/79820/application-of-wireless-sensor-networks-a-survey-in-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79820.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12614</span> Studies on Pesticide Usage Pattern and Farmers Knowledge on Pesticide Usage and Technologies in Open Field and Poly House Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Raghu">B. Raghu</a>, <a href="https://publications.waset.org/abstracts/search?q=Shashi%20Vemuri"> Shashi Vemuri</a>, <a href="https://publications.waset.org/abstracts/search?q=Ch.%20Sreenivasa%20Rao"> Ch. Sreenivasa Rao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The survey on pesticide use pattern was carried out by interviewing farmers growing chill in open fields and poly houses based on the questionnaire prepared to assess their knowledge and practices on crop cultivation, general awareness on pesticide recommendations and use. Education levels of poly house farmers are high compared to open field farmers, where 57.14% poly house farmers are high school educated, whereas 35% open field farmers are illiterates. Majority farmers use nursery of 35 days and grow in <0.5 acre poly house in summer and rabi and < 1 acre in open field during kharif. Awareness on pesticide related issues is varying among poly house and open field farmers with some commonality, where 28.57% poly house farmers know about recommended pesticides while only 10% open field farmers are aware of this issue. However, in general, all farmers contact pesticide dealer for recommendations, poly house farmers prefer to contact scientists (35.71%) and open field farmers prefer to contact agricultural officers (33.33). Most farmers are unaware about pesticide classification and toxicity symbols on packing. Farmers are aware about endosulfan ban, but only 21.42% poly house and 11.66% open field farmers know about ban of monocrotofos on vegetables. Very few farmers know about pesticide residues and related issues, but know washing helps to reduce contamination. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=open%20field" title="open field">open field</a>, <a href="https://publications.waset.org/abstracts/search?q=pesticide%20usage" title=" pesticide usage"> pesticide usage</a>, <a href="https://publications.waset.org/abstracts/search?q=polyhouses" title=" polyhouses"> polyhouses</a>, <a href="https://publications.waset.org/abstracts/search?q=residues%20survey" title=" residues survey"> residues survey</a> </p> <a href="https://publications.waset.org/abstracts/21476/studies-on-pesticide-usage-pattern-and-farmers-knowledge-on-pesticide-usage-and-technologies-in-open-field-and-poly-house-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21476.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12613</span> AgriInnoConnect Pro System Using Iot and Firebase Console</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amit%20Barde">Amit Barde</a>, <a href="https://publications.waset.org/abstracts/search?q=Dipali%20Khatave"> Dipali Khatave</a>, <a href="https://publications.waset.org/abstracts/search?q=Vaishali%20Savale"> Vaishali Savale</a>, <a href="https://publications.waset.org/abstracts/search?q=Atharva%20Chavan"> Atharva Chavan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sapna%20Wagaj"> Sapna Wagaj</a>, <a href="https://publications.waset.org/abstracts/search?q=Aditya%20Jilla"> Aditya Jilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> AgriInnoConnect Pro is an advanced agricultural automation system designed to enhance irrigation efficiency and overall farm management through IoT technology. Using MIT App Inventor, Telegram, Arduino IDE, and Firebase Console, it provides a user-friendly interface for farmers. Key hardware includes soil moisture sensors, DHT11 sensors, a 12V motor, a solenoid valve, a stepdown transformer, Smart Fencing, and AC switches. The system operates in automatic and manual modes. In automatic mode, the ESP32 microcontroller monitors soil moisture and autonomously controls irrigation to optimize water usage. In manual mode, users can control the irrigation motor via a mobile app. Telegram bots enable remote operation of the solenoid valve and electric fencing, enhancing farm security. Additionally, the system upgrades conventional devices to smart ones using AC switches, broadening automation capabilities. AgriInnoConnect Pro aims to improve farm productivity and resource management, addressing the critical need for sustainable water conservation and providing a comprehensive solution for modern farm management. The integration of smart technologies in AgriInnoConnect Pro ensures precision farming practices, promoting efficient resource allocation and sustainable agricultural development. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20automation" title="agricultural automation">agricultural automation</a>, <a href="https://publications.waset.org/abstracts/search?q=IoT" title=" IoT"> IoT</a>, <a href="https://publications.waset.org/abstracts/search?q=soil%20moisture%20sensor" title=" soil moisture sensor"> soil moisture sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=ESP32" title=" ESP32"> ESP32</a>, <a href="https://publications.waset.org/abstracts/search?q=MIT%20app%20inventor" title=" MIT app inventor"> MIT app inventor</a>, <a href="https://publications.waset.org/abstracts/search?q=telegram%20bot" title=" telegram bot"> telegram bot</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20farming" title=" smart farming"> smart farming</a>, <a href="https://publications.waset.org/abstracts/search?q=remote%20control" title=" remote control"> remote control</a>, <a href="https://publications.waset.org/abstracts/search?q=firebase%20console" title=" firebase console"> firebase console</a> </p> <a href="https://publications.waset.org/abstracts/188315/agriinnoconnect-pro-system-using-iot-and-firebase-console" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/188315.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">43</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12612</span> Smart Grids Cyber Security Issues and Challenges</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Imen%20Aouini">Imen Aouini</a>, <a href="https://publications.waset.org/abstracts/search?q=Lamia%20Ben%20Azzouz"> Lamia Ben Azzouz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The energy need is growing rapidly due to the population growth and the large new usage of power. Several works put considerable efforts to make the electricity grid more intelligent to reduce essentially energy consumption and provide efficiency and reliability of power systems. The Smart Grid is a complex architecture that covers critical devices and systems vulnerable to significant attacks. Hence, security is a crucial factor for the success and the wide deployment of Smart Grids. In this paper, we present security issues of the Smart Grid architecture and we highlight open issues that will make the Smart Grid security a challenging research area in the future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20grids" title="smart grids">smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20meters" title=" smart meters"> smart meters</a>, <a href="https://publications.waset.org/abstracts/search?q=home%20area%20network" title=" home area network"> home area network</a>, <a href="https://publications.waset.org/abstracts/search?q=neighbor%20area%20network" title=" neighbor area network"> neighbor area network</a> </p> <a href="https://publications.waset.org/abstracts/35303/smart-grids-cyber-security-issues-and-challenges" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/35303.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">424</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12611</span> Designing Web Application to Simulate Agricultural Management for Smart Farmer: Land Development Department’s Integrated Management Farm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Panasbodee%20Thachaopas">Panasbodee Thachaopas</a>, <a href="https://publications.waset.org/abstracts/search?q=Duangdorm%20Gamnerdsap"> Duangdorm Gamnerdsap</a>, <a href="https://publications.waset.org/abstracts/search?q=Waraporn%20Inthip"> Waraporn Inthip</a>, <a href="https://publications.waset.org/abstracts/search?q=Arissara%20Pungpa"> Arissara Pungpa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> LDD’s IM Farm or Land Development Department’s Integrated Management Farm is the agricultural simulation application developed by Land Development Department relies on actual data in simulation game to grow 12 cash crops which are rice, corn, cassava, sugarcane, soybean, rubber tree, oil palm, pineapple, longan, rambutan, durian, and mangosteen. Launching in simulation game, players could select preferable areas for cropping from base map or Orthophoto map scale 1:4,000. Farm management is simulated from field preparation to harvesting. The system uses soil group, and present land use database to facilitate player to know whether what kind of crop is suitable to grow in each soil groups and integrate LDD’s data with other agencies which are soil types, soil properties, soil problems, climate, cultivation cost, fertilizer use, fertilizer price, socio-economic data, plant diseases, weed, pest, interest rate for taking on loan from Bank for Agriculture and Agricultural Cooperatives (BAAC), labor cost, market prices. These mentioned data affect the cost and yield differently to each crop. After completing, the player will know the yield, income and expense, profit/loss. The player could change to other crops that are more suitable to soil groups for optimal yields and profits. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20simulation" title="agricultural simulation">agricultural simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20farmer" title=" smart farmer"> smart farmer</a>, <a href="https://publications.waset.org/abstracts/search?q=web%20application" title=" web application"> web application</a>, <a href="https://publications.waset.org/abstracts/search?q=factors%20of%20agricultural%20production" title=" factors of agricultural production"> factors of agricultural production</a> </p> <a href="https://publications.waset.org/abstracts/88051/designing-web-application-to-simulate-agricultural-management-for-smart-farmer-land-development-departments-integrated-management-farm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88051.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">198</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12610</span> Factors Influencing Adoption of Climate-Smart Agricultural Practices among Maize Farmers in Ondo State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oduntan%20Oluwakemi">Oduntan Oluwakemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Obisesan%20Adekemi%20Adebisola"> Obisesan Adekemi Adebisola</a>, <a href="https://publications.waset.org/abstracts/search?q=Ayo-Bello%20Taofeeq%20Ayodeji"> Ayo-Bello Taofeeq Ayodeji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study examined the factors influencing the adoption of climate-smart agricultural practices among maize farmers in Ondo State, Nigeria. A Multi-stage sampling procedure was used to randomly select one hundred respondents for the study. Primary data were collected from the respondents with the aid of a structured questionnaire and analysed using descriptive statistics and a probit regression model. The results of this study showed that crop diversification was the most adopted climate-smart agricultural practice by the respondents, and adoption of Climate Smart Agricultural practices is still very low among the respondents. Results of probit regression revealed that marital status, access to extension services, farming experience, membership of farmers’ association, and access to credit had a positive influence on the adoption of climate-smart agricultural practices, while age, farm size, and total income had a negative influence. Based on the findings of the study, it was recommended that government should develop suitable policies that will encourage farmers, especially rural farmers, to adopt and utilize Climate Smart Agricultural Practices (CSAP). Equally, the study also recommended government should be geared towards supporting improved extension services, providing on-farm demonstration training, disseminating information about climate-smart agricultural practices, and providing credit facilities through the Agricultural Credit Guarantee Scheme Fund and bank credit to farmers in order to enhance the adoption. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adoption" title="adoption">adoption</a>, <a href="https://publications.waset.org/abstracts/search?q=agriculture" title=" agriculture"> agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=climate-smart" title=" climate-smart"> climate-smart</a>, <a href="https://publications.waset.org/abstracts/search?q=farmers" title=" farmers"> farmers</a>, <a href="https://publications.waset.org/abstracts/search?q=maize" title=" maize"> maize</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/160764/factors-influencing-adoption-of-climate-smart-agricultural-practices-among-maize-farmers-in-ondo-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160764.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12609</span> Smart Product-Service System Innovation with User Experience: A Case Study of Chunmi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ying%20Yu">Ying Yu</a>, <a href="https://publications.waset.org/abstracts/search?q=Wen-Chi%20Kuo"> Wen-Chi Kuo</a>, <a href="https://publications.waset.org/abstracts/search?q=Tung-Jung%20Sung"> Tung-Jung Sung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Product-Service System (PSS) has received widespread attention due to the increasing global competition in manufacturing and service markets. Today’s smart products and services are driven by Internet of things (IoT) technologies which will promote the transformation from traditional PSS to smart PSS. Although the smart PSS has some of technological achievements in businesses, it often ignores the real demands of target users when using products and services. Therefore, designers should know and learn the User Experience (UX) of smart products, services and systems. However, both of academia and industry still lack relevant development experience of smart PSS since it is an emerging field. In doing so, this is a case study of Xiaomi’s Chunmi, the largest IoT platform in the world, and addresses the two major issues: (1) why Chunmi should develop smart PSS strategies with UX; and (2) how Chunmi could successfully implement the strategic objectives of smart PSS through the design. The case study results indicated that: (1) the smart PSS can distinguish competitors by their unique UX which is difficult to duplicate; (2) early user engagement is crucial for the success of smart PSS; and (3) interaction, expectation, and enjoyment can be treated as a three-dimensional evaluation of UX design for smart PSS innovation. In conclusion, the smart PSS can gain competitive advantages through good UX design in the market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=design" title="design">design</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20PSS" title=" smart PSS"> smart PSS</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20experience" title=" user experience"> user experience</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20engagement" title=" user engagement"> user engagement</a> </p> <a href="https://publications.waset.org/abstracts/120886/smart-product-service-system-innovation-with-user-experience-a-case-study-of-chunmi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120886.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12608</span> Simulation of Piezoelectric Laminated Smart Structure under Strong Electric Field</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shun-Qi%20Zhang">Shun-Qi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Shu-Yang%20Zhang"> Shu-Yang Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Min%20Chen"> Min Chen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Applying strong electric field on piezoelectric actuators, on one hand very significant electroelastic material nonlinear effects will occur, on the other hand piezo plates and shells may undergo large displacements and rotations. In order to give a precise prediction of piezolaminated smart structures under large electric field, this paper develops a finite element (FE) model accounting for both electroelastic material nonlinearity and geometric nonlinearity with large rotations based on the first order shear deformation (FSOD) hypothesis. The proposed FE model is applied to analyze a piezolaminated semicircular shell structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20structures" title="smart structures">smart structures</a>, <a href="https://publications.waset.org/abstracts/search?q=piezolamintes" title=" piezolamintes"> piezolamintes</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20nonlinearity" title=" material nonlinearity"> material nonlinearity</a>, <a href="https://publications.waset.org/abstracts/search?q=strong%20electric%20field" title=" strong electric field"> strong electric field</a> </p> <a href="https://publications.waset.org/abstracts/60778/simulation-of-piezoelectric-laminated-smart-structure-under-strong-electric-field" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/60778.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">427</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12607</span> A Case Study on Smart Energy City of the UK: Based on Business Model Innovation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Minzheong%20Song">Minzheong Song </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to see a case of smart energy evolution of the UK along with government projects and smart city project like 'Smart London Plan (SLP)' in 2013 with the logic of business model innovation (BMI). For this, it discusses the theoretical logic and formulates a research framework of evolving smart energy from silo to integrated system. The starting point is the silo system with no connection and in second stage, the private investment in smart meters, smart grids implementation, energy and water nexus, adaptive smart grid systems, and building marketplaces with platform leadership. As results, the UK’s smart energy sector has evolved from smart meter device installation through smart grid to new business models such as water-energy nexus and microgrid service within the smart energy city system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title="smart city">smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20energy" title=" smart energy"> smart energy</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20model" title=" business model"> business model</a>, <a href="https://publications.waset.org/abstracts/search?q=business%20model%20innovation%20%28BMI%29" title=" business model innovation (BMI)"> business model innovation (BMI)</a> </p> <a href="https://publications.waset.org/abstracts/110461/a-case-study-on-smart-energy-city-of-the-uk-based-on-business-model-innovation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110461.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12606</span> A Security Study for Smart Metering Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musaab%20Hasan">Musaab Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Farkhund%20Iqbal"> Farkhund Iqbal</a>, <a href="https://publications.waset.org/abstracts/search?q=Patrick%20C.%20K.%20Hung"> Patrick C. K. Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20C.%20M.%20Fung"> Benjamin C. M. Fung</a>, <a href="https://publications.waset.org/abstracts/search?q=Laura%20Rafferty"> Laura Rafferty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In modern societies, the smart cities concept raised simultaneously with the projection towards adopting smart devices. A smart grid is an essential part of any smart city as both consumers and power utility companies benefit from the features provided by the power grid. In addition to advanced features presented by smart grids, there may also be a risk when the grids are exposed to malicious acts such as security attacks performed by terrorists. Considering advanced security measures in the design of smart meters could reduce these risks. This paper presents a security study for smart metering systems with a prototype implementation of the user interfaces for future works. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=security%20design" title="security design">security design</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20city" title=" smart city"> smart city</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20meter" title=" smart meter"> smart meter</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20metering%20system" title=" smart metering system"> smart metering system</a> </p> <a href="https://publications.waset.org/abstracts/79129/a-security-study-for-smart-metering-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79129.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12605</span> Potential Benefits and Adaptation of Climate Smart Practices by Small Farmers Under Three-Crop Rice Production System in Vietnam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Azeem%20Tariq">Azeem Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephane%20De%20Tourdonnet"> Stephane De Tourdonnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Lars%20Stoumann%20Jensen"> Lars Stoumann Jensen</a>, <a href="https://publications.waset.org/abstracts/search?q=Reiner%20Wassmann"> Reiner Wassmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Bjoern%20Ole%20Sander"> Bjoern Ole Sander</a>, <a href="https://publications.waset.org/abstracts/search?q=Quynh%20Duong%20Vu"> Quynh Duong Vu</a>, <a href="https://publications.waset.org/abstracts/search?q=Trinh%20Van%20Mai"> Trinh Van Mai</a>, <a href="https://publications.waset.org/abstracts/search?q=Andreas%20De%20Neergaard"> Andreas De Neergaard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice growing area is increasing to meet the food demand of increasing population. Mostly, rice is growing on lowland, small landholder fields in most part of the world, which is one of the major sources of greenhouse gases (GHG) emissions from agriculture fields. The strategies such as, altering water and residues (carbon) management practices are assumed to be essential to mitigate the GHG emissions from flooded rice system. The actual implementation and potential of these measures on small farmer fields is still challenging. A field study was conducted on red river delta in Northern Vietnam to identify the potential challenges and barriers to the small rice farmers for implementation of climate smart rice practices. The objective of this study was to develop and access the feasibility of climate smart rice prototypes under actual farmer conditions. Field and scientific oriented framework was used to meet our objective. The methodological framework composed of six steps: i) identification of stakeholders and possible options, ii) assessment of barrios, drawbacks/advantages of new technologies, iii) prototype design, iv) assessment of mitigation potential of each prototype, v) scenario building and vi) scenario assessment. A farm survey was conducted to identify the existing farm practices and major constraints of small rice farmers. We proposed the two water (pre transplant+midseason drainage and early+midseason drainage) and one straw (full residue incorporation) management option keeping in views the farmers constraints and barriers for implementation. To test new typologies with existing prototypes (midseason drainage, partial residue incorporation) at farmer local conditions, a participatory field experiment was conducted for two consecutive rice seasons at farmer fields. Following the results of each season a workshop was conducted with stakeholders (farmers, village leaders, cooperatives, irrigation staff, extensionists, agricultural officers) at local and district level to get feedbacks on new tested prototypes and to develop possible scenarios for climate smart rice production practices. The farm analysis survey showed that non-availability of cheap labor and lacks of alternatives for straw management influence the small farmers to burn the residues in the fields except to use for composting or other purposes. Our field results revealed that application of early season drainage significantly mitigates (40-60%) the methane emissions from residue incorporation. Early season drainage was more efficient and easy to control under cooperate manage system than individually managed water system, and it leads to both economic (9-11% high rice yield, low cost of production, reduced nutrient loses) and environmental (mitigate methane emissions) benefits. The participatory field study allows the assessment of adaptation potential and possible benefits of climate smart practices on small farmer fields. If farmers have no other residue management option, full residue incorporation with early plus midseason drainage is adaptable and beneficial (both environmentally and economically) management option for small rice farmers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adaptation" title="adaptation">adaptation</a>, <a href="https://publications.waset.org/abstracts/search?q=climate%20smart%20agriculture" title=" climate smart agriculture"> climate smart agriculture</a>, <a href="https://publications.waset.org/abstracts/search?q=constrainsts" title=" constrainsts"> constrainsts</a>, <a href="https://publications.waset.org/abstracts/search?q=smallholders" title=" smallholders"> smallholders</a> </p> <a href="https://publications.waset.org/abstracts/56419/potential-benefits-and-adaptation-of-climate-smart-practices-by-small-farmers-under-three-crop-rice-production-system-in-vietnam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12604</span> On-Farm Diversification in Vietnam: Determinants and Trends</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Diep%20Thanh%20Tung">Diep Thanh Tung</a>, <a href="https://publications.waset.org/abstracts/search?q=Joachim%20Aurbacher"> Joachim Aurbacher</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to measure the level of on-farm diversification in Vietnam. The empirical results of the research carried out reflect regional differences in terms of on-farm diversification and its determinants. Households in the northern regions have adapted to the fragmented and small-sized parcels of land held by diversifying their on-farm activities. In contrast, the Mekong delta region in the south of Vietnam is characterized by larger agricultural parcels and a specialization in rice production. Land use fragmentation, as reflected by a large number of plots in a given area, is one of the most important reasons for the high levels of on-farm diversification seen, while the higher share of non-farm income in total income is the reason of lower levels of on-farm diversification. Households have reacted to natural and economic shocks by diversifying their on-farm activities. The non-stationary Markov chain model used here shows various diversification scenarios and trends. In most cases, on-farm diversification generally tends to reduce over the next few years. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=diversification" title="diversification">diversification</a>, <a href="https://publications.waset.org/abstracts/search?q=simpson%20index" title=" simpson index"> simpson index</a>, <a href="https://publications.waset.org/abstracts/search?q=fixed%20effects" title=" fixed effects"> fixed effects</a>, <a href="https://publications.waset.org/abstracts/search?q=non-stationary%20markov%20chain" title=" non-stationary markov chain"> non-stationary markov chain</a> </p> <a href="https://publications.waset.org/abstracts/22799/on-farm-diversification-in-vietnam-determinants-and-trends" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22799.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">485</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12603</span> A Study of Key Technologies for the Realization of Smart Grid and Its Research Situation in Pakistan and Abroad</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arjmand%20Khaliq">Arjmand Khaliq</a>, <a href="https://publications.waset.org/abstracts/search?q=Pemra%20Sohaib"> Pemra Sohaib</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper smart grid technologies which converts conventional grid into smart grid has been discussed. Integration of advanced technologies including two way communication, advanced control system, sensors, smart metering system and other provide opportunity to make conventional grid a intelligent and automatic system which is named as smart grid. This paper gives the concept of smart grid and functional characteristics of smart grid technology, summed up the research progress in Pakistan and abroad and the significance of developing smart grid. Based on the analysis of the smart grid, smart grid technologies will result a reliable and energy efficient power system in the future. On the other hand smart grid technologies have been reviewed in this paper highlighting the key technologies of smart grid, and points out the problems and challenges in the realization of smart grid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20reliability" title=" power system reliability"> power system reliability</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20system%20monitoring%20and%20control" title=" power system monitoring and control"> power system monitoring and control</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=two-way%20communication" title=" two-way communication "> two-way communication </a> </p> <a href="https://publications.waset.org/abstracts/40935/a-study-of-key-technologies-for-the-realization-of-smart-grid-and-its-research-situation-in-pakistan-and-abroad" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12602</span> Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products) for Higher Education </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Miranda">J. Miranda</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chavarr%C3%ADa-Barrientos"> D. Chavarría-Barrientos</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ram%C3%ADrez-Cadena"> M. Ramírez-Cadena</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20E.%20Mac%C3%ADas"> M. E. Macías</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Ponce"> P. Ponce</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Noguez"> J. Noguez</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20P%C3%A9rez-Rodr%C3%ADguez"> R. Pérez-Rodríguez</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Wright"> P. K. Wright</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Molina"> A. Molina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Higher education methods need to evolve because the new generations of students are learning in different ways. One way is by adopting emergent technologies, new learning methods and promoting the maker movement. As a result, Tecnologico de Monterrey is developing Open Innovation Laboratories as an immediate response to educational challenges of the world. This paper presents an Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S<sup>3</sup> Products). The Open Innovation Laboratory is composed of a set of specific resources where students and teachers use them to provide solutions to current problems of priority sectors through the development of a new generation of products. This new generation of products considers the concepts Sensing, Smart, and Sustainable. The Open Innovation Laboratory has been implemented in different courses in the context of New Product Development (NPD) and Integrated Manufacturing Systems (IMS) at Tecnologico de Monterrey. The implementation consists of adapting this Open Innovation Laboratory within the course’s syllabus in combination with the implementation of specific methodologies for product development, learning methods (Active Learning and Blended Learning using Massive Open Online Courses MOOCs) and rapid product realization platforms. Using the concepts proposed it is possible to demonstrate that students can propose innovative and sustainable products, and demonstrate how the learning process could be improved using technological resources applied in the higher educational sector. Finally, examples of innovative S<sup>3</sup> products developed at Tecnologico de Monterrey are presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=active%20learning" title="active learning">active learning</a>, <a href="https://publications.waset.org/abstracts/search?q=blended%20learning" title=" blended learning"> blended learning</a>, <a href="https://publications.waset.org/abstracts/search?q=maker%20movement" title=" maker movement"> maker movement</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20product%20development" title=" new product development"> new product development</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20innovation%20laboratory" title=" open innovation laboratory"> open innovation laboratory</a> </p> <a href="https://publications.waset.org/abstracts/67866/open-innovation-laboratory-for-rapid-realization-of-sensing-smart-and-sustainable-products-s3-products-for-higher-education" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67866.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">395</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12601</span> Livestock Activity Monitoring Using Movement Rate Based on Subtract Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Keunho%20Park">Keunho Park</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunghwan%20Jeong"> Sunghwan Jeong</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 4th Industrial Revolution, the next-generation industrial revolution, which is made up of convergence of information and communication technology (ICT), is no exception to the livestock industry, and various studies are being conducted to apply the livestock smart farm. In order to monitor livestock using sensors, it is necessary to drill holes in the organs such as the nose, ears, and even the stomach of the livestock to wear or insert the sensor into the livestock. This increases the stress of livestock, which in turn lowers the quality of livestock products or raises the issue of animal ethics, which has become a major issue in recent years. In this paper, we conducted a study to monitor livestock activity based on vision technology, effectively monitoring livestock activity without increasing animal stress and violating animal ethics. The movement rate was calculated based on the difference images between the frames, and the livestock activity was evaluated. As a result, the average F1-score was 96.67. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=barn%20monitoring" title="barn monitoring">barn monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=livestock" title=" livestock"> livestock</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20vision" title=" machine vision"> machine vision</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20farm" title=" smart farm"> smart farm</a> </p> <a href="https://publications.waset.org/abstracts/128803/livestock-activity-monitoring-using-movement-rate-based-on-subtract-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128803.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12600</span> Improving Waste Recycling and Resource Productivity by Integrating Smart Resource Tracking System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Atiq%20Zaman">Atiq Zaman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The high contamination rate in the recycling waste stream is one of the major problems in Australia. In addition, a lack of reliable waste data makes it even more difficult for designing and implementing an effective waste management plan. This article conceptualizes the opportunity to improve resource productivity by integrating smart resource tracking system (SRTS) into the Australian household waste management system. The application of the smart resource tracking system will be implemented through the following ways: (i) mobile application-based resource tracking system used to measure the household’s material flow; (ii) RFID, smart image and weighing system used to track waste generation, recycling and contamination; (iii) informing and motivating manufacturer and retailers to improve their problematic products’ packaging; and (iv) ensure quality and reliable data through open-sourced cloud data for public use. The smart mobile application, imaging, radio-frequency identification (RFID) and weighing technologies are not new, but the very straightforward idea of using these technologies in the household resource consumption, waste bins and collection trucks will open up a new era of accurately measuring and effectively managing our waste. The idea will bring the most urgently needed reliable, data and clarity on household consumption, recycling behaviour and waste management practices in the context of available local infrastructure and policies. Therefore, the findings of this study would be very important for decision makers to improve resource productivity in the waste industry by using smart resource tracking system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20devices" title="smart devices">smart devices</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20application" title=" mobile application"> mobile application</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20sensors" title=" smart sensors"> smart sensors</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20tracking" title=" resource tracking"> resource tracking</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a>, <a href="https://publications.waset.org/abstracts/search?q=resource%20productivity" title=" resource productivity"> resource productivity</a> </p> <a href="https://publications.waset.org/abstracts/109694/improving-waste-recycling-and-resource-productivity-by-integrating-smart-resource-tracking-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109694.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12599</span> An Evaluation of Existing Models to Smart Cities Development Around the World</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aqsa%20Mehmood">Aqsa Mehmood</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Ali%20Tahir"> Muhammad Ali Tahir</a>, <a href="https://publications.waset.org/abstracts/search?q=Hafiz%20Syed%20Hamid%20Arshad"> Hafiz Syed Hamid Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Salman%20Atif"> Salman Atif</a>, <a href="https://publications.waset.org/abstracts/search?q=Ejaz%20Hussain"> Ejaz Hussain</a>, <a href="https://publications.waset.org/abstracts/search?q=Gavin%20McArdle"> Gavin McArdle</a>, <a href="https://publications.waset.org/abstracts/search?q=Michela%20Bertolotto"> Michela Bertolotto</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution of smart cities in recent years has been developing dramatically. As urbanization increases, the demand for big data analytics and digital technology-based solutions for cities has also increased. Many cities around the world have now planned to focus on smart cities. To obtain a systematic overview of smart city models, we carried out a bibliometric analysis in the context of seven regions of the world to understand the main dimensions that characterize smart cities. This paper analyses articles published between 2017 and 2021 that were captured from Web of Science and Scopus. Specifically, we investigated publication trends to highlight the research gaps and current developments in smart cities research. Our survey provides helpful insights into the geographical distribution of smart city publications with respect to regions of the world and explores the current key topics relevant to smart cities and the co-occurrences of keywords used in these publications. A systematic literature review and keyword analysis were performed. The results have focused on identifying future directions in smart city development, including smart citizens, ISO standards, Open Geospatial Consortium and the sustainability factor of smart cities. This article will assist researchers and urban planners in understanding the latest trends in research and highlight the aspects which need further attention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20cities" title="smart cities">smart cities</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=regions" title=" regions"> regions</a>, <a href="https://publications.waset.org/abstracts/search?q=urban%20development" title=" urban development"> urban development</a>, <a href="https://publications.waset.org/abstracts/search?q=VOS%20viewer" title=" VOS viewer"> VOS viewer</a>, <a href="https://publications.waset.org/abstracts/search?q=research%20trends" title=" research trends"> research trends</a> </p> <a href="https://publications.waset.org/abstracts/168563/an-evaluation-of-existing-models-to-smart-cities-development-around-the-world" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168563.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">117</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12598</span> ICT for Smart Appliances: Current Technology and Identification of Future ICT Trend</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abubakar%20Uba%20Ibrahim">Abubakar Uba Ibrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Haruna%20Shanono"> Ibrahim Haruna Shanono</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart metering and demand response are gaining ground in industrial and residential applications. Smart Appliances have been given concern towards achieving Smart home. The success of Smart grid development relies on the successful implementation of Information and Communication Technology (ICT) in power sector. Smart Appliances have been the technology under development and many new contributions to its realization have been reported in the last few years. The role of ICT here is to capture data in real time, thereby allowing bi-directional flow of information/data between producing and utilization point; that lead a way for the attainment of Smart appliances where home appliances can communicate between themselves and provide a self-control (switch on and off) using the signal (information) obtained from the grid. This paper depicts the background on ICT for smart appliances paying a particular attention to the current technology and identifying the future ICT trends for load monitoring through which smart appliances can be achieved to facilitate an efficient smart home system which promote demand response program. This paper grouped and reviewed the recent contributions, in order to establish the current state of the art and trends of the technology, so that the reader can be provided with a comprehensive and insightful review of where ICT for smart appliances stands and is heading to. The paper also presents a brief overview of communication types, and then narrowed the discussion to the load monitoring (Non-intrusive Appliances Load Monitoring ‘NALM’). Finally, some future trends and challenges in the further development of the ICT framework are discussed to motivate future contributions that address open problems and explore new possibilities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=communication%20technology%20between%20appliances" title="communication technology between appliances">communication technology between appliances</a>, <a href="https://publications.waset.org/abstracts/search?q=demand%20response" title=" demand response"> demand response</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20monitoring" title=" load monitoring"> load monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20appliances" title=" smart appliances"> smart appliances</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title=" smart grid"> smart grid</a> </p> <a href="https://publications.waset.org/abstracts/32985/ict-for-smart-appliances-current-technology-and-identification-of-future-ict-trend" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32985.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">613</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12597</span> Overview of Smart Grid Applications in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Onur%20Elma">Onur Elma</a>, <a href="https://publications.waset.org/abstracts/search?q=Giray%20E.%20K%C4%B1ral"> Giray E. Kıral</a>, <a href="https://publications.waset.org/abstracts/search?q=Ugur%20S.%20Selamo%C4%9Fular%C4%B1"> Ugur S. Selamoğuları</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehmet%20Uzuno%C4%9Flu"> Mehmet Uzunoğlu</a>, <a href="https://publications.waset.org/abstracts/search?q=Bulent%20Vural"> Bulent Vural</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Electrical energy has become indispensable for people's lives and with rapidly developing technology and continuously changing living standards the need for the electrical energy has been on the rise. Therefore, both energy generation and efficient use of energy are very important topics. Smart grid concept has been introduced to provide monitoring, energy efficiency, reliability and energy quality. Under smart grid concept, smart homes, which can be considered as key component in smart grid operation, have appeared as another research area. In this study, first, smart grid research in the world will be reviewed. Then, overview of smart grid applications in Turkey will be given. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20grids" title=" smart grids"> smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=smart%20home" title=" smart home"> smart home</a>, <a href="https://publications.waset.org/abstracts/search?q=applications" title=" applications"> applications</a> </p> <a href="https://publications.waset.org/abstracts/14172/overview-of-smart-grid-applications-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14172.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">497</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12596</span> Post-Processing Method for Performance Improvement of Aerial Image Parcel Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Donghee%20Noh">Donghee Noh</a>, <a href="https://publications.waset.org/abstracts/search?q=Seonhyeong%20Kim"> Seonhyeong Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Junhwan%20Choi"> Junhwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Heegon%20Kim"> Heegon Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Sooho%20Jung"> Sooho Jung</a>, <a href="https://publications.waset.org/abstracts/search?q=Keunho%20Park"> Keunho Park</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we describe an image post-processing method to enhance the performance of the parcel segmentation method using deep learning-based aerial images conducted in previous studies. The study results were evaluated using a confusion matrix, IoU, Precision, Recall, and F1-Score. In the case of the confusion matrix, it was observed that the false positive value, which is the result of misclassification, was greatly reduced as a result of image post-processing. The average IoU was 0.9688 in the image post-processing, which is higher than the deep learning result of 0.8362, and the F1-Score was also 0.9822 in the image post-processing, which was higher than the deep learning result of 0.8850. As a result of the experiment, it was found that the proposed technique positively complements the deep learning results in segmenting the parcel of interest. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerial%20image" title="aerial image">aerial image</a>, <a href="https://publications.waset.org/abstracts/search?q=image%20process" title=" image process"> image process</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20vision" title=" machine vision"> machine vision</a>, <a href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm" title=" open field smart farm"> open field smart farm</a>, <a href="https://publications.waset.org/abstracts/search?q=segmentation" title=" segmentation"> segmentation</a> </p> <a href="https://publications.waset.org/abstracts/170203/post-processing-method-for-performance-improvement-of-aerial-image-parcel-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170203.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">80</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12595</span> Design of Single Phase Smart Energy Meter and Grid Tied Inverter for Smart Grid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamza%20Arif">Hamza Arif</a>, <a href="https://publications.waset.org/abstracts/search?q=Haroon%20Javaid"> Haroon Javaid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Based on hybrid energy concept of smart grid to synchronize and monitor power being generated at the user end. The ATMEGA328p controller of arduino is used as a processor unit that sends wireless data between user and power utility through NRF24L01 wireless modules. Current and potential transformer circuit are designed to sense the voltage and current at the utility and power being generated at the user end through solar panel. They are designed to interface with the arduino. The approach is used to demonstrate the concept of smart grid and to facilitate for further advancements in the field of smart grid technology. A PWM (Pulse Width Modulation) technique is used to synchronize the user output power with the utility supplier. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20grid" title="smart grid">smart grid</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20energy" title=" hybrid energy"> hybrid energy</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20tied%20inverter" title=" grid tied inverter"> grid tied inverter</a>, <a href="https://publications.waset.org/abstracts/search?q=PWM" title=" PWM"> PWM</a> </p> <a href="https://publications.waset.org/abstracts/192593/design-of-single-phase-smart-energy-meter-and-grid-tied-inverter-for-smart-grid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192593.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12594</span> Modeling and Simulation of Vibratory Behavior of Hybrid Smart Composite Plate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salah%20Aguib">Salah Aguib</a>, <a href="https://publications.waset.org/abstracts/search?q=Noureddine%20Chikh"> Noureddine Chikh</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelmalek%20Khabli"> Abdelmalek Khabli</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelkader%20Nour"> Abdelkader Nour</a>, <a href="https://publications.waset.org/abstracts/search?q=Toufik%20Djedid"> Toufik Djedid</a>, <a href="https://publications.waset.org/abstracts/search?q=Lallia%20Kobzili"> Lallia Kobzili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study presents the behavior of a hybrid smart sandwich plate with a magnetorheological elastomer core. In order to improve the vibrational behavior of the plate, the pseudo‐fibers formed by the effect of the magnetic field on the elastomer charged by the ferromagnetic particles are oriented at 45° with respect to the direction of the magnetic field at 0°. Ritz's approach is taken to solve the physical problem. In order to verify and compare the results obtained by the Ritz approach, an analysis using the finite element method was carried out. The rheological property of the MRE material at 0° and at 45° are determined experimentally, The studied elastomer is prepared by a mixture of silicone oil, RTV141A polymer, and 30% of iron particles of total mixture, the mixture obtained is mixed for about 15 minutes to obtain an elastomer paste with good homogenization. In order to develop a magnetorheological elastomer (MRE), this paste is injected into an aluminum mold and subjected to a magnetic field. In our work, we have chosen an ideal percentage of filling of 30%, to obtain the best characteristics of the MRE. The mechanical characteristics obtained by dynamic mechanical viscoanalyzer (DMA) are used in the two numerical approaches. The natural frequencies and the modal damping of the sandwich plate are calculated and discussed for various magnetic field intensities. The results obtained by the two methods are compared. These off‐axis anisotropic MRE structures could open up new opportunities in various fields of aeronautics, aerospace, mechanical engineering and civil engineering. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20smart%20sandwich%20plate" title="hybrid smart sandwich plate">hybrid smart sandwich plate</a>, <a href="https://publications.waset.org/abstracts/search?q=vibratory%20behavior" title=" vibratory behavior"> vibratory behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=FEM" title=" FEM"> FEM</a>, <a href="https://publications.waset.org/abstracts/search?q=Ritz%20approach" title=" Ritz approach"> Ritz approach</a>, <a href="https://publications.waset.org/abstracts/search?q=MRE" title=" MRE"> MRE</a> </p> <a href="https://publications.waset.org/abstracts/177269/modeling-and-simulation-of-vibratory-behavior-of-hybrid-smart-composite-plate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177269.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">67</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12593</span> Smart Grids in Morocco: An Outline of the Recent Developments, Key Drivers, and Recommendations for Better Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Laamim">Mohamed Laamim</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelilah%20Rochd"> Abdelilah Rochd</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboubakr%20Benazzouz"> Aboubakr Benazzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20El%20Fadili"> Abderrahim El Fadili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20grids" title="smart grids">smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrids" title=" microgrids"> microgrids</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20power%20plants" title=" virtual power plants"> virtual power plants</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20resources" title=" distributed energy resources"> distributed energy resources</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle-to-grid" title=" vehicle-to-grid"> vehicle-to-grid</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20metering%20infrastructure." title=" advanced metering infrastructure."> advanced metering infrastructure.</a> </p> <a href="https://publications.waset.org/abstracts/161465/smart-grids-in-morocco-an-outline-of-the-recent-developments-key-drivers-and-recommendations-for-better-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161465.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12592</span> Communication Layer Security in Smart Farming: A Survey on Wireless Technologies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossein%20Mohammadi%20Rouzbahani">Hossein Mohammadi Rouzbahani</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadis%20Karimipour"> Hadis Karimipour</a>, <a href="https://publications.waset.org/abstracts/search?q=Evan%20Fraser"> Evan Fraser</a>, <a href="https://publications.waset.org/abstracts/search?q=Ali%20Dehghantanha"> Ali Dehghantanha</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20Duncan"> Emily Duncan</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Green"> Arthur Green</a>, <a href="https://publications.waset.org/abstracts/search?q=Conchobhair%20Russell"> Conchobhair Russell</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Human population growth has driven rising demand for food that has, in turn, imposed huge impacts on the environment. In an effort to reconcile our need to produce more sustenance while also protecting the world’s ecosystems, farming is becoming more reliant on smart tools and communication technologies. Developing a smart farming framework allows farmers to make more efficient use of inputs, thus protecting water quality and biodiversity habitat. Internet of Things (IoT), which has revolutionized every sphere of the economy, is being applied to agriculture by connecting on-farm devices and providing real-time monitoring of everything from environmental conditions to market signals through to animal health data. However, utilizing IoT means farming networks are now vulnerable to malicious activities, mostly when wireless communications are highly employed. With that in mind, this research aims to review different utilized communication technologies in smart farming. Moreover, possible cyber-attacks are investigated to discover the vulnerabilities of communication technologies considering the most frequent cyber-attacks that have been happened. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20farming" title="smart farming">smart farming</a>, <a href="https://publications.waset.org/abstracts/search?q=Internet%20of%20Things" title=" Internet of Things"> Internet of Things</a>, <a href="https://publications.waset.org/abstracts/search?q=communication%20layer" title=" communication layer"> communication layer</a>, <a href="https://publications.waset.org/abstracts/search?q=cyber-attack" title=" cyber-attack"> cyber-attack</a> </p> <a href="https://publications.waset.org/abstracts/138941/communication-layer-security-in-smart-farming-a-survey-on-wireless-technologies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">242</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12591</span> Smart Grids in Morocco: An Outline of the Recent Development, Key Drivers and Recommendations for Future Implementation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Laamim">Mohamed Laamim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aboubakr%20Benazzouz"> Aboubakr Benazzouz</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelilah%20Rochd"> Abdelilah Rochd</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdellatif%20Ghennioui"> Abdellatif Ghennioui</a>, <a href="https://publications.waset.org/abstracts/search?q=Abderrahim%20El%20Fadili"> Abderrahim El Fadili</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Smart grids have recently sparked a lot of interest in the energy sector as they allow for the modernization and digitization of the existing power infrastructure. Smart grids have several advantages in terms of reducing the environmental impact of generating power from fossil fuels due to their capacity to integrate large amounts of distributed energy resources. On the other hand, smart grid technologies necessitate many field investigations and requirements. This paper focuses on the major difficulties that governments face around the world and compares them to the situation in Morocco. Also presented in this study are the current works and projects being developed to improve the penetration of smart grid technologies into the electrical system. Furthermore, the findings of this study will be useful to promote the smart grid revolution in Morocco, as well as to construct a strong foundation and develop future needs for better penetration of technologies that aid in the integration of smart grid features. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=smart%20grids" title="smart grids">smart grids</a>, <a href="https://publications.waset.org/abstracts/search?q=microgrids" title=" microgrids"> microgrids</a>, <a href="https://publications.waset.org/abstracts/search?q=virtual%20power%20plants" title=" virtual power plants"> virtual power plants</a>, <a href="https://publications.waset.org/abstracts/search?q=digital%20twin" title=" digital twin"> digital twin</a>, <a href="https://publications.waset.org/abstracts/search?q=distributed%20energy%20resources" title=" distributed energy resources"> distributed energy resources</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicle-to-grid" title=" vehicle-to-grid"> vehicle-to-grid</a>, <a href="https://publications.waset.org/abstracts/search?q=advanced%20metering%20infrastructure" title=" advanced metering infrastructure"> advanced metering infrastructure</a> </p> <a href="https://publications.waset.org/abstracts/151602/smart-grids-in-morocco-an-outline-of-the-recent-development-key-drivers-and-recommendations-for-future-implementation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151602.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">154</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12590</span> Assessing the Actions of the Farm Mangers to Execute Field Operations at Opportune Times</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20Edwards">G. Edwards</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Dybro"> N. Dybro</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20J.%20Munkholm"> L. J. Munkholm</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20G.%20S%C3%B8rensen"> C. G. Sørensen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Planning agricultural operations requires an understanding of when fields are ready for operations. However determining a field’s readiness is a difficult process that can involve large amounts of data and an experienced farm manager. A consequence of this is that operations are often executed when fields are unready, or partially unready, which can compromise results incurring environmental impacts, decreased yield and increased operational costs. In order to assess timeliness of operations’ execution, a new scheme is introduced to quantify the aptitude of farm managers to plan operations. Two criteria are presented by which the execution of operations can be evaluated as to their exploitation of a field’s readiness window. A dataset containing the execution dates of spring and autumn operations on 93 fields in Iowa, USA, over two years, was considered as an example and used to demonstrate how operations’ executions can be evaluated. The execution dates were compared with simulated data to gain a measure of how disparate the actual execution was from the ideal execution. The presented tool is able to evaluate the spring operations better than the autumn operations as required data was lacking to correctly parameterise the crop model. Further work is needed on the underlying models of the decision support tool in order for its situational knowledge to emulate reality more consistently. However the assessment methods and evaluation criteria presented offer a standard by which operations' execution proficiency can be quantified and could be used to identify farm managers who require decisional support when planning operations, or as a means of incentivising and promoting the use of sustainable farming practices. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=operation%20management" title="operation management">operation management</a>, <a href="https://publications.waset.org/abstracts/search?q=field%20readiness" title=" field readiness"> field readiness</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20farming" title=" sustainable farming"> sustainable farming</a>, <a href="https://publications.waset.org/abstracts/search?q=workability" title=" workability"> workability</a> </p> <a href="https://publications.waset.org/abstracts/37757/assessing-the-actions-of-the-farm-mangers-to-execute-field-operations-at-opportune-times" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37757.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">387</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12589</span> Adoption of Climate-Smart Agriculture Practices Among Farmers and Its Effect on Crop Revenue in Ethiopia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fikiru%20Temesgen%20Gelata">Fikiru Temesgen Gelata</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Food security, adaptation, and climate change mitigation are all problems that can be resolved simultaneously with Climate-Smart Agriculture (CSA). This study examines determinants of climate-smart agriculture (CSA) practices among smallholder farmers, aiming to understand the factors guiding adoption decisions and evaluate the impact of CSA on smallholder farmer income in the study areas. For this study, three-stage sampling techniques were applied to select 230 smallholders randomly. Mann-Kendal test and multinomial endogenous switching regression model were used to analyze trends of decrease or increase within long-term temporal data and the impact of CSA on the smallholder farmer income, respectively. Findings revealed education level, household size, land ownership, off-farm income, climate information, and contact with extension agents found to be highly adopted CSA practices. On the contrary, erosion exerted a detrimental impact on all the agricultural practices examined within the study region. Various factors such as farming methods, the size of farms, proximity to irrigated farmlands, availability of extension services, distance to market hubs, and access to weather forecasts were recognized as key determinants influencing the adoption of CSA practices. The multinomial endogenous switching regression model (MESR) revealed that joint adoption of crop rotation and soil and water conservation practices significantly increased farm income by 1,107,245 ETB. The study recommends that counties and governments should prioritize addressing climate change in their development agendas to increase the adoption of climate-smart farming techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=climate-smart%20practices" title="climate-smart practices">climate-smart practices</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20security" title=" food security"> food security</a>, <a href="https://publications.waset.org/abstracts/search?q=Oincome" title=" Oincome"> Oincome</a>, <a href="https://publications.waset.org/abstracts/search?q=MERM" title=" MERM"> MERM</a>, <a href="https://publications.waset.org/abstracts/search?q=Ethiopia" title=" Ethiopia"> Ethiopia</a> </p> <a href="https://publications.waset.org/abstracts/190107/adoption-of-climate-smart-agriculture-practices-among-farmers-and-its-effect-on-crop-revenue-in-ethiopia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/190107.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">34</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12588</span> Comparing Remote Sensing and in Situ Analyses of Test Wheat Plants as Means for Optimizing Data Collection in Precision Agriculture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Endalkachew%20Abebe%20Kebede">Endalkachew Abebe Kebede</a>, <a href="https://publications.waset.org/abstracts/search?q=Bojin%20Bojinov"> Bojin Bojinov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andon%20Vasilev%20Andonov"> Andon Vasilev Andonov</a>, <a href="https://publications.waset.org/abstracts/search?q=Orhan%20Dengiz"> Orhan Dengiz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Remote sensing has a potential application in assessing and monitoring the plants' biophysical properties using the spectral responses of plants and soils within the electromagnetic spectrum. However, only a few reports compare the performance of different remote sensing sensors against in-situ field spectral measurement. The current study assessed the potential applications of open data source satellite images (Sentinel 2 and Landsat 9) in estimating the biophysical properties of the wheat crop on a study farm found in the village of OvchaMogila. A Landsat 9 (30 m resolution) and Sentinel-2 (10 m resolution) satellite images with less than 10% cloud cover have been extracted from the open data sources for the period of December 2021 to April 2022. An Unmanned Aerial Vehicle (UAV) has been used to capture the spectral response of plant leaves. In addition, SpectraVue 710s Leaf Spectrometer was used to measure the spectral response of the crop in April at five different locations within the same field. The ten most common vegetation indices have been selected and calculated based on the reflectance wavelength range of remote sensing tools used. The soil samples have been collected in eight different locations within the farm plot. The different physicochemical properties of the soil (pH, texture, N, P₂O₅, and K₂O) have been analyzed in the laboratory. The finer resolution images from the UAV and the Leaf Spectrometer have been used to validate the satellite images. The performance of different sensors has been compared based on the measured leaf spectral response and the extracted vegetation indices using the five sampling points. A scatter plot with the coefficient of determination (R2) and Root Mean Square Error (RMSE) and the correlation (r) matrix prepared using the corr and heatmap python libraries have been used for comparing the performance of Sentinel 2 and Landsat 9 VIs compared to the drone and SpectraVue 710s spectrophotometer. The soil analysis revealed the study farm plot is slightly alkaline (8.4 to 8.52). The soil texture of the study farm is dominantly Clay and Clay Loam.The vegetation indices (VIs) increased linearly with the growth of the plant. Both the scatter plot and the correlation matrix showed that Sentinel 2 vegetation indices have a relatively better correlation with the vegetation indices of the Buteo dronecompared to the Landsat 9. The Landsat 9 vegetation indices somewhat align better with the leaf spectrometer. Generally, the Sentinel 2 showed a better performance than the Landsat 9. Further study with enough field spectral sampling and repeated UAV imaging is required to improve the quality of the current study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=landsat%209" title="landsat 9">landsat 9</a>, <a href="https://publications.waset.org/abstracts/search?q=leaf%20spectrometer" title=" leaf spectrometer"> leaf spectrometer</a>, <a href="https://publications.waset.org/abstracts/search?q=sentinel%202" title=" sentinel 2"> sentinel 2</a>, <a href="https://publications.waset.org/abstracts/search?q=UAV" title=" UAV"> UAV</a> </p> <a href="https://publications.waset.org/abstracts/152005/comparing-remote-sensing-and-in-situ-analyses-of-test-wheat-plants-as-means-for-optimizing-data-collection-in-precision-agriculture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">107</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=420">420</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=421">421</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=open%20field%20smart%20farm&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>