CINXE.COM

Conditional probability - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Conditional probability - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"fccde8e0-72bd-4135-8948-da2f818bc9c8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Conditional_probability","wgTitle":"Conditional probability","wgCurRevisionId":1251378997,"wgRevisionId":1251378997,"wgArticleId":24104134,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Commons category link from Wikidata","Conditional probability","Mathematical fallacies","Statistical ratios"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Conditional_probability","wgRelevantArticleId":24104134,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove": [],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q327069","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false, "wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging", "ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.5"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/1200px-Standard_deviation_diagram_micro.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="600"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/800px-Standard_deviation_diagram_micro.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="400"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/640px-Standard_deviation_diagram_micro.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="320"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Conditional probability - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Conditional_probability"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Conditional_probability&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Conditional_probability"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Conditional_probability rootpage-Conditional_probability skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Conditional+probability" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Conditional+probability" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Conditional+probability" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Conditional+probability" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Definition" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Definition</span> </div> </a> <button aria-controls="toc-Definition-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definition subsection</span> </button> <ul id="toc-Definition-sublist" class="vector-toc-list"> <li id="toc-Conditioning_on_an_event" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conditioning_on_an_event"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1</span> <span>Conditioning on an event</span> </div> </a> <ul id="toc-Conditioning_on_an_event-sublist" class="vector-toc-list"> <li id="toc-Kolmogorov_definition" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#Kolmogorov_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1.1</span> <span>Kolmogorov definition</span> </div> </a> <ul id="toc-Kolmogorov_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_an_axiom_of_probability" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#As_an_axiom_of_probability"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1.2</span> <span>As an axiom of probability</span> </div> </a> <ul id="toc-As_an_axiom_of_probability-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-As_the_probability_of_a_conditional_event" class="vector-toc-list-item vector-toc-level-3"> <a class="vector-toc-link" href="#As_the_probability_of_a_conditional_event"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.1.3</span> <span>As the probability of a conditional event</span> </div> </a> <ul id="toc-As_the_probability_of_a_conditional_event-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Conditioning_on_an_event_of_probability_zero" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conditioning_on_an_event_of_probability_zero"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.2</span> <span>Conditioning on an event of probability zero</span> </div> </a> <ul id="toc-Conditioning_on_an_event_of_probability_zero-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Conditioning_on_a_discrete_random_variable" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Conditioning_on_a_discrete_random_variable"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.3</span> <span>Conditioning on a discrete random variable</span> </div> </a> <ul id="toc-Conditioning_on_a_discrete_random_variable-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Partial_conditional_probability" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Partial_conditional_probability"> <div class="vector-toc-text"> <span class="vector-toc-numb">1.4</span> <span>Partial conditional probability</span> </div> </a> <ul id="toc-Partial_conditional_probability-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Example" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Example"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Example</span> </div> </a> <ul id="toc-Example-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Use_in_inference" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Use_in_inference"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Use in inference</span> </div> </a> <button aria-controls="toc-Use_in_inference-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Use in inference subsection</span> </button> <ul id="toc-Use_in_inference-sublist" class="vector-toc-list"> <li id="toc-Example_2" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Example_2"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Example</span> </div> </a> <ul id="toc-Example_2-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Statistical_independence" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Statistical_independence"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Statistical independence</span> </div> </a> <ul id="toc-Statistical_independence-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Common_fallacies" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Common_fallacies"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Common fallacies</span> </div> </a> <button aria-controls="toc-Common_fallacies-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Common fallacies subsection</span> </button> <ul id="toc-Common_fallacies-sublist" class="vector-toc-list"> <li id="toc-Assuming_conditional_probability_is_of_similar_size_to_its_inverse" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Assuming_conditional_probability_is_of_similar_size_to_its_inverse"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.1</span> <span>Assuming conditional probability is of similar size to its inverse</span> </div> </a> <ul id="toc-Assuming_conditional_probability_is_of_similar_size_to_its_inverse-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Assuming_marginal_and_conditional_probabilities_are_of_similar_size" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Assuming_marginal_and_conditional_probabilities_are_of_similar_size"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.2</span> <span>Assuming marginal and conditional probabilities are of similar size</span> </div> </a> <ul id="toc-Assuming_marginal_and_conditional_probabilities_are_of_similar_size-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Over-_or_under-weighting_priors" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Over-_or_under-weighting_priors"> <div class="vector-toc-text"> <span class="vector-toc-numb">5.3</span> <span>Over- or under-weighting priors</span> </div> </a> <ul id="toc-Over-_or_under-weighting_priors-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Formal_derivation" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Formal_derivation"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Formal derivation</span> </div> </a> <ul id="toc-Formal_derivation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Conditional probability</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 35 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-35" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">35 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%A7%D8%AD%D8%AA%D9%85%D8%A7%D9%84_%D8%B4%D8%B1%D8%B7%D9%8A" title="احتمال شرطي – Arabic" lang="ar" hreflang="ar" data-title="احتمال شرطي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%A3%D0%BC%D0%BE%D1%9E%D0%BD%D0%B0%D1%8F_%D1%96%D0%BC%D0%B0%D0%B2%D0%B5%D1%80%D0%BD%D0%B0%D1%81%D1%86%D1%8C" title="Умоўная імавернасць – Belarusian" lang="be" hreflang="be" data-title="Умоўная імавернасць" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A3%D1%81%D0%BB%D0%BE%D0%B2%D0%BD%D0%B0_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82" title="Условна вероятност – Bulgarian" lang="bg" hreflang="bg" data-title="Условна вероятност" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Probabilitat_condicionada" title="Probabilitat condicionada – Catalan" lang="ca" hreflang="ca" data-title="Probabilitat condicionada" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cv mw-list-item"><a href="https://cv.wikipedia.org/wiki/%D0%A3%D0%BC%D1%81%C4%83%D0%BB%D1%82%D0%B0%D0%B2%D0%BB%C4%83_%D0%BF%D1%83%D0%BB%D0%B0%D1%8F%D1%81%D0%BB%C4%83%D1%85" title="Умсăлтавлă пулаяслăх – Chuvash" lang="cv" hreflang="cv" data-title="Умсăлтавлă пулаяслăх" data-language-autonym="Чӑвашла" data-language-local-name="Chuvash" class="interlanguage-link-target"><span>Чӑвашла</span></a></li><li class="interlanguage-link interwiki-cy mw-list-item"><a href="https://cy.wikipedia.org/wiki/Tebygolrwydd_amodol" title="Tebygolrwydd amodol – Welsh" lang="cy" hreflang="cy" data-title="Tebygolrwydd amodol" data-language-autonym="Cymraeg" data-language-local-name="Welsh" class="interlanguage-link-target"><span>Cymraeg</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Bedingte_Wahrscheinlichkeit" title="Bedingte Wahrscheinlichkeit – German" lang="de" hreflang="de" data-title="Bedingte Wahrscheinlichkeit" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Probabilidad_condicionada" title="Probabilidad condicionada – Spanish" lang="es" hreflang="es" data-title="Probabilidad condicionada" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Baldintzapeko_probabilitate" title="Baldintzapeko probabilitate – Basque" lang="eu" hreflang="eu" data-title="Baldintzapeko probabilitate" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%A7%D8%AD%D8%AA%D9%85%D8%A7%D9%84_%D8%B4%D8%B1%D8%B7%DB%8C" title="احتمال شرطی – Persian" lang="fa" hreflang="fa" data-title="احتمال شرطی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Probabilit%C3%A9_conditionnelle" title="Probabilité conditionnelle – French" lang="fr" hreflang="fr" data-title="Probabilité conditionnelle" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EC%A1%B0%EA%B1%B4%EB%B6%80_%ED%99%95%EB%A5%A0" title="조건부 확률 – Korean" lang="ko" hreflang="ko" data-title="조건부 확률" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-is mw-list-item"><a href="https://is.wikipedia.org/wiki/Skilyrtar_l%C3%ADkur" title="Skilyrtar líkur – Icelandic" lang="is" hreflang="is" data-title="Skilyrtar líkur" data-language-autonym="Íslenska" data-language-local-name="Icelandic" class="interlanguage-link-target"><span>Íslenska</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Probabilit%C3%A0_condizionata" title="Probabilità condizionata – Italian" lang="it" hreflang="it" data-title="Probabilità condizionata" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%94%D7%A1%D7%AA%D7%91%D7%A8%D7%95%D7%AA_%D7%9E%D7%95%D7%AA%D7%A0%D7%99%D7%AA" title="הסתברות מותנית – Hebrew" lang="he" hreflang="he" data-title="הסתברות מותנית" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Felt%C3%A9teles_val%C3%B3sz%C3%ADn%C5%B1s%C3%A9g" title="Feltételes valószínűség – Hungarian" lang="hu" hreflang="hu" data-title="Feltételes valószínűség" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Voorwaardelijke_kans" title="Voorwaardelijke kans – Dutch" lang="nl" hreflang="nl" data-title="Voorwaardelijke kans" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E6%9D%A1%E4%BB%B6%E4%BB%98%E3%81%8D%E7%A2%BA%E7%8E%87" title="条件付き確率 – Japanese" lang="ja" hreflang="ja" data-title="条件付き確率" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no badge-Q70894304 mw-list-item" title=""><a href="https://no.wikipedia.org/wiki/Betinget_sannsynlighet" title="Betinget sannsynlighet – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Betinget sannsynlighet" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Prawdopodobie%C5%84stwo_warunkowe" title="Prawdopodobieństwo warunkowe – Polish" lang="pl" hreflang="pl" data-title="Prawdopodobieństwo warunkowe" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Probabilidade_condicionada" title="Probabilidade condicionada – Portuguese" lang="pt" hreflang="pt" data-title="Probabilidade condicionada" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A3%D1%81%D0%BB%D0%BE%D0%B2%D0%BD%D0%B0%D1%8F_%D0%B2%D0%B5%D1%80%D0%BE%D1%8F%D1%82%D0%BD%D0%BE%D1%81%D1%82%D1%8C" title="Условная вероятность – Russian" lang="ru" hreflang="ru" data-title="Условная вероятность" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://sq.wikipedia.org/wiki/Probabiliteti_me_kusht" title="Probabiliteti me kusht – Albanian" lang="sq" hreflang="sq" data-title="Probabiliteti me kusht" data-language-autonym="Shqip" data-language-local-name="Albanian" class="interlanguage-link-target"><span>Shqip</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Conditional_probability" title="Conditional probability – Simple English" lang="en-simple" hreflang="en-simple" data-title="Conditional probability" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Pogojna_verjetnost" title="Pogojna verjetnost – Slovenian" lang="sl" hreflang="sl" data-title="Pogojna verjetnost" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%A3%D1%81%D0%BB%D0%BE%D0%B2%D0%BD%D0%B0_%D0%B2%D0%B5%D1%80%D0%BE%D0%B2%D0%B0%D1%82%D0%BD%D0%BE%D1%9B%D0%B0" title="Условна вероватноћа – Serbian" lang="sr" hreflang="sr" data-title="Условна вероватноћа" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Ehdollinen_todenn%C3%A4k%C3%B6isyys" title="Ehdollinen todennäköisyys – Finnish" lang="fi" hreflang="fi" data-title="Ehdollinen todennäköisyys" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Betingad_sannolikhet" title="Betingad sannolikhet – Swedish" lang="sv" hreflang="sv" data-title="Betingad sannolikhet" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%84%E0%B8%A7%E0%B8%B2%E0%B8%A1%E0%B8%99%E0%B9%88%E0%B8%B2%E0%B8%88%E0%B8%B0%E0%B9%80%E0%B8%9B%E0%B9%87%E0%B8%99%E0%B8%A1%E0%B8%B5%E0%B9%80%E0%B8%87%E0%B8%B7%E0%B9%88%E0%B8%AD%E0%B8%99%E0%B9%84%E0%B8%82" title="ความน่าจะเป็นมีเงื่อนไข – Thai" lang="th" hreflang="th" data-title="ความน่าจะเป็นมีเงื่อนไข" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Ko%C5%9Fullu_olas%C4%B1l%C4%B1k" title="Koşullu olasılık – Turkish" lang="tr" hreflang="tr" data-title="Koşullu olasılık" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A3%D0%BC%D0%BE%D0%B2%D0%BD%D0%B0_%D0%B9%D0%BC%D0%BE%D0%B2%D1%96%D1%80%D0%BD%D1%96%D1%81%D1%82%D1%8C" title="Умовна ймовірність – Ukrainian" lang="uk" hreflang="uk" data-title="Умовна ймовірність" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D9%85%D8%B4%D8%B1%D9%88%D8%B7_%D8%A7%D8%AD%D8%AA%D9%85%D8%A7%D9%84" title="مشروط احتمال – Urdu" lang="ur" hreflang="ur" data-title="مشروط احتمال" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/X%C3%A1c_su%E1%BA%A5t_c%C3%B3_%C4%91i%E1%BB%81u_ki%E1%BB%87n" title="Xác suất có điều kiện – Vietnamese" lang="vi" hreflang="vi" data-title="Xác suất có điều kiện" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E6%A2%9D%E4%BB%B6%E6%A6%82%E7%8E%87" title="條件概率 – Cantonese" lang="yue" hreflang="yue" data-title="條件概率" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%9D%A1%E4%BB%B6%E6%A6%82%E7%8E%87" title="条件概率 – Chinese" lang="zh" hreflang="zh" data-title="条件概率" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q327069#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Conditional_probability" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Conditional_probability" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Conditional_probability"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Conditional_probability&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Conditional_probability&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Conditional_probability"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Conditional_probability&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Conditional_probability&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Conditional_probability" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Conditional_probability" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Conditional_probability&amp;oldid=1251378997" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Conditional_probability&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Conditional_probability&amp;id=1251378997&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConditional_probability"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FConditional_probability"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Conditional_probability&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Conditional_probability&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Conditional_probability" hreflang="en"><span>Wikimedia Commons</span></a></li><li class="wb-otherproject-link wb-otherproject-wikiversity mw-list-item"><a href="https://en.wikiversity.org/wiki/Conditional_Probability" hreflang="en"><span>Wikiversity</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q327069" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Probability of an event occurring, given that another event has already occurred</div> <style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1246091330">.mw-parser-output .sidebar{width:22em;float:right;clear:right;margin:0.5em 0 1em 1em;background:var(--background-color-neutral-subtle,#f8f9fa);border:1px solid var(--border-color-base,#a2a9b1);padding:0.2em;text-align:center;line-height:1.4em;font-size:88%;border-collapse:collapse;display:table}body.skin-minerva .mw-parser-output .sidebar{display:table!important;float:right!important;margin:0.5em 0 1em 1em!important}.mw-parser-output .sidebar-subgroup{width:100%;margin:0;border-spacing:0}.mw-parser-output .sidebar-left{float:left;clear:left;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-none{float:none;clear:both;margin:0.5em 1em 1em 0}.mw-parser-output .sidebar-outer-title{padding:0 0.4em 0.2em;font-size:125%;line-height:1.2em;font-weight:bold}.mw-parser-output .sidebar-top-image{padding:0.4em}.mw-parser-output .sidebar-top-caption,.mw-parser-output .sidebar-pretitle-with-top-image,.mw-parser-output .sidebar-caption{padding:0.2em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-pretitle{padding:0.4em 0.4em 0;line-height:1.2em}.mw-parser-output .sidebar-title,.mw-parser-output .sidebar-title-with-pretitle{padding:0.2em 0.8em;font-size:145%;line-height:1.2em}.mw-parser-output .sidebar-title-with-pretitle{padding:0.1em 0.4em}.mw-parser-output .sidebar-image{padding:0.2em 0.4em 0.4em}.mw-parser-output .sidebar-heading{padding:0.1em 0.4em}.mw-parser-output .sidebar-content{padding:0 0.5em 0.4em}.mw-parser-output .sidebar-content-with-subgroup{padding:0.1em 0.4em 0.2em}.mw-parser-output .sidebar-above,.mw-parser-output .sidebar-below{padding:0.3em 0.8em;font-weight:bold}.mw-parser-output .sidebar-collapse .sidebar-above,.mw-parser-output .sidebar-collapse .sidebar-below{border-top:1px solid #aaa;border-bottom:1px solid #aaa}.mw-parser-output .sidebar-navbar{text-align:right;font-size:115%;padding:0 0.4em 0.4em}.mw-parser-output .sidebar-list-title{padding:0 0.4em;text-align:left;font-weight:bold;line-height:1.6em;font-size:105%}.mw-parser-output .sidebar-list-title-c{padding:0 0.4em;text-align:center;margin:0 3.3em}@media(max-width:640px){body.mediawiki .mw-parser-output .sidebar{width:100%!important;clear:both;float:none!important;margin-left:0!important;margin-right:0!important}}body.skin--responsive .mw-parser-output .sidebar a>img{max-width:none!important}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-night .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-list-title,html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle{background:transparent!important}html.skin-theme-clientpref-os .mw-parser-output .sidebar:not(.notheme) .sidebar-title-with-pretitle a{color:var(--color-progressive)!important}}@media print{body.ns-0 .mw-parser-output .sidebar{display:none!important}}</style><table class="sidebar nomobile nowraplinks hlist"><tbody><tr><td class="sidebar-pretitle">Part of a series on <a href="/wiki/Statistics" title="Statistics">statistics</a></td></tr><tr><th class="sidebar-title-with-pretitle"><a href="/wiki/Probability_theory" title="Probability theory">Probability theory</a></th></tr><tr><td class="sidebar-image"><span typeof="mw:File"><a href="/wiki/File:Standard_deviation_diagram_micro.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/250px-Standard_deviation_diagram_micro.svg.png" decoding="async" width="250" height="125" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/375px-Standard_deviation_diagram_micro.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3a/Standard_deviation_diagram_micro.svg/500px-Standard_deviation_diagram_micro.svg.png 2x" data-file-width="400" data-file-height="200" /></a></span></td></tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Probability" title="Probability">Probability</a> <ul><li><a href="/wiki/Probability_axioms" title="Probability axioms">Axioms</a></li></ul></li> <li><a href="/wiki/Determinism" title="Determinism">Determinism</a> <ul><li><a href="/wiki/Deterministic_system" title="Deterministic system">System</a></li></ul></li> <li><a href="/wiki/Indeterminism" title="Indeterminism">Indeterminism</a></li> <li><a href="/wiki/Randomness" title="Randomness">Randomness</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Probability_space" title="Probability space">Probability space</a></li> <li><a href="/wiki/Sample_space" title="Sample space">Sample space</a></li> <li><a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">Event</a> <ul><li><a href="/wiki/Collectively_exhaustive_events" title="Collectively exhaustive events">Collectively exhaustive events</a></li> <li><a href="/wiki/Elementary_event" title="Elementary event">Elementary event</a></li> <li><a href="/wiki/Mutual_exclusivity" title="Mutual exclusivity">Mutual exclusivity</a></li> <li><a href="/wiki/Outcome_(probability)" title="Outcome (probability)">Outcome</a></li> <li><a href="/wiki/Singleton_(mathematics)" title="Singleton (mathematics)">Singleton</a></li></ul></li> <li><a href="/wiki/Experiment_(probability_theory)" title="Experiment (probability theory)">Experiment</a> <ul><li><a href="/wiki/Bernoulli_trial" title="Bernoulli trial">Bernoulli trial</a></li></ul></li> <li><a href="/wiki/Probability_distribution" title="Probability distribution">Probability distribution</a> <ul><li><a href="/wiki/Bernoulli_distribution" title="Bernoulli distribution">Bernoulli distribution</a></li> <li><a href="/wiki/Binomial_distribution" title="Binomial distribution">Binomial distribution</a></li> <li><a href="/wiki/Exponential_distribution" title="Exponential distribution">Exponential distribution</a></li> <li><a href="/wiki/Normal_distribution" title="Normal distribution">Normal distribution</a></li> <li><a href="/wiki/Pareto_distribution" title="Pareto distribution">Pareto distribution</a></li> <li><a href="/wiki/Poisson_distribution" title="Poisson distribution">Poisson distribution</a></li></ul></li> <li><a href="/wiki/Probability_measure" title="Probability measure">Probability measure</a></li> <li><a href="/wiki/Random_variable" title="Random variable">Random variable</a> <ul><li><a href="/wiki/Bernoulli_process" title="Bernoulli process">Bernoulli process</a></li> <li><a href="/wiki/Continuous_or_discrete_variable" title="Continuous or discrete variable">Continuous or discrete</a></li> <li><a href="/wiki/Expected_value" title="Expected value">Expected value</a></li> <li><a href="/wiki/Variance" title="Variance">Variance</a></li> <li><a href="/wiki/Markov_chain" title="Markov chain">Markov chain</a></li> <li><a href="/wiki/Realization_(probability)" title="Realization (probability)">Observed value</a></li> <li><a href="/wiki/Random_walk" title="Random walk">Random walk</a></li> <li><a href="/wiki/Stochastic_process" title="Stochastic process">Stochastic process</a></li></ul></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Complementary_event" title="Complementary event">Complementary event</a></li> <li><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Joint probability</a></li> <li><a href="/wiki/Marginal_distribution" title="Marginal distribution">Marginal probability</a></li> <li><a class="mw-selflink selflink">Conditional probability</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">Independence</a></li> <li><a href="/wiki/Conditional_independence" title="Conditional independence">Conditional independence</a></li> <li><a href="/wiki/Law_of_total_probability" title="Law of total probability">Law of total probability</a></li> <li><a href="/wiki/Law_of_large_numbers" title="Law of large numbers">Law of large numbers</a></li> <li><a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a></li> <li><a href="/wiki/Boole%27s_inequality" title="Boole&#39;s inequality">Boole's inequality</a></li></ul></td> </tr><tr><td class="sidebar-content"> <ul><li><a href="/wiki/Venn_diagram" title="Venn diagram">Venn diagram</a></li> <li><a href="/wiki/Tree_diagram_(probability_theory)" title="Tree diagram (probability theory)">Tree diagram</a></li></ul></td> </tr><tr><td class="sidebar-navbar"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Probability_fundamentals" title="Template:Probability fundamentals"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Probability_fundamentals" title="Template talk:Probability fundamentals"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Probability_fundamentals" title="Special:EditPage/Template:Probability fundamentals"><abbr title="Edit this template">e</abbr></a></li></ul></div></td></tr></tbody></table> <p>In <a href="/wiki/Probability_theory" title="Probability theory">probability theory</a>, <b>conditional probability</b> is a measure of the <a href="/wiki/Probability" title="Probability">probability</a> of an <a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">event</a> occurring, given that another event (by assumption, presumption, assertion or evidence) is already known to have occurred.<sup id="cite_ref-Allan_Gut_2013_1-0" class="reference"><a href="#cite_note-Allan_Gut_2013-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> This particular method relies on event A occurring with some sort of relationship with another event B. In this situation, the event A can be analyzed by a conditional probability with respect to B. If the event of interest is <span class="texhtml mvar" style="font-style:italic;">A</span> and the event <span class="texhtml mvar" style="font-style:italic;">B</span> is known or assumed to have occurred, "the conditional probability of <span class="texhtml mvar" style="font-style:italic;">A</span> given <span class="texhtml mvar" style="font-style:italic;">B</span>", or "the probability of <span class="texhtml mvar" style="font-style:italic;">A</span> under the condition <span class="texhtml mvar" style="font-style:italic;">B</span>", is usually written as <span class="texhtml">P(<i>A</i>|<i>B</i>)</span><sup id="cite_ref-:0_2-0" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> or occasionally <span class="texhtml">P<sub><i>B</i></sub>(<i>A</i>)</span>. This can also be understood as the fraction of probability B that intersects with A, or the ratio of the probabilities of both events happening to the "given" one happening (how many times A occurs rather than not assuming B has occurred): <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)={\frac {P(A\cap B)}{P(B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)={\frac {P(A\cap B)}{P(B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1804505c0de877b843b29d645f394a9615e726b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.578ex; height:6.509ex;" alt="{\displaystyle P(A\mid B)={\frac {P(A\cap B)}{P(B)}}}"></span>.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> </p><p>For example, the probability that any given person has a cough on any given day may be only 5%. But if we know or assume that the person is sick, then they are much more likely to be coughing. For example, the conditional probability that someone unwell (sick) is coughing might be 75%, in which case we would have that <span class="texhtml">P(Cough)</span> = 5% and <span class="texhtml">P(Cough|Sick)</span> = 75&#160;%. Although there is a relationship between <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> in this example, such a relationship or dependence between <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> is not necessary, nor do they have to occur simultaneously. </p><p><span class="texhtml">P(<i>A</i>|<i>B</i>)</span> may or may not be equal to <span class="texhtml">P(<i>A</i>)</span>, i.e., the <b>unconditional probability</b> or <b>absolute probability</b> of <span class="texhtml mvar" style="font-style:italic;">A</span>. If <span class="texhtml">P(<i>A</i>|<i>B</i>) = P(<i>A</i>)</span>, then events <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> are said to be <a href="/wiki/Independence_(probability_theory)#Two_events" title="Independence (probability theory)"><i>independent</i></a>: in such a case, knowledge about either event does not alter the likelihood of each other. <span class="texhtml">P(<i>A</i>|<i>B</i>)</span> (the conditional probability of <span class="texhtml mvar" style="font-style:italic;">A</span> given <span class="texhtml mvar" style="font-style:italic;">B</span>) typically differs from <span class="texhtml">P(<i>B</i>|<i>A</i>)</span>. For example, if a person has <a href="/wiki/Dengue_fever" title="Dengue fever">dengue fever</a>, the person might have a 90% chance of being tested as positive for the disease. In this case, what is being measured is that if event <span class="texhtml mvar" style="font-style:italic;">B</span> (<i>having dengue</i>) has occurred, the probability of <span class="texhtml mvar" style="font-style:italic;">A</span> (<i>tested as positive</i>) given that <span class="texhtml mvar" style="font-style:italic;">B</span> occurred is 90%, simply writing <span class="texhtml">P(<i>A</i>|<i>B</i>)</span> = 90%. Alternatively, if a person is tested as positive for dengue fever, they may have only a 15% chance of actually having this rare disease due to high <a href="/wiki/False_positive" class="mw-redirect" title="False positive">false positive</a> rates. In this case, the probability of the event <span class="texhtml mvar" style="font-style:italic;">B</span> (<i>having dengue</i>) given that the event <span class="texhtml mvar" style="font-style:italic;">A</span> (<i>testing positive</i>) has occurred is 15% or <span class="texhtml">P(<i>B</i>|<i>A</i>)</span> = 15%. It should be apparent now that falsely equating the two probabilities can lead to various errors of reasoning, which is commonly seen through <a href="/wiki/Base_rate_fallacy" title="Base rate fallacy">base rate fallacies</a>. </p><p>While conditional probabilities can provide extremely useful information, limited information is often supplied or at hand. Therefore, it can be useful to reverse or convert a conditional probability using <a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)={{P(B\mid A)P(A)} \over {P(B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)={{P(B\mid A)P(A)} \over {P(B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/933615babd5d0b5cc80f2655ae9ed332e4752276" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.23ex; height:6.509ex;" alt="{\displaystyle P(A\mid B)={{P(B\mid A)P(A)} \over {P(B)}}}"></span>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Another option is to display conditional probabilities in a <a href="/wiki/Conditional_probability_table" title="Conditional probability table">conditional probability table</a> to illuminate the relationship between events. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Definition">Definition</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=1" title="Edit section: Definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Conditional_probability.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Conditional_probability.svg/220px-Conditional_probability.svg.png" decoding="async" width="220" height="156" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Conditional_probability.svg/330px-Conditional_probability.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9b/Conditional_probability.svg/440px-Conditional_probability.svg.png 2x" data-file-width="815" data-file-height="578" /></a><figcaption>Illustration of conditional probabilities with an <a href="/wiki/Euler_diagram" title="Euler diagram">Euler diagram</a>. The unconditional <a href="/wiki/Probability" title="Probability">probability</a> P(<i>A</i>) = 0.30 + 0.10 + 0.12 = 0.52. However, the conditional probability <i>P</i>(<i>A</i>&#124;<i>B</i><sub>1</sub>) = 1, <i>P</i>(<i>A</i>&#124;<i>B</i><sub>2</sub>) = 0.12 ÷ (0.12 + 0.04) = 0.75, and P(<i>A</i>&#124;<i>B</i><sub>3</sub>) = 0.</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Probability_tree_diagram.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Probability_tree_diagram.svg/220px-Probability_tree_diagram.svg.png" decoding="async" width="220" height="151" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Probability_tree_diagram.svg/330px-Probability_tree_diagram.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/9/9c/Probability_tree_diagram.svg/440px-Probability_tree_diagram.svg.png 2x" data-file-width="424" data-file-height="291" /></a><figcaption>On a <a href="/wiki/Tree_diagram_(probability_theory)" title="Tree diagram (probability theory)">tree diagram</a>, branch probabilities are conditional on the event associated with the parent node. (Here, the overbars indicate that the event does not occur.)</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Venn_Pie_Chart_describing_Bayes%27_law.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/Venn_Pie_Chart_describing_Bayes%27_law.png/220px-Venn_Pie_Chart_describing_Bayes%27_law.png" decoding="async" width="220" height="180" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/8/86/Venn_Pie_Chart_describing_Bayes%27_law.png/330px-Venn_Pie_Chart_describing_Bayes%27_law.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/8/86/Venn_Pie_Chart_describing_Bayes%27_law.png/440px-Venn_Pie_Chart_describing_Bayes%27_law.png 2x" data-file-width="883" data-file-height="724" /></a><figcaption>Venn Pie Chart describing conditional probabilities</figcaption></figure> <div class="mw-heading mw-heading3"><h3 id="Conditioning_on_an_event">Conditioning on an event</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=2" title="Edit section: Conditioning on an event"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading4"><h4 id="Kolmogorov_definition"><a href="/wiki/Andrey_Kolmogorov" title="Andrey Kolmogorov">Kolmogorov</a> definition</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=3" title="Edit section: Kolmogorov definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Given two <a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">events</a> <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span> from the <a href="/wiki/Sigma-field" class="mw-redirect" title="Sigma-field">sigma-field</a> of a probability space, with the <a href="/wiki/Marginal_probability" class="mw-redirect" title="Marginal probability">unconditional probability</a> of <span class="texhtml mvar" style="font-style:italic;">B</span> being greater than zero (i.e., <span class="texhtml">P(<i>B</i>) &gt; 0)</span>, the conditional probability of <span class="texhtml mvar" style="font-style:italic;">A</span> given <span class="texhtml mvar" style="font-style:italic;">B</span> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8f30f4da85b53901e0871eb41ed8827f511bb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.999ex; height:2.843ex;" alt="{\displaystyle P(A\mid B)}"></span>) is the probability of <i>A</i> occurring if <i>B</i> has or is assumed to have happened.<sup id="cite_ref-:1_5-0" class="reference"><a href="#cite_note-:1-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup> <i>A</i> is assumed to be the set of all possible outcomes of an experiment or random trial that has a restricted or reduced sample space. The conditional probability can be found by the <a href="/wiki/Quotient" title="Quotient">quotient</a> of the probability of the joint intersection of events <span class="texhtml mvar" style="font-style:italic;">A</span> and <span class="texhtml mvar" style="font-style:italic;">B</span>, that is, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cap B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cap B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22276bc48d131dadc7e4dacbf38cee3ed05d536" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.644ex; height:2.843ex;" alt="{\displaystyle P(A\cap B)}"></span>, the probability at which <i>A</i> and <i>B</i> occur together, and the <a href="/wiki/Probability" title="Probability">probability</a> of <span class="texhtml mvar" style="font-style:italic;">B</span>:<sup id="cite_ref-:0_2-1" class="reference"><a href="#cite_note-:0-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)={\frac {P(A\cap B)}{P(B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)={\frac {P(A\cap B)}{P(B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1804505c0de877b843b29d645f394a9615e726b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:22.578ex; height:6.509ex;" alt="{\displaystyle P(A\mid B)={\frac {P(A\cap B)}{P(B)}}}"></span>.</dd></dl> <p>For a sample space consisting of equal likelihood outcomes, the probability of the event <i>A</i> is understood as the fraction of the number of outcomes in <i>A</i> to the number of all outcomes in the sample space. Then, this equation is understood as the fraction of the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span> to the set <i>B</i>. Note that the above equation is a definition, not just a theoretical result. We denote the quantity <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {P(A\cap B)}{P(B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {P(A\cap B)}{P(B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ab59c72658b1b3b15a26d192bcefd2ae802f3d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:10.481ex; height:6.509ex;" alt="{\displaystyle {\frac {P(A\cap B)}{P(B)}}}"></span> as <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8f30f4da85b53901e0871eb41ed8827f511bb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.999ex; height:2.843ex;" alt="{\displaystyle P(A\mid B)}"></span> and call it the "conditional probability of <span class="texhtml mvar" style="font-style:italic;">A</span> given <span class="texhtml mvar" style="font-style:italic;">B</span>." </p> <div class="mw-heading mw-heading4"><h4 id="As_an_axiom_of_probability">As an axiom of probability</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=4" title="Edit section: As an axiom of probability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some authors, such as <a href="/wiki/Bruno_de_Finetti" title="Bruno de Finetti">de Finetti</a>, prefer to introduce conditional probability as an <a href="/wiki/Probability_axioms" title="Probability axioms">axiom of probability</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cap B)=P(A\mid B)P(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cap B)=P(A\mid B)P(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3bb215824bee38fc66af7e90168657facbccb5d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:27.061ex; height:2.843ex;" alt="{\displaystyle P(A\cap B)=P(A\mid B)P(B)}"></span>.</dd></dl> <p>This equation for a conditional probability, although mathematically equivalent, may be intuitively easier to understand. It can be interpreted as "the probability of <i>B</i> occurring multiplied by the probability of <i>A</i> occurring, provided that <i>B</i> has occurred, is equal to the probability of the <i>A</i> and <i>B</i> occurrences together, although not necessarily occurring at the same time". Additionally, this may be preferred philosophically; under major <a href="/wiki/Probability_interpretations" title="Probability interpretations">probability interpretations</a>, such as the <a href="/wiki/Subjective_probability" class="mw-redirect" title="Subjective probability">subjective theory</a>, conditional probability is considered a primitive entity. Moreover, this "multiplication rule" can be practically useful in computing the probability of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span> and introduces a symmetry with the summation axiom for Poincaré Formula: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cup B)=P(A)+P(B)-P(A\cap B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cup B)=P(A)+P(B)-P(A\cap B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c8de5b03034abcef68b1d393382856497e295a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:38.685ex; height:2.843ex;" alt="{\displaystyle P(A\cup B)=P(A)+P(B)-P(A\cap B)}"></span></dd> <dd>Thus the equations can be combined to find a new representation of the&#160;:</dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cap B)=P(A)+P(B)-P(A\cup B)=P(A\mid B)P(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cap B)=P(A)+P(B)-P(A\cup B)=P(A\mid B)P(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2ab3d1030084fde53dc1d3ade06c5e438c7d20d2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:56.101ex; height:2.843ex;" alt="{\displaystyle P(A\cap B)=P(A)+P(B)-P(A\cup B)=P(A\mid B)P(B)}"></span></dd> <dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cup B)={P(A)+P(B)-P(A\mid B){P(B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x222A;<!-- ∪ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cup B)={P(A)+P(B)-P(A\mid B){P(B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/67dd8cf42881b033b015a4fe3ab35a7d010f3b6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:43.358ex; height:2.843ex;" alt="{\displaystyle P(A\cup B)={P(A)+P(B)-P(A\mid B){P(B)}}}"></span></dd></dl> <div class="mw-heading mw-heading4"><h4 id="As_the_probability_of_a_conditional_event">As the probability of a conditional event</h4><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=5" title="Edit section: As the probability of a conditional event"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Conditional probability can be defined as the probability of a conditional event <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{B}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{B}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40c23902854ca17ed340b014fda4b3e6adc02b46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.223ex; height:2.509ex;" alt="{\displaystyle A_{B}}"></span>. The <a href="/wiki/Goodman%E2%80%93Nguyen%E2%80%93Van_Fraassen_algebra" class="mw-redirect" title="Goodman–Nguyen–Van Fraassen algebra">Goodman–Nguyen–Van Fraassen</a> conditional event can be defined as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{B}=\bigcup _{i\geq 1}\left(\bigcap _{j&lt;i}{\overline {B}}_{j},A_{i}B_{i}\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>&#x22C3;<!-- ⋃ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>1</mn> </mrow> </munder> <mrow> <mo>(</mo> <mrow> <munder> <mo>&#x22C2;<!-- ⋂ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>&lt;</mo> <mi>i</mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <mo>,</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{B}=\bigcup _{i\geq 1}\left(\bigcap _{j&lt;i}{\overline {B}}_{j},A_{i}B_{i}\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b75c66970fec28effaaae9ec34d57c3ce26f1c5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:24.955ex; height:7.676ex;" alt="{\displaystyle A_{B}=\bigcup _{i\geq 1}\left(\bigcap _{j&lt;i}{\overline {B}}_{j},A_{i}B_{i}\right)}"></span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1aed3b5def921afbe6cc48aaf8f9b11c6f1c1e2d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.543ex; height:2.509ex;" alt="{\displaystyle A_{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82cda0578ec6b48774c541ecb9bee4a90176e62f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.509ex;" alt="{\displaystyle B_{i}}"></span> represent states or elements of <i>A</i> or <i>B.</i> <sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>It can be shown that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A_{B})={\frac {P(A\cap B)}{P(B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>B</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A_{B})={\frac {P(A\cap B)}{P(B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a0d80f5483f719c116d479b3d89cf2817e4368fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:20.356ex; height:6.509ex;" alt="{\displaystyle P(A_{B})={\frac {P(A\cap B)}{P(B)}}}"></span></dd></dl> <p>which meets the Kolmogorov definition of conditional probability.<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Conditioning_on_an_event_of_probability_zero">Conditioning on an event of probability zero</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=6" title="Edit section: Conditioning on an event of probability zero"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(B)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(B)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/973532626488736dc14f2ab2add7c09c7b2132ed" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.58ex; height:2.843ex;" alt="{\displaystyle P(B)=0}"></span>, then according to the definition, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f8f30f4da85b53901e0871eb41ed8827f511bb7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.999ex; height:2.843ex;" alt="{\displaystyle P(A\mid B)}"></span> is <a href="/wiki/Defined_and_undefined" class="mw-redirect" title="Defined and undefined">undefined</a>. </p><p>The case of greatest interest is that of a random variable <span class="texhtml mvar" style="font-style:italic;">Y</span>, conditioned on a continuous random variable <span class="texhtml mvar" style="font-style:italic;">X</span> resulting in a particular outcome <span class="texhtml mvar" style="font-style:italic;">x</span>. The event <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=\{X=x\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=\{X=x\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8781257665af71f9d040259d90d6e1f32651611b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.596ex; height:2.843ex;" alt="{\displaystyle B=\{X=x\}}"></span> has probability zero and, as such, cannot be conditioned on. </p><p>Instead of conditioning on <span class="texhtml mvar" style="font-style:italic;">X</span> being <i>exactly</i> <span class="texhtml mvar" style="font-style:italic;">x</span>, we could condition on it being closer than distance <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03F5;<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3837cad72483d97bcdde49c85d3b7b859fb3fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\displaystyle \epsilon }"></span> away from <span class="texhtml mvar" style="font-style:italic;">x</span>. The event <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B=\{x-\epsilon &lt;X&lt;x+\epsilon \}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>B</mi> <mo>=</mo> <mo fence="false" stretchy="false">{</mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&lt;</mo> <mi>X</mi> <mo>&lt;</mo> <mi>x</mi> <mo>+</mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B=\{x-\epsilon &lt;X&lt;x+\epsilon \}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f351755fa9de6813abcfa3eb7f2ecd2860d9060" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.593ex; height:2.843ex;" alt="{\displaystyle B=\{x-\epsilon &lt;X&lt;x+\epsilon \}}"></span> will generally have nonzero probability and hence, can be conditioned on. We can then take the <a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">limit</a> </p> <table role="presentation" style="border-collapse:collapse; margin:0 0 0 3.2em; border:none;"><tbody><tr><td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\epsilon \to 0}P(A\mid x-\epsilon &lt;X&lt;x+\epsilon ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&lt;</mo> <mi>X</mi> <mo>&lt;</mo> <mi>x</mi> <mo>+</mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\epsilon \to 0}P(A\mid x-\epsilon &lt;X&lt;x+\epsilon ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bef6a45d0832b65d626f18ea09e1d7b086b5392" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:29.904ex; height:4.009ex;" alt="{\displaystyle \lim _{\epsilon \to 0}P(A\mid x-\epsilon &lt;X&lt;x+\epsilon ).}"></span></td> <td style="vertical-align:middle; width:99%; border:none; padding:0;"></td> <td style="vertical-align:middle; border:none; padding:0;" class="nowrap"><b>(<span id="math_1" class="reference nourlexpansion" style="font-weight:bold;">1</span>)</b></td></tr></tbody></table> <p>For example, if two continuous random variables <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">Y</span> have a joint density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{X,Y}(x,y)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{X,Y}(x,y)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f2e305446e0fee9c51aee21bc81fb7136f1151e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:9.811ex; height:3.009ex;" alt="{\displaystyle f_{X,Y}(x,y)}"></span>, then by <a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L&#39;Hôpital&#39;s rule">L'Hôpital's rule</a> and <a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Leibniz integral rule</a>, upon differentiation with respect to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \epsilon }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03F5;<!-- ϵ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \epsilon }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c3837cad72483d97bcdde49c85d3b7b859fb3fd2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.944ex; height:1.676ex;" alt="{\displaystyle \epsilon }"></span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\lim _{\epsilon \to 0}P(Y\in U\mid x_{0}-\epsilon &lt;X&lt;x_{0}+\epsilon )&amp;=\lim _{\epsilon \to 0}{\frac {\int _{x_{0}-\epsilon }^{x_{0}+\epsilon }\int _{U}f_{X,Y}(x,y)\mathrm {d} y\mathrm {d} x}{\int _{x_{0}-\epsilon }^{x_{0}+\epsilon }\int _{\mathbb {R} }f_{X,Y}(x,y)\mathrm {d} y\mathrm {d} x}}\\&amp;={\frac {\int _{U}f_{X,Y}(x_{0},y)\mathrm {d} y}{\int _{\mathbb {R} }f_{X,Y}(x_{0},y)\mathrm {d} y}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>Y</mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>U</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&lt;</mo> <mi>X</mi> <mo>&lt;</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> </msubsup> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> <mrow> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>+</mo> <mi>&#x03F5;<!-- ϵ --></mi> </mrow> </msubsup> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>x</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>U</mi> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mrow> <mrow> <msub> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">R</mi> </mrow> </mrow> </msub> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> <mo>,</mo> <mi>Y</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>,</mo> <mi>y</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>y</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\lim _{\epsilon \to 0}P(Y\in U\mid x_{0}-\epsilon &lt;X&lt;x_{0}+\epsilon )&amp;=\lim _{\epsilon \to 0}{\frac {\int _{x_{0}-\epsilon }^{x_{0}+\epsilon }\int _{U}f_{X,Y}(x,y)\mathrm {d} y\mathrm {d} x}{\int _{x_{0}-\epsilon }^{x_{0}+\epsilon }\int _{\mathbb {R} }f_{X,Y}(x,y)\mathrm {d} y\mathrm {d} x}}\\&amp;={\frac {\int _{U}f_{X,Y}(x_{0},y)\mathrm {d} y}{\int _{\mathbb {R} }f_{X,Y}(x_{0},y)\mathrm {d} y}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e134d1ee99413a49e4545931eb0db36ed10f966c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.338ex; width:68.032ex; height:15.843ex;" alt="{\displaystyle {\begin{aligned}\lim _{\epsilon \to 0}P(Y\in U\mid x_{0}-\epsilon &lt;X&lt;x_{0}+\epsilon )&amp;=\lim _{\epsilon \to 0}{\frac {\int _{x_{0}-\epsilon }^{x_{0}+\epsilon }\int _{U}f_{X,Y}(x,y)\mathrm {d} y\mathrm {d} x}{\int _{x_{0}-\epsilon }^{x_{0}+\epsilon }\int _{\mathbb {R} }f_{X,Y}(x,y)\mathrm {d} y\mathrm {d} x}}\\&amp;={\frac {\int _{U}f_{X,Y}(x_{0},y)\mathrm {d} y}{\int _{\mathbb {R} }f_{X,Y}(x_{0},y)\mathrm {d} y}}.\end{aligned}}}"></span></dd></dl> <p>The resulting limit is the <a href="/wiki/Conditional_probability_distribution" title="Conditional probability distribution">conditional probability distribution</a> of <span class="texhtml mvar" style="font-style:italic;">Y</span> given <span class="texhtml mvar" style="font-style:italic;">X</span> and exists when the denominator, the probability density <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f_{X}(x_{0})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>X</mi> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f_{X}(x_{0})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd1d840d14f26328c932662404dbe4a428400330" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.965ex; height:2.843ex;" alt="{\displaystyle f_{X}(x_{0})}"></span>, is strictly positive. </p><p>It is tempting to <i>define</i> the undefined probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid X=x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid X=x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6b8412e824c6d82068bd113f2d4ee24b1a19f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.643ex; height:2.843ex;" alt="{\displaystyle P(A\mid X=x)}"></span> using limit (<b><a href="#math_1">1</a></b>), but this cannot be done in a consistent manner. In particular, it is possible to find random variables <span class="texhtml mvar" style="font-style:italic;">X</span> and <span class="texhtml mvar" style="font-style:italic;">W</span> and values <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml mvar" style="font-style:italic;">w</span> such that the events <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{X=x\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{X=x\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/27c21c8cea558ce7483231c44b50a17fcf588a49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.733ex; height:2.843ex;" alt="{\displaystyle \{X=x\}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{W=w\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mi>W</mi> <mo>=</mo> <mi>w</mi> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{W=w\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/adabdcd575d99d8c575c2492e006862098026142" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:9.523ex; height:2.843ex;" alt="{\displaystyle \{W=w\}}"></span> are identical but the resulting limits are not: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lim _{\epsilon \to 0}P(A\mid x-\epsilon \leq X\leq x+\epsilon )\neq \lim _{\epsilon \to 0}P(A\mid w-\epsilon \leq W\leq w+\epsilon ).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>x</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>X</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>x</mi> <mo>+</mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">)</mo> <mo>&#x2260;<!-- ≠ --></mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mn>0</mn> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>w</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>W</mi> <mo>&#x2264;<!-- ≤ --></mo> <mi>w</mi> <mo>+</mo> <mi>&#x03F5;<!-- ϵ --></mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lim _{\epsilon \to 0}P(A\mid x-\epsilon \leq X\leq x+\epsilon )\neq \lim _{\epsilon \to 0}P(A\mid w-\epsilon \leq W\leq w+\epsilon ).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31e21a8496b86a8c8651a4189cd9caaa1a53f63c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:63.383ex; height:4.009ex;" alt="{\displaystyle \lim _{\epsilon \to 0}P(A\mid x-\epsilon \leq X\leq x+\epsilon )\neq \lim _{\epsilon \to 0}P(A\mid w-\epsilon \leq W\leq w+\epsilon ).}"></span></dd></dl> <p>The <a href="/wiki/Borel%E2%80%93Kolmogorov_paradox" title="Borel–Kolmogorov paradox">Borel–Kolmogorov paradox</a> demonstrates this with a geometrical argument. </p> <div class="mw-heading mw-heading3"><h3 id="Conditioning_on_a_discrete_random_variable">Conditioning on a discrete random variable</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=7" title="Edit section: Conditioning on a discrete random variable"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">See also: <a href="/wiki/Conditional_probability_distribution" title="Conditional probability distribution">Conditional probability distribution</a>, <a href="/wiki/Conditional_expectation" title="Conditional expectation">Conditional expectation</a>, and <a href="/wiki/Regular_conditional_probability" title="Regular conditional probability">Regular conditional probability</a></div> <p>Let <span class="texhtml mvar" style="font-style:italic;">X</span> be a discrete random variable and its possible outcomes denoted <span class="texhtml mvar" style="font-style:italic;">V</span>. For example, if <span class="texhtml mvar" style="font-style:italic;">X</span> represents the value of a rolled dice then <span class="texhtml mvar" style="font-style:italic;">V</span> is the set <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \{1,2,3,4,5,6\}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">{</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>5</mn> <mo>,</mo> <mn>6</mn> <mo fence="false" stretchy="false">}</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \{1,2,3,4,5,6\}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc427c339db79f243cb79154253ff8151a31c23e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.469ex; height:2.843ex;" alt="{\displaystyle \{1,2,3,4,5,6\}}"></span>. Let us assume for the sake of presentation that <span class="texhtml mvar" style="font-style:italic;">X</span> is a discrete random variable, so that each value in <span class="texhtml mvar" style="font-style:italic;">V</span> has a nonzero probability. </p><p>For a value <span class="texhtml mvar" style="font-style:italic;">x</span> in <span class="texhtml mvar" style="font-style:italic;">V</span> and an event <span class="texhtml mvar" style="font-style:italic;">A</span>, the conditional probability is given by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid X=x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid X=x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6b8412e824c6d82068bd113f2d4ee24b1a19f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.643ex; height:2.843ex;" alt="{\displaystyle P(A\mid X=x)}"></span>. Writing </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle c(x,A)=P(A\mid X=x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>c</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle c(x,A)=P(A\mid X=x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5679c52d3ea558c98f7116c9a28959b0d4ebd976" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.664ex; height:2.843ex;" alt="{\displaystyle c(x,A)=P(A\mid X=x)}"></span></dd></dl> <p>for short, we see that it is a function of two variables, <span class="texhtml mvar" style="font-style:italic;">x</span> and <span class="texhtml mvar" style="font-style:italic;">A</span>. </p><p>For a fixed <span class="texhtml mvar" style="font-style:italic;">A</span>, we can form the random variable <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Y=c(X,A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>Y</mi> <mo>=</mo> <mi>c</mi> <mo stretchy="false">(</mo> <mi>X</mi> <mo>,</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle Y=c(X,A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6105d1721bf52c6fb202218e33605405cfdc5a12" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.445ex; height:2.843ex;" alt="{\displaystyle Y=c(X,A)}"></span>. It represents an outcome of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid X=x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>X</mi> <mo>=</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid X=x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd6b8412e824c6d82068bd113f2d4ee24b1a19f7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:13.643ex; height:2.843ex;" alt="{\displaystyle P(A\mid X=x)}"></span> whenever a value <span class="texhtml mvar" style="font-style:italic;">x</span> of <span class="texhtml mvar" style="font-style:italic;">X</span> is observed. </p><p>The conditional probability of <span class="texhtml mvar" style="font-style:italic;">A</span> given <span class="texhtml mvar" style="font-style:italic;">X</span> can thus be treated as a random variable <span class="texhtml mvar" style="font-style:italic;">Y</span> with outcomes in the interval <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle [0,1]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">[</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">]</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle [0,1]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/738f7d23bb2d9642bab520020873cccbef49768d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.653ex; height:2.843ex;" alt="{\displaystyle [0,1]}"></span>. From the <a href="/wiki/Law_of_total_probability" title="Law of total probability">law of total probability</a>, its expected value is equal to the unconditional <a href="/wiki/Probability" title="Probability">probability</a> of <span class="texhtml mvar" style="font-style:italic;">A</span>. </p> <div class="mw-heading mw-heading3"><h3 id="Partial_conditional_probability">Partial conditional probability</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=8" title="Edit section: Partial conditional probability"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The partial conditional probability <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05c97de1c22ea065bbf0a3f76552849a36e64541" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:29.592ex; height:2.843ex;" alt="{\displaystyle P(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})}"></span> is about the probability of event <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> given that each of the condition events <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82cda0578ec6b48774c541ecb9bee4a90176e62f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.564ex; height:2.509ex;" alt="{\displaystyle B_{i}}"></span> has occurred to a degree <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40a8c2db2990a53c683e75961826167c5adac7c3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.797ex; height:2.509ex;" alt="{\displaystyle b_{i}}"></span> (degree of belief, degree of experience) that might be different from 100%. Frequentistically, partial conditional probability makes sense, if the conditions are tested in experiment repetitions of appropriate length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>.<sup id="cite_ref-Draheim2017b_10-0" class="reference"><a href="#cite_note-Draheim2017b-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> Such <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span>-bounded partial conditional probability can be defined as the <a href="/wiki/Conditional_expectation" title="Conditional expectation">conditionally expected</a> average occurrence of event <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7daff47fa58cdfd29dc333def748ff5fa4c923e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.743ex; height:2.176ex;" alt="{\displaystyle A}"></span> in testbeds of length <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> that adhere to all of the probability specifications <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{i}\equiv b_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{i}\equiv b_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/650c84e7950a304e564c16bb37e64ae5b6ad1b4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.459ex; height:2.509ex;" alt="{\displaystyle B_{i}\equiv b_{i}}"></span>, i.e.: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P^{n}(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})=\operatorname {E} ({\overline {A}}^{n}\mid {\overline {B}}_{1}^{n}=b_{1},\ldots ,{\overline {B}}_{m}^{n}=b_{m})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <mi mathvariant="normal">E</mi> <mo>&#x2061;<!-- ⁡ --></mo> <mo stretchy="false">(</mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>A</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>&#x2223;<!-- ∣ --></mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>B</mi> <mo accent="false">&#x00AF;<!-- ¯ --></mo> </mover> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo>=</mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P^{n}(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})=\operatorname {E} ({\overline {A}}^{n}\mid {\overline {B}}_{1}^{n}=b_{1},\ldots ,{\overline {B}}_{m}^{n}=b_{m})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48ec68dad933211b3caa712a96ef2fce518bd898" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:65.142ex; height:3.676ex;" alt="{\displaystyle P^{n}(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})=\operatorname {E} ({\overline {A}}^{n}\mid {\overline {B}}_{1}^{n}=b_{1},\ldots ,{\overline {B}}_{m}^{n}=b_{m})}"></span><sup id="cite_ref-Draheim2017b_10-1" class="reference"><a href="#cite_note-Draheim2017b-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup></dd></dl> <p>Based on that, partial conditional probability can be defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})=\lim _{n\to \infty }P^{n}(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m}),}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo stretchy="false">&#x2192;<!-- → --></mo> <mi mathvariant="normal">&#x221E;<!-- ∞ --></mi> </mrow> </munder> <msup> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})=\lim _{n\to \infty }P^{n}(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m}),}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f390641658cbe23d3c8f35dd20a2b25abf2a218d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:68.883ex; height:3.843ex;" alt="{\displaystyle P(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})=\lim _{n\to \infty }P^{n}(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m}),}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b_{i}n\in \mathbb {N} }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>n</mi> <mo>&#x2208;<!-- ∈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">N</mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b_{i}n\in \mathbb {N} }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3486b4ace6f08a6b994ea9f6ab9db29efc33a1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.711ex; height:2.509ex;" alt="{\displaystyle b_{i}n\in \mathbb {N} }"></span><sup id="cite_ref-Draheim2017b_10-2" class="reference"><a href="#cite_note-Draheim2017b-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p><p><a href="/wiki/Radical_probabilism" title="Radical probabilism">Jeffrey conditionalization</a><sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> is a special case of partial conditional probability, in which the condition events must form a <a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})=\sum _{i=1}^{m}b_{i}P(A\mid B_{i})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo>,</mo> <mo>&#x2026;<!-- … --></mo> <mo>,</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <msub> <mi>b</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})=\sum _{i=1}^{m}b_{i}P(A\mid B_{i})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3892fe1569a9027396036dd703da94b8a6bbb5e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:48.028ex; height:6.843ex;" alt="{\displaystyle P(A\mid B_{1}\equiv b_{1},\ldots ,B_{m}\equiv b_{m})=\sum _{i=1}^{m}b_{i}P(A\mid B_{i})}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Example">Example</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=9" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Suppose that somebody secretly rolls two fair six-sided <a href="/wiki/Dice" title="Dice">dice</a>, and we wish to compute the probability that the face-up value of the first one is 2, given the information that their sum is no greater than 5. </p> <ul><li>Let <i>D</i><sub>1</sub> be the value rolled on <a href="/wiki/Dice" title="Dice">dice</a> 1.</li> <li>Let <i>D</i><sub>2</sub> be the value rolled on <a href="/wiki/Dice" title="Dice">dice</a> 2.</li></ul> <p><b><i>Probability that</i> <i>D</i><sub>1</sub>&#160;=&#160;2</b> </p><p>Table 1 shows the <a href="/wiki/Sample_space" title="Sample space">sample space</a> of 36 combinations of rolled values of the two dice, each of which occurs with probability 1/36, with the numbers displayed in the red and dark gray cells being <i>D</i><sub>1</sub> + <i>D</i><sub>2</sub>. </p><p><i>D</i><sub>1</sub>&#160;=&#160;2 in exactly 6 of the 36 outcomes; thus <i>P</i>(<i>D</i><sub>1</sub> = 2)&#160;=&#160;<style data-mw-deduplicate="TemplateStyles:r1154941027">.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="frac"><span class="num">6</span>&#8260;<span class="den">36</span></span>&#160;=&#160;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">1</span>&#8260;<span class="den">6</span></span>: </p> <dl><dd><table class="wikitable" style="background:silver; text-align:center; width:300px"> <caption>Table 1 </caption> <tbody><tr> <th rowspan="2" colspan="2">+ </th> <th colspan="6">D<sub>2</sub> </th></tr> <tr> <th scope="col">1 </th> <th scope="col">2 </th> <th scope="col">3 </th> <th scope="col">4 </th> <th scope="col">5 </th> <th scope="col">6 </th></tr> <tr> <th rowspan="6" scope="row"><i>D</i><sub>1</sub> </th> <th scope="row">1 </th> <td>2</td> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7 </td></tr> <tr style="background: red;"> <th scope="row">2 </th> <td>3</td> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8 </td></tr> <tr> <th scope="row">3 </th> <td>4</td> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9 </td></tr> <tr> <th scope="row">4 </th> <td>5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10 </td></tr> <tr> <th scope="row">5 </th> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11 </td></tr> <tr> <th scope="row">6 </th> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12 </td></tr></tbody></table></dd></dl> <p><b><i>Probability that</i> <i>D</i><sub>1</sub>&#160;+&#160;<i>D</i><sub>2</sub>&#160;≤&#160;5</b> </p><p>Table 2 shows that <i>D</i><sub>1</sub>&#160;+&#160;<i>D</i><sub>2</sub>&#160;≤&#160;5 for exactly 10 of the 36 outcomes, thus <i>P</i>(<i>D</i><sub>1</sub>&#160;+&#160;<i>D</i><sub>2</sub>&#160;≤&#160;5)&#160;=&#160;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">10</span>&#8260;<span class="den">36</span></span>: </p> <dl><dd><table class="wikitable" style="background:silver; text-align:center; width:300px"> <caption>Table 2 </caption> <tbody><tr> <th rowspan="2" colspan="2">+ </th> <th colspan="6"><i>D</i><sub>2</sub> </th></tr> <tr> <th scope="col">1 </th> <th scope="col">2 </th> <th scope="col">3 </th> <th scope="col">4 </th> <th scope="col">5 </th> <th scope="col">6 </th></tr> <tr> <th rowspan="6" scope="row"><i>D</i><sub>1</sub> </th> <th>1 </th> <td style="background:red;">2</td> <td style="background:red;">3</td> <td style="background:red;">4</td> <td style="background:red;">5</td> <td>6</td> <td>7 </td></tr> <tr> <th scope="row">2 </th> <td style="background:red;">3</td> <td style="background:red;">4</td> <td style="background:red;">5</td> <td>6</td> <td>7</td> <td>8 </td></tr> <tr> <th scope="row">3 </th> <td style="background:red;">4</td> <td style="background:red;">5</td> <td>6</td> <td>7</td> <td>8</td> <td>9 </td></tr> <tr> <th scope="row">4 </th> <td style="background:red;">5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10 </td></tr> <tr> <th scope="row">5 </th> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11 </td></tr> <tr> <th scope="row">6 </th> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12 </td></tr> </tbody></table></dd></dl> <p><b><i>Probability that</i> <i>D</i><sub>1</sub>&#160;=&#160;2 <i>given that</i> <i>D</i><sub>1</sub>&#160;+&#160;<i>D</i><sub>2</sub>&#160;≤&#160;5 </b> </p><p>Table 3 shows that for 3 of these 10 outcomes, <i>D</i><sub>1</sub>&#160;=&#160;2. </p><p>Thus, the conditional probability P(<i>D</i><sub>1</sub>&#160;=&#160;2&#160;|&#160;<i>D</i><sub>1</sub>+<i>D</i><sub>2</sub>&#160;≤&#160;5)&#160;=&#160;<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1154941027"><span class="frac"><span class="num">3</span>&#8260;<span class="den">10</span></span>&#160;=&#160;0.3: </p> <dl><dd><table class="wikitable" style="text-align:center; width:300px"> <caption>Table 3 </caption> <tbody><tr> <th rowspan="2" colspan="2">+ </th> <th colspan="6"><i>D</i><sub>2</sub> </th></tr> <tr> <th scope="col">1 </th> <th scope="col">2 </th> <th scope="col">3 </th> <th scope="col">4 </th> <th scope="col">5 </th> <th scope="col">6 </th></tr> <tr> <th rowspan="6" scope="row"><i>D</i><sub>1</sub> </th> <th>1 </th> <td style="background:silver;">2</td> <td style="background:silver;">3</td> <td style="background:silver;">4</td> <td style="background:silver;">5</td> <td>6</td> <td>7 </td></tr> <tr> <th scope="row">2 </th> <td style="background:red;">3</td> <td style="background:red;">4</td> <td style="background:red;">5</td> <td>6</td> <td>7</td> <td>8 </td></tr> <tr> <th scope="row">3 </th> <td style="background:silver;">4</td> <td style="background:silver;">5</td> <td>6</td> <td>7</td> <td>8</td> <td>9 </td></tr> <tr> <th scope="row">4 </th> <td style="background:silver;">5</td> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10 </td></tr> <tr> <th scope="row">5 </th> <td>6</td> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11 </td></tr> <tr> <th scope="row">6 </th> <td>7</td> <td>8</td> <td>9</td> <td>10</td> <td>11</td> <td>12 </td></tr></tbody></table></dd></dl> <p>Here, in the earlier notation for the definition of conditional probability, the conditioning event <i>B</i> is that <i>D</i><sub>1</sub>&#160;+&#160;<i>D</i><sub>2</sub>&#160;≤&#160;5, and the event <i>A</i> is <i>D</i><sub>1</sub>&#160;=&#160;2. We have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)={\tfrac {P(A\cap B)}{P(B)}}={\tfrac {3/36}{10/36}}={\tfrac {3}{10}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>36</mn> </mrow> <mrow> <mn>10</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>36</mn> </mrow> </mfrac> </mstyle> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>10</mn> </mfrac> </mstyle> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)={\tfrac {P(A\cap B)}{P(B)}}={\tfrac {3/36}{10/36}}={\tfrac {3}{10}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0bba14e08f26b78169b71e8a0d6fb1e44dc2725e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:33.293ex; height:4.843ex;" alt="{\displaystyle P(A\mid B)={\tfrac {P(A\cap B)}{P(B)}}={\tfrac {3/36}{10/36}}={\tfrac {3}{10}},}"></span> as seen in the table. </p> <div class="mw-heading mw-heading2"><h2 id="Use_in_inference">Use in inference</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=10" title="Edit section: Use in inference"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In <a href="/wiki/Statistical_inference" title="Statistical inference">statistical inference</a>, the conditional probability is an update of the probability of an <a href="/wiki/Event_(probability_theory)" title="Event (probability theory)">event</a> based on new information.<sup id="cite_ref-Casella_and_Berger_2002_13-0" class="reference"><a href="#cite_note-Casella_and_Berger_2002-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup> The new information can be incorporated as follows:<sup id="cite_ref-Allan_Gut_2013_1-1" class="reference"><a href="#cite_note-Allan_Gut_2013-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> </p> <ul><li>Let <i>A</i>, the event of interest, be in the <a href="/wiki/Sample_space" title="Sample space">sample space</a>, say (<i>X</i>,<i>P</i>).</li> <li>The occurrence of the event <i>A</i> knowing that event <i>B</i> has or will have occurred, means the occurrence of <i>A</i> as it is restricted to <i>B</i>, i.e. <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span>.</li> <li>Without the knowledge of the occurrence of <i>B</i>, the information about the occurrence of <i>A</i> would simply be <i>P</i>(<i>A</i>)</li> <li>The probability of <i>A</i> knowing that event <i>B</i> has or will have occurred, will be the probability of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle A\cap B}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle A\cap B}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bb27b38cf9eac6060e67b61f66cd9beec5067f81" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.09ex; height:2.176ex;" alt="{\displaystyle A\cap B}"></span> relative to <i>P</i>(<i>B</i>), the probability that <i>B</i> has occurred.</li> <li>This results in <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle P(A\mid B)=P(A\cap B)/P(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle P(A\mid B)=P(A\cap B)/P(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/46e600fc2196954ea7cd99fbeb7784df264651f5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.223ex; height:2.843ex;" alt="{\textstyle P(A\mid B)=P(A\cap B)/P(B)}"></span> whenever <i>P</i>(<i>B</i>)&#160;&gt;&#160;0 and 0 otherwise.</li></ul> <p>This approach results in a probability measure that is consistent with the original probability measure and satisfies all the <a href="/wiki/Probability_axioms" title="Probability axioms">Kolmogorov axioms</a>. This conditional probability measure also could have resulted by assuming that the relative magnitude of the probability of <i>A</i> with respect to <i>X</i> will be preserved with respect to <i>B</i> (cf. <a href="#Formal_derivation">a Formal Derivation</a> below). </p><p>The wording "evidence" or "information" is generally used in the <a href="/wiki/Bayesian_probability" title="Bayesian probability">Bayesian interpretation of probability</a>. The conditioning event is interpreted as evidence for the conditioned event. That is, <i>P</i>(<i>A</i>) is the probability of <i>A</i> before accounting for evidence <i>E</i>, and <i>P</i>(<i>A</i>|<i>E</i>) is the probability of <i>A</i> after having accounted for evidence <i>E</i> or after having updated <i>P</i>(<i>A</i>). This is consistent with the frequentist interpretation, which is the first definition given above. </p> <div class="mw-heading mw-heading3"><h3 id="Example_2">Example</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=11" title="Edit section: Example"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>When <a href="/wiki/Morse_code" title="Morse code">Morse code</a> is transmitted, there is a certain probability that the "dot" or "dash" that was received is erroneous. This is often taken as interference in the transmission of a message. Therefore, it is important to consider when sending a "dot", for example, the probability that a "dot" was received. This is represented by: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P({\text{dot sent }}|{\text{ dot received}})=P({\text{dot received }}|{\text{ dot sent}}){\frac {P({\text{dot sent}})}{P({\text{dot received}})}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot sent&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;dot received</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received&#xA0;</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;dot sent</mtext> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot sent</mtext> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received</mtext> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P({\text{dot sent }}|{\text{ dot received}})=P({\text{dot received }}|{\text{ dot sent}}){\frac {P({\text{dot sent}})}{P({\text{dot received}})}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05ff5731552d8724a3996e59567ba2d3aa35ba7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:71.479ex; height:6.509ex;" alt="{\displaystyle P({\text{dot sent }}|{\text{ dot received}})=P({\text{dot received }}|{\text{ dot sent}}){\frac {P({\text{dot sent}})}{P({\text{dot received}})}}.}"></span> In Morse code, the ratio of dots to dashes is 3:4 at the point of sending, so the probability of a "dot" and "dash" are <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P({\text{dot sent}})={\frac {3}{7}}\ and\ P({\text{dash sent}})={\frac {4}{7}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot sent</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>7</mn> </mfrac> </mrow> <mtext>&#xA0;</mtext> <mi>a</mi> <mi>n</mi> <mi>d</mi> <mtext>&#xA0;</mtext> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dash sent</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>7</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P({\text{dot sent}})={\frac {3}{7}}\ and\ P({\text{dash sent}})={\frac {4}{7}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7c7fb9f9d1cce0fe0e5b86141552f256802ffc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:39.782ex; height:5.343ex;" alt="{\displaystyle P({\text{dot sent}})={\frac {3}{7}}\ and\ P({\text{dash sent}})={\frac {4}{7}}}"></span>. If it is assumed that the probability that a dot is transmitted as a dash is 1/10, and that the probability that a dash is transmitted as a dot is likewise 1/10, then Bayes's rule can be used to calculate <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P({\text{dot received}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received</mtext> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P({\text{dot received}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/37ef6ed090c6de3ab1ddfedf2ccb21664c9d51a9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.703ex; height:2.843ex;" alt="{\displaystyle P({\text{dot received}})}"></span>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P({\text{dot received}})=P({\text{dot received }}\cap {\text{ dot sent}})+P({\text{dot received }}\cap {\text{ dash sent}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received&#xA0;</mtext> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;dot sent</mtext> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received&#xA0;</mtext> </mrow> <mo>&#x2229;<!-- ∩ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;dash sent</mtext> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P({\text{dot received}})=P({\text{dot received }}\cap {\text{ dot sent}})+P({\text{dot received }}\cap {\text{ dash sent}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13086b206248416706b06f5cd068fe4500788ba7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:78.012ex; height:2.843ex;" alt="{\displaystyle P({\text{dot received}})=P({\text{dot received }}\cap {\text{ dot sent}})+P({\text{dot received }}\cap {\text{ dash sent}})}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P({\text{dot received}})=P({\text{dot received }}\mid {\text{ dot sent}})P({\text{dot sent}})+P({\text{dot received }}\mid {\text{ dash sent}})P({\text{dash sent}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received&#xA0;</mtext> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;dot sent</mtext> </mrow> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot sent</mtext> </mrow> <mo stretchy="false">)</mo> <mo>+</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received&#xA0;</mtext> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;dash sent</mtext> </mrow> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dash sent</mtext> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P({\text{dot received}})=P({\text{dot received }}\mid {\text{ dot sent}})P({\text{dot sent}})+P({\text{dot received }}\mid {\text{ dash sent}})P({\text{dash sent}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e900a267ec76d829245bd3894312e55d2c9ba3a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:101.307ex; height:2.843ex;" alt="{\displaystyle P({\text{dot received}})=P({\text{dot received }}\mid {\text{ dot sent}})P({\text{dot sent}})+P({\text{dot received }}\mid {\text{ dash sent}})P({\text{dash sent}})}"></span> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P({\text{dot received}})={\frac {9}{10}}\times {\frac {3}{7}}+{\frac {1}{10}}\times {\frac {4}{7}}={\frac {31}{70}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>9</mn> <mn>10</mn> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mn>7</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>10</mn> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4</mn> <mn>7</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>31</mn> <mn>70</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P({\text{dot received}})={\frac {9}{10}}\times {\frac {3}{7}}+{\frac {1}{10}}\times {\frac {4}{7}}={\frac {31}{70}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce86ab7af051502915c656fb064bfa4a4b0d2ac1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:43.901ex; height:5.343ex;" alt="{\displaystyle P({\text{dot received}})={\frac {9}{10}}\times {\frac {3}{7}}+{\frac {1}{10}}\times {\frac {4}{7}}={\frac {31}{70}}}"></span> </p><p>Now, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P({\text{dot sent }}\mid {\text{ dot received}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot sent&#xA0;</mtext> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;dot received</mtext> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P({\text{dot sent }}\mid {\text{ dot received}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/130838b91d0bf498101db36e6f045a1fdf63413a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.888ex; height:2.843ex;" alt="{\displaystyle P({\text{dot sent }}\mid {\text{ dot received}})}"></span> can be calculated: </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P({\text{dot sent }}\mid {\text{ dot received}})=P({\text{dot received }}\mid {\text{ dot sent}}){\frac {P({\text{dot sent}})}{P({\text{dot received}})}}={\frac {9}{10}}\times {\frac {\frac {3}{7}}{\frac {31}{70}}}={\frac {27}{31}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot sent&#xA0;</mtext> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;dot received</mtext> </mrow> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received&#xA0;</mtext> </mrow> <mo>&#x2223;<!-- ∣ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>&#xA0;dot sent</mtext> </mrow> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot sent</mtext> </mrow> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mtext>dot received</mtext> </mrow> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>9</mn> <mn>10</mn> </mfrac> </mrow> <mo>&#x00D7;<!-- × --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mfrac> <mn>3</mn> <mn>7</mn> </mfrac> <mfrac> <mn>31</mn> <mn>70</mn> </mfrac> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>27</mn> <mn>31</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P({\text{dot sent }}\mid {\text{ dot received}})=P({\text{dot received }}\mid {\text{ dot sent}}){\frac {P({\text{dot sent}})}{P({\text{dot received}})}}={\frac {9}{10}}\times {\frac {\frac {3}{7}}{\frac {31}{70}}}={\frac {27}{31}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa4ce61106082b6eb5f171c946c3a4a37a212ee4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:92.088ex; height:8.176ex;" alt="{\displaystyle P({\text{dot sent }}\mid {\text{ dot received}})=P({\text{dot received }}\mid {\text{ dot sent}}){\frac {P({\text{dot sent}})}{P({\text{dot received}})}}={\frac {9}{10}}\times {\frac {\frac {3}{7}}{\frac {31}{70}}}={\frac {27}{31}}}"></span><sup id="cite_ref-14" class="reference"><a href="#cite_note-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Statistical_independence">Statistical independence</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=12" title="Edit section: Statistical independence"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">Independence (probability theory)</a></div> <p>Events <i>A</i> and <i>B</i> are defined to be <a href="/wiki/Independence_(probability_theory)" title="Independence (probability theory)">statistically independent</a> if the probability of the intersection of A and B is equal to the product of the probabilities of A and B: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cap B)=P(A)P(B).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cap B)=P(A)P(B).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fd349a98748a1e64afd94e53e11e5cc1e3996d4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:24.006ex; height:2.843ex;" alt="{\displaystyle P(A\cap B)=P(A)P(B).}"></span></dd></dl> <p>If <i>P</i>(<i>B</i>) is not zero, then this is equivalent to the statement that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)=P(A).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)=P(A).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/18a7b372ba40bc5fae8c0b4d5bc1273b7da03ed6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.042ex; height:2.843ex;" alt="{\displaystyle P(A\mid B)=P(A).}"></span></dd></dl> <p>Similarly, if <i>P</i>(<i>A</i>) is not zero, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(B\mid A)=P(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(B\mid A)=P(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a0edff4ef418d05f4a201eadf7366dfea89dd62" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.416ex; height:2.843ex;" alt="{\displaystyle P(B\mid A)=P(B)}"></span></dd></dl> <p>is also equivalent. Although the derived forms may seem more intuitive, they are not the preferred definition as the conditional probabilities may be undefined, and the preferred definition is symmetrical in <i>A</i> and <i>B</i>. Independence does not refer to a disjoint event.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p><p>It should also be noted that given the independent event pair [A B] and an event C, the pair is defined to be <a href="/wiki/Conditional_independence" title="Conditional independence">conditionally independent</a> if the product holds true:<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup> </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(AB\mid C)=P(A\mid C)P(B\mid C)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>C</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(AB\mid C)=P(A\mid C)P(B\mid C)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9033d74c2b1e7500d5b217e7f5d968826baa071e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:31.887ex; height:2.843ex;" alt="{\displaystyle P(AB\mid C)=P(A\mid C)P(B\mid C)}"></span> </p><p>This theorem could be useful in applications where multiple independent events are being observed. </p><p><b>Independent events vs. mutually exclusive events</b> </p><p>The concepts of mutually independent events and <a href="/wiki/Mutually_exclusive_events" class="mw-redirect" title="Mutually exclusive events">mutually exclusive events</a> are separate and distinct. The following table contrasts results for the two cases (provided that the probability of the conditioning event is not zero). </p> <table class="wikitable"> <caption> </caption> <tbody><tr> <th> </th> <th><b>If statistically independent</b> </th> <th><b>If mutually exclusive</b> </th></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\mid B)=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\mid B)=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c63be82071102f54c239faa9f2c08792d4b06a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.452ex; height:2.843ex;" alt="{\displaystyle P(A\mid B)=}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f264d19e21604793c6dc54f8044df454db82744" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.298ex; height:2.843ex;" alt="{\displaystyle P(A)}"></span> </td> <td>0 </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(B\mid A)=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(B\mid A)=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/65d46515045d32f2ffbd6a402704eba410489e65" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.452ex; height:2.843ex;" alt="{\displaystyle P(B\mid A)=}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e593d180a26fd68657ea50368dbfe1a661e652aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.319ex; height:2.843ex;" alt="{\displaystyle P(B)}"></span> </td> <td>0 </td></tr> <tr> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A\cap B)=}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A\cap B)=}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dfec9cd0cabd8ca06b10dd72776f527c0b09e8d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.098ex; height:2.843ex;" alt="{\displaystyle P(A\cap B)=}"></span> </td> <td><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A)P(B)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A)P(B)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/daaeb05cb4bee7cd38a9afcff5945d01149adb02" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.617ex; height:2.843ex;" alt="{\displaystyle P(A)P(B)}"></span> </td> <td>0 </td></tr></tbody></table> <p>In fact, mutually exclusive events cannot be statistically independent (unless both of them are impossible), since knowing that one occurs gives information about the other (in particular, that the latter will certainly not occur). </p> <div class="mw-heading mw-heading2"><h2 id="Common_fallacies">Common fallacies</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=13" title="Edit section: Common fallacies"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <dl><dd><i>These fallacies should not be confused with Robert K. Shope's 1978 <a rel="nofollow" class="external text" href="http://lesswrong.com/r/discussion/lw/9om/the_conditional_fallacy_in_contemporary_philosophy/">"conditional fallacy"</a>, which deals with counterfactual examples that <a href="/wiki/Beg_the_question" class="mw-redirect" title="Beg the question">beg the question</a>.</i></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Assuming_conditional_probability_is_of_similar_size_to_its_inverse">Assuming conditional probability is of similar size to its inverse</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=14" title="Edit section: Assuming conditional probability is of similar size to its inverse"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Confusion_of_the_inverse" title="Confusion of the inverse">Confusion of the inverse</a></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:Bayes_theorem_visualisation.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Bayes_theorem_visualisation.svg/300px-Bayes_theorem_visualisation.svg.png" decoding="async" width="300" height="450" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Bayes_theorem_visualisation.svg/450px-Bayes_theorem_visualisation.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/b/bf/Bayes_theorem_visualisation.svg/600px-Bayes_theorem_visualisation.svg.png 2x" data-file-width="512" data-file-height="768" /></a><figcaption>A geometric visualization of Bayes' theorem. In the table, the values 2, 3, 6 and 9 give the relative weights of each corresponding condition and case. The figures denote the cells of the table involved in each metric, the probability being the fraction of each figure that is shaded. This shows that P(A|B) P(B) = P(B|A) P(A) i.e. P(A|B) = <style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">P(B|A) P(A)</span><span class="sr-only">/</span><span class="den">P(B)</span></span>&#8288;</span> . Similar reasoning can be used to show that P(Ā|B) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">&#8288;<span class="tion"><span class="num">P(B|Ā) P(Ā)</span><span class="sr-only">/</span><span class="den">P(B)</span></span>&#8288;</span> etc.</figcaption></figure> <p>In general, it cannot be assumed that <i>P</i>(<i>A</i>|<i>B</i>)&#160;≈&#160;<i>P</i>(<i>B</i>|<i>A</i>). This can be an insidious error, even for those who are highly conversant with statistics.<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> The relationship between <i>P</i>(<i>A</i>|<i>B</i>) and <i>P</i>(<i>B</i>|<i>A</i>) is given by <a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}P(B\mid A)&amp;={\frac {P(A\mid B)P(B)}{P(A)}}\\\Leftrightarrow {\frac {P(B\mid A)}{P(A\mid B)}}&amp;={\frac {P(B)}{P(A)}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}P(B\mid A)&amp;={\frac {P(A\mid B)P(B)}{P(A)}}\\\Leftrightarrow {\frac {P(B\mid A)}{P(A\mid B)}}&amp;={\frac {P(B)}{P(A)}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ad7da1d40536a442e8839bfd462c60a225cc08d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:31.808ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}P(B\mid A)&amp;={\frac {P(A\mid B)P(B)}{P(A)}}\\\Leftrightarrow {\frac {P(B\mid A)}{P(A\mid B)}}&amp;={\frac {P(B)}{P(A)}}\end{aligned}}}"></span></dd></dl> <p>That is, P(<i>A</i>|<i>B</i>)&#160;≈&#160;P(<i>B</i>|<i>A</i>) only if <i>P</i>(<i>B</i>)/<i>P</i>(<i>A</i>)&#160;≈&#160;1, or equivalently, <i>P</i>(<i>A</i>)&#160;≈&#160;<i>P</i>(<i>B</i>). </p> <div class="mw-heading mw-heading3"><h3 id="Assuming_marginal_and_conditional_probabilities_are_of_similar_size">Assuming marginal and conditional probabilities are of similar size</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=15" title="Edit section: Assuming marginal and conditional probabilities are of similar size"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In general, it cannot be assumed that <i>P</i>(<i>A</i>)&#160;≈&#160;<i>P</i>(<i>A</i>|<i>B</i>). These probabilities are linked through the <a href="/wiki/Law_of_total_probability" title="Law of total probability">law of total probability</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P(A)=\sum _{n}P(A\cap B_{n})=\sum _{n}P(A\mid B_{n})P(B_{n}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mi>P</mi> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P(A)=\sum _{n}P(A\cap B_{n})=\sum _{n}P(A\mid B_{n})P(B_{n}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/50568702b5ae072ac87106f849366eae59f95088" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:47.243ex; height:5.509ex;" alt="{\displaystyle P(A)=\sum _{n}P(A\cap B_{n})=\sum _{n}P(A\mid B_{n})P(B_{n}).}"></span></dd></dl> <p>where the events <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B_{n})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B_{n})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc23382987746e5ad84e68441c9eee4de8bf32a1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.792ex; height:2.843ex;" alt="{\displaystyle (B_{n})}"></span> form a countable <a href="/wiki/Partition_of_a_set" title="Partition of a set">partition</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Omega }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Omega }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/24b0d5ca6f381068d756f6337c08e0af9d1eeb6f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.678ex; height:2.176ex;" alt="{\displaystyle \Omega }"></span>. </p><p>This fallacy may arise through <a href="/wiki/Selection_bias" title="Selection bias">selection bias</a>.<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> For example, in the context of a medical claim, let <i>S</i><sub><i>C</i></sub> be the event that a <a href="/wiki/Sequelae" class="mw-redirect" title="Sequelae">sequela</a> (chronic disease) <i>S</i> occurs as a consequence of circumstance (acute condition) <i>C</i>. Let <i>H</i> be the event that an individual seeks medical help. Suppose that in most cases, <i>C</i> does not cause <i>S</i> (so that <i>P</i>(<i>S</i><sub><i>C</i></sub>) is low). Suppose also that medical attention is only sought if <i>S</i> has occurred due to <i>C</i>. From experience of patients, a doctor may therefore erroneously conclude that <i>P</i>(<i>S</i><sub><i>C</i></sub>) is high. The actual probability observed by the doctor is <i>P</i>(<i>S</i><sub><i>C</i></sub>|<i>H</i>). </p> <div class="mw-heading mw-heading3"><h3 id="Over-_or_under-weighting_priors">Over- or under-weighting priors</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=16" title="Edit section: Over- or under-weighting priors"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Not taking prior probability into account partially or completely is called <i><a href="/wiki/Base_rate_neglect" class="mw-redirect" title="Base rate neglect">base rate neglect</a></i>. The reverse, insufficient adjustment from the prior probability is <i><a href="/wiki/Conservatism_(Bayesian)" class="mw-redirect" title="Conservatism (Bayesian)">conservatism</a></i>. </p> <div class="mw-heading mw-heading2"><h2 id="Formal_derivation">Formal derivation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=17" title="Edit section: Formal derivation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Formally, <i>P</i>(<i>A</i>&#160;|&#160;<i>B</i>) is defined as the probability of <i>A</i> according to a new probability function on the sample space, such that outcomes not in <i>B</i> have probability 0 and that it is consistent with all original <a href="/wiki/Probability_measure" title="Probability measure">probability measures</a>.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-grinstead_20-0" class="reference"><a href="#cite_note-grinstead-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup> </p><p>Let Ω be a discrete <a href="/wiki/Sample_space" title="Sample space">sample space</a> with <a href="/wiki/Elementary_event" title="Elementary event">elementary events</a> {<i>ω</i>}, and let <i>P</i> be the probability measure with respect to the <a href="/wiki/%CE%A3-algebra" title="Σ-algebra">σ-algebra</a> of Ω. Suppose we are told that the event <i>B</i>&#160;⊆&#160;Ω has occurred. A new <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> (denoted by the conditional notation) is to be assigned on {<i>ω</i>} to reflect this. All events that are not in <i>B</i> will have null probability in the new distribution. For events in <i>B</i>, two conditions must be met: the probability of <i>B</i> is one and the relative magnitudes of the probabilities must be preserved. The former is required by the <a href="/wiki/Probability_axioms" title="Probability axioms">axioms of probability</a>, and the latter stems from the fact that the new probability measure has to be the analog of <i>P</i> in which the probability of <i>B</i> is one - and every event that is not in <i>B</i>, therefore, has a null probability. Hence, for some scale factor <i>α</i>, the new distribution must satisfy: </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in B:P(\omega \mid B)=\alpha P(\omega )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mo>:</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in B:P(\omega \mid B)=\alpha P(\omega )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8b8a2bbf745b9865df287ac7518a14d818cb670e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:26.276ex; height:2.843ex;" alt="{\displaystyle \omega \in B:P(\omega \mid B)=\alpha P(\omega )}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \notin B:P(\omega \mid B)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2209;<!-- ∉ --></mo> <mi>B</mi> <mo>:</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \notin B:P(\omega \mid B)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7346ef9f227b74b510c395a505d494db133765bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.95ex; height:2.843ex;" alt="{\displaystyle \omega \notin B:P(\omega \mid B)=0}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{\omega \in \Omega }{P(\omega \mid B)}=1.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mn>1.</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{\omega \in \Omega }{P(\omega \mid B)}=1.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f3d2fae2e42e28734c1045811a9998abd9a2518c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:17.352ex; height:5.676ex;" alt="{\displaystyle \sum _{\omega \in \Omega }{P(\omega \mid B)}=1.}"></span></li></ol> <p>Substituting 1 and 2 into 3 to select <i>α</i>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}1&amp;=\sum _{\omega \in \Omega }{P(\omega \mid B)}\\&amp;=\sum _{\omega \in B}{P(\omega \mid B)}+{\cancelto {0}{\sum _{\omega \notin B}P(\omega \mid B)}}\\&amp;=\alpha \sum _{\omega \in B}{P(\omega )}\\[5pt]&amp;=\alpha \cdot P(B)\\[5pt]\Rightarrow \alpha &amp;={\frac {1}{P(B)}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt 0.3em 0.8em 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi mathvariant="normal">&#x03A9;<!-- Ω --></mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <menclose notation="updiagonalstrike updiagonalarrow"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2209;<!-- ∉ --></mo> <mi>B</mi> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </menclose> <mpadded height="+.1em" depth="-.1em" voffset=".1em"> <mn>0</mn> </mpadded> </msup> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>&#x03B1;<!-- α --></mi> <mo>&#x22C5;<!-- ⋅ --></mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">&#x21D2;<!-- ⇒ --></mo> <mi>&#x03B1;<!-- α --></mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}1&amp;=\sum _{\omega \in \Omega }{P(\omega \mid B)}\\&amp;=\sum _{\omega \in B}{P(\omega \mid B)}+{\cancelto {0}{\sum _{\omega \notin B}P(\omega \mid B)}}\\&amp;=\alpha \sum _{\omega \in B}{P(\omega )}\\[5pt]&amp;=\alpha \cdot P(B)\\[5pt]\Rightarrow \alpha &amp;={\frac {1}{P(B)}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bc21b49c38af5566aeb4794016be9ee06b40458c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -15.005ex; width:38.388ex; height:31.176ex;" alt="{\displaystyle {\begin{aligned}1&amp;=\sum _{\omega \in \Omega }{P(\omega \mid B)}\\&amp;=\sum _{\omega \in B}{P(\omega \mid B)}+{\cancelto {0}{\sum _{\omega \notin B}P(\omega \mid B)}}\\&amp;=\alpha \sum _{\omega \in B}{P(\omega )}\\[5pt]&amp;=\alpha \cdot P(B)\\[5pt]\Rightarrow \alpha &amp;={\frac {1}{P(B)}}\end{aligned}}}"></span></dd></dl> <p>So the new <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> is </p> <ol><li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \in B:P(\omega \mid B)={\frac {P(\omega )}{P(B)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>B</mi> <mo>:</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \in B:P(\omega \mid B)={\frac {P(\omega )}{P(B)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b1661919d55111434a192813488ef107d17a02b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.943ex; height:6.509ex;" alt="{\displaystyle \omega \in B:P(\omega \mid B)={\frac {P(\omega )}{P(B)}}}"></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \omega \notin B:P(\omega \mid B)=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2209;<!-- ∉ --></mo> <mi>B</mi> <mo>:</mo> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \omega \notin B:P(\omega \mid B)=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7346ef9f227b74b510c395a505d494db133765bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.95ex; height:2.843ex;" alt="{\displaystyle \omega \notin B:P(\omega \mid B)=0}"></span></li></ol> <p>Now for a general event <i>A</i>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}P(A\mid B)&amp;=\sum _{\omega \in A\cap B}{P(\omega \mid B)}+{\cancelto {0}{\sum _{\omega \in A\cap B^{c}}P(\omega \mid B)}}\\&amp;=\sum _{\omega \in A\cap B}{\frac {P(\omega )}{P(B)}}\\[5pt]&amp;={\frac {P(A\cap B)}{P(B)}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt 0.8em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <msup> <menclose notation="updiagonalstrike updiagonalarrow"> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> </mrow> </munder> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2223;<!-- ∣ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </menclose> <mpadded height="+.1em" depth="-.1em" voffset=".1em"> <mn>0</mn> </mpadded> </msup> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03C9;<!-- ω --></mi> <mo>&#x2208;<!-- ∈ --></mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>&#x03C9;<!-- ω --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>A</mi> <mo>&#x2229;<!-- ∩ --></mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>P</mi> <mo stretchy="false">(</mo> <mi>B</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}P(A\mid B)&amp;=\sum _{\omega \in A\cap B}{P(\omega \mid B)}+{\cancelto {0}{\sum _{\omega \in A\cap B^{c}}P(\omega \mid B)}}\\&amp;=\sum _{\omega \in A\cap B}{\frac {P(\omega )}{P(B)}}\\[5pt]&amp;={\frac {P(A\cap B)}{P(B)}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4f6e98f9200e5cf74a15231fc3c753ccfeb8d1c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -10.671ex; width:48.33ex; height:22.509ex;" alt="{\displaystyle {\begin{aligned}P(A\mid B)&amp;=\sum _{\omega \in A\cap B}{P(\omega \mid B)}+{\cancelto {0}{\sum _{\omega \in A\cap B^{c}}P(\omega \mid B)}}\\&amp;=\sum _{\omega \in A\cap B}{\frac {P(\omega )}{P(B)}}\\[5pt]&amp;={\frac {P(A\cap B)}{P(B)}}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=18" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1259569809">.mw-parser-output .portalbox{padding:0;margin:0.5em 0;display:table;box-sizing:border-box;max-width:175px;list-style:none}.mw-parser-output .portalborder{border:1px solid var(--border-color-base,#a2a9b1);padding:0.1em;background:var(--background-color-neutral-subtle,#f8f9fa)}.mw-parser-output .portalbox-entry{display:table-row;font-size:85%;line-height:110%;height:1.9em;font-style:italic;font-weight:bold}.mw-parser-output .portalbox-image{display:table-cell;padding:0.2em;vertical-align:middle;text-align:center}.mw-parser-output .portalbox-link{display:table-cell;padding:0.2em 0.2em 0.2em 0.3em;vertical-align:middle}@media(min-width:720px){.mw-parser-output .portalleft{clear:left;float:left;margin:0.5em 1em 0.5em 0}.mw-parser-output .portalright{clear:right;float:right;margin:0.5em 0 0.5em 1em}}</style><ul role="navigation" aria-label="Portals" class="noprint portalbox portalborder portalright"> <li class="portalbox-entry"><span class="portalbox-image"><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Nuvola_apps_edu_mathematics_blue-p.svg" class="mw-file-description"><img alt="icon" src="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/28px-Nuvola_apps_edu_mathematics_blue-p.svg.png" decoding="async" width="28" height="28" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/42px-Nuvola_apps_edu_mathematics_blue-p.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/3/3e/Nuvola_apps_edu_mathematics_blue-p.svg/56px-Nuvola_apps_edu_mathematics_blue-p.svg.png 2x" data-file-width="128" data-file-height="128" /></a></span></span><span class="portalbox-link"><a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></span></li></ul> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Bayes%27_theorem" title="Bayes&#39; theorem">Bayes' theorem</a></li> <li><a href="/wiki/Bayesian_epistemology" title="Bayesian epistemology">Bayesian epistemology</a></li> <li><a href="/wiki/Borel%E2%80%93Kolmogorov_paradox" title="Borel–Kolmogorov paradox">Borel–Kolmogorov paradox</a></li> <li><a href="/wiki/Chain_rule_(probability)" title="Chain rule (probability)">Chain rule (probability)</a></li> <li><a href="/wiki/Class_membership_probabilities" class="mw-redirect" title="Class membership probabilities">Class membership probabilities</a></li> <li><a href="/wiki/Conditional_independence" title="Conditional independence">Conditional independence</a></li> <li><a href="/wiki/Conditional_probability_distribution" title="Conditional probability distribution">Conditional probability distribution</a></li> <li><a href="/wiki/Conditioning_(probability)" title="Conditioning (probability)">Conditioning (probability)</a></li> <li><a href="/wiki/Disintegration_theorem" title="Disintegration theorem">Disintegration theorem</a></li> <li><a href="/wiki/Joint_probability_distribution" title="Joint probability distribution">Joint probability distribution</a></li> <li><a href="/wiki/Monty_Hall_problem" title="Monty Hall problem">Monty Hall problem</a></li> <li><a href="/wiki/Pairwise_independence" title="Pairwise independence">Pairwise independent distribution</a></li> <li><a href="/wiki/Posterior_probability" title="Posterior probability">Posterior probability</a></li> <li><a href="/wiki/Postselection" title="Postselection">Postselection</a></li> <li><a href="/wiki/Regular_conditional_probability" title="Regular conditional probability">Regular conditional probability</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=19" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Allan_Gut_2013-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Allan_Gut_2013_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Allan_Gut_2013_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFGut2013" class="citation book cs1">Gut, Allan (2013). <i>Probability: A Graduate Course</i> (Second&#160;ed.). New York, NY: Springer. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4614-4707-8" title="Special:BookSources/978-1-4614-4707-8"><bdi>978-1-4614-4707-8</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Probability%3A+A+Graduate+Course&amp;rft.place=New+York%2C+NY&amp;rft.edition=Second&amp;rft.pub=Springer&amp;rft.date=2013&amp;rft.isbn=978-1-4614-4707-8&amp;rft.aulast=Gut&amp;rft.aufirst=Allan&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-:0-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-:0_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-:0_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://www.mathsisfun.com/data/probability-events-conditional.html">"Conditional Probability"</a>. <i>www.mathsisfun.com</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.mathsisfun.com&amp;rft.atitle=Conditional+Probability&amp;rft_id=https%3A%2F%2Fwww.mathsisfun.com%2Fdata%2Fprobability-events-conditional.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDekkingKraaikampLopuhaäMeester2005" class="citation journal cs1">Dekking, Frederik Michel; Kraaikamp, Cornelis; Lopuhaä, Hendrik Paul; Meester, Ludolf Erwin (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/1-84628-168-7">"A Modern Introduction to Probability and Statistics"</a>. <i>Springer Texts in Statistics</i>: 26. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F1-84628-168-7">10.1007/1-84628-168-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-85233-896-1" title="Special:BookSources/978-1-85233-896-1"><bdi>978-1-85233-896-1</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1431-875X">1431-875X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Springer+Texts+in+Statistics&amp;rft.atitle=A+Modern+Introduction+to+Probability+and+Statistics&amp;rft.pages=26&amp;rft.date=2005&amp;rft.issn=1431-875X&amp;rft_id=info%3Adoi%2F10.1007%2F1-84628-168-7&amp;rft.isbn=978-1-85233-896-1&amp;rft.aulast=Dekking&amp;rft.aufirst=Frederik+Michel&amp;rft.au=Kraaikamp%2C+Cornelis&amp;rft.au=Lopuha%C3%A4%2C+Hendrik+Paul&amp;rft.au=Meester%2C+Ludolf+Erwin&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2F1-84628-168-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDekkingKraaikampLopuhaäMeester2005" class="citation journal cs1">Dekking, Frederik Michel; Kraaikamp, Cornelis; Lopuhaä, Hendrik Paul; Meester, Ludolf Erwin (2005). <a rel="nofollow" class="external text" href="https://doi.org/10.1007/1-84628-168-7">"A Modern Introduction to Probability and Statistics"</a>. <i>Springer Texts in Statistics</i>: 25–40. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F1-84628-168-7">10.1007/1-84628-168-7</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-85233-896-1" title="Special:BookSources/978-1-85233-896-1"><bdi>978-1-85233-896-1</bdi></a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1431-875X">1431-875X</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Springer+Texts+in+Statistics&amp;rft.atitle=A+Modern+Introduction+to+Probability+and+Statistics&amp;rft.pages=25-40&amp;rft.date=2005&amp;rft.issn=1431-875X&amp;rft_id=info%3Adoi%2F10.1007%2F1-84628-168-7&amp;rft.isbn=978-1-85233-896-1&amp;rft.aulast=Dekking&amp;rft.aufirst=Frederik+Michel&amp;rft.au=Kraaikamp%2C+Cornelis&amp;rft.au=Lopuha%C3%A4%2C+Hendrik+Paul&amp;rft.au=Meester%2C+Ludolf+Erwin&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2F1-84628-168-7&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-:1-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-:1_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFReichl2016" class="citation book cs1">Reichl, Linda Elizabeth (2016). "2.3 Probability". <i>A Modern Course in Statistical Physics</i> (4th revised and updated&#160;ed.). WILEY-VCH. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-3-527-69049-7" title="Special:BookSources/978-3-527-69049-7"><bdi>978-3-527-69049-7</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=bookitem&amp;rft.atitle=2.3+Probability&amp;rft.btitle=A+Modern+Course+in+Statistical+Physics&amp;rft.edition=4th+revised+and+updated&amp;rft.pub=WILEY-VCH&amp;rft.date=2016&amp;rft.isbn=978-3-527-69049-7&amp;rft.aulast=Reichl&amp;rft.aufirst=Linda+Elizabeth&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKolmogorov1956" class="citation cs2">Kolmogorov, Andrey (1956), <i>Foundations of the Theory of Probability</i>, Chelsea</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Foundations+of+the+Theory+of+Probability&amp;rft.pub=Chelsea&amp;rft.date=1956&amp;rft.aulast=Kolmogorov&amp;rft.aufirst=Andrey&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.stat.yale.edu/Courses/1997-98/101/condprob.htm">"Conditional Probability"</a>. <i>www.stat.yale.edu</i><span class="reference-accessdate">. Retrieved <span class="nowrap">2020-09-11</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.stat.yale.edu&amp;rft.atitle=Conditional+Probability&amp;rft_id=http%3A%2F%2Fwww.stat.yale.edu%2FCourses%2F1997-98%2F101%2Fcondprob.htm&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFlaminioGodoHosni2020" class="citation journal cs1">Flaminio, Tommaso; Godo, Lluis; Hosni, Hykel (2020-09-01). <a rel="nofollow" class="external text" href="https://www.sciencedirect.com/science/article/pii/S000437022030103X">"Boolean algebras of conditionals, probability and logic"</a>. <i>Artificial Intelligence</i>. <b>286</b>: 103347. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/2006.04673">2006.04673</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.artint.2020.103347">10.1016/j.artint.2020.103347</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0004-3702">0004-3702</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:214584872">214584872</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Artificial+Intelligence&amp;rft.atitle=Boolean+algebras+of+conditionals%2C+probability+and+logic&amp;rft.volume=286&amp;rft.pages=103347&amp;rft.date=2020-09-01&amp;rft_id=info%3Aarxiv%2F2006.04673&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A214584872%23id-name%3DS2CID&amp;rft.issn=0004-3702&amp;rft_id=info%3Adoi%2F10.1016%2Fj.artint.2020.103347&amp;rft.aulast=Flaminio&amp;rft.aufirst=Tommaso&amp;rft.au=Godo%2C+Lluis&amp;rft.au=Hosni%2C+Hykel&amp;rft_id=https%3A%2F%2Fwww.sciencedirect.com%2Fscience%2Farticle%2Fpii%2FS000437022030103X&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFVan_Fraassen1976" class="citation cs2">Van Fraassen, Bas C. (1976), Harper, William L.; Hooker, Clifford Alan (eds.), <a rel="nofollow" class="external text" href="https://doi.org/10.1007/978-94-010-1853-1_10">"Probabilities of Conditionals"</a>, <i>Foundations of Probability Theory, Statistical Inference, and Statistical Theories of Science: Volume I Foundations and Philosophy of Epistemic Applications of Probability Theory</i>, The University of Western Ontario Series in Philosophy of Science, Dordrecht: Springer Netherlands, pp.&#160;261–308, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2F978-94-010-1853-1_10">10.1007/978-94-010-1853-1_10</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-94-010-1853-1" title="Special:BookSources/978-94-010-1853-1"><bdi>978-94-010-1853-1</bdi></a><span class="reference-accessdate">, retrieved <span class="nowrap">2021-12-04</span></span></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Foundations+of+Probability+Theory%2C+Statistical+Inference%2C+and+Statistical+Theories+of+Science%3A+Volume+I+Foundations+and+Philosophy+of+Epistemic+Applications+of+Probability+Theory&amp;rft.atitle=Probabilities+of+Conditionals&amp;rft.pages=261-308&amp;rft.date=1976&amp;rft_id=info%3Adoi%2F10.1007%2F978-94-010-1853-1_10&amp;rft.isbn=978-94-010-1853-1&amp;rft.aulast=Van+Fraassen&amp;rft.aufirst=Bas+C.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1007%2F978-94-010-1853-1_10&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-Draheim2017b-10"><span class="mw-cite-backlink">^ <a href="#cite_ref-Draheim2017b_10-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Draheim2017b_10-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Draheim2017b_10-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDraheim2017" class="citation web cs1">Draheim, Dirk (2017). <a rel="nofollow" class="external text" href="http://fpc.formcharts.org">"Generalized Jeffrey Conditionalization (A Frequentist Semantics of Partial Conditionalization)"</a>. Springer<span class="reference-accessdate">. Retrieved <span class="nowrap">December 19,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Generalized+Jeffrey+Conditionalization+%28A+Frequentist+Semantics+of+Partial+Conditionalization%29&amp;rft.pub=Springer&amp;rft.date=2017&amp;rft.aulast=Draheim&amp;rft.aufirst=Dirk&amp;rft_id=http%3A%2F%2Ffpc.formcharts.org&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJeffrey1983" class="citation cs2">Jeffrey, Richard C. (1983), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=geJ-SwTcmyEC&amp;q=%22conditional+probability%22"><i>The Logic of Decision, 2nd edition</i></a>, University of Chicago Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/9780226395821" title="Special:BookSources/9780226395821"><bdi>9780226395821</bdi></a></cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+Logic+of+Decision%2C+2nd+edition&amp;rft.pub=University+of+Chicago+Press&amp;rft.date=1983&amp;rft.isbn=9780226395821&amp;rft.aulast=Jeffrey&amp;rft.aufirst=Richard+C.&amp;rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DgeJ-SwTcmyEC%26q%3D%2522conditional%2Bprobability%2522&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="https://plato.stanford.edu/entries/epistemology-bayesian/">"Bayesian Epistemology"</a>. Stanford Encyclopedia of Philosophy. 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">December 29,</span> 2017</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Bayesian+Epistemology&amp;rft.pub=Stanford+Encyclopedia+of+Philosophy&amp;rft.date=2017&amp;rft_id=https%3A%2F%2Fplato.stanford.edu%2Fentries%2Fepistemology-bayesian%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-Casella_and_Berger_2002-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Casella_and_Berger_2002_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCasellaBerger2002" class="citation book cs1">Casella, George; Berger, Roger L. (2002). <i>Statistical Inference</i>. Duxbury Press. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-534-24312-6" title="Special:BookSources/0-534-24312-6"><bdi>0-534-24312-6</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Statistical+Inference&amp;rft.pub=Duxbury+Press&amp;rft.date=2002&amp;rft.isbn=0-534-24312-6&amp;rft.aulast=Casella&amp;rft.aufirst=George&amp;rft.au=Berger%2C+Roger+L.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-14">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www.math.ntu.edu.tw/~hchen/teaching/StatInference/notes/lecture4.pdf">"Conditional Probability and Independence"</a> <span class="cs1-format">(PDF)</span><span class="reference-accessdate">. Retrieved <span class="nowrap">2021-12-22</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Conditional+Probability+and+Independence&amp;rft_id=http%3A%2F%2Fwww.math.ntu.edu.tw%2F~hchen%2Fteaching%2FStatInference%2Fnotes%2Flecture4.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTijms2012" class="citation book cs1">Tijms, Henk (2012). <a rel="nofollow" class="external text" href="https://www.cambridge.org/core/books/understanding-probability/B82E701FAAD2C0C2CF36E05CFC0FF3F2"><i>Understanding Probability</i></a> (3&#160;ed.). Cambridge: Cambridge University Press. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1017%2Fcbo9781139206990">10.1017/cbo9781139206990</a>. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-107-65856-1" title="Special:BookSources/978-1-107-65856-1"><bdi>978-1-107-65856-1</bdi></a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Understanding+Probability&amp;rft.place=Cambridge&amp;rft.edition=3&amp;rft.pub=Cambridge+University+Press&amp;rft.date=2012&amp;rft_id=info%3Adoi%2F10.1017%2Fcbo9781139206990&amp;rft.isbn=978-1-107-65856-1&amp;rft.aulast=Tijms&amp;rft.aufirst=Henk&amp;rft_id=https%3A%2F%2Fwww.cambridge.org%2Fcore%2Fbooks%2Funderstanding-probability%2FB82E701FAAD2C0C2CF36E05CFC0FF3F2&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPfeiffer1978" class="citation book cs1">Pfeiffer, Paul E. (1978). <a rel="nofollow" class="external text" href="https://www.worldcat.org/oclc/858880328"><i>Conditional Independence in Applied Probability</i></a>. Boston, MA: Birkhäuser Boston. <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/978-1-4612-6335-7" title="Special:BookSources/978-1-4612-6335-7"><bdi>978-1-4612-6335-7</bdi></a>. <a href="/wiki/OCLC_(identifier)" class="mw-redirect" title="OCLC (identifier)">OCLC</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/oclc/858880328">858880328</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Conditional+Independence+in+Applied+Probability&amp;rft.place=Boston%2C+MA&amp;rft.pub=Birkh%C3%A4user+Boston&amp;rft.date=1978&amp;rft_id=info%3Aoclcnum%2F858880328&amp;rft.isbn=978-1-4612-6335-7&amp;rft.aulast=Pfeiffer&amp;rft.aufirst=Paul+E.&amp;rft_id=https%3A%2F%2Fwww.worldcat.org%2Foclc%2F858880328&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">Paulos, J.A. (1988) <i>Innumeracy: Mathematical Illiteracy and its Consequences</i>, Hill and Wang. <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-8090-7447-8" title="Special:BookSources/0-8090-7447-8">0-8090-7447-8</a> (p. 63 <i>et seq.</i>)</span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text"><a href="/wiki/F._Thomas_Bruss" class="mw-redirect" title="F. Thomas Bruss">F. Thomas Bruss</a> Der Wyatt-Earp-Effekt oder die betörende Macht kleiner Wahrscheinlichkeiten (in German), Spektrum der Wissenschaft (German Edition of Scientific American), Vol 2, 110–113, (2007).</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text">George Casella and Roger L. Berger (1990), <i>Statistical Inference</i>, Duxbury Press, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a>&#160;<a href="/wiki/Special:BookSources/0-534-11958-1" title="Special:BookSources/0-534-11958-1">0-534-11958-1</a> (p. 18 <i>et seq.</i>)</span> </li> <li id="cite_note-grinstead-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-grinstead_20-0">^</a></b></span> <span class="reference-text"><a rel="nofollow" class="external text" href="http://math.dartmouth.edu/~prob/prob/prob.pdf">Grinstead and Snell's Introduction to Probability</a>, p. 134</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Conditional_probability&amp;action=edit&amp;section=20" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1235681985">.mw-parser-output .side-box{margin:4px 0;box-sizing:border-box;border:1px solid #aaa;font-size:88%;line-height:1.25em;background-color:var(--background-color-interactive-subtle,#f8f9fa);display:flow-root}.mw-parser-output .side-box-abovebelow,.mw-parser-output .side-box-text{padding:0.25em 0.9em}.mw-parser-output .side-box-image{padding:2px 0 2px 0.9em;text-align:center}.mw-parser-output .side-box-imageright{padding:2px 0.9em 2px 0;text-align:center}@media(min-width:500px){.mw-parser-output .side-box-flex{display:flex;align-items:center}.mw-parser-output .side-box-text{flex:1;min-width:0}}@media(min-width:720px){.mw-parser-output .side-box{width:238px}.mw-parser-output .side-box-right{clear:right;float:right;margin-left:1em}.mw-parser-output .side-box-left{margin-right:1em}}</style><style data-mw-deduplicate="TemplateStyles:r1237033735">@media print{body.ns-0 .mw-parser-output .sistersitebox{display:none!important}}@media screen{html.skin-theme-clientpref-night .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .sistersitebox img[src*="Wiktionary-logo-en-v2.svg"]{background-color:white}}</style><div class="side-box side-box-right plainlinks sistersitebox"><style data-mw-deduplicate="TemplateStyles:r1126788409">.mw-parser-output .plainlist ol,.mw-parser-output .plainlist ul{line-height:inherit;list-style:none;margin:0;padding:0}.mw-parser-output .plainlist ol li,.mw-parser-output .plainlist ul li{margin-bottom:0}</style> <div class="side-box-flex"> <div class="side-box-image"><span class="noviewer" typeof="mw:File"><span><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/30px-Commons-logo.svg.png" decoding="async" width="30" height="40" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/45px-Commons-logo.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/4/4a/Commons-logo.svg/59px-Commons-logo.svg.png 2x" data-file-width="1024" data-file-height="1376" /></span></span></div> <div class="side-box-text plainlist">Wikimedia Commons has media related to <span style="font-weight: bold; font-style: italic;"><a href="https://commons.wikimedia.org/wiki/Category:Conditional_probability" class="extiw" title="commons:Category:Conditional probability">Conditional probability</a></span>.</div></div> </div> <ul><li><span class="citation mathworld" id="Reference-Mathworld-Conditional_Probability"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs1"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a> <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/ConditionalProbability.html">"Conditional Probability"</a>. <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=MathWorld&amp;rft.atitle=Conditional+Probability&amp;rft.au=Weisstein%2C+Eric+W.&amp;rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FConditionalProbability.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3AConditional+probability" class="Z3988"></span></span></li> <li><a rel="nofollow" class="external text" href="http://setosa.io/conditional/">Visual explanation of conditional probability</a></li></ul> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐5c59558b9d‐xss7q Cached time: 20241202003209 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.562 seconds Real time usage: 0.807 seconds Preprocessor visited node count: 3629/1000000 Post‐expand include size: 55002/2097152 bytes Template argument size: 3017/2097152 bytes Highest expansion depth: 16/100 Expensive parser function count: 7/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 87208/5000000 bytes Lua time usage: 0.288/10.000 seconds Lua memory usage: 5808663/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 554.032 1 -total 31.70% 175.607 1 Template:Reflist 16.61% 92.000 1 Template:Short_description 16.32% 90.409 1 Template:Probability_fundamentals 16.17% 89.595 5 Template:Cite_book 15.97% 88.453 1 Template:Sidebar 9.45% 52.360 1 Template:Commonscat 9.22% 51.083 2 Template:Pagetype 8.93% 49.476 1 Template:Sister_project 8.65% 47.903 1 Template:Side_box --> <!-- Saved in parser cache with key enwiki:pcache:idhash:24104134-0!canonical and timestamp 20241202003209 and revision id 1251378997. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;useformat=desktop" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Conditional_probability&amp;oldid=1251378997">https://en.wikipedia.org/w/index.php?title=Conditional_probability&amp;oldid=1251378997</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Conditional_probability" title="Category:Conditional probability">Conditional probability</a></li><li><a href="/wiki/Category:Mathematical_fallacies" title="Category:Mathematical fallacies">Mathematical fallacies</a></li><li><a href="/wiki/Category:Statistical_ratios" title="Category:Statistical ratios">Statistical ratios</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Commons_category_link_from_Wikidata" title="Category:Commons category link from Wikidata">Commons category link from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 15 October 2024, at 21:09<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Conditional_probability&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-5c59558b9d-wvztt","wgBackendResponseTime":134,"wgPageParseReport":{"limitreport":{"cputime":"0.562","walltime":"0.807","ppvisitednodes":{"value":3629,"limit":1000000},"postexpandincludesize":{"value":55002,"limit":2097152},"templateargumentsize":{"value":3017,"limit":2097152},"expansiondepth":{"value":16,"limit":100},"expensivefunctioncount":{"value":7,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":87208,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 554.032 1 -total"," 31.70% 175.607 1 Template:Reflist"," 16.61% 92.000 1 Template:Short_description"," 16.32% 90.409 1 Template:Probability_fundamentals"," 16.17% 89.595 5 Template:Cite_book"," 15.97% 88.453 1 Template:Sidebar"," 9.45% 52.360 1 Template:Commonscat"," 9.22% 51.083 2 Template:Pagetype"," 8.93% 49.476 1 Template:Sister_project"," 8.65% 47.903 1 Template:Side_box"]},"scribunto":{"limitreport-timeusage":{"value":"0.288","limit":"10.000"},"limitreport-memusage":{"value":5808663,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-5c59558b9d-xss7q","timestamp":"20241202003209","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Conditional probability","url":"https:\/\/en.wikipedia.org\/wiki\/Conditional_probability","sameAs":"http:\/\/www.wikidata.org\/entity\/Q327069","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q327069","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2001-06-08T18:58:46Z","dateModified":"2024-10-15T21:09:28Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/3\/3a\/Standard_deviation_diagram_micro.svg","headline":"measure of likelihood of an event when another event is known to have occurred"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10