CINXE.COM

{"title":"Unmanned Aerial Vehicle Selection Using Fuzzy Multiple Criteria Decision Making Analysis","authors":"C. Ardil","volume":200,"journal":"International Journal of Aerospace and Mechanical Engineering","pagesStart":303,"pagesEnd":312,"ISSN":"1307-6892","URL":"https:\/\/publications.waset.org\/pdf\/10013196","abstract":"<p>The selection of an Unmanned Aerial Vehicle (UAV) involves complex decision-making due to the evaluation of numerous alternatives and criteria simultaneously. This process necessitates the consideration of various factors such as payload capacity, maximum speed, endurance, altitude, avionics systems, price, economic life, and maximum range. This study aims to determine the most suitable UAV by taking these criteria into account. To achieve this, the standard fuzzy set methodology is employed, enabling decision-makers to define linguistic terms as references. A practical numerical example is provided to demonstrate the applicability of the proposed approach. Through a successful application, a comparison of different UAVs is conducted, culminating in the selection of the most appropriate vehicle during the final stage.<\/p>","references":"[1]\tPayan, A.P., Carvalho, L.J., Mavris, D.N. (2019). Unmanned Aerial Vehicle Fleet Selection and Allocation Optimization. AIAA Scitech 2019 Forum.\r\n[2]\tHamurcu, M., Eren, T. (2020). Selection of Unmanned Aerial Vehicles by Using Multicriteria Decision-Making for Defence. Journal of Mathematics, 1\u201311.\r\n[3]\tArag\u00e3o, F. V., Cavicchioli Zola, F., Nogueira Marinho, L. H., de Genaro Chiroli, D. M., Braghini Junior, A., Colmenero, J. C. (2020). Choice of unmanned aerial vehicles for identification of mosquito breeding sites. Geospatial Health, 15(1). \r\n[4]\tAkpinar, M.E. (2021). Unmanned Aerial Vehicle Selection Using Fuzzy Choquet Integral. Journal of Aeronautics and Space Technologies, Vol. 14(2), 119-126.\r\n[5]\tMahmood, L.S., Shaaban, M.F., Mukhopadhyay, S. et al. (2022). Optimal resource selection and sizing for unmanned aerial vehicles. Soft Comput 26, 5685\u20135697.\r\n[6]\tTekinay, O. N., Bozoglu Bati, G. (2022). Askeri alanlarda kullanilmak \u00fczere insansiz hava araci (iha) sistemleri se\u00e7iminde TOPSIS ve bulanik TOPSIS y\u00f6nteminin kullanilmasi. Marmara \u00dcniversitesi \u0130ktisadi ve \u0130dari Bilimler Dergisi , 44 (1) , 78-103.\r\n[7]\tBanik, D., Ibne Hossain, N. U., Govindan, K., Nur, F., Babski-Reeves, K. (2023). A decision support model for selecting unmanned aerial vehicle for medical supplies: context of COVID-19 pandemic. International Journal of Logistics Management, 34(2), 473-496.\r\n[8]\tAlimpiev, Andrey, et al. (2017). Selecting a Model of Unmanned Aerial Vehicle to Accept IT for Military Purposes with Regard to Expert Data. Eastern-European Journal of Enterprise Technologies, vol. 1(9), 53-60.\r\n[9]\t\u00c7elikyay, S. (2002). \u00c7ok Ama\u00e7l\u0131 Sava\u015f U\u00e7a\u011f\u0131 Se\u00e7iminde \u00c7ok \u00d6l\u00e7\u00fctl\u00fc Karar Verme Y\u00f6ntemlerinin Uygulanmas\u0131, (Yay\u0131mlanmam\u0131\u015f Y\u00fcksek Lisans Tezi), \u0130stanbul Teknik \u00dcniversitesi, \u0130stanbul.\r\n[10]\tY\u0131lmaz S. (2006). U\u00e7ak Se\u00e7im Kriterlerinin De\u011ferlendirilmesinde AHP ve Bulan\u0131k AHP Uygulamas\u0131, (Yay\u0131mlanmam\u0131\u015f Y\u00fcksek Lisans Tezi). Y\u0131ld\u0131z Teknik \u00dcniversitesi Fen Bilimleri Enstit\u00fcs\u00fc, \u0130stanbul.\r\n[11]\tWang, T. C., Chang, T. H. (2007). Application of TOPSIS in Evaluating Initial Training Aircraft Under a Fuzzy Environment. Expert Systems with Applications, 33(4), 870880.\r\n[12]\t\u00d6zdemir, Y., Basligil, H., Karaca, M. (2011). Aircraft Selection Using Analytic Network Process: A Case for Turkish Airlines. In Proceedings of the World Congress on Engineering (WCE), 8, 9-13.\r\n[13]\tGomes, L. F. A. M.; de Mattos Fernandes, J. E., de Mello, J. C. C. S. (2012). A Fuzzy Stochastic Approach to the Multicriteria Selection of an Aircraft for Regional Chartering. Journal of Advanced Transportation, 48(3), 223-237.\r\n[14]\tDo\u017ei\u0107, S., Kali\u0107, M. (2014). An AHP Approach to Aircraft Selection Process. Transportation Research Procedia, 3, 165-174. \r\n[15]\tDo\u017ei\u0107, S., Lutovac T., Kali\u0107, M. (2018). Fuzzy AHP Approach to Passenger Aircraft Type Selection, Journal of Air Transport Management, 68, 165-175.\r\n[16]\tSchwening, G. S., Abdalla, A.M. (2014). ICAS2014_0875: Selection of Agricultural Aircraft Using AHP and TOPSIS Methods in Fuzzy Environment. 29th Congres of the International Council of the Aeronautical Sciences, St. Petersburg, Russia, 7(12), 4221-4224.\r\n[17]\tBruno, G., Esposito, E., Genovese, A. (2015). A model for Aircraft Evaluation to Support Strategic Decisions, Expert Systems with Applications, 42(13), 5580-5590.\r\n[18]\tG\u00fcr\u00fcn, A. (2015). Sivil Havac\u0131l\u0131k Sekt\u00f6r\u00fcnde I\u015f Jeti Modeli Se\u00e7imi: AHP y\u00f6ntemi uygulamas\u0131. (Yay\u0131mlanmam\u0131\u015f Y\u00fcksek Lisans Tezi), Anadolu \u00dcniversitesi, Eski\u015fehir.\r\n[19]\tKirac\u0131, K., Bak\u0131r, M. (2018). Application of Commercial Aircraft Selection in Aviation \u0130ndustry Through Multi-Criteria Decision Making Methods. Manisa Celal Bayar \u00dcniversitesi Sosyal Bilimler Dergisi, 16(4), 307-332.\r\n[20]\tDurmaz, K. \u0130., Gencer, C. (2018). JSMAA Tabanl\u0131 Yeni Bir Eklenti: SWARA-JSMAA ve Akrobasi U\u00e7a\u011f\u0131 Se\u00e7imi, Journal of the Faculty of Engineering and Architecture of Gazi University, 35(3), 1487-1498.\r\n[21]\tSanchez-Lozano, J.M., Serna, J., Dol\u00f3n-Pay\u00e1n, A. (2015). Evaluating military training aircrafts through the combination of multi-criteria decision making processes with fuzzy logic. A case study in the Spanish Air Force Academy. Aerospace Science and Technology, 42, 58-65.\r\n[22]\tS\u00e1nchez-Lozano, J. M., Naranjo Rodr\u00edguez O. (2020). Application of Fuzzy Reference Ideal Method (FRIM) to the military advanced training aircraft selection. Appl. Soft Comput. 88: 106061.\r\n[23]\tS\u00e1nchez-Lozano, J. M., Correa-Rubio, J. C., Fern\u00e1ndez-Mart\u00ednez, M. (2022). A double fuzzy multi-criteria analysis to evaluate international high-performance aircrafts for defense purposes. Eng. Appl. Artif. Intell. 115: 105339.\r\n[24]\tSemercio\u011flu, H.,\u00d6zko\u00e7, H. H. (2019). Analitik Hiyerar\u015fi Proses ile Desteklenmi\u015f Sosyal Se\u00e7im Teorisi: Havayollar\u0131nda U\u00e7ak Se\u00e7im S\u00fcreci. Sosyal ve Be\u015feri Bilimler Ara\u015ft\u0131rmalar\u0131 Dergisi, Journal of Social Sciences and Humanities Researches, 20(44).\r\n[25]\tBa\u015far, S. Yilmaz, A.K. Karaca, M. Lap\u00e7\u0131n, H. T. , Ba\u015far, S. \u0130. (2020). Fleet Modelling in Strategic Multi-Criteria Decision-Making of Approved Training Organization from Capacity Building and Resource Dependency Theory Perspective: Risk Taxonomy Methodology. Aircraft Engineering and Aerospace Technology, 92(6), 917-923.\r\n[26]\tAkyurt, \u0130. Z., Kabaday\u0131, N. (2020). Bulan\u0131k AHP ve Bulan\u0131k Gri \u0130li\u015fkiler Analizi Y\u00f6ntemleri ile Kargo U\u00e7ak Tipi Se\u00e7imi: Bir T\u00fcrk Havayolu Firmas\u0131nda Uygulama. Journal of Ya\u015far University, 15(57), 38-55.\r\n[27]\tKocakaya, K., Engin, T., Tekta\u015f, M., Ayd\u0131n, U. (2021). T\u00fcrkiye\u2019de B\u00f6lgesel Havayollar\u0131 i\u00e7in U\u00e7ak Tipi Se\u00e7imi: K\u00fcresel Bulan\u0131k AHP-TOPSIS Y\u00f6ntemlerinin Entegrasyonu. Ak\u0131ll\u0131 Ula\u015f\u0131m Sistemleri ve Uygulama Dergisi, 4(1), 27-58.\r\n[28]\tArdil, C. (2023). Standard Fuzzy Sets for Aircraft Selection using Multiple Criteria Decision Making Analysis. International Journal of Computer and Information Engineering, 17(4), 299 - 307.\r\n[29]\tArdil, C. (2023). Aircraft Selection Process Using Reference Linear Combination in Multiple Criteria Decision Making Analysis. International Journal of Aerospace and Mechanical Engineering, 17(4), 146 - 155.\r\n[30]\tArdil, C. (2023). Aerial Firefighting Aircraft Selection with Standard Fuzzy Sets using Multiple Criteria Group Decision Making Analysis. International Journal of Transport and Vehicle Engineering, 17(4), 136 - 145.\r\n[31]\tArdil, C. (2023). Aircraft Supplier Selection Process with Fuzzy Proximity Measure Method using Multiple Criteria Group Decision Making Analysis.International Journal of Computer and Information Engineering, 17(4), 289 - 298.\r\n[32]\tArdil, C. (2023). Aircraft Supplier Selection using Multiple Criteria Group Decision Making Process with Proximity Measure Method for Determinate Fuzzy Set Ranking Analysis. International Journal of Industrial and Systems Engineering, 17(3), 127 - 135.\r\n[33]\tArdil, C. (2023). Determinate Fuzzy Set Ranking Analysis for Combat Aircraft Selection with Multiple Criteria Group Decision Making. International Journal of Computer and Information Engineering, 17(3), 272 - 279.\r\n[34]\tArdil, C. (2019). Fighter Aircraft Selection Using Technique for Order Preference by Similarity to Ideal Solution with Multiple Criteria Decision Making Analysis. International Journal of Transport and Vehicle Engineering, 13(10), 649 - 657. \r\n[35]\tArdil, C. (2019). Aircraft Selection Using Multiple Criteria Decision Making Analysis Method with Different Data Normalization Techniques. International Journal of Industrial and Systems Engineering, 13(12), 744 - 756.\r\n[36]\tArdil, C. (2019). Military Fighter Aircraft Selection Using Multiplicative Multiple Criteria Decision Making Analysis Method. International Journal of Mathematical and Computational Sciences, 13(9), 184 - 193.\r\n[37]\tArdil, C. (2020). A Comparative Analysis of Multiple Criteria Decision Making Analysis Methods for Strategic, Tactical, and Operational Decisions in Military Fighter Aircraft Selection. International Journal of Aerospace and Mechanical Engineering, 14(7), 275 - 288.\r\n[38]\tArdil, C. (2020). Aircraft Selection Process Using Preference Analysis for Reference Ideal Solution (PARIS). International Journal of Aerospace and Mechanical Engineering, 14(3), 80 - 93.\r\n[39]\tArdil, C. (2020). Regional Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS). International Journal of Transport and Vehicle Engineering, 14(9), 378 - 388.\r\n[40]\tArdil, C. (2020). Trainer Aircraft Selection Using Preference Analysis for Reference Ideal Solution (PARIS). International Journal of Aerospace and Mechanical Engineering, 14(5), 195 - 209.\r\n[41]\tArdil, C. (2021). Advanced Jet Trainer and Light Attack Aircraft Selection Using Composite Programming in Multiple Criteria Decision Making Analysis Method. International Journal of Aerospace and Mechanical Engineering, 15(12), 486 - 491.\r\n[42]\tArdil, C. (2021). Airline Quality Rating Using PARIS and TOPSIS in Multiple Criteria Decision Making Analysis. International Journal of Industrial and Systems Engineering, 15(12), 516 - 523.\r\n[43]\tArdil, C. (2021). Comparison of Composite Programming and Compromise Programming for Aircraft Selection Problem Using Multiple Criteria Decision Making Analysis Method. International Journal of Aerospace and Mechanical Engineering, 15(11), 479 - 485.\r\n[44]\tArdil, C. (2021). Fighter Aircraft Evaluation and Selection Process Based on Triangular Fuzzy Numbers in Multiple Criteria Decision Making Analysis Using the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). International Journal of Computer and Systems Engineering, 15(12), 402 - 408.\r\n[45]\tArdil, C. (2021). Military Combat Aircraft Selection Using Trapezoidal Fuzzy Numbers with the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). International Journal of Computer and Information Engineering, 15(12), 630 - 635. \r\n[46]\tArdil, C. (2021). Freighter Aircraft Selection Using Entropic Programming for Multiple Criteria Decision Making Analysis. International Journal of Mathematical and Computational Sciences, 15(12), 125 - 132.\r\n[47]\tArdil, C. (2021). Neutrosophic Multiple Criteria Decision Making Analysis Method for Selecting Stealth Fighter Aircraft. International Journal of Aerospace and Mechanical Engineering, 15(10), 459 - 463.\r\n[48]\tArdil, C. (2022). Aircraft Selection Problem Using Decision Uncertainty Distance in Fuzzy Multiple Criteria Decision Making Analysis. International Journal of Mechanical and Industrial Engineering, 16(3), 62 - 69.\r\n[49]\tArdil, C. (2022). Aircraft Selection Using Preference Optimization Programming (POP).International Journal of Aerospace and Mechanical Engineering, 16(11), 292 - 297.\r\n[50]\tArdil, C. (2022). Fighter Aircraft Selection Using Fuzzy Preference Optimization Programming (POP). International Journal of Aerospace and Mechanical Engineering, 16(10), 279 - 290.\r\n[51]\tArdil, C. (2022). Fighter Aircraft Selection Using Neutrosophic Multiple Criteria Decision Making Analysis. International Journal of Computer and Systems Engineering, 16(1), 5 - 9.\r\n[52]\tArdil, C. (2022). Military Attack Helicopter Selection Using Distance Function Measures in Multiple Criteria Decision Making Analysis. International Journal of Aerospace and Mechanical Engineering, 16(2), 20 - 27.\r\n[53]\tArdil, C. (2022). Multiple Criteria Decision Making for Turkish Air Force Stealth Fighter Aircraft Selection. International Journal of Aerospace and Mechanical Engineering, 16(12), 369 - 374.\r\n[54]\tArdil, C. (2022). Vague Multiple Criteria Decision Making Analysis Method for Fighter Aircraft Selection. International Journal of Aerospace and Mechanical Engineering, 16(5),133-142.\r\n[55]\tArdil, C. (2022).Fuzzy Uncertainty Theory for Stealth Fighter Aircraft Selection in Entropic Fuzzy TOPSIS Decision Analysis Process. International Journal of Aerospace and Mechanical Engineering, 16(4), 93 - 102.\r\n[56]\tArdil, C. (2023). Fuzzy Multiple Criteria Decision Making for Unmanned Combat Aircraft Selection Using Proximity Measure Method. International Journal of Computer and Information Engineering, 17(3), 193 - 200.\r\n[57]\tArdil, C. (2023). Unmanned Combat Aircraft Selection using Fuzzy Proximity Measure Method in Multiple Criteria Group Decision Making. International Journal of Computer and Systems Engineering, 17(3), 238 - 245.\r\n[58]\tArdil, C. (2023). Using the PARIS Method for Multiple Criteria Decision Making in Unmanned Combat Aircraft Evaluation and Selection. International Journal of Aerospace and Mechanical Engineering, 17(3), 93 - 103.\r\n[59]\tArdil, C. , Pashaev, A. , Sadiqov, R. , Abdullayev, P. (2019). Multiple Criteria Decision Making Analysis for Selecting and Evaluating Fighter Aircraft. International Journal of Transport and Vehicle Engineering, 13(11), 683 - 694.\r\n[60]\tGhodsypour, S. H., O\u2019Brien C. (1998). A decision support system for supplier selection using an integrated analytic hierarchy process and linearprogramming.International Journal of Production Economics, 56-57, 199-212.\r\n[61]\tWeber, C. A., Current, J. R., , Benton, W. C. (1991). Vender selection criteria and methods. European Journal of Operational Research, 50, 2-18.\r\n[62]\tDegraeve, Z., Labro, E., Roodhooft, F. (2000). An evaluation of supplier selection methods from a total cost of ownership perspective. European Journal of Operational Research, 125(1), 34-59. \r\n[63]\tDe Boer, L., Labro, E., Morlacchi, P. (2001). A review of methods supporting supplier selection European Journal of Purchasing . & Supply Management, 7, 75-89. \r\n[64]\tHo, W., Xu, X. D., Prasanta K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202, 16-24.\r\n[65]\tSanayei, A., Mousavi, S. F., Yazdankhah, A. (2010). Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Systems with Applications, 37, 24-30.\r\n[66]\tChen,C. T., Lin, C. T., Huang, S. F.(2006). A fuzzy approach for supplier evaluation and selection in supply chain management, International Journal of Production Economics, vol. 102(2), 289\u2013301.\r\n[67]\tMin, H. (1994). International supplier selection: a multi-attribute utility approach, International Journal of Physical Distribution and Logistics Management, vol. 24(5), 24\u201333.\r\n[68]\tBoran, FE., Gen\u00e7, S., Kurt, M., Akay, D., (2009). A Multi-Criteria Intuitionistic Fuzzy Group Decision Making For Supplier Selection With TOPSIS Method\u201d, Expert Systems with Applications, 36(8), pp.11363-11368, 2009.\r\n[69]\tIzadikhah, M. (2012). Group Decision Making Process for Supplier Selection with TOPSIS Method under Interval-Valued Intuitionistic Fuzzy Numbers, Advances in Fuzzy Systems, vol. 2012, Article ID 407942.\r\n[70]\tSaaty, T. L. (1990). How to make a decision: The Analytic Hierarchy Process. European Journal of Operational Research, 48(1), 9-26. \r\n[71]\tSaaty, T. L. (2008). Decision making with the analytic hierarchy process. International Journal of Services Sciences, 1(1), 83-98. \r\n[72]\tBuckley,J.J. (1985). Fuzzy hierarchical analysis, Fuzzy Sets and Systems, 17, 233\u2013247.\r\n[73]\tDyer, J.S. (2016). Multiattribute Utility Theory (MAUT). In: Greco, S., Ehrgott, M., Figueira, J. (eds) Multiple Criteria Decision Analysis. International Series in Operations Research & Management Science, vol 233. Springer, New York, NY. https:\/\/doi.org\/10.1007\/978-1-4939-3094-4_8.\r\n[74]\tHwang, C.L.; Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. New York: Springer-Verlag.\r\n[75]\tChu, T.C. (2002. Facility location selection using fuzzy TOPSIS under group decisions, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 10 No. 6, pp. 687-701.\r\n[76]\tOpricovic, S. (2007). A fuzzy compromise solution for multicriteria problems. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 15(3), 363\u2013380.\r\n[77]\tOpricovic, S., Tzeng, G.-H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European Journal of Operational Research, 156(2), 445\u2013455.\r\n[78]\tRoy, B. (1991). The outranking approach and the foundation of ELECTRE methods. Theory and Decision, 31(1), 49\u201373.\r\n[79]\tFei, L., Xia, J., Feng, Y., Liu, L. (2019) An ELECTRE-Based Multiple Criteria Decision Making Method for Supplier Selection Using Dempster-Shafer Theory. IEEE Access, 7, 84701-84716.\r\n[80]\tBrans JP., Mareschal B. (2005). Promethee Methods. In: Multiple Criteria Decision Analysis: State of the Art Surveys. International Series in Operations Research & Management Science, vol 78, pp 163-186. Springer, New York, NY. https:\/\/doi.org\/10.1007\/0-387-23081-5_5.\r\n[81]\tBrans, J., Ph. Vincke. (1985). A Preference Ranking Organisation Method: (The PROMETHEE Method for Multiple Criteria Decision-Making). Management Science, 31(6), 647-656.\r\n[82]\tBrans, J.P., Macharis, C., Kunsch, P.L., Chevalier, A., Schwaninger, M., (1998). Combining multicriteria decision aid and system dynamics for the control of socio-economic processes. An iterative real-time procedure. European Journal of Operational Research 109, 428-441. \r\n[83]\tBrans, J.P., Vincke, Ph., Mareschal, B., (1986). How to select and how to rank projects: the PROMETHEE method. European Journal of Operational Research, 24, 228-238.\r\n[84]\tTaherdoost, H., Madanchian, M. (2023). Multi-Criteria Decision Making (MCDM) Methods and Concepts. Encyclopedia, 3(1), 77\u201387. \r\n[85]\tZadeh, L. A. (1965). Fuzzy sets. Inf. Control. 8(3), 338\u2013353. \r\n[86]\tZadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning. Inf. Sci. 8(3), 199\u2013249. \r\n[87]\tZadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning-II. Inf. Sci. 8(4), 301\u2013357. \r\n[88]\tZadeh, L. A. (1975).The concept of a linguistic variable and its application to approximate reasoning-III. Inf. Sci. 9(1), 43\u201380. \r\n[89]\tAtanassov, K. (1986).Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20(1), 87\u201396.\r\n[90]\tSmarandache, F. (2003). A unifying \ufb01eld in logics neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability. (3rd ed.). Xiquan, Phoenix: American Research Press.\r\n[91]\tSmarandache, F. (2003).Neutrosophic Logic - Generalization of the Intuitionistic Fuzzy Logic. https:\/\/arxiv.org\/abs\/math\/0303009\r\n[92]\tAwasthi, A., Chauhan, S.S., Omrani, H. (2011). Application of fuzzy TOPSIS in evaluating sustainable transportation systems. Expert Syst. Appl., 38, 12270-12280.\r\n[93]\tEcer, F., Pamucar, D. (2021).MARCOS technique under intuitionistic fuzzy environment for determining the COVID-19 pandemic performance of insurance companies in terms of healthcare services. Appl. Sof Comput. 104, 107199.\r\n[94]\tVerma, R. (2021). On intuitionistic fuzzy order-alpha divergence and entropy measures with MABAC method for multiple attribute group decision-making. J. Intell. Fuzzy. Syst. Appl. Eng. Technol. 40(1), 1191\u20131217. \r\n[95]\tIlbahar, E., Kahraman, C., Cebi, S. (2022). Risk assessment of renewable energy investments: A modifed failure mode and efect analysis based on prospect theory and intuitionistic fuzzy AHP. Energy 239, 121907. \r\n[96]\tVerma, R. , Merig, J. M. (2020). A new decision making method using interval-valued intuitionistic fuzzy cosine similarity measure based on the weighted reduced intuitionistic fuzzy sets. Informatica 31(2), 399\u2013433.\r\n[97]\tWang, Z., Xiao, F. , Ding, (2022).W. Interval-valued intuitionistic fuzzy Jenson\u2013Shannon divergence and its application in multi-attribute decision making. Appl. Intell. 1\u201317. \r\n[98]\tVerma, R. , Merig\u00f3, J. M. (2021). On Sharma-Mittal\u2019s entropy under intuitionistic fuzzy environment. Cybern. Syst. 52(6), 498\u2013521. \r\n[99]\tZhao, M., Wei, G. , Wei, C. (2021). Extended CPT-TODIM method for interval-valued intuitionistic fuzzy MAGDM and its application to urban ecological risk assessment. J. Intell. Fuzzy Syst. 40(3), 4091\u20134106. \r\n[100]\tLiu, P., Pan, Q., Xu, H. (2021). Multi-attributive border approximation area comparison (MABAC) method based on normal q-rung orthopair fuzzy environment. J. Intell. Fuzzy Syst. Appl. Eng. Technol. 5, 40. \r\n[101]\tAtanassov, K. , Gargov, G. (1989).Interval-valued intuitionistic fuzzy sets. Fuzzy Syst. 31(3), 343\u2013349. \r\n[102]\tHajiagha, S. H. R., Mahdiraji, H. A., Hashemi, S. S. , Zavadskas, E. K. (2015).Evolving a linear programming technique for MAGDM problems with interval valued intuitionistic fuzzy information. Expert Syst. Appl. 42(23), 9318\u20139325.\r\n[103]\tYou, P., Liu, X. H. , Sun, J. B. (2021).A multi-attribute group decision making method considering both the correlation coefficient and hesitancy degrees under interval-valued intuitionistic fuzzy environment. Inf. Sci. 104, 107187. \r\n[104]\tYe, F. (2010).An extended TOPSIS method with interval-valued intuitionistic fuzzy numbers for virtual enterprise partner selection. Expert Syst. Appl. 37(10), 7050\u20137055. \r\n[105]\tChen, X., Suo, C. F. , Li, Y. G. (2021). Distance measures on intuitionistic hesitant fuzzy set and its application in decision-making. Comput. Appl. Math. 40(3), 63\u201384. \r\n[106]\tHou, X. Q. et al. (2016).Group decision-making of air combat training accuracy assessment based on interval-valued intuitionist fuzzy set. Syst. Eng. Electron. 38(12), 2785\u20132789. \r\n[107]\tLiu, Y., Jiang, W. (2020).A new distance measure of interval-valued intuitionistic fuzzy sets and its application in decision making. Sof. Comput. 24(9), 6987\u20137003. \r\n[108]\tGarg, H., Kumar, K. (2020).A novel exponential distance and its based TOPSIS method for interval-valued intuitionistic fuzzy sets using connection number of SPA theory. Artif. Intell. Rev 53(1), 595\u2013624. \r\n[109]\tZhang, Z. M. , Chen, S. M. (2021).Optimization-based group decision making using interval-valued intuitionistic fuzzy preference relations. Inf. Sci. 561, 352\u2013370. \r\n[110]\tAtanassov, K. (1994).Operator over interval-valued intuitionistic fuzzy sets. Fuzzy Syst. 64(2), 159\u2013174.\r\n[111]\tXu, Z. S. ,Yager, R. R. (2006).Some geometric aggregation operators based on intuitionistic fuzzy sets. Int. J. Gen. Syst. 35(4), 417\u2013433.\r\n[112]\t Xu, Z. S. , Chen, J. (2007).An approach to group decision making based on interval\u2013valued intuitionistic judgment matrices. Syst. Eng. Theory Pract. 27(4), 126\u2013133. \r\n[113]\tKong, D. P. et al. (2019).A decision variable-based combinatorial optimization approach for interval-valued intuitionistic fuzzy MAGDM. Inf. Sci. 484(5), 197\u2013218. \r\n[114]\tYao, R. P. (2019).An Approach to variable weight group decision making based on the improved score function of interval-valued intuitionistic sets. Stat. Decis. 35(11), 36\u201338. \r\n[115]\tXu, Z. S. (2007).Method for aggregating interval-valued intuitionistic fuzzy information and their application to decision making. Control Decis. 22(2), 215\u2013219. \r\n[116]\tDa, Q. , Liu, X. W. (1999).Interval number linear programming and its satisfactory solution. Syst. Eng. Teory Pract. 19(4), 3\u20137. \r\n[117]\tLiu, H. C., Chen, X. Q., Duan, C. Y. , Wang, Y. M. (2019). Failure Mode and Effect Analysis Using Multi Criteria Decision Making Methods; A Systematic Literature Review. Computers and Industrial Engineering, 135, 881-897.\r\n[118]\tChen, M., Tzeng, G. (2004). Combining grey relation and TOPSIS concepts for selecting an expatriate host country. Math. Comput. Model., 40, 1473-1490.\r\n[119]\tGupta, R., Kumar, S. (2022). Intuitionistic fuzzy scale-invariant entropy with correlation coefficients-based VIKOR approach for multi-criteria decision-making. Granular Computing, 7, 77-93.\r\n[120]\tTu\u011frul, F. (2022). An Approach Utilizing The Intuitionistic Fuzzy TOPSIS Method to Unmanned Air Vehicle Selection.Ikonion Journal of Mathematics 4(2) 32-41.\r\n[121]\tAltuntas,G.,Yildirim, B.F. (2022).Logistics specialist selection with intuitionistic fuzzy TOPSIS method, International Journal of Logistics Systems and Management, vol. 42(1), 1-34.\r\n[122]\tYao, R., Guo, H. (2022). A multiattribute group decision-making method based on a new aggregation operator and the means and variances of interval-valued intuitionistic fuzzy values. Sci Rep 12, 22525. \r\n[123]\tWang, Y., Lei, Y.J. (2007). A Technique for Constructing intuitionistic Fuzzy Entropy. J. Control Decis. 12, 1390\u20131394.\r\n[124]\tFu, S., Xiao, Yz., Zhou, Hj. (2022). Interval-valued intuitionistic fuzzy multi-attribute group decision-making method considering risk preference of decision-makers and its application. Sci Rep 12, 11597.\r\n[125]\tLiu, P., Gao, H. (2018), An overview of intuitionistic linguistic fuzzy information aggregations and applications. Marine Economics and Management, Vol. 1 No. 1,55-78.\r\n[126]\tYager, RR. (2013. Pythagorean fuzzy subsets. Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA\/NAFIPS) 57\u201361 6. \r\n[127]\tYager, R. R. (2013). Pythagorean membership grades in multi-criteria decision making. IEEE Trans Fuzzy Syst 22(4):958\u2013965.\r\n[128]\tYager, R. R. (2017). Generalized orthopair fuzzy sets. IEEE Transactions on Fuzzy Systems, 25(5), 1222\u2013 1230.\r\n[129]\tTian, X., Niu, M., Zhang, W., Li, L., Herrera-Viedma, E. (2021). A novel TODIM based on prospect theory to select green supplier with q-rung orthopair fuzzy set. Technological and Economic Development of Economy, 27(2), 284-310.\r\n[130]\tCuong, B. C., Kreinovich, V. (2013). Picture Fuzzy Sets - a new concept for computational intelligence problems. Departmental Technical Reports (CS). 809. In Proceedings of the Third World Congress on Information and Communication Technologies WICT'2013, Hanoi, Vietnam, December 15-18, 2013, pp. 1-6.\r\n[131]\tCuong, B. C. (2014). Picture Fuzzy Sets. Journal of Computer Science and Cybernetics, V.30, N.4 (2014), 409\u2013420.\r\n[132]\tG\u00fcndogdu, FK, Kahraman, C. (2019). Spherical fuzzy sets and spherical fuzzy TOPSIS method. J Intell Fuzzy Syst 36(1):337\u2013352.\r\n[133]\tMahmood, T.; Ullah, K.; Khan, Q.; Jan, N. An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets. Neural Comput Appl. 2018, 1\u201313.\r\n[134]\tUllah, K., Mahmood, T., Jan, N. (2018). Similarity Measures for T-Spherical Fuzzy Sets with Applications in Pattern Recognition. Symmetry, 10(6), 193.","publisher":"World Academy of Science, Engineering and Technology","index":"Open Science Index 200, 2023"}