CINXE.COM
Bernoulli number - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Bernoulli number - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"8be3c6a2-a776-48bf-b539-5dc25cb07bf8","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Bernoulli_number","wgTitle":"Bernoulli number","wgCurRevisionId":1259048282,"wgRevisionId":1259048282,"wgArticleId":4964,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["CS1 Latin-language sources (la)","CS1: long volume value","Articles containing German-language text","Articles with short description","Short description is different from Wikidata","Use American English from March 2019","All Wikipedia articles written in American English","Use shortened footnotes from April 2021","CS1 Italian-language sources (it)","Number theory","Topology","Integer sequences","Eponymous numbers in mathematics"],"wgPageViewLanguage":"en","wgPageContentLanguage": "en","wgPageContentModel":"wikitext","wgRelevantPageName":"Bernoulli_number","wgRelevantArticleId":4964,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":90000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q694114","wgCheckUserClientHintsHeadersJsApi":[ "brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","ext.scribunto.logs","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js", "ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Bernoulli number - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Bernoulli_number"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Bernoulli_number&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Bernoulli_number"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Bernoulli_number rootpage-Bernoulli_number skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Bernoulli+number" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Bernoulli+number" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Bernoulli+number" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Bernoulli+number" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Notation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notation"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Notation</span> </div> </a> <ul id="toc-Notation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-History" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#History"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>History</span> </div> </a> <button aria-controls="toc-History-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle History subsection</span> </button> <ul id="toc-History-sublist" class="vector-toc-list"> <li id="toc-Early_history" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Early_history"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Early history</span> </div> </a> <ul id="toc-Early_history-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Reconstruction_of_"Summae_Potestatum"" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Reconstruction_of_"Summae_Potestatum""> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Reconstruction of "Summae Potestatum"</span> </div> </a> <ul id="toc-Reconstruction_of_"Summae_Potestatum"-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Definitions" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Definitions"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Definitions</span> </div> </a> <button aria-controls="toc-Definitions-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Definitions subsection</span> </button> <ul id="toc-Definitions-sublist" class="vector-toc-list"> <li id="toc-Recursive_definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Recursive_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Recursive definition</span> </div> </a> <ul id="toc-Recursive_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Explicit_definition" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Explicit_definition"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Explicit definition</span> </div> </a> <ul id="toc-Explicit_definition-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Generating_function" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Generating_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Generating function</span> </div> </a> <ul id="toc-Generating_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integral_Expression" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Integral_Expression"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Integral Expression</span> </div> </a> <ul id="toc-Integral_Expression-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Bernoulli_numbers_and_the_Riemann_zeta_function" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Bernoulli_numbers_and_the_Riemann_zeta_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Bernoulli numbers and the Riemann zeta function</span> </div> </a> <ul id="toc-Bernoulli_numbers_and_the_Riemann_zeta_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Efficient_computation_of_Bernoulli_numbers" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Efficient_computation_of_Bernoulli_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Efficient computation of Bernoulli numbers</span> </div> </a> <ul id="toc-Efficient_computation_of_Bernoulli_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications_of_the_Bernoulli_numbers" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Applications_of_the_Bernoulli_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Applications of the Bernoulli numbers</span> </div> </a> <button aria-controls="toc-Applications_of_the_Bernoulli_numbers-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Applications of the Bernoulli numbers subsection</span> </button> <ul id="toc-Applications_of_the_Bernoulli_numbers-sublist" class="vector-toc-list"> <li id="toc-Asymptotic_analysis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Asymptotic_analysis"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.1</span> <span>Asymptotic analysis</span> </div> </a> <ul id="toc-Asymptotic_analysis-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sum_of_powers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Sum_of_powers"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.2</span> <span>Sum of powers</span> </div> </a> <ul id="toc-Sum_of_powers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Taylor_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Taylor_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.3</span> <span>Taylor series</span> </div> </a> <ul id="toc-Taylor_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Laurent_series" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Laurent_series"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.4</span> <span>Laurent series</span> </div> </a> <ul id="toc-Laurent_series-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Use_in_topology" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Use_in_topology"> <div class="vector-toc-text"> <span class="vector-toc-numb">6.5</span> <span>Use in topology</span> </div> </a> <ul id="toc-Use_in_topology-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Connections_with_combinatorial_numbers" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Connections_with_combinatorial_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>Connections with combinatorial numbers</span> </div> </a> <button aria-controls="toc-Connections_with_combinatorial_numbers-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Connections with combinatorial numbers subsection</span> </button> <ul id="toc-Connections_with_combinatorial_numbers-sublist" class="vector-toc-list"> <li id="toc-Connection_with_Worpitzky_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Connection_with_Worpitzky_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.1</span> <span>Connection with Worpitzky numbers</span> </div> </a> <ul id="toc-Connection_with_Worpitzky_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Connection_with_Stirling_numbers_of_the_second_kind" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Connection_with_Stirling_numbers_of_the_second_kind"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.2</span> <span>Connection with Stirling numbers of the second kind</span> </div> </a> <ul id="toc-Connection_with_Stirling_numbers_of_the_second_kind-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Connection_with_Stirling_numbers_of_the_first_kind" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Connection_with_Stirling_numbers_of_the_first_kind"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.3</span> <span>Connection with Stirling numbers of the first kind</span> </div> </a> <ul id="toc-Connection_with_Stirling_numbers_of_the_first_kind-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Connection_with_Pascal's_triangle" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Connection_with_Pascal's_triangle"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.4</span> <span>Connection with Pascal's triangle</span> </div> </a> <ul id="toc-Connection_with_Pascal's_triangle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Connection_with_Eulerian_numbers" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Connection_with_Eulerian_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">7.5</span> <span>Connection with Eulerian numbers</span> </div> </a> <ul id="toc-Connection_with_Eulerian_numbers-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-A_binary_tree_representation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#A_binary_tree_representation"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>A binary tree representation</span> </div> </a> <ul id="toc-A_binary_tree_representation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Integral_representation_and_continuation" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Integral_representation_and_continuation"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>Integral representation and continuation</span> </div> </a> <ul id="toc-Integral_representation_and_continuation-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-The_relation_to_the_Euler_numbers_and_π" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#The_relation_to_the_Euler_numbers_and_π"> <div class="vector-toc-text"> <span class="vector-toc-numb">10</span> <span>The relation to the Euler numbers and <span>π</span></span> </div> </a> <ul id="toc-The_relation_to_the_Euler_numbers_and_π-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-An_algorithmic_view:_the_Seidel_triangle" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#An_algorithmic_view:_the_Seidel_triangle"> <div class="vector-toc-text"> <span class="vector-toc-numb">11</span> <span>An algorithmic view: the Seidel triangle</span> </div> </a> <ul id="toc-An_algorithmic_view:_the_Seidel_triangle-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_combinatorial_view:_alternating_permutations" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#A_combinatorial_view:_alternating_permutations"> <div class="vector-toc-text"> <span class="vector-toc-numb">12</span> <span>A combinatorial view: alternating permutations</span> </div> </a> <ul id="toc-A_combinatorial_view:_alternating_permutations-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Related_sequences" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Related_sequences"> <div class="vector-toc-text"> <span class="vector-toc-numb">13</span> <span>Related sequences</span> </div> </a> <ul id="toc-Related_sequences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Arithmetical_properties_of_the_Bernoulli_numbers" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Arithmetical_properties_of_the_Bernoulli_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">14</span> <span>Arithmetical properties of the Bernoulli numbers</span> </div> </a> <button aria-controls="toc-Arithmetical_properties_of_the_Bernoulli_numbers-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Arithmetical properties of the Bernoulli numbers subsection</span> </button> <ul id="toc-Arithmetical_properties_of_the_Bernoulli_numbers-sublist" class="vector-toc-list"> <li id="toc-The_Kummer_theorems" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#The_Kummer_theorems"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.1</span> <span>The Kummer theorems</span> </div> </a> <ul id="toc-The_Kummer_theorems-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-p-adic_continuity" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#p-adic_continuity"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.2</span> <span><span><i>p</i></span>-adic continuity</span> </div> </a> <ul id="toc-p-adic_continuity-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Ramanujan's_congruences" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Ramanujan's_congruences"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.3</span> <span>Ramanujan's congruences</span> </div> </a> <ul id="toc-Ramanujan's_congruences-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Von_Staudt–Clausen_theorem" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Von_Staudt–Clausen_theorem"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.4</span> <span>Von Staudt–Clausen theorem</span> </div> </a> <ul id="toc-Von_Staudt–Clausen_theorem-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Why_do_the_odd_Bernoulli_numbers_vanish?" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Why_do_the_odd_Bernoulli_numbers_vanish?"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.5</span> <span>Why do the odd Bernoulli numbers vanish?</span> </div> </a> <ul id="toc-Why_do_the_odd_Bernoulli_numbers_vanish?-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-A_restatement_of_the_Riemann_hypothesis" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#A_restatement_of_the_Riemann_hypothesis"> <div class="vector-toc-text"> <span class="vector-toc-numb">14.6</span> <span>A restatement of the Riemann hypothesis</span> </div> </a> <ul id="toc-A_restatement_of_the_Riemann_hypothesis-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Generalized_Bernoulli_numbers" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Generalized_Bernoulli_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">15</span> <span>Generalized Bernoulli numbers</span> </div> </a> <button aria-controls="toc-Generalized_Bernoulli_numbers-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Generalized Bernoulli numbers subsection</span> </button> <ul id="toc-Generalized_Bernoulli_numbers-sublist" class="vector-toc-list"> <li id="toc-Eisenstein–Kronecker_number" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Eisenstein–Kronecker_number"> <div class="vector-toc-text"> <span class="vector-toc-numb">15.1</span> <span>Eisenstein–Kronecker number</span> </div> </a> <ul id="toc-Eisenstein–Kronecker_number-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Appendix" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Appendix"> <div class="vector-toc-text"> <span class="vector-toc-numb">16</span> <span>Appendix</span> </div> </a> <button aria-controls="toc-Appendix-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Appendix subsection</span> </button> <ul id="toc-Appendix-sublist" class="vector-toc-list"> <li id="toc-Assorted_identities" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Assorted_identities"> <div class="vector-toc-text"> <span class="vector-toc-numb">16.1</span> <span>Assorted identities</span> </div> </a> <ul id="toc-Assorted_identities-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">17</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Notes" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Notes"> <div class="vector-toc-text"> <span class="vector-toc-numb">18</span> <span>Notes</span> </div> </a> <ul id="toc-Notes-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">19</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Bibliography" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#Bibliography"> <div class="vector-toc-text"> <span class="vector-toc-numb">20</span> <span>Bibliography</span> </div> </a> <ul id="toc-Bibliography-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">21</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Bernoulli number</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 36 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-36" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">36 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A8%D8%B1%D9%86%D9%88%D9%84%D9%8A" title="عدد برنولي – Arabic" lang="ar" hreflang="ar" data-title="عدد برنولي" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-az mw-list-item"><a href="https://az.wikipedia.org/wiki/Bernulli_%C9%99d%C9%99dl%C9%99ri" title="Bernulli ədədləri – Azerbaijani" lang="az" hreflang="az" data-title="Bernulli ədədləri" data-language-autonym="Azərbaycanca" data-language-local-name="Azerbaijani" class="interlanguage-link-target"><span>Azərbaycanca</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%BD%D0%B0_%D0%91%D0%B5%D1%80%D0%BD%D1%83%D0%BB%D0%B8" title="Числа на Бернули – Bulgarian" lang="bg" hreflang="bg" data-title="Числа на Бернули" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombres_de_Bernoulli" title="Nombres de Bernoulli – Catalan" lang="ca" hreflang="ca" data-title="Nombres de Bernoulli" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Bernoulliho_%C4%8D%C3%ADslo" title="Bernoulliho číslo – Czech" lang="cs" hreflang="cs" data-title="Bernoulliho číslo" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Bernoulli-Zahl" title="Bernoulli-Zahl – German" lang="de" hreflang="de" data-title="Bernoulli-Zahl" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-el mw-list-item"><a href="https://el.wikipedia.org/wiki/%CE%91%CF%81%CE%B9%CE%B8%CE%BC%CF%8C%CF%82_%CE%9C%CF%80%CE%B5%CF%81%CE%BD%CE%BF%CF%8D%CE%BB%CE%B9" title="Αριθμός Μπερνούλι – Greek" lang="el" hreflang="el" data-title="Αριθμός Μπερνούλι" data-language-autonym="Ελληνικά" data-language-local-name="Greek" class="interlanguage-link-target"><span>Ελληνικά</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_de_Bernoulli" title="Número de Bernoulli – Spanish" lang="es" hreflang="es" data-title="Número de Bernoulli" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Bernoulliren_zenbaki" title="Bernoulliren zenbaki – Basque" lang="eu" hreflang="eu" data-title="Bernoulliren zenbaki" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A8%D8%B1%D9%86%D9%88%D9%84%DB%8C" title="عدد برنولی – Persian" lang="fa" hreflang="fa" data-title="عدد برنولی" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_de_Bernoulli" title="Nombre de Bernoulli – French" lang="fr" hreflang="fr" data-title="Nombre de Bernoulli" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%EB%B2%A0%EB%A5%B4%EB%88%84%EC%9D%B4_%EC%88%98" title="베르누이 수 – Korean" lang="ko" hreflang="ko" data-title="베르누이 수" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AC%E0%A4%B0%E0%A5%8D%E0%A4%A8%E0%A5%82%E0%A4%B2%E0%A5%80_%E0%A4%B8%E0%A4%82%E0%A4%96%E0%A5%8D%E0%A4%AF%E0%A4%BE" title="बर्नूली संख्या – Hindi" lang="hi" hreflang="hi" data-title="बर्नूली संख्या" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numeri_di_Bernoulli" title="Numeri di Bernoulli – Italian" lang="it" hreflang="it" data-title="Numeri di Bernoulli" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A1%D7%A4%D7%A8%D7%99_%D7%91%D7%A8%D7%A0%D7%95%D7%9C%D7%99" title="מספרי ברנולי – Hebrew" lang="he" hreflang="he" data-title="מספרי ברנולי" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%91%D0%B5%D1%80%D0%BD%D1%83%D0%BB%D0%BB%D0%B8_%D1%81%D0%B0%D0%BD%D0%B4%D0%B0%D1%80%D1%8B" title="Бернулли сандары – Kazakh" lang="kk" hreflang="kk" data-title="Бернулли сандары" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lv mw-list-item"><a href="https://lv.wikipedia.org/wiki/Bernulli_skaitlis" title="Bernulli skaitlis – Latvian" lang="lv" hreflang="lv" data-title="Bernulli skaitlis" data-language-autonym="Latviešu" data-language-local-name="Latvian" class="interlanguage-link-target"><span>Latviešu</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Bernoulli-sz%C3%A1mok" title="Bernoulli-számok – Hungarian" lang="hu" hreflang="hu" data-title="Bernoulli-számok" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Bernoulligetal" title="Bernoulligetal – Dutch" lang="nl" hreflang="nl" data-title="Bernoulligetal" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%99%E3%83%AB%E3%83%8C%E3%83%BC%E3%82%A4%E6%95%B0" title="ベルヌーイ数 – Japanese" lang="ja" hreflang="ja" data-title="ベルヌーイ数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-no mw-list-item"><a href="https://no.wikipedia.org/wiki/Bernoulli-tall" title="Bernoulli-tall – Norwegian Bokmål" lang="nb" hreflang="nb" data-title="Bernoulli-tall" data-language-autonym="Norsk bokmål" data-language-local-name="Norwegian Bokmål" class="interlanguage-link-target"><span>Norsk bokmål</span></a></li><li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://uz.wikipedia.org/wiki/Bernoulli_sonlari" title="Bernoulli sonlari – Uzbek" lang="uz" hreflang="uz" data-title="Bernoulli sonlari" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczby_Bernoulliego" title="Liczby Bernoulliego – Polish" lang="pl" hreflang="pl" data-title="Liczby Bernoulliego" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%BAmeros_de_Bernoulli" title="Números de Bernoulli – Portuguese" lang="pt" hreflang="pt" data-title="Números de Bernoulli" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%91%D0%B5%D1%80%D0%BD%D1%83%D0%BB%D0%BB%D0%B8" title="Числа Бернулли – Russian" lang="ru" hreflang="ru" data-title="Числа Бернулли" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Bernoulli_number" title="Bernoulli number – Simple English" lang="en-simple" hreflang="en-simple" data-title="Bernoulli number" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Bernoullijevo_%C5%A1tevilo" title="Bernoullijevo število – Slovenian" lang="sl" hreflang="sl" data-title="Bernoullijevo število" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/%D0%91%D0%B5%D1%80%D0%BD%D1%83%D0%BB%D0%B8%D1%98%D0%B5%D0%B2%D0%B8_%D0%B1%D1%80%D0%BE%D1%98%D0%B5%D0%B2%D0%B8" title="Бернулијеви бројеви – Serbian" lang="sr" hreflang="sr" data-title="Бернулијеви бројеви" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Bernoullin_luku" title="Bernoullin luku – Finnish" lang="fi" hreflang="fi" data-title="Bernoullin luku" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Bernoullital" title="Bernoullital – Swedish" lang="sv" hreflang="sv" data-title="Bernoullital" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%88%E0%B8%B3%E0%B8%99%E0%B8%A7%E0%B8%99%E0%B9%81%E0%B8%9A%E0%B8%A3%E0%B9%8C%E0%B8%99%E0%B8%B9%E0%B8%A5%E0%B8%A5%E0%B8%B5" title="จำนวนแบร์นูลลี – Thai" lang="th" hreflang="th" data-title="จำนวนแบร์นูลลี" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Bernoulli_say%C4%B1s%C4%B1" title="Bernoulli sayısı – Turkish" lang="tr" hreflang="tr" data-title="Bernoulli sayısı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%A7%D0%B8%D1%81%D0%BB%D0%B0_%D0%91%D0%B5%D1%80%D0%BD%D1%83%D0%BB%D0%BB%D1%96" title="Числа Бернуллі – Ukrainian" lang="uk" hreflang="uk" data-title="Числа Бернуллі" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-ur mw-list-item"><a href="https://ur.wikipedia.org/wiki/%D8%A8%D8%B1%D9%86%D9%88%D9%84%DB%8C_%D8%B9%D8%AF%D8%AF" title="برنولی عدد – Urdu" lang="ur" hreflang="ur" data-title="برنولی عدد" data-language-autonym="اردو" data-language-local-name="Urdu" class="interlanguage-link-target"><span>اردو</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E4%BC%AF%E5%8A%AA%E5%88%A9%E6%95%B8" title="伯努利數 – Cantonese" lang="yue" hreflang="yue" data-title="伯努利數" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E4%BC%AF%E5%8A%AA%E5%88%A9%E6%95%B0" title="伯努利数 – Chinese" lang="zh" hreflang="zh" data-title="伯努利数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q694114#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Bernoulli_number" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Bernoulli_number" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Bernoulli_number"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Bernoulli_number&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Bernoulli_number&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Bernoulli_number"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Bernoulli_number&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Bernoulli_number&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Bernoulli_number" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Bernoulli_number" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Bernoulli_number&oldid=1259048282" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Bernoulli_number&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Bernoulli_number&id=1259048282&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBernoulli_number"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FBernoulli_number"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Bernoulli_number&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Bernoulli_number&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Bernoulli_numbers" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q694114" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Rational number sequence</div> <p class="mw-empty-elt"> </p> <table class="wikitable" style="text-align: right; float:right; clear:right; margin-left:1em;"> <caption>Bernoulli numbers <span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">±</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sub></span></span></span> </caption> <tbody><tr> <th><span class="texhtml mvar" style="font-style:italic;">n</span></th> <th>fraction</th> <th>decimal </th></tr> <tr> <td>0</td> <td>1</td> <td>+1.000000000 </td></tr> <tr> <td>1</td> <td>±<style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>±0.500000000 </td></tr> <tr> <td>2</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td>+0.166666666 </td></tr> <tr style="background:#ABE"> <td>3</td> <td>0</td> <td>+0.000000000 </td></tr> <tr> <td>4</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td>−0.033333333 </td></tr> <tr style="background:#ABE"> <td>5</td> <td>0</td> <td>+0.000000000 </td></tr> <tr> <td>6</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">42</span></span>⁠</span></td> <td>+0.023809523 </td></tr> <tr style="background:#ABE"> <td>7</td> <td>0</td> <td>+0.000000000 </td></tr> <tr> <td>8</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td>−0.033333333 </td></tr> <tr style="background:#ABE"> <td>9</td> <td>0</td> <td>+0.000000000 </td></tr> <tr> <td>10</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">66</span></span>⁠</span></td> <td>+0.075757575 </td></tr> <tr style="background:#ABE"> <td>11</td> <td>0</td> <td>+0.000000000 </td></tr> <tr> <td>12</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">691</span><span class="sr-only">/</span><span class="den">2730</span></span>⁠</span></td> <td>−0.253113553 </td></tr> <tr style="background:#ABE"> <td>13</td> <td>0</td> <td>+0.000000000 </td></tr> <tr> <td>14</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td>+1.166666666 </td></tr> <tr style="background:#ABE"> <td>15</td> <td>0</td> <td>+0.000000000 </td></tr> <tr> <td>16</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3617</span><span class="sr-only">/</span><span class="den">510</span></span>⁠</span></td> <td>−7.092156862 </td></tr> <tr style="background:#ABE"> <td>17</td> <td>0</td> <td>+0.000000000 </td></tr> <tr> <td>18</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">43867</span><span class="sr-only">/</span><span class="den">798</span></span>⁠</span></td> <td>+54.97117794 </td></tr> <tr style="background:#ABE"> <td>19</td> <td>0</td> <td>+0.000000000 </td></tr> <tr> <td>20</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">174611</span><span class="sr-only">/</span><span class="den">330</span></span>⁠</span></td> <td>−529.1242424 </td></tr></tbody></table> <p>In <a href="/wiki/Mathematics" title="Mathematics">mathematics</a>, the <b>Bernoulli numbers</b> <span class="texhtml"><i>B</i><sub><i>n</i></sub></span> are a <a href="/wiki/Sequence" title="Sequence">sequence</a> of <a href="/wiki/Rational_number" title="Rational number">rational numbers</a> which occur frequently in <a href="/wiki/Mathematical_analysis" title="Mathematical analysis">analysis</a>. The Bernoulli numbers appear in (and can be defined by) the <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> expansions of the <a href="/wiki/Tangent_function" class="mw-redirect" title="Tangent function">tangent</a> and <a href="/wiki/Hyperbolic_function" class="mw-redirect" title="Hyperbolic function">hyperbolic tangent</a> functions, in <a href="/wiki/Faulhaber%27s_formula" title="Faulhaber's formula">Faulhaber's formula</a> for the sum of <i>m</i>-th powers of the first <i>n</i> positive integers, in the <a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a>, and in expressions for certain values of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>. </p><p>The values of the first 20 Bernoulli numbers are given in the adjacent table. Two conventions are used in the literature, denoted here by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}^{-{}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}^{-{}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/329eac7d7c4716537965a031529735c7708382d0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.275ex; height:2.843ex;" alt="{\displaystyle B_{n}^{-{}}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}^{+{}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}^{+{}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55a5c0445044c7b4b59ae151e6e7a8c0a0886558" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.275ex; height:2.843ex;" alt="{\displaystyle B_{n}^{+{}}}"></span>; they differ only for <span class="texhtml"><i>n</i> = 1</span>, where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1}^{-{}}=-1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> <mo>=</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1}^{-{}}=-1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c266ffff482a015334b3e66fc8a746317ec270f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.669ex; height:3.176ex;" alt="{\displaystyle B_{1}^{-{}}=-1/2}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1}^{+{}}=+1/2}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> <mo>=</mo> <mo>+</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1}^{+{}}=+1/2}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bcf6d1e4bcd3ba88ff33c5ceb1e3756fc963b506" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.669ex; height:3.176ex;" alt="{\displaystyle B_{1}^{+{}}=+1/2}"></span>. For every odd <span class="texhtml"><i>n</i> > 1</span>, <span class="texhtml"><i>B</i><sub><i>n</i></sub> = 0</span>. For every even <span class="texhtml"><i>n</i> > 0</span>, <span class="texhtml"><i>B</i><sub><i>n</i></sub></span> is negative if <span class="texhtml"><i>n</i></span> is divisible by 4 and positive otherwise. The Bernoulli numbers are special values of the <a href="/wiki/Bernoulli_polynomials" title="Bernoulli polynomials">Bernoulli polynomials</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}(x)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}(x)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9192cc7ff70d2e7aff04305da16f00c76a42e1bd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.121ex; height:2.843ex;" alt="{\displaystyle B_{n}(x)}"></span>, with <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}^{-{}}=B_{n}(0)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}^{-{}}=B_{n}(0)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f0b194fc4859d8462731b5811c1d742efb37c14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.328ex; height:3.009ex;" alt="{\displaystyle B_{n}^{-{}}=B_{n}(0)}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}^{+}=B_{n}(1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}^{+}=B_{n}(1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e8a929d3e5b9c7b9056b395d49e9f78e5331a1e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:12.328ex; height:3.009ex;" alt="{\displaystyle B_{n}^{+}=B_{n}(1)}"></span>.<sup id="cite_ref-Weisstein2016_1-0" class="reference"><a href="#cite_note-Weisstein2016-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p><p>The Bernoulli numbers were discovered around the same time by the Swiss mathematician <a href="/wiki/Jacob_Bernoulli" title="Jacob Bernoulli">Jacob Bernoulli</a>, after whom they are named, and independently by Japanese mathematician <a href="/wiki/Seki_Takakazu" title="Seki Takakazu">Seki Takakazu</a>. Seki's discovery was posthumously published in 1712<sup id="cite_ref-Selin1997_891_2-0" class="reference"><a href="#cite_note-Selin1997_891-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-SmithMikami1914_108_3-0" class="reference"><a href="#cite_note-SmithMikami1914_108-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Kitagawa_4-0" class="reference"><a href="#cite_note-Kitagawa-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> in his work <i>Katsuyō Sanpō</i>; Bernoulli's, also posthumously, in his <i><a href="/wiki/Ars_Conjectandi" title="Ars Conjectandi">Ars Conjectandi</a></i> of 1713. <a href="/wiki/Ada_Lovelace" title="Ada Lovelace">Ada Lovelace</a>'s <a href="/wiki/Note_G" title="Note G">note G</a> on the <a href="/wiki/Analytical_Engine" class="mw-redirect" title="Analytical Engine">Analytical Engine</a> from 1842 describes an <a href="/wiki/Algorithm" title="Algorithm">algorithm</a> for generating Bernoulli numbers with <a href="/wiki/Charles_Babbage" title="Charles Babbage">Babbage</a>'s machine;<sup id="cite_ref-Menabrea1842_noteG_5-0" class="reference"><a href="#cite_note-Menabrea1842_noteG-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> it is disputed <a href="/wiki/Ada_Lovelace#Controversy_over_contribution" title="Ada Lovelace">whether Lovelace or Babbage developed the algorithm</a>. As a result, the Bernoulli numbers have the distinction of being the subject of the first published complex <a href="/wiki/Computer_program" title="Computer program">computer program</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Notation">Notation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=1" title="Edit section: Notation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The superscript <span class="texhtml">±</span> used in this article distinguishes the two sign conventions for Bernoulli numbers. Only the <span class="texhtml"><i>n</i> = 1</span> term is affected: </p> <ul><li><span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sub></span></span> </span> with <span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> </span> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027641" class="extiw" title="oeis:A027641">A027641</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span>) is the sign convention prescribed by <a href="/wiki/NIST" class="mw-redirect" title="NIST">NIST</a> and most modern textbooks.<sup id="cite_ref-FOOTNOTEArfken1970278_6-0" class="reference"><a href="#cite_note-FOOTNOTEArfken1970278-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup></li> <li><span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sub></span></span></span> with <span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = +<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> </span> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A164555" class="extiw" title="oeis:A164555">A164555</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span>) was used in the older literature,<sup id="cite_ref-Weisstein2016_1-1" class="reference"><a href="#cite_note-Weisstein2016-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> and (since 2022) by <a href="/wiki/Donald_Knuth" title="Donald Knuth">Donald Knuth</a><sup id="cite_ref-7" class="reference"><a href="#cite_note-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> following Peter Luschny's "Bernoulli Manifesto".<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup></li></ul> <p>In the formulas below, one can switch from one sign convention to the other with the relation <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}^{+}=(-1)^{n}B_{n}^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}^{+}=(-1)^{n}B_{n}^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc22fd5f2d42d2020de196bae82f11b77c07ed1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.646ex; height:3.009ex;" alt="{\displaystyle B_{n}^{+}=(-1)^{n}B_{n}^{-}}"></span>, or for integer <span class="texhtml mvar" style="font-style:italic;">n</span> = 2 or greater, simply ignore it. </p><p>Since <span class="texhtml"><i>B</i><sub><i>n</i></sub> = 0</span> for all odd <span class="texhtml"><i>n</i> > 1</span>, and many formulas only involve even-index Bernoulli numbers, a few authors write "<span class="texhtml"><i>B</i><sub><i>n</i></sub></span>" instead of <span class="texhtml"><i>B</i><sub>2<i>n</i></sub> </span>. This article does not follow that notation. </p> <div class="mw-heading mw-heading2"><h2 id="History">History</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=2" title="Edit section: History"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Early_history">Early history</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=3" title="Edit section: Early history"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Bernoulli numbers are rooted in the early history of the computation of sums of integer powers, which have been of interest to mathematicians since antiquity. </p> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Seki_Kowa_Katsuyo_Sampo_Bernoulli_numbers.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Seki_Kowa_Katsuyo_Sampo_Bernoulli_numbers.png/220px-Seki_Kowa_Katsuyo_Sampo_Bernoulli_numbers.png" decoding="async" width="220" height="290" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Seki_Kowa_Katsuyo_Sampo_Bernoulli_numbers.png/330px-Seki_Kowa_Katsuyo_Sampo_Bernoulli_numbers.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/4/4c/Seki_Kowa_Katsuyo_Sampo_Bernoulli_numbers.png/440px-Seki_Kowa_Katsuyo_Sampo_Bernoulli_numbers.png 2x" data-file-width="1614" data-file-height="2124" /></a><figcaption>A page from Seki Takakazu's <i>Katsuyō Sanpō</i> (1712), tabulating binomial coefficients and Bernoulli numbers</figcaption></figure> <p>Methods to calculate the sum of the first <span class="texhtml mvar" style="font-style:italic;">n</span> positive integers, the sum of the squares and of the cubes of the first <span class="texhtml mvar" style="font-style:italic;">n</span> positive integers were known, but there were no real 'formulas', only descriptions given entirely in words. Among the great mathematicians of antiquity to consider this problem were <a href="/wiki/Pythagoras" title="Pythagoras">Pythagoras</a> (c. 572–497 BCE, Greece), <a href="/wiki/Archimedes" title="Archimedes">Archimedes</a> (287–212 BCE, Italy), <a href="/wiki/Aryabhata" title="Aryabhata">Aryabhata</a> (b. 476, India), <a href="/wiki/Abu_Bakr_al-Karaji" class="mw-redirect" title="Abu Bakr al-Karaji">Abu Bakr al-Karaji</a> (d. 1019, Persia) and Abu Ali al-Hasan ibn al-Hasan ibn <a href="/wiki/Al-Haytham" class="mw-redirect" title="Al-Haytham">al-Haytham</a> (965–1039, Iraq). </p><p>During the late sixteenth and early seventeenth centuries mathematicians made significant progress. In the West <a href="/wiki/Thomas_Harriot" title="Thomas Harriot">Thomas Harriot</a> (1560–1621) of England, <a href="/wiki/Johann_Faulhaber" title="Johann Faulhaber">Johann Faulhaber</a> (1580–1635) of Germany, <a href="/wiki/Pierre_de_Fermat" title="Pierre de Fermat">Pierre de Fermat</a> (1601–1665) and fellow French mathematician <a href="/wiki/Blaise_Pascal" title="Blaise Pascal">Blaise Pascal</a> (1623–1662) all played important roles. </p><p>Thomas Harriot seems to have been the first to derive and write formulas for sums of powers using symbolic notation, but even he calculated only up to the sum of the fourth powers. Johann Faulhaber gave formulas for sums of powers up to the 17th power in his 1631 <i>Academia Algebrae</i>, far higher than anyone before him, but he did not give a general formula. </p><p>Blaise Pascal in 1654 proved <a href="/wiki/Faulhaber%27s_formula" title="Faulhaber's formula"><i>Pascal's identity</i></a> relating the sums of the <span class="texhtml"><i>p</i></span>th powers of the first <span class="texhtml"><i>n</i></span> positive integers for <span class="texhtml"><i>p</i> = 0, 1, 2, ..., <i>k</i></span>. </p><p>The Swiss mathematician Jakob Bernoulli (1654–1705) was the first to realize the existence of a single sequence of constants <span class="texhtml"><i>B</i><sub>0</sub>, <i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>,...</span> which provide a uniform formula for all sums of powers.<sup id="cite_ref-FOOTNOTEKnuth1993_9-0" class="reference"><a href="#cite_note-FOOTNOTEKnuth1993-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>The joy Bernoulli experienced when he hit upon the pattern needed to compute quickly and easily the coefficients of his formula for the sum of the <span class="texhtml mvar" style="font-style:italic;">c</span>th powers for any positive integer <span class="texhtml"><i>c</i></span> can be seen from his comment. He wrote: </p> <dl><dd>"With the help of this table, it took me less than half of a quarter of an hour to find that the tenth powers of the first 1000 numbers being added together will yield the sum 91,409,924,241,424,243,424,241,924,242,500."</dd></dl> <p>Bernoulli's result was published posthumously in <i><a href="/wiki/Ars_Conjectandi" title="Ars Conjectandi">Ars Conjectandi</a></i> in 1713. <a href="/wiki/Seki_Takakazu" title="Seki Takakazu">Seki Takakazu</a> independently discovered the Bernoulli numbers and his result was published a year earlier, also posthumously, in 1712.<sup id="cite_ref-Selin1997_891_2-1" class="reference"><a href="#cite_note-Selin1997_891-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> However, Seki did not present his method as a formula based on a sequence of constants. </p><p>Bernoulli's formula for sums of powers is the most useful and generalizable formulation to date. The coefficients in Bernoulli's formula are now called Bernoulli numbers, following a suggestion of <a href="/wiki/Abraham_de_Moivre" title="Abraham de Moivre">Abraham de Moivre</a>. </p><p>Bernoulli's formula is sometimes called <a href="/wiki/Faulhaber%27s_formula" title="Faulhaber's formula">Faulhaber's formula</a> after Johann Faulhaber who found remarkable ways to calculate sum of powers but never stated Bernoulli's formula. According to Knuth<sup id="cite_ref-FOOTNOTEKnuth1993_9-1" class="reference"><a href="#cite_note-FOOTNOTEKnuth1993-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> a rigorous proof of Faulhaber's formula was first published by <a href="/wiki/Carl_Gustav_Jacob_Jacobi" title="Carl Gustav Jacob Jacobi">Carl Jacobi</a> in 1834.<sup id="cite_ref-Jacobi1834_10-0" class="reference"><a href="#cite_note-Jacobi1834-10"><span class="cite-bracket">[</span>10<span class="cite-bracket">]</span></a></sup> Knuth's in-depth study of Faulhaber's formula concludes (the nonstandard notation on the LHS is explained further on): </p> <dl><dd><i>"Faulhaber never discovered the Bernoulli numbers; i.e., he never realized that a single sequence of constants</i> <span class="texhtml"><i>B</i><sub>0</sub>, <i>B</i><sub>1</sub>, <i>B</i><sub>2</sub>,</span> <i>... would provide a uniform</i> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum n^{m}={\frac {1}{m+1}}\left(B_{0}n^{m+1}-{\binom {m+1}{1}}B_{1}n^{m}+{\binom {m+1}{2}}B_{2}n^{m-1}-\cdots +(-1)^{m}{\binom {m+1}{m}}B_{m}n\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∑<!-- ∑ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mi>n</mi> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum n^{m}={\frac {1}{m+1}}\left(B_{0}n^{m+1}-{\binom {m+1}{1}}B_{1}n^{m}+{\binom {m+1}{2}}B_{2}n^{m-1}-\cdots +(-1)^{m}{\binom {m+1}{m}}B_{m}n\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2d4984d9288fee26abd5b1056cc7fffc014b2c1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:80.163ex; height:3.676ex;" alt="{\textstyle \sum n^{m}={\frac {1}{m+1}}\left(B_{0}n^{m+1}-{\binom {m+1}{1}}B_{1}n^{m}+{\binom {m+1}{2}}B_{2}n^{m-1}-\cdots +(-1)^{m}{\binom {m+1}{m}}B_{m}n\right)}"></span></dd></dl></dd> <dd><i>for all sums of powers. He never mentioned, for example, the fact that almost half of the coefficients turned out to be zero after he had converted his formulas for</i> <span class="texhtml">Σ <i>n<sup>m</sup></i></span> <i>from polynomials in <span class="texhtml mvar" style="font-style:italic;">N</span> to polynomials in <span class="texhtml mvar" style="font-style:italic;">n</span>."<sup id="cite_ref-FOOTNOTEKnuth199314_11-0" class="reference"><a href="#cite_note-FOOTNOTEKnuth199314-11"><span class="cite-bracket">[</span>11<span class="cite-bracket">]</span></a></sup></i></dd></dl> <p>In the above Knuth meant <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1}^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1}^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1b92c3380e64a08b439589e4c3407b09ba625676" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.275ex; height:3.176ex;" alt="{\displaystyle B_{1}^{-}}"></span>; instead using <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{1}^{+}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{1}^{+}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/caa61e42fdddd902ee7eddb6f1a211dbf95864b9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.275ex; height:3.176ex;" alt="{\displaystyle B_{1}^{+}}"></span> the formula avoids subtraction: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\textstyle \sum n^{m}={\frac {1}{m+1}}\left(B_{0}n^{m+1}+{\binom {m+1}{1}}B_{1}^{+}n^{m}+{\binom {m+1}{2}}B_{2}n^{m-1}+\cdots +{\binom {m+1}{m}}B_{m}n\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∑<!-- ∑ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>1</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mn>2</mn> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mi>n</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\textstyle \sum n^{m}={\frac {1}{m+1}}\left(B_{0}n^{m+1}+{\binom {m+1}{1}}B_{1}^{+}n^{m}+{\binom {m+1}{2}}B_{2}n^{m-1}+\cdots +{\binom {m+1}{m}}B_{m}n\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a6373388302cd9ee514fb2474fb3a03ad80fee23" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:75.199ex; height:3.676ex;" alt="{\textstyle \sum n^{m}={\frac {1}{m+1}}\left(B_{0}n^{m+1}+{\binom {m+1}{1}}B_{1}^{+}n^{m}+{\binom {m+1}{2}}B_{2}n^{m-1}+\cdots +{\binom {m+1}{m}}B_{m}n\right).}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Reconstruction_of_"Summae_Potestatum""><span id="Reconstruction_of_.22Summae_Potestatum.22"></span>Reconstruction of "Summae Potestatum"</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=4" title="Edit section: Reconstruction of "Summae Potestatum""><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:JakobBernoulliSummaePotestatum.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/JakobBernoulliSummaePotestatum.png/330px-JakobBernoulliSummaePotestatum.png" decoding="async" width="330" height="419" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/7/74/JakobBernoulliSummaePotestatum.png/495px-JakobBernoulliSummaePotestatum.png 1.5x, //upload.wikimedia.org/wikipedia/commons/7/74/JakobBernoulliSummaePotestatum.png 2x" data-file-width="576" data-file-height="732" /></a><figcaption>Jakob Bernoulli's "Summae Potestatum", 1713<sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">[</span>a<span class="cite-bracket">]</span></a></sup></figcaption></figure> <p>The Bernoulli numbers <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A164555" class="extiw" title="oeis:A164555">A164555</a></span>(n)/<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span>(n) were introduced by Jakob Bernoulli in the book <i><a href="/wiki/Ars_Conjectandi" title="Ars Conjectandi">Ars Conjectandi</a></i> published posthumously in 1713 page 97. The main formula can be seen in the second half of the corresponding facsimile. The constant coefficients denoted <span class="texhtml"><i>A</i></span>, <span class="texhtml"><i>B</i></span>, <span class="texhtml"><i>C</i></span> and <span class="texhtml"><i>D</i></span> by Bernoulli are mapped to the notation which is now prevalent as <span class="texhtml"><i>A</i> = <i>B</i><sub>2</sub></span>, <span class="texhtml"><i>B</i> = <i>B</i><sub>4</sub></span>, <span class="texhtml"><i>C</i> = <i>B</i><sub>6</sub></span>, <span class="texhtml"><i>D</i> = <i>B</i><sub>8</sub></span>. The expression <span class="texhtml"><i>c</i>·<i>c</i>−1·<i>c</i>−2·<i>c</i>−3</span> means <span class="texhtml"><i>c</i>·(<i>c</i>−1)·(<i>c</i>−2)·(<i>c</i>−3)</span> – the small dots are used as grouping symbols. Using today's terminology these expressions are <a href="/wiki/Pochhammer_symbol" class="mw-redirect" title="Pochhammer symbol">falling factorial powers</a> <span class="texhtml"><i>c</i><sup><span style="text-decoration: underline;"><i>k</i></span></sup></span>. The factorial notation <span class="texhtml"><i>k</i>!</span> as a shortcut for <span class="texhtml">1 × 2 × ... × <i>k</i></span> was not introduced until 100 years later. The integral symbol on the left hand side goes back to <a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a> in 1675 who used it as a long letter <span class="texhtml"><i>S</i></span> for "summa" (sum).<sup id="cite_ref-13" class="reference"><a href="#cite_note-13"><span class="cite-bracket">[</span>b<span class="cite-bracket">]</span></a></sup> The letter <span class="texhtml"><i>n</i></span> on the left hand side is not an index of <a href="/wiki/Summation" title="Summation">summation</a> but gives the upper limit of the range of summation which is to be understood as <span class="texhtml">1, 2, ..., <i>n</i></span>. Putting things together, for positive <span class="texhtml"><i>c</i></span>, today a mathematician is likely to write Bernoulli's formula as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}k^{c}={\frac {n^{c+1}}{c+1}}+{\frac {1}{2}}n^{c}+\sum _{k=2}^{c}{\frac {B_{k}}{k!}}c^{\underline {k-1}}n^{c-k+1}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> </msup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}k^{c}={\frac {n^{c+1}}{c+1}}+{\frac {1}{2}}n^{c}+\sum _{k=2}^{c}{\frac {B_{k}}{k!}}c^{\underline {k-1}}n^{c-k+1}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ad3bc96c357dfa3baafe1119960dba553a7693e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:43.71ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}k^{c}={\frac {n^{c+1}}{c+1}}+{\frac {1}{2}}n^{c}+\sum _{k=2}^{c}{\frac {B_{k}}{k!}}c^{\underline {k-1}}n^{c-k+1}.}"></span></dd></dl> <p>This formula suggests setting <span class="texhtml"><i>B</i><sub>1</sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span> when switching from the so-called 'archaic' enumeration which uses only the even indices 2, 4, 6... to the modern form (more on different conventions in the next paragraph). Most striking in this context is the fact that the <a href="/wiki/Falling_factorial#Real_numbers_and_negative_n" class="mw-redirect" title="Falling factorial">falling factorial</a> <span class="texhtml"><i>c</i><sup><span style="text-decoration: underline;"><i>k</i>−1</span></sup></span> has for <span class="texhtml"><i>k</i> = 0</span> the value <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>c</i> + 1</span></span>⁠</span></span>.<sup id="cite_ref-FOOTNOTEGrahamKnuthPatashnik1989Section_2.51_14-0" class="reference"><a href="#cite_note-FOOTNOTEGrahamKnuthPatashnik1989Section_2.51-14"><span class="cite-bracket">[</span>12<span class="cite-bracket">]</span></a></sup> Thus Bernoulli's formula can be written </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}k^{c}=\sum _{k=0}^{c}{\frac {B_{k}}{k!}}c^{\underline {k-1}}n^{c-k+1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>c</mi> <mrow class="MJX-TeXAtom-ORD"> <munder> <mrow> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>_<!-- _ --></mo> </munder> </mrow> </msup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}k^{c}=\sum _{k=0}^{c}{\frac {B_{k}}{k!}}c^{\underline {k-1}}n^{c-k+1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94800378ba11b922cadd6795c732684350c35bc1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:27.199ex; height:7.009ex;" alt="{\displaystyle \sum _{k=1}^{n}k^{c}=\sum _{k=0}^{c}{\frac {B_{k}}{k!}}c^{\underline {k-1}}n^{c-k+1}}"></span></dd></dl> <p>if <span class="texhtml"><i>B</i><sub>1</sub> = 1/2</span>, recapturing the value Bernoulli gave to the coefficient at that position. </p><p>The formula for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \sum _{k=1}^{n}k^{9}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \sum _{k=1}^{n}k^{9}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6083bca54a40c95a8df6812c6901238f95ead91" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:8.296ex; height:3.176ex;" alt="{\displaystyle \textstyle \sum _{k=1}^{n}k^{9}}"></span> in the first half of the quotation by Bernoulli above contains an error at the last term; it should be <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\tfrac {3}{20}}n^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>20</mn> </mfrac> </mstyle> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\tfrac {3}{20}}n^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e38b33d36fcb0e951ebf4d0c922e28d21dc8ae2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:6.737ex; height:3.676ex;" alt="{\displaystyle -{\tfrac {3}{20}}n^{2}}"></span> instead of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -{\tfrac {1}{12}}n^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mstyle> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -{\tfrac {1}{12}}n^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca96e1525b32a6766b1977134543c0f397db6871" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.737ex; height:3.509ex;" alt="{\displaystyle -{\tfrac {1}{12}}n^{2}}"></span>. </p> <div class="mw-heading mw-heading2"><h2 id="Definitions">Definitions</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=5" title="Edit section: Definitions"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Many characterizations of the Bernoulli numbers have been found in the last 300 years, and each could be used to introduce these numbers. Here only four of the most useful ones are mentioned: </p> <ul><li>a recursive equation,</li> <li>an explicit formula,</li> <li>a generating function,</li> <li>an integral expression.</li></ul> <p>For the proof of the <a href="/wiki/Logical_equivalence" title="Logical equivalence">equivalence</a> of the four approaches.<sup id="cite_ref-15" class="reference"><a href="#cite_note-15"><span class="cite-bracket">[</span>13<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Recursive_definition">Recursive definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=6" title="Edit section: Recursive definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Bernoulli numbers obey the sum formulas<sup id="cite_ref-Weisstein2016_1-2" class="reference"><a href="#cite_note-Weisstein2016-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{k=0}^{m}{\binom {m+1}{k}}B_{k}^{-{}}&=\delta _{m,0}\\\sum _{k=0}^{m}{\binom {m+1}{k}}B_{k}^{+{}}&=m+1\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{k=0}^{m}{\binom {m+1}{k}}B_{k}^{-{}}&=\delta _{m,0}\\\sum _{k=0}^{m}{\binom {m+1}{k}}B_{k}^{+{}}&=m+1\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/05f4218423d2c0287c23de640d572ae231647835" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:26.374ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\sum _{k=0}^{m}{\binom {m+1}{k}}B_{k}^{-{}}&=\delta _{m,0}\\\sum _{k=0}^{m}{\binom {m+1}{k}}B_{k}^{+{}}&=m+1\end{aligned}}}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m=0,1,2...}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2...</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m=0,1,2...}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16e0a6d44602dd78f055b7849a7325e5479e3313" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.635ex; height:2.509ex;" alt="{\displaystyle m=0,1,2...}"></span> and <span class="texhtml"><i>δ</i></span> denotes the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a>. </p><p>The first of these is sometimes written<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">[</span>14<span class="cite-bracket">]</span></a></sup> as the formula (for m > 1) <span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (B+1)^{m}-B_{m}=0,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>B</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (B+1)^{m}-B_{m}=0,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ff540d6c6a910f3310a97bc5f1a8cf50ea9c981" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:20.438ex; height:2.843ex;" alt="{\displaystyle (B+1)^{m}-B_{m}=0,}"></span> where the power is expanded formally using the binomial theorem and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B^{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B^{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d1f1ebbc79c2f3fe878d51107b5497de8f3c964c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.853ex; height:2.676ex;" alt="{\displaystyle B^{k}}"></span> is replaced by <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a6457760e36cf45e1471e33bcc1536cb4802fb9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.853ex; height:2.509ex;" alt="{\displaystyle B_{k}}"></span>. </p><p>Solving for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{m}^{\mp {}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>∓<!-- ∓ --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{m}^{\mp {}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8f4ae8520e36a9804c722ae23587fda18d499168" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.439ex; height:2.843ex;" alt="{\displaystyle B_{m}^{\mp {}}}"></span> gives the recursive formulas<sup id="cite_ref-17" class="reference"><a href="#cite_note-17"><span class="cite-bracket">[</span>15<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}B_{m}^{-{}}&=\delta _{m,0}-\sum _{k=0}^{m-1}{\binom {m}{k}}{\frac {B_{k}^{-{}}}{m-k+1}}\\B_{m}^{+}&=1-\sum _{k=0}^{m-1}{\binom {m}{k}}{\frac {B_{k}^{+}}{m-k+1}}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}B_{m}^{-{}}&=\delta _{m,0}-\sum _{k=0}^{m-1}{\binom {m}{k}}{\frac {B_{k}^{-{}}}{m-k+1}}\\B_{m}^{+}&=1-\sum _{k=0}^{m-1}{\binom {m}{k}}{\frac {B_{k}^{+}}{m-k+1}}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/393561628c724ec2226e4934ef4ba6f67388d3a2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.838ex; width:34.439ex; height:14.843ex;" alt="{\displaystyle {\begin{aligned}B_{m}^{-{}}&=\delta _{m,0}-\sum _{k=0}^{m-1}{\binom {m}{k}}{\frac {B_{k}^{-{}}}{m-k+1}}\\B_{m}^{+}&=1-\sum _{k=0}^{m-1}{\binom {m}{k}}{\frac {B_{k}^{+}}{m-k+1}}.\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Explicit_definition">Explicit definition</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=7" title="Edit section: Explicit definition"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In 1893 <a href="/wiki/Louis_Saalsch%C3%BCtz" title="Louis Saalschütz">Louis Saalschütz</a> listed a total of 38 explicit formulas for the Bernoulli numbers,<sup id="cite_ref-Saalschütz1893_18-0" class="reference"><a href="#cite_note-Saalschütz1893-18"><span class="cite-bracket">[</span>16<span class="cite-bracket">]</span></a></sup> usually giving some reference in the older literature. One of them is (for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m\geq 1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>≥<!-- ≥ --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m\geq 1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1e0f3243e9d7f06bee548558bf20aaa9b5263d3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:6.301ex; height:2.343ex;" alt="{\displaystyle m\geq 1}"></span>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}B_{m}^{-}&=\sum _{k=0}^{m}{\frac {1}{k+1}}\sum _{j=0}^{k}{\binom {k}{j}}(-1)^{j}j^{m}\\B_{m}^{+}&=\sum _{k=0}^{m}{\frac {1}{k+1}}\sum _{j=0}^{k}{\binom {k}{j}}(-1)^{j}(j+1)^{m}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <msup> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}B_{m}^{-}&=\sum _{k=0}^{m}{\frac {1}{k+1}}\sum _{j=0}^{k}{\binom {k}{j}}(-1)^{j}j^{m}\\B_{m}^{+}&=\sum _{k=0}^{m}{\frac {1}{k+1}}\sum _{j=0}^{k}{\binom {k}{j}}(-1)^{j}(j+1)^{m}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/429c0d02ac41dab739a43044de9edef1478ee7db" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:40.625ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}B_{m}^{-}&=\sum _{k=0}^{m}{\frac {1}{k+1}}\sum _{j=0}^{k}{\binom {k}{j}}(-1)^{j}j^{m}\\B_{m}^{+}&=\sum _{k=0}^{m}{\frac {1}{k+1}}\sum _{j=0}^{k}{\binom {k}{j}}(-1)^{j}(j+1)^{m}.\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Generating_function">Generating function</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=8" title="Edit section: Generating function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The exponential <a href="/wiki/Generating_function" title="Generating function">generating functions</a> are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{alignedat}{3}{\frac {t}{e^{t}-1}}&={\frac {t}{2}}\left(\operatorname {coth} {\frac {t}{2}}-1\right)&&=\sum _{m=0}^{\infty }{\frac {B_{m}^{-{}}t^{m}}{m!}}\\{\frac {te^{t}}{e^{t}-1}}={\frac {t}{1-e^{-t}}}&={\frac {t}{2}}\left(\operatorname {coth} {\frac {t}{2}}+1\right)&&=\sum _{m=0}^{\infty }{\frac {B_{m}^{+}t^{m}}{m!}}.\end{alignedat}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left" rowspacing="3pt" columnspacing="0em 0em 0em 0em 0em 0em" displaystyle="true"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>coth</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mn>2</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mrow> <mrow> <mi>m</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>t</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mi>coth</mi> <mo>⁡<!-- --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>t</mi> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mtd> <mtd /> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mrow> <mrow> <mi>m</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{alignedat}{3}{\frac {t}{e^{t}-1}}&={\frac {t}{2}}\left(\operatorname {coth} {\frac {t}{2}}-1\right)&&=\sum _{m=0}^{\infty }{\frac {B_{m}^{-{}}t^{m}}{m!}}\\{\frac {te^{t}}{e^{t}-1}}={\frac {t}{1-e^{-t}}}&={\frac {t}{2}}\left(\operatorname {coth} {\frac {t}{2}}+1\right)&&=\sum _{m=0}^{\infty }{\frac {B_{m}^{+}t^{m}}{m!}}.\end{alignedat}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca2446067113eeb75dd9ba80c3c36e130d7a7464" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:52.777ex; height:14.176ex;" alt="{\displaystyle {\begin{alignedat}{3}{\frac {t}{e^{t}-1}}&={\frac {t}{2}}\left(\operatorname {coth} {\frac {t}{2}}-1\right)&&=\sum _{m=0}^{\infty }{\frac {B_{m}^{-{}}t^{m}}{m!}}\\{\frac {te^{t}}{e^{t}-1}}={\frac {t}{1-e^{-t}}}&={\frac {t}{2}}\left(\operatorname {coth} {\frac {t}{2}}+1\right)&&=\sum _{m=0}^{\infty }{\frac {B_{m}^{+}t^{m}}{m!}}.\end{alignedat}}}"></span></dd></dl> <p>where the substitution is <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle t\to -t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>t</mi> <mo stretchy="false">→<!-- → --></mo> <mo>−<!-- − --></mo> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle t\to -t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6a6a9c7f4ef3bc3301e225656972f6ab91bb157" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.101ex; height:2.176ex;" alt="{\displaystyle t\to -t}"></span>. The two generating functions only differ by <i>t</i>. <style data-mw-deduplicate="TemplateStyles:r1256386598">.mw-parser-output .cot-header-mainspace{background:#F0F2F5;color:inherit}.mw-parser-output .cot-header-other{background:#CCFFCC;color:inherit}@media screen{html.skin-theme-clientpref-night .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-night .mw-parser-output .cot-header-other{background:#003500;color:inherit}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cot-header-mainspace{background:#14181F;color:inherit}html.skin-theme-clientpref-os .mw-parser-output .cot-header-other{background:#003500;color:inherit}}</style> </p> <div style="margin-left:0"> <table class="mw-collapsible mw-archivedtalk mw-collapsed" style="color:inherit; background: transparent; text-align: left; border: 1px solid Silver; margin: 0.2em auto auto; width:100%; clear: both; padding: 1px;"> <tbody><tr> <th class="cot-header-mainspace" style="; font-size:87%; padding:0.2em 0.3em; text-align:center;"><div style="font-size:115%;margin:0 4em">Proof</div> </th></tr> <tr> <td style="color:inherit; border: solid 1px Silver; padding: 0.6em; background: var(--background-color-base, #fff);"> <p>If we let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(t)=\sum _{i=1}^{\infty }f_{i}t^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(t)=\sum _{i=1}^{\infty }f_{i}t^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6c3622f9ce456eee2504e1cd761797cd93e2c16f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.808ex; height:6.843ex;" alt="{\displaystyle F(t)=\sum _{i=1}^{\infty }f_{i}t^{i}}"></span> and <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(t)=1/(1+F(t))=\sum _{i=0}^{\infty }g_{i}t^{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(t)=1/(1+F(t))=\sum _{i=0}^{\infty }g_{i}t^{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2dfa7ee2012543540c48a0270b3f65ef771e7f98" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.489ex; height:6.843ex;" alt="{\displaystyle G(t)=1/(1+F(t))=\sum _{i=0}^{\infty }g_{i}t^{i}}"></span> then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(t)=1-F(t)G(t).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>F</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mi>G</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(t)=1-F(t)G(t).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35821d44261847d4354cad46ddd5fb4cf843537e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:21.089ex; height:2.843ex;" alt="{\displaystyle G(t)=1-F(t)G(t).}"></span></dd></dl> <p>Then <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{0}=1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{0}=1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8adcdbc326a0270e3ceb5e0bce18652111dff107" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.424ex; height:2.509ex;" alt="{\displaystyle g_{0}=1}"></span> and for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m>0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>m</mi> <mo>></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle m>0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/501173910e6da8425b4e9d44a4e8643620bc2464" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:6.301ex; height:2.176ex;" alt="{\displaystyle m>0}"></span> the m<sup>th</sup> term in the series for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(t)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(t)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e3d6c09ba5569413364689bf4837c7b71ef0892f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.476ex; height:2.843ex;" alt="{\displaystyle G(t)}"></span> is: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle g_{m}t^{i}=-\sum _{j=0}^{m-1}f_{m-j}g_{j}t^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mo>=</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mi>j</mi> </mrow> </msub> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle g_{m}t^{i}=-\sum _{j=0}^{m-1}f_{m-j}g_{j}t^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/467b7b9c5813faa714aefd6deb425cb0d2217740" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:22.951ex; height:7.676ex;" alt="{\displaystyle g_{m}t^{i}=-\sum _{j=0}^{m-1}f_{m-j}g_{j}t^{m}}"></span></dd></dl> <p>If </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle F(t)={\frac {e^{t}-1}{t}}-1=\sum _{i=1}^{\infty }{\frac {t^{i}}{(i+1)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>F</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>t</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msup> <mrow> <mo stretchy="false">(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle F(t)={\frac {e^{t}-1}{t}}-1=\sum _{i=1}^{\infty }{\frac {t^{i}}{(i+1)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9fdfd689b32216d6074a318434dc23729a26193a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:33.178ex; height:6.843ex;" alt="{\displaystyle F(t)={\frac {e^{t}-1}{t}}-1=\sum _{i=1}^{\infty }{\frac {t^{i}}{(i+1)!}}}"></span></dd></dl> <p>then we find that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G(t)=t/(e^{t}-1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo stretchy="false">(</mo> <mi>t</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mo stretchy="false">(</mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>t</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G(t)=t/(e^{t}-1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8adbe534b37be2983c5df051d9aef8a70c52b811" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:17.298ex; height:3.009ex;" alt="{\displaystyle G(t)=t/(e^{t}-1)}"></span></dd></dl> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}m!g_{m}&=-\sum _{j=0}^{m-1}{\frac {m!}{j!}}{\frac {j!g_{j}}{(m-j+1)!}}\\&=-{\frac {1}{m+1}}\sum _{j=0}^{m-1}{\binom {m+1}{j}}j!g_{j}\\\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>m</mi> <mo>!</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>!</mo> </mrow> <mrow> <mi>j</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>j</mi> <mo>!</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>m</mi> <mo>−<!-- − --></mo> <mi>j</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mi>j</mi> <mo>!</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}m!g_{m}&=-\sum _{j=0}^{m-1}{\frac {m!}{j!}}{\frac {j!g_{j}}{(m-j+1)!}}\\&=-{\frac {1}{m+1}}\sum _{j=0}^{m-1}{\binom {m+1}{j}}j!g_{j}\\\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/324a38bee9dfc06c1350bdc036135c0402fb82c7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.171ex; width:35.414ex; height:15.509ex;" alt="{\displaystyle {\begin{aligned}m!g_{m}&=-\sum _{j=0}^{m-1}{\frac {m!}{j!}}{\frac {j!g_{j}}{(m-j+1)!}}\\&=-{\frac {1}{m+1}}\sum _{j=0}^{m-1}{\binom {m+1}{j}}j!g_{j}\\\end{aligned}}}"></span></dd></dl> <p>showing that the values of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i!g_{i}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>i</mi> <mo>!</mo> <msub> <mi>g</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle i!g_{i}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/567c8a05c48b04883b7505adad680e155b2bcbc4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:3.358ex; height:2.509ex;" alt="{\displaystyle i!g_{i}}"></span> obey the recursive formula for the Bernoulli numbers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{i}^{-}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{i}^{-}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abef886d008d31a3d123f76ae7a24fd98d3c42e7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.275ex; height:3.176ex;" alt="{\displaystyle B_{i}^{-}}"></span>. </p> </td></tr></tbody></table></div> <p>The (ordinary) generating function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle z^{-1}\psi _{1}(z^{-1})=\sum _{m=0}^{\infty }B_{m}^{+}z^{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>ψ<!-- ψ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle z^{-1}\psi _{1}(z^{-1})=\sum _{m=0}^{\infty }B_{m}^{+}z^{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/55fe3eb95729ad5f8ebd45204faf7b255c2ac944" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:24.456ex; height:6.843ex;" alt="{\displaystyle z^{-1}\psi _{1}(z^{-1})=\sum _{m=0}^{\infty }B_{m}^{+}z^{m}}"></span></dd></dl> <p>is an <a href="/wiki/Asymptotic_series" class="mw-redirect" title="Asymptotic series">asymptotic series</a>. It contains the <a href="/wiki/Trigamma_function" title="Trigamma function">trigamma function</a> <span class="texhtml"><i>ψ</i><sub>1</sub></span>. </p> <div class="mw-heading mw-heading3"><h3 id="Integral_Expression">Integral Expression</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=9" title="Edit section: Integral Expression"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>From the generating functions above, one can obtain the following integral formula for the even Bernoulli numbers: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2n}=4n(-1)^{n+1}\int _{0}^{\infty }{\frac {t^{2n-1}}{e^{2\pi t}-1}}\mathrm {d} t}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>4</mn> <mi>n</mi> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">d</mi> </mrow> <mi>t</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2n}=4n(-1)^{n+1}\int _{0}^{\infty }{\frac {t^{2n-1}}{e^{2\pi t}-1}}\mathrm {d} t}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/48e1e7590847b696c5115ea67be0e73c9ec7e8f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.317ex; height:6.176ex;" alt="{\displaystyle B_{2n}=4n(-1)^{n+1}\int _{0}^{\infty }{\frac {t^{2n-1}}{e^{2\pi t}-1}}\mathrm {d} t}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Bernoulli_numbers_and_the_Riemann_zeta_function">Bernoulli numbers and the Riemann zeta function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=10" title="Edit section: Bernoulli numbers and the Riemann zeta function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:BernoulliNumbersByZeta.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/BernoulliNumbersByZeta.svg/220px-BernoulliNumbersByZeta.svg.png" decoding="async" width="220" height="132" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/1d/BernoulliNumbersByZeta.svg/330px-BernoulliNumbersByZeta.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/1/1d/BernoulliNumbersByZeta.svg/440px-BernoulliNumbersByZeta.svg.png 2x" data-file-width="480" data-file-height="288" /></a><figcaption>The Bernoulli numbers as given by the Riemann zeta function.</figcaption></figure> <p>The Bernoulli numbers can be expressed in terms of the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>: </p> <dl><dd><span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sub></span></span> = −<i>n ζ</i>(1 − <i>n</i>)</span>           for <span class="texhtml"><i>n</i> ≥ 1</span> .</dd></dl> <p>Here the argument of the zeta function is <i>0 </i>or negative. As <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (k)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (k)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ec6e8a5b5544a95f7e2c04134743a6ed0b12772" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.116ex; height:2.843ex;" alt="{\displaystyle \zeta (k)}"></span> is zero for negative even integers (the <a href="/wiki/Riemann_zeta_function#Zeros,_the_critical_line,_and_the_Riemann_hypothesis" title="Riemann zeta function">trivial zeroes</a>), if <i>n>1</i> is odd, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (1-n)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>n</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (1-n)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ef1996a10814372ae7cdebdc289b4ca1113fe76" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.302ex; height:2.843ex;" alt="{\displaystyle \zeta (1-n)}"></span> is zero. </p><p>By means of the zeta <a href="/wiki/Riemann_zeta_function#Riemann's_functional_equation" title="Riemann zeta function">functional equation</a> and the gamma <a href="/wiki/Gamma_function#General" title="Gamma function">reflection formula</a> the following relation can be obtained:<sup id="cite_ref-FOOTNOTEArfken1970279_19-0" class="reference"><a href="#cite_note-FOOTNOTEArfken1970279-19"><span class="cite-bracket">[</span>17<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2n}={\frac {(-1)^{n+1}2(2n)!}{(2\pi )^{2n}}}\zeta (2n)\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mn>2</mn> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2n}={\frac {(-1)^{n+1}2(2n)!}{(2\pi )^{2n}}}\zeta (2n)\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e5fed8a1d28f2196fc17d7631657be9d35cedb85" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:29.798ex; height:6.676ex;" alt="{\displaystyle B_{2n}={\frac {(-1)^{n+1}2(2n)!}{(2\pi )^{2n}}}\zeta (2n)\quad }"></span> for <span class="texhtml"><i>n</i> ≥ 1</span> .</dd></dl> <p>Now the argument of the zeta function is positive. </p><p>It then follows from <span class="texhtml"><i>ζ</i> → 1</span> (<span class="texhtml"><i>n</i> → ∞</span>) and <a href="/wiki/Stirling_formula" class="mw-redirect" title="Stirling formula">Stirling's formula</a> that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |B_{2n}|\sim 4{\sqrt {\pi n}}\left({\frac {n}{\pi e}}\right)^{2n}\quad }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo>∼<!-- ∼ --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>π<!-- π --></mi> <mi>n</mi> </msqrt> </mrow> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>π<!-- π --></mi> <mi>e</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mspace width="1em" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |B_{2n}|\sim 4{\sqrt {\pi n}}\left({\frac {n}{\pi e}}\right)^{2n}\quad }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/400c1f40f71fda49f24ede3919b901eac2cab493" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:24.412ex; height:5.176ex;" alt="{\displaystyle |B_{2n}|\sim 4{\sqrt {\pi n}}\left({\frac {n}{\pi e}}\right)^{2n}\quad }"></span> for <span class="texhtml"><i>n</i> → ∞</span> .</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Efficient_computation_of_Bernoulli_numbers">Efficient computation of Bernoulli numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=11" title="Edit section: Efficient computation of Bernoulli numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>In some applications it is useful to be able to compute the Bernoulli numbers <span class="texhtml"><i>B</i><sub>0</sub></span> through <span class="texhtml"><i>B</i><sub><i>p</i> − 3</sub></span> modulo <span class="texhtml mvar" style="font-style:italic;">p</span>, where <span class="texhtml mvar" style="font-style:italic;">p</span> is a prime; for example to test whether <a href="/wiki/Vandiver%27s_conjecture" class="mw-redirect" title="Vandiver's conjecture">Vandiver's conjecture</a> holds for <span class="texhtml mvar" style="font-style:italic;">p</span>, or even just to determine whether <span class="texhtml mvar" style="font-style:italic;">p</span> is an <a href="/wiki/Irregular_prime" class="mw-redirect" title="Irregular prime">irregular prime</a>. It is not feasible to carry out such a computation using the above recursive formulae, since at least (a constant multiple of) <span class="texhtml"><i>p</i><sup>2</sup></span> arithmetic operations would be required. Fortunately, faster methods have been developed<sup id="cite_ref-BuhlerCraErnMetShokrollahi2001_20-0" class="reference"><a href="#cite_note-BuhlerCraErnMetShokrollahi2001-20"><span class="cite-bracket">[</span>18<span class="cite-bracket">]</span></a></sup> which require only <span class="texhtml"><i>O</i>(<i>p</i> (log <i>p</i>)<sup>2</sup>)</span> operations (see <a href="/wiki/Big-O_notation" class="mw-redirect" title="Big-O notation">big <span class="texhtml mvar" style="font-style:italic;">O</span> notation</a>). </p><p>David Harvey<sup id="cite_ref-Harvey2010_21-0" class="reference"><a href="#cite_note-Harvey2010-21"><span class="cite-bracket">[</span>19<span class="cite-bracket">]</span></a></sup> describes an algorithm for computing Bernoulli numbers by computing <span class="texhtml"><i>B</i><sub><i>n</i></sub></span> modulo <span class="texhtml mvar" style="font-style:italic;">p</span> for many small primes <span class="texhtml mvar" style="font-style:italic;">p</span>, and then reconstructing <span class="texhtml"><i>B</i><sub><i>n</i></sub></span> via the <a href="/wiki/Chinese_remainder_theorem" title="Chinese remainder theorem">Chinese remainder theorem</a>. Harvey writes that the <a href="/wiki/Asymptotic_analysis" title="Asymptotic analysis">asymptotic</a> <a href="/wiki/Computational_complexity_theory" title="Computational complexity theory">time complexity</a> of this algorithm is <span class="texhtml"><i>O</i>(<i>n</i><sup>2</sup> log(<i>n</i>)<sup>2 + <i>ε</i></sup>)</span> and claims that this <a href="/wiki/Implementation" title="Implementation">implementation</a> is significantly faster than implementations based on other methods. Using this implementation Harvey computed <span class="texhtml"><i>B</i><sub><i>n</i></sub></span> for <span class="texhtml"><i>n</i> = 10<sup>8</sup></span>. Harvey's implementation has been included in <a href="/wiki/SageMath" title="SageMath">SageMath</a> since version 3.1. Prior to that, Bernd Kellner<sup id="cite_ref-Kellner2002_22-0" class="reference"><a href="#cite_note-Kellner2002-22"><span class="cite-bracket">[</span>20<span class="cite-bracket">]</span></a></sup> computed <span class="texhtml"><i>B</i><sub><i>n</i></sub></span> to full precision for <span class="texhtml"><i>n</i> = 10<sup>6</sup></span> in December 2002 and Oleksandr Pavlyk<sup id="cite_ref-Pavlyk29Apr2008_23-0" class="reference"><a href="#cite_note-Pavlyk29Apr2008-23"><span class="cite-bracket">[</span>21<span class="cite-bracket">]</span></a></sup> for <span class="texhtml"><i>n</i> = 10<sup>7</sup></span> with <a href="/wiki/Mathematica" class="mw-redirect" title="Mathematica">Mathematica</a> in April 2008. </p> <style data-mw-deduplicate="TemplateStyles:r1226773818">.mw-parser-output .defaultleft{text-align:left}.mw-parser-output .defaultcenter{text-align:center}.mw-parser-output .defaultright{text-align:right}.mw-parser-output .col1left td:nth-child(1),.mw-parser-output .col2left td:nth-child(2),.mw-parser-output .col3left td:nth-child(3),.mw-parser-output .col4left td:nth-child(4),.mw-parser-output .col5left td:nth-child(5),.mw-parser-output .col6left td:nth-child(6),.mw-parser-output .col7left td:nth-child(7),.mw-parser-output .col8left td:nth-child(8),.mw-parser-output .col9left td:nth-child(9),.mw-parser-output .col10left td:nth-child(10),.mw-parser-output .col11left td:nth-child(11),.mw-parser-output .col12left td:nth-child(12),.mw-parser-output .col13left td:nth-child(13),.mw-parser-output .col14left td:nth-child(14),.mw-parser-output .col15left td:nth-child(15),.mw-parser-output .col16left td:nth-child(16),.mw-parser-output .col17left td:nth-child(17),.mw-parser-output .col18left td:nth-child(18),.mw-parser-output .col19left td:nth-child(19),.mw-parser-output .col20left td:nth-child(20),.mw-parser-output .col21left td:nth-child(21),.mw-parser-output .col22left td:nth-child(22),.mw-parser-output .col23left td:nth-child(23),.mw-parser-output .col24left td:nth-child(24),.mw-parser-output .col25left td:nth-child(25),.mw-parser-output .col26left td:nth-child(26),.mw-parser-output .col27left td:nth-child(27),.mw-parser-output .col28left td:nth-child(28),.mw-parser-output .col29left td:nth-child(29){text-align:left}.mw-parser-output .col1center td:nth-child(1),.mw-parser-output .col2center td:nth-child(2),.mw-parser-output .col3center td:nth-child(3),.mw-parser-output .col4center td:nth-child(4),.mw-parser-output .col5center td:nth-child(5),.mw-parser-output .col6center td:nth-child(6),.mw-parser-output .col7center td:nth-child(7),.mw-parser-output .col8center td:nth-child(8),.mw-parser-output .col9center td:nth-child(9),.mw-parser-output .col10center td:nth-child(10),.mw-parser-output .col11center td:nth-child(11),.mw-parser-output .col12center td:nth-child(12),.mw-parser-output .col13center td:nth-child(13),.mw-parser-output .col14center td:nth-child(14),.mw-parser-output .col15center td:nth-child(15),.mw-parser-output .col16center td:nth-child(16),.mw-parser-output .col17center td:nth-child(17),.mw-parser-output .col18center td:nth-child(18),.mw-parser-output .col19center td:nth-child(19),.mw-parser-output .col20center td:nth-child(20),.mw-parser-output .col21center td:nth-child(21),.mw-parser-output .col22center td:nth-child(22),.mw-parser-output .col23center td:nth-child(23),.mw-parser-output .col24center td:nth-child(24),.mw-parser-output .col25center td:nth-child(25),.mw-parser-output .col26center td:nth-child(26),.mw-parser-output .col27center td:nth-child(27),.mw-parser-output .col28center td:nth-child(28),.mw-parser-output .col29center td:nth-child(29){text-align:center}.mw-parser-output .col1right td:nth-child(1),.mw-parser-output .col2right td:nth-child(2),.mw-parser-output .col3right td:nth-child(3),.mw-parser-output .col4right td:nth-child(4),.mw-parser-output .col5right td:nth-child(5),.mw-parser-output .col6right td:nth-child(6),.mw-parser-output .col7right td:nth-child(7),.mw-parser-output .col8right td:nth-child(8),.mw-parser-output .col9right td:nth-child(9),.mw-parser-output .col10right td:nth-child(10),.mw-parser-output .col11right td:nth-child(11),.mw-parser-output .col12right td:nth-child(12),.mw-parser-output .col13right td:nth-child(13),.mw-parser-output .col14right td:nth-child(14),.mw-parser-output .col15right td:nth-child(15),.mw-parser-output .col16right td:nth-child(16),.mw-parser-output .col17right td:nth-child(17),.mw-parser-output .col18right td:nth-child(18),.mw-parser-output .col19right td:nth-child(19),.mw-parser-output .col20right td:nth-child(20),.mw-parser-output .col21right td:nth-child(21),.mw-parser-output .col22right td:nth-child(22),.mw-parser-output .col23right td:nth-child(23),.mw-parser-output .col24right td:nth-child(24),.mw-parser-output .col25right td:nth-child(25),.mw-parser-output .col26right td:nth-child(26),.mw-parser-output .col27right td:nth-child(27),.mw-parser-output .col28right td:nth-child(28),.mw-parser-output .col29right td:nth-child(29){text-align:right}</style> <dl><dd><table class="wikitable defaultright col1left"> <tbody><tr> <th>Computer</th> <th>Year</th> <th><i>n</i></th> <th>Digits* </th></tr> <tr> <td>J. Bernoulli</td> <td>~1689</td> <td>10</td> <td>1 </td></tr> <tr> <td>L. Euler</td> <td>1748</td> <td>30</td> <td>8 </td></tr> <tr> <td>J. C. Adams</td> <td>1878</td> <td>62</td> <td>36 </td></tr> <tr> <td>D. E. Knuth, T. J. Buckholtz</td> <td>1967</td> <td><span class="nowrap"><span data-sort-value="7003167200000000000♠"></span>1<span style="margin-left:.25em;">672</span></span></td> <td><span class="nowrap"><span data-sort-value="7003333000000000000♠"></span>3<span style="margin-left:.25em;">330</span></span> </td></tr> <tr> <td>G. Fee, <a href="/wiki/S._Plouffe" class="mw-redirect" title="S. Plouffe">S. Plouffe</a></td> <td>1996</td> <td><span class="nowrap"><span data-sort-value="7004100000000000000♠"></span>10<span style="margin-left:.25em;">000</span></span></td> <td><span class="nowrap"><span data-sort-value="7004276770000000000♠"></span>27<span style="margin-left:.25em;">677</span></span> </td></tr> <tr> <td>G. Fee, S. Plouffe</td> <td>1996</td> <td><span class="nowrap"><span data-sort-value="7005100000000000000♠"></span>100<span style="margin-left:.25em;">000</span></span></td> <td><span class="nowrap"><span data-sort-value="7005376755000000000♠"></span>376<span style="margin-left:.25em;">755</span></span> </td></tr> <tr> <td>B. C. Kellner</td> <td>2002</td> <td><span class="nowrap"><span data-sort-value="7006100000000000000♠"></span>1<span style="margin-left:.25em;">000</span><span style="margin-left:.25em;">000</span></span></td> <td><span class="nowrap"><span data-sort-value="7006476752900000000♠"></span>4<span style="margin-left:.25em;">767</span><span style="margin-left:.25em;">529</span></span> </td></tr> <tr> <td>O. Pavlyk</td> <td>2008</td> <td><span class="nowrap"><span data-sort-value="7007100000000000000♠"></span>10<span style="margin-left:.25em;">000</span><span style="margin-left:.25em;">000</span></span></td> <td><span class="nowrap"><span data-sort-value="7007576752600000000♠"></span>57<span style="margin-left:.25em;">675</span><span style="margin-left:.25em;">260</span></span> </td></tr> <tr> <td>D. Harvey</td> <td>2008</td> <td><span class="nowrap"><span data-sort-value="7008100000000000000♠"></span>100<span style="margin-left:.25em;">000</span><span style="margin-left:.25em;">000</span></span></td> <td><span class="nowrap"><span data-sort-value="7008676752569000000♠"></span>676<span style="margin-left:.25em;">752</span><span style="margin-left:.25em;">569</span></span> </td></tr></tbody></table></dd></dl> <dl><dd><dl><dd>* <i>Digits</i> is to be understood as the exponent of 10 when <span class="texhtml"><i>B</i><sub><i>n</i></sub></span> is written as a real number in normalized <a href="/wiki/Scientific_notation" title="Scientific notation">scientific notation</a>.</dd></dl></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Applications_of_the_Bernoulli_numbers">Applications of the Bernoulli numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=12" title="Edit section: Applications of the Bernoulli numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Asymptotic_analysis">Asymptotic analysis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=13" title="Edit section: Asymptotic analysis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Arguably the most important application of the Bernoulli numbers in mathematics is their use in the <a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a>. Assuming that <span class="texhtml mvar" style="font-style:italic;">f</span> is a sufficiently often differentiable function the Euler–Maclaurin formula can be written as<sup id="cite_ref-FOOTNOTEGrahamKnuthPatashnik19899.67_24-0" class="reference"><a href="#cite_note-FOOTNOTEGrahamKnuthPatashnik19899.67-24"><span class="cite-bracket">[</span>22<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=a}^{b-1}f(k)=\int _{a}^{b}f(x)\,dx+\sum _{k=1}^{m}{\frac {B_{k}^{-}}{k!}}(f^{(k-1)}(b)-f^{(k-1)}(a))+R_{-}(f,m).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msubsup> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=a}^{b-1}f(k)=\int _{a}^{b}f(x)\,dx+\sum _{k=1}^{m}{\frac {B_{k}^{-}}{k!}}(f^{(k-1)}(b)-f^{(k-1)}(a))+R_{-}(f,m).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6d48aa0a79f6f893793e8fc023e9fd9535059456" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:67.97ex; height:7.343ex;" alt="{\displaystyle \sum _{k=a}^{b-1}f(k)=\int _{a}^{b}f(x)\,dx+\sum _{k=1}^{m}{\frac {B_{k}^{-}}{k!}}(f^{(k-1)}(b)-f^{(k-1)}(a))+R_{-}(f,m).}"></span></dd></dl> <p>This formulation assumes the convention <span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">−</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>. Using the convention <span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = +<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span> the formula becomes </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=a+1}^{b}f(k)=\int _{a}^{b}f(x)\,dx+\sum _{k=1}^{m}{\frac {B_{k}^{+}}{k!}}(f^{(k-1)}(b)-f^{(k-1)}(a))+R_{+}(f,m).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <msub> <mi>R</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msub> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=a+1}^{b}f(k)=\int _{a}^{b}f(x)\,dx+\sum _{k=1}^{m}{\frac {B_{k}^{+}}{k!}}(f^{(k-1)}(b)-f^{(k-1)}(a))+R_{+}(f,m).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03e4ac61547e2d4db3477740b1a93b6f78619724" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:69.721ex; height:7.509ex;" alt="{\displaystyle \sum _{k=a+1}^{b}f(k)=\int _{a}^{b}f(x)\,dx+\sum _{k=1}^{m}{\frac {B_{k}^{+}}{k!}}(f^{(k-1)}(b)-f^{(k-1)}(a))+R_{+}(f,m).}"></span></dd></dl> <p>Here <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(0)}=f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo>=</mo> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(0)}=f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c605cc879751dbc6e9e1f3d8921b36fa54993f3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:8.031ex; height:3.176ex;" alt="{\displaystyle f^{(0)}=f}"></span> (i.e. the zeroth-order derivative of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span> is just <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>). Moreover, let <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f^{(-1)}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f^{(-1)}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff92eaa7055a020ae8451ba6f52c729060846f16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.933ex; height:3.176ex;" alt="{\displaystyle f^{(-1)}}"></span> denote an <a href="/wiki/Antiderivative" title="Antiderivative">antiderivative</a> of <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle f}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>f</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle f}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/132e57acb643253e7810ee9702d9581f159a1c61" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:1.279ex; height:2.509ex;" alt="{\displaystyle f}"></span>. By the <a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">fundamental theorem of calculus</a>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \int _{a}^{b}f(x)\,dx=f^{(-1)}(b)-f^{(-1)}(a).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msubsup> <mi>f</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> <mo>=</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \int _{a}^{b}f(x)\,dx=f^{(-1)}(b)-f^{(-1)}(a).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9756fef5266773bf4ec269ea4530b8d16e1c0139" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:33.436ex; height:6.343ex;" alt="{\displaystyle \int _{a}^{b}f(x)\,dx=f^{(-1)}(b)-f^{(-1)}(a).}"></span></dd></dl> <p>Thus the last formula can be further simplified to the following succinct form of the Euler–Maclaurin formula </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=a+1}^{b}f(k)=\sum _{k=0}^{m}{\frac {B_{k}}{k!}}(f^{(k-1)}(b)-f^{(k-1)}(a))+R(f,m).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mi>a</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </munderover> <mi>f</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>b</mi> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <msup> <mi>f</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </msup> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mo stretchy="false">)</mo> <mo>+</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>f</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=a+1}^{b}f(k)=\sum _{k=0}^{m}{\frac {B_{k}}{k!}}(f^{(k-1)}(b)-f^{(k-1)}(a))+R(f,m).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/133b1a0390bd0875afdd27f3bd3aa4ef7da7a77e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:53.808ex; height:7.509ex;" alt="{\displaystyle \sum _{k=a+1}^{b}f(k)=\sum _{k=0}^{m}{\frac {B_{k}}{k!}}(f^{(k-1)}(b)-f^{(k-1)}(a))+R(f,m).}"></span></dd></dl> <p>This form is for example the source for the important Euler–Maclaurin expansion of the zeta function </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\zeta (s)&=\sum _{k=0}^{m}{\frac {B_{k}^{+}}{k!}}s^{\overline {k-1}}+R(s,m)\\&={\frac {B_{0}}{0!}}s^{\overline {-1}}+{\frac {B_{1}^{+}}{1!}}s^{\overline {0}}+{\frac {B_{2}}{2!}}s^{\overline {1}}+\cdots +R(s,m)\\&={\frac {1}{s-1}}+{\frac {1}{2}}+{\frac {1}{12}}s+\cdots +R(s,m).\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </msup> <mo>+</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <mrow> <mn>0</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mrow> <mn>1</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>0</mn> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <msup> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mn>1</mn> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>s</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mi>s</mi> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>R</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\zeta (s)&=\sum _{k=0}^{m}{\frac {B_{k}^{+}}{k!}}s^{\overline {k-1}}+R(s,m)\\&={\frac {B_{0}}{0!}}s^{\overline {-1}}+{\frac {B_{1}^{+}}{1!}}s^{\overline {0}}+{\frac {B_{2}}{2!}}s^{\overline {1}}+\cdots +R(s,m)\\&={\frac {1}{s-1}}+{\frac {1}{2}}+{\frac {1}{12}}s+\cdots +R(s,m).\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b09cc59e4f5a9888c1290acf375459fe9aa9852a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.724ex; margin-bottom: -0.281ex; width:49.08ex; height:19.176ex;" alt="{\displaystyle {\begin{aligned}\zeta (s)&=\sum _{k=0}^{m}{\frac {B_{k}^{+}}{k!}}s^{\overline {k-1}}+R(s,m)\\&={\frac {B_{0}}{0!}}s^{\overline {-1}}+{\frac {B_{1}^{+}}{1!}}s^{\overline {0}}+{\frac {B_{2}}{2!}}s^{\overline {1}}+\cdots +R(s,m)\\&={\frac {1}{s-1}}+{\frac {1}{2}}+{\frac {1}{12}}s+\cdots +R(s,m).\end{aligned}}}"></span></dd></dl> <p>Here <span class="texhtml"><i>s</i><sup><span style="text-decoration:overline;"><i>k</i></span></sup></span> denotes the <a href="/wiki/Pochhammer_symbol" class="mw-redirect" title="Pochhammer symbol">rising factorial power</a>.<sup id="cite_ref-FOOTNOTEGrahamKnuthPatashnik19892.44,_2.52_25-0" class="reference"><a href="#cite_note-FOOTNOTEGrahamKnuthPatashnik19892.44,_2.52-25"><span class="cite-bracket">[</span>23<span class="cite-bracket">]</span></a></sup> </p><p>Bernoulli numbers are also frequently used in other kinds of <a href="/wiki/Asymptotic_expansion" title="Asymptotic expansion">asymptotic expansions</a>. The following example is the classical Poincaré-type asymptotic expansion of the <a href="/wiki/Digamma_function" title="Digamma function">digamma function</a> <span class="texhtml"><i>ψ</i></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (z)\sim \ln z-\sum _{k=1}^{\infty }{\frac {B_{k}^{+}}{kz^{k}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>∼<!-- ∼ --></mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>z</mi> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mrow> <mi>k</mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (z)\sim \ln z-\sum _{k=1}^{\infty }{\frac {B_{k}^{+}}{kz^{k}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fb93ffc723958c329e1482c13e3e580df40468f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.733ex; height:7.176ex;" alt="{\displaystyle \psi (z)\sim \ln z-\sum _{k=1}^{\infty }{\frac {B_{k}^{+}}{kz^{k}}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Sum_of_powers">Sum of powers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=14" title="Edit section: Sum of powers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Faulhaber%27s_formula" title="Faulhaber's formula">Faulhaber's formula</a></div> <p>Bernoulli numbers feature prominently in the <a href="/wiki/Closed-form_expression" title="Closed-form expression">closed form</a> expression of the sum of the <span class="texhtml"><i>m</i></span>th powers of the first <span class="texhtml"><i>n</i></span> positive integers. For <span class="texhtml"><i>m</i>, <i>n</i> ≥ 0</span> define </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{m}(n)=\sum _{k=1}^{n}k^{m}=1^{m}+2^{m}+\cdots +n^{m}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{m}(n)=\sum _{k=1}^{n}k^{m}=1^{m}+2^{m}+\cdots +n^{m}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4ee2791d600b205822db64e78238f6883a58069" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.765ex; height:6.843ex;" alt="{\displaystyle S_{m}(n)=\sum _{k=1}^{n}k^{m}=1^{m}+2^{m}+\cdots +n^{m}.}"></span></dd></dl> <p>This expression can always be rewritten as a <a href="/wiki/Polynomial" title="Polynomial">polynomial</a> in <span class="texhtml"><i>n</i></span> of degree <span class="texhtml"><i>m</i> + 1</span>. The <a href="/wiki/Coefficient" title="Coefficient">coefficients</a> of these polynomials are related to the Bernoulli numbers by <b>Bernoulli's formula</b>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{m}(n)={\frac {1}{m+1}}\sum _{k=0}^{m}{\binom {m+1}{k}}B_{k}^{+}n^{m+1-k}=m!\sum _{k=0}^{m}{\frac {B_{k}^{+}n^{m+1-k}}{k!(m+1-k)!}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo>=</mo> <mi>m</mi> <mo>!</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mi>k</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>k</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{m}(n)={\frac {1}{m+1}}\sum _{k=0}^{m}{\binom {m+1}{k}}B_{k}^{+}n^{m+1-k}=m!\sum _{k=0}^{m}{\frac {B_{k}^{+}n^{m+1-k}}{k!(m+1-k)!}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69cbea3365ef6f0625632f215211637cdd89da49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:66.262ex; height:7.343ex;" alt="{\displaystyle S_{m}(n)={\frac {1}{m+1}}\sum _{k=0}^{m}{\binom {m+1}{k}}B_{k}^{+}n^{m+1-k}=m!\sum _{k=0}^{m}{\frac {B_{k}^{+}n^{m+1-k}}{k!(m+1-k)!}},}"></span></dd></dl> <p>where <span class="texhtml"><big><big>(</big></big><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>m</i> + 1</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>k</i></sub></span></span><big><big>)</big></big></span> denotes the <a href="/wiki/Binomial_coefficient" title="Binomial coefficient">binomial coefficient</a>. </p><p>For example, taking <span class="texhtml"><i>m</i></span> to be 1 gives the <a href="/wiki/Triangular_number" title="Triangular number">triangular numbers</a> <span class="texhtml">0, 1, 3, 6, ...</span> <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000217" class="extiw" title="oeis:A000217">A000217</a></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1+2+\cdots +n={\frac {1}{2}}(B_{0}n^{2}+2B_{1}^{+}n^{1})={\tfrac {1}{2}}(n^{2}+n).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>1</mn> <mo>+</mo> <mn>2</mn> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <mi>n</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mo stretchy="false">(</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1+2+\cdots +n={\frac {1}{2}}(B_{0}n^{2}+2B_{1}^{+}n^{1})={\tfrac {1}{2}}(n^{2}+n).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb92c53f31bd750634ea1ac86a6fcff5984801f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:50.761ex; height:5.176ex;" alt="{\displaystyle 1+2+\cdots +n={\frac {1}{2}}(B_{0}n^{2}+2B_{1}^{+}n^{1})={\tfrac {1}{2}}(n^{2}+n).}"></span></dd></dl> <p>Taking <span class="texhtml"><i>m</i></span> to be 2 gives the <a href="/wiki/Square_pyramidal_number" title="Square pyramidal number">square pyramidal numbers</a> <span class="texhtml">0, 1, 5, 14, ...</span> <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000330" class="extiw" title="oeis:A000330">A000330</a></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 1^{2}+2^{2}+\cdots +n^{2}={\frac {1}{3}}(B_{0}n^{3}+3B_{1}^{+}n^{2}+3B_{2}n^{1})={\tfrac {1}{3}}\left(n^{3}+{\tfrac {3}{2}}n^{2}+{\tfrac {1}{2}}n\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> <mo>+</mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo stretchy="false">(</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>3</mn> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msub> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <mrow> <mo>(</mo> <mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <mi>n</mi> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 1^{2}+2^{2}+\cdots +n^{2}={\frac {1}{3}}(B_{0}n^{3}+3B_{1}^{+}n^{2}+3B_{2}n^{1})={\tfrac {1}{3}}\left(n^{3}+{\tfrac {3}{2}}n^{2}+{\tfrac {1}{2}}n\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2504da3eebf89de1c9bc0c65ac8f5a66ea81999f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:73.54ex; height:5.176ex;" alt="{\displaystyle 1^{2}+2^{2}+\cdots +n^{2}={\frac {1}{3}}(B_{0}n^{3}+3B_{1}^{+}n^{2}+3B_{2}n^{1})={\tfrac {1}{3}}\left(n^{3}+{\tfrac {3}{2}}n^{2}+{\tfrac {1}{2}}n\right).}"></span></dd></dl> <p>Some authors use the alternate convention for Bernoulli numbers and state Bernoulli's formula in this way: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{m}(n)={\frac {1}{m+1}}\sum _{k=0}^{m}(-1)^{k}{\binom {m+1}{k}}B_{k}^{-{}}n^{m+1-k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{m}(n)={\frac {1}{m+1}}\sum _{k=0}^{m}(-1)^{k}{\binom {m+1}{k}}B_{k}^{-{}}n^{m+1-k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5f63f1948e2074fb95af79cf6e87b8a36bc6aa53" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:46.584ex; height:7.009ex;" alt="{\displaystyle S_{m}(n)={\frac {1}{m+1}}\sum _{k=0}^{m}(-1)^{k}{\binom {m+1}{k}}B_{k}^{-{}}n^{m+1-k}.}"></span></dd></dl> <p>Bernoulli's formula is sometimes called <a href="/wiki/Faulhaber%27s_formula" title="Faulhaber's formula">Faulhaber's formula</a> after <a href="/wiki/Johann_Faulhaber" title="Johann Faulhaber">Johann Faulhaber</a> who also found remarkable ways to calculate <a href="/wiki/Sums_of_powers" title="Sums of powers">sums of powers</a>. </p><p>Faulhaber's formula was generalized by V. Guo and J. Zeng to a <a href="/wiki/Q-analog" title="Q-analog"><span class="texhtml mvar" style="font-style:italic;">q</span>-analog</a>.<sup id="cite_ref-GuoZeng2005_26-0" class="reference"><a href="#cite_note-GuoZeng2005-26"><span class="cite-bracket">[</span>24<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Taylor_series">Taylor series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=15" title="Edit section: Taylor series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Bernoulli numbers appear in the <a href="/wiki/Taylor_series" title="Taylor series">Taylor series</a> expansion of many <a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a> and <a href="/wiki/Hyperbolic_function" class="mw-redirect" title="Hyperbolic function">hyperbolic functions</a>. </p><p><span class="mwe-math-element"><span class="mwe-math-mathml-display mwe-math-mathml-a11y" style="display: none;"><math display="block" xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\tan x&={\hphantom {1 \over x}}\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}}\;x^{2n-1},&&\left|x\right|<{\frac {\pi }{2}}.\\\cot x&={1 \over x}\sum _{n=0}^{\infty }{\frac {(-1)^{n}B_{2n}(2x)^{2n}}{(2n)!}},&0<&|x|<\pi .\\\tanh x&={\hphantom {1 \over x}}\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}}\;x^{2n-1},&&|x|<{\frac {\pi }{2}}.\\\coth x&={1 \over x}\sum _{n=0}^{\infty }{\frac {B_{2n}(2x)^{2n}}{(2n)!}},&0<&|x|<\pi .\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mpadded height="0" depth="0"> <mphantom> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mphantom> </mpadded> </mrow> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mtd> <mtd /> <mtd> <mrow> <mo>|</mo> <mi>x</mi> <mo>|</mo> </mrow> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>cot</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> <mtd> <mn>0</mn> <mo><</mo> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mi>π<!-- π --></mi> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>tanh</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mpadded height="0" depth="0"> <mphantom> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mphantom> </mpadded> </mrow> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mspace width="thickmathspace" /> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>,</mo> </mtd> <mtd /> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>2</mn> </mfrac> </mrow> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mi>coth</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>x</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>n</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> <mtd> <mn>0</mn> <mo><</mo> </mtd> <mtd> <mi></mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <mo><</mo> <mi>π<!-- π --></mi> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\tan x&={\hphantom {1 \over x}}\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}}\;x^{2n-1},&&\left|x\right|<{\frac {\pi }{2}}.\\\cot x&={1 \over x}\sum _{n=0}^{\infty }{\frac {(-1)^{n}B_{2n}(2x)^{2n}}{(2n)!}},&0<&|x|<\pi .\\\tanh x&={\hphantom {1 \over x}}\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}}\;x^{2n-1},&&|x|<{\frac {\pi }{2}}.\\\coth x&={1 \over x}\sum _{n=0}^{\infty }{\frac {B_{2n}(2x)^{2n}}{(2n)!}},&0<&|x|<\pi .\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6348a0786a36c7298ed7237d01f8aaa65b08f4f3" class="mwe-math-fallback-image-display mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.574ex; margin-bottom: -0.264ex; width:65.032ex; height:28.843ex;" alt="{\displaystyle {\begin{aligned}\tan x&={\hphantom {1 \over x}}\sum _{n=1}^{\infty }{\frac {(-1)^{n-1}2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}}\;x^{2n-1},&&\left|x\right|<{\frac {\pi }{2}}.\\\cot x&={1 \over x}\sum _{n=0}^{\infty }{\frac {(-1)^{n}B_{2n}(2x)^{2n}}{(2n)!}},&0<&|x|<\pi .\\\tanh x&={\hphantom {1 \over x}}\sum _{n=1}^{\infty }{\frac {2^{2n}(2^{2n}-1)B_{2n}}{(2n)!}}\;x^{2n-1},&&|x|<{\frac {\pi }{2}}.\\\coth x&={1 \over x}\sum _{n=0}^{\infty }{\frac {B_{2n}(2x)^{2n}}{(2n)!}},&0<&|x|<\pi .\end{aligned}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Laurent_series">Laurent series</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=16" title="Edit section: Laurent series"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Bernoulli numbers appear in the following <a href="/wiki/Laurent_series" title="Laurent series">Laurent series</a>:<sup id="cite_ref-FOOTNOTEArfken1970463_27-0" class="reference"><a href="#cite_note-FOOTNOTEArfken1970463-27"><span class="cite-bracket">[</span>25<span class="cite-bracket">]</span></a></sup> </p><p><a href="/wiki/Digamma_function" title="Digamma function">Digamma function</a>: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \psi (z)=\ln z-\sum _{k=1}^{\infty }{\frac {B_{k}^{+{}}}{kz^{k}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ψ<!-- ψ --></mi> <mo stretchy="false">(</mo> <mi>z</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>ln</mi> <mo>⁡<!-- --></mo> <mi>z</mi> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </msubsup> <mrow> <mi>k</mi> <msup> <mi>z</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \psi (z)=\ln z-\sum _{k=1}^{\infty }{\frac {B_{k}^{+{}}}{kz^{k}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/07569a9bd6aea65575732976f724b412c8461dad" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.733ex; height:7.176ex;" alt="{\displaystyle \psi (z)=\ln z-\sum _{k=1}^{\infty }{\frac {B_{k}^{+{}}}{kz^{k}}}}"></span> </p> <div class="mw-heading mw-heading3"><h3 id="Use_in_topology">Use in topology</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=17" title="Edit section: Use in topology"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Kervaire%E2%80%93Milnor_formula" class="mw-redirect" title="Kervaire–Milnor formula">Kervaire–Milnor formula</a> for the order of the cyclic group of diffeomorphism classes of <a href="/wiki/Exotic_sphere" title="Exotic sphere">exotic <span class="texhtml">(4<i>n</i> − 1)</span>-spheres</a> which bound <a href="/wiki/Parallelizable_manifold" title="Parallelizable manifold">parallelizable manifolds</a> involves Bernoulli numbers. Let <span class="texhtml"><i>ES</i><sub><i>n</i></sub></span> be the number of such exotic spheres for <span class="texhtml"><i>n</i> ≥ 2</span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\textit {ES}}_{n}=(2^{2n-2}-2^{4n-3})\operatorname {Numerator} \left({\frac {B_{4n}}{4n}}\right).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext class="MJX-tex-mathit" mathvariant="italic">ES</mtext> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mi>n</mi> <mo>−<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mi>Numerator</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> <mi>n</mi> </mrow> </msub> <mrow> <mn>4</mn> <mi>n</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\textit {ES}}_{n}=(2^{2n-2}-2^{4n-3})\operatorname {Numerator} \left({\frac {B_{4n}}{4n}}\right).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7476d0c9db557917d57aa19fd7b8521de3d9ad36" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:42.608ex; height:6.176ex;" alt="{\displaystyle {\textit {ES}}_{n}=(2^{2n-2}-2^{4n-3})\operatorname {Numerator} \left({\frac {B_{4n}}{4n}}\right).}"></span></dd></dl> <p>The <a href="/wiki/Hirzebruch_signature_theorem#L_genus_and_the_Hirzebruch_signature_theorem" title="Hirzebruch signature theorem">Hirzebruch signature theorem</a> for the <a href="/wiki/Hirzebruch_signature_theorem#L_genus_and_the_Hirzebruch_signature_theorem" title="Hirzebruch signature theorem"><span class="texhtml mvar" style="font-style:italic;">L</span> genus</a> of a <a href="/wiki/Smooth_manifold" class="mw-redirect" title="Smooth manifold">smooth</a> <a href="/wiki/Orientability" title="Orientability">oriented</a> <a href="/wiki/Closed_manifold" title="Closed manifold">closed manifold</a> of <a href="/wiki/Dimension" title="Dimension">dimension</a> 4<i>n</i> also involves Bernoulli numbers. </p> <div class="mw-heading mw-heading2"><h2 id="Connections_with_combinatorial_numbers">Connections with combinatorial numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=18" title="Edit section: Connections with combinatorial numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The connection of the Bernoulli number to various kinds of combinatorial numbers is based on the classical theory of finite differences and on the combinatorial interpretation of the Bernoulli numbers as an instance of a fundamental combinatorial principle, the <a href="/wiki/Inclusion%E2%80%93exclusion_principle" title="Inclusion–exclusion principle">inclusion–exclusion principle</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Connection_with_Worpitzky_numbers">Connection with Worpitzky numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=19" title="Edit section: Connection with Worpitzky numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The definition to proceed with was developed by Julius Worpitzky in 1883. Besides elementary arithmetic only the factorial function <span class="texhtml"><i>n</i>!</span> and the power function <span class="texhtml"><i>k<sup>m</sup></i></span> is employed. The signless Worpitzky numbers are defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{n,k}=\sum _{v=0}^{k}(-1)^{v+k}(v+1)^{n}{\frac {k!}{v!(k-v)!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo>+</mo> <mi>k</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>v</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo>!</mo> </mrow> <mrow> <mi>v</mi> <mo>!</mo> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mi>v</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{n,k}=\sum _{v=0}^{k}(-1)^{v+k}(v+1)^{n}{\frac {k!}{v!(k-v)!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/96e5c47ba703016d709a8f7e79edbacc324c28ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.175ex; height:7.343ex;" alt="{\displaystyle W_{n,k}=\sum _{v=0}^{k}(-1)^{v+k}(v+1)^{n}{\frac {k!}{v!(k-v)!}}.}"></span></dd></dl> <p>They can also be expressed through the <a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling numbers of the second kind</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle W_{n,k}=k!\left\{{n+1 \atop k+1}\right\}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mi>k</mi> <mo>!</mo> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle W_{n,k}=k!\left\{{n+1 \atop k+1}\right\}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f0e2bdfadc8ebe2b6548926352e878ebaa845fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:20.545ex; height:6.176ex;" alt="{\displaystyle W_{n,k}=k!\left\{{n+1 \atop k+1}\right\}.}"></span></dd></dl> <p>A Bernoulli number is then introduced as an inclusion–exclusion sum of Worpitzky numbers weighted by the <a href="/wiki/Harmonic_progression_(mathematics)" title="Harmonic progression (mathematics)">harmonic sequence</a> 1, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span>, ... </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}=\sum _{k=0}^{n}(-1)^{k}{\frac {W_{n,k}}{k+1}}\ =\ \sum _{k=0}^{n}{\frac {1}{k+1}}\sum _{v=0}^{k}(-1)^{v}(v+1)^{n}{k \choose v}\ .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mtext> </mtext> <mo>=</mo> <mtext> </mtext> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>v</mi> </mrow> </msup> <mo stretchy="false">(</mo> <mi>v</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>v</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mtext> </mtext> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}=\sum _{k=0}^{n}(-1)^{k}{\frac {W_{n,k}}{k+1}}\ =\ \sum _{k=0}^{n}{\frac {1}{k+1}}\sum _{v=0}^{k}(-1)^{v}(v+1)^{n}{k \choose v}\ .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cc0fd2fd113ca1aaa5e855d087f41304ac35c9ff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:59.364ex; height:7.509ex;" alt="{\displaystyle B_{n}=\sum _{k=0}^{n}(-1)^{k}{\frac {W_{n,k}}{k+1}}\ =\ \sum _{k=0}^{n}{\frac {1}{k+1}}\sum _{v=0}^{k}(-1)^{v}(v+1)^{n}{k \choose v}\ .}"></span></dd></dl> <dl><dd><span class="texhtml"><i>B</i><sub>0</sub> = 1</span></dd> <dd><span class="texhtml"><i>B</i><sub>1</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>B</i><sub>2</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>B</i><sub>3</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">12</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">6</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>B</i><sub>4</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">15</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">50</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">60</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">24</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>B</i><sub>5</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">31</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">180</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">390</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">360</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">120</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>B</i><sub>6</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">63</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">602</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2100</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3360</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2520</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">720</span><span class="sr-only">/</span><span class="den">7</span></span>⁠</span></span></dd></dl> <p>This representation has <span class="texhtml"><i>B</i><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:left"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline">+</sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline">1</sub></span></span> = +<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>. </p><p>Consider the sequence <span class="texhtml"><i>s<sub>n</sub></i></span>, <span class="texhtml"><i>n</i> ≥ 0</span>. From Worpitzky's numbers <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A028246" class="extiw" title="oeis:A028246">A028246</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A163626" class="extiw" title="oeis:A163626">A163626</a></span> applied to <span class="texhtml"><i>s</i><sub>0</sub>, <i>s</i><sub>0</sub>, <i>s</i><sub>1</sub>, <i>s</i><sub>0</sub>, <i>s</i><sub>1</sub>, <i>s</i><sub>2</sub>, <i>s</i><sub>0</sub>, <i>s</i><sub>1</sub>, <i>s</i><sub>2</sub>, <i>s</i><sub>3</sub>, ...</span> is identical to the Akiyama–Tanigawa transform applied to <span class="texhtml"><i>s<sub>n</sub></i></span> (see <a href="#Connection_with_Stirling_numbers_of_the_first_kind">Connection with Stirling numbers of the first kind</a>). This can be seen via the table: </p> <dl><dd><table style="text-align:center"> <caption><b>Identity of<br />Worpitzky's representation and Akiyama–Tanigawa transform</b> </caption> <tbody><tr> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>1</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td> </td></tr> <tr> <td>1</td> <td>−1</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>2</td> <td>−2</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>3</td> <td>−3</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>4</td> <td>−4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <td>1</td> <td>−3</td> <td>2</td> <td></td> <td></td> <td></td> <td>0</td> <td>4</td> <td>−10</td> <td>6</td> <td></td> <td></td> <td>0</td> <td>0</td> <td>9</td> <td>−21</td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <td>1</td> <td>−7</td> <td>12</td> <td>−6</td> <td></td> <td></td> <td>0</td> <td>8</td> <td>−38</td> <td>54</td> <td>−24</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <td>1</td> <td>−15</td> <td>50</td> <td>−60</td> <td>24</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> </tbody></table></dd></dl> <p>The first row represents <span class="texhtml"><i>s</i><sub>0</sub>, <i>s</i><sub>1</sub>, <i>s</i><sub>2</sub>, <i>s</i><sub>3</sub>, <i>s</i><sub>4</sub></span>. </p><p>Hence for the second fractional Euler numbers <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A198631" class="extiw" title="oeis:A198631">A198631</a></span> (<span class="texhtml"><i>n</i></span>) / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006519" class="extiw" title="oeis:A006519">A006519</a></span> (<span class="texhtml"><i>n</i> + 1</span>): </p> <dl><dd><span class="texhtml"><i>E</i><sub>0</sub> = 1</span></dd> <dd><span class="texhtml"><i>E</i><sub>1</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>E</i><sub>2</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>E</i><sub>3</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">12</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">6</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>E</i><sub>4</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">15</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">50</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">60</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">24</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>E</i><sub>5</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">31</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">180</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">390</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">360</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">120</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span></span></dd> <dd><span class="texhtml"><i>E</i><sub>6</sub> = 1 − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">63</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">602</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2100</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3360</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2520</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">720</span><span class="sr-only">/</span><span class="den">64</span></span>⁠</span></span></dd></dl> <p>A second formula representing the Bernoulli numbers by the Worpitzky numbers is for <span class="texhtml"><i>n</i> ≥ 1</span> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}={\frac {n}{2^{n+1}-2}}\sum _{k=0}^{n-1}(-2)^{-k}\,W_{n-1,k}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msup> <mspace width="thinmathspace" /> <msub> <mi>W</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}={\frac {n}{2^{n+1}-2}}\sum _{k=0}^{n-1}(-2)^{-k}\,W_{n-1,k}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e104e02bbb0ade13e067504cfc83f888f32cc30" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.151ex; height:7.509ex;" alt="{\displaystyle B_{n}={\frac {n}{2^{n+1}-2}}\sum _{k=0}^{n-1}(-2)^{-k}\,W_{n-1,k}.}"></span></dd></dl> <p>The simplified second Worpitzky's representation of the second Bernoulli numbers is: </p><p><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A164555" class="extiw" title="oeis:A164555">A164555</a></span> (<span class="texhtml"><i>n</i> + 1</span>) / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span>(<span class="texhtml"><i>n</i> + 1</span>) = <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>n</i> + 1</span><span class="sr-only">/</span><span class="den">2<sup><i>n</i> + 2</sup> − 2</span></span>⁠</span></span> × <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A198631" class="extiw" title="oeis:A198631">A198631</a></span>(<span class="texhtml"><i>n</i></span>) / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006519" class="extiw" title="oeis:A006519">A006519</a></span>(<span class="texhtml"><i>n</i> + 1</span>) </p><p>which links the second Bernoulli numbers to the second fractional Euler numbers. The beginning is: </p> <dl><dd><span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span>, 0, −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span>, 0, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">42</span></span>⁠</span>, ... = (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">14</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">15</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">62</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">21</span></span>⁠</span>, ...) × (1, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, 0, −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span>, 0, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, ...)</span></dd></dl> <p>The numerators of the first parentheses are <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A111701" class="extiw" title="oeis:A111701">A111701</a></span> (see <a href="#Connection_with_Stirling_numbers_of_the_first_kind">Connection with Stirling numbers of the first kind</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Connection_with_Stirling_numbers_of_the_second_kind">Connection with Stirling numbers of the second kind</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=20" title="Edit section: Connection with Stirling numbers of the second kind"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If one defines the <a href="/wiki/Bernoulli_polynomials" title="Bernoulli polynomials">Bernoulli polynomials</a> <span class="texhtml"><i>B<sub>k</sub></i>(<i>j</i>)</span> as:<sup id="cite_ref-Rademacher1973_28-0" class="reference"><a href="#cite_note-Rademacher1973-28"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{k}(j)=k\sum _{m=0}^{k-1}{\binom {j}{m+1}}S(k-1,m)m!+B_{k}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mi>k</mi> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>j</mi> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> <mi>m</mi> <mo>!</mo> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{k}(j)=k\sum _{m=0}^{k-1}{\binom {j}{m+1}}S(k-1,m)m!+B_{k}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a7b2e49e0cce9589d0112fc24b353452e4f0e7aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:43.689ex; height:7.343ex;" alt="{\displaystyle B_{k}(j)=k\sum _{m=0}^{k-1}{\binom {j}{m+1}}S(k-1,m)m!+B_{k}}"></span></dd></dl> <p>where <span class="texhtml"><i>B<sub>k</sub></i></span> for <span class="texhtml"><i>k</i> = 0, 1, 2,...</span> are the Bernoulli numbers, and <span class="texhtml"><i>S(k,m)</i></span> is a <a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling number of the second kind</a>. </p><p>One also has the following for Bernoulli polynomials,<sup id="cite_ref-Rademacher1973_28-1" class="reference"><a href="#cite_note-Rademacher1973-28"><span class="cite-bracket">[</span>26<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{k}(j)=\sum _{n=0}^{k}{\binom {k}{n}}B_{n}j^{k-n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>j</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>n</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msup> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{k}(j)=\sum _{n=0}^{k}{\binom {k}{n}}B_{n}j^{k-n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0c606a1ede5c1c4edc71affcfdca9ec68d8bbb51" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:25.217ex; height:7.343ex;" alt="{\displaystyle B_{k}(j)=\sum _{n=0}^{k}{\binom {k}{n}}B_{n}j^{k-n}.}"></span></dd></dl> <p>The coefficient of <span class="texhtml mvar" style="font-style:italic;">j</span> in <span class="texhtml"><big><big>(</big></big><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>j</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>m</i> + 1</sub></span></span><big><big>)</big></big></span> is <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">(−1)<sup><i>m</i></sup></span><span class="sr-only">/</span><span class="den"><i>m</i> + 1</span></span>⁠</span></span>. </p><p>Comparing the coefficient of <span class="texhtml mvar" style="font-style:italic;">j</span> in the two expressions of Bernoulli polynomials, one has: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{k}=\sum _{m=0}^{k-1}(-1)^{m}{\frac {m!}{m+1}}S(k-1,m)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>!</mo> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mi>S</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo>,</mo> <mi>m</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{k}=\sum _{m=0}^{k-1}(-1)^{m}{\frac {m!}{m+1}}S(k-1,m)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5e433dad6c9016f4066d3b68b1302dd3e1a5926" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.426ex; height:7.343ex;" alt="{\displaystyle B_{k}=\sum _{m=0}^{k-1}(-1)^{m}{\frac {m!}{m+1}}S(k-1,m)}"></span></dd></dl> <p>(resulting in <span class="texhtml"><i>B</i><sub>1</sub> = +<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>) which is an explicit formula for Bernoulli numbers and can be used to prove <a href="/wiki/Von_Staudt%E2%80%93Clausen_theorem" title="Von Staudt–Clausen theorem">Von-Staudt Clausen theorem</a>.<sup id="cite_ref-Boole1880_29-0" class="reference"><a href="#cite_note-Boole1880-29"><span class="cite-bracket">[</span>27<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Gould1972_30-0" class="reference"><a href="#cite_note-Gould1972-30"><span class="cite-bracket">[</span>28<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Apostol2010_197_31-0" class="reference"><a href="#cite_note-Apostol2010_197-31"><span class="cite-bracket">[</span>29<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Connection_with_Stirling_numbers_of_the_first_kind">Connection with Stirling numbers of the first kind</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=21" title="Edit section: Connection with Stirling numbers of the first kind"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The two main formulas relating the unsigned <a href="/wiki/Stirling_numbers_of_the_first_kind" title="Stirling numbers of the first kind">Stirling numbers of the first kind</a> <span class="texhtml"><big><big>[</big></big><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>m</i></sub></span></span><big><big>]</big></big></span> to the Bernoulli numbers (with <span class="texhtml"><i>B</i><sub>1</sub> = +<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>) are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{m!}}\sum _{k=0}^{m}(-1)^{k}\left[{m+1 \atop k+1}\right]B_{k}={\frac {1}{m+1}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{m!}}\sum _{k=0}^{m}(-1)^{k}\left[{m+1 \atop k+1}\right]B_{k}={\frac {1}{m+1}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7b5b65309bc0ec139514174501d910ac794fff06" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:36.441ex; height:7.009ex;" alt="{\displaystyle {\frac {1}{m!}}\sum _{k=0}^{m}(-1)^{k}\left[{m+1 \atop k+1}\right]B_{k}={\frac {1}{m+1}},}"></span></dd></dl> <p>and the inversion of this sum (for <span class="texhtml"><i>n</i> ≥ 0</span>, <span class="texhtml"><i>m</i> ≥ 0</span>) </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{m!}}\sum _{k=0}^{m}(-1)^{k}\left[{m+1 \atop k+1}\right]B_{n+k}=A_{n,m}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mo>[</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>]</mo> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{m!}}\sum _{k=0}^{m}(-1)^{k}\left[{m+1 \atop k+1}\right]B_{n+k}=A_{n,m}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/35e17423d768b3f1b45db0d78075b6b4911ea350" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:36.688ex; height:7.009ex;" alt="{\displaystyle {\frac {1}{m!}}\sum _{k=0}^{m}(-1)^{k}\left[{m+1 \atop k+1}\right]B_{n+k}=A_{n,m}.}"></span></dd></dl> <p>Here the number <span class="texhtml"><i>A</i><sub><i>n</i>,<i>m</i></sub></span> are the rational Akiyama–Tanigawa numbers, the first few of which are displayed in the following table. </p> <dl><dd><table class="wikitable" style="text-align:center"> <caption>Akiyama–Tanigawa number </caption> <tbody><tr> <th style="background:#EAECF0;background:linear-gradient(to top right,#EAECF0 49%,#AAA 49.5%,#AAA 50.5%,#EAECF0 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right"><span class="texhtml mvar" style="font-style:italic;">m</span></div><div style="margin-right:2em;text-align:left"><span class="texhtml mvar" style="font-style:italic;">n</span></div></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4 </th></tr> <tr> <th>0 </th> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span> </td></tr> <tr> <th>1 </th> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span></td> <td>... </td></tr> <tr> <th>2 </th> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span></td> <td>...</td> <td>... </td></tr> <tr> <th>3 </th> <td>0</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td>...</td> <td>...</td> <td>... </td></tr> <tr> <th>4 </th> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td>...</td> <td>...</td> <td>...</td> <td>... </td></tr></tbody></table></dd></dl> <p>The Akiyama–Tanigawa numbers satisfy a simple recurrence relation which can be exploited to iteratively compute the Bernoulli numbers. This leads to the algorithm shown in the section 'algorithmic description' above. See <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A051714" class="extiw" title="oeis:A051714">A051714</a></span>/<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A051715" class="extiw" title="oeis:A051715">A051715</a></span>. </p><p>An <i>autosequence</i> is a sequence which has its inverse binomial transform equal to the signed sequence. If the main diagonal is zeroes = <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000004" class="extiw" title="oeis:A000004">A000004</a></span>, the autosequence is of the first kind. Example: <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000045" class="extiw" title="oeis:A000045">A000045</a></span>, the Fibonacci numbers. If the main diagonal is the first upper diagonal multiplied by 2, it is of the second kind. Example: <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A164555" class="extiw" title="oeis:A164555">A164555</a></span>/<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span>, the second Bernoulli numbers (see <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A190339" class="extiw" title="oeis:A190339">A190339</a></span>). The Akiyama–Tanigawa transform applied to <span class="texhtml"><i>2</i><sup>−<i>n</i></sup></span> = 1/<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000079" class="extiw" title="oeis:A000079">A000079</a></span> leads to <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A198631" class="extiw" title="oeis:A198631">A198631</a></span> (<i>n</i>) / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A06519" class="extiw" title="oeis:A06519">A06519</a></span> (<i>n</i> + 1). Hence: </p> <dl><dd><table class="wikitable" style="text-align:center"> <caption>Akiyama–Tanigawa transform for the second Euler numbers </caption> <tbody><tr> <th style="background:#EAECF0;background:linear-gradient(to top right,#EAECF0 49%,#AAA 49.5%,#AAA 50.5%,#EAECF0 51%);line-height:1.2;padding:0.1em 0.4em;"><div style="margin-left:2em;text-align:right"><span class="texhtml mvar" style="font-style:italic;">m</span></div><div style="margin-right:2em;text-align:left"><span class="texhtml mvar" style="font-style:italic;">n</span></div></th> <th>0</th> <th>1</th> <th>2</th> <th>3</th> <th>4 </th></tr> <tr> <th>0 </th> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span> </td></tr> <tr> <th>1 </th> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>... </td></tr> <tr> <th>2 </th> <td>0</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td>...</td> <td>... </td></tr> <tr> <th>3 </th> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>...</td> <td>...</td> <td>... </td></tr> <tr> <th>4 </th> <td>0</td> <td>...</td> <td>...</td> <td>...</td> <td>... </td></tr></tbody></table></dd></dl> <p>See <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A209308" class="extiw" title="oeis:A209308">A209308</a></span> and <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A227577" class="extiw" title="oeis:A227577">A227577</a></span>. <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A198631" class="extiw" title="oeis:A198631">A198631</a></span> (<span class="texhtml"><i>n</i></span>) / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006519" class="extiw" title="oeis:A006519">A006519</a></span> (<span class="texhtml"><i>n</i> + 1</span>) are the second (fractional) Euler numbers and an autosequence of the second kind. </p> <dl><dd>(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A164555" class="extiw" title="oeis:A164555">A164555</a></span> (<span class="texhtml"><i>n</i> + 2</span>)</span><span class="sr-only">/</span><span class="den"><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span> (<span class="texhtml"><i>n</i> + 2</span>)</span></span>⁠</span> = <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span>, 0, −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span>, 0, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">42</span></span>⁠</span>, ...</span>) × ( <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2<sup><i>n</i> + 3</sup> − 2</span><span class="sr-only">/</span><span class="den"><i>n</i> + 2</span></span>⁠</span></span> = <span class="texhtml">3, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">14</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">15</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">62</span><span class="sr-only">/</span><span class="den">5</span></span>⁠</span>, 21, ...</span>) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A198631" class="extiw" title="oeis:A198631">A198631</a></span> (<span class="texhtml"><i>n</i> + 1</span>)</span><span class="sr-only">/</span><span class="den"><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006519" class="extiw" title="oeis:A006519">A006519</a></span> (<span class="texhtml"><i>n</i> + 2</span>)</span></span>⁠</span> = <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, 0, −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span>, 0, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, ...</span>.</dd></dl> <p>Also valuable for <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027641" class="extiw" title="oeis:A027641">A027641</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span> (see <a href="#Connection_with_Worpitzky_numbers">Connection with Worpitzky numbers</a>). </p> <div class="mw-heading mw-heading3"><h3 id="Connection_with_Pascal's_triangle"><span id="Connection_with_Pascal.27s_triangle"></span>Connection with Pascal's triangle</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=22" title="Edit section: Connection with Pascal's triangle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are formulas connecting Pascal's triangle to Bernoulli numbers<sup id="cite_ref-32" class="reference"><a href="#cite_note-32"><span class="cite-bracket">[</span>c<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}^{+}={\frac {|A_{n}|}{(n+1)!}}~~~}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> <mtext> </mtext> <mtext> </mtext> <mtext> </mtext> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}^{+}={\frac {|A_{n}|}{(n+1)!}}~~~}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01a8a40cfe1e2b5738e2d3714bf9f5ccd589b1af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:16.805ex; height:6.509ex;" alt="{\displaystyle B_{n}^{+}={\frac {|A_{n}|}{(n+1)!}}~~~}"></span></dd></dl> <p>where <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle |A_{n}|}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> <msub> <mi>A</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">|</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle |A_{n}|}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c4dd3a83e56c3340a7f5e1f3edb8adf6128f7e11" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.255ex; height:2.843ex;" alt="{\displaystyle |A_{n}|}"></span> is the determinant of a n-by-n <a href="/wiki/Hessenberg_matrix" title="Hessenberg matrix">Hessenberg matrix</a> part of <a href="/wiki/Pascal%27s_triangle" title="Pascal's triangle">Pascal's triangle</a> whose elements are: <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle a_{i,k}={\begin{cases}0&{\text{if }}k>1+i\\{i+1 \choose k-1}&{\text{otherwise}}\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>,</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>k</mi> <mo>></mo> <mn>1</mn> <mo>+</mo> <mi>i</mi> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>otherwise</mtext> </mrow> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle a_{i,k}={\begin{cases}0&{\text{if }}k>1+i\\{i+1 \choose k-1}&{\text{otherwise}}\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9d4f7b80a1d52102e1d9205d944f21f3ad5ece1e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:27.4ex; height:6.509ex;" alt="{\displaystyle a_{i,k}={\begin{cases}0&{\text{if }}k>1+i\\{i+1 \choose k-1}&{\text{otherwise}}\end{cases}}}"></span> </p><p>Example: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{6}^{+}={\frac {\det {\begin{pmatrix}1&2&0&0&0&0\\1&3&3&0&0&0\\1&4&6&4&0&0\\1&5&10&10&5&0\\1&6&15&20&15&6\\1&7&21&35&35&21\end{pmatrix}}}{7!}}={\frac {120}{5040}}={\frac {1}{42}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>+</mo> </mrow> </msubsup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo movablelimits="true" form="prefix">det</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>2</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>3</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>4</mn> </mtd> <mtd> <mn>6</mn> </mtd> <mtd> <mn>4</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mn>10</mn> </mtd> <mtd> <mn>10</mn> </mtd> <mtd> <mn>5</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>6</mn> </mtd> <mtd> <mn>15</mn> </mtd> <mtd> <mn>20</mn> </mtd> <mtd> <mn>15</mn> </mtd> <mtd> <mn>6</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>7</mn> </mtd> <mtd> <mn>21</mn> </mtd> <mtd> <mn>35</mn> </mtd> <mtd> <mn>35</mn> </mtd> <mtd> <mn>21</mn> </mtd> </mtr> </mtable> <mo>)</mo> </mrow> </mrow> </mrow> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>120</mn> <mn>5040</mn> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>42</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{6}^{+}={\frac {\det {\begin{pmatrix}1&2&0&0&0&0\\1&3&3&0&0&0\\1&4&6&4&0&0\\1&5&10&10&5&0\\1&6&15&20&15&6\\1&7&21&35&35&21\end{pmatrix}}}{7!}}={\frac {120}{5040}}={\frac {1}{42}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c58edf4420bbc19cfa9a53e831482f203384f6a3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:53.726ex; height:22.009ex;" alt="{\displaystyle B_{6}^{+}={\frac {\det {\begin{pmatrix}1&2&0&0&0&0\\1&3&3&0&0&0\\1&4&6&4&0&0\\1&5&10&10&5&0\\1&6&15&20&15&6\\1&7&21&35&35&21\end{pmatrix}}}{7!}}={\frac {120}{5040}}={\frac {1}{42}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Connection_with_Eulerian_numbers">Connection with Eulerian numbers</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=23" title="Edit section: Connection with Eulerian numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>There are formulas connecting <a href="/wiki/Eulerian_number" title="Eulerian number">Eulerian numbers</a> <span class="texhtml"><big><big>⟨</big></big><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>m</i></sub></span></span><big><big>⟩</big></big></span> to Bernoulli numbers: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\sum _{m=0}^{n}(-1)^{m}\left\langle {n \atop m}\right\rangle &=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},\\\sum _{m=0}^{n}(-1)^{m}\left\langle {n \atop m}\right\rangle {\binom {n}{m}}^{-1}&=(n+1)B_{n}.\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>⟨</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> </mrow> <mo>⟩</mo> </mrow> </mtd> <mtd> <mi></mi> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow> <mo>⟨</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> </mrow> <mo>⟩</mo> </mrow> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>.</mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\sum _{m=0}^{n}(-1)^{m}\left\langle {n \atop m}\right\rangle &=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},\\\sum _{m=0}^{n}(-1)^{m}\left\langle {n \atop m}\right\rangle {\binom {n}{m}}^{-1}&=(n+1)B_{n}.\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8694e8314b6ce6cb20dccb08475917493a1f956d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.505ex; width:49.511ex; height:14.176ex;" alt="{\displaystyle {\begin{aligned}\sum _{m=0}^{n}(-1)^{m}\left\langle {n \atop m}\right\rangle &=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},\\\sum _{m=0}^{n}(-1)^{m}\left\langle {n \atop m}\right\rangle {\binom {n}{m}}^{-1}&=(n+1)B_{n}.\end{aligned}}}"></span></dd></dl> <p>Both formulae are valid for <span class="texhtml"><i>n</i> ≥ 0</span> if <span class="texhtml"><i>B</i><sub>1</sub></span> is set to <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>. If <span class="texhtml"><i>B</i><sub>1</sub></span> is set to −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> they are valid only for <span class="texhtml"><i>n</i> ≥ 1</span> and <span class="texhtml"><i>n</i> ≥ 2</span> respectively. </p> <div class="mw-heading mw-heading2"><h2 id="A_binary_tree_representation">A binary tree representation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=24" title="Edit section: A binary tree representation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Stirling polynomials <span class="texhtml"><i>σ</i><sub><i>n</i></sub>(<i>x</i>)</span> are related to the Bernoulli numbers by <span class="texhtml"><i>B</i><sub><i>n</i></sub> = <i>n</i>!<i>σ</i><sub><i>n</i></sub>(1)</span>. S. C. Woon described an algorithm to compute <span class="texhtml"><i>σ</i><sub><i>n</i></sub>(1)</span> as a binary tree:<sup id="cite_ref-Woon1997_33-0" class="reference"><a href="#cite_note-Woon1997-33"><span class="cite-bracket">[</span>30<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mw-default-size" typeof="mw:File"><a href="/wiki/File:SCWoonTree.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/1/1a/SCWoonTree.png" decoding="async" width="540" height="240" class="mw-file-element" data-file-width="540" data-file-height="240" /></a></span></dd></dl> <p>Woon's recursive algorithm (for <span class="texhtml"><i>n</i> ≥ 1</span>) starts by assigning to the root node <span class="texhtml"><i>N</i> = [1,2]</span>. Given a node <span class="texhtml"><i>N</i> = [<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub><i>k</i></sub>]</span> of the tree, the left child of the node is <span class="texhtml"><i>L</i>(<i>N</i>) = [−<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub> + 1, <i>a</i><sub>3</sub>, ..., <i>a</i><sub><i>k</i></sub>]</span> and the right child <span class="texhtml"><i>R</i>(<i>N</i>) = [<i>a</i><sub>1</sub>, 2, <i>a</i><sub>2</sub>, ..., <i>a</i><sub><i>k</i></sub>]</span>. A node <span class="texhtml"><i>N</i> = [<i>a</i><sub>1</sub>, <i>a</i><sub>2</sub>, ..., <i>a</i><sub><i>k</i></sub>]</span> is written as <span class="texhtml">±[<i>a</i><sub>2</sub>, ..., <i>a</i><sub><i>k</i></sub>]</span> in the initial part of the tree represented above with ± denoting the sign of <span class="texhtml"><i>a</i><sub>1</sub></span>. </p><p>Given a node <span class="texhtml mvar" style="font-style:italic;">N</span> the factorial of <span class="texhtml mvar" style="font-style:italic;">N</span> is defined as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle N!=a_{1}\prod _{k=2}^{\operatorname {length} (N)}a_{k}!.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>N</mi> <mo>!</mo> <mo>=</mo> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> </mrow> </msub> <munderover> <mo>∏<!-- ∏ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>length</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mi>N</mi> <mo stretchy="false">)</mo> </mrow> </munderover> <msub> <mi>a</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>!</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle N!=a_{1}\prod _{k=2}^{\operatorname {length} (N)}a_{k}!.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/42bde0ffc3e10f639e8582f4fab7e625a78eea88" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:19.695ex; height:7.676ex;" alt="{\displaystyle N!=a_{1}\prod _{k=2}^{\operatorname {length} (N)}a_{k}!.}"></span></dd></dl> <p>Restricted to the nodes <span class="texhtml mvar" style="font-style:italic;">N</span> of a fixed tree-level <span class="texhtml mvar" style="font-style:italic;">n</span> the sum of <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>N</i>!</span></span>⁠</span></span> is <span class="texhtml"><i>σ</i><sub><i>n</i></sub>(1)</span>, thus </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}=\sum _{\stackrel {N{\text{ node of}}}{{\text{ tree-level }}n}}{\frac {n!}{N!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-REL"> <mover> <mrow class="MJX-TeXAtom-OP MJX-fixedlimits"> <mrow class="MJX-TeXAtom-ORD"> <mtext> tree-level </mtext> </mrow> <mi>n</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>N</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> node of</mtext> </mrow> </mrow> </mover> </mrow> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <mi>N</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}=\sum _{\stackrel {N{\text{ node of}}}{{\text{ tree-level }}n}}{\frac {n!}{N!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d075d31c7dbec3ee3c99ba61076f850747b5878a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:19.344ex; height:8.009ex;" alt="{\displaystyle B_{n}=\sum _{\stackrel {N{\text{ node of}}}{{\text{ tree-level }}n}}{\frac {n!}{N!}}.}"></span></dd></dl> <p>For example: </p> <dl><dd><span class="texhtml"><i>B</i><sub>1</sub> = 1!(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2!</span></span>⁠</span>)</span></dd> <dd><span class="texhtml"><i>B</i><sub>2</sub> = 2!(−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3!</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2!2!</span></span>⁠</span>)</span></dd> <dd><span class="texhtml"><i>B</i><sub>3</sub> = 3!(<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4!</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2!3!</span></span>⁠</span> − <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3!2!</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2!2!2!</span></span>⁠</span>)</span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Integral_representation_and_continuation">Integral representation and continuation</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=25" title="Edit section: Integral representation and continuation"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Integral" title="Integral">integral</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b(s)=2e^{si\pi /2}\int _{0}^{\infty }{\frac {st^{s}}{1-e^{2\pi t}}}{\frac {dt}{t}}={\frac {s!}{2^{s-1}}}{\frac {\zeta (s)}{{}\pi ^{s}{}}}(-i)^{s}={\frac {2s!\zeta (s)}{(2\pi i)^{s}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>i</mi> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>t</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mi>t</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <mo>!</mo> </mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mrow class="MJX-TeXAtom-ORD"> </mrow> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <mi>s</mi> <mo>!</mo> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <mi>i</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b(s)=2e^{si\pi /2}\int _{0}^{\infty }{\frac {st^{s}}{1-e^{2\pi t}}}{\frac {dt}{t}}={\frac {s!}{2^{s-1}}}{\frac {\zeta (s)}{{}\pi ^{s}{}}}(-i)^{s}={\frac {2s!\zeta (s)}{(2\pi i)^{s}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e98f535a5131810e6989492d7735cf1db42b76bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:59.2ex; height:6.509ex;" alt="{\displaystyle b(s)=2e^{si\pi /2}\int _{0}^{\infty }{\frac {st^{s}}{1-e^{2\pi t}}}{\frac {dt}{t}}={\frac {s!}{2^{s-1}}}{\frac {\zeta (s)}{{}\pi ^{s}{}}}(-i)^{s}={\frac {2s!\zeta (s)}{(2\pi i)^{s}}}}"></span></dd></dl> <p>has as special values <span class="texhtml"><i>b</i>(2<i>n</i>) = <i>B</i><sub>2<i>n</i></sub></span> for <span class="texhtml"><i>n</i> > 0</span>. </p><p>For example, <span class="texhtml"><i>b</i>(3) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span><i>ζ</i>(3)<i>π</i><sup>−3</sup><i>i</i></span> and <span class="texhtml"><i>b</i>(5) = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">15</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span><i>ζ</i>(5)<i>π</i><sup>−5</sup><i>i</i></span>. Here, <span class="texhtml mvar" style="font-style:italic;">ζ</span> is the <a href="/wiki/Riemann_zeta_function" title="Riemann zeta function">Riemann zeta function</a>, and <span class="texhtml mvar" style="font-style:italic;">i</span> is the <a href="/wiki/Imaginary_unit" title="Imaginary unit">imaginary unit</a>. Leonhard Euler (<i>Opera Omnia</i>, Ser. 1, Vol. 10, p. 351) considered these numbers and calculated </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}p&={\frac {3}{2\pi ^{3}}}\left(1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots \right)=0.0581522\ldots \\q&={\frac {15}{2\pi ^{5}}}\left(1+{\frac {1}{2^{5}}}+{\frac {1}{3^{5}}}+\cdots \right)=0.0254132\ldots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>p</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>3</mn> <mrow> <mn>2</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.0581522</mn> <mo>…<!-- … --></mo> </mtd> </mtr> <mtr> <mtd> <mi>q</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>15</mn> <mrow> <mn>2</mn> <msup> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <msup> <mn>3</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mn>0.0254132</mn> <mo>…<!-- … --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}p&={\frac {3}{2\pi ^{3}}}\left(1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots \right)=0.0581522\ldots \\q&={\frac {15}{2\pi ^{5}}}\left(1+{\frac {1}{2^{5}}}+{\frac {1}{3^{5}}}+\cdots \right)=0.0254132\ldots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f22810589a0b9c0b4a99435f8d479cd865a9fe43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -5.671ex; width:47.882ex; height:12.509ex;" alt="{\displaystyle {\begin{aligned}p&={\frac {3}{2\pi ^{3}}}\left(1+{\frac {1}{2^{3}}}+{\frac {1}{3^{3}}}+\cdots \right)=0.0581522\ldots \\q&={\frac {15}{2\pi ^{5}}}\left(1+{\frac {1}{2^{5}}}+{\frac {1}{3^{5}}}+\cdots \right)=0.0254132\ldots \end{aligned}}}"></span></dd></dl> <p>Another similar <a href="/wiki/Integral" title="Integral">integral</a> representation is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle b(s)=-{\frac {e^{si\pi /2}}{2^{s}-1}}\int _{0}^{\infty }{\frac {st^{s}}{\sinh \pi t}}{\frac {dt}{t}}={\frac {2e^{si\pi /2}}{2^{s}-1}}\int _{0}^{\infty }{\frac {e^{\pi t}st^{s}}{1-e^{2\pi t}}}{\frac {dt}{t}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>b</mi> <mo stretchy="false">(</mo> <mi>s</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>i</mi> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>s</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mrow> <mrow> <mi>sinh</mi> <mo>⁡<!-- --></mo> <mi>π<!-- π --></mi> <mi>t</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mi>t</mi> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mi>i</mi> <mi>π<!-- π --></mi> <mrow class="MJX-TeXAtom-ORD"> <mo>/</mo> </mrow> <mn>2</mn> </mrow> </msup> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>π<!-- π --></mi> <mi>t</mi> </mrow> </msup> <mi>s</mi> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> </mrow> </msup> </mrow> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>π<!-- π --></mi> <mi>t</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>t</mi> </mrow> <mi>t</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle b(s)=-{\frac {e^{si\pi /2}}{2^{s}-1}}\int _{0}^{\infty }{\frac {st^{s}}{\sinh \pi t}}{\frac {dt}{t}}={\frac {2e^{si\pi /2}}{2^{s}-1}}\int _{0}^{\infty }{\frac {e^{\pi t}st^{s}}{1-e^{2\pi t}}}{\frac {dt}{t}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aa8c62eac806c152513a145151532f8c29809379" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:58.859ex; height:6.176ex;" alt="{\displaystyle b(s)=-{\frac {e^{si\pi /2}}{2^{s}-1}}\int _{0}^{\infty }{\frac {st^{s}}{\sinh \pi t}}{\frac {dt}{t}}={\frac {2e^{si\pi /2}}{2^{s}-1}}\int _{0}^{\infty }{\frac {e^{\pi t}st^{s}}{1-e^{2\pi t}}}{\frac {dt}{t}}.}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="The_relation_to_the_Euler_numbers_and_π"><span id="The_relation_to_the_Euler_numbers_and_.CF.80"></span>The relation to the Euler numbers and <span class="texhtml mvar" style="font-style:italic;">π</span></h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=26" title="Edit section: The relation to the Euler numbers and π"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <a href="/wiki/Euler_number" class="mw-redirect" title="Euler number">Euler numbers</a> are a sequence of integers intimately connected with the Bernoulli numbers. Comparing the asymptotic expansions of the Bernoulli and the Euler numbers shows that the Euler numbers <span class="texhtml"><i>E</i><sub>2<i>n</i></sub></span> are in magnitude approximately <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">π</span></span>⁠</span>(4<sup>2<i>n</i></sup> − 2<sup>2<i>n</i></sup>)</span> times larger than the Bernoulli numbers <span class="texhtml"><i>B</i><sub>2<i>n</i></sub></span>. In consequence: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \pi \sim 2(2^{2n}-4^{2n}){\frac {B_{2n}}{E_{2n}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>π<!-- π --></mi> <mo>∼<!-- ∼ --></mo> <mn>2</mn> <mo stretchy="false">(</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \pi \sim 2(2^{2n}-4^{2n}){\frac {B_{2n}}{E_{2n}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f9cbfc31f17c4896feeb94e57d98d7cd5fab3c3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:21.936ex; height:5.509ex;" alt="{\displaystyle \pi \sim 2(2^{2n}-4^{2n}){\frac {B_{2n}}{E_{2n}}}.}"></span></dd></dl> <p>This asymptotic equation reveals that <span class="texhtml mvar" style="font-style:italic;">π</span> lies in the common root of both the Bernoulli and the Euler numbers. In fact <span class="texhtml mvar" style="font-style:italic;">π</span> could be computed from these rational approximations. </p><p>Bernoulli numbers can be expressed through the Euler numbers and vice versa. Since, for odd <span class="texhtml mvar" style="font-style:italic;">n</span>, <span class="texhtml"><i>B</i><sub><i>n</i></sub> = <i>E</i><sub><i>n</i></sub> = 0</span> (with the exception <span class="texhtml"><i>B</i><sub>1</sub></span>), it suffices to consider the case when <span class="texhtml mvar" style="font-style:italic;">n</span> is even. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}B_{n}&=\sum _{k=0}^{n-1}{\binom {n-1}{k}}{\frac {n}{4^{n}-2^{n}}}E_{k}&n&=2,4,6,\ldots \\[6pt]E_{n}&=\sum _{k=1}^{n}{\binom {n}{k-1}}{\frac {2^{k}-4^{k}}{k}}B_{k}&n&=2,4,6,\ldots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mtd> <mtd> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mo>…<!-- … --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mrow> <mi>k</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mi>k</mi> </mfrac> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> </mtd> <mtd> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>6</mn> <mo>,</mo> <mo>…<!-- … --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}B_{n}&=\sum _{k=0}^{n-1}{\binom {n-1}{k}}{\frac {n}{4^{n}-2^{n}}}E_{k}&n&=2,4,6,\ldots \\[6pt]E_{n}&=\sum _{k=1}^{n}{\binom {n}{k-1}}{\frac {2^{k}-4^{k}}{k}}B_{k}&n&=2,4,6,\ldots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2745968e7bb17361e79ceeae902aae954ef5bf16" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.338ex; width:49.086ex; height:15.843ex;" alt="{\displaystyle {\begin{aligned}B_{n}&=\sum _{k=0}^{n-1}{\binom {n-1}{k}}{\frac {n}{4^{n}-2^{n}}}E_{k}&n&=2,4,6,\ldots \\[6pt]E_{n}&=\sum _{k=1}^{n}{\binom {n}{k-1}}{\frac {2^{k}-4^{k}}{k}}B_{k}&n&=2,4,6,\ldots \end{aligned}}}"></span></dd></dl> <p>These conversion formulas express a connection between the Bernoulli and the Euler numbers. But more important, there is a deep arithmetic root common to both kinds of numbers, which can be expressed through a more fundamental sequence of numbers, also closely tied to <span class="texhtml mvar" style="font-style:italic;">π</span>. These numbers are defined for <span class="texhtml"><i>n</i> ≥ 1</span> as<sup id="cite_ref-34" class="reference"><a href="#cite_note-34"><span class="cite-bracket">[</span>31<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-Elkies2003_35-0" class="reference"><a href="#cite_note-Elkies2003-35"><span class="cite-bracket">[</span>32<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{n}=2\left({\frac {2}{\pi }}\right)^{n}\sum _{k=0}^{\infty }{\frac {(-1)^{kn}}{(2k+1)^{n}}}=2\left({\frac {2}{\pi }}\right)^{n}\lim _{K\to \infty }\sum _{k=-K}^{K}(4k+1)^{-n}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mi>π<!-- π --></mi> </mfrac> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <munder> <mo movablelimits="true" form="prefix">lim</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> <mo stretchy="false">→<!-- → --></mo> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munder> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mi>K</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>K</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mn>4</mn> <mi>k</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>n</mi> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{n}=2\left({\frac {2}{\pi }}\right)^{n}\sum _{k=0}^{\infty }{\frac {(-1)^{kn}}{(2k+1)^{n}}}=2\left({\frac {2}{\pi }}\right)^{n}\lim _{K\to \infty }\sum _{k=-K}^{K}(4k+1)^{-n}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e46779b4796bbb3df4e815d38e2360085d169f13" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:60.876ex; height:7.509ex;" alt="{\displaystyle S_{n}=2\left({\frac {2}{\pi }}\right)^{n}\sum _{k=0}^{\infty }{\frac {(-1)^{kn}}{(2k+1)^{n}}}=2\left({\frac {2}{\pi }}\right)^{n}\lim _{K\to \infty }\sum _{k=-K}^{K}(4k+1)^{-n}.}"></span></dd></dl> <p>The magic of these numbers lies in the fact that they turn out to be rational numbers. This was first proved by <a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a> in a landmark paper <i>De summis serierum reciprocarum</i> (On the sums of series of reciprocals) and has fascinated mathematicians ever since.<sup id="cite_ref-Euler1735_36-0" class="reference"><a href="#cite_note-Euler1735-36"><span class="cite-bracket">[</span>33<span class="cite-bracket">]</span></a></sup> The first few of these numbers are </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{n}=1,1,{\frac {1}{2}},{\frac {1}{3}},{\frac {5}{24}},{\frac {2}{15}},{\frac {61}{720}},{\frac {17}{315}},{\frac {277}{8064}},{\frac {62}{2835}},\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>24</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mn>15</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>61</mn> <mn>720</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>17</mn> <mn>315</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>277</mn> <mn>8064</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>62</mn> <mn>2835</mn> </mfrac> </mrow> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{n}=1,1,{\frac {1}{2}},{\frac {1}{3}},{\frac {5}{24}},{\frac {2}{15}},{\frac {61}{720}},{\frac {17}{315}},{\frac {277}{8064}},{\frac {62}{2835}},\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/19fa9de556d7ec245e434471643ace171b155ea6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:51.068ex; height:5.343ex;" alt="{\displaystyle S_{n}=1,1,{\frac {1}{2}},{\frac {1}{3}},{\frac {5}{24}},{\frac {2}{15}},{\frac {61}{720}},{\frac {17}{315}},{\frac {277}{8064}},{\frac {62}{2835}},\ldots }"></span> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A099612" class="extiw" title="oeis:A099612">A099612</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A099617" class="extiw" title="oeis:A099617">A099617</a></span>)</dd></dl> <p>These are the coefficients in the expansion of <span class="texhtml">sec <i>x</i> + tan <i>x</i></span>. </p><p>The Bernoulli numbers and Euler numbers can be understood as <i>special views</i> of these numbers, selected from the sequence <span class="texhtml"><i>S</i><sub><i>n</i></sub></span> and scaled for use in special applications. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}B_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]{\frac {n!}{2^{n}-4^{n}}}\,S_{n}\ ,&n&=2,3,\ldots \\E_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]n!\,S_{n+1}&n&=0,1,\ldots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>⌋</mo> </mrow> </mrow> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> even</mtext> </mrow> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mtext> </mtext> <mo>,</mo> </mtd> <mtd> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>…<!-- … --></mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>⌋</mo> </mrow> </mrow> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> even</mtext> </mrow> <mo stretchy="false">]</mo> <mi>n</mi> <mo>!</mo> <mspace width="thinmathspace" /> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mo>…<!-- … --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}B_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]{\frac {n!}{2^{n}-4^{n}}}\,S_{n}\ ,&n&=2,3,\ldots \\E_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]n!\,S_{n+1}&n&=0,1,\ldots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/474673fce864f722449772fce7485f032fb41c6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:52.022ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}B_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]{\frac {n!}{2^{n}-4^{n}}}\,S_{n}\ ,&n&=2,3,\ldots \\E_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]n!\,S_{n+1}&n&=0,1,\ldots \end{aligned}}}"></span></dd></dl> <p>The expression [<span class="texhtml"><i>n</i></span> even] has the value 1 if <span class="texhtml"><i>n</i></span> is even and 0 otherwise (<a href="/wiki/Iverson_bracket" title="Iverson bracket">Iverson bracket</a>). </p><p>These identities show that the quotient of Bernoulli and Euler numbers at the beginning of this section is just the special case of <span class="texhtml"><i>R</i><sub><i>n</i></sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2<i>S</i><sub><i>n</i></sub></span><span class="sr-only">/</span><span class="den"><i>S</i><sub><i>n</i> + 1</sub></span></span>⁠</span></span> when <span class="texhtml mvar" style="font-style:italic;">n</span> is even. The <span class="texhtml"><i>R</i><sub><i>n</i></sub></span> are rational approximations to <span class="texhtml mvar" style="font-style:italic;">π</span> and two successive terms always enclose the true value of <span class="texhtml mvar" style="font-style:italic;">π</span>. Beginning with <span class="texhtml"><i>n</i> = 1</span> the sequence starts (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A132049" class="extiw" title="oeis:A132049">A132049</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A132050" class="extiw" title="oeis:A132050">A132050</a></span>): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2,4,3,{\frac {16}{5}},{\frac {25}{8}},{\frac {192}{61}},{\frac {427}{136}},{\frac {4352}{1385}},{\frac {12465}{3968}},{\frac {158720}{50521}},\ldots \quad \longrightarrow \pi .}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mo>,</mo> <mn>4</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>16</mn> <mn>5</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>25</mn> <mn>8</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>192</mn> <mn>61</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>427</mn> <mn>136</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>4352</mn> <mn>1385</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>12465</mn> <mn>3968</mn> </mfrac> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>158720</mn> <mn>50521</mn> </mfrac> </mrow> <mo>,</mo> <mo>…<!-- … --></mo> <mspace width="1em" /> <mo stretchy="false">⟶<!-- ⟶ --></mo> <mi>π<!-- π --></mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2,4,3,{\frac {16}{5}},{\frac {25}{8}},{\frac {192}{61}},{\frac {427}{136}},{\frac {4352}{1385}},{\frac {12465}{3968}},{\frac {158720}{50521}},\ldots \quad \longrightarrow \pi .}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/080346b24cdfb7a9653ca5174db0eacda80296b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:60.862ex; height:5.176ex;" alt="{\displaystyle 2,4,3,{\frac {16}{5}},{\frac {25}{8}},{\frac {192}{61}},{\frac {427}{136}},{\frac {4352}{1385}},{\frac {12465}{3968}},{\frac {158720}{50521}},\ldots \quad \longrightarrow \pi .}"></span></dd></dl> <p>These rational numbers also appear in the last paragraph of Euler's paper cited above. </p><p>Consider the Akiyama–Tanigawa transform for the sequence <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A046978" class="extiw" title="oeis:A046978">A046978</a></span> (<span class="texhtml"><i>n</i> + 2</span>) / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A016116" class="extiw" title="oeis:A016116">A016116</a></span> (<span class="texhtml"><i>n</i> + 1</span>): </p> <dl><dd><table class="wikitable" style="text-align:right;"> <tbody><tr> <th>0 </th> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>0</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td>0 </td></tr> <tr> <th>1 </th> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>0</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td> </td></tr> <tr> <th>2 </th> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">9</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td></td> <td> </td></tr> <tr> <th>3 </th> <td>−1</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">15</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td></td> <td></td> <td> </td></tr> <tr> <th>4 </th> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">11</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">99</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>5 </th> <td>8</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">77</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <th>6 </th> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">61</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr></tbody></table></dd></dl> <p>From the second, the numerators of the first column are the denominators of Euler's formula. The first column is −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> × <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A163982" class="extiw" title="oeis:A163982">A163982</a></span>. </p> <div class="mw-heading mw-heading2"><h2 id="An_algorithmic_view:_the_Seidel_triangle">An algorithmic view: the Seidel triangle</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=27" title="Edit section: An algorithmic view: the Seidel triangle"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The sequence <i>S</i><sub><i>n</i></sub> has another unexpected yet important property: The denominators of <i>S</i><sub><i>n</i>+1</sub> divide the factorial <span class="texhtml"><i>n</i>!</span>. In other words: the numbers <span class="texhtml"><i>T</i><sub><i>n</i></sub> = <i>S</i><sub><i>n</i> + 1</sub> <i>n</i>!</span>, sometimes called <a href="/wiki/Alternating_permutations" class="mw-redirect" title="Alternating permutations">Euler zigzag numbers</a>, are integers. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T_{n}=1,\,1,\,1,\,2,\,5,\,16,\,61,\,272,\,1385,\,7936,\,50521,\,353792,\ldots \quad n=0,1,2,3,\ldots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>1</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>2</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>5</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>16</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>61</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>272</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>1385</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>7936</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>50521</mn> <mo>,</mo> <mspace width="thinmathspace" /> <mn>353792</mn> <mo>,</mo> <mo>…<!-- … --></mo> <mspace width="1em" /> <mi>n</mi> <mo>=</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo>,</mo> <mn>2</mn> <mo>,</mo> <mn>3</mn> <mo>,</mo> <mo>…<!-- … --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle T_{n}=1,\,1,\,1,\,2,\,5,\,16,\,61,\,272,\,1385,\,7936,\,50521,\,353792,\ldots \quad n=0,1,2,3,\ldots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d751c387569fe39148ac96f17b11adae5046b389" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:79.811ex; height:2.509ex;" alt="{\displaystyle T_{n}=1,\,1,\,1,\,2,\,5,\,16,\,61,\,272,\,1385,\,7936,\,50521,\,353792,\ldots \quad n=0,1,2,3,\ldots }"></span> (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000111" class="extiw" title="oeis:A000111">A000111</a></span>). See (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A253671" class="extiw" title="oeis:A253671">A253671</a></span>).</dd></dl> <p>Their <a href="/wiki/Exponential_generating_function" class="mw-redirect" title="Exponential generating function">exponential generating function</a> is the sum of the <a href="/wiki/Trigonometric_functions#Reciprocal_functions" title="Trigonometric functions">secant</a> and <a href="/wiki/Tangent_(trigonometry)" class="mw-redirect" title="Tangent (trigonometry)">tangent</a> functions. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{n=0}^{\infty }T_{n}{\frac {x^{n}}{n!}}=\tan \left({\frac {\pi }{4}}+{\frac {x}{2}}\right)=\sec x+\tan x}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mrow> <mo>(</mo> <mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>π<!-- π --></mi> <mn>4</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>x</mi> <mn>2</mn> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mi>sec</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{n=0}^{\infty }T_{n}{\frac {x^{n}}{n!}}=\tan \left({\frac {\pi }{4}}+{\frac {x}{2}}\right)=\sec x+\tan x}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e660d25c111b6bdc210e00fbf468e52253d15e4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.823ex; height:6.843ex;" alt="{\displaystyle \sum _{n=0}^{\infty }T_{n}{\frac {x^{n}}{n!}}=\tan \left({\frac {\pi }{4}}+{\frac {x}{2}}\right)=\sec x+\tan x}"></span>.</dd></dl> <p>Thus the above representations of the Bernoulli and Euler numbers can be rewritten in terms of this sequence as </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}B_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]{\frac {n}{2^{n}-4^{n}}}\,T_{n-1}\ &n&\geq 2\\E_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]T_{n}&n&\geq 0\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="3pt" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>⌋</mo> </mrow> </mrow> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> even</mtext> </mrow> <mo stretchy="false">]</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <mo>−<!-- − --></mo> <msup> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> </mfrac> </mrow> <mspace width="thinmathspace" /> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mtext> </mtext> </mtd> <mtd> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>≥<!-- ≥ --></mo> <mn>2</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>⌊</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>⌋</mo> </mrow> </mrow> </msup> <mo stretchy="false">[</mo> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mtext> even</mtext> </mrow> <mo stretchy="false">]</mo> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi>n</mi> </mtd> <mtd> <mi></mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}B_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]{\frac {n}{2^{n}-4^{n}}}\,T_{n-1}\ &n&\geq 2\\E_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]T_{n}&n&\geq 0\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebc3fa19f015a506252e543380c68bc0c3342495" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:47.455ex; height:10.176ex;" alt="{\displaystyle {\begin{aligned}B_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]{\frac {n}{2^{n}-4^{n}}}\,T_{n-1}\ &n&\geq 2\\E_{n}&=(-1)^{\left\lfloor {\frac {n}{2}}\right\rfloor }[n{\text{ even}}]T_{n}&n&\geq 0\end{aligned}}}"></span></dd></dl> <p>These identities make it easy to compute the Bernoulli and Euler numbers: the Euler numbers <span class="texhtml"><i>E</i><sub>2<i>n</i></sub></span> are given immediately by <span class="texhtml"><i>T</i><sub>2<i>n</i></sub></span> and the Bernoulli numbers <span class="texhtml"><i>B</i><sub>2<i>n</i></sub></span> are fractions obtained from <span class="texhtml"><i>T</i><sub>2<i>n</i> - 1</sub></span> by some easy shifting, avoiding rational arithmetic. </p><p>What remains is to find a convenient way to compute the numbers <span class="texhtml"><i>T</i><sub><i>n</i></sub></span>. However, already in 1877 <a href="/wiki/Philipp_Ludwig_von_Seidel" title="Philipp Ludwig von Seidel">Philipp Ludwig von Seidel</a> published an ingenious algorithm, which makes it simple to calculate <span class="texhtml"><i>T</i><sub><i>n</i></sub></span>.<sup id="cite_ref-Seidel1877_37-0" class="reference"><a href="#cite_note-Seidel1877-37"><span class="cite-bracket">[</span>34<span class="cite-bracket">]</span></a></sup> </p> <div class="thumb tnone" style=""><div class="thumbinner" style="width:-moz-fit-content; width:fit-content;"><div class="thumbimage noresize" style="width:auto;"> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{array}{crrrcc}{}&{}&{\color {red}1}&{}&{}&{}\\{}&{\rightarrow }&{\color {blue}1}&{\color {red}1}&{}\\{}&{\color {red}2}&{\color {blue}2}&{\color {blue}1}&{\leftarrow }\\{\rightarrow }&{\color {blue}2}&{\color {blue}4}&{\color {blue}5}&{\color {red}5}\\{\color {red}16}&{\color {blue}16}&{\color {blue}14}&{\color {blue}10}&{\color {blue}5}&{\leftarrow }\end{array}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="center right right right center center" rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mn>1</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">→<!-- → --></mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>1</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mn>1</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mn>2</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>2</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>1</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">←<!-- ← --></mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">→<!-- → --></mo> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>2</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>4</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>5</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mn>5</mn> </mstyle> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="red"> <mn>16</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>16</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>14</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>10</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle mathcolor="blue"> <mn>5</mn> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">←<!-- ← --></mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{array}{crrrcc}{}&{}&{\color {red}1}&{}&{}&{}\\{}&{\rightarrow }&{\color {blue}1}&{\color {red}1}&{}\\{}&{\color {red}2}&{\color {blue}2}&{\color {blue}1}&{\leftarrow }\\{\rightarrow }&{\color {blue}2}&{\color {blue}4}&{\color {blue}5}&{\color {red}5}\\{\color {red}16}&{\color {blue}16}&{\color {blue}14}&{\color {blue}10}&{\color {blue}5}&{\leftarrow }\end{array}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3f11c262ba67a0d0a93c132bac0ebe44c648c2a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -7.338ex; width:26.312ex; height:15.843ex;" alt="{\displaystyle {\begin{array}{crrrcc}{}&{}&{\color {red}1}&{}&{}&{}\\{}&{\rightarrow }&{\color {blue}1}&{\color {red}1}&{}\\{}&{\color {red}2}&{\color {blue}2}&{\color {blue}1}&{\leftarrow }\\{\rightarrow }&{\color {blue}2}&{\color {blue}4}&{\color {blue}5}&{\color {red}5}\\{\color {red}16}&{\color {blue}16}&{\color {blue}14}&{\color {blue}10}&{\color {blue}5}&{\leftarrow }\end{array}}}"></span></div><div class="thumbcaption">Seidel's algorithm for <span class="texhtml"><i>T</i><sub><i>n</i></sub></span></div></div></div> <ol><li>Start by putting 1 in row 0 and let <span class="texhtml"><i>k</i></span> denote the number of the row currently being filled</li> <li>If <span class="texhtml"><i>k</i></span> is odd, then put the number on the left end of the row <span class="texhtml"><i>k</i> − 1</span> in the first position of the row <span class="texhtml"><i>k</i></span>, and fill the row from the left to the right, with every entry being the sum of the number to the left and the number to the upper</li> <li>At the end of the row duplicate the last number.</li> <li>If <span class="texhtml"><i>k</i></span> is even, proceed similar in the other direction.</li></ol> <p>Seidel's algorithm is in fact much more general (see the exposition of Dominique Dumont <sup id="cite_ref-Dumont1981_38-0" class="reference"><a href="#cite_note-Dumont1981-38"><span class="cite-bracket">[</span>35<span class="cite-bracket">]</span></a></sup>) and was rediscovered several times thereafter. </p><p>Similar to Seidel's approach D. E. Knuth and T. J. Buckholtz gave a recurrence equation for the numbers <span class="texhtml"><i>T</i><sub>2<i>n</i></sub></span> and recommended this method for computing <span class="texhtml"><i>B</i><sub>2<i>n</i></sub></span> and <span class="texhtml"><i>E</i><sub>2<i>n</i></sub></span> 'on electronic computers using only simple operations on integers'.<sup id="cite_ref-KnuthBuckholtz1967_39-0" class="reference"><a href="#cite_note-KnuthBuckholtz1967-39"><span class="cite-bracket">[</span>36<span class="cite-bracket">]</span></a></sup> </p><p>V. I. Arnold<sup id="cite_ref-Arnold1991_40-0" class="reference"><a href="#cite_note-Arnold1991-40"><span class="cite-bracket">[</span>37<span class="cite-bracket">]</span></a></sup> rediscovered Seidel's algorithm and later Millar, Sloane and Young popularized Seidel's algorithm under the name <a href="/wiki/Boustrophedon_transform" title="Boustrophedon transform">boustrophedon transform</a>. </p><p>Triangular form: </p> <dl><dd><table style="text-align:right"> <tbody><tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <td></td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>2</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td>4</td> <td></td> <td>5</td> <td></td> <td>5</td> <td></td> <td></td> <td> </td></tr> <tr> <td></td> <td></td> <td>16</td> <td></td> <td>16</td> <td></td> <td>14</td> <td></td> <td>10</td> <td></td> <td>5</td> <td></td> <td> </td></tr> <tr> <td></td> <td>16</td> <td></td> <td>32</td> <td></td> <td>46</td> <td></td> <td>56</td> <td></td> <td>61</td> <td></td> <td>61</td> <td> </td></tr> <tr> <td>272</td> <td></td> <td>272</td> <td></td> <td>256</td> <td></td> <td>224</td> <td></td> <td>178</td> <td></td> <td>122</td> <td></td> <td>61 </td></tr></tbody></table></dd></dl> <p>Only <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000657" class="extiw" title="oeis:A000657">A000657</a></span>, with one 1, and <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A214267" class="extiw" title="oeis:A214267">A214267</a></span>, with two 1s, are in the OEIS. </p><p>Distribution with a supplementary 1 and one 0 in the following rows: </p> <dl><dd><table style="text-align:right"> <tbody><tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <td></td> <td></td> <td></td> <td></td> <td>−1</td> <td></td> <td>−1</td> <td></td> <td>0</td> <td></td> <td></td> <td></td> <td> </td></tr> <tr> <td></td> <td></td> <td></td> <td>0</td> <td></td> <td>−1</td> <td></td> <td>−2</td> <td></td> <td>−2</td> <td></td> <td></td> <td> </td></tr> <tr> <td></td> <td></td> <td>5</td> <td></td> <td>5</td> <td></td> <td>4</td> <td></td> <td>2</td> <td></td> <td>0</td> <td></td> <td> </td></tr> <tr> <td></td> <td>0</td> <td></td> <td>5</td> <td></td> <td>10</td> <td></td> <td>14</td> <td></td> <td>16</td> <td></td> <td>16</td> <td> </td></tr> <tr> <td>−61</td> <td></td> <td>−61</td> <td></td> <td>−56</td> <td></td> <td>−46</td> <td></td> <td>−32</td> <td></td> <td>−16</td> <td></td> <td>0 </td></tr></tbody></table></dd></dl> <p>This is <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A239005" class="extiw" title="oeis:A239005">A239005</a></span>, a signed version of <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A008280" class="extiw" title="oeis:A008280">A008280</a></span>. The main andiagonal is <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A122045" class="extiw" title="oeis:A122045">A122045</a></span>. The main diagonal is <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A155585" class="extiw" title="oeis:A155585">A155585</a></span>. The central column is <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A099023" class="extiw" title="oeis:A099023">A099023</a></span>. Row sums: 1, 1, −2, −5, 16, 61.... See <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A163747" class="extiw" title="oeis:A163747">A163747</a></span>. See the array beginning with 1, 1, 0, −2, 0, 16, 0 below. </p><p>The Akiyama–Tanigawa algorithm applied to <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A046978" class="extiw" title="oeis:A046978">A046978</a></span> (<span class="texhtml"><i>n</i> + 1</span>) / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A016116" class="extiw" title="oeis:A016116">A016116</a></span>(<span class="texhtml"><i>n</i></span>) yields: </p> <dl><dd><table style="text-align:right"> <tbody><tr> <td>1</td> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>0</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span> </td></tr> <tr> <td>0</td> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>1</td> <td>0</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> </td></tr> <tr> <td>−1</td> <td>−1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>4</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">15</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> </td></tr> <tr> <td>0</td> <td>−5</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">15</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>1 </td></tr> <tr> <td>5</td> <td>5</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">51</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> </td></tr> <tr> <td>0</td> <td>61 </td></tr> <tr> <td>−61 </td></tr></tbody></table></dd></dl> <p><b>1.</b> The first column is <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A122045" class="extiw" title="oeis:A122045">A122045</a></span>. Its binomial transform leads to: </p> <dl><dd><table style="text-align:right"> <tbody><tr> <td>1</td> <td>1</td> <td>0</td> <td>−2</td> <td>0</td> <td>16</td> <td>0 </td></tr> <tr> <td>0</td> <td>−1</td> <td>−2</td> <td>2</td> <td>16</td> <td>−16 </td></tr> <tr> <td>−1</td> <td>−1</td> <td>4</td> <td>14</td> <td>−32 </td></tr> <tr> <td>0</td> <td>5</td> <td>10</td> <td>−46 </td></tr> <tr> <td>5</td> <td>5</td> <td>−56 </td></tr> <tr> <td>0</td> <td>−61 </td></tr> <tr> <td>−61 </td></tr></tbody></table></dd></dl> <p>The first row of this array is <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A155585" class="extiw" title="oeis:A155585">A155585</a></span>. The absolute values of the increasing antidiagonals are <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A008280" class="extiw" title="oeis:A008280">A008280</a></span>. The sum of the antidiagonals is <span class="nowrap">−<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A163747" class="extiw" title="oeis:A163747">A163747</a></span> (<span class="texhtml"><i>n</i> + 1</span>).</span> </p><p><b>2.</b> The second column is <span class="nowrap">1 1 −1 −5 5 61 −61 −1385 1385...</span>. Its binomial transform yields: </p> <dl><dd><table style="text-align:right"> <tbody><tr> <td>1</td> <td>2</td> <td>2</td> <td>−4</td> <td>−16</td> <td>32</td> <td>272 </td></tr> <tr> <td>1</td> <td>0</td> <td>−6</td> <td>−12</td> <td>48</td> <td>240 </td></tr> <tr> <td>−1</td> <td>−6</td> <td>−6</td> <td>60</td> <td>192 </td></tr> <tr> <td>−5</td> <td>0</td> <td>66</td> <td>32 </td></tr> <tr> <td>5</td> <td>66</td> <td>66 </td></tr> <tr> <td>61</td> <td>0 </td></tr> <tr> <td>−61 </td></tr></tbody></table></dd></dl> <p>The first row of this array is <span class="nowrap">1 2 2 −4 −16 32 272 544 −7936 15872 353792 −707584...</span>. The absolute values of the second bisection are the double of the absolute values of the first bisection. </p><p>Consider the Akiyama-Tanigawa algorithm applied to <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A046978" class="extiw" title="oeis:A046978">A046978</a></span> (<span class="texhtml"><i>n</i></span>) / (<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A158780" class="extiw" title="oeis:A158780">A158780</a></span> (<span class="texhtml"><i>n</i> + 1</span>) = abs(<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A117575" class="extiw" title="oeis:A117575">A117575</a></span> (<span class="texhtml mvar" style="font-style:italic;">n</span>)) + 1 = <span class="nowrap">1, 2, 2, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, 1, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span>, 1, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">17</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">17</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span>, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">33</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span>...</span>. </p> <dl><dd><table style="text-align:right"> <tbody><tr> <td>1</td> <td>2</td> <td>2</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> </td></tr> <tr> <td>−1</td> <td>0</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>2</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>0 </td></tr> <tr> <td>−1</td> <td>−3</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>3</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">25</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span> </td></tr> <tr> <td>2</td> <td>−3</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">27</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>−13 </td></tr> <tr> <td>5</td> <td>21</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> </td></tr> <tr> <td>−16</td> <td>45 </td></tr> <tr> <td>−61 </td></tr></tbody></table></dd></dl> <p>The first column whose the absolute values are <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000111" class="extiw" title="oeis:A000111">A000111</a></span> could be the numerator of a trigonometric function. </p><p><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A163747" class="extiw" title="oeis:A163747">A163747</a></span> is an autosequence of the first kind (the main diagonal is <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A000004" class="extiw" title="oeis:A000004">A000004</a></span>). The corresponding array is: </p> <dl><dd><table style="text-align:right"> <tbody><tr> <td>0</td> <td>−1</td> <td>−1</td> <td>2</td> <td>5</td> <td>−16</td> <td>−61 </td></tr> <tr> <td>−1</td> <td>0</td> <td>3</td> <td>3</td> <td>−21</td> <td>−45 </td></tr> <tr> <td>1</td> <td>3</td> <td>0</td> <td>−24</td> <td>−24 </td></tr> <tr> <td>2</td> <td>−3</td> <td>−24</td> <td>0 </td></tr> <tr> <td>−5</td> <td>−21</td> <td>24 </td></tr> <tr> <td>−16</td> <td>45 </td></tr> <tr> <td>−61 </td></tr></tbody></table></dd></dl> <p>The first two upper diagonals are <span class="nowrap">−1 3 −24 402...</span> = <span class="texhtml">(−1)<sup><i>n</i> + 1</sup></span> × <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A002832" class="extiw" title="oeis:A002832">A002832</a></span>. The sum of the antidiagonals is <span class="nowrap">0 −2 0 10...</span> = 2 × <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A122045" class="extiw" title="oeis:A122045">A122045</a></span>(<i>n</i> + 1). </p><p>−<span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A163982" class="extiw" title="oeis:A163982">A163982</a></span> is an autosequence of the second kind, like for instance <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A164555" class="extiw" title="oeis:A164555">A164555</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span>. Hence the array: </p> <dl><dd><table style="text-align:right"> <tbody><tr> <td>2</td> <td>1</td> <td>−1</td> <td>−2</td> <td>5</td> <td>16</td> <td>−61 </td></tr> <tr> <td>−1</td> <td>−2</td> <td>−1</td> <td>7</td> <td>11</td> <td>−77 </td></tr> <tr> <td>−1</td> <td>1</td> <td>8</td> <td>4</td> <td>−88 </td></tr> <tr> <td>2</td> <td>7</td> <td>−4</td> <td>−92 </td></tr> <tr> <td>5</td> <td>−11</td> <td>−88 </td></tr> <tr> <td>−16</td> <td>−77 </td></tr> <tr> <td>−61 </td></tr></tbody></table></dd></dl> <p>The main diagonal, here <span class="nowrap">2 −2 8 −92...</span>, is the double of the first upper one, here <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A099023" class="extiw" title="oeis:A099023">A099023</a></span>. The sum of the antidiagonals is <span class="nowrap">2 0 −4 0...</span> = 2 × <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A155585" class="extiw" title="oeis:A155585">A155585</a></span>(<span class="texhtml"><i>n</i> + </span>1). <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A163747" class="extiw" title="oeis:A163747">A163747</a></span> − <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A163982" class="extiw" title="oeis:A163982">A163982</a></span> = 2 × <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A122045" class="extiw" title="oeis:A122045">A122045</a></span>. </p> <div class="mw-heading mw-heading2"><h2 id="A_combinatorial_view:_alternating_permutations">A combinatorial view: alternating permutations</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=28" title="Edit section: A combinatorial view: alternating permutations"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Alternating_permutations" class="mw-redirect" title="Alternating permutations">Alternating permutations</a></div> <p>Around 1880, three years after the publication of Seidel's algorithm, <a href="/wiki/D%C3%A9sir%C3%A9_Andr%C3%A9" title="Désiré André">Désiré André</a> proved a now classic result of combinatorial analysis.<sup id="cite_ref-André1879_41-0" class="reference"><a href="#cite_note-André1879-41"><span class="cite-bracket">[</span>38<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-André1881_42-0" class="reference"><a href="#cite_note-André1881-42"><span class="cite-bracket">[</span>39<span class="cite-bracket">]</span></a></sup> Looking at the first terms of the Taylor expansion of the <a href="/wiki/Trigonometric_functions" title="Trigonometric functions">trigonometric functions</a> <span class="texhtml">tan <i>x</i></span> and <span class="texhtml">sec <i>x</i></span> André made a startling discovery. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\tan x&=x+{\frac {2x^{3}}{3!}}+{\frac {16x^{5}}{5!}}+{\frac {272x^{7}}{7!}}+{\frac {7936x^{9}}{9!}}+\cdots \\[6pt]\sec x&=1+{\frac {x^{2}}{2!}}+{\frac {5x^{4}}{4!}}+{\frac {61x^{6}}{6!}}+{\frac {1385x^{8}}{8!}}+{\frac {50521x^{10}}{10!}}+\cdots \end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>2</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> </mrow> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>16</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> </mrow> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>272</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> </mrow> <mrow> <mn>7</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>7936</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msup> </mrow> <mrow> <mn>9</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>sec</mi> <mo>⁡<!-- --></mo> <mi>x</mi> </mtd> <mtd> <mi></mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>5</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> </mrow> <mrow> <mn>4</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>61</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> </mrow> <mrow> <mn>6</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1385</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> </mrow> <mrow> <mn>8</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>50521</mn> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> </mrow> <mrow> <mn>10</mn> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\tan x&=x+{\frac {2x^{3}}{3!}}+{\frac {16x^{5}}{5!}}+{\frac {272x^{7}}{7!}}+{\frac {7936x^{9}}{9!}}+\cdots \\[6pt]\sec x&=1+{\frac {x^{2}}{2!}}+{\frac {5x^{4}}{4!}}+{\frac {61x^{6}}{6!}}+{\frac {1385x^{8}}{8!}}+{\frac {50521x^{10}}{10!}}+\cdots \end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9ac611c1e77f2bfe7df44e140ba074784ba57c52" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -6.005ex; width:60.726ex; height:13.176ex;" alt="{\displaystyle {\begin{aligned}\tan x&=x+{\frac {2x^{3}}{3!}}+{\frac {16x^{5}}{5!}}+{\frac {272x^{7}}{7!}}+{\frac {7936x^{9}}{9!}}+\cdots \\[6pt]\sec x&=1+{\frac {x^{2}}{2!}}+{\frac {5x^{4}}{4!}}+{\frac {61x^{6}}{6!}}+{\frac {1385x^{8}}{8!}}+{\frac {50521x^{10}}{10!}}+\cdots \end{aligned}}}"></span></dd></dl> <p>The coefficients are the <a href="/wiki/Euler_number" class="mw-redirect" title="Euler number">Euler numbers</a> of odd and even index, respectively. In consequence the ordinary expansion of <span class="texhtml">tan <i>x</i> + sec <i>x</i></span> has as coefficients the rational numbers <span class="texhtml"><i>S</i><sub><i>n</i></sub></span>. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \tan x+\sec x=1+x+{\tfrac {1}{2}}x^{2}+{\tfrac {1}{3}}x^{3}+{\tfrac {5}{24}}x^{4}+{\tfrac {2}{15}}x^{5}+{\tfrac {61}{720}}x^{6}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>tan</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>+</mo> <mi>sec</mi> <mo>⁡<!-- --></mo> <mi>x</mi> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mi>x</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mstyle> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <mn>3</mn> </mfrac> </mstyle> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>5</mn> <mn>24</mn> </mfrac> </mstyle> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>2</mn> <mn>15</mn> </mfrac> </mstyle> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>61</mn> <mn>720</mn> </mfrac> </mstyle> </mrow> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \tan x+\sec x=1+x+{\tfrac {1}{2}}x^{2}+{\tfrac {1}{3}}x^{3}+{\tfrac {5}{24}}x^{4}+{\tfrac {2}{15}}x^{5}+{\tfrac {61}{720}}x^{6}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fccbd5d9a41683426710cfbaedb379fc36592a46" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:64.309ex; height:3.676ex;" alt="{\displaystyle \tan x+\sec x=1+x+{\tfrac {1}{2}}x^{2}+{\tfrac {1}{3}}x^{3}+{\tfrac {5}{24}}x^{4}+{\tfrac {2}{15}}x^{5}+{\tfrac {61}{720}}x^{6}+\cdots }"></span></dd></dl> <p>André then succeeded by means of a recurrence argument to show that the <a href="/wiki/Alternating_permutation" title="Alternating permutation">alternating permutations</a> of odd size are enumerated by the Euler numbers of odd index (also called tangent numbers) and the alternating permutations of even size by the Euler numbers of even index (also called secant numbers). </p> <div class="mw-heading mw-heading2"><h2 id="Related_sequences">Related sequences</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=29" title="Edit section: Related sequences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The arithmetic mean of the first and the second Bernoulli numbers are the associate Bernoulli numbers: <span class="texhtml"><i>B</i><sub>0</sub> = 1</span>, <span class="texhtml"><i>B</i><sub>1</sub> = 0</span>, <span class="texhtml"><i>B</i><sub>2</sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></span>, <span class="texhtml"><i>B</i><sub>3</sub> = 0</span>, <span class="texhtml"><i>B</i><sub>4</sub> = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A176327" class="extiw" title="oeis:A176327">A176327</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span>. Via the second row of its inverse Akiyama–Tanigawa transform <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A177427" class="extiw" title="oeis:A177427">A177427</a></span>, they lead to Balmer series <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A061037" class="extiw" title="oeis:A061037">A061037</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A061038" class="extiw" title="oeis:A061038">A061038</a></span>. </p><p>The Akiyama–Tanigawa algorithm applied to <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A060819" class="extiw" title="oeis:A060819">A060819</a></span> (<span class="texhtml"><i>n</i> + 4</span>) / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A145979" class="extiw" title="oeis:A145979">A145979</a></span> (<span class="texhtml mvar" style="font-style:italic;">n</span>) leads to the Bernoulli numbers <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027641" class="extiw" title="oeis:A027641">A027641</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span>, <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A164555" class="extiw" title="oeis:A164555">A164555</a></span> / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A027642" class="extiw" title="oeis:A027642">A027642</a></span>, or <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A176327" class="extiw" title="oeis:A176327">A176327</a></span> <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A176289" class="extiw" title="oeis:A176289">A176289</a></span> without <span class="texhtml"><i>B</i><sub>1</sub></span>, named intrinsic Bernoulli numbers <span class="texhtml"><i>B</i><sub><i>i</i></sub>(<i>n</i>)</span>. </p> <dl><dd><table style="text-align:center; padding-left; padding-right: 2em;"> <tbody><tr> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">10</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">15</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">42</span></span>⁠</span> </td></tr> <tr> <td>0</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">35</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">84</span></span>⁠</span> </td></tr> <tr> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">140</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">105</span></span>⁠</span></td> <td>0 </td></tr> <tr> <td>0</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">42</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">28</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">4</span><span class="sr-only">/</span><span class="den">105</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">28</span></span>⁠</span> </td></tr></tbody></table></dd></dl> <p>Hence another link between the intrinsic Bernoulli numbers and the Balmer series via <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A145979" class="extiw" title="oeis:A145979">A145979</a></span> (<span class="texhtml"><i>n</i></span>). </p><p><span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A145979" class="extiw" title="oeis:A145979">A145979</a></span> (<span class="texhtml"><i>n</i> − 2</span>) = 0, 2, 1, 6,... is a permutation of the non-negative numbers. </p><p>The terms of the first row are f(n) = <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span> + <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>n</i> + 2</span></span>⁠</span></span>. 2, f(n) is an autosequence of the second kind. 3/2, f(n) leads by its inverse binomial transform to 3/2 −1/2 1/3 −1/4 1/5 ... = 1/2 + log 2. </p><p>Consider g(n) = 1/2 – 1 / (n+2) = 0, 1/6, 1/4, 3/10, 1/3. The Akiyama-Tanagiwa transforms gives: </p> <dl><dd><table style="text-align:center; padding-left; padding-right:2em;"> <tbody><tr> <td>0</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">10</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">3</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">14</span></span>⁠</span></td> <td>... </td></tr> <tr> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">6</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">15</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">42</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">28</span></span>⁠</span></td> <td>... </td></tr> <tr> <td>0</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">20</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">2</span><span class="sr-only">/</span><span class="den">35</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">84</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">84</span></span>⁠</span></td> <td>... </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">30</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">140</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">105</span></span>⁠</span></td> <td>0</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">140</span></span>⁠</span></td> <td>... </td></tr></tbody></table></dd></dl> <p>0, g(n), is an autosequence of the second kind. </p><p>Euler <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A198631" class="extiw" title="oeis:A198631">A198631</a></span> (<span class="texhtml"><i>n</i></span>) / <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A006519" class="extiw" title="oeis:A006519">A006519</a></span> (<span class="texhtml"><i>n</i> + 1</span>) without the second term (<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>) are the fractional intrinsic Euler numbers <span class="texhtml"><i>E</i><sub><i>i</i></sub>(<i>n</i>) = 1, 0, −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span>, 0, <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span>, 0, −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">17</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span>, 0, ...</span> The corresponding Akiyama transform is: </p> <dl><dd><table style="text-align:center; padding-left; padding-right: 2em;"> <tbody><tr> <td>1</td> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">21</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span> </td></tr> <tr> <td>0</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span> </td></tr> <tr> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>0</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">25</span><span class="sr-only">/</span><span class="den">64</span></span>⁠</span> </td></tr> <tr> <td>0</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">9</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span> </td></tr> <tr> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">9</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">13</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">125</span><span class="sr-only">/</span><span class="den">64</span></span>⁠</span> </td></tr></tbody></table></dd></dl> <p>The first line is <span class="texhtml"><i>Eu</i>(<i>n</i>)</span>. <span class="texhtml"><i>Eu</i>(<i>n</i>)</span> preceded by a zero is an autosequence of the first kind. It is linked to the Oresme numbers. The numerators of the second line are <span class="nowrap external"><a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>: <a href="//oeis.org/A069834" class="extiw" title="oeis:A069834">A069834</a></span> preceded by 0. The difference table is: </p> <dl><dd><table style="text-align:center; padding-left; padding-right: 2em;"> <tbody><tr> <td>0</td> <td>1</td> <td>1</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">7</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">21</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">19</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span> </td></tr> <tr> <td>1</td> <td>0</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">16</span></span>⁠</span></td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">5</span><span class="sr-only">/</span><span class="den">128</span></span>⁠</span> </td></tr> <tr> <td>−1</td> <td>−<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">8</span></span>⁠</span></td> <td>0</td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">32</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">3</span><span class="sr-only">/</span><span class="den">128</span></span>⁠</span></td> <td><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">64</span></span>⁠</span> </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Arithmetical_properties_of_the_Bernoulli_numbers">Arithmetical properties of the Bernoulli numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=30" title="Edit section: Arithmetical properties of the Bernoulli numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Bernoulli numbers can be expressed in terms of the Riemann zeta function as <span class="texhtml"><i>B</i><sub><i>n</i></sub> = −<i>nζ</i>(1 − <i>n</i>)</span> for integers <span class="texhtml"><i>n</i> ≥ 0</span> provided for <span class="texhtml"><i>n</i> = 0</span> the expression <span class="texhtml">−<i>nζ</i>(1 − <i>n</i>)</span> is understood as the limiting value and the convention <span class="texhtml"><i>B</i><sub>1</sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span> is used. This intimately relates them to the values of the zeta function at negative integers. As such, they could be expected to have and do have deep arithmetical properties. For example, the <a href="/wiki/Agoh%E2%80%93Giuga_conjecture" title="Agoh–Giuga conjecture">Agoh–Giuga conjecture</a> postulates that <span class="texhtml mvar" style="font-style:italic;">p</span> is a prime number if and only if <span class="texhtml"><i>pB</i><sub><i>p</i> − 1</sub></span> is congruent to −1 modulo <span class="texhtml mvar" style="font-style:italic;">p</span>. Divisibility properties of the Bernoulli numbers are related to the <a href="/wiki/Ideal_class_group" title="Ideal class group">ideal class groups</a> of <a href="/wiki/Cyclotomic_field" title="Cyclotomic field">cyclotomic fields</a> by a theorem of Kummer and its strengthening in the <a href="/wiki/Herbrand-Ribet_theorem" class="mw-redirect" title="Herbrand-Ribet theorem">Herbrand-Ribet theorem</a>, and to class numbers of real quadratic fields by <a href="/wiki/Ankeny%E2%80%93Artin%E2%80%93Chowla_congruence" title="Ankeny–Artin–Chowla congruence">Ankeny–Artin–Chowla</a>. </p> <div class="mw-heading mw-heading3"><h3 id="The_Kummer_theorems">The Kummer theorems</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=31" title="Edit section: The Kummer theorems"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The Bernoulli numbers are related to <a href="/wiki/Fermat%27s_Last_Theorem" title="Fermat's Last Theorem">Fermat's Last Theorem</a> (FLT) by <a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Kummer</a>'s theorem,<sup id="cite_ref-Kummer1850_43-0" class="reference"><a href="#cite_note-Kummer1850-43"><span class="cite-bracket">[</span>40<span class="cite-bracket">]</span></a></sup> which says: </p> <dl><dd>If the odd prime <span class="texhtml mvar" style="font-style:italic;">p</span> does not divide any of the numerators of the Bernoulli numbers <span class="texhtml"><i>B</i><sub>2</sub>, <i>B</i><sub>4</sub>, ..., <i>B</i><sub><i>p</i> − 3</sub></span> then <span class="texhtml"><i>x</i><sup><i>p</i></sup> + <i>y</i><sup><i>p</i></sup> + <i>z</i><sup><i>p</i></sup> = 0</span> has no solutions in nonzero integers.</dd></dl> <p>Prime numbers with this property are called <a href="/wiki/Regular_prime" title="Regular prime">regular primes</a>. Another classical result of Kummer are the following <a href="/wiki/Modular_arithmetic#Congruence" title="Modular arithmetic">congruences</a>.<sup id="cite_ref-Kummer1851_44-0" class="reference"><a href="#cite_note-Kummer1851-44"><span class="cite-bracket">[</span>41<span class="cite-bracket">]</span></a></sup> </p> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Kummer%27s_congruence" title="Kummer's congruence">Kummer's congruence</a></div> <dl><dd>Let <span class="texhtml mvar" style="font-style:italic;">p</span> be an odd prime and <span class="texhtml mvar" style="font-style:italic;">b</span> an even number such that <span class="texhtml"><i>p</i> − 1</span> does not divide <span class="texhtml mvar" style="font-style:italic;">b</span>. Then for any non-negative integer <span class="texhtml mvar" style="font-style:italic;">k</span> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {B_{k(p-1)+b}}{k(p-1)+b}}\equiv {\frac {B_{b}}{b}}{\pmod {p}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> </mrow> </msub> <mrow> <mi>k</mi> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mi>b</mi> </mrow> </mfrac> </mrow> <mo>≡<!-- ≡ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msub> <mi>b</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mi>p</mi> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {B_{k(p-1)+b}}{k(p-1)+b}}\equiv {\frac {B_{b}}{b}}{\pmod {p}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/597f2e73a3ba50f263b09ec86d829058899e77f8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:31.003ex; height:6.509ex;" alt="{\displaystyle {\frac {B_{k(p-1)+b}}{k(p-1)+b}}\equiv {\frac {B_{b}}{b}}{\pmod {p}}.}"></span></dd></dl></dd></dl> <p>A generalization of these congruences goes by the name of <span class="texhtml"><i>p</i></span>-adic continuity. </p> <div class="mw-heading mw-heading3"><h3 id="p-adic_continuity"><span class="texhtml"><i>p</i></span>-adic continuity</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=32" title="Edit section: p-adic continuity"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>If <span class="texhtml mvar" style="font-style:italic;">b</span>, <span class="texhtml mvar" style="font-style:italic;">m</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> are positive integers such that <span class="texhtml mvar" style="font-style:italic;">m</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> are not divisible by <span class="texhtml"><i>p</i> − 1</span> and <span class="texhtml"><i>m</i> ≡ <i>n</i> (mod <i>p</i><sup><i>b</i> − 1</sup> (<i>p</i> − 1))</span>, then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-p^{m-1}){\frac {B_{m}}{m}}\equiv (1-p^{n-1}){\frac {B_{n}}{n}}{\pmod {p^{b}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mi>m</mi> </mfrac> </mrow> <mo>≡<!-- ≡ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mi>n</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-p^{m-1}){\frac {B_{m}}{m}}\equiv (1-p^{n-1}){\frac {B_{n}}{n}}{\pmod {p^{b}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/982f69f12f67747600e19f7ed63627d883ea064f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:44.688ex; height:5.176ex;" alt="{\displaystyle (1-p^{m-1}){\frac {B_{m}}{m}}\equiv (1-p^{n-1}){\frac {B_{n}}{n}}{\pmod {p^{b}}}.}"></span></dd></dl> <p>Since <span class="texhtml"><i>B</i><sub><i>n</i></sub> = −<i>nζ</i>(1 − <i>n</i>)</span>, this can also be written </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(1-p^{-u}\right)\zeta (u)\equiv \left(1-p^{-v}\right)\zeta (v){\pmod {p^{b}}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>u</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>u</mi> <mo stretchy="false">)</mo> <mo>≡<!-- ≡ --></mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>−<!-- − --></mo> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mi>v</mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>v</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <msup> <mi>p</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>b</mi> </mrow> </msup> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(1-p^{-u}\right)\zeta (u)\equiv \left(1-p^{-v}\right)\zeta (v){\pmod {p^{b}}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/989c7f68b043fe44daa7fcf38272b94910665ac3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:43.94ex; height:3.343ex;" alt="{\displaystyle \left(1-p^{-u}\right)\zeta (u)\equiv \left(1-p^{-v}\right)\zeta (v){\pmod {p^{b}}},}"></span></dd></dl> <p>where <span class="texhtml"><i>u</i> = 1 − <i>m</i></span> and <span class="texhtml"><i>v</i> = 1 − <i>n</i></span>, so that <span class="texhtml mvar" style="font-style:italic;">u</span> and <span class="texhtml mvar" style="font-style:italic;">v</span> are nonpositive and not congruent to 1 modulo <span class="texhtml"><i>p</i> − 1</span>. This tells us that the Riemann zeta function, with <span class="texhtml">1 − <i>p</i><sup>−<i>s</i></sup></span> taken out of the Euler product formula, is continuous in the <a href="/wiki/P-adic_number" title="P-adic number"><span class="texhtml mvar" style="font-style:italic;">p</span>-adic numbers</a> on odd negative integers congruent modulo <span class="texhtml"><i>p</i> − 1</span> to a particular <span class="texhtml"><i>a</i> ≢ 1 mod (<i>p</i> − 1)</span>, and so can be extended to a continuous function <span class="texhtml"><i>ζ</i><sub><i>p</i></sub>(<i>s</i>)</span> for all <span class="texhtml mvar" style="font-style:italic;">p</span>-adic integers <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbb {Z} _{p},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="double-struck">Z</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>p</mi> </mrow> </msub> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \mathbb {Z} _{p},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7967f468b6a942f77dd96ada0815be530fcda626" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:3.256ex; height:2.843ex;" alt="{\displaystyle \mathbb {Z} _{p},}"></span> the <a href="/wiki/P-adic_zeta_function" class="mw-redirect" title="P-adic zeta function"><span class="texhtml mvar" style="font-style:italic;">p</span>-adic zeta function</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Ramanujan's_congruences"><span id="Ramanujan.27s_congruences"></span>Ramanujan's congruences</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=33" title="Edit section: Ramanujan's congruences"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The following relations, due to <a href="/wiki/Ramanujan" class="mw-redirect" title="Ramanujan">Ramanujan</a>, provide a method for calculating Bernoulli numbers that is more efficient than the one given by their original recursive definition: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\binom {m+3}{m}}B_{m}={\begin{cases}{\frac {m+3}{3}}-\sum \limits _{j=1}^{\frac {m}{6}}{\binom {m+3}{m-6j}}B_{m-6j},&{\text{if }}m\equiv 0{\pmod {6}};\\{\frac {m+3}{3}}-\sum \limits _{j=1}^{\frac {m-2}{6}}{\binom {m+3}{m-6j}}B_{m-6j},&{\text{if }}m\equiv 2{\pmod {6}};\\-{\frac {m+3}{6}}-\sum \limits _{j=1}^{\frac {m-4}{6}}{\binom {m+3}{m-6j}}B_{m-6j},&{\text{if }}m\equiv 4{\pmod {6}}.\end{cases}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> <mi>m</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>{</mo> <mtable columnalign="left left" rowspacing=".2em" columnspacing="1em" displaystyle="false"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>m</mi> <mn>6</mn> </mfrac> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mn>6</mn> <mi>j</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>6</mn> <mi>j</mi> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>m</mi> <mo>≡<!-- ≡ --></mo> <mn>0</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> <mn>6</mn> </mfrac> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mn>6</mn> <mi>j</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>6</mn> <mi>j</mi> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>m</mi> <mo>≡<!-- ≡ --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> <mo>;</mo> </mtd> </mtr> <mtr> <mtd> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> <mn>6</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <munderover> <mo movablelimits="false">∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mn>4</mn> </mrow> <mn>6</mn> </mfrac> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="1.2em" minsize="1.2em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>m</mi> <mo>+</mo> <mn>3</mn> </mrow> <mrow> <mi>m</mi> <mo>−<!-- − --></mo> <mn>6</mn> <mi>j</mi> </mrow> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="1.2em" minsize="1.2em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>−<!-- − --></mo> <mn>6</mn> <mi>j</mi> </mrow> </msub> <mo>,</mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mtext>if </mtext> </mrow> <mi>m</mi> <mo>≡<!-- ≡ --></mo> <mn>4</mn> <mrow class="MJX-TeXAtom-ORD"> <mspace width="0.444em" /> <mo stretchy="false">(</mo> <mi>mod</mi> <mspace width="0.333em" /> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> <mo>.</mo> </mtd> </mtr> </mtable> <mo fence="true" stretchy="true" symmetric="true"></mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\binom {m+3}{m}}B_{m}={\begin{cases}{\frac {m+3}{3}}-\sum \limits _{j=1}^{\frac {m}{6}}{\binom {m+3}{m-6j}}B_{m-6j},&{\text{if }}m\equiv 0{\pmod {6}};\\{\frac {m+3}{3}}-\sum \limits _{j=1}^{\frac {m-2}{6}}{\binom {m+3}{m-6j}}B_{m-6j},&{\text{if }}m\equiv 2{\pmod {6}};\\-{\frac {m+3}{6}}-\sum \limits _{j=1}^{\frac {m-4}{6}}{\binom {m+3}{m-6j}}B_{m-6j},&{\text{if }}m\equiv 4{\pmod {6}}.\end{cases}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6f593dba092e4d79ff4c27ec6f256b4ad0ef2cc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -11.234ex; margin-bottom: -0.27ex; width:65.928ex; height:24.176ex;" alt="{\displaystyle {\binom {m+3}{m}}B_{m}={\begin{cases}{\frac {m+3}{3}}-\sum \limits _{j=1}^{\frac {m}{6}}{\binom {m+3}{m-6j}}B_{m-6j},&{\text{if }}m\equiv 0{\pmod {6}};\\{\frac {m+3}{3}}-\sum \limits _{j=1}^{\frac {m-2}{6}}{\binom {m+3}{m-6j}}B_{m-6j},&{\text{if }}m\equiv 2{\pmod {6}};\\-{\frac {m+3}{6}}-\sum \limits _{j=1}^{\frac {m-4}{6}}{\binom {m+3}{m-6j}}B_{m-6j},&{\text{if }}m\equiv 4{\pmod {6}}.\end{cases}}}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Von_Staudt–Clausen_theorem"><span id="Von_Staudt.E2.80.93Clausen_theorem"></span>Von Staudt–Clausen theorem</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=34" title="Edit section: Von Staudt–Clausen theorem"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Von_Staudt%E2%80%93Clausen_theorem" title="Von Staudt–Clausen theorem">Von Staudt–Clausen theorem</a></div> <p>The von Staudt–Clausen theorem was given by <a href="/wiki/Karl_Georg_Christian_von_Staudt" title="Karl Georg Christian von Staudt">Karl Georg Christian von Staudt</a><sup id="cite_ref-vonStaudt1840_45-0" class="reference"><a href="#cite_note-vonStaudt1840-45"><span class="cite-bracket">[</span>42<span class="cite-bracket">]</span></a></sup> and <a href="/wiki/Thomas_Clausen_(mathematician)" title="Thomas Clausen (mathematician)">Thomas Clausen</a><sup id="cite_ref-Clausen1840_46-0" class="reference"><a href="#cite_note-Clausen1840-46"><span class="cite-bracket">[</span>43<span class="cite-bracket">]</span></a></sup> independently in 1840. The theorem states that for every <span class="texhtml"><i>n</i> > 0</span>, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2n}+\sum _{(p-1)\,\mid \,2n}{\frac {1}{p}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>n</mi> </mrow> </msub> <mo>+</mo> <munder> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false">(</mo> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> <mo>∣<!-- ∣ --></mo> <mspace width="thinmathspace" /> <mn>2</mn> <mi>n</mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>p</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2n}+\sum _{(p-1)\,\mid \,2n}{\frac {1}{p}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7ccff12654cf0f82891558b62945018bcb42d82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.505ex; width:16.284ex; height:6.843ex;" alt="{\displaystyle B_{2n}+\sum _{(p-1)\,\mid \,2n}{\frac {1}{p}}}"></span></dd></dl> <p>is an integer. The sum extends over all <a href="/wiki/Prime_number" title="Prime number">primes</a> <span class="texhtml"><i>p</i></span> for which <span class="texhtml"><i>p</i> − 1</span> divides <span class="texhtml">2<i>n</i></span>. </p><p>A consequence of this is that the denominator of <span class="texhtml"><i>B</i><sub>2<i>n</i></sub></span> is given by the product of all primes <span class="texhtml"><i>p</i></span> for which <span class="texhtml"><i>p</i> − 1</span> divides <span class="texhtml">2<i>n</i></span>. In particular, these denominators are <a href="/wiki/Square-free" class="mw-redirect" title="Square-free">square-free</a> and divisible by 6. </p> <div class="mw-heading mw-heading3"><h3 id="Why_do_the_odd_Bernoulli_numbers_vanish?"><span id="Why_do_the_odd_Bernoulli_numbers_vanish.3F"></span>Why do the odd Bernoulli numbers vanish?</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=35" title="Edit section: Why do the odd Bernoulli numbers vanish?"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The sum </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varphi _{k}(n)=\sum _{i=0}^{n}i^{k}-{\frac {n^{k}}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>φ<!-- φ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>i</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mn>2</mn> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varphi _{k}(n)=\sum _{i=0}^{n}i^{k}-{\frac {n^{k}}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b053fb2fc5f9ea916cc1fb73785d62fde4581bf2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.705ex; height:6.843ex;" alt="{\displaystyle \varphi _{k}(n)=\sum _{i=0}^{n}i^{k}-{\frac {n^{k}}{2}}}"></span></dd></dl> <p>can be evaluated for negative values of the index <span class="texhtml"><i>n</i></span>. Doing so will show that it is an <a href="/wiki/Odd_function" class="mw-redirect" title="Odd function">odd function</a> for even values of <span class="texhtml"><i>k</i></span>, which implies that the sum has only terms of odd index. This and the formula for the Bernoulli sum imply that <span class="texhtml"><i>B</i><sub>2<i>k</i> + 1 − <i>m</i></sub></span> is 0 for <span class="texhtml"><i>m</i></span> even and <span class="texhtml">2<i>k</i> + 1 − <i>m</i> > 1</span>; and that the term for <span class="texhtml"><i>B</i><sub>1</sub></span> is cancelled by the subtraction. The von Staudt–Clausen theorem combined with Worpitzky's representation also gives a combinatorial answer to this question (valid for <i>n</i> > 1). </p><p>From the von Staudt–Clausen theorem it is known that for odd <span class="texhtml"><i>n</i> > 1</span> the number <span class="texhtml">2<i>B</i><sub><i>n</i></sub></span> is an integer. This seems trivial if one knows beforehand that the integer in question is zero. However, by applying Worpitzky's representation one gets </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2B_{n}=\sum _{m=0}^{n}(-1)^{m}{\frac {2}{m+1}}m!\left\{{n+1 \atop m+1}\right\}=0\quad (n>1{\text{ is odd}})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mi>m</mi> <mo>!</mo> <mrow> <mo>{</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>}</mo> </mrow> <mo>=</mo> <mn>0</mn> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>n</mi> <mo>></mo> <mn>1</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> is odd</mtext> </mrow> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2B_{n}=\sum _{m=0}^{n}(-1)^{m}{\frac {2}{m+1}}m!\left\{{n+1 \atop m+1}\right\}=0\quad (n>1{\text{ is odd}})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ac9fe56907a0593bf2169527aaeb8582c4cfbac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:57.803ex; height:6.843ex;" alt="{\displaystyle 2B_{n}=\sum _{m=0}^{n}(-1)^{m}{\frac {2}{m+1}}m!\left\{{n+1 \atop m+1}\right\}=0\quad (n>1{\text{ is odd}})}"></span></dd></dl> <p>as a <i>sum of integers</i>, which is not trivial. Here a combinatorial fact comes to surface which explains the vanishing of the Bernoulli numbers at odd index. Let <span class="texhtml"><i>S</i><sub><i>n</i>,<i>m</i></sub></span> be the number of surjective maps from <span class="texhtml">{1, 2, ..., <i>n</i></span>} to <span class="texhtml">{1, 2, ..., <i>m</i></span>}, then <span class="texhtml"><i>S</i><sub><i>n</i>,<i>m</i></sub> = <i>m</i>!<big><big>{</big></big><span class="nowrap"><span style="display:inline-block;margin-bottom:-0.3em;vertical-align:-0.4em;line-height:1.2em;font-size:80%;text-align:center"><sup style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>n</i></sup><br /><sub style="font-size:inherit;line-height:inherit;vertical-align:baseline"><i>m</i></sub></span></span><big><big>}</big></big></span>. The last equation can only hold if </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{{\text{odd }}m=1}^{n-1}{\frac {2}{m^{2}}}S_{n,m}=\sum _{{\text{even }}m=2}^{n}{\frac {2}{m^{2}}}S_{n,m}\quad (n>2{\text{ is even}}).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>odd </mtext> </mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mtext>even </mtext> </mrow> <mi>m</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>2</mn> <msup> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mspace width="1em" /> <mo stretchy="false">(</mo> <mi>n</mi> <mo>></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mtext> is even</mtext> </mrow> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{{\text{odd }}m=1}^{n-1}{\frac {2}{m^{2}}}S_{n,m}=\sum _{{\text{even }}m=2}^{n}{\frac {2}{m^{2}}}S_{n,m}\quad (n>2{\text{ is even}}).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1ee9a8213639d83d1102c398d273102155fe7e14" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:52.705ex; height:7.343ex;" alt="{\displaystyle \sum _{{\text{odd }}m=1}^{n-1}{\frac {2}{m^{2}}}S_{n,m}=\sum _{{\text{even }}m=2}^{n}{\frac {2}{m^{2}}}S_{n,m}\quad (n>2{\text{ is even}}).}"></span></dd></dl> <p>This equation can be proved by induction. The first two examples of this equation are </p> <dl><dd><span class="texhtml"><i>n</i> = 4: 2 + 8 = 7 + 3</span>,</dd> <dd><span class="texhtml"><i>n</i> = 6: 2 + 120 + 144 = 31 + 195 + 40</span>.</dd></dl> <p>Thus the Bernoulli numbers vanish at odd index because some non-obvious combinatorial identities are embodied in the Bernoulli numbers. </p> <div class="mw-heading mw-heading3"><h3 id="A_restatement_of_the_Riemann_hypothesis">A restatement of the Riemann hypothesis</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=36" title="Edit section: A restatement of the Riemann hypothesis"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The connection between the Bernoulli numbers and the Riemann zeta function is strong enough to provide an alternate formulation of the <a href="/wiki/Riemann_hypothesis" title="Riemann hypothesis">Riemann hypothesis</a> (RH) which uses only the Bernoulli numbers. In fact <a href="/wiki/Marcel_Riesz" title="Marcel Riesz">Marcel Riesz</a> proved that the RH is equivalent to the following assertion:<sup id="cite_ref-Riesz1916_47-0" class="reference"><a href="#cite_note-Riesz1916-47"><span class="cite-bracket">[</span>44<span class="cite-bracket">]</span></a></sup> </p> <dl><dd>For every <span class="texhtml"><i>ε</i> > <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">4</span></span>⁠</span></span> there exists a constant <span class="texhtml"><i>C</i><sub><i>ε</i></sub> > 0</span> (depending on <span class="texhtml"><i>ε</i></span>) such that <span class="texhtml">|<span class="nowrap" style="padding-left:0.1em; padding-right:0.1em;"><i>R</i>(<i>x</i>)</span>| < <i>C</i><sub><i>ε</i></sub><i>x</i><sup><i>ε</i></sup></span> as <span class="texhtml"><i>x</i> → ∞</span>.</dd></dl> <p>Here <span class="texhtml"><i>R</i>(<i>x</i>)</span> is the <a href="/wiki/Riesz_function" title="Riesz function">Riesz function</a> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R(x)=2\sum _{k=1}^{\infty }{\frac {k^{\overline {k}}x^{k}}{(2\pi )^{2k}\left({\frac {B_{2k}}{2k}}\right)}}=2\sum _{k=1}^{\infty }{\frac {k^{\overline {k}}x^{k}}{(2\pi )^{2k}\beta _{2k}}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> <mrow> <mn>2</mn> <mi>k</mi> </mrow> </mfrac> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi>k</mi> <mo accent="false">¯<!-- ¯ --></mo> </mover> </mrow> </msup> <msup> <mi>x</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msup> <msub> <mi>β<!-- β --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>k</mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R(x)=2\sum _{k=1}^{\infty }{\frac {k^{\overline {k}}x^{k}}{(2\pi )^{2k}\left({\frac {B_{2k}}{2k}}\right)}}=2\sum _{k=1}^{\infty }{\frac {k^{\overline {k}}x^{k}}{(2\pi )^{2k}\beta _{2k}}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a273b39acf1cd3bb9122272660668e545684a995" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -4.505ex; width:46.431ex; height:8.843ex;" alt="{\displaystyle R(x)=2\sum _{k=1}^{\infty }{\frac {k^{\overline {k}}x^{k}}{(2\pi )^{2k}\left({\frac {B_{2k}}{2k}}\right)}}=2\sum _{k=1}^{\infty }{\frac {k^{\overline {k}}x^{k}}{(2\pi )^{2k}\beta _{2k}}}.}"></span></dd></dl> <p><span class="texhtml"><i>n</i><sup><span style="text-decoration:overline;"><i>k</i></span></sup></span> denotes the <a href="/wiki/Pochhammer_symbol#Alternate_notations" class="mw-redirect" title="Pochhammer symbol">rising factorial power</a> in the notation of <a href="/wiki/D._E._Knuth" class="mw-redirect" title="D. E. Knuth">D. E. Knuth</a>. The numbers <span class="texhtml"><i>β</i><sub><i>n</i></sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>B</i><sub><i>n</i></sub></span><span class="sr-only">/</span><span class="den"><i>n</i></span></span>⁠</span></span> occur frequently in the study of the zeta function and are significant because <span class="texhtml"><i>β</i><sub><i>n</i></sub></span> is a <span class="texhtml"><i>p</i></span>-integer for primes <span class="texhtml"><i>p</i></span> where <span class="texhtml"><i>p</i> − 1</span> does not divide <span class="texhtml"><i>n</i></span>. The <span class="texhtml"><i>β</i><sub><i>n</i></sub></span> are called <i>divided Bernoulli numbers</i>. </p> <div class="mw-heading mw-heading2"><h2 id="Generalized_Bernoulli_numbers"><span id="Generalized_Bernoulli_numbers"></span>Generalized Bernoulli numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=37" title="Edit section: Generalized Bernoulli numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The <b>generalized Bernoulli numbers</b> are certain <a href="/wiki/Algebraic_number" title="Algebraic number">algebraic numbers</a>, defined similarly to the Bernoulli numbers, that are related to <a href="/wiki/Special_values_of_L-functions" title="Special values of L-functions">special values</a> of <a href="/wiki/Dirichlet_L-function" title="Dirichlet L-function">Dirichlet <span class="texhtml mvar" style="font-style:italic;">L</span>-functions</a> in the same way that Bernoulli numbers are related to special values of the Riemann zeta function. </p><p>Let <span class="texhtml mvar" style="font-style:italic;">χ</span> be a <a href="/wiki/Dirichlet_character" title="Dirichlet character">Dirichlet character</a> modulo <span class="texhtml mvar" style="font-style:italic;">f</span>. The generalized Bernoulli numbers attached to <span class="texhtml mvar" style="font-style:italic;">χ</span> are defined by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{a=1}^{f}\chi (a){\frac {te^{at}}{e^{ft}-1}}=\sum _{k=0}^{\infty }B_{k,\chi }{\frac {t^{k}}{k!}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> </mrow> </munderover> <mi>χ<!-- χ --></mi> <mo stretchy="false">(</mo> <mi>a</mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>t</mi> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>a</mi> <mi>t</mi> </mrow> </msup> </mrow> <mrow> <msup> <mi>e</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>f</mi> <mi>t</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>χ<!-- χ --></mi> </mrow> </msub> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mi>t</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> <mrow> <mi>k</mi> <mo>!</mo> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{a=1}^{f}\chi (a){\frac {te^{at}}{e^{ft}-1}}=\sum _{k=0}^{\infty }B_{k,\chi }{\frac {t^{k}}{k!}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de6d7cff17603e0e2d60765374a95a9abf5e4b6b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:30.48ex; height:7.676ex;" alt="{\displaystyle \sum _{a=1}^{f}\chi (a){\frac {te^{at}}{e^{ft}-1}}=\sum _{k=0}^{\infty }B_{k,\chi }{\frac {t^{k}}{k!}}.}"></span></dd></dl> <p>Apart from the exceptional <span class="texhtml"><i>B</i><sub>1,1</sub> = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>, we have, for any Dirichlet character <span class="texhtml mvar" style="font-style:italic;">χ</span>, that <span class="texhtml"><i>B</i><sub><i>k</i>,<i>χ</i></sub> = 0</span> if <span class="texhtml"><i>χ</i>(−1) ≠ (−1)<sup><i>k</i></sup></span>. </p><p>Generalizing the relation between Bernoulli numbers and values of the Riemann zeta function at non-positive integers, one has the for all integers <span class="texhtml"><i>k</i> ≥ 1</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(1-k,\chi )=-{\frac {B_{k,\chi }}{k}},}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>L</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mi>k</mi> <mo>,</mo> <mi>χ<!-- χ --></mi> <mo stretchy="false">)</mo> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>,</mo> <mi>χ<!-- χ --></mi> </mrow> </msub> <mi>k</mi> </mfrac> </mrow> <mo>,</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle L(1-k,\chi )=-{\frac {B_{k,\chi }}{k}},}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/38568c794c03d79e6ebebbe25259860598c2bb64" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:21.824ex; height:5.676ex;" alt="{\displaystyle L(1-k,\chi )=-{\frac {B_{k,\chi }}{k}},}"></span></dd></dl> <p>where <span class="texhtml"><i>L</i>(<i>s</i>,<i>χ</i>)</span> is the Dirichlet <span class="texhtml mvar" style="font-style:italic;">L</span>-function of <span class="texhtml mvar" style="font-style:italic;">χ</span>.<sup id="cite_ref-Neukirch1999_VII2_48-0" class="reference"><a href="#cite_note-Neukirch1999_VII2-48"><span class="cite-bracket">[</span>45<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Eisenstein–Kronecker_number"><span id="Eisenstein.E2.80.93Kronecker_number"></span>Eisenstein–Kronecker number</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=38" title="Edit section: Eisenstein–Kronecker number"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236090951"><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Eisenstein%E2%80%93Kronecker_number" title="Eisenstein–Kronecker number">Eisenstein–Kronecker number</a></div> <p><a href="/wiki/Eisenstein%E2%80%93Kronecker_number" title="Eisenstein–Kronecker number">Eisenstein–Kronecker numbers</a> are an analogue of the generalized Bernoulli numbers for <a href="/wiki/Imaginary_quadratic_field" class="mw-redirect" title="Imaginary quadratic field">imaginary quadratic fields</a>.<sup id="cite_ref-Charollois-Sczech_49-0" class="reference"><a href="#cite_note-Charollois-Sczech-49"><span class="cite-bracket">[</span>46<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-BK_50-0" class="reference"><a href="#cite_note-BK-50"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> They are related to critical <i>L</i>-values of <a href="/wiki/Hecke_character" title="Hecke character">Hecke characters</a>.<sup id="cite_ref-BK_50-1" class="reference"><a href="#cite_note-BK-50"><span class="cite-bracket">[</span>47<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Appendix">Appendix</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=39" title="Edit section: Appendix"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Assorted_identities">Assorted identities</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=40" title="Edit section: Assorted identities"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div><ul><li><a href="/wiki/Umbral_calculus" title="Umbral calculus">Umbral calculus</a> gives a compact form of Bernoulli's formula by using an abstract symbol <span class="texhtml"><b>B</b></span>: <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{m}(n)={\frac {1}{m+1}}((\mathbf {B} +n)^{m+1}-B_{m+1})}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <mo stretchy="false">(</mo> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>+</mo> <mi>n</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{m}(n)={\frac {1}{m+1}}((\mathbf {B} +n)^{m+1}-B_{m+1})}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd70631cb4fa5a491a5b79547fba277cb37dda3f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:38.192ex; height:5.343ex;" alt="{\displaystyle S_{m}(n)={\frac {1}{m+1}}((\mathbf {B} +n)^{m+1}-B_{m+1})}"></span></dd></dl> <p>where the symbol <span class="texhtml"><b>B</b><sup><i>k</i></sup></span> that appears during binomial expansion of the parenthesized term is to be replaced by the Bernoulli number <span class="texhtml"><i>B<sub>k</sub></i></span> (and <span class="texhtml"><i>B</i><sub>1</sub> = +<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>). More suggestively and mnemonically, this may be written as a definite integral: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S_{m}(n)=\int _{0}^{n}(\mathbf {B} +x)^{m}\,dx}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>S</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msubsup> <mo>∫<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msubsup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <mo>+</mo> <mi>x</mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mspace width="thinmathspace" /> <mi>d</mi> <mi>x</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S_{m}(n)=\int _{0}^{n}(\mathbf {B} +x)^{m}\,dx}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fabc12e6f0825fbc08fafaca57d1891666458c58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:25.573ex; height:5.843ex;" alt="{\displaystyle S_{m}(n)=\int _{0}^{n}(\mathbf {B} +x)^{m}\,dx}"></span></dd></dl> <p>Many other Bernoulli identities can be written compactly with this symbol, e.g. </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (1-2\mathbf {B} )^{m}=(2-2^{m})B_{m}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mn>1</mn> <mo>−<!-- − --></mo> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">B</mi> </mrow> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo>=</mo> <mo stretchy="false">(</mo> <mn>2</mn> <mo>−<!-- − --></mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (1-2\mathbf {B} )^{m}=(2-2^{m})B_{m}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb3d893e547c1768aa7c35be70a3742b6d7eb1e2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:25.738ex; height:2.843ex;" alt="{\displaystyle (1-2\mathbf {B} )^{m}=(2-2^{m})B_{m}}"></span></dd></dl></li><li>Let <span class="texhtml"><i>n</i></span> be non-negative and even <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \zeta (n)={\frac {(-1)^{{\frac {n}{2}}-1}B_{n}(2\pi )^{n}}{2(n!)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>ζ<!-- ζ --></mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <mi>π<!-- π --></mi> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>n</mi> <mo>!</mo> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \zeta (n)={\frac {(-1)^{{\frac {n}{2}}-1}B_{n}(2\pi )^{n}}{2(n!)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b788f3e07762f2d789845f47415f7d75e3469447" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:25.488ex; height:7.343ex;" alt="{\displaystyle \zeta (n)={\frac {(-1)^{{\frac {n}{2}}-1}B_{n}(2\pi )^{n}}{2(n!)}}}"></span></dd></dl></li><li>The <span class="texhtml"><i>n</i></span>th <a href="/wiki/Cumulant" title="Cumulant">cumulant</a> of the <a href="/wiki/Uniform_distribution_(continuous)" class="mw-redirect" title="Uniform distribution (continuous)">uniform</a> <a href="/wiki/Probability_distribution" title="Probability distribution">probability distribution</a> on the interval [−1, 0] is <span class="texhtml"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num"><i>B</i><sub><i>n</i></sub></span><span class="sr-only">/</span><span class="den"><i>n</i></span></span>⁠</span></span>.</li><li>Let <span class="texhtml"><i>n</i>? = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den"><i>n</i>!</span></span>⁠</span></span> and <span class="texhtml"><i>n</i> ≥ 1</span>. Then <span class="texhtml"><i>B</i><sub><i>n</i></sub></span> is the following <span class="texhtml">(<i>n</i> + 1) × (<i>n</i> + 1)</span> determinant:<sup id="cite_ref-Malenfant2011_51-0" class="reference"><a href="#cite_note-Malenfant2011-51"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}B_{n}&=n!{\begin{vmatrix}1&0&\cdots &0&1\\2?&1&\cdots &0&0\\\vdots &\vdots &&\vdots &\vdots \\n?&(n-1)?&\cdots &1&0\\(n+1)?&n?&\cdots &2?&0\end{vmatrix}}\\[8pt]&=n!{\begin{vmatrix}1&0&\cdots &0&1\\{\frac {1}{2!}}&1&\cdots &0&0\\\vdots &\vdots &&\vdots &\vdots \\{\frac {1}{n!}}&{\frac {1}{(n-1)!}}&\cdots &1&0\\{\frac {1}{(n+1)!}}&{\frac {1}{n!}}&\cdots &{\frac {1}{2!}}&0\end{vmatrix}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="1.1em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mi>n</mi> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <mo>?</mo> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mi>n</mi> <mo>?</mo> </mtd> <mtd> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>?</mo> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>?</mo> </mtd> <mtd> <mi>n</mi> <mo>?</mo> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>2</mn> <mo>?</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd /> <mtd> <mi></mi> <mo>=</mo> <mi>n</mi> <mo>!</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>n</mi> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>2</mn> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}B_{n}&=n!{\begin{vmatrix}1&0&\cdots &0&1\\2?&1&\cdots &0&0\\\vdots &\vdots &&\vdots &\vdots \\n?&(n-1)?&\cdots &1&0\\(n+1)?&n?&\cdots &2?&0\end{vmatrix}}\\[8pt]&=n!{\begin{vmatrix}1&0&\cdots &0&1\\{\frac {1}{2!}}&1&\cdots &0&0\\\vdots &\vdots &&\vdots &\vdots \\{\frac {1}{n!}}&{\frac {1}{(n-1)!}}&\cdots &1&0\\{\frac {1}{(n+1)!}}&{\frac {1}{n!}}&\cdots &{\frac {1}{2!}}&0\end{vmatrix}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/aeed24c819804a002d3b8e024d65b71203d61be0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -19.338ex; width:42.964ex; height:39.843ex;" alt="{\displaystyle {\begin{aligned}B_{n}&=n!{\begin{vmatrix}1&0&\cdots &0&1\\2?&1&\cdots &0&0\\\vdots &\vdots &&\vdots &\vdots \\n?&(n-1)?&\cdots &1&0\\(n+1)?&n?&\cdots &2?&0\end{vmatrix}}\\[8pt]&=n!{\begin{vmatrix}1&0&\cdots &0&1\\{\frac {1}{2!}}&1&\cdots &0&0\\\vdots &\vdots &&\vdots &\vdots \\{\frac {1}{n!}}&{\frac {1}{(n-1)!}}&\cdots &1&0\\{\frac {1}{(n+1)!}}&{\frac {1}{n!}}&\cdots &{\frac {1}{2!}}&0\end{vmatrix}}\end{aligned}}}"></span></dd></dl> Thus the determinant is <span class="texhtml"><i>σ</i><sub><i>n</i></sub>(1)</span>, the <a href="/wiki/Stirling_polynomial" class="mw-redirect" title="Stirling polynomial">Stirling polynomial</a> at <span class="texhtml"><i>x</i> = 1</span>.</li><li>For even-numbered Bernoulli numbers, <span class="texhtml"><i>B</i><sub>2<i>p</i></sub></span> is given by the <span class="texhtml">(<i>p</i> + 1) × (<i>p</i> + 1)</span> determinant::<sup id="cite_ref-Malenfant2011_51-1" class="reference"><a href="#cite_note-Malenfant2011-51"><span class="cite-bracket">[</span>48<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{2p}=-{\frac {(2p)!}{2^{2p}-2}}{\begin{vmatrix}1&0&0&\cdots &0&1\\{\frac {1}{3!}}&1&0&\cdots &0&0\\{\frac {1}{5!}}&{\frac {1}{3!}}&1&\cdots &0&0\\\vdots &\vdots &\vdots &&\vdots &\vdots \\{\frac {1}{(2p+1)!}}&{\frac {1}{(2p-1)!}}&{\frac {1}{(2p-3)!}}&\cdots &{\frac {1}{3!}}&0\end{vmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>p</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> <mrow> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi>p</mi> </mrow> </msup> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>|</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>5</mn> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd /> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> <mtd> <mo>⋮<!-- ⋮ --></mo> </mtd> </mtr> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mo stretchy="false">(</mo> <mn>2</mn> <mi>p</mi> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mo>⋯<!-- ⋯ --></mo> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mn>3</mn> <mo>!</mo> </mrow> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> <mo>|</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{2p}=-{\frac {(2p)!}{2^{2p}-2}}{\begin{vmatrix}1&0&0&\cdots &0&1\\{\frac {1}{3!}}&1&0&\cdots &0&0\\{\frac {1}{5!}}&{\frac {1}{3!}}&1&\cdots &0&0\\\vdots &\vdots &\vdots &&\vdots &\vdots \\{\frac {1}{(2p+1)!}}&{\frac {1}{(2p-1)!}}&{\frac {1}{(2p-3)!}}&\cdots &{\frac {1}{3!}}&0\end{vmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4c974fe9a53a8aa6d22f425690c004435961a16a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -9.505ex; width:55.061ex; height:20.176ex;" alt="{\displaystyle B_{2p}=-{\frac {(2p)!}{2^{2p}-2}}{\begin{vmatrix}1&0&0&\cdots &0&1\\{\frac {1}{3!}}&1&0&\cdots &0&0\\{\frac {1}{5!}}&{\frac {1}{3!}}&1&\cdots &0&0\\\vdots &\vdots &\vdots &&\vdots &\vdots \\{\frac {1}{(2p+1)!}}&{\frac {1}{(2p-1)!}}&{\frac {1}{(2p-3)!}}&\cdots &{\frac {1}{3!}}&0\end{vmatrix}}}"></span></dd></dl></li><li>Let <span class="texhtml"><i>n</i> ≥ 1</span>. Then (<a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a>)<sup id="cite_ref-52" class="reference"><a href="#cite_note-52"><span class="cite-bracket">[</span>49<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {1}{n}}\sum _{k=1}^{n}{\binom {n}{k}}B_{k}B_{n-k}+B_{n-1}=-B_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>n</mi> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {1}{n}}\sum _{k=1}^{n}{\binom {n}{k}}B_{k}B_{n-k}+B_{n-1}=-B_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d888fa118fce215bb8294f6ed9069c3ba1de1264" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:34.959ex; height:6.843ex;" alt="{\displaystyle {\frac {1}{n}}\sum _{k=1}^{n}{\binom {n}{k}}B_{k}B_{n-k}+B_{n-1}=-B_{n}}"></span></dd></dl></li><li>Let <span class="texhtml"><i>n</i> ≥ 1</span>. Then<sup id="cite_ref-vonEttingshausen1827_53-0" class="reference"><a href="#cite_note-vonEttingshausen1827-53"><span class="cite-bracket">[</span>50<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{n}{\binom {n+1}{k}}(n+k+1)B_{n+k}=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>k</mi> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{n}{\binom {n+1}{k}}(n+k+1)B_{n+k}=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/68dc2790b139a92efb1c90d0332a485aec85ffce" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:33.198ex; height:7.009ex;" alt="{\displaystyle \sum _{k=0}^{n}{\binom {n+1}{k}}(n+k+1)B_{n+k}=0}"></span></dd></dl></li><li>Let <span class="texhtml"><i>n</i> ≥ 0</span>. Then (<a href="/wiki/Leopold_Kronecker" title="Leopold Kronecker">Leopold Kronecker</a> 1883) <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle B_{n}=-\sum _{k=1}^{n+1}{\frac {(-1)^{k}}{k}}{\binom {n+1}{k}}\sum _{j=1}^{k}j^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msup> </mrow> <mi>k</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <msup> <mi>j</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle B_{n}=-\sum _{k=1}^{n+1}{\frac {(-1)^{k}}{k}}{\binom {n+1}{k}}\sum _{j=1}^{k}j^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9f29725a93571492586849b04a06e43f20880637" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:33.847ex; height:7.676ex;" alt="{\displaystyle B_{n}=-\sum _{k=1}^{n+1}{\frac {(-1)^{k}}{k}}{\binom {n+1}{k}}\sum _{j=1}^{k}j^{n}}"></span></dd></dl></li><li>Let <span class="texhtml"><i>n</i> ≥ 1</span> and <span class="texhtml"><i>m</i> ≥ 1</span>. Then<sup id="cite_ref-Carlitz1968_54-0" class="reference"><a href="#cite_note-Carlitz1968-54"><span class="cite-bracket">[</span>51<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{m}\sum _{r=0}^{m}{\binom {m}{r}}B_{n+r}=(-1)^{n}\sum _{s=0}^{n}{\binom {n}{s}}B_{m+s}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </msup> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>r</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mi>r</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mi>r</mi> </mrow> </msub> <mo>=</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>s</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>s</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mi>s</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{m}\sum _{r=0}^{m}{\binom {m}{r}}B_{n+r}=(-1)^{n}\sum _{s=0}^{n}{\binom {n}{s}}B_{m+s}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/69776eff31afcb467449d0e8ca1d66785286ae39" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:44.579ex; height:6.843ex;" alt="{\displaystyle (-1)^{m}\sum _{r=0}^{m}{\binom {m}{r}}B_{n+r}=(-1)^{n}\sum _{s=0}^{n}{\binom {n}{s}}B_{m+s}}"></span></dd></dl></li><li>Let <span class="texhtml"><i>n</i> ≥ 4</span> and <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle H_{n}=\sum _{k=1}^{n}k^{-1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle H_{n}=\sum _{k=1}^{n}k^{-1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/669142a34d4d94cf01539afc37e88e6e06d3bdd7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:13.534ex; height:6.843ex;" alt="{\displaystyle H_{n}=\sum _{k=1}^{n}k^{-1}}"></span></dd></dl> the <a href="/wiki/Harmonic_number" title="Harmonic number">harmonic number</a>. Then (H. Miki 1978) <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n}{2}}\sum _{k=2}^{n-2}{\frac {B_{n-k}}{n-k}}{\frac {B_{k}}{k}}-\sum _{k=2}^{n-2}{\binom {n}{k}}{\frac {B_{n-k}}{n-k}}B_{k}=H_{n}B_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mi>k</mi> </mfrac> </mrow> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </mfrac> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n}{2}}\sum _{k=2}^{n-2}{\frac {B_{n-k}}{n-k}}{\frac {B_{k}}{k}}-\sum _{k=2}^{n-2}{\binom {n}{k}}{\frac {B_{n-k}}{n-k}}B_{k}=H_{n}B_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5746fc7c367307e7cfcd02a7850108cd9177bd90" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:46.096ex; height:7.343ex;" alt="{\displaystyle {\frac {n}{2}}\sum _{k=2}^{n-2}{\frac {B_{n-k}}{n-k}}{\frac {B_{k}}{k}}-\sum _{k=2}^{n-2}{\binom {n}{k}}{\frac {B_{n-k}}{n-k}}B_{k}=H_{n}B_{n}}"></span></dd></dl></li><li>Let <span class="texhtml"><i>n</i> ≥ 4</span>. <a href="/wiki/Yuri_Matiyasevich" title="Yuri Matiyasevich">Yuri Matiyasevich</a> found (1997) <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (n+2)\sum _{k=2}^{n-2}B_{k}B_{n-k}-2\sum _{l=2}^{n-2}{\binom {n+2}{l}}B_{l}B_{n-l}=n(n+1)B_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </munderover> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo>−<!-- − --></mo> <mn>2</mn> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> <mo>=</mo> <mn>2</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>2</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mrow> <mi>n</mi> <mo>+</mo> <mn>2</mn> </mrow> <mi>l</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>l</mi> </mrow> </msub> <mo>=</mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (n+2)\sum _{k=2}^{n-2}B_{k}B_{n-k}-2\sum _{l=2}^{n-2}{\binom {n+2}{l}}B_{l}B_{n-l}=n(n+1)B_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cec8b6d9980f9babddf0298506e23da793c593e1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:58.177ex; height:7.343ex;" alt="{\displaystyle (n+2)\sum _{k=2}^{n-2}B_{k}B_{n-k}-2\sum _{l=2}^{n-2}{\binom {n+2}{l}}B_{l}B_{n-l}=n(n+1)B_{n}}"></span></dd></dl></li><li><i>Faber–<a href="/wiki/Rahul_Pandharipande" title="Rahul Pandharipande">Pandharipande</a>–<a href="/wiki/Zagier" class="mw-redirect" title="Zagier">Zagier</a>–Gessel identity</i>: for <span class="texhtml"><i>n</i> ≥ 1</span>, <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n}{2}}\left(B_{n-1}(x)+\sum _{k=1}^{n-1}{\frac {B_{k}(x)}{k}}{\frac {B_{n-k}(x)}{n-k}}\right)-\sum _{k=0}^{n-1}{\binom {n}{k}}{\frac {B_{n-k}}{n-k}}B_{k}(x)=H_{n-1}B_{n}(x).}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mn>2</mn> </mfrac> </mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mi>k</mi> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mo>−<!-- − --></mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </msub> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> </mrow> </mfrac> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>H</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msub> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n}{2}}\left(B_{n-1}(x)+\sum _{k=1}^{n-1}{\frac {B_{k}(x)}{k}}{\frac {B_{n-k}(x)}{n-k}}\right)-\sum _{k=0}^{n-1}{\binom {n}{k}}{\frac {B_{n-k}}{n-k}}B_{k}(x)=H_{n-1}B_{n}(x).}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9b2c73cbce1c0132ece9f7b239475608156eb89" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:75.814ex; height:7.509ex;" alt="{\displaystyle {\frac {n}{2}}\left(B_{n-1}(x)+\sum _{k=1}^{n-1}{\frac {B_{k}(x)}{k}}{\frac {B_{n-k}(x)}{n-k}}\right)-\sum _{k=0}^{n-1}{\binom {n}{k}}{\frac {B_{n-k}}{n-k}}B_{k}(x)=H_{n-1}B_{n}(x).}"></span></dd></dl> Choosing <span class="texhtml"><i>x</i> = 0</span> or <span class="texhtml"><i>x</i> = 1</span> results in the Bernoulli number identity in one or another convention.</li><li>The next formula is true for <span class="texhtml"><i>n</i> ≥ 0</span> if <span class="texhtml"><i>B</i><sub>1</sub> = <i>B</i><sub>1</sub>(1) = <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>, but only for <span class="texhtml"><i>n</i> ≥ 1</span> if <span class="texhtml"><i>B</i><sub>1</sub> = <i>B</i><sub>1</sub>(0) = −<link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1214402035"><span class="sfrac">⁠<span class="tion"><span class="num">1</span><span class="sr-only">/</span><span class="den">2</span></span>⁠</span></span>. <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=0}^{n}{\binom {n}{k}}{\frac {B_{k}}{n-k+2}}={\frac {B_{n+1}}{n+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=0}^{n}{\binom {n}{k}}{\frac {B_{k}}{n-k+2}}={\frac {B_{n+1}}{n+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6d5f5e93c0dcc8ca06fe900df52363c2f40460a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:28.175ex; height:7.009ex;" alt="{\displaystyle \sum _{k=0}^{n}{\binom {n}{k}}{\frac {B_{k}}{n-k+2}}={\frac {B_{n+1}}{n+1}}}"></span></dd></dl></li><li>Let <span class="texhtml"><i>n</i> ≥ 0</span>. Then <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1+\sum _{k=0}^{n}{\binom {n}{k}}{\frac {2^{n-k+1}}{n-k+1}}B_{k}(1)=2^{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1+\sum _{k=0}^{n}{\binom {n}{k}}{\frac {2^{n-k+1}}{n-k+1}}B_{k}(1)=2^{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c6be874c489a5dae12dd54ede210484b1fb42bfc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.958ex; height:7.009ex;" alt="{\displaystyle -1+\sum _{k=0}^{n}{\binom {n}{k}}{\frac {2^{n-k+1}}{n-k+1}}B_{k}(1)=2^{n}}"></span></dd></dl> and <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -1+\sum _{k=0}^{n}{\binom {n}{k}}{\frac {2^{n-k+1}}{n-k+1}}B_{k}(0)=\delta _{n,0}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>−<!-- − --></mo> <mn>1</mn> <mo>+</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>n</mi> <mi>k</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msup> <mn>2</mn> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mrow> <mi>n</mi> <mo>−<!-- − --></mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>0</mn> <mo stretchy="false">)</mo> <mo>=</mo> <msub> <mi>δ<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mo>,</mo> <mn>0</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -1+\sum _{k=0}^{n}{\binom {n}{k}}{\frac {2^{n-k+1}}{n-k+1}}B_{k}(0)=\delta _{n,0}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bede6d7bad33c343b7f761126e43dd5b1a9846f6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:37.107ex; height:7.009ex;" alt="{\displaystyle -1+\sum _{k=0}^{n}{\binom {n}{k}}{\frac {2^{n-k+1}}{n-k+1}}B_{k}(0)=\delta _{n,0}}"></span></dd></dl></li><li>A reciprocity relation of M. B. Gelfand:<sup id="cite_ref-AgohDilcher2008_55-0" class="reference"><a href="#cite_note-AgohDilcher2008-55"><span class="cite-bracket">[</span>52<span class="cite-bracket">]</span></a></sup> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (-1)^{m+1}\sum _{j=0}^{k}{\binom {k}{j}}{\frac {B_{m+1+j}}{m+1+j}}+(-1)^{k+1}\sum _{j=0}^{m}{\binom {m}{j}}{\frac {B_{k+1+j}}{k+1+j}}={\frac {k!m!}{(k+m+1)!}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>k</mi> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mi>j</mi> </mrow> </msub> <mrow> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mi>j</mi> </mrow> </mfrac> </mrow> <mo>+</mo> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>m</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mrow class="MJX-TeXAtom-OPEN"> <mo maxsize="2.047em" minsize="2.047em">(</mo> </mrow> <mfrac linethickness="0"> <mi>m</mi> <mi>j</mi> </mfrac> <mrow class="MJX-TeXAtom-CLOSE"> <mo maxsize="2.047em" minsize="2.047em">)</mo> </mrow> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>B</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mi>j</mi> </mrow> </msub> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>+</mo> <mi>j</mi> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>k</mi> <mo>!</mo> <mi>m</mi> <mo>!</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mi>m</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>!</mo> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (-1)^{m+1}\sum _{j=0}^{k}{\binom {k}{j}}{\frac {B_{m+1+j}}{m+1+j}}+(-1)^{k+1}\sum _{j=0}^{m}{\binom {m}{j}}{\frac {B_{k+1+j}}{k+1+j}}={\frac {k!m!}{(k+m+1)!}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7218f61980ace5d588fdf018d6675a17def4c479" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.338ex; width:74.729ex; height:7.676ex;" alt="{\displaystyle (-1)^{m+1}\sum _{j=0}^{k}{\binom {k}{j}}{\frac {B_{m+1+j}}{m+1+j}}+(-1)^{k+1}\sum _{j=0}^{m}{\binom {m}{j}}{\frac {B_{k+1+j}}{k+1+j}}={\frac {k!m!}{(k+m+1)!}}}"></span></dd></dl></li></ul></div> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=41" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1184024115">.mw-parser-output .div-col{margin-top:0.3em;column-width:30em}.mw-parser-output .div-col-small{font-size:90%}.mw-parser-output .div-col-rules{column-rule:1px solid #aaa}.mw-parser-output .div-col dl,.mw-parser-output .div-col ol,.mw-parser-output .div-col ul{margin-top:0}.mw-parser-output .div-col li,.mw-parser-output .div-col dd{page-break-inside:avoid;break-inside:avoid-column}</style><div class="div-col" style="column-width: 20em;"> <ul><li><a href="/wiki/Bernoulli_polynomial" class="mw-redirect" title="Bernoulli polynomial">Bernoulli polynomial</a></li> <li><a href="/wiki/Bernoulli_polynomials_of_the_second_kind" title="Bernoulli polynomials of the second kind">Bernoulli polynomials of the second kind</a></li> <li><a href="/wiki/Bernoulli_umbra" title="Bernoulli umbra">Bernoulli umbra</a></li> <li><a href="/wiki/Bell_number" title="Bell number">Bell number</a></li> <li><a href="/wiki/Euler_number" class="mw-redirect" title="Euler number">Euler number</a></li> <li><a href="/wiki/Genocchi_number" title="Genocchi number">Genocchi number</a></li> <li><a href="/wiki/Kummer%27s_congruences" class="mw-redirect" title="Kummer's congruences">Kummer's congruences</a></li> <li><a href="/wiki/Poly-Bernoulli_number" title="Poly-Bernoulli number">Poly-Bernoulli number</a></li> <li><a href="/wiki/Hurwitz_zeta_function" title="Hurwitz zeta function">Hurwitz zeta function</a></li> <li><a href="/wiki/Euler_summation" title="Euler summation">Euler summation</a></li> <li><a href="/wiki/Stirling_polynomial" class="mw-redirect" title="Stirling polynomial">Stirling polynomial</a></li> <li><a href="/wiki/Sums_of_powers" title="Sums of powers">Sums of powers</a></li></ul> </div> <div class="mw-heading mw-heading2"><h2 id="Notes">Notes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=42" title="Edit section: Notes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-lower-alpha"> <div class="mw-references-wrap"><ol class="references"> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text">Translation of the text: " ... And if [one were] to proceed onward step by step to higher powers, one may furnish, with little difficulty, the following list:<br /> Sums of powers<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int n=\sum _{k=1}^{n}k={\frac {1}{2}}n^{2}+{\frac {1}{2}}n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <mi>n</mi> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>k</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mi>n</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int n=\sum _{k=1}^{n}k={\frac {1}{2}}n^{2}+{\frac {1}{2}}n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7bbb99311629a3eb9569aeb22e0fe677259148d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:26.638ex; height:3.509ex;" alt="{\displaystyle \textstyle \int n=\sum _{k=1}^{n}k={\frac {1}{2}}n^{2}+{\frac {1}{2}}n}"></span><br /> <dl><dd><dl><dd><dl><dd><dl><dd>⋮</dd></dl></dd></dl></dd></dl></dd></dl> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int n^{10}=\sum _{k=1}^{n}k^{10}={\frac {1}{11}}n^{11}+{\frac {1}{2}}n^{10}+{\frac {5}{6}}n^{9}-1n^{7}+1n^{5}-{\frac {1}{2}}n^{3}+{\frac {5}{66}}n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>11</mn> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>11</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>10</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>6</mn> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>9</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>7</mn> </mrow> </msup> <mo>+</mo> <mn>1</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>5</mn> </mrow> </msup> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>5</mn> <mn>66</mn> </mfrac> </mrow> <mi>n</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int n^{10}=\sum _{k=1}^{n}k^{10}={\frac {1}{11}}n^{11}+{\frac {1}{2}}n^{10}+{\frac {5}{6}}n^{9}-1n^{7}+1n^{5}-{\frac {1}{2}}n^{3}+{\frac {5}{66}}n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4df04ef77a53a59b850655ff5784ab0a8e3facfb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:67.425ex; height:3.676ex;" alt="{\displaystyle \textstyle \int n^{10}=\sum _{k=1}^{n}k^{10}={\frac {1}{11}}n^{11}+{\frac {1}{2}}n^{10}+{\frac {5}{6}}n^{9}-1n^{7}+1n^{5}-{\frac {1}{2}}n^{3}+{\frac {5}{66}}n}"></span><br /> Indeed [if] one will have examined diligently the law of arithmetic progression there, one will also be able to continue the same without these circuitous computations: For [if] <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle c}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>c</mi> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle c}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/628484f3d9a8dceb9fb15c049ab7fb95c8b522ec" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.007ex; height:1.676ex;" alt="{\displaystyle \textstyle c}"></span> is taken as the exponent of any power, the sum of all <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle n^{c}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle n^{c}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f6565035e98d23c3489ce1f2805ff391b62053d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.339ex; height:2.176ex;" alt="{\displaystyle \textstyle n^{c}}"></span> is produced or<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int n^{c}=\sum _{k=1}^{n}k^{c}={\frac {1}{c+1}}n^{c+1}+{\frac {1}{2}}n^{c}+{\frac {c}{2}}An^{c-1}+{\frac {c(c-1)(c-2)}{2\cdot 3\cdot 4}}Bn^{c-3}+{\frac {c(c-1)(c-2)(c-3)(c-4)}{2\cdot 3\cdot 4\cdot 5\cdot 6}}Cn^{c-5}+{\frac {c(c-1)(c-2)(c-3)(c-4)(c-5)(c-6)}{2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8}}Dn^{c-7}+\cdots }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>=</mo> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <msup> <mi>k</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>c</mi> <mn>2</mn> </mfrac> </mrow> <mi>A</mi> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>−<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> </mrow> </mfrac> </mrow> <mi>B</mi> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>−<!-- − --></mo> <mn>3</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> </mrow> </mfrac> </mrow> <mi>C</mi> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>−<!-- − --></mo> <mn>5</mn> </mrow> </msup> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>c</mi> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>3</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>5</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>c</mi> <mo>−<!-- − --></mo> <mn>6</mn> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mo>⋅<!-- ⋅ --></mo> <mn>3</mn> <mo>⋅<!-- ⋅ --></mo> <mn>4</mn> <mo>⋅<!-- ⋅ --></mo> <mn>5</mn> <mo>⋅<!-- ⋅ --></mo> <mn>6</mn> <mo>⋅<!-- ⋅ --></mo> <mn>7</mn> <mo>⋅<!-- ⋅ --></mo> <mn>8</mn> </mrow> </mfrac> </mrow> <mi>D</mi> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>c</mi> <mo>−<!-- − --></mo> <mn>7</mn> </mrow> </msup> <mo>+</mo> <mo>⋯<!-- ⋯ --></mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int n^{c}=\sum _{k=1}^{n}k^{c}={\frac {1}{c+1}}n^{c+1}+{\frac {1}{2}}n^{c}+{\frac {c}{2}}An^{c-1}+{\frac {c(c-1)(c-2)}{2\cdot 3\cdot 4}}Bn^{c-3}+{\frac {c(c-1)(c-2)(c-3)(c-4)}{2\cdot 3\cdot 4\cdot 5\cdot 6}}Cn^{c-5}+{\frac {c(c-1)(c-2)(c-3)(c-4)(c-5)(c-6)}{2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8}}Dn^{c-7}+\cdots }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d044bc348358685999270bdba35c0ebcc270b30f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:130.737ex; height:4.343ex;" alt="{\displaystyle \textstyle \int n^{c}=\sum _{k=1}^{n}k^{c}={\frac {1}{c+1}}n^{c+1}+{\frac {1}{2}}n^{c}+{\frac {c}{2}}An^{c-1}+{\frac {c(c-1)(c-2)}{2\cdot 3\cdot 4}}Bn^{c-3}+{\frac {c(c-1)(c-2)(c-3)(c-4)}{2\cdot 3\cdot 4\cdot 5\cdot 6}}Cn^{c-5}+{\frac {c(c-1)(c-2)(c-3)(c-4)(c-5)(c-6)}{2\cdot 3\cdot 4\cdot 5\cdot 6\cdot 7\cdot 8}}Dn^{c-7}+\cdots }"></span><br /> and so forth, the exponent of its power <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> continually diminishing by 2 until it arrives at <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"></span> or <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ac9810bbdafe4a6a8061338db0f74e25b7952620" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.449ex; height:2.676ex;" alt="{\displaystyle n^{2}}"></span>. The capital letters <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle A,B,C,D,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>,</mo> <mi>B</mi> <mo>,</mo> <mi>C</mi> <mo>,</mo> <mi>D</mi> <mo>,</mo> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle A,B,C,D,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/897ff036841616540e558f9c8b1e22d21ca97dcd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.946ex; height:2.509ex;" alt="{\displaystyle \textstyle A,B,C,D,}"></span> etc. denote in order the coefficients of the last terms for <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle \int n^{2},\int n^{4},\int n^{6},\int n^{8}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mo>∫<!-- ∫ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>,</mo> <mo>∫<!-- ∫ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>4</mn> </mrow> </msup> <mo>,</mo> <mo>∫<!-- ∫ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>6</mn> </mrow> </msup> <mo>,</mo> <mo>∫<!-- ∫ --></mo> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>8</mn> </mrow> </msup> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle \int n^{2},\int n^{4},\int n^{6},\int n^{8}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2c06697bbe7c8cf6dc0a5c79727f751e4461d85d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:20.118ex; height:3.176ex;" alt="{\displaystyle \textstyle \int n^{2},\int n^{4},\int n^{6},\int n^{8}}"></span>, etc. namely<br /> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \textstyle A={\frac {1}{6}},B=-{\frac {1}{30}},C={\frac {1}{42}},D=-{\frac {1}{30}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mstyle displaystyle="false" scriptlevel="0"> <mi>A</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>,</mo> <mi>B</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> <mo>,</mo> <mi>C</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>42</mn> </mfrac> </mrow> <mo>,</mo> <mi>D</mi> <mo>=</mo> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>30</mn> </mfrac> </mrow> </mstyle> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \textstyle A={\frac {1}{6}},B=-{\frac {1}{30}},C={\frac {1}{42}},D=-{\frac {1}{30}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73098a2164694ccaebddc38dc9d933edf9898888" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:35.408ex; height:3.676ex;" alt="{\displaystyle \textstyle A={\frac {1}{6}},B=-{\frac {1}{30}},C={\frac {1}{42}},D=-{\frac {1}{30}}}"></span>."<br /> [Note: The text of the illustration contains some typos: <i>ensperexit</i> should read <i>inspexerit</i>, <i>ambabimus</i> should read <i>ambagibus</i>, <i>quosque</i> should read <i>quousque</i>, and in Bernoulli's original text <i>Sumtâ</i> should read <i>Sumptâ</i> or <i>Sumptam</i>.] <ul><li><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFSmith1929" class="citation cs2">Smith, David Eugene (1929), <a rel="nofollow" class="external text" href="https://archive.org/details/sourcebookinmath00smit/page/85">"Jacques (I) Bernoulli: On the 'Bernoulli Numbers'<span class="cs1-kern-right"></span>"</a>, <i>A Source Book in Mathematics</i>, New York: McGraw-Hill Book Co., pp. 85–90</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Jacques+%28I%29+Bernoulli%3A+On+the+%27Bernoulli+Numbers%27&rft.btitle=A+Source+Book+in+Mathematics&rft.place=New+York&rft.pages=85-90&rft.pub=McGraw-Hill+Book+Co.&rft.date=1929&rft.aulast=Smith&rft.aufirst=David+Eugene&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fsourcebookinmath00smit%2Fpage%2F85&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBernoulli1713" class="citation cs2 cs1-prop-foreign-lang-source">Bernoulli, Jacob (1713), <a rel="nofollow" class="external text" href="https://archive.org/details/jacobibernoulli00bern/page/97"><i>Ars Conjectandi</i></a> (in Latin), Basel: Impensis Thurnisiorum, Fratrum, pp. 97–98, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.5479%2Fsil.262971.39088000323931">10.5479/sil.262971.39088000323931</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Ars+Conjectandi&rft.place=Basel&rft.pages=97-98&rft.pub=Impensis+Thurnisiorum%2C+Fratrum&rft.date=1713&rft_id=info%3Adoi%2F10.5479%2Fsil.262971.39088000323931&rft.aulast=Bernoulli&rft.aufirst=Jacob&rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fjacobibernoulli00bern%2Fpage%2F97&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li></ul> </span></li> <li id="cite_note-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-13">^</a></b></span> <span class="reference-text">The <a href="#CITEREFMathematics_Genealogy_Projectn.d."><i>Mathematics Genealogy Project</i> (n.d.)</a> shows Leibniz as the academic advisor of Jakob Bernoulli. See also <a href="#CITEREFMiller2017">Miller (2017)</a>.</span> </li> <li id="cite_note-32"><span class="mw-cite-backlink"><b><a href="#cite_ref-32">^</a></b></span> <span class="reference-text">this formula was discovered (or perhaps rediscovered) by Giorgio Pietrocola. His demonstration is available in Italian language (<a href="#CITEREFPietrocola2008">Pietrocola 2008</a>).</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=43" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239543626"><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-Weisstein2016-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-Weisstein2016_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Weisstein2016_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-Weisstein2016_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><span class="citation mathworld" id="Reference-Mathworld-Bernoulli_Number"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeisstein" class="citation web cs2"><a href="/wiki/Eric_W._Weisstein" title="Eric W. Weisstein">Weisstein, Eric W.</a>, <a rel="nofollow" class="external text" href="https://mathworld.wolfram.com/BernoulliNumber.html">"Bernoulli Number"</a>, <i><a href="/wiki/MathWorld" title="MathWorld">MathWorld</a></i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=unknown&rft.jtitle=MathWorld&rft.atitle=Bernoulli+Number&rft.au=Weisstein%2C+Eric+W.&rft_id=https%3A%2F%2Fmathworld.wolfram.com%2FBernoulliNumber.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span></span> </li> <li id="cite_note-Selin1997_891-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-Selin1997_891_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Selin1997_891_2-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSelin1997" class="citation cs2"><a href="/wiki/Helaine_Selin" title="Helaine Selin">Selin, Helaine</a>, ed. (1997), <i>Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures</i>, Springer, p. 819 (p. 891), <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008ehst.book.....S">2008ehst.book.....S</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-7923-4066-3" title="Special:BookSources/0-7923-4066-3"><bdi>0-7923-4066-3</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Encyclopaedia+of+the+History+of+Science%2C+Technology%2C+and+Medicine+in+Non-Western+Cultures&rft.pages=p.+819+%28p.+891%29&rft.pub=Springer&rft.date=1997&rft_id=info%3Abibcode%2F2008ehst.book.....S&rft.isbn=0-7923-4066-3&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-SmithMikami1914_108-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-SmithMikami1914_108_3-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSmithMikami1914" class="citation cs2">Smith, David Eugene; Mikami, Yoshio (1914), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=pTcQsvfbSu4C"><i>A history of Japanese mathematics</i></a>, Open Court publishing company, p. 108, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780486434827" title="Special:BookSources/9780486434827"><bdi>9780486434827</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+history+of+Japanese+mathematics&rft.pages=108&rft.pub=Open+Court+publishing+company&rft.date=1914&rft.isbn=9780486434827&rft.aulast=Smith&rft.aufirst=David+Eugene&rft.au=Mikami%2C+Yoshio&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DpTcQsvfbSu4C&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Kitagawa-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kitagawa_4-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKitagawa2021" class="citation cs2">Kitagawa, Tomoko L. (2021-07-23), "The Origin of the Bernoulli Numbers: Mathematics in Basel and Edo in the Early Eighteenth Century", <i>The Mathematical Intelligencer</i>, <b>44</b>: 46–56, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs00283-021-10072-y">10.1007/s00283-021-10072-y</a></span>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0343-6993">0343-6993</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Mathematical+Intelligencer&rft.atitle=The+Origin+of+the+Bernoulli+Numbers%3A+Mathematics+in+Basel+and+Edo+in+the+Early+Eighteenth+Century&rft.volume=44&rft.pages=46-56&rft.date=2021-07-23&rft_id=info%3Adoi%2F10.1007%2Fs00283-021-10072-y&rft.issn=0343-6993&rft.aulast=Kitagawa&rft.aufirst=Tomoko+L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Menabrea1842_noteG-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-Menabrea1842_noteG_5-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMenabrea1842" class="citation cs2">Menabrea, L.F. (1842), <a rel="nofollow" class="external text" href="http://www.fourmilab.ch/babbage/sketch.html">"Sketch of the Analytic Engine invented by Charles Babbage, with notes upon the Memoir by the Translator Ada Augusta, Countess of Lovelace"</a>, <i>Bibliothèque Universelle de Genève</i>, <b>82</b>, See <i>Note G</i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Biblioth%C3%A8que+Universelle+de+Gen%C3%A8ve&rft.atitle=Sketch+of+the+Analytic+Engine+invented+by+Charles+Babbage%2C+with+notes+upon+the+Memoir+by+the+Translator+Ada+Augusta%2C+Countess+of+Lovelace&rft.volume=82&rft.pages=See+%27%27Note+G%27%27&rft.date=1842&rft.aulast=Menabrea&rft.aufirst=L.F.&rft_id=http%3A%2F%2Fwww.fourmilab.ch%2Fbabbage%2Fsketch.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEArfken1970278-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEArfken1970278_6-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFArfken1970">Arfken (1970)</a>, p. 278.</span> </li> <li id="cite_note-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-7">^</a></b></span> <span class="reference-text"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Donald Knuth</a> (2022), <a rel="nofollow" class="external text" href="https://www-cs-faculty.stanford.edu/~knuth/news22.html">Recent News (2022): Concrete Mathematics and Bernoulli</a>. <style data-mw-deduplicate="TemplateStyles:r1244412712">.mw-parser-output .templatequote{overflow:hidden;margin:1em 0;padding:0 32px}.mw-parser-output .templatequotecite{line-height:1.5em;text-align:left;margin-top:0}@media(min-width:500px){.mw-parser-output .templatequotecite{padding-left:1.6em}}</style><blockquote class="templatequote"><p>But last year I took a close look at Peter Luschny's Bernoulli manifesto, where he gives more than a dozen good reasons why the value of $B_1$ should really be plus one-half. He explains that some mathematicians of the early 20th century had unilaterally changed the conventions, because some of their formulas came out a bit nicer when the negative value was used. It was their well-intentioned but ultimately poor choice that had led to what I'd been taught in the 1950s. […] By now, hundreds of books that use the “minus-one-half” convention have unfortunately been written. Even worse, all the major software systems for symbolic mathematics have that 20th-century aberration deeply embedded. Yet Luschny convinced me that we have all been wrong, and that it's high time to change back to the correct definition before the situation gets even worse. </p></blockquote></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text">Peter Luschny (2013), <a rel="nofollow" class="external text" href="http://luschny.de/math/zeta/The-Bernoulli-Manifesto.html">The Bernoulli Manifesto</a></span> </li> <li id="cite_note-FOOTNOTEKnuth1993-9"><span class="mw-cite-backlink">^ <a href="#cite_ref-FOOTNOTEKnuth1993_9-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-FOOTNOTEKnuth1993_9-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><a href="#CITEREFKnuth1993">Knuth (1993)</a>.</span> </li> <li id="cite_note-Jacobi1834-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-Jacobi1834_10-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJacobi1834" class="citation cs2"><a href="/wiki/Carl_Gustav_Jacob_Jacobi" title="Carl Gustav Jacob Jacobi">Jacobi, C.G.J.</a> (1834), <a rel="nofollow" class="external text" href="https://zenodo.org/record/1448824">"De usu legitimo formulae summatoriae Maclaurinianae"</a>, <i>Journal für die reine und angewandte Mathematik</i>, <b>12</b>: 263–272</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+f%C3%BCr+die+reine+und+angewandte+Mathematik&rft.atitle=De+usu+legitimo+formulae+summatoriae+Maclaurinianae&rft.volume=12&rft.pages=263-272&rft.date=1834&rft.aulast=Jacobi&rft.aufirst=C.G.J.&rft_id=https%3A%2F%2Fzenodo.org%2Frecord%2F1448824&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEKnuth199314-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEKnuth199314_11-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFKnuth1993">Knuth (1993)</a>, p. 14.</span> </li> <li id="cite_note-FOOTNOTEGrahamKnuthPatashnik1989Section_2.51-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGrahamKnuthPatashnik1989Section_2.51_14-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrahamKnuthPatashnik1989">Graham, Knuth & Patashnik (1989)</a>, Section 2.51.</span> </li> <li id="cite_note-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-15">^</a></b></span> <span class="reference-text">See <a href="#CITEREFIrelandRosen1990">Ireland & Rosen (1990)</a> or <a href="#CITEREFConwayGuy1996">Conway & Guy (1996)</a>.</span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text">Jordan (1950) p 233</span> </li> <li id="cite_note-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-17">^</a></b></span> <span class="reference-text">Ireland and Rosen (1990) p 229</span> </li> <li id="cite_note-Saalschütz1893-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-Saalschütz1893_18-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSaalschütz1893" class="citation cs2">Saalschütz, Louis (1893), <a rel="nofollow" class="external text" href="http://digital.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=00450002"><i>Vorlesungen über die Bernoullischen Zahlen, ihren Zusammenhang mit den Secanten-Coefficienten und ihre wichtigeren Anwendungen</i></a>, Berlin: Julius Springer</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vorlesungen+%C3%BCber+die+Bernoullischen+Zahlen%2C+ihren+Zusammenhang+mit+den+Secanten-Coefficienten+und+ihre+wichtigeren+Anwendungen&rft.place=Berlin&rft.pub=Julius+Springer&rft.date=1893&rft.aulast=Saalsch%C3%BCtz&rft.aufirst=Louis&rft_id=http%3A%2F%2Fdigital.library.cornell.edu%2Fcgi%2Ft%2Ftext%2Ftext-idx%3Fc%3Dmath%3Bidno%3D00450002&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</span> </li> <li id="cite_note-FOOTNOTEArfken1970279-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEArfken1970279_19-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFArfken1970">Arfken (1970)</a>, p. 279.</span> </li> <li id="cite_note-BuhlerCraErnMetShokrollahi2001-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-BuhlerCraErnMetShokrollahi2001_20-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBuhlerCrandallErnvallMetsankyla2001" class="citation cs2">Buhler, J.; Crandall, R.; Ernvall, R.; Metsankyla, T.; Shokrollahi, M. (2001), "Irregular Primes and Cyclotomic Invariants to 12 Million", <i>Journal of Symbolic Computation</i>, <b>31</b> (1–2): 89–96, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1006%2Fjsco.1999.1011">10.1006/jsco.1999.1011</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Symbolic+Computation&rft.atitle=Irregular+Primes+and+Cyclotomic+Invariants+to+12+Million&rft.volume=31&rft.issue=1%E2%80%932&rft.pages=89-96&rft.date=2001&rft_id=info%3Adoi%2F10.1006%2Fjsco.1999.1011&rft.aulast=Buhler&rft.aufirst=J.&rft.au=Crandall%2C+R.&rft.au=Ernvall%2C+R.&rft.au=Metsankyla%2C+T.&rft.au=Shokrollahi%2C+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Harvey2010-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-Harvey2010_21-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHarvey2010" class="citation cs2">Harvey, David (2010), "A multimodular algorithm for computing Bernoulli numbers", <i>Math. Comput.</i>, <b>79</b> (272): 2361–2370, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0807.1347">0807.1347</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2FS0025-5718-2010-02367-1">10.1090/S0025-5718-2010-02367-1</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:11329343">11329343</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:1215.11016">1215.11016</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Math.+Comput.&rft.atitle=A+multimodular+algorithm+for+computing+Bernoulli+numbers&rft.volume=79&rft.issue=272&rft.pages=2361-2370&rft.date=2010&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A1215.11016%23id-name%3DZbl&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A11329343%23id-name%3DS2CID&rft_id=info%3Aarxiv%2F0807.1347&rft_id=info%3Adoi%2F10.1090%2FS0025-5718-2010-02367-1&rft.aulast=Harvey&rft.aufirst=David&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Kellner2002-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kellner2002_22-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKellner2002" class="citation cs2">Kellner, Bernd (2002), <a rel="nofollow" class="external text" href="http://www.bernoulli.org/"><i>Program Calcbn – A program for calculating Bernoulli numbers</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Program+Calcbn+%E2%80%93+A+program+for+calculating+Bernoulli+numbers&rft.date=2002&rft.aulast=Kellner&rft.aufirst=Bernd&rft_id=http%3A%2F%2Fwww.bernoulli.org%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</span> </li> <li id="cite_note-Pavlyk29Apr2008-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-Pavlyk29Apr2008_23-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPavlyk2008" class="citation cs2">Pavlyk, Oleksandr (29 April 2008), <a rel="nofollow" class="external text" href="http://blog.wolfram.com/2008/04/29/today-we-broke-the-bernoulli-record-from-the-analytical-engine-to-mathematica/">"Today We Broke the Bernoulli Record: From the Analytical Engine to Mathematica"</a>, <i>Wolfram News</i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Wolfram+News&rft.atitle=Today+We+Broke+the+Bernoulli+Record%3A+From+the+Analytical+Engine+to+Mathematica&rft.date=2008-04-29&rft.aulast=Pavlyk&rft.aufirst=Oleksandr&rft_id=http%3A%2F%2Fblog.wolfram.com%2F2008%2F04%2F29%2Ftoday-we-broke-the-bernoulli-record-from-the-analytical-engine-to-mathematica%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</span> </li> <li id="cite_note-FOOTNOTEGrahamKnuthPatashnik19899.67-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGrahamKnuthPatashnik19899.67_24-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrahamKnuthPatashnik1989">Graham, Knuth & Patashnik (1989)</a>, 9.67.</span> </li> <li id="cite_note-FOOTNOTEGrahamKnuthPatashnik19892.44,_2.52-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEGrahamKnuthPatashnik19892.44,_2.52_25-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFGrahamKnuthPatashnik1989">Graham, Knuth & Patashnik (1989)</a>, 2.44, 2.52.</span> </li> <li id="cite_note-GuoZeng2005-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-GuoZeng2005_26-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGuoZeng2005" class="citation cs2">Guo, Victor J. W.; Zeng, Jiang (30 August 2005), "A q-Analogue of Faulhaber's Formula for Sums of Powers", <i>The Electronic Journal of Combinatorics</i>, <b>11</b> (2), <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0501441">math/0501441</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005math......1441G">2005math......1441G</a>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.37236%2F1876">10.37236/1876</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:10467873">10467873</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=The+Electronic+Journal+of+Combinatorics&rft.atitle=A+q-Analogue+of+Faulhaber%27s+Formula+for+Sums+of+Powers&rft.volume=11&rft.issue=2&rft.date=2005-08-30&rft_id=info%3Aarxiv%2Fmath%2F0501441&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A10467873%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.37236%2F1876&rft_id=info%3Abibcode%2F2005math......1441G&rft.aulast=Guo&rft.aufirst=Victor+J.+W.&rft.au=Zeng%2C+Jiang&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-FOOTNOTEArfken1970463-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-FOOTNOTEArfken1970463_27-0">^</a></b></span> <span class="reference-text"><a href="#CITEREFArfken1970">Arfken (1970)</a>, p. 463.</span> </li> <li id="cite_note-Rademacher1973-28"><span class="mw-cite-backlink">^ <a href="#cite_ref-Rademacher1973_28-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Rademacher1973_28-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRademacher1973" class="citation cs2">Rademacher, H. (1973), <i>Analytic Number Theory</i>, New York City: Springer-Verlag</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Analytic+Number+Theory&rft.place=New+York+City&rft.pub=Springer-Verlag&rft.date=1973&rft.aulast=Rademacher&rft.aufirst=H.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</span> </li> <li id="cite_note-Boole1880-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boole1880_29-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoole1880" class="citation cs2">Boole, G. (1880), <i>A treatise of the calculus of finite differences</i> (3rd ed.), London: Macmillan</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+treatise+of+the+calculus+of+finite+differences&rft.place=London&rft.edition=3rd&rft.pub=Macmillan&rft.date=1880&rft.aulast=Boole&rft.aufirst=G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</span> </li> <li id="cite_note-Gould1972-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-Gould1972_30-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGould1972" class="citation cs2">Gould, Henry W. (1972), "Explicit formulas for Bernoulli numbers", <i>Amer. Math. Monthly</i>, <b>79</b> (1): 44–51, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2978125">10.2307/2978125</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2978125">2978125</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Amer.+Math.+Monthly&rft.atitle=Explicit+formulas+for+Bernoulli+numbers&rft.volume=79&rft.issue=1&rft.pages=44-51&rft.date=1972&rft_id=info%3Adoi%2F10.2307%2F2978125&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2978125%23id-name%3DJSTOR&rft.aulast=Gould&rft.aufirst=Henry+W.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Apostol2010_197-31"><span class="mw-cite-backlink"><b><a href="#cite_ref-Apostol2010_197_31-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFApostol2010" class="citation cs2">Apostol, Tom M. (2010), <i>Introduction to Analytic Number Theory</i>, Springer-Verlag, p. 197</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Introduction+to+Analytic+Number+Theory&rft.pages=197&rft.pub=Springer-Verlag&rft.date=2010&rft.aulast=Apostol&rft.aufirst=Tom+M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Woon1997-33"><span class="mw-cite-backlink"><b><a href="#cite_ref-Woon1997_33-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoon1997" class="citation cs2">Woon, S. C. (1997), "A tree for generating Bernoulli numbers", <i>Math. Mag.</i>, <b>70</b> (1): 51–56, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2691054">10.2307/2691054</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2691054">2691054</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Math.+Mag.&rft.atitle=A+tree+for+generating+Bernoulli+numbers&rft.volume=70&rft.issue=1&rft.pages=51-56&rft.date=1997&rft_id=info%3Adoi%2F10.2307%2F2691054&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2691054%23id-name%3DJSTOR&rft.aulast=Woon&rft.aufirst=S.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-34"><span class="mw-cite-backlink"><b><a href="#cite_ref-34">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFStanley2010" class="citation cs2"><a href="/wiki/Richard_P._Stanley" title="Richard P. Stanley">Stanley, Richard P.</a> (2010), "A survey of alternating permutations", <i>Combinatorics and graphs</i>, Contemporary Mathematics, vol. 531, Providence, RI: American Mathematical Society, pp. 165–196, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0912.4240">0912.4240</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1090%2Fconm%2F531%2F10466">10.1090/conm/531/10466</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-8218-4865-4" title="Special:BookSources/978-0-8218-4865-4"><bdi>978-0-8218-4865-4</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=2757798">2757798</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:14619581">14619581</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=A+survey+of+alternating+permutations&rft.btitle=Combinatorics+and+graphs&rft.place=Providence%2C+RI&rft.series=Contemporary+Mathematics&rft.pages=165-196&rft.pub=American+Mathematical+Society&rft.date=2010&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A14619581%23id-name%3DS2CID&rft_id=info%3Adoi%2F10.1090%2Fconm%2F531%2F10466&rft_id=info%3Aarxiv%2F0912.4240&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D2757798%23id-name%3DMR&rft.isbn=978-0-8218-4865-4&rft.aulast=Stanley&rft.aufirst=Richard+P.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Elkies2003-35"><span class="mw-cite-backlink"><b><a href="#cite_ref-Elkies2003_35-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFElkies2003" class="citation cs2"><a href="/wiki/Noam_Elkies" title="Noam Elkies">Elkies, N. D.</a> (2003), "On the sums Sum_(k=-infinity...infinity) (4k+1)^(-n)", <i>Amer. Math. Monthly</i>, <b>110</b> (7): 561–573, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math.CA/0101168">math.CA/0101168</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F3647742">10.2307/3647742</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/3647742">3647742</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Amer.+Math.+Monthly&rft.atitle=On+the+sums+Sum_%28k%3D-infinity...infinity%29+%284k%2B1%29%5E%28-n%29&rft.volume=110&rft.issue=7&rft.pages=561-573&rft.date=2003&rft_id=info%3Aarxiv%2Fmath.CA%2F0101168&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F3647742%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F3647742&rft.aulast=Elkies&rft.aufirst=N.+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Euler1735-36"><span class="mw-cite-backlink"><b><a href="#cite_ref-Euler1735_36-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEuler1735" class="citation cs2 cs1-prop-long-vol"><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Euler, Leonhard</a> (1735), "De summis serierum reciprocarum", <i>Opera Omnia</i>, I.14, E 41: 73–86, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0506415">math/0506415</a></span>, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2005math......6415E">2005math......6415E</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Opera+Omnia&rft.atitle=De+summis+serierum+reciprocarum&rft.volume=I.14%2C+E+41&rft.pages=73-86&rft.date=1735&rft_id=info%3Aarxiv%2Fmath%2F0506415&rft_id=info%3Abibcode%2F2005math......6415E&rft.aulast=Euler&rft.aufirst=Leonhard&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Seidel1877-37"><span class="mw-cite-backlink"><b><a href="#cite_ref-Seidel1877_37-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSeidel1877" class="citation cs2">Seidel, L. (1877), "Über eine einfache Entstehungsweise der Bernoullischen Zahlen und einiger verwandten Reihen", <i>Sitzungsber. Münch. Akad.</i>, <b>4</b>: 157–187</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Sitzungsber.+M%C3%BCnch.+Akad.&rft.atitle=%C3%9Cber+eine+einfache+Entstehungsweise+der+Bernoullischen+Zahlen+und+einiger+verwandten+Reihen&rft.volume=4&rft.pages=157-187&rft.date=1877&rft.aulast=Seidel&rft.aufirst=L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Dumont1981-38"><span class="mw-cite-backlink"><b><a href="#cite_ref-Dumont1981_38-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDumont1981" class="citation cs2">Dumont, D. (1981), <a rel="nofollow" class="external text" href="https://www.mat.univie.ac.at/~slc/opapers/s05dumont.html">"Matrices d'Euler-Seidel"</a>, <i>Séminaire Lotharingien de Combinatoire</i>, <b>B05c</b></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=S%C3%A9minaire+Lotharingien+de+Combinatoire&rft.atitle=Matrices+d%27Euler-Seidel&rft.volume=B05c&rft.date=1981&rft.aulast=Dumont&rft.aufirst=D.&rft_id=https%3A%2F%2Fwww.mat.univie.ac.at%2F~slc%2Fopapers%2Fs05dumont.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-KnuthBuckholtz1967-39"><span class="mw-cite-backlink"><b><a href="#cite_ref-KnuthBuckholtz1967_39-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuthBuckholtz1967" class="citation cs2"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, D. E.</a>; Buckholtz, T. J. (1967), "Computation of Tangent, Euler, and Bernoulli Numbers", <i>Mathematics of Computation</i>, <b>21</b> (100), American Mathematical Society: 663–688, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2005010">10.2307/2005010</a></span>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2005010">2005010</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Computation+of+Tangent%2C+Euler%2C+and+Bernoulli+Numbers&rft.volume=21&rft.issue=100&rft.pages=663-688&rft.date=1967&rft_id=info%3Adoi%2F10.2307%2F2005010&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2005010%23id-name%3DJSTOR&rft.aulast=Knuth&rft.aufirst=D.+E.&rft.au=Buckholtz%2C+T.+J.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Arnold1991-40"><span class="mw-cite-backlink"><b><a href="#cite_ref-Arnold1991_40-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArnold1991" class="citation cs2">Arnold, V. I. (1991), "Bernoulli-Euler updown numbers associated with function singularities, their combinatorics and arithmetics", <i>Duke Math. J.</i>, <b>63</b> (2): 537–555, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1215%2Fs0012-7094-91-06323-4">10.1215/s0012-7094-91-06323-4</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Duke+Math.+J.&rft.atitle=Bernoulli-Euler+updown+numbers+associated+with+function+singularities%2C+their+combinatorics+and+arithmetics&rft.volume=63&rft.issue=2&rft.pages=537-555&rft.date=1991&rft_id=info%3Adoi%2F10.1215%2Fs0012-7094-91-06323-4&rft.aulast=Arnold&rft.aufirst=V.+I.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-André1879-41"><span class="mw-cite-backlink"><b><a href="#cite_ref-André1879_41-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndré1879" class="citation cs2">André, D. (1879), "Développements de sec x et tan x", <i>C. R. Acad. Sci.</i>, <b>88</b>: 965–967</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=C.+R.+Acad.+Sci.&rft.atitle=D%C3%A9veloppements+de+sec+x+et+tan+x&rft.volume=88&rft.pages=965-967&rft.date=1879&rft.aulast=Andr%C3%A9&rft.aufirst=D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-André1881-42"><span class="mw-cite-backlink"><b><a href="#cite_ref-André1881_42-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAndré1881" class="citation cs2">André, D. (1881), "Mémoire sur les permutations alternées", <i>Journal de Mathématiques Pures et Appliquées</i>, <b>7</b>: 167–184</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+de+Math%C3%A9matiques+Pures+et+Appliqu%C3%A9es&rft.atitle=M%C3%A9moire+sur+les+permutations+altern%C3%A9es&rft.volume=7&rft.pages=167-184&rft.date=1881&rft.aulast=Andr%C3%A9&rft.aufirst=D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Kummer1850-43"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kummer1850_43-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKummer1850" class="citation cs2"><a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Kummer, E. E.</a> (1850), <a rel="nofollow" class="external text" href="http://www.digizeitschriften.de/resolveppn/GDZPPN002146738">"Allgemeiner Beweis des Fermat'schen Satzes, dass die Gleichung x<sup>λ</sup> + y<sup>λ</sup> = z<sup>λ</sup> durch ganze Zahlen unlösbar ist, für alle diejenigen Potenz-Exponenten λ, welche ungerade Primzahlen sind und in den Zählern der ersten (λ-3)/2 Bernoulli'schen Zahlen als Factoren nicht vorkommen"</a>, <i>J. Reine Angew. Math.</i>, <b>40</b>: 131–138</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+Reine+Angew.+Math.&rft.atitle=Allgemeiner+Beweis+des+Fermat%27schen+Satzes%2C+dass+die+Gleichung+x%3Csup%3E%CE%BB%3C%2Fsup%3E+%2B+y%3Csup%3E%CE%BB%3C%2Fsup%3E+%3D+z%3Csup%3E%CE%BB%3C%2Fsup%3E+durch+ganze+Zahlen+unl%C3%B6sbar+ist%2C+f%C3%BCr+alle+diejenigen+Potenz-Exponenten+%CE%BB%2C+welche+ungerade+Primzahlen+sind+und+in+den+Z%C3%A4hlern+der+ersten+%28%CE%BB-3%29%2F2+Bernoulli%27schen+Zahlen+als+Factoren+nicht+vorkommen&rft.volume=40&rft.pages=131-138&rft.date=1850&rft.aulast=Kummer&rft.aufirst=E.+E.&rft_id=http%3A%2F%2Fwww.digizeitschriften.de%2Fresolveppn%2FGDZPPN002146738&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Kummer1851-44"><span class="mw-cite-backlink"><b><a href="#cite_ref-Kummer1851_44-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKummer1851" class="citation cs2"><a href="/wiki/Ernst_Kummer" title="Ernst Kummer">Kummer, E. E.</a> (1851), <a rel="nofollow" class="external text" href="http://eudml.org/doc/147490">"Über eine allgemeine Eigenschaft der rationalen Entwicklungscoefficienten einer bestimmten Gattung analytischer Functionen"</a>, <i>J. Reine Angew. Math.</i>, <b>1851</b> (41): 368–372</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=J.+Reine+Angew.+Math.&rft.atitle=%C3%9Cber+eine+allgemeine+Eigenschaft+der+rationalen+Entwicklungscoefficienten+einer+bestimmten+Gattung+analytischer+Functionen&rft.volume=1851&rft.issue=41&rft.pages=368-372&rft.date=1851&rft.aulast=Kummer&rft.aufirst=E.+E.&rft_id=http%3A%2F%2Feudml.org%2Fdoc%2F147490&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-vonStaudt1840-45"><span class="mw-cite-backlink"><b><a href="#cite_ref-vonStaudt1840_45-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Staudt1840" class="citation cs2">von Staudt, K. G. Ch. (1840), "Beweis eines Lehrsatzes, die Bernoullischen Zahlen betreffend", <i>Journal für die reine und angewandte Mathematik</i>, <b>21</b>: 372–374</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+f%C3%BCr+die+reine+und+angewandte+Mathematik&rft.atitle=Beweis+eines+Lehrsatzes%2C+die+Bernoullischen+Zahlen+betreffend&rft.volume=21&rft.pages=372-374&rft.date=1840&rft.aulast=von+Staudt&rft.aufirst=K.+G.+Ch.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Clausen1840-46"><span class="mw-cite-backlink"><b><a href="#cite_ref-Clausen1840_46-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFClausen1840" class="citation cs2">Clausen, Thomas (1840), "Lehrsatz aus einer Abhandlung über die Bernoullischen Zahlen", <i>Astron. Nachr.</i>, <b>17</b> (22): 351–352, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fasna.18400172205">10.1002/asna.18400172205</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Astron.+Nachr.&rft.atitle=Lehrsatz+aus+einer+Abhandlung+%C3%BCber+die+Bernoullischen+Zahlen&rft.volume=17&rft.issue=22&rft.pages=351-352&rft.date=1840&rft_id=info%3Adoi%2F10.1002%2Fasna.18400172205&rft.aulast=Clausen&rft.aufirst=Thomas&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Riesz1916-47"><span class="mw-cite-backlink"><b><a href="#cite_ref-Riesz1916_47-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRiesz1916" class="citation cs2">Riesz, M. (1916), "Sur l'hypothèse de Riemann", <i>Acta Mathematica</i>, <b>40</b>: 185–90, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1007%2FBF02418544">10.1007/BF02418544</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Acta+Mathematica&rft.atitle=Sur+l%27hypoth%C3%A8se+de+Riemann&rft.volume=40&rft.pages=185-90&rft.date=1916&rft_id=info%3Adoi%2F10.1007%2FBF02418544&rft.aulast=Riesz&rft.aufirst=M.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Neukirch1999_VII2-48"><span class="mw-cite-backlink"><b><a href="#cite_ref-Neukirch1999_VII2_48-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFNeukirch1999" class="citation book cs2"><a href="/wiki/J%C3%BCrgen_Neukirch" title="Jürgen Neukirch">Neukirch, Jürgen</a> (1999), <i>Algebraische Zahlentheorie</i>, <span title="German-language text"><i lang="de">Grundlehren der mathematischen Wissenschaften</i></span>, vol. 322, Berlin: <a href="/wiki/Springer_Science%2BBusiness_Media" title="Springer Science+Business Media">Springer-Verlag</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-3-540-65399-8" title="Special:BookSources/978-3-540-65399-8"><bdi>978-3-540-65399-8</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1697859">1697859</a>, <a href="/wiki/Zbl_(identifier)" class="mw-redirect" title="Zbl (identifier)">Zbl</a> <a rel="nofollow" class="external text" href="https://zbmath.org/?format=complete&q=an:0956.11021">0956.11021</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Algebraische+Zahlentheorie&rft.place=Berlin&rft.series=%3Cspan+title%3D%22German-language+text%22%3E%3Ci+lang%3D%22de%22%3EGrundlehren+der+mathematischen+Wissenschaften%3C%2Fi%3E%3C%2Fspan%3ECategory%3AArticles+containing+German-language+text&rft.pub=Springer-Verlag&rft.date=1999&rft_id=https%3A%2F%2Fzbmath.org%2F%3Fformat%3Dcomplete%26q%3Dan%3A0956.11021%23id-name%3DZbl&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1697859%23id-name%3DMR&rft.isbn=978-3-540-65399-8&rft.aulast=Neukirch&rft.aufirst=J%C3%BCrgen&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span> §VII.2.</span> </li> <li id="cite_note-Charollois-Sczech-49"><span class="mw-cite-backlink"><b><a href="#cite_ref-Charollois-Sczech_49-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCharolloisSczech2016" class="citation cs2 cs1-prop-long-vol">Charollois, Pierre; Sczech, Robert (2016), "Elliptic Functions According to Eisenstein and Kronecker: An Update", <i>EMS Newsletter</i>, 2016–9 (101): 8–14, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.4171%2FNEWS%2F101%2F4">10.4171/NEWS/101/4</a></span>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1027-488X">1027-488X</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:54504376">54504376</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=EMS+Newsletter&rft.atitle=Elliptic+Functions+According+to+Eisenstein+and+Kronecker%3A+An+Update&rft.volume=2016-9&rft.issue=101&rft.pages=8-14&rft.date=2016&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A54504376%23id-name%3DS2CID&rft.issn=1027-488X&rft_id=info%3Adoi%2F10.4171%2FNEWS%2F101%2F4&rft.aulast=Charollois&rft.aufirst=Pierre&rft.au=Sczech%2C+Robert&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-BK-50"><span class="mw-cite-backlink">^ <a href="#cite_ref-BK_50-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-BK_50-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBannaiKobayashi2010" class="citation cs2">Bannai, Kenichi; Kobayashi, Shinichi (2010), <a rel="nofollow" class="external text" href="https://projecteuclid.org/journals/duke-mathematical-journal/volume-153/issue-2/Algebraic-theta-functions-and-the-p-adic-interpolation-of-Eisenstein/10.1215/00127094-2010-024.full">"Algebraic theta functions and the p-adic interpolation of Eisenstein-Kronecker numbers"</a>, <i><a href="/wiki/Duke_Mathematical_Journal" title="Duke Mathematical Journal">Duke Mathematical Journal</a></i>, <b>153</b> (2), <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0610163">math/0610163</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1215%2F00127094-2010-024">10.1215/00127094-2010-024</a>, <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a> <a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0012-7094">0012-7094</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9262012">9262012</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Duke+Mathematical+Journal&rft.atitle=Algebraic+theta+functions+and+the+p-adic+interpolation+of+Eisenstein-Kronecker+numbers&rft.volume=153&rft.issue=2&rft.date=2010&rft_id=info%3Aarxiv%2Fmath%2F0610163&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9262012%23id-name%3DS2CID&rft.issn=0012-7094&rft_id=info%3Adoi%2F10.1215%2F00127094-2010-024&rft.aulast=Bannai&rft.aufirst=Kenichi&rft.au=Kobayashi%2C+Shinichi&rft_id=https%3A%2F%2Fprojecteuclid.org%2Fjournals%2Fduke-mathematical-journal%2Fvolume-153%2Fissue-2%2FAlgebraic-theta-functions-and-the-p-adic-interpolation-of-Eisenstein%2F10.1215%2F00127094-2010-024.full&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Malenfant2011-51"><span class="mw-cite-backlink">^ <a href="#cite_ref-Malenfant2011_51-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-Malenfant2011_51-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMalenfant2011" class="citation arxiv cs2">Malenfant, Jerome (2011), "Finite, closed-form expressions for the partition function and for Euler, Bernoulli, and Stirling numbers", <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1103.1585">1103.1585</a></span> [<a rel="nofollow" class="external text" href="https://arxiv.org/archive/math.NT">math.NT</a>]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Finite%2C+closed-form+expressions+for+the+partition+function+and+for+Euler%2C+Bernoulli%2C+and+Stirling+numbers&rft.date=2011&rft_id=info%3Aarxiv%2F1103.1585&rft.aulast=Malenfant&rft.aufirst=Jerome&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-52"><span class="mw-cite-backlink"><b><a href="#cite_ref-52">^</a></b></span> <span class="reference-text">Euler, E41, Inventio summae cuiusque seriei ex dato termino generali </span> </li> <li id="cite_note-vonEttingshausen1827-53"><span class="mw-cite-backlink"><b><a href="#cite_ref-vonEttingshausen1827_53-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Ettingshausen1827" class="citation cs2">von Ettingshausen, A. (1827), <i>Vorlesungen über die höhere Mathematik</i>, vol. 1, Vienna: Carl Gerold</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Vorlesungen+%C3%BCber+die+h%C3%B6here+Mathematik&rft.place=Vienna&rft.pub=Carl+Gerold&rft.date=1827&rft.aulast=von+Ettingshausen&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-Carlitz1968-54"><span class="mw-cite-backlink"><b><a href="#cite_ref-Carlitz1968_54-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCarlitz1968" class="citation cs2">Carlitz, L. (1968), "Bernoulli Numbers", <i><a href="/wiki/Fibonacci_Quarterly" title="Fibonacci Quarterly">Fibonacci Quarterly</a></i>, <b>6</b> (3): 71–85, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00150517.1968.12431229">10.1080/00150517.1968.12431229</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fibonacci+Quarterly&rft.atitle=Bernoulli+Numbers&rft.volume=6&rft.issue=3&rft.pages=71-85&rft.date=1968&rft_id=info%3Adoi%2F10.1080%2F00150517.1968.12431229&rft.aulast=Carlitz&rft.aufirst=L.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> <li id="cite_note-AgohDilcher2008-55"><span class="mw-cite-backlink"><b><a href="#cite_ref-AgohDilcher2008_55-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAgohDilcher2008" class="citation cs2">Agoh, Takashi; Dilcher, Karl (2008), "Reciprocity Relations for Bernoulli Numbers", <i>American Mathematical Monthly</i>, <b>115</b> (3): 237–244, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00029890.2008.11920520">10.1080/00029890.2008.11920520</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/27642447">27642447</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:43614118">43614118</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=American+Mathematical+Monthly&rft.atitle=Reciprocity+Relations+for+Bernoulli+Numbers&rft.volume=115&rft.issue=3&rft.pages=237-244&rft.date=2008&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A43614118%23id-name%3DS2CID&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F27642447%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.1080%2F00029890.2008.11920520&rft.aulast=Agoh&rft.aufirst=Takashi&rft.au=Dilcher%2C+Karl&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="Bibliography">Bibliography</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=44" title="Edit section: Bibliography"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAbramowitzStegun1972" class="citation cs2">Abramowitz, M.; Stegun, I. A. (1972), "§23.1: Bernoulli and Euler Polynomials and the Euler-Maclaurin Formula", <i>Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables</i> (9th printing ed.), New York: Dover Publications, pp. 804–806</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=%C2%A723.1%3A+Bernoulli+and+Euler+Polynomials+and+the+Euler-Maclaurin+Formula&rft.btitle=Handbook+of+Mathematical+Functions+with+Formulas%2C+Graphs%2C+and+Mathematical+Tables&rft.place=New+York&rft.pages=804-806&rft.edition=9th+printing&rft.pub=Dover+Publications&rft.date=1972&rft.aulast=Abramowitz&rft.aufirst=M.&rft.au=Stegun%2C+I.+A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArfken1970" class="citation cs2">Arfken, George (1970), <i>Mathematical methods for physicists</i> (2nd ed.), Academic Press, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0120598519" title="Special:BookSources/978-0120598519"><bdi>978-0120598519</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Mathematical+methods+for+physicists&rft.edition=2nd&rft.pub=Academic+Press&rft.date=1970&rft.isbn=978-0120598519&rft.aulast=Arfken&rft.aufirst=George&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFArlettaz1998" class="citation cs2">Arlettaz, D. (1998), "Die Bernoulli-Zahlen: eine Beziehung zwischen Topologie und Gruppentheorie", <i>Math. Semesterber</i>, <b>45</b>: 61–75, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1007%2Fs005910050037">10.1007/s005910050037</a>, <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a> <a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:121753654">121753654</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Math.+Semesterber&rft.atitle=Die+Bernoulli-Zahlen%3A+eine+Beziehung+zwischen+Topologie+und+Gruppentheorie&rft.volume=45&rft.pages=61-75&rft.date=1998&rft_id=info%3Adoi%2F10.1007%2Fs005910050037&rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A121753654%23id-name%3DS2CID&rft.aulast=Arlettaz&rft.aufirst=D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFAyoub1981" class="citation cs2">Ayoub, A. (1981), "Euler and the Zeta Function", <i>Amer. Math. Monthly</i>, <b>74</b> (2): 1067–1086, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2319041">10.2307/2319041</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2319041">2319041</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Amer.+Math.+Monthly&rft.atitle=Euler+and+the+Zeta+Function&rft.volume=74&rft.issue=2&rft.pages=1067-1086&rft.date=1981&rft_id=info%3Adoi%2F10.2307%2F2319041&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2319041%23id-name%3DJSTOR&rft.aulast=Ayoub&rft.aufirst=A.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFConwayGuy1996" class="citation cs2"><a href="/wiki/John_Horton_Conway" title="John Horton Conway">Conway, John</a>; <a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, Richard</a> (1996), <i>The Book of Numbers</i>, Springer-Verlag</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Book+of+Numbers&rft.pub=Springer-Verlag&rft.date=1996&rft.aulast=Conway&rft.aufirst=John&rft.au=Guy%2C+Richard&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDilcherSkulaSlavutskii1991" class="citation cs2">Dilcher, K.; Skula, L.; Slavutskii, I. Sh. (1991), <a rel="nofollow" class="external text" href="http://www.mscs.dal.ca/~dilcher/bernoulli.html">"Bernoulli numbers. Bibliography (1713–1990)"</a>, <i>Queen's Papers in Pure and Applied Mathematics</i> (87), Kingston, Ontario</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Queen%27s+Papers+in+Pure+and+Applied+Mathematics&rft.atitle=Bernoulli+numbers.+Bibliography+%281713%E2%80%931990%29&rft.issue=87&rft.date=1991&rft.aulast=Dilcher&rft.aufirst=K.&rft.au=Skula%2C+L.&rft.au=Slavutskii%2C+I.+Sh.&rft_id=http%3A%2F%2Fwww.mscs.dal.ca%2F~dilcher%2Fbernoulli.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFDumontViennot1980" class="citation cs2">Dumont, D.; Viennot, G. (1980), "A combinatorial interpretation of Seidel generation of Genocchi numbers", <i>Ann. Discrete Math.</i>, Annals of Discrete Mathematics, <b>6</b>: 77–87, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2FS0167-5060%2808%2970696-4">10.1016/S0167-5060(08)70696-4</a>, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/978-0-444-86048-4" title="Special:BookSources/978-0-444-86048-4"><bdi>978-0-444-86048-4</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Ann.+Discrete+Math.&rft.atitle=A+combinatorial+interpretation+of+Seidel+generation+of+Genocchi+numbers&rft.volume=6&rft.pages=77-87&rft.date=1980&rft_id=info%3Adoi%2F10.1016%2FS0167-5060%2808%2970696-4&rft.isbn=978-0-444-86048-4&rft.aulast=Dumont&rft.aufirst=D.&rft.au=Viennot%2C+G.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEntringer1966" class="citation cs2">Entringer, R. C. (1966), "A combinatorial interpretation of the Euler and Bernoulli numbers", <i>Nieuw. Arch. V. Wiskunde</i>, <b>14</b>: 241–6</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Nieuw.+Arch.+V.+Wiskunde&rft.atitle=A+combinatorial+interpretation+of+the+Euler+and+Bernoulli+numbers&rft.volume=14&rft.pages=241-6&rft.date=1966&rft.aulast=Entringer&rft.aufirst=R.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFeePlouffe2007" class="citation arxiv cs2">Fee, G.; Plouffe, S. (2007), "An efficient algorithm for the computation of Bernoulli numbers", <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/0702300">math/0702300</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=An+efficient+algorithm+for+the+computation+of+Bernoulli+numbers&rft.date=2007&rft_id=info%3Aarxiv%2Fmath%2F0702300&rft.aulast=Fee&rft.aufirst=G.&rft.au=Plouffe%2C+S.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGrahamKnuthPatashnik1989" class="citation cs2"><a href="/wiki/Ronald_Graham" title="Ronald Graham">Graham, R.</a>; <a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, D. E.</a>; Patashnik, O. (1989), <i>Concrete Mathematics</i> (2nd ed.), Addison-Wesley, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-201-55802-5" title="Special:BookSources/0-201-55802-5"><bdi>0-201-55802-5</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Concrete+Mathematics&rft.edition=2nd&rft.pub=Addison-Wesley&rft.date=1989&rft.isbn=0-201-55802-5&rft.aulast=Graham&rft.aufirst=R.&rft.au=Knuth%2C+D.+E.&rft.au=Patashnik%2C+O.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFIrelandRosen1990" class="citation cs2">Ireland, Kenneth; Rosen, Michael (1990), <i>A Classical Introduction to Modern Number Theory</i> (2nd ed.), Springer-Verlag, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/0-387-97329-X" title="Special:BookSources/0-387-97329-X"><bdi>0-387-97329-X</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=A+Classical+Introduction+to+Modern+Number+Theory&rft.edition=2nd&rft.pub=Springer-Verlag&rft.date=1990&rft.isbn=0-387-97329-X&rft.aulast=Ireland&rft.aufirst=Kenneth&rft.au=Rosen%2C+Michael&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJordan1950" class="citation cs2">Jordan, Charles (1950), <i>Calculus of Finite Differences</i>, New York: Chelsea Publ. Co.</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Calculus+of+Finite+Differences&rft.place=New+York&rft.pub=Chelsea+Publ.+Co.&rft.date=1950&rft.aulast=Jordan&rft.aufirst=Charles&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKaneko2000" class="citation cs2">Kaneko, M. (2000), <a rel="nofollow" class="external text" href="http://www.cs.uwaterloo.ca/journals/JIS/vol3.html">"The Akiyama-Tanigawa algorithm for Bernoulli numbers"</a>, <i>Journal of Integer Sequences</i>, <b>12</b>: 29, <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2000JIntS...3...29K">2000JIntS...3...29K</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+of+Integer+Sequences&rft.atitle=The+Akiyama-Tanigawa+algorithm+for+Bernoulli+numbers&rft.volume=12&rft.pages=29&rft.date=2000&rft_id=info%3Abibcode%2F2000JIntS...3...29K&rft.aulast=Kaneko&rft.aufirst=M.&rft_id=http%3A%2F%2Fwww.cs.uwaterloo.ca%2Fjournals%2FJIS%2Fvol3.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnuth1993" class="citation cs2"><a href="/wiki/Donald_Knuth" title="Donald Knuth">Knuth, D. E.</a> (1993), "Johann Faulhaber and the Sums of Powers", <i>Mathematics of Computation</i>, <b>61</b> (203), American Mathematical Society: 277–294, <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math/9207222">math/9207222</a></span>, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.2307%2F2152953">10.2307/2152953</a>, <a href="/wiki/JSTOR_(identifier)" class="mw-redirect" title="JSTOR (identifier)">JSTOR</a> <a rel="nofollow" class="external text" href="https://www.jstor.org/stable/2152953">2152953</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Mathematics+of+Computation&rft.atitle=Johann+Faulhaber+and+the+Sums+of+Powers&rft.volume=61&rft.issue=203&rft.pages=277-294&rft.date=1993&rft_id=info%3Aarxiv%2Fmath%2F9207222&rft_id=https%3A%2F%2Fwww.jstor.org%2Fstable%2F2152953%23id-name%3DJSTOR&rft_id=info%3Adoi%2F10.2307%2F2152953&rft.aulast=Knuth&rft.aufirst=D.+E.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuschny2007" class="citation cs2">Luschny, Peter (2007), <a rel="nofollow" class="external text" href="http://www.luschny.de/math/primes/bernincl.html"><i>An inclusion of the Bernoulli numbers</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=An+inclusion+of+the+Bernoulli+numbers&rft.date=2007&rft.aulast=Luschny&rft.aufirst=Peter&rft_id=http%3A%2F%2Fwww.luschny.de%2Fmath%2Fprimes%2Fbernincl.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLuschny2011" class="citation cs2">Luschny, Peter (8 October 2011), <a rel="nofollow" class="external text" href="http://oeis.org/wiki/User:Peter_Luschny/TheLostBernoulliNumbers">"TheLostBernoulliNumbers"</a>, <i>OeisWiki</i><span class="reference-accessdate">, retrieved <span class="nowrap">11 May</span> 2019</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=OeisWiki&rft.atitle=TheLostBernoulliNumbers&rft.date=2011-10-08&rft.aulast=Luschny&rft.aufirst=Peter&rft_id=http%3A%2F%2Foeis.org%2Fwiki%2FUser%3APeter_Luschny%2FTheLostBernoulliNumbers&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMathematics_Genealogy_Projectn.d." class="citation cs2"><a rel="nofollow" class="external text" href="https://web.archive.org/web/20190510171712/https://genealogy.math.ndsu.nodak.edu/"><i>The Mathematics Genealogy Project</i></a>, Fargo: Department of Mathematics, North Dakota State University, n.d., archived from <a rel="nofollow" class="external text" href="https://www.genealogy.math.ndsu.nodak.edu/">the original</a> on 10 May 2019<span class="reference-accessdate">, retrieved <span class="nowrap">11 May</span> 2019</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Mathematics+Genealogy+Project&rft.place=Fargo&rft.pub=Department+of+Mathematics%2C+North+Dakota+State+University&rft_id=https%3A%2F%2Fwww.genealogy.math.ndsu.nodak.edu%2F&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMiller2017" class="citation cs2">Miller, Jeff (23 June 2017), <a rel="nofollow" class="external text" href="http://jeff560.tripod.com/calculus.html">"Earliest Uses of Symbols of Calculus"</a>, <i>Earliest Uses of Various Mathematical Symbols</i><span class="reference-accessdate">, retrieved <span class="nowrap">11 May</span> 2019</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Earliest+Uses+of+Various+Mathematical+Symbols&rft.atitle=Earliest+Uses+of+Symbols+of+Calculus&rft.date=2017-06-23&rft.aulast=Miller&rft.aufirst=Jeff&rft_id=http%3A%2F%2Fjeff560.tripod.com%2Fcalculus.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMilnorStasheff1974" class="citation cs2"><a href="/wiki/John_Milnor" title="John Milnor">Milnor, John W.</a>; Stasheff, James D. (1974), "Appendix B: Bernoulli Numbers", <i>Characteristic Classes</i>, Annals of Mathematics Studies, vol. 76, Princeton University Press and University of Tokyo Press, pp. 281–287</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Appendix+B%3A+Bernoulli+Numbers&rft.btitle=Characteristic+Classes&rft.series=Annals+of+Mathematics+Studies&rft.pages=281-287&rft.pub=Princeton+University+Press+and+University+of+Tokyo+Press&rft.date=1974&rft.aulast=Milnor&rft.aufirst=John+W.&rft.au=Stasheff%2C+James+D.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPietrocola2008" class="citation cs2 cs1-prop-foreign-lang-source">Pietrocola, Giorgio (October 31, 2008), <a rel="nofollow" class="external text" href="http://www.maecla.it/Matematica/sommapotenze/teorema_1B.htm#teorema1b">"Esplorando un antico sentiero: teoremi sulla somma di potenze di interi successivi (Corollario 2b)"</a>, <i>Maecla</i> (in Italian)<span class="reference-accessdate">, retrieved <span class="nowrap">April 8,</span> 2017</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Maecla&rft.atitle=Esplorando+un+antico+sentiero%3A+teoremi+sulla+somma+di+potenze+di+interi+successivi+%28Corollario+2b%29&rft.date=2008-10-31&rft.aulast=Pietrocola&rft.aufirst=Giorgio&rft_id=http%3A%2F%2Fwww.maecla.it%2FMatematica%2Fsommapotenze%2Fteorema_1B.htm%23teorema1b&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSlavutskii1995" class="citation cs2">Slavutskii, Ilya Sh. (1995), "Staudt and arithmetical properties of Bernoulli numbers", <i>Historia Scientiarum</i>, <b>2</b>: 69–74</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Historia+Scientiarum&rft.atitle=Staudt+and+arithmetical+properties+of+Bernoulli+numbers&rft.volume=2&rft.pages=69-74&rft.date=1995&rft.aulast=Slavutskii&rft.aufirst=Ilya+Sh.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFvon_Staudt1845" class="citation cs2">von Staudt, K. G. Ch. (1845), "De numeris Bernoullianis, commentationem alteram", <i>Erlangen</i></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=De+numeris+Bernoullianis%2C+commentationem+alteram&rft.btitle=Erlangen&rft.date=1845&rft.aulast=von+Staudt&rft.aufirst=K.+G.+Ch.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFSun2005–2006" class="citation cs2">Sun, Zhi-Wei (2005–2006), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20011031073728/http://pweb.nju.edu.cn/zwsun/"><i>Some curious results on Bernoulli and Euler polynomials</i></a>, archived from <a rel="nofollow" class="external text" href="http://pweb.nju.edu.cn/zwsun">the original</a> on 2001-10-31</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Some+curious+results+on+Bernoulli+and+Euler+polynomials&rft.date=2005%2F2006&rft.aulast=Sun&rft.aufirst=Zhi-Wei&rft_id=http%3A%2F%2Fpweb.nju.edu.cn%2Fzwsun&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWoon1998" class="citation arxiv cs2">Woon, S. C. (1998), "Generalization of a relation between the Riemann zeta function and Bernoulli numbers", <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/math.NT/9812143">math.NT/9812143</a></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=preprint&rft.jtitle=arXiv&rft.atitle=Generalization+of+a+relation+between+the+Riemann+zeta+function+and+Bernoulli+numbers&rft.date=1998&rft_id=info%3Aarxiv%2Fmath.NT%2F9812143&rft.aulast=Woon&rft.aufirst=S.+C.&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWorpitzky1883" class="citation cs2">Worpitzky, J. (1883), <a rel="nofollow" class="external text" href="http://resolver.sub.uni-goettingen.de/purl?GDZPPN002158698">"Studien über die Bernoullischen und Eulerschen Zahlen"</a>, <i>Journal für die reine und angewandte Mathematik</i>, <b>94</b>: 203–232</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Journal+f%C3%BCr+die+reine+und+angewandte+Mathematik&rft.atitle=Studien+%C3%BCber+die+Bernoullischen+und+Eulerschen+Zahlen&rft.volume=94&rft.pages=203-232&rft.date=1883&rft.aulast=Worpitzky&rft.aufirst=J.&rft_id=http%3A%2F%2Fresolver.sub.uni-goettingen.de%2Fpurl%3FGDZPPN002158698&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span>.</li></ul> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Bernoulli_number&action=edit&section=45" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.encyclopediaofmath.org/index.php?title=Bernoulli_numbers">"Bernoulli numbers"</a>, <i><a href="/wiki/Encyclopedia_of_Mathematics" title="Encyclopedia of Mathematics">Encyclopedia of Mathematics</a></i>, <a href="/wiki/European_Mathematical_Society" title="European Mathematical Society">EMS Press</a>, 2001 [1994]</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=Bernoulli+numbers&rft.btitle=Encyclopedia+of+Mathematics&rft.pub=EMS+Press&rft.date=2001&rft_id=https%3A%2F%2Fwww.encyclopediaofmath.org%2Findex.php%3Ftitle%3DBernoulli_numbers&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><i><a href="https://www.gutenberg.org/ebooks/2586" class="extiw" title="gutenberg:2586">The first 498 Bernoulli Numbers</a></i> from <a href="/wiki/Project_Gutenberg" title="Project Gutenberg">Project Gutenberg</a></li> <li><a rel="nofollow" class="external text" href="https://web.archive.org/web/20160304004018/http://web.maths.unsw.edu.au/~davidharvey/papers/bernmm/">A multimodular algorithm for computing Bernoulli numbers</a></li> <li><a rel="nofollow" class="external text" href="http://www.bernoulli.org">The Bernoulli Number Page</a></li> <li><a href="/w/index.php?title=Literateprograms:Category:Bernoulli_numbers&action=edit&redlink=1" class="new" title="Literateprograms:Category:Bernoulli numbers (page does not exist)">Bernoulli number programs</a> at <a rel="nofollow" class="external text" href="http://en.literateprograms.org">LiteratePrograms</a></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._Luschny" class="citation cs2">P. Luschny, <a rel="nofollow" class="external text" href="http://www.luschny.de/math/primes/irregular.html"><i>The Computation of Irregular Primes</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Computation+of+Irregular+Primes&rft.au=P.+Luschny&rft_id=http%3A%2F%2Fwww.luschny.de%2Fmath%2Fprimes%2Firregular.html&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._Luschny" class="citation cs2">P. Luschny, <a rel="nofollow" class="external text" href="http://oeis.org/wiki/User:Peter_Luschny/ComputationAndAsymptoticsOfBernoulliNumbers"><i>The Computation And Asymptotics Of Bernoulli Numbers</i></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Computation+And+Asymptotics+Of+Bernoulli+Numbers&rft.au=P.+Luschny&rft_id=http%3A%2F%2Foeis.org%2Fwiki%2FUser%3APeter_Luschny%2FComputationAndAsymptoticsOfBernoulliNumbers&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGottfried_Helms" class="citation cs2">Gottfried Helms, <a rel="nofollow" class="external text" href="http://go.helms-net.de/math/pascal/bernoulli_en.pdf"><i>Bernoullinumbers in context of Pascal-(Binomial)matrix</i></a> <span class="cs1-format">(PDF)</span>, <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://go.helms-net.de/math/pascal/bernoulli_en.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Bernoullinumbers+in+context+of+Pascal-%28Binomial%29matrix&rft.au=Gottfried+Helms&rft_id=http%3A%2F%2Fgo.helms-net.de%2Fmath%2Fpascal%2Fbernoulli_en.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGottfried_Helms" class="citation cs2">Gottfried Helms, <a rel="nofollow" class="external text" href="http://go.helms-net.de/math/binomial/04_3_SummingOfLikePowers.pdf"><i>summing of like powers in context with Pascal-/Bernoulli-matrix</i></a> <span class="cs1-format">(PDF)</span>, <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://go.helms-net.de/math/binomial/04_3_SummingOfLikePowers.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=summing+of+like+powers+in+context+with+Pascal-%2FBernoulli-matrix&rft.au=Gottfried+Helms&rft_id=http%3A%2F%2Fgo.helms-net.de%2Fmath%2Fbinomial%2F04_3_SummingOfLikePowers.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li> <li><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGottfried_Helms" class="citation cs2">Gottfried Helms, <a rel="nofollow" class="external text" href="http://go.helms-net.de/math/binomial/02_2_GeneralizedBernoulliRecursion.pdf"><i>Some special properties, sums of Bernoulli-and related numbers</i></a> <span class="cs1-format">(PDF)</span>, <a rel="nofollow" class="external text" href="https://ghostarchive.org/archive/20221009/http://go.helms-net.de/math/binomial/02_2_GeneralizedBernoulliRecursion.pdf">archived</a> <span class="cs1-format">(PDF)</span> from the original on 2022-10-09</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Some+special+properties%2C+sums+of+Bernoulli-and+related+numbers&rft.au=Gottfried+Helms&rft_id=http%3A%2F%2Fgo.helms-net.de%2Fmath%2Fbinomial%2F02_2_GeneralizedBernoulliRecursion.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3ABernoulli+number" class="Z3988"></span></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Calculus" style="padding:3px"><table class="nowraplinks mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Calculus_topics" title="Template:Calculus topics"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Calculus_topics" title="Template talk:Calculus topics"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Calculus_topics" title="Special:EditPage/Template:Calculus topics"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Calculus" style="font-size:114%;margin:0 4em"><a href="/wiki/Calculus" title="Calculus">Calculus</a></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Precalculus" title="Precalculus">Precalculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Binomial_theorem" title="Binomial theorem">Binomial theorem</a></li> <li><a href="/wiki/Concave_function" title="Concave function">Concave function</a></li> <li><a href="/wiki/Continuous_function" title="Continuous function">Continuous function</a></li> <li><a href="/wiki/Factorial" title="Factorial">Factorial</a></li> <li><a href="/wiki/Finite_difference" title="Finite difference">Finite difference</a></li> <li><a href="/wiki/Free_variables_and_bound_variables" title="Free variables and bound variables">Free variables and bound variables</a></li> <li><a href="/wiki/Graph_of_a_function" title="Graph of a function">Graph of a function</a></li> <li><a href="/wiki/Linear_function" title="Linear function">Linear function</a></li> <li><a href="/wiki/Radian" title="Radian">Radian</a></li> <li><a href="/wiki/Rolle%27s_theorem" title="Rolle's theorem">Rolle's theorem</a></li> <li><a href="/wiki/Secant_line" title="Secant line">Secant</a></li> <li><a href="/wiki/Slope" title="Slope">Slope</a></li> <li><a href="/wiki/Tangent" title="Tangent">Tangent</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Limit_(mathematics)" title="Limit (mathematics)">Limits</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Indeterminate_form" title="Indeterminate form">Indeterminate form</a></li> <li><a href="/wiki/Limit_of_a_function" title="Limit of a function">Limit of a function</a> <ul><li><a href="/wiki/One-sided_limit" title="One-sided limit">One-sided limit</a></li></ul></li> <li><a href="/wiki/Limit_of_a_sequence" title="Limit of a sequence">Limit of a sequence</a></li> <li><a href="/wiki/Order_of_approximation" title="Order of approximation">Order of approximation</a></li> <li><a href="/wiki/(%CE%B5,_%CE%B4)-definition_of_limit" class="mw-redirect" title="(ε, δ)-definition of limit">(ε, δ)-definition of limit</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Differential_calculus" title="Differential calculus">Differential calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Derivative" title="Derivative">Derivative</a></li> <li><a href="/wiki/Second_derivative" title="Second derivative">Second derivative</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Differential_(mathematics)" title="Differential (mathematics)">Differential</a></li> <li><a href="/wiki/Differential_operator" title="Differential operator">Differential operator</a></li> <li><a href="/wiki/Mean_value_theorem" title="Mean value theorem">Mean value theorem</a></li> <li><a href="/wiki/Notation_for_differentiation" title="Notation for differentiation">Notation</a> <ul><li><a href="/wiki/Leibniz%27s_notation" title="Leibniz's notation">Leibniz's notation</a></li> <li><a href="/wiki/Newton%27s_notation_for_differentiation" class="mw-redirect" title="Newton's notation for differentiation">Newton's notation</a></li></ul></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">Rules of differentiation</a> <ul><li><a href="/wiki/Linearity_of_differentiation" title="Linearity of differentiation">linearity</a></li> <li><a href="/wiki/Power_rule" title="Power rule">Power</a></li> <li><a href="/wiki/Sum_rule_in_differentiation" class="mw-redirect" title="Sum rule in differentiation">Sum</a></li> <li><a href="/wiki/Chain_rule" title="Chain rule">Chain</a></li> <li><a href="/wiki/L%27H%C3%B4pital%27s_rule" title="L'Hôpital's rule">L'Hôpital's</a></li> <li><a href="/wiki/Product_rule" title="Product rule">Product</a> <ul><li><a href="/wiki/General_Leibniz_rule" title="General Leibniz rule">General Leibniz's rule</a></li></ul></li> <li><a href="/wiki/Quotient_rule" title="Quotient rule">Quotient</a></li></ul></li> <li>Other techniques <ul><li><a href="/wiki/Implicit_differentiation" class="mw-redirect" title="Implicit differentiation">Implicit differentiation</a></li> <li><a href="/wiki/Inverse_functions_and_differentiation" class="mw-redirect" title="Inverse functions and differentiation">Inverse functions and differentiation</a></li> <li><a href="/wiki/Logarithmic_derivative" title="Logarithmic derivative">Logarithmic derivative</a></li> <li><a href="/wiki/Related_rates" title="Related rates">Related rates</a></li></ul></li> <li><a href="/wiki/Stationary_point" title="Stationary point">Stationary points</a> <ul><li><a href="/wiki/First_derivative_test" class="mw-redirect" title="First derivative test">First derivative test</a></li> <li><a href="/wiki/Second_derivative_test" class="mw-redirect" title="Second derivative test">Second derivative test</a></li> <li><a href="/wiki/Extreme_value_theorem" title="Extreme value theorem">Extreme value theorem</a></li> <li><a href="/wiki/Maximum_and_minimum" title="Maximum and minimum">Maximum and minimum</a></li></ul></li> <li>Further applications <ul><li><a href="/wiki/Newton%27s_method" title="Newton's method">Newton's method</a></li> <li><a href="/wiki/Taylor%27s_theorem" title="Taylor's theorem">Taylor's theorem</a></li></ul></li> <li><a href="/wiki/Differential_equation" title="Differential equation">Differential equation</a> <ul><li><a href="/wiki/Ordinary_differential_equation" title="Ordinary differential equation">Ordinary differential equation</a></li> <li><a href="/wiki/Partial_differential_equation" title="Partial differential equation">Partial differential equation</a></li> <li><a href="/wiki/Stochastic_differential_equation" title="Stochastic differential equation">Stochastic differential equation</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Integral_calculus" class="mw-redirect" title="Integral calculus">Integral calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Antiderivative" title="Antiderivative">Antiderivative</a></li> <li><a href="/wiki/Arc_length" title="Arc length">Arc length</a></li> <li><a href="/wiki/Riemann_integral" title="Riemann integral">Riemann integral</a></li> <li><a href="/wiki/Integral#Properties" title="Integral">Basic properties</a></li> <li><a href="/wiki/Constant_of_integration" title="Constant of integration">Constant of integration</a></li> <li><a href="/wiki/Fundamental_theorem_of_calculus" title="Fundamental theorem of calculus">Fundamental theorem of calculus</a> <ul><li><a href="/wiki/Leibniz_integral_rule" title="Leibniz integral rule">Differentiating under the integral sign</a></li></ul></li> <li><a href="/wiki/Integration_by_parts" title="Integration by parts">Integration by parts</a></li> <li><a href="/wiki/Integration_by_substitution" title="Integration by substitution">Integration by substitution</a> <ul><li><a href="/wiki/Trigonometric_substitution" title="Trigonometric substitution">trigonometric</a></li> <li><a href="/wiki/Euler_substitution" title="Euler substitution">Euler</a></li> <li><a href="/wiki/Tangent_half-angle_substitution" title="Tangent half-angle substitution">Tangent half-angle substitution</a></li></ul></li> <li><a href="/wiki/Partial_fractions_in_integration" class="mw-redirect" title="Partial fractions in integration">Partial fractions in integration</a> <ul><li><a href="/wiki/Quadratic_integral" title="Quadratic integral">Quadratic integral</a></li></ul></li> <li><a href="/wiki/Trapezoidal_rule" title="Trapezoidal rule">Trapezoidal rule</a></li> <li>Volumes <ul><li><a href="/wiki/Disc_integration" title="Disc integration">Washer method</a></li> <li><a href="/wiki/Shell_integration" title="Shell integration">Shell method</a></li></ul></li> <li><a href="/wiki/Integral_equation" title="Integral equation">Integral equation</a></li> <li><a href="/wiki/Integro-differential_equation" title="Integro-differential equation">Integro-differential equation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Vector_calculus" title="Vector calculus">Vector calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Derivatives <ul><li><a href="/wiki/Curl_(mathematics)" title="Curl (mathematics)">Curl</a></li> <li><a href="/wiki/Directional_derivative" title="Directional derivative">Directional derivative</a></li> <li><a href="/wiki/Divergence" title="Divergence">Divergence</a></li> <li><a href="/wiki/Gradient" title="Gradient">Gradient</a></li> <li><a href="/wiki/Laplace_operator" title="Laplace operator">Laplacian</a></li></ul></li> <li>Basic theorems <ul><li><a href="/wiki/Fundamental_Theorem_of_Line_Integrals" class="mw-redirect" title="Fundamental Theorem of Line Integrals">Line integrals</a></li> <li><a href="/wiki/Green%27s_theorem" title="Green's theorem">Green's</a></li> <li><a href="/wiki/Stokes%27_theorem" title="Stokes' theorem">Stokes'</a></li> <li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Gauss'</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Multivariable_calculus" title="Multivariable calculus">Multivariable calculus</a></th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Divergence_theorem" title="Divergence theorem">Divergence theorem</a></li> <li><a href="/wiki/Geometric_calculus" title="Geometric calculus">Geometric</a></li> <li><a href="/wiki/Hessian_matrix" title="Hessian matrix">Hessian matrix</a></li> <li><a href="/wiki/Jacobian_matrix_and_determinant" title="Jacobian matrix and determinant">Jacobian matrix and determinant</a></li> <li><a href="/wiki/Lagrange_multiplier" title="Lagrange multiplier">Lagrange multiplier</a></li> <li><a href="/wiki/Line_integral" title="Line integral">Line integral</a></li> <li><a href="/wiki/Matrix_calculus" title="Matrix calculus">Matrix</a></li> <li><a href="/wiki/Multiple_integral" title="Multiple integral">Multiple integral</a></li> <li><a href="/wiki/Partial_derivative" title="Partial derivative">Partial derivative</a></li> <li><a href="/wiki/Surface_integral" title="Surface integral">Surface integral</a></li> <li><a href="/wiki/Volume_integral" title="Volume integral">Volume integral</a></li> <li>Advanced topics <ul><li><a href="/wiki/Differential_form" title="Differential form">Differential forms</a></li> <li><a href="/wiki/Exterior_derivative" title="Exterior derivative">Exterior derivative</a></li> <li><a href="/wiki/Generalized_Stokes%27_theorem" class="mw-redirect" title="Generalized Stokes' theorem">Generalized Stokes' theorem</a></li> <li><a href="/wiki/Tensor_calculus" class="mw-redirect" title="Tensor calculus">Tensor calculus</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Sequences and series</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetico-geometric_sequence" title="Arithmetico-geometric sequence">Arithmetico-geometric sequence</a></li> <li>Types of series <ul><li><a href="/wiki/Alternating_series" title="Alternating series">Alternating</a></li> <li><a href="/wiki/Binomial_series" title="Binomial series">Binomial</a></li> <li><a href="/wiki/Fourier_series" title="Fourier series">Fourier</a></li> <li><a href="/wiki/Geometric_series" title="Geometric series">Geometric</a></li> <li><a href="/wiki/Harmonic_series_(mathematics)" title="Harmonic series (mathematics)">Harmonic</a></li> <li><a href="/wiki/Infinite_series" class="mw-redirect" title="Infinite series">Infinite</a></li> <li><a href="/wiki/Power_series" title="Power series">Power</a> <ul><li><a href="/wiki/Maclaurin_series" class="mw-redirect" title="Maclaurin series">Maclaurin</a></li> <li><a href="/wiki/Taylor_series" title="Taylor series">Taylor</a></li></ul></li> <li><a href="/wiki/Telescoping_series" title="Telescoping series">Telescoping</a></li></ul></li> <li>Tests of convergence <ul><li><a href="/wiki/Abel%27s_test" title="Abel's test">Abel's</a></li> <li><a href="/wiki/Alternating_series_test" title="Alternating series test">Alternating series</a></li> <li><a href="/wiki/Cauchy_condensation_test" title="Cauchy condensation test">Cauchy condensation</a></li> <li><a href="/wiki/Direct_comparison_test" title="Direct comparison test">Direct comparison</a></li> <li><a href="/wiki/Dirichlet%27s_test" title="Dirichlet's test">Dirichlet's</a></li> <li><a href="/wiki/Integral_test_for_convergence" title="Integral test for convergence">Integral</a></li> <li><a href="/wiki/Limit_comparison_test" title="Limit comparison test">Limit comparison</a></li> <li><a href="/wiki/Ratio_test" title="Ratio test">Ratio</a></li> <li><a href="/wiki/Root_test" title="Root test">Root</a></li> <li><a href="/wiki/Term_test" class="mw-redirect" title="Term test">Term</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Special functions<br />and numbers</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a class="mw-selflink selflink">Bernoulli numbers</a></li> <li><a href="/wiki/E_(mathematical_constant)" title="E (mathematical constant)">e (mathematical constant)</a></li> <li><a href="/wiki/Exponential_function" title="Exponential function">Exponential function</a></li> <li><a href="/wiki/Natural_logarithm" title="Natural logarithm">Natural logarithm</a></li> <li><a href="/wiki/Stirling%27s_approximation" title="Stirling's approximation">Stirling's approximation</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/History_of_calculus" title="History of calculus">History of calculus</a></th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Adequality" title="Adequality">Adequality</a></li> <li><a href="/wiki/Brook_Taylor" title="Brook Taylor">Brook Taylor</a></li> <li><a href="/wiki/Colin_Maclaurin" title="Colin Maclaurin">Colin Maclaurin</a></li> <li><a href="/wiki/Generality_of_algebra" title="Generality of algebra">Generality of algebra</a></li> <li><a href="/wiki/Gottfried_Wilhelm_Leibniz" title="Gottfried Wilhelm Leibniz">Gottfried Wilhelm Leibniz</a></li> <li><a href="/wiki/Infinitesimal" title="Infinitesimal">Infinitesimal</a></li> <li><a href="/wiki/Infinitesimal_calculus" class="mw-redirect" title="Infinitesimal calculus">Infinitesimal calculus</a></li> <li><a href="/wiki/Isaac_Newton" title="Isaac Newton">Isaac Newton</a></li> <li><a href="/wiki/Fluxion" title="Fluxion">Fluxion</a></li> <li><a href="/wiki/Law_of_Continuity" class="mw-redirect" title="Law of Continuity">Law of Continuity</a></li> <li><a href="/wiki/Leonhard_Euler" title="Leonhard Euler">Leonhard Euler</a></li> <li><i><a href="/wiki/Method_of_Fluxions" title="Method of Fluxions">Method of Fluxions</a></i></li> <li><i><a href="/wiki/The_Method_of_Mechanical_Theorems" title="The Method of Mechanical Theorems">The Method of Mechanical Theorems</a></i></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Lists</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th id="Integrals" scope="row" class="navbox-group" style="width:1%;text-align:left"><a href="/wiki/Lists_of_integrals" title="Lists of integrals">Integrals</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_integrals_of_rational_functions" title="List of integrals of rational functions">rational functions</a></li> <li><a href="/wiki/List_of_integrals_of_irrational_functions" title="List of integrals of irrational functions">irrational functions</a></li> <li><a href="/wiki/List_of_integrals_of_exponential_functions" title="List of integrals of exponential functions">exponential functions</a></li> <li><a href="/wiki/List_of_integrals_of_logarithmic_functions" title="List of integrals of logarithmic functions">logarithmic functions</a></li> <li><a href="/wiki/List_of_integrals_of_hyperbolic_functions" title="List of integrals of hyperbolic functions">hyperbolic functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_hyperbolic_functions" title="List of integrals of inverse hyperbolic functions">inverse</a></li></ul></li> <li><a href="/wiki/List_of_integrals_of_trigonometric_functions" title="List of integrals of trigonometric functions">trigonometric functions</a> <ul><li><a href="/wiki/List_of_integrals_of_inverse_trigonometric_functions" title="List of integrals of inverse trigonometric functions">inverse</a></li> <li><a href="/wiki/Integral_of_the_secant_function" title="Integral of the secant function">Secant</a></li> <li><a href="/wiki/Integral_of_secant_cubed" title="Integral of secant cubed">Secant cubed</a></li></ul></li></ul> </div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/List_of_limits" title="List of limits">List of limits</a></li> <li><a href="/wiki/Differentiation_rules" title="Differentiation rules">List of derivatives</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Miscellaneous topics</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li>Complex calculus <ul><li><a href="/wiki/Contour_integral" class="mw-redirect" title="Contour integral">Contour integral</a></li></ul></li> <li>Differential geometry <ul><li><a href="/wiki/Manifold" title="Manifold">Manifold</a></li> <li><a href="/wiki/Curvature" title="Curvature">Curvature</a></li> <li><a href="/wiki/Differential_geometry_of_curves" class="mw-redirect" title="Differential geometry of curves">of curves</a></li> <li><a href="/wiki/Differential_geometry_of_surfaces" title="Differential geometry of surfaces">of surfaces</a></li> <li><a href="/wiki/Tensor" title="Tensor">Tensor</a></li></ul></li> <li><a href="/wiki/Euler%E2%80%93Maclaurin_formula" title="Euler–Maclaurin formula">Euler–Maclaurin formula</a></li> <li><a href="/wiki/Gabriel%27s_horn" title="Gabriel's horn">Gabriel's horn</a></li> <li><a href="/wiki/Integration_Bee" title="Integration Bee">Integration Bee</a></li> <li><a href="/wiki/Proof_that_22/7_exceeds_%CF%80" title="Proof that 22/7 exceeds π">Proof that 22/7 exceeds π</a></li> <li><a href="/wiki/Regiomontanus%27_angle_maximization_problem" title="Regiomontanus' angle maximization problem">Regiomontanus' angle maximization problem</a></li> <li><a href="/wiki/Steinmetz_solid" title="Steinmetz solid">Steinmetz solid</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-labelledby="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q694114#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="padding:3px"><table class="nowraplinks hlist mw-collapsible autocollapse navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Authority_control_databases_frameless&#124;text-top&#124;10px&#124;alt=Edit_this_at_Wikidata&#124;link=https&#58;//www.wikidata.org/wiki/Q694114#identifiers&#124;class=noprint&#124;Edit_this_at_Wikidata" style="font-size:114%;margin:0 4em"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a> <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q694114#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">International</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="http://id.worldcat.org/fast/830779/">FAST</a></span></li></ul></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">National</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4276648-5">Germany</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://id.loc.gov/authorities/sh85013375">United States</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://catalogue.bnf.fr/ark:/12148/cb12286125h">France</a></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="https://data.bnf.fr/ark:/12148/cb12286125h">BnF data</a></span></li><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Bernoulliho čísla"><a rel="nofollow" class="external text" href="https://aleph.nkp.cz/F/?func=find-c&local_base=aut&ccl_term=ica=ph982960&CON_LNG=ENG">Czech Republic</a></span></span></li><li><span class="uid"><a rel="nofollow" class="external text" href="http://olduli.nli.org.il/F/?func=find-b&local_base=NLX10&find_code=UID&request=987007283266005171">Israel</a></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐api‐ext.codfw.main‐7556f8b5dd‐87jw4 Cached time: 20241123022417 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 2.642 seconds Real time usage: 2.982 seconds Preprocessor visited node count: 39653/1000000 Post‐expand include size: 410758/2097152 bytes Template argument size: 66645/2097152 bytes Highest expansion depth: 13/100 Expensive parser function count: 8/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 423362/5000000 bytes Lua time usage: 1.206/10.000 seconds Lua memory usage: 21969358/52428800 bytes Lua Profile: ? 260 ms 18.3% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getAllExpandedArguments 240 ms 16.9% recursiveClone <mwInit.lua:45> 220 ms 15.5% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::callParserFunction 180 ms 12.7% dataWrapper <mw.lua:672> 100 ms 7.0% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::getExpandedArgument 80 ms 5.6% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::sub 60 ms 4.2% tostring 40 ms 2.8% <mw.lua:710> 40 ms 2.8% MediaWiki\Extension\Scribunto\Engines\LuaSandbox\LuaSandboxCallback::len 40 ms 2.8% [others] 160 ms 11.3% Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 2310.758 1 -total 20.93% 483.621 316 Template:Math 19.65% 453.981 65 Template:Citation 18.49% 427.186 2 Template:Reflist 11.88% 274.561 271 Template:Sfrac 8.26% 190.763 37 Template:R 7.64% 176.446 43 Template:R/ref 6.17% 142.487 1 Template:Short_description 5.98% 138.246 1 Template:Neukirch_ANT 5.88% 135.777 1 Template:Cite_book --> <!-- Saved in parser cache with key enwiki:pcache:idhash:4964-0!canonical and timestamp 20241123022420 and revision id 1259048282. Rendering was triggered because: edit-page --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Bernoulli_number&oldid=1259048282">https://en.wikipedia.org/w/index.php?title=Bernoulli_number&oldid=1259048282</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Number_theory" title="Category:Number theory">Number theory</a></li><li><a href="/wiki/Category:Topology" title="Category:Topology">Topology</a></li><li><a href="/wiki/Category:Integer_sequences" title="Category:Integer sequences">Integer sequences</a></li><li><a href="/wiki/Category:Eponymous_numbers_in_mathematics" title="Category:Eponymous numbers in mathematics">Eponymous numbers in mathematics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:CS1_Latin-language_sources_(la)" title="Category:CS1 Latin-language sources (la)">CS1 Latin-language sources (la)</a></li><li><a href="/wiki/Category:CS1:_long_volume_value" title="Category:CS1: long volume value">CS1: long volume value</a></li><li><a href="/wiki/Category:Articles_containing_German-language_text" title="Category:Articles containing German-language text">Articles containing German-language text</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:Use_American_English_from_March_2019" title="Category:Use American English from March 2019">Use American English from March 2019</a></li><li><a href="/wiki/Category:All_Wikipedia_articles_written_in_American_English" title="Category:All Wikipedia articles written in American English">All Wikipedia articles written in American English</a></li><li><a href="/wiki/Category:Use_shortened_footnotes_from_April_2021" title="Category:Use shortened footnotes from April 2021">Use shortened footnotes from April 2021</a></li><li><a href="/wiki/Category:CS1_Italian-language_sources_(it)" title="Category:CS1 Italian-language sources (it)">CS1 Italian-language sources (it)</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 23 November 2024, at 02:24<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Bernoulli_number&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-t7vv5","wgBackendResponseTime":192,"wgPageParseReport":{"limitreport":{"cputime":"2.642","walltime":"2.982","ppvisitednodes":{"value":39653,"limit":1000000},"postexpandincludesize":{"value":410758,"limit":2097152},"templateargumentsize":{"value":66645,"limit":2097152},"expansiondepth":{"value":13,"limit":100},"expensivefunctioncount":{"value":8,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":423362,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 2310.758 1 -total"," 20.93% 483.621 316 Template:Math"," 19.65% 453.981 65 Template:Citation"," 18.49% 427.186 2 Template:Reflist"," 11.88% 274.561 271 Template:Sfrac"," 8.26% 190.763 37 Template:R"," 7.64% 176.446 43 Template:R/ref"," 6.17% 142.487 1 Template:Short_description"," 5.98% 138.246 1 Template:Neukirch_ANT"," 5.88% 135.777 1 Template:Cite_book"]},"scribunto":{"limitreport-timeusage":{"value":"1.206","limit":"10.000"},"limitreport-memusage":{"value":21969358,"limit":52428800},"limitreport-logs":"anchor_id_list = table#1 {\n [\"CITEREFAbramowitzStegun1972\"] = 1,\n [\"CITEREFAgohDilcher2008\"] = 1,\n [\"CITEREFAndré1879\"] = 1,\n [\"CITEREFAndré1881\"] = 1,\n [\"CITEREFApostol2010\"] = 1,\n [\"CITEREFArfken1970\"] = 1,\n [\"CITEREFArlettaz1998\"] = 1,\n [\"CITEREFArnold1991\"] = 1,\n [\"CITEREFAyoub1981\"] = 1,\n [\"CITEREFBannaiKobayashi2010\"] = 1,\n [\"CITEREFBernoulli1713\"] = 1,\n [\"CITEREFBoole1880\"] = 1,\n [\"CITEREFBuhlerCrandallErnvallMetsankyla2001\"] = 1,\n [\"CITEREFCarlitz1968\"] = 1,\n [\"CITEREFCharolloisSczech2016\"] = 1,\n [\"CITEREFClausen1840\"] = 1,\n [\"CITEREFConwayGuy1996\"] = 1,\n [\"CITEREFDilcherSkulaSlavutskii1991\"] = 1,\n [\"CITEREFDumont1981\"] = 1,\n [\"CITEREFDumontViennot1980\"] = 1,\n [\"CITEREFElkies2003\"] = 1,\n [\"CITEREFEntringer1966\"] = 1,\n [\"CITEREFEuler1735\"] = 1,\n [\"CITEREFFeePlouffe2007\"] = 1,\n [\"CITEREFGottfried_Helms\"] = 3,\n [\"CITEREFGould1972\"] = 1,\n [\"CITEREFGrahamKnuthPatashnik1989\"] = 1,\n [\"CITEREFGuoZeng2005\"] = 1,\n [\"CITEREFHarvey2010\"] = 1,\n [\"CITEREFIrelandRosen1990\"] = 1,\n [\"CITEREFJacobi1834\"] = 1,\n [\"CITEREFJordan1950\"] = 1,\n [\"CITEREFKaneko2000\"] = 1,\n [\"CITEREFKellner2002\"] = 1,\n [\"CITEREFKitagawa2021\"] = 1,\n [\"CITEREFKnuth1993\"] = 1,\n [\"CITEREFKnuthBuckholtz1967\"] = 1,\n [\"CITEREFKummer1850\"] = 1,\n [\"CITEREFKummer1851\"] = 1,\n [\"CITEREFLuschny2007\"] = 1,\n [\"CITEREFLuschny2011\"] = 1,\n [\"CITEREFMalenfant2011\"] = 1,\n [\"CITEREFMathematics_Genealogy_Projectn.d.\"] = 1,\n [\"CITEREFMenabrea1842\"] = 1,\n [\"CITEREFMiller2017\"] = 1,\n [\"CITEREFMilnorStasheff1974\"] = 1,\n [\"CITEREFP._Luschny\"] = 2,\n [\"CITEREFPavlyk2008\"] = 1,\n [\"CITEREFPietrocola2008\"] = 1,\n [\"CITEREFRademacher1973\"] = 1,\n [\"CITEREFRiesz1916\"] = 1,\n [\"CITEREFSaalschütz1893\"] = 1,\n [\"CITEREFSeidel1877\"] = 1,\n [\"CITEREFSelin1997\"] = 1,\n [\"CITEREFSlavutskii1995\"] = 1,\n [\"CITEREFSmith1929\"] = 1,\n [\"CITEREFSmithMikami1914\"] = 1,\n [\"CITEREFStanley2010\"] = 1,\n [\"CITEREFSun2005–2006\"] = 1,\n [\"CITEREFWoon1997\"] = 1,\n [\"CITEREFWoon1998\"] = 1,\n [\"CITEREFWorpitzky1883\"] = 1,\n [\"CITEREFvon_Ettingshausen1827\"] = 1,\n [\"CITEREFvon_Staudt1840\"] = 1,\n [\"CITEREFvon_Staudt1845\"] = 1,\n}\ntemplate_list = table#1 {\n [\"\"] = 1,\n [\"1\\\\over x\"] = 2,\n [\"=\"] = 54,\n [\"Abs\"] = 1,\n [\"Authority control\"] = 1,\n [\"Blockquote\"] = 1,\n [\"Calculus topics\"] = 1,\n [\"Citation\"] = 65,\n [\"Cite arXiv\"] = 3,\n [\"Collapse bottom\"] = 1,\n [\"Collapse top\"] = 1,\n [\"Diagonal split header\"] = 2,\n [\"Div col\"] = 1,\n [\"Div col end\"] = 1,\n [\"Efn\"] = 3,\n [\"Harv\"] = 1,\n [\"Harvp\"] = 4,\n [\"Image frame\"] = 1,\n [\"Main\"] = 5,\n [\"Math\"] = 316,\n [\"Mathworld\"] = 1,\n [\"Mvar\"] = 58,\n [\"N+1\\\\atop m+1\"] = 1,\n [\"Neukirch ANT\"] = 1,\n [\"Notelist\"] = 1,\n [\"Nowrap\"] = 8,\n [\"OEIS2C\"] = 94,\n [\"Overline\"] = 2,\n [\"Pi\"] = 6,\n [\"R\"] = 37,\n [\"Reflist\"] = 1,\n [\"SfnRef\"] = 1,\n [\"Sfnp\"] = 9,\n [\"Sfrac\"] = 271,\n [\"Short description\"] = 1,\n [\"SpringerEOM\"] = 1,\n [\"Su\"] = 14,\n [\"Sub\"] = 3,\n [\"Sup\"] = 1,\n [\"Table alignment\"] = 1,\n [\"Underline\"] = 2,\n [\"Unordered list\"] = 1,\n [\"Use American English\"] = 1,\n [\"Use shortened footnotes\"] = 1,\n [\"Val\"] = 12,\n}\narticle_whitelist = table#1 {\n}\n","limitreport-profile":[["?","260","18.3"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getAllExpandedArguments","240","16.9"],["recursiveClone \u003CmwInit.lua:45\u003E","220","15.5"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::callParserFunction","180","12.7"],["dataWrapper \u003Cmw.lua:672\u003E","100","7.0"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::getExpandedArgument","80","5.6"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::sub","60","4.2"],["tostring","40","2.8"],["\u003Cmw.lua:710\u003E","40","2.8"],["MediaWiki\\Extension\\Scribunto\\Engines\\LuaSandbox\\LuaSandboxCallback::len","40","2.8"],["[others]","160","11.3"]]},"cachereport":{"origin":"mw-api-ext.codfw.main-7556f8b5dd-87jw4","timestamp":"20241123022417","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Bernoulli number","url":"https:\/\/en.wikipedia.org\/wiki\/Bernoulli_number","sameAs":"http:\/\/www.wikidata.org\/entity\/Q694114","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q694114","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2002-01-11T23:37:01Z","dateModified":"2024-11-23T02:24:14Z","headline":"rational number sequence \ud835\udc35\u2096 such that (\ud835\udc5a+1)\u2211\ud835\udc5b\u1d50=(\u1d50\u207a\u00b9\u2080)\ud835\udc35\u2080\ud835\udc5b\u1d50\u207a\u00b9\u2212(\u1d50\u207a\u00b9\u2081)\ud835\udc35\u2081\ud835\udc5b\u1d50+(\u1d50\u207a\u00b9\u2082)\ud835\udc35\u2082\ud835\udc5b\u1d50\u00af\u00b9\u2212(\u1d50\u207a\u00b9\u2083)\ud835\udc35\u2083\ud835\udc5b\u1d50\u00af\u00b2+\u22ef"}</script> </body> </html>