CINXE.COM

Search results for: Alexei Davydov

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <script> var _paq = window._paq = window._paq || []; /* tracker methods like "setCustomDimension" should be called before "trackPageView" */ _paq.push(['trackPageView']); _paq.push(['enableLinkTracking']); (function() { var u="//matomo.waset.org/"; _paq.push(['setTrackerUrl', u+'matomo.php']); _paq.push(['setSiteId', '2']); var d=document, g=d.createElement('script'), s=d.getElementsByTagName('script')[0]; g.async=true; g.src=u+'matomo.js'; s.parentNode.insertBefore(g,s); })(); </script> <!-- End Matomo Code --> <title>Search results for: Alexei Davydov</title> <meta name="description" content="Search results for: Alexei Davydov"> <meta name="keywords" content="Alexei Davydov"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Alexei Davydov" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2025/2026/2027">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Alexei Davydov"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 19</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Alexei Davydov</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">19</span> A Proof of the N. Davydov Theorem for Douglis Algebra Valued Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jean-Marie%20Vilaire">Jean-Marie Vilaire</a>, <a href="https://publications.waset.org/abstracts/search?q=Ricardo%20Abreu-Blaya"> Ricardo Abreu-Blaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Bory-Reyes"> Juan Bory-Reyes</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The classical Beltrami system of elliptic equations generalizes the Cauchy Riemann equation in the complex plane and offers the possibility to consider homogeneous system with no terms of zero order. The theory of Douglis-valued functions, called Hyper-analytic functions, is special case of the above situation. In this note, we prove an analogue of the N. Davydov theorem in the framework of the theory of hyperanalytic functions. The used methodology contemplates characteristic methods of the hypercomplex analysis as well as the singular integral operators and elliptic systems of the partial differential equations theories. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Beltrami%20equation" title="Beltrami equation">Beltrami equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglis%20algebra-valued%20function" title=" Douglis algebra-valued function"> Douglis algebra-valued function</a>, <a href="https://publications.waset.org/abstracts/search?q=Hypercomplex%20Cauchy%20type%20integral" title=" Hypercomplex Cauchy type integral"> Hypercomplex Cauchy type integral</a>, <a href="https://publications.waset.org/abstracts/search?q=Sokhotski-Plemelj%20formulae" title=" Sokhotski-Plemelj formulae"> Sokhotski-Plemelj formulae</a> </p> <a href="https://publications.waset.org/abstracts/92078/a-proof-of-the-n-davydov-theorem-for-douglis-algebra-valued-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92078.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">18</span> Method of False Alarm Rate Control for Cyclic Redundancy Check-Aided List Decoding of Polar Codes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmitry%20Dikarev">Dmitry Dikarev</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajit%20Nimbalker"> Ajit Nimbalker</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Davydov"> Alexei Davydov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polar coding is a novel example of error correcting codes, which can achieve Shannon limit at block length N→∞ with log-linear complexity. Active research is being carried to adopt this theoretical concept for using in practical applications such as 5th generation wireless communication systems. Cyclic redundancy check (CRC) error detection code is broadly used in conjunction with successive cancellation list (SCL) decoding algorithm to improve finite-length polar code performance. However, there are two issues: increase of code block payload overhead by CRC bits and decrease of CRC error-detection capability. This paper proposes a method to control CRC overhead and false alarm rate of polar decoding. As shown in the computer simulations results, the proposed method provides the ability to use any set of CRC polynomials with any list size while maintaining the desired level of false alarm rate. This level of flexibility allows using polar codes in 5G New Radio standard. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=5G%20New%20Radio" title="5G New Radio">5G New Radio</a>, <a href="https://publications.waset.org/abstracts/search?q=channel%20coding" title=" channel coding"> channel coding</a>, <a href="https://publications.waset.org/abstracts/search?q=cyclic%20redundancy%20check" title=" cyclic redundancy check"> cyclic redundancy check</a>, <a href="https://publications.waset.org/abstracts/search?q=list%20decoding" title=" list decoding"> list decoding</a>, <a href="https://publications.waset.org/abstracts/search?q=polar%20codes" title=" polar codes"> polar codes</a> </p> <a href="https://publications.waset.org/abstracts/85145/method-of-false-alarm-rate-control-for-cyclic-redundancy-check-aided-list-decoding-of-polar-codes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85145.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">245</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17</span> Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olesya%20Bolkhovskaya">Olesya Bolkhovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Davydov"> Alexey Davydov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Maltsev"> Alexander Maltsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered. First one is deterministic (Barker code), the second one is random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20array" title="antenna array">antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20curves" title=" detection curves"> detection curves</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20characteristics" title=" performance characteristics"> performance characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrature%20processing" title=" quadrature processing"> quadrature processing</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20detection" title=" signal detection"> signal detection</a> </p> <a href="https://publications.waset.org/abstracts/37526/detection-characteristics-of-the-random-and-deterministic-signals-in-antenna-arrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37526.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">413</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">16</span> An Architecture Based on Capsule Networks for the Identification of Handwritten Signature Forgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luisa%20Mesquita%20Oliveira%20Ribeiro">Luisa Mesquita Oliveira Ribeiro</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Manso%20Correa%20Machado"> Alexei Manso Correa Machado</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Handwritten signature is a unique form for recognizing an individual, used to discern documents, carry out investigations in the criminal, legal, banking areas and other applications. Signature verification is based on large amounts of biometric data, as they are simple and easy to acquire, among other characteristics. Given this scenario, signature forgery is a worldwide recurring problem and fast and precise techniques are needed to prevent crimes of this nature from occurring. This article carried out a study on the efficiency of the Capsule Network in analyzing and recognizing signatures. The chosen architecture achieved an accuracy of 98.11% and 80.15% for the CEDAR and GPDS databases, respectively. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biometrics" title="biometrics">biometrics</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=handwriting" title=" handwriting"> handwriting</a>, <a href="https://publications.waset.org/abstracts/search?q=signature%20forgery" title=" signature forgery"> signature forgery</a> </p> <a href="https://publications.waset.org/abstracts/172892/an-architecture-based-on-capsule-networks-for-the-identification-of-handwritten-signature-forgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">15</span> Comparative Analysis of Two Approaches to Joint Signal Detection, ToA and AoA Estimation in Multi-Element Antenna Arrays</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Olesya%20Bolkhovskaya">Olesya Bolkhovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexey%20Davydov"> Alexey Davydov</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexander%20Maltsev"> Alexander Maltsev</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper two approaches to joint signal detection, time of arrival (ToA) and angle of arrival (AoA) estimation in multi-element antenna array are investigated. Two scenarios were considered: first one, when the waveform of the useful signal is known a priori and, second one, when the waveform of the desired signal is unknown. For first scenario, the antenna array signal processing based on multi-element matched filtering (MF) with the following non-coherent detection scheme and maximum likelihood (ML) parameter estimation blocks is exploited. For second scenario, the signal processing based on the antenna array elements covariance matrix estimation with the following eigenvector analysis and ML parameter estimation blocks is applied. The performance characteristics of both signal processing schemes are thoroughly investigated and compared for different useful signals and noise parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antenna%20array" title="antenna array">antenna array</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20detection" title=" signal detection"> signal detection</a>, <a href="https://publications.waset.org/abstracts/search?q=ToA" title=" ToA"> ToA</a>, <a href="https://publications.waset.org/abstracts/search?q=AoA%20estimation" title=" AoA estimation"> AoA estimation</a> </p> <a href="https://publications.waset.org/abstracts/11917/comparative-analysis-of-two-approaches-to-joint-signal-detection-toa-and-aoa-estimation-in-multi-element-antenna-arrays" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/11917.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">503</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> Dynamics of Adiabatic Rapid Passage in an Open Rabi Dimer Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Justin%20Zhengjie%20Tan">Justin Zhengjie Tan</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Zhao"> Yang Zhao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Adiabatic Rapid Passage, a popular method of achieving population inversion, is studied in a Rabi dimer model in the presence of noise which acts as a dissipative environment. The integration of the multi-Davydov D2 Ansatz into the time-dependent variational framework enables us to model the intricate quantum system accurately. By influencing the system with a driving field strength resonant with the energy spacing, the probability of adiabatic rapid passage, which is modelled after the Landau Zener model, can be derived along with several other observables, such as the photon population. The effects of a dissipative environment can be reproduced by coupling the system to a common phonon mode. By manipulating the strength and frequency of the driving field, along with the coupling strength of the phonon mode to the qubits, we are able to control the qubits and photon dynamics and subsequently increase the probability of Adiabatic Rapid Passage happening. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quantum%20electrodynamics" title="quantum electrodynamics">quantum electrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=adiabatic%20rapid%20passage" title=" adiabatic rapid passage"> adiabatic rapid passage</a>, <a href="https://publications.waset.org/abstracts/search?q=Landau-Zener%20transitions" title=" Landau-Zener transitions"> Landau-Zener transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=dissipative%20environment" title=" dissipative environment"> dissipative environment</a> </p> <a href="https://publications.waset.org/abstracts/167520/dynamics-of-adiabatic-rapid-passage-in-an-open-rabi-dimer-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167520.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">93</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Non Classical Photonic Nanojets in near Field of Metallic and Negative-Index Scatterers, Purely Electric and Magnetic Nanojets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dmytro%20O.%20Plutenko">Dmytro O. Plutenko</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20D.%20Kiselev"> Alexei D. Kiselev</a>, <a href="https://publications.waset.org/abstracts/search?q=Mikhail%20V.%20Vasnetsov"> Mikhail V. Vasnetsov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present the results of our analytical and computational study of Laguerre-Gaussian (LG) beams scattering by spherical homogeneous isotropic particles located on the axis of the beam. We consider different types of scatterers (dielectric, metallic and double negative metamaterials) and different polarizations of the LG beams. A possibility to generate photonic nanojets using metallic and double negative metamaterial Mie scatterers is shown. We have studied the properties of such nonclassical nanojets and discovered new types of the nanojets characterized by zero on-axes magnetic (or electric) field with the electric (or magnetic) field polarized along the z-axis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=double%20negative%20metamaterial" title="double negative metamaterial">double negative metamaterial</a>, <a href="https://publications.waset.org/abstracts/search?q=Laguerre-Gaussian%20beam" title=" Laguerre-Gaussian beam"> Laguerre-Gaussian beam</a>, <a href="https://publications.waset.org/abstracts/search?q=Mie%20scattering" title=" Mie scattering"> Mie scattering</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20vortices" title=" optical vortices"> optical vortices</a>, <a href="https://publications.waset.org/abstracts/search?q=photonic%20nanojets" title=" photonic nanojets"> photonic nanojets</a> </p> <a href="https://publications.waset.org/abstracts/80428/non-classical-photonic-nanojets-in-near-field-of-metallic-and-negative-index-scatterers-purely-electric-and-magnetic-nanojets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80428.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Sourcing and Compiling a Maltese Traffic Dataset MalTra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Borg">Gabriele Borg</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20De%20Bono"> Alexei De Bono</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlie%20Abela"> Charlie Abela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Big%20Data" title="Big Data">Big Data</a>, <a href="https://publications.waset.org/abstracts/search?q=vehicular%20traffic" title=" vehicular traffic"> vehicular traffic</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20data%20patterns" title=" mobile data patterns"> mobile data patterns</a> </p> <a href="https://publications.waset.org/abstracts/153117/sourcing-and-compiling-a-maltese-traffic-dataset-maltra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153117.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">114</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gabriele%20Borg">Gabriele Borg</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Debono"> Alexei Debono</a>, <a href="https://publications.waset.org/abstracts/search?q=Charlie%20Abela"> Charlie Abela</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=graph%20neural%20networks" title="graph neural networks">graph neural networks</a>, <a href="https://publications.waset.org/abstracts/search?q=traffic%20management" title=" traffic management"> traffic management</a>, <a href="https://publications.waset.org/abstracts/search?q=big%20data" title=" big data"> big data</a>, <a href="https://publications.waset.org/abstracts/search?q=mobile%20data%20patterns" title=" mobile data patterns"> mobile data patterns</a> </p> <a href="https://publications.waset.org/abstracts/152972/graph-based-traffic-analysis-and-delay-prediction-using-a-custom-built-dataset" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">141</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Nanoderma: Ecofriendly Nano Biofungicides for Controlling Plant Pathogenic Fungi</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kamel%20A.%20Abd-Elsalam">Kamel A. Abd-Elsalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20R.%20Khokhlov"> Alexei R. Khokhlov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Studies on bioefficacy (in vitro and in vivo) and mode of action of the nanocides against the most important plant diseases in Egypt and Russia might assist in the goal of sustainable agriculture. To our knowledge, few researchers have evaluated the combined antimicrobial effect of inorganic nanoparticles (NPs) with bioorganic pesticides for controlling plant pathogens in the greenhouse and open field, decontrol investigated synergistic effect. In the current project, we will develop eco-friendly alternative management strategies including the use of heavy nanometal-tolerant Trichoderma strains and the main effective material in conventional fungicides (curpic, sulfur, phosphorus and zinc) for controlling plant diseases. Studies on bioefficacy and the mechanism of the nanocides against the most important plant diseases in Egypt were evaluated. There is a growing need to establish mechanisms of action for nano bio and/or fungicides to assist the design of new compounds or combinations of compounds, in order to understand resistance mechanisms and to provide a focus for toxicological attention. Nanofungicides represent an emerging technological development that could offer a range of benefits including increased efficacy, durability, and a reduction in the amounts of active ingredients that need to be used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biohybrids" title="biohybrids">biohybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=biocides" title=" biocides"> biocides</a>, <a href="https://publications.waset.org/abstracts/search?q=bioagent" title=" bioagent"> bioagent</a>, <a href="https://publications.waset.org/abstracts/search?q=plant%20pathogenic%20fungi" title=" plant pathogenic fungi"> plant pathogenic fungi</a> </p> <a href="https://publications.waset.org/abstracts/70903/nanoderma-ecofriendly-nano-biofungicides-for-controlling-plant-pathogenic-fungi" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70903.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">257</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Combination Rule for Homonuclear Dipole Dispersion Coefficients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Visentin">Giorgio Visentin</a>, <a href="https://publications.waset.org/abstracts/search?q=Inna%20S.%20Kalinina"> Inna S. Kalinina</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20A.%20Buchachenko"> Alexei A. Buchachenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the ambit of intermolecular interactions, a combination rule is defined as a relation linking a potential parameter for the interaction of two unlike species with the same parameters for interaction pairs of like species. Some of their most exemplificative applications cover the construction of molecular dynamics force fields and dispersion-corrected density functionals. Here, an extended combination rule is proposed, relating the dipole-dipole dispersion coefficients for the interaction of like target species to the same coefficients for the interaction of the target and a set of partner species. The rule can be devised in two different ways, either by uniform discretization of the Casimir-Polder integral on a Gauss-Legendre quadrature or by relating the dynamic polarizabilities of the target and the partner species. Both methods return the same system of linear equations, which requires the knowledge of the dispersion coefficients for interaction between the partner species to be solved. The test examples show a high accuracy for dispersion coefficients (better than 1% in the pristine test for the interaction of Yb atom with rare gases and alkaline-earth metal atoms). In contrast, the rule does not ensure correct monotonic behavior of the dynamic polarizability of the target species. Acknowledgment: The work is supported by Russian Science Foundation grant # 17-13-01466. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=combination%20rule" title="combination rule">combination rule</a>, <a href="https://publications.waset.org/abstracts/search?q=dipole-dipole%20dispersion%20coefficient" title=" dipole-dipole dispersion coefficient"> dipole-dipole dispersion coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=Casimir-Polder%20integral" title=" Casimir-Polder integral"> Casimir-Polder integral</a>, <a href="https://publications.waset.org/abstracts/search?q=Gauss-Legendre%20quadrature" title=" Gauss-Legendre quadrature"> Gauss-Legendre quadrature</a> </p> <a href="https://publications.waset.org/abstracts/130113/combination-rule-for-homonuclear-dipole-dispersion-coefficients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130113.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">185</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> De Novo Design of a Minimal Catalytic Di-Nickel Peptide Capable of Sustained Hydrogen Evolution </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saroj%20Poudel">Saroj Poudel</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Mancini"> Joshua Mancini</a>, <a href="https://publications.waset.org/abstracts/search?q=Douglas%20Pike"> Douglas Pike</a>, <a href="https://publications.waset.org/abstracts/search?q=Jennifer%20Timm"> Jennifer Timm</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Tyryshkin"> Alexei Tyryshkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Nanda"> Vikas Nanda</a>, <a href="https://publications.waset.org/abstracts/search?q=Paul%20Falkowski"> Paul Falkowski</a> </p> <p class="card-text"><strong>Abstract:</strong></p> On the early Earth, protein-metal complexes likely harvested energy from a reduced environment. These complexes would have been precursors to the metabolic enzymes of ancient organisms. Hydrogenase is an essential enzyme in most anaerobic organisms for the reduction and oxidation of hydrogen in the environment and is likely one of the earliest evolved enzymes. To attempt to reinvent a precursor to modern hydrogenase, we computationally designed a short thirteen amino acid peptide that binds the often-required catalytic transition metal Nickel in hydrogenase. This simple complex can achieve hundreds of hydrogen evolution cycles using light energy in a broad range of temperature and pH. Biophysical and structural investigations strongly indicate the peptide forms a di-nickel active site analogous to Acetyl-CoA synthase, an ancient protein central to carbon reduction in the Wood-Ljungdahl pathway and capable of hydrogen evolution. This work demonstrates that prior to the complex evolution of multidomain enzymes, early peptide-metal complexes could have catalyzed energy transfer from the environment on the early Earth and enabled the evolution of modern metabolism <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogenase" title="hydrogenase">hydrogenase</a>, <a href="https://publications.waset.org/abstracts/search?q=prebiotic%20enzyme" title=" prebiotic enzyme"> prebiotic enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=metalloenzyme" title=" metalloenzyme"> metalloenzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=computational%20design" title=" computational design"> computational design</a> </p> <a href="https://publications.waset.org/abstracts/138342/de-novo-design-of-a-minimal-catalytic-di-nickel-peptide-capable-of-sustained-hydrogen-evolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138342.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">222</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Accurate Binding Energy of Ytterbium Dimer from Ab Initio Calculations and Ultracold Photoassociation Spectroscopy</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Giorgio%20Visentin">Giorgio Visentin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20A.%20Buchachenko"> Alexei A. Buchachenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recent proposals to use Yb dimer as an optical clock and as a sensor for non-Newtonian gravity imply the knowledge of its interaction potential. Here, the ground-state Born-Oppenheimer Yb₂ potential energy curve is represented by a semi-analytical function, consisting of short- and long-range contributions. For the former, the systematic ab initio all-electron exact 2-component scalar-relativistic CCSD(T) calculations are carried out. Special care is taken to saturate diffuse basis set component with the atom- and bond-centered primitives and reach the complete basis set limit through n = D, T, Q sequence of the correlation-consistent polarized n-zeta basis sets. Similar approaches are used to the long-range dipole and quadrupole dispersion terms by implementing the CCSD(3) polarization propagator method for dynamic polarizabilities. Dispersion coefficients are then computed through Casimir-Polder integration. The semiclassical constraint on the number of the bound vibrational levels known for the ¹⁷⁴Yb isotope is used to scale the potential function. The scaling, based on the most accurate ab initio results, bounds the interaction energy of two Yb atoms within the narrow 734 ± 4 cm⁻¹ range, in reasonable agreement with the previous ab initio-based estimations. The resulting potentials can be used as the reference for more sophisticated models that go beyond the Born-Oppenheimer approximation and provide the means of their uncertainty estimations. The work is supported by Russian Science Foundation grant # 17-13-01466. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ab%20initio%20coupled%20cluster%20methods" title="ab initio coupled cluster methods">ab initio coupled cluster methods</a>, <a href="https://publications.waset.org/abstracts/search?q=interaction%20potential" title=" interaction potential"> interaction potential</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-analytical%20function" title=" semi-analytical function"> semi-analytical function</a>, <a href="https://publications.waset.org/abstracts/search?q=ytterbium%20dimer" title=" ytterbium dimer"> ytterbium dimer</a> </p> <a href="https://publications.waset.org/abstracts/130115/accurate-binding-energy-of-ytterbium-dimer-from-ab-initio-calculations-and-ultracold-photoassociation-spectroscopy" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">160</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> The Suitability of Agile Practices in Healthcare Industry with Regard to Healthcare Regulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmood%20Alsaadi">Mahmood Alsaadi</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Lisitsa"> Alexei Lisitsa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nowadays, medical devices rely completely on software whether as whole software or as embedded software, therefore, the organization that develops medical device software can benefit from adopting agile practices. Using agile practices in healthcare software development industries would bring benefits such as producing a product of a high-quality with low cost and in short period. However, medical device software development companies faced challenges in adopting agile practices. These due to the gaps that exist between agile practices and the requirements of healthcare regulations such as documentation, traceability, and formality. This research paper will conduct a study to investigate the adoption rate of agile practice in medical device software development, and they will extract and outline the requirements of healthcare regulations such as Food and Drug Administration (FDA), Health Insurance Portability and Accountability Act (HIPAA), and Medical Device Directive (MDD) that affect directly or indirectly on software development life cycle. Moreover, this research paper will evaluate the suitability of using agile practices in healthcare industries by analyzing the most popular agile practices such as eXtream Programming (XP), Scrum, and Feature-Driven Development (FDD) from healthcare industry point of view and in comparison with the requirements of healthcare regulations. Finally, the authors propose an agile mixture model that consists of different practices from different agile methods. As result, the adoption rate of agile practices in healthcare industries still low and agile practices should enhance with regard to requirements of the healthcare regulations in order to be used in healthcare software development organizations. Therefore, the proposed agile mixture model may assist in minimizing the gaps existing between healthcare regulations and agile practices and increase the adoption rate in the healthcare industry. As this research paper part of the ongoing project, an evaluation of agile mixture model will be conducted in the near future. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adoption%20of%20agile" title="adoption of agile">adoption of agile</a>, <a href="https://publications.waset.org/abstracts/search?q=agile%20gaps" title=" agile gaps"> agile gaps</a>, <a href="https://publications.waset.org/abstracts/search?q=agile%20mixture%20model" title=" agile mixture model"> agile mixture model</a>, <a href="https://publications.waset.org/abstracts/search?q=agile%20practices" title=" agile practices"> agile practices</a>, <a href="https://publications.waset.org/abstracts/search?q=healthcare%20regulations" title=" healthcare regulations"> healthcare regulations</a> </p> <a href="https://publications.waset.org/abstracts/94740/the-suitability-of-agile-practices-in-healthcare-industry-with-regard-to-healthcare-regulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/94740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Cyber-Social Networks in Preventing Terrorism: Topological Scope</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alessandra%20Rossodivita">Alessandra Rossodivita</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Tikhomirov"> Alexei Tikhomirov</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Trufanov"> Andrey Trufanov</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikolay%20Kinash"> Nikolay Kinash</a>, <a href="https://publications.waset.org/abstracts/search?q=Olga%20Berestneva"> Olga Berestneva</a>, <a href="https://publications.waset.org/abstracts/search?q=Svetlana%20Nikitina"> Svetlana Nikitina</a>, <a href="https://publications.waset.org/abstracts/search?q=Fabio%20Casati"> Fabio Casati</a>, <a href="https://publications.waset.org/abstracts/search?q=Alessandro%20Visconti"> Alessandro Visconti</a>, <a href="https://publications.waset.org/abstracts/search?q=Tommaso%20Saporito"> Tommaso Saporito </a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is well known that world and national societies are exposed to diverse threats: anthropogenic, technological, and natural. Anthropogenic ones are of greater risks and, thus, attract special interest to researchers within wide spectrum of disciplines in efforts to lower the pertinent risks. Some researchers showed by means of multilayered, complex network models how media promotes the prevention of disease spread. To go further, not only are mass-media sources included in scope the paper suggests but also personificated social bots (socbots) linked according to reflexive theory. The novel scope considers information spread over conscious and unconscious agents while counteracting both natural and man-made threats, i.e., infections and terrorist hazards. Contrary to numerous publications on misinformation disseminated by ‘bad’ bots within social networks, this study focuses on ‘good’ bots, which should be mobilized to counter the former ones. These social bots deployed mixture with real social actors that are engaged in concerted actions at spreading, receiving and analyzing information. All the contemporary complex network platforms (multiplexes, interdependent networks, combined stem networks et al.) are comprised to describe and test socbots activities within competing information sharing tools, namely mass-media hubs, social networks, messengers, and e-mail at all phases of disasters. The scope and concomitant techniques present evidence that embedding such socbots into information sharing process crucially change the network topology of actor interactions. The change might improve or impair robustness of social network environment: it depends on who and how controls the socbots. It is demonstrated that the topological approach elucidates techno-social processes within the field and outline the roadmap to a safer world. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=complex%20network%20platform" title="complex network platform">complex network platform</a>, <a href="https://publications.waset.org/abstracts/search?q=counterterrorism" title=" counterterrorism"> counterterrorism</a>, <a href="https://publications.waset.org/abstracts/search?q=information%20sharing%20topology" title=" information sharing topology"> information sharing topology</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20bots" title=" social bots"> social bots</a> </p> <a href="https://publications.waset.org/abstracts/90971/cyber-social-networks-in-preventing-terrorism-topological-scope" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90971.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">171</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Non-Perturbative Vacuum Polarization Effects in One- and Two-Dimensional Supercritical Dirac-Coulomb System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrey%20Davydov">Andrey Davydov</a>, <a href="https://publications.waset.org/abstracts/search?q=Konstantin%20Sveshnikov"> Konstantin Sveshnikov</a>, <a href="https://publications.waset.org/abstracts/search?q=Yulia%20Voronina"> Yulia Voronina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> There is now a lot of interest to the non-perturbative QED-effects, caused by diving of discrete levels into the negative continuum in the supercritical static or adiabatically slowly varying Coulomb fields, that are created by the localized extended sources with Z > Z_cr. Such effects have attracted a considerable amount of theoretical and experimental activity, since in 3+1 QED for Z > Z_cr,1 ≈ 170 a non-perturbative reconstruction of the vacuum state is predicted, which should be accompanied by a number of nontrivial effects, including the vacuum positron emission. Similar in essence effects should be expected also in both 2+1 D (planar graphene-based hetero-structures) and 1+1 D (one-dimensional ‘hydrogen ion’). This report is devoted to the study of such essentially non-perturbative vacuum effects for the supercritical Dirac-Coulomb systems in 1+1D and 2+1D, with the main attention drawn to the vacuum polarization energy. Although the most of works considers the vacuum charge density as the main polarization observable, vacuum energy turns out to be not less informative and in many respects complementary to the vacuum density. Moreover, the main non-perturbative effects, which appear in vacuum polarization for supercritical fields due to the levels diving into the lower continuum, show up in the behavior of vacuum energy even more clear, demonstrating explicitly their possible role in the supercritical region. Both in 1+1D and 2+1D, we explore firstly the renormalized vacuum density in the supercritical region using the Wichmann-Kroll method. Thereafter, taking into account the results for the vacuum density, we formulate the renormalization procedure for the vacuum energy. To evaluate the latter explicitly, an original technique, based on a special combination of analytical methods, computer algebra tools and numerical calculations, is applied. It is shown that, for a wide range of the external source parameters (the charge Z and size R), in the supercritical region the renormalized vacuum energy could significantly deviate from the perturbative quadratic growth up to pronouncedly decreasing behavior with jumps by (-2 x mc^2), which occur each time, when the next discrete level dives into the negative continuum. In the considered range of variation of Z and R, the vacuum energy behaves like ~ -Z^2/R in 1+1D and ~ -Z^3/R in 2+1D, exceeding deeply negative values. Such behavior confirms the assumption of the neutral vacuum transmutation into the charged one, and thereby of the spontaneous positron emission, accompanying the emergence of the next vacuum shell due to the total charge conservation. To the end, we also note that the methods, developed for the vacuum energy evaluation in 2+1 D, with minimal complements could be carried over to the three-dimensional case, where the vacuum energy is expected to be ~ -Z^4/R and so could be competitive with the classical electrostatic energy of the Coulomb source. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=non-perturbative%20QED-e%EF%AC%80ects" title="non-perturbative QED-effects">non-perturbative QED-effects</a>, <a href="https://publications.waset.org/abstracts/search?q=one-%20and%20two-dimensional%20Dirac-Coulomb%20systems" title=" one- and two-dimensional Dirac-Coulomb systems"> one- and two-dimensional Dirac-Coulomb systems</a>, <a href="https://publications.waset.org/abstracts/search?q=supercritical%20%EF%AC%81elds" title=" supercritical fields"> supercritical fields</a>, <a href="https://publications.waset.org/abstracts/search?q=vacuum%20polarization" title=" vacuum polarization"> vacuum polarization</a> </p> <a href="https://publications.waset.org/abstracts/82860/non-perturbative-vacuum-polarization-effects-in-one-and-two-dimensional-supercritical-dirac-coulomb-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/82860.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Phenomena-Based Approach for Automated Generation of Process Options and Process Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Parminder%20Kaur%20Heer">Parminder Kaur Heer</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Lapkin"> Alexei Lapkin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to global challenges of increased competition and demand for more sustainable products/processes, there is a rising pressure on the industry to develop innovative processes. Through Process Intensification (PI) the existing and new processes may be able to attain higher efficiency. However, very few PI options are generally considered. This is because processes are typically analysed at a unit operation level, thus limiting the search space for potential process options. PI performed at more detailed levels of a process can increase the size of the search space. The different levels at which PI can be achieved is unit operations, functional and phenomena level. Physical/chemical phenomena form the lowest level of aggregation and thus, are expected to give the highest impact because all the intensification options can be described by their enhancement. The objective of the current work is thus, generation of numerous process alternatives based on phenomena, and development of their corresponding computer aided models. The methodology comprises: a) automated generation of process options, and b) automated generation of process models. The process under investigation is disintegrated into functions viz. reaction, separation etc., and these functions are further broken down into the phenomena required to perform them. E.g., separation may be performed via vapour-liquid or liquid-liquid equilibrium. A list of phenomena for the process is formed and new phenomena, which can overcome the difficulties/drawbacks of the current process or can enhance the effectiveness of the process, are added to the list. For instance, catalyst separation issue can be handled by using solid catalysts; the corresponding phenomena are identified and added. The phenomena are then combined to generate all possible combinations. However, not all combinations make sense and, hence, screening is carried out to discard the combinations that are meaningless. For example, phase change phenomena need the co-presence of the energy transfer phenomena. Feasible combinations of phenomena are then assigned to the functions they execute. A combination may accomplish a single or multiple functions, i.e. it might perform reaction or reaction with separation. The combinations are then allotted to the functions needed for the process. This creates a series of options for carrying out each function. Combination of these options for different functions in the process leads to the generation of superstructure of process options. These process options, which are formed by a list of phenomena for each function, are passed to the model generation algorithm in the form of binaries (1, 0). The algorithm gathers the active phenomena and couples them to generate the model. A series of models is generated for the functions, which are combined to get the process model. The most promising process options are then chosen subjected to a performance criterion, for example purity of product, or via a multi-objective Pareto optimisation. The methodology was applied to a two-step process and the best route was determined based on the higher product yield. The current methodology can identify, produce and evaluate process intensification options from which the optimal process can be determined. It can be applied to any chemical/biochemical process because of its generic nature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Phenomena" title="Phenomena">Phenomena</a>, <a href="https://publications.waset.org/abstracts/search?q=Process%20intensification" title=" Process intensification"> Process intensification</a>, <a href="https://publications.waset.org/abstracts/search?q=Process%20models" title=" Process models "> Process models </a>, <a href="https://publications.waset.org/abstracts/search?q=Process%20options" title=" Process options"> Process options</a> </p> <a href="https://publications.waset.org/abstracts/57202/phenomena-based-approach-for-automated-generation-of-process-options-and-process-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/57202.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Decoding Kinematic Characteristics of Finger Movement from Electrocorticography Using Classical Methods and Deep Convolutional Neural Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20Volkova">Ksenia Volkova</a>, <a href="https://publications.waset.org/abstracts/search?q=Artur%20Petrosyan"> Artur Petrosyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Ignatii%20Dubyshkin"> Ignatii Dubyshkin</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Ossadtchi"> Alexei Ossadtchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Brain-computer interfaces are a growing research field producing many implementations that find use in different fields and are used for research and practical purposes. Despite the popularity of the implementations using non-invasive neuroimaging methods, radical improvement of the state channel bandwidth and, thus, decoding accuracy is only possible by using invasive techniques. Electrocorticography (ECoG) is a minimally invasive neuroimaging method that provides highly informative brain activity signals, effective analysis of which requires the use of machine learning methods that are able to learn representations of complex patterns. Deep learning is a family of machine learning algorithms that allow learning representations of data with multiple levels of abstraction. This study explores the potential of deep learning approaches for ECoG processing, decoding movement intentions and the perception of proprioceptive information. To obtain synchronous recording of kinematic movement characteristics and corresponding electrical brain activity, a series of experiments were carried out, during which subjects performed finger movements at their own pace. Finger movements were recorded with a three-axis accelerometer, while ECoG was synchronously registered from the electrode strips that were implanted over the contralateral sensorimotor cortex. Then, multichannel ECoG signals were used to track finger movement trajectory characterized by accelerometer signal. This process was carried out both causally and non-causally, using different position of the ECoG data segment with respect to the accelerometer data stream. The recorded data was split into training and testing sets, containing continuous non-overlapping fragments of the multichannel ECoG. A deep convolutional neural network was implemented and trained, using 1-second segments of ECoG data from the training dataset as input. To assess the decoding accuracy, correlation coefficient r between the output of the model and the accelerometer readings was computed. After optimization of hyperparameters and training, the deep learning model allowed reasonably accurate causal decoding of finger movement with correlation coefficient r = 0.8. In contrast, the classical Wiener-filter like approach was able to achieve only 0.56 in the causal decoding mode. In the noncausal case, the traditional approach reached the accuracy of r = 0.69, which may be due to the presence of additional proprioceptive information. This result demonstrates that the deep neural network was able to effectively find a representation of the complex top-down information related to the actual movement rather than proprioception. The sensitivity analysis shows physiologically plausible pictures of the extent to which individual features (channel, wavelet subband) are utilized during the decoding procedure. In conclusion, the results of this study have demonstrated that a combination of a minimally invasive neuroimaging technique such as ECoG and advanced machine learning approaches allows decoding motion with high accuracy. Such setup provides means for control of devices with a large number of degrees of freedom as well as exploratory studies of the complex neural processes underlying movement execution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=brain-computer%20interface" title="brain-computer interface">brain-computer interface</a>, <a href="https://publications.waset.org/abstracts/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/abstracts/search?q=ECoG" title=" ECoG"> ECoG</a>, <a href="https://publications.waset.org/abstracts/search?q=movement%20decoding" title=" movement decoding"> movement decoding</a>, <a href="https://publications.waset.org/abstracts/search?q=sensorimotor%20cortex" title=" sensorimotor cortex"> sensorimotor cortex</a> </p> <a href="https://publications.waset.org/abstracts/88212/decoding-kinematic-characteristics-of-finger-movement-from-electrocorticography-using-classical-methods-and-deep-convolutional-neural-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88212.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Application of Flow Cytometry for Detection of Influence of Abiotic Stress on Plants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dace%20Grauda">Dace Grauda</a>, <a href="https://publications.waset.org/abstracts/search?q=Inta%20Belogrudova"> Inta Belogrudova</a>, <a href="https://publications.waset.org/abstracts/search?q=Alexei%20Katashev"> Alexei Katashev</a>, <a href="https://publications.waset.org/abstracts/search?q=Linda%20Lancere"> Linda Lancere</a>, <a href="https://publications.waset.org/abstracts/search?q=Isaak%20Rashal"> Isaak Rashal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goal of study was the elaboration of easy applicable flow cytometry method for detection of influence of abiotic stress factors on plants, which could be useful for detection of environmental stresses in urban areas. The lime tree Tillia vulgaris H. is a popular tree species used for urban landscaping in Europe and is one of the main species of street greenery in Riga, Latvia. Tree decline and low vitality has observed in the central part of Riga. For this reason lime trees were select as a model object for the investigation. During the period of end of June and beginning of July 12 samples from different urban environment locations as well as plant material from a greenhouse were collected. BD FACSJazz® cell sorter (BD Biosciences, USA) with flow cytometer function was used to test viability of plant cells. The method was based on changes of relative fluorescence intensity of cells in blue laser (488 nm) after influence of stress factors. SpheroTM rainbow calibration particles (3.0–3.4 μm, BD Biosciences, USA) in phosphate buffered saline (PBS) were used for calibration of flow cytometer. BD PharmingenTM PBS (BD Biosciences, USA) was used for flow cytometry assays. The mean fluorescence intensity information from the purified cell suspension samples was recorded. Preliminary, multiple gate sizes and shapes were tested to find one with the lowest CV. It was found that low CV can be obtained if only the densest part of plant cells forward scatter/side scatter profile is analysed because in this case plant cells are most similar in size and shape. The young pollen cells in one nucleus stage were found as the best for detection of influence of abiotic stress. For experiments only fresh plant material was used– the buds of Tillia vulgaris with diameter 2 mm. For the cell suspension (in vitro culture) establishment modified protocol of microspore culture was applied. The cells were suspended in the MS (Murashige and Skoog) medium. For imitation of dust of urban area SiO2 nanoparticles with concentration 0.001 g/ml were dissolved in distilled water. Into 10 ml of cell suspension 1 ml of SiO2 nanoparticles suspension was added, then cells were incubated in speed shaking regime for 1 and 3 hours. As a stress factor the irradiation of cells for 20 min by UV was used (Hamamatsu light source L9566-02A, L10852 lamp, A10014-50-0110), maximum relative intensity (100%) at 365 nm and at ~310 nm (75%). Before UV irradiation the suspension of cells were placed onto a thin layer on a filter paper disk (diameter 45 mm) in a Petri dish with solid MS media. Cells without treatment were used as a control. Experiments were performed at room temperature (23-25 °C). Using flow cytometer BS FACS Software cells plot was created to determine the densest part, which was later gated using oval-shaped gate. Gate included from 95 to 99% of all cells. To determine relative fluorescence of cells logarithmic fluorescence scale in arbitrary fluorescence units were used. 3x103 gated cells were analysed from the each sample. The significant differences were found among relative fluorescence of cells from different trees after treatment with SiO2 nanoparticles and UV irradiation in comparison with the control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=flow%20cytometry" title="flow cytometry">flow cytometry</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescence" title=" fluorescence"> fluorescence</a>, <a href="https://publications.waset.org/abstracts/search?q=SiO2%20nanoparticles" title=" SiO2 nanoparticles"> SiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20irradiation" title=" UV irradiation "> UV irradiation </a> </p> <a href="https://publications.waset.org/abstracts/20319/application-of-flow-cytometry-for-detection-of-influence-of-abiotic-stress-on-plants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20319.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">417</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2025 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10