CINXE.COM

Poisson's ratio - Wikipedia

<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Poisson's ratio - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"80bd5d46-238d-4df5-aab2-4d381ef6b9e2","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Poisson's_ratio","wgTitle":"Poisson's ratio","wgCurRevisionId":1257135598,"wgRevisionId":1257135598,"wgArticleId":241223,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["All articles with incomplete citations","Articles with incomplete citations from April 2024","Wikipedia articles needing page number citations from April 2024","CS1 maint: multiple names: authors list","Webarchive template wayback links","Articles with short description","Short description is different from Wikidata","All articles with unsourced statements","Articles with unsourced statements from August 2024","Articles with unsourced statements from October 2012", "Elasticity (physics)","Mechanical quantities","Dimensionless numbers","Materials science","Ratios","Solid mechanics"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Poisson's_ratio","wgRelevantArticleId":241223,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":30000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage", "wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q190453","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready","site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.tablesorter.styles":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready", "ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.tablesorter","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents","ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cjquery.tablesorter.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&amp;only=styles&amp;skin=vector-2022"> <script async="" src="/w/load.php?lang=en&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&amp;modules=site.styles&amp;only=styles&amp;skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/Poisson_ratio_compression_example.svg/1200px-Poisson_ratio_compression_example.svg.png"> <meta property="og:image:width" content="1200"> <meta property="og:image:height" content="1613"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/Poisson_ratio_compression_example.svg/800px-Poisson_ratio_compression_example.svg.png"> <meta property="og:image:width" content="800"> <meta property="og:image:height" content="1075"> <meta property="og:image" content="https://upload.wikimedia.org/wikipedia/commons/thumb/6/67/Poisson_ratio_compression_example.svg/640px-Poisson_ratio_compression_example.svg.png"> <meta property="og:image:width" content="640"> <meta property="og:image:height" content="860"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Poisson&#039;s ratio - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Poisson%27s_ratio"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Poisson%27s_ratio"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&amp;feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Poisson_s_ratio rootpage-Poisson_s_ratio skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page&#039;s font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&amp;returnto=Poisson%27s+ratio" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&amp;returnto=Poisson%27s+ratio" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&amp;utm_medium=sidebar&amp;utm_campaign=C13_en.wikipedia.org&amp;uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&amp;returnto=Poisson%27s+ratio" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&amp;returnto=Poisson%27s+ratio" title="You&#039;re encouraged to log in; however, it&#039;s not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-Origin" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Origin"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>Origin</span> </div> </a> <ul id="toc-Origin-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Poisson&#039;s_ratio_from_geometry_changes" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Poisson&#039;s_ratio_from_geometry_changes"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Poisson's ratio from geometry changes</span> </div> </a> <button aria-controls="toc-Poisson&#039;s_ratio_from_geometry_changes-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Poisson's ratio from geometry changes subsection</span> </button> <ul id="toc-Poisson&#039;s_ratio_from_geometry_changes-sublist" class="vector-toc-list"> <li id="toc-Length_change" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Length_change"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.1</span> <span>Length change</span> </div> </a> <ul id="toc-Length_change-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Volumetric_change" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Volumetric_change"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.2</span> <span>Volumetric change</span> </div> </a> <ul id="toc-Volumetric_change-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Width_change" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Width_change"> <div class="vector-toc-text"> <span class="vector-toc-numb">2.3</span> <span>Width change</span> </div> </a> <ul id="toc-Width_change-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Characteristic_materials" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Characteristic_materials"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Characteristic materials</span> </div> </a> <button aria-controls="toc-Characteristic_materials-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Characteristic materials subsection</span> </button> <ul id="toc-Characteristic_materials-sublist" class="vector-toc-list"> <li id="toc-Isotropic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Isotropic"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.1</span> <span>Isotropic</span> </div> </a> <ul id="toc-Isotropic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Anisotropic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Anisotropic"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.2</span> <span>Anisotropic</span> </div> </a> <ul id="toc-Anisotropic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Orthotropic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Orthotropic"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.3</span> <span>Orthotropic</span> </div> </a> <ul id="toc-Orthotropic-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Transversely_isotropic" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Transversely_isotropic"> <div class="vector-toc-text"> <span class="vector-toc-numb">3.4</span> <span>Transversely isotropic</span> </div> </a> <ul id="toc-Transversely_isotropic-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Poisson&#039;s_ratio_values_for_different_materials" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Poisson&#039;s_ratio_values_for_different_materials"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>Poisson's ratio values for different materials</span> </div> </a> <button aria-controls="toc-Poisson&#039;s_ratio_values_for_different_materials-sublist" class="cdx-button cdx-button--weight-quiet cdx-button--icon-only vector-toc-toggle"> <span class="vector-icon mw-ui-icon-wikimedia-expand"></span> <span>Toggle Poisson's ratio values for different materials subsection</span> </button> <ul id="toc-Poisson&#039;s_ratio_values_for_different_materials-sublist" class="vector-toc-list"> <li id="toc-Negative_Poisson&#039;s_ratio_materials" class="vector-toc-list-item vector-toc-level-2"> <a class="vector-toc-link" href="#Negative_Poisson&#039;s_ratio_materials"> <div class="vector-toc-text"> <span class="vector-toc-numb">4.1</span> <span>Negative Poisson's ratio materials</span> </div> </a> <ul id="toc-Negative_Poisson&#039;s_ratio_materials-sublist" class="vector-toc-list"> </ul> </li> </ul> </li> <li id="toc-Poisson_function" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Poisson_function"> <div class="vector-toc-text"> <span class="vector-toc-numb">5</span> <span>Poisson function</span> </div> </a> <ul id="toc-Poisson_function-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Applications_of_Poisson&#039;s_effect" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Applications_of_Poisson&#039;s_effect"> <div class="vector-toc-text"> <span class="vector-toc-numb">6</span> <span>Applications of Poisson's effect</span> </div> </a> <ul id="toc-Applications_of_Poisson&#039;s_effect-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-See_also" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#See_also"> <div class="vector-toc-text"> <span class="vector-toc-numb">7</span> <span>See also</span> </div> </a> <ul id="toc-See_also-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">8</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-External_links" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#External_links"> <div class="vector-toc-text"> <span class="vector-toc-numb">9</span> <span>External links</span> </div> </a> <ul id="toc-External_links-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Poisson's ratio</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 56 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-56" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">56 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-af mw-list-item"><a href="https://af.wikipedia.org/wiki/Poisson_se_verhouding" title="Poisson se verhouding – Afrikaans" lang="af" hreflang="af" data-title="Poisson se verhouding" data-language-autonym="Afrikaans" data-language-local-name="Afrikaans" class="interlanguage-link-target"><span>Afrikaans</span></a></li><li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D9%86%D8%B3%D8%A8%D8%A9_%D8%A8%D9%88%D8%A7%D8%B3%D9%88%D9%86" title="نسبة بواسون – Arabic" lang="ar" hreflang="ar" data-title="نسبة بواسون" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-as mw-list-item"><a href="https://as.wikipedia.org/wiki/%E0%A6%AA%E0%A6%AF%E0%A6%BC%E0%A6%9B%E0%A6%A8%E0%A7%B0_%E0%A6%85%E0%A6%A8%E0%A7%81%E0%A6%AA%E0%A6%BE%E0%A6%A4" title="পয়ছনৰ অনুপাত – Assamese" lang="as" hreflang="as" data-title="পয়ছনৰ অনুপাত" data-language-autonym="অসমীয়া" data-language-local-name="Assamese" class="interlanguage-link-target"><span>অসমীয়া</span></a></li><li class="interlanguage-link interwiki-ast mw-list-item"><a href="https://ast.wikipedia.org/wiki/Coeficiente_de_Poisson" title="Coeficiente de Poisson – Asturian" lang="ast" hreflang="ast" data-title="Coeficiente de Poisson" data-language-autonym="Asturianu" data-language-local-name="Asturian" class="interlanguage-link-target"><span>Asturianu</span></a></li><li class="interlanguage-link interwiki-bn mw-list-item"><a href="https://bn.wikipedia.org/wiki/%E0%A6%AA%E0%A6%AF%E0%A6%BC%E0%A6%B8%E0%A6%A8%E0%A7%87%E0%A6%B0_%E0%A6%85%E0%A6%A8%E0%A7%81%E0%A6%AA%E0%A6%BE%E0%A6%A4" title="পয়সনের অনুপাত – Bangla" lang="bn" hreflang="bn" data-title="পয়সনের অনুপাত" data-language-autonym="বাংলা" data-language-local-name="Bangla" class="interlanguage-link-target"><span>বাংলা</span></a></li><li class="interlanguage-link interwiki-be mw-list-item"><a href="https://be.wikipedia.org/wiki/%D0%9A%D0%B0%D1%8D%D1%84%D1%96%D1%86%D1%8B%D0%B5%D0%BD%D1%82_%D0%9F%D1%83%D0%B0%D1%81%D0%BE%D0%BD%D0%B0" title="Каэфіцыент Пуасона – Belarusian" lang="be" hreflang="be" data-title="Каэфіцыент Пуасона" data-language-autonym="Беларуская" data-language-local-name="Belarusian" class="interlanguage-link-target"><span>Беларуская</span></a></li><li class="interlanguage-link interwiki-be-x-old mw-list-item"><a href="https://be-tarask.wikipedia.org/wiki/%D0%9A%D0%B0%D1%8D%D1%84%D1%96%D1%86%D1%8B%D0%B5%D0%BD%D1%82_%D0%9F%D1%83%D0%B0%D1%81%D0%BE%D0%BD%D0%B0" title="Каэфіцыент Пуасона – Belarusian (Taraškievica orthography)" lang="be-tarask" hreflang="be-tarask" data-title="Каэфіцыент Пуасона" data-language-autonym="Беларуская (тарашкевіца)" data-language-local-name="Belarusian (Taraškievica orthography)" class="interlanguage-link-target"><span>Беларуская (тарашкевіца)</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B5%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%BD%D0%B0_%D0%9F%D0%BE%D0%B0%D1%81%D0%BE%D0%BD" title="Коефициент на Поасон – Bulgarian" lang="bg" hreflang="bg" data-title="Коефициент на Поасон" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-bar mw-list-item"><a href="https://bar.wikipedia.org/wiki/Queakauntroktiaunszoih" title="Queakauntroktiaunszoih – Bavarian" lang="bar" hreflang="bar" data-title="Queakauntroktiaunszoih" data-language-autonym="Boarisch" data-language-local-name="Bavarian" class="interlanguage-link-target"><span>Boarisch</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Coeficient_de_Poisson" title="Coeficient de Poisson – Catalan" lang="ca" hreflang="ca" data-title="Coeficient de Poisson" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://cs.wikipedia.org/wiki/Poissonova_konstanta_(mechanika)" title="Poissonova konstanta (mechanika) – Czech" lang="cs" hreflang="cs" data-title="Poissonova konstanta (mechanika)" data-language-autonym="Čeština" data-language-local-name="Czech" class="interlanguage-link-target"><span>Čeština</span></a></li><li class="interlanguage-link interwiki-da mw-list-item"><a href="https://da.wikipedia.org/wiki/Poissons_forhold" title="Poissons forhold – Danish" lang="da" hreflang="da" data-title="Poissons forhold" data-language-autonym="Dansk" data-language-local-name="Danish" class="interlanguage-link-target"><span>Dansk</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Poissonzahl" title="Poissonzahl – German" lang="de" hreflang="de" data-title="Poissonzahl" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-et mw-list-item"><a href="https://et.wikipedia.org/wiki/Poissoni_tegur" title="Poissoni tegur – Estonian" lang="et" hreflang="et" data-title="Poissoni tegur" data-language-autonym="Eesti" data-language-local-name="Estonian" class="interlanguage-link-target"><span>Eesti</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/Coeficiente_de_Poisson" title="Coeficiente de Poisson – Spanish" lang="es" hreflang="es" data-title="Coeficiente de Poisson" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-eo mw-list-item"><a href="https://eo.wikipedia.org/wiki/Rilatumo_de_Poisson" title="Rilatumo de Poisson – Esperanto" lang="eo" hreflang="eo" data-title="Rilatumo de Poisson" data-language-autonym="Esperanto" data-language-local-name="Esperanto" class="interlanguage-link-target"><span>Esperanto</span></a></li><li class="interlanguage-link interwiki-eu mw-list-item"><a href="https://eu.wikipedia.org/wiki/Poissonen_koefiziente" title="Poissonen koefiziente – Basque" lang="eu" hreflang="eu" data-title="Poissonen koefiziente" data-language-autonym="Euskara" data-language-local-name="Basque" class="interlanguage-link-target"><span>Euskara</span></a></li><li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://fa.wikipedia.org/wiki/%D9%86%D8%B3%D8%A8%D8%AA_%D9%BE%D9%88%D8%A7%D8%B3%D9%88%D9%86" title="نسبت پواسون – Persian" lang="fa" hreflang="fa" data-title="نسبت پواسون" data-language-autonym="فارسی" data-language-local-name="Persian" class="interlanguage-link-target"><span>فارسی</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Coefficient_de_Poisson" title="Coefficient de Poisson – French" lang="fr" hreflang="fr" data-title="Coefficient de Poisson" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-ga mw-list-item"><a href="https://ga.wikipedia.org/wiki/C%C3%B3imheas_Poisson" title="Cóimheas Poisson – Irish" lang="ga" hreflang="ga" data-title="Cóimheas Poisson" data-language-autonym="Gaeilge" data-language-local-name="Irish" class="interlanguage-link-target"><span>Gaeilge</span></a></li><li class="interlanguage-link interwiki-gl mw-list-item"><a href="https://gl.wikipedia.org/wiki/Coeficiente_de_Poisson" title="Coeficiente de Poisson – Galician" lang="gl" hreflang="gl" data-title="Coeficiente de Poisson" data-language-autonym="Galego" data-language-local-name="Galician" class="interlanguage-link-target"><span>Galego</span></a></li><li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://ko.wikipedia.org/wiki/%ED%91%B8%EC%95%84%EC%86%A1_%EB%B9%84" title="푸아송 비 – Korean" lang="ko" hreflang="ko" data-title="푸아송 비" data-language-autonym="한국어" data-language-local-name="Korean" class="interlanguage-link-target"><span>한국어</span></a></li><li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://hy.wikipedia.org/wiki/%D5%8A%D5%B8%D6%82%D5%A1%D5%BD%D5%B8%D5%B6%D5%AB_%D5%A3%D5%B8%D6%80%D5%AE%D5%A1%D5%AF%D5%AB%D6%81" title="Պուասոնի գործակից – Armenian" lang="hy" hreflang="hy" data-title="Պուասոնի գործակից" data-language-autonym="Հայերեն" data-language-local-name="Armenian" class="interlanguage-link-target"><span>Հայերեն</span></a></li><li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://hi.wikipedia.org/wiki/%E0%A4%AA%E0%A5%8D%E0%A4%B5%E0%A4%BE%E0%A4%B8%E0%A5%8B%E0%A4%82_%E0%A4%85%E0%A4%A8%E0%A5%81%E0%A4%AA%E0%A4%BE%E0%A4%A4" title="प्वासों अनुपात – Hindi" lang="hi" hreflang="hi" data-title="प्वासों अनुपात" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li><li class="interlanguage-link interwiki-hr mw-list-item"><a href="https://hr.wikipedia.org/wiki/Poissonov_omjer" title="Poissonov omjer – Croatian" lang="hr" hreflang="hr" data-title="Poissonov omjer" data-language-autonym="Hrvatski" data-language-local-name="Croatian" class="interlanguage-link-target"><span>Hrvatski</span></a></li><li class="interlanguage-link interwiki-id mw-list-item"><a href="https://id.wikipedia.org/wiki/Rasio_Poisson" title="Rasio Poisson – Indonesian" lang="id" hreflang="id" data-title="Rasio Poisson" data-language-autonym="Bahasa Indonesia" data-language-local-name="Indonesian" class="interlanguage-link-target"><span>Bahasa Indonesia</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Coefficiente_di_Poisson" title="Coefficiente di Poisson – Italian" lang="it" hreflang="it" data-title="Coefficiente di Poisson" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-he mw-list-item"><a href="https://he.wikipedia.org/wiki/%D7%9E%D7%A7%D7%93%D7%9D_%D7%A4%D7%95%D7%90%D7%A1%D7%95%D7%9F" title="מקדם פואסון – Hebrew" lang="he" hreflang="he" data-title="מקדם פואסון" data-language-autonym="עברית" data-language-local-name="Hebrew" class="interlanguage-link-target"><span>עברית</span></a></li><li class="interlanguage-link interwiki-ka mw-list-item"><a href="https://ka.wikipedia.org/wiki/%E1%83%9E%E1%83%A3%E1%83%90%E1%83%A1%E1%83%9D%E1%83%9C%E1%83%98%E1%83%A1_%E1%83%99%E1%83%9D%E1%83%94%E1%83%A4%E1%83%98%E1%83%AA%E1%83%98%E1%83%94%E1%83%9C%E1%83%A2%E1%83%98" title="პუასონის კოეფიციენტი – Georgian" lang="ka" hreflang="ka" data-title="პუასონის კოეფიციენტი" data-language-autonym="ქართული" data-language-local-name="Georgian" class="interlanguage-link-target"><span>ქართული</span></a></li><li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://kk.wikipedia.org/wiki/%D0%9F%D1%83%D0%B0%D1%81%D1%81%D0%BE%D0%BD_%D0%BA%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82%D1%96" title="Пуассон коэффициенті – Kazakh" lang="kk" hreflang="kk" data-title="Пуассон коэффициенті" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li><li class="interlanguage-link interwiki-lt mw-list-item"><a href="https://lt.wikipedia.org/wiki/Puasono_santykis" title="Puasono santykis – Lithuanian" lang="lt" hreflang="lt" data-title="Puasono santykis" data-language-autonym="Lietuvių" data-language-local-name="Lithuanian" class="interlanguage-link-target"><span>Lietuvių</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/Poisson-t%C3%A9nyez%C5%91" title="Poisson-tényező – Hungarian" lang="hu" hreflang="hu" data-title="Poisson-tényező" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ml mw-list-item"><a href="https://ml.wikipedia.org/wiki/%E0%B4%AA%E0%B5%8B%E0%B4%AF%E0%B5%8D%E0%B4%B8%E0%B5%BA_%E0%B4%85%E0%B4%A8%E0%B5%81%E0%B4%AA%E0%B4%BE%E0%B4%A4%E0%B4%82" title="പോയ്സൺ അനുപാതം – Malayalam" lang="ml" hreflang="ml" data-title="പോയ്സൺ അനുപാതം" data-language-autonym="മലയാളം" data-language-local-name="Malayalam" class="interlanguage-link-target"><span>മലയാളം</span></a></li><li class="interlanguage-link interwiki-ms mw-list-item"><a href="https://ms.wikipedia.org/wiki/Nisbah_Poisson" title="Nisbah Poisson – Malay" lang="ms" hreflang="ms" data-title="Nisbah Poisson" data-language-autonym="Bahasa Melayu" data-language-local-name="Malay" class="interlanguage-link-target"><span>Bahasa Melayu</span></a></li><li class="interlanguage-link interwiki-nl mw-list-item"><a href="https://nl.wikipedia.org/wiki/Poisson-factor" title="Poisson-factor – Dutch" lang="nl" hreflang="nl" data-title="Poisson-factor" data-language-autonym="Nederlands" data-language-local-name="Dutch" class="interlanguage-link-target"><span>Nederlands</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E3%83%9D%E3%82%A2%E3%82%BD%E3%83%B3%E6%AF%94" title="ポアソン比 – Japanese" lang="ja" hreflang="ja" data-title="ポアソン比" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://nn.wikipedia.org/wiki/Poissontalet" title="Poissontalet – Norwegian Nynorsk" lang="nn" hreflang="nn" data-title="Poissontalet" data-language-autonym="Norsk nynorsk" data-language-local-name="Norwegian Nynorsk" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li><li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://pl.wikipedia.org/wiki/Liczba_Poissona" title="Liczba Poissona – Polish" lang="pl" hreflang="pl" data-title="Liczba Poissona" data-language-autonym="Polski" data-language-local-name="Polish" class="interlanguage-link-target"><span>Polski</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/Coeficiente_de_Poisson" title="Coeficiente de Poisson – Portuguese" lang="pt" hreflang="pt" data-title="Coeficiente de Poisson" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Coeficientul_lui_Poisson" title="Coeficientul lui Poisson – Romanian" lang="ro" hreflang="ro" data-title="Coeficientul lui Poisson" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9A%D0%BE%D1%8D%D1%84%D1%84%D0%B8%D1%86%D0%B8%D0%B5%D0%BD%D1%82_%D0%9F%D1%83%D0%B0%D1%81%D1%81%D0%BE%D0%BD%D0%B0" title="Коэффициент Пуассона – Russian" lang="ru" hreflang="ru" data-title="Коэффициент Пуассона" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-simple mw-list-item"><a href="https://simple.wikipedia.org/wiki/Poisson%27s_ratio" title="Poisson&#039;s ratio – Simple English" lang="en-simple" hreflang="en-simple" data-title="Poisson&#039;s ratio" data-language-autonym="Simple English" data-language-local-name="Simple English" class="interlanguage-link-target"><span>Simple English</span></a></li><li class="interlanguage-link interwiki-sk mw-list-item"><a href="https://sk.wikipedia.org/wiki/Poissonova_kon%C5%A1tanta_(mechanika)" title="Poissonova konštanta (mechanika) – Slovak" lang="sk" hreflang="sk" data-title="Poissonova konštanta (mechanika)" data-language-autonym="Slovenčina" data-language-local-name="Slovak" class="interlanguage-link-target"><span>Slovenčina</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Poissonovo_%C5%A1tevilo" title="Poissonovo število – Slovenian" lang="sl" hreflang="sl" data-title="Poissonovo število" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://sr.wikipedia.org/wiki/Poasonov_odnos" title="Poasonov odnos – Serbian" lang="sr" hreflang="sr" data-title="Poasonov odnos" data-language-autonym="Српски / srpski" data-language-local-name="Serbian" class="interlanguage-link-target"><span>Српски / srpski</span></a></li><li class="interlanguage-link interwiki-sh mw-list-item"><a href="https://sh.wikipedia.org/wiki/Poissonov_omjer" title="Poissonov omjer – Serbo-Croatian" lang="sh" hreflang="sh" data-title="Poissonov omjer" data-language-autonym="Srpskohrvatski / српскохрватски" data-language-local-name="Serbo-Croatian" class="interlanguage-link-target"><span>Srpskohrvatski / српскохрватски</span></a></li><li class="interlanguage-link interwiki-fi mw-list-item"><a href="https://fi.wikipedia.org/wiki/Poissonin_suhde" title="Poissonin suhde – Finnish" lang="fi" hreflang="fi" data-title="Poissonin suhde" data-language-autonym="Suomi" data-language-local-name="Finnish" class="interlanguage-link-target"><span>Suomi</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Poissons_konstant" title="Poissons konstant – Swedish" lang="sv" hreflang="sv" data-title="Poissons konstant" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%AA%E0%AE%BE%E0%AE%AF%E0%AF%8D%E0%AE%9A%E0%AE%BE%E0%AE%A9%E0%AF%8D_%E0%AE%B5%E0%AE%BF%E0%AE%95%E0%AE%BF%E0%AE%A4%E0%AE%AE%E0%AF%8D" title="பாய்சான் விகிதம் – Tamil" lang="ta" hreflang="ta" data-title="பாய்சான் விகிதம்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-th mw-list-item"><a href="https://th.wikipedia.org/wiki/%E0%B8%AD%E0%B8%B1%E0%B8%95%E0%B8%A3%E0%B8%B2%E0%B8%AA%E0%B9%88%E0%B8%A7%E0%B8%99%E0%B8%9B%E0%B8%B1%E0%B8%A7%E0%B8%8B%E0%B8%87" title="อัตราส่วนปัวซง – Thai" lang="th" hreflang="th" data-title="อัตราส่วนปัวซง" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li><li class="interlanguage-link interwiki-tr mw-list-item"><a href="https://tr.wikipedia.org/wiki/Poisson_oran%C4%B1" title="Poisson oranı – Turkish" lang="tr" hreflang="tr" data-title="Poisson oranı" data-language-autonym="Türkçe" data-language-local-name="Turkish" class="interlanguage-link-target"><span>Türkçe</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9A%D0%BE%D0%B5%D1%84%D1%96%D1%86%D1%96%D1%94%D0%BD%D1%82_%D0%9F%D1%83%D0%B0%D1%81%D1%81%D0%BE%D0%BD%D0%B0" title="Коефіцієнт Пуассона – Ukrainian" lang="uk" hreflang="uk" data-title="Коефіцієнт Пуассона" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-vi mw-list-item"><a href="https://vi.wikipedia.org/wiki/H%E1%BB%87_s%E1%BB%91_Poisson" title="Hệ số Poisson – Vietnamese" lang="vi" hreflang="vi" data-title="Hệ số Poisson" data-language-autonym="Tiếng Việt" data-language-local-name="Vietnamese" class="interlanguage-link-target"><span>Tiếng Việt</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%B3%8A%E6%9D%BE%E6%AF%94" title="泊松比 – Wu" lang="wuu" hreflang="wuu" data-title="泊松比" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://zh-yue.wikipedia.org/wiki/%E8%92%B2%E6%9D%BE%E6%B0%8F%E6%AF%94" title="蒲松氏比 – Cantonese" lang="yue" hreflang="yue" data-title="蒲松氏比" data-language-autonym="粵語" data-language-local-name="Cantonese" class="interlanguage-link-target"><span>粵語</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%B3%8A%E6%9D%BE%E6%AF%94" title="泊松比 – Chinese" lang="zh" hreflang="zh" data-title="泊松比" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190453#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Poisson%27s_ratio" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Poisson%27s_ratio" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Poisson%27s_ratio"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Poisson%27s_ratio"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Poisson%27s_ratio" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Poisson%27s_ratio" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Poisson%27s_ratio&amp;oldid=1257135598" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&amp;page=Poisson%27s_ratio&amp;id=1257135598&amp;wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPoisson%2527s_ratio"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&amp;url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPoisson%2527s_ratio"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&amp;page=Poisson%27s_ratio&amp;action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Poisson%27s_ratio&amp;printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="wb-otherproject-link wb-otherproject-commons mw-list-item"><a href="https://commons.wikimedia.org/wiki/Category:Poisson_coefficient" hreflang="en"><span>Wikimedia Commons</span></a></li><li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q190453" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Measure of material deformation perpendicular to loading</div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Poisson_ratio_compression_example.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Poisson_ratio_compression_example.svg/220px-Poisson_ratio_compression_example.svg.png" decoding="async" width="220" height="296" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/67/Poisson_ratio_compression_example.svg/330px-Poisson_ratio_compression_example.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/67/Poisson_ratio_compression_example.svg/440px-Poisson_ratio_compression_example.svg.png 2x" data-file-width="215" data-file-height="289" /></a><figcaption>Poisson's ratio of a material defines the ratio of transverse strain (<span class="texhtml mvar" style="font-style:italic;">x</span> direction) to the axial strain (<span class="texhtml mvar" style="font-style:italic;">y</span> direction)</figcaption></figure> <p>In <a href="/wiki/Materials_science" title="Materials science">materials science</a> and <a href="/wiki/Solid_mechanics" title="Solid mechanics">solid mechanics</a>, <b>Poisson's ratio</b> (symbol: <b><span class="texhtml mvar" style="font-style:italic;">ν</span></b> (<a href="/wiki/Nu_(letter)" title="Nu (letter)">nu</a>)) is a measure of the <b>Poisson effect</b>, the <a href="/wiki/Deformation_(engineering)" title="Deformation (engineering)">deformation</a> (expansion or contraction) of a material in directions perpendicular to the specific direction of <a href="/wiki/Structural_load" title="Structural load">loading</a>. The value of Poisson's ratio is the negative of the ratio of <a href="/wiki/Lateral_strain" title="Lateral strain">transverse strain</a> to axial <a href="/wiki/Strain_(materials_science)" class="mw-redirect" title="Strain (materials science)">strain</a>. For small values of these changes, <span class="texhtml mvar" style="font-style:italic;">ν</span> is the amount of transversal <a href="/wiki/Elongation_(materials_science)" class="mw-redirect" title="Elongation (materials science)">elongation</a> divided by the amount of axial <a href="/wiki/Compressive_strength" title="Compressive strength">compression</a>. Most materials have Poisson's ratio values ranging between 0.0 and 0.5. For soft materials,<sup id="cite_ref-1" class="reference"><a href="#cite_note-1"><span class="cite-bracket">&#91;</span>1<span class="cite-bracket">&#93;</span></a></sup> such as rubber, where the bulk modulus is much higher than the shear modulus, Poisson's ratio is near 0.5. For open-cell polymer foams, Poisson's ratio is near zero, since the cells tend to collapse in compression. Many typical solids have Poisson's ratios in the range of 0.2 to 0.3. The ratio is named after the French mathematician and physicist <a href="/wiki/Sim%C3%A9on_Poisson" class="mw-redirect" title="Siméon Poisson">Siméon Poisson</a>. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="Origin">Origin</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=1" title="Edit section: Origin"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Poisson's ratio is a measure of the Poisson effect, the phenomenon in which a material tends to expand in directions perpendicular to the direction of compression. Conversely, if the material is stretched rather than compressed, it usually tends to contract in the directions transverse to the direction of stretching. It is a common observation when a rubber band is stretched, it becomes noticeably thinner. Again, the Poisson ratio will be the ratio of relative contraction to relative expansion and will have the same value as above. In certain rare cases,<sup id="cite_ref-lakes_2-0" class="reference"><a href="#cite_note-lakes-2"><span class="cite-bracket">&#91;</span>2<span class="cite-bracket">&#93;</span></a></sup> a material will actually shrink in the transverse direction when compressed (or expand when stretched) which will yield a negative value of the Poisson ratio. </p><p>The Poisson's ratio of a stable, <a href="/wiki/Isotropy#Materials_science" title="Isotropy">isotropic</a>, linear <a href="/wiki/Elasticity_(physics)" title="Elasticity (physics)">elastic</a> material must be between −1.0 and +0.5 because of the requirement for <a href="/wiki/Young%27s_modulus" title="Young&#39;s modulus">Young's modulus</a>, the <a href="/wiki/Shear_modulus" title="Shear modulus">shear modulus</a> and <a href="/wiki/Bulk_modulus" title="Bulk modulus">bulk modulus</a> to have positive values.<sup id="cite_ref-3" class="reference"><a href="#cite_note-3"><span class="cite-bracket">&#91;</span>3<span class="cite-bracket">&#93;</span></a></sup> Most materials have Poisson's ratio values ranging between 0.0 and 0.5. A perfectly incompressible isotropic material deformed elastically at small strains would have a Poisson's ratio of exactly 0.5. Most steels and rigid polymers when used within their design limits (before <a href="/wiki/Yield_(engineering)" title="Yield (engineering)">yield</a>) exhibit values of about 0.3, increasing to 0.5 for post-yield deformation which occurs largely at constant volume.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">&#91;</span>4<span class="cite-bracket">&#93;</span></a></sup> Rubber has a Poisson ratio of nearly 0.5. Cork's Poisson ratio is close to 0, showing very little lateral expansion when compressed and glass is between 0.18 and 0.30. Some materials, e.g. some polymer foams, origami folds,<sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">&#91;</span>5<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">&#91;</span>6<span class="cite-bracket">&#93;</span></a></sup> and certain cells can exhibit negative Poisson's ratio, and are referred to as <a href="/wiki/Auxetics" title="Auxetics">auxetic materials</a>. If these auxetic materials are stretched in one direction, they become thicker in the perpendicular direction. In contrast, some <a href="/wiki/Anisotropy" title="Anisotropy">anisotropic</a> materials, such as <a href="/wiki/Carbon_nanotube" title="Carbon nanotube">carbon nanotubes</a>, zigzag-based folded sheet materials,<sup id="cite_ref-:0_7-0" class="reference"><a href="#cite_note-:0-7"><span class="cite-bracket">&#91;</span>7<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">&#91;</span>8<span class="cite-bracket">&#93;</span></a></sup> and honeycomb auxetic metamaterials<sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">&#91;</span>9<span class="cite-bracket">&#93;</span></a></sup> to name a few, can exhibit one or more Poisson's ratios above 0.5 in certain directions. </p><p>Assuming that the material is stretched or compressed in only one direction (the <span class="texhtml mvar" style="font-style:italic;">x</span> axis in the diagram below): </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu =-{\frac {d\varepsilon _{\mathrm {trans} }}{d\varepsilon _{\mathrm {axial} }}}=-{\frac {d\varepsilon _{\mathrm {y} }}{d\varepsilon _{\mathrm {x} }}}=-{\frac {d\varepsilon _{\mathrm {z} }}{d\varepsilon _{\mathrm {x} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">t</mi> <mi mathvariant="normal">r</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">n</mi> <mi mathvariant="normal">s</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">x</mi> <mi mathvariant="normal">i</mi> <mi mathvariant="normal">a</mi> <mi mathvariant="normal">l</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">y</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">z</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu =-{\frac {d\varepsilon _{\mathrm {trans} }}{d\varepsilon _{\mathrm {axial} }}}=-{\frac {d\varepsilon _{\mathrm {y} }}{d\varepsilon _{\mathrm {x} }}}=-{\frac {d\varepsilon _{\mathrm {z} }}{d\varepsilon _{\mathrm {x} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4854a5e8d3492c57a7a8141cf5edb2e8ea148048" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:31.459ex; height:6.176ex;" alt="{\displaystyle \nu =-{\frac {d\varepsilon _{\mathrm {trans} }}{d\varepsilon _{\mathrm {axial} }}}=-{\frac {d\varepsilon _{\mathrm {y} }}{d\varepsilon _{\mathrm {x} }}}=-{\frac {d\varepsilon _{\mathrm {z} }}{d\varepsilon _{\mathrm {x} }}}}"></span></dd></dl> <p>where </p> <ul><li><span class="texhtml mvar" style="font-style:italic;">ν</span> is the resulting Poisson's ratio,</li> <li><span class="texhtml"><i>ε</i><sub>trans</sub></span> is transverse strain</li> <li><span class="texhtml"><i>ε</i><sub>axial</sub></span> is axial strain</li></ul> <p>and positive strain indicates extension and negative strain indicates contraction. </p> <div class="mw-heading mw-heading2"><h2 id="Poisson's_ratio_from_geometry_changes"><span id="Poisson.27s_ratio_from_geometry_changes"></span>Poisson's ratio from geometry changes</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=2" title="Edit section: Poisson&#039;s ratio from geometry changes"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Length_change">Length change</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=3" title="Edit section: Length change"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:PoissonRatio.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/PoissonRatio.svg/300px-PoissonRatio.svg.png" decoding="async" width="300" height="297" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/e/ec/PoissonRatio.svg/450px-PoissonRatio.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/e/ec/PoissonRatio.svg/600px-PoissonRatio.svg.png 2x" data-file-width="588" data-file-height="583" /></a><figcaption><b>Figure 1</b>: A cube with sides of length <span class="texhtml mvar" style="font-style:italic;">L</span> of an isotropic linearly elastic material subject to tension along the x axis, with a Poisson's ratio of 0.5. The green cube is unstrained, the red is expanded in the <span class="texhtml mvar" style="font-style:italic;">x</span>-direction by <span class="texhtml">Δ<i>L</i></span> due to tension, and contracted in the <span class="texhtml mvar" style="font-style:italic;">y</span>- and <span class="texhtml mvar" style="font-style:italic;">z</span>-directions by <span class="texhtml">Δ<i>L</i>′</span>.</figcaption></figure> <p>For a cube stretched in the <span class="texhtml mvar" style="font-style:italic;">x</span>-direction (see Figure 1) with a length increase of <span class="texhtml">Δ<i>L</i></span> in the <span class="texhtml mvar" style="font-style:italic;">x</span>-direction, and a length decrease of <span class="texhtml">Δ<i>L</i>′</span> in the <span class="texhtml mvar" style="font-style:italic;">y</span>- and <span class="texhtml mvar" style="font-style:italic;">z</span>-directions, the infinitesimal diagonal strains are given by </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle d\varepsilon _{x}={\frac {dx}{x}},\qquad d\varepsilon _{y}={\frac {dy}{y}},\qquad d\varepsilon _{z}={\frac {dz}{z}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>d</mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>d</mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mi>y</mi> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <mi>d</mi> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>z</mi> </mrow> <mi>z</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle d\varepsilon _{x}={\frac {dx}{x}},\qquad d\varepsilon _{y}={\frac {dy}{y}},\qquad d\varepsilon _{z}={\frac {dz}{z}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/28ff1adcc9eb4058b78e26c6c4bcf705a10b5c48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:41.151ex; height:5.843ex;" alt="{\displaystyle d\varepsilon _{x}={\frac {dx}{x}},\qquad d\varepsilon _{y}={\frac {dy}{y}},\qquad d\varepsilon _{z}={\frac {dz}{z}}.}"></span></dd></dl> <p>If Poisson's ratio is constant through deformation, integrating these expressions and using the definition of Poisson's ratio gives </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\nu \int _{L}^{L+\Delta L}{\frac {dx}{x}}=\int _{L}^{L+\Delta L'}{\frac {dy}{y}}=\int _{L}^{L+\Delta L'}{\frac {dz}{z}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>+</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>x</mi> </mrow> <mi>x</mi> </mfrac> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>+</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>L</mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>y</mi> </mrow> <mi>y</mi> </mfrac> </mrow> <mo>=</mo> <msubsup> <mo>&#x222B;<!-- ∫ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>L</mi> <mo>+</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>L</mi> <mo>&#x2032;</mo> </msup> </mrow> </msubsup> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>d</mi> <mi>z</mi> </mrow> <mi>z</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle -\nu \int _{L}^{L+\Delta L}{\frac {dx}{x}}=\int _{L}^{L+\Delta L'}{\frac {dy}{y}}=\int _{L}^{L+\Delta L'}{\frac {dz}{z}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ca412f87e75cf5da77b38125aba36b75cf07644f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.338ex; width:44.972ex; height:6.509ex;" alt="{\displaystyle -\nu \int _{L}^{L+\Delta L}{\frac {dx}{x}}=\int _{L}^{L+\Delta L&#039;}{\frac {dy}{y}}=\int _{L}^{L+\Delta L&#039;}{\frac {dz}{z}}.}"></span></dd></dl> <p>Solving and exponentiating, the relationship between <span class="texhtml">Δ<i>L</i></span> and <span class="texhtml">Δ<i>L</i>′</span> is then </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \left(1+{\frac {\Delta L}{L}}\right)^{-\nu }=1+{\frac {\Delta L'}{L}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> </mrow> <mi>L</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>L</mi> <mo>&#x2032;</mo> </msup> </mrow> <mi>L</mi> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \left(1+{\frac {\Delta L}{L}}\right)^{-\nu }=1+{\frac {\Delta L'}{L}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b843970e4e08e3333d560bc58ad88b586a6ae75b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.949ex; height:6.509ex;" alt="{\displaystyle \left(1+{\frac {\Delta L}{L}}\right)^{-\nu }=1+{\frac {\Delta L&#039;}{L}}.}"></span></dd></dl> <p>For very small values of <span class="texhtml">Δ<i>L</i></span> and <span class="texhtml">Δ<i>L</i>′</span>, the first-order approximation yields: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu \approx -{\frac {\Delta L'}{\Delta L}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2248;<!-- ≈ --></mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>L</mi> <mo>&#x2032;</mo> </msup> </mrow> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu \approx -{\frac {\Delta L'}{\Delta L}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6838e9cd7bfb89554b3d1b423f18cca40bd478fe" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:11.825ex; height:5.676ex;" alt="{\displaystyle \nu \approx -{\frac {\Delta L&#039;}{\Delta L}}.}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Volumetric_change">Volumetric change</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=4" title="Edit section: Volumetric change"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The relative change of volume <span class="texhtml"><style data-mw-deduplicate="TemplateStyles:r1214402035">.mw-parser-output .sfrac{white-space:nowrap}.mw-parser-output .sfrac.tion,.mw-parser-output .sfrac .tion{display:inline-block;vertical-align:-0.5em;font-size:85%;text-align:center}.mw-parser-output .sfrac .num{display:block;line-height:1em;margin:0.0em 0.1em;border-bottom:1px solid}.mw-parser-output .sfrac .den{display:block;line-height:1em;margin:0.1em 0.1em}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}</style><span class="sfrac">&#8288;<span class="tion"><span class="num">Δ<i>V</i></span><span class="sr-only">/</span><span class="den"><i>V</i></span></span>&#8288;</span></span> of a cube due to the stretch of the material can now be calculated. Since <span class="texhtml"><i>V</i> = <i>L</i><sup>3</sup></span> and </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle V+\Delta V=(L+\Delta L)\left(L+\Delta L'\right)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>V</mi> <mo>+</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>V</mi> <mo>=</mo> <mo stretchy="false">(</mo> <mi>L</mi> <mo>+</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> <mo stretchy="false">)</mo> <msup> <mrow> <mo>(</mo> <mrow> <mi>L</mi> <mo>+</mo> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>L</mi> <mo>&#x2032;</mo> </msup> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle V+\Delta V=(L+\Delta L)\left(L+\Delta L'\right)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d96599d365d3702cb0c380a3b3903ab7945713e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:32.691ex; height:3.509ex;" alt="{\displaystyle V+\Delta V=(L+\Delta L)\left(L+\Delta L&#039;\right)^{2}}"></span></dd></dl> <p>one can derive </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Delta V}{V}}=\left(1+{\frac {\Delta L}{L}}\right)\left(1+{\frac {\Delta L'}{L}}\right)^{2}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>V</mi> </mrow> <mi>V</mi> </mfrac> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> </mrow> <mi>L</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <msup> <mi>L</mi> <mo>&#x2032;</mo> </msup> </mrow> <mi>L</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Delta V}{V}}=\left(1+{\frac {\Delta L}{L}}\right)\left(1+{\frac {\Delta L'}{L}}\right)^{2}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1abb25d2acfb7e0358b642a4b0c1052df06d9a84" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:37.344ex; height:6.509ex;" alt="{\displaystyle {\frac {\Delta V}{V}}=\left(1+{\frac {\Delta L}{L}}\right)\left(1+{\frac {\Delta L&#039;}{L}}\right)^{2}-1}"></span></dd></dl> <p>Using the above derived relationship between <span class="texhtml">Δ<i>L</i></span> and <span class="texhtml">Δ<i>L</i>′</span>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Delta V}{V}}=\left(1+{\frac {\Delta L}{L}}\right)^{1-2\nu }-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>V</mi> </mrow> <mi>V</mi> </mfrac> </mrow> <mo>=</mo> <msup> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> </mrow> <mi>L</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Delta V}{V}}=\left(1+{\frac {\Delta L}{L}}\right)^{1-2\nu }-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a86ed2906ffcda23a462d51f2cb306741826c4c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:27.465ex; height:6.509ex;" alt="{\displaystyle {\frac {\Delta V}{V}}=\left(1+{\frac {\Delta L}{L}}\right)^{1-2\nu }-1}"></span></dd></dl> <p>and for very small values of <span class="texhtml">Δ<i>L</i></span> and <span class="texhtml">Δ<i>L</i>′</span>, the first-order approximation yields: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Delta V}{V}}\approx (1-2\nu ){\frac {\Delta L}{L}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>V</mi> </mrow> <mi>V</mi> </mfrac> </mrow> <mo>&#x2248;<!-- ≈ --></mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> </mrow> <mi>L</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Delta V}{V}}\approx (1-2\nu ){\frac {\Delta L}{L}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dc607c039c775dec829347bcd7e928f2fa4118ac" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:20.219ex; height:5.509ex;" alt="{\displaystyle {\frac {\Delta V}{V}}\approx (1-2\nu ){\frac {\Delta L}{L}}}"></span></dd></dl> <p>For isotropic materials we can use <a href="/wiki/Lam%C3%A9_parameters" title="Lamé parameters">Lamé's relation</a><sup id="cite_ref-10" class="reference"><a href="#cite_note-10"><span class="cite-bracket">&#91;</span>10<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu \approx {\frac {1}{2}}-{\frac {E}{6K}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2248;<!-- ≈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>E</mi> <mrow> <mn>6</mn> <mi>K</mi> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu \approx {\frac {1}{2}}-{\frac {E}{6K}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d273038934e9c555e91bf84ff37998ab1c9a89c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:13.234ex; height:5.343ex;" alt="{\displaystyle \nu \approx {\frac {1}{2}}-{\frac {E}{6K}}}"></span></dd></dl> <p>where <span class="texhtml mvar" style="font-style:italic;">K</span> is <a href="/wiki/Bulk_modulus" title="Bulk modulus">bulk modulus</a> and <span class="texhtml mvar" style="font-style:italic;">E</span> is <a href="/wiki/Young%27s_modulus" title="Young&#39;s modulus">Young's modulus</a>. </p> <div class="mw-heading mw-heading3"><h3 id="Width_change">Width change</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=5" title="Edit section: Width change"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-halign-right" typeof="mw:File/Thumb"><a href="/wiki/File:Rod_diameter_change_poisson.svg" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Rod_diameter_change_poisson.svg/350px-Rod_diameter_change_poisson.svg.png" decoding="async" width="350" height="338" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Rod_diameter_change_poisson.svg/525px-Rod_diameter_change_poisson.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/5c/Rod_diameter_change_poisson.svg/700px-Rod_diameter_change_poisson.svg.png 2x" data-file-width="444" data-file-height="429" /></a><figcaption>Figure 2: The blue slope represents a simplified formula (the top one in the legend) that works well for modest deformations, <span class="texhtml">∆<i>L</i></span>, up to about ±3. The green curve represents a formula better suited for larger deformations.</figcaption></figure> <p>If a rod with diameter (or width, or thickness) <span class="texhtml mvar" style="font-style:italic;">d</span> and length <span class="texhtml mvar" style="font-style:italic;">L</span> is subject to tension so that its length will change by <span class="texhtml">Δ<i>L</i></span> then its diameter <span class="texhtml mvar" style="font-style:italic;">d</span> will change by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\Delta d}{d}}=-\nu {\frac {\Delta L}{L}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>d</mi> </mrow> <mi>d</mi> </mfrac> </mrow> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> </mrow> <mi>L</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\Delta d}{d}}=-\nu {\frac {\Delta L}{L}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c31146df35fd9579a5cdee091c6d9839205b3705" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.005ex; width:14.481ex; height:5.509ex;" alt="{\displaystyle {\frac {\Delta d}{d}}=-\nu {\frac {\Delta L}{L}}}"></span></dd></dl> <p>The above formula is true only in the case of small deformations; if deformations are large then the following (more precise) formula can be used: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \Delta d=-d\left(1-{\left(1+{\frac {\Delta L}{L}}\right)}^{-\nu }\right)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>d</mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>d</mi> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msup> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal">&#x0394;<!-- Δ --></mi> <mi>L</mi> </mrow> <mi>L</mi> </mfrac> </mrow> </mrow> <mo>)</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </msup> </mrow> <mo>)</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \Delta d=-d\left(1-{\left(1+{\frac {\Delta L}{L}}\right)}^{-\nu }\right)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b36c33ea0ee14a87f8da9f572e8cb37a50e496e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:31.506ex; height:7.509ex;" alt="{\displaystyle \Delta d=-d\left(1-{\left(1+{\frac {\Delta L}{L}}\right)}^{-\nu }\right)}"></span></dd></dl> <p>where </p> <ul><li><span class="texhtml mvar" style="font-style:italic;">d</span> is original diameter</li> <li><span class="texhtml">Δ<i>d</i></span> is rod diameter change</li> <li><span class="texhtml mvar" style="font-style:italic;">ν</span> is Poisson's ratio</li> <li><span class="texhtml mvar" style="font-style:italic;">L</span> is original length, before stretch</li> <li><span class="texhtml">Δ<i>L</i></span> is the change of length.</li></ul> <p>The value is negative because it decreases with increase of length </p> <div class="mw-heading mw-heading2"><h2 id="Characteristic_materials">Characteristic materials</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=6" title="Edit section: Characteristic materials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <div class="mw-heading mw-heading3"><h3 id="Isotropic">Isotropic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=7" title="Edit section: Isotropic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For a linear isotropic material subjected only to compressive (i.e. normal) forces, the deformation of a material in the direction of one axis will produce a deformation of the material along the other axis in three dimensions. Thus it is possible to generalize <a href="/wiki/Hooke%27s_Law" class="mw-redirect" title="Hooke&#39;s Law">Hooke's Law</a> (for compressive forces) into three dimensions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\varepsilon _{xx}&amp;={\frac {1}{E}}\left[\sigma _{xx}-\nu \left(\sigma _{yy}+\sigma _{zz}\right)\right]\\[6px]\varepsilon _{yy}&amp;={\frac {1}{E}}\left[\sigma _{yy}-\nu \left(\sigma _{zz}+\sigma _{xx}\right)\right]\\[6px]\varepsilon _{zz}&amp;={\frac {1}{E}}\left[\sigma _{zz}-\nu \left(\sigma _{xx}+\sigma _{yy}\right)\right]\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>E</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>E</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>E</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> <mo>]</mo> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\varepsilon _{xx}&amp;={\frac {1}{E}}\left[\sigma _{xx}-\nu \left(\sigma _{yy}+\sigma _{zz}\right)\right]\\[6px]\varepsilon _{yy}&amp;={\frac {1}{E}}\left[\sigma _{yy}-\nu \left(\sigma _{zz}+\sigma _{xx}\right)\right]\\[6px]\varepsilon _{zz}&amp;={\frac {1}{E}}\left[\sigma _{zz}-\nu \left(\sigma _{xx}+\sigma _{yy}\right)\right]\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2f779b643eb5a3ba0f902ab59c681a1c6bb7b357" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -8.634ex; margin-bottom: -0.204ex; width:30.18ex; height:18.843ex;" alt="{\displaystyle {\begin{aligned}\varepsilon _{xx}&amp;={\frac {1}{E}}\left[\sigma _{xx}-\nu \left(\sigma _{yy}+\sigma _{zz}\right)\right]\\[6px]\varepsilon _{yy}&amp;={\frac {1}{E}}\left[\sigma _{yy}-\nu \left(\sigma _{zz}+\sigma _{xx}\right)\right]\\[6px]\varepsilon _{zz}&amp;={\frac {1}{E}}\left[\sigma _{zz}-\nu \left(\sigma _{xx}+\sigma _{yy}\right)\right]\end{aligned}}}"></span><sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (August 2024)">citation needed</span></a></i>&#93;</sup></dd></dl> <p>where: </p> <ul><li><span class="texhtml"><i>ε</i><sub><i>xx</i></sub></span>, <span class="texhtml"><i>ε</i><sub><i>yy</i></sub></span>, and <span class="texhtml"><i>ε</i><sub><i>zz</i></sub></span> are <a href="/wiki/Strain_(materials_science)" class="mw-redirect" title="Strain (materials science)">strain</a> in the direction of <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml mvar" style="font-style:italic;">y</span> and <span class="texhtml mvar" style="font-style:italic;">z</span></li> <li><span class="texhtml"><i>σ</i><sub><i>xx</i></sub></span>, <span class="texhtml"><i>σ</i><sub><i>yy</i></sub></span>, and <span class="texhtml"><i>σ</i><sub><i>zz</i></sub></span> are <a href="/wiki/Stress_(physics)" class="mw-redirect" title="Stress (physics)">stress</a> in the direction of <span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml mvar" style="font-style:italic;">y</span> and <span class="texhtml mvar" style="font-style:italic;">z</span></li> <li><span class="texhtml mvar" style="font-style:italic;">E</span> is <a href="/wiki/Young%27s_modulus" title="Young&#39;s modulus">Young's modulus</a> (the same in all directions for isotropic materials)</li> <li><span class="texhtml mvar" style="font-style:italic;">ν</span> is Poisson's ratio (the same in all directions for isotropic materials)</li></ul> <p>these equations can be all synthesized in the following: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{ii}={\frac {1}{E}}\left[\sigma _{ii}(1+\nu )-\nu \sum _{k}\sigma _{kk}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>E</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>i</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munder> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>k</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{ii}={\frac {1}{E}}\left[\sigma _{ii}(1+\nu )-\nu \sum _{k}\sigma _{kk}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c171da9cc07267bd75872ef5cf780786ec35054" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:32.471ex; height:7.509ex;" alt="{\displaystyle \varepsilon _{ii}={\frac {1}{E}}\left[\sigma _{ii}(1+\nu )-\nu \sum _{k}\sigma _{kk}\right]}"></span></dd></dl> <p>In the most general case, also <a href="/wiki/Shear_stress" title="Shear stress">shear stresses</a> will hold as well as normal stresses, and the full generalization of Hooke's law is given by: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{ij}={\frac {1}{E}}\left[\sigma _{ij}(1+\nu )-\nu \delta _{ij}\sum _{k}\sigma _{kk}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>E</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> </mrow> </munder> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>k</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{ij}={\frac {1}{E}}\left[\sigma _{ij}(1+\nu )-\nu \delta _{ij}\sum _{k}\sigma _{kk}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e72a6a8028c583aa887514378ab4c22a83cd7b47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:35.201ex; height:7.509ex;" alt="{\displaystyle \varepsilon _{ij}={\frac {1}{E}}\left[\sigma _{ij}(1+\nu )-\nu \delta _{ij}\sum _{k}\sigma _{kk}\right]}"></span></dd></dl> <p>where <span class="texhtml"><i>δ</i><sub><i>ij</i></sub></span> is the <a href="/wiki/Kronecker_delta" title="Kronecker delta">Kronecker delta</a>. The <a href="/wiki/Einstein_notation" title="Einstein notation">Einstein notation</a> is usually adopted: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sigma _{kk}\equiv \sum _{l}\delta _{kl}\sigma _{kl}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>k</mi> </mrow> </msub> <mo>&#x2261;<!-- ≡ --></mo> <munder> <mo>&#x2211;<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>l</mi> </mrow> </munder> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> </msub> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>l</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sigma _{kk}\equiv \sum _{l}\delta _{kl}\sigma _{kl}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/04beb901394cc0f30b1540e182393d2bac12ef33" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.631ex; height:5.509ex;" alt="{\displaystyle \sigma _{kk}\equiv \sum _{l}\delta _{kl}\sigma _{kl}}"></span></dd></dl> <p>to write the equation simply as: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \varepsilon _{ij}={\frac {1}{E}}\left[\sigma _{ij}(1+\nu )-\nu \delta _{ij}\sigma _{kk}\right]}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03B5;<!-- ε --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mi>E</mi> </mfrac> </mrow> <mrow> <mo>[</mo> <mrow> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <msub> <mi>&#x03B4;<!-- δ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mi>k</mi> </mrow> </msub> </mrow> <mo>]</mo> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \varepsilon _{ij}={\frac {1}{E}}\left[\sigma _{ij}(1+\nu )-\nu \delta _{ij}\sigma _{kk}\right]}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c4894d8b32e998a6ae6b95a8356d9c9ca5db2a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:29.655ex; height:5.176ex;" alt="{\displaystyle \varepsilon _{ij}={\frac {1}{E}}\left[\sigma _{ij}(1+\nu )-\nu \delta _{ij}\sigma _{kk}\right]}"></span></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Anisotropic">Anisotropic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=8" title="Edit section: Anisotropic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>For anisotropic materials, the Poisson ratio depends on the direction of extension and transverse deformation </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\nu (\mathbf {n} ,\mathbf {m} )&amp;=-E\left(\mathbf {n} \right)s_{ij\alpha \beta }n_{i}n_{j}m_{\alpha }m_{\beta }\\[4px]E^{-1}(\mathbf {n} )&amp;=s_{ij\alpha \beta }n_{i}n_{j}n_{\alpha }n_{\beta }\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.7em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo>,</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">m</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mrow> <mo>(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo>)</mo> </mrow> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>m</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </msup> <mo stretchy="false">(</mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold">n</mi> </mrow> <mo stretchy="false">)</mo> </mtd> <mtd> <mi></mi> <mo>=</mo> <msub> <mi>s</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mi>j</mi> <mi>&#x03B1;<!-- α --></mi> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>j</mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B1;<!-- α --></mi> </mrow> </msub> <msub> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>&#x03B2;<!-- β --></mi> </mrow> </msub> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\nu (\mathbf {n} ,\mathbf {m} )&amp;=-E\left(\mathbf {n} \right)s_{ij\alpha \beta }n_{i}n_{j}m_{\alpha }m_{\beta }\\[4px]E^{-1}(\mathbf {n} )&amp;=s_{ij\alpha \beta }n_{i}n_{j}n_{\alpha }n_{\beta }\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb3f8484175f3a97f6ff6961b005f178b7205a31" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.171ex; width:34.889ex; height:7.509ex;" alt="{\displaystyle {\begin{aligned}\nu (\mathbf {n} ,\mathbf {m} )&amp;=-E\left(\mathbf {n} \right)s_{ij\alpha \beta }n_{i}n_{j}m_{\alpha }m_{\beta }\\[4px]E^{-1}(\mathbf {n} )&amp;=s_{ij\alpha \beta }n_{i}n_{j}n_{\alpha }n_{\beta }\end{aligned}}}"></span></dd></dl> <p>Here <span class="texhtml mvar" style="font-style:italic;">ν</span> is Poisson's ratio, <span class="texhtml mvar" style="font-style:italic;">E</span> is <a href="/wiki/Young%27s_modulus" title="Young&#39;s modulus">Young's modulus</a>, <span class="texhtml"><b>n</b></span> is a unit vector directed along the direction of extension, <span class="texhtml"><b>m</b></span> is a unit vector directed perpendicular to the direction of extension. Poisson's ratio has a different number of special directions depending on the type of anisotropy.<sup id="cite_ref-11" class="reference"><a href="#cite_note-11"><span class="cite-bracket">&#91;</span>11<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-12" class="reference"><a href="#cite_note-12"><span class="cite-bracket">&#91;</span>12<span class="cite-bracket">&#93;</span></a></sup> </p> <div class="mw-heading mw-heading3"><h3 id="Orthotropic">Orthotropic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=9" title="Edit section: Orthotropic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1236090951">.mw-parser-output .hatnote{font-style:italic}.mw-parser-output div.hatnote{padding-left:1.6em;margin-bottom:0.5em}.mw-parser-output .hatnote i{font-style:normal}.mw-parser-output .hatnote+link+.hatnote{margin-top:-0.5em}@media print{body.ns-0 .mw-parser-output .hatnote{display:none!important}}</style><div role="note" class="hatnote navigation-not-searchable">Main article: <a href="/wiki/Orthotropic_material" title="Orthotropic material">Orthotropic material</a></div> <p><a href="/wiki/Orthotropic_material" title="Orthotropic material">Orthotropic materials</a> have three mutually perpendicular planes of symmetry in their material properties. An example is wood, which is most stiff (and strong) along the grain, and less so in the other directions. </p><p>Then <a href="/wiki/Hooke%27s_law" title="Hooke&#39;s law">Hooke's law</a> can be expressed in <a href="/wiki/Matrix_(mathematics)" title="Matrix (mathematics)">matrix</a> form as<sup id="cite_ref-Boresi_13-0" class="reference"><a href="#cite_note-Boresi-13"><span class="cite-bracket">&#91;</span>13<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-Lekh_14-0" class="reference"><a href="#cite_note-Lekh-14"><span class="cite-bracket">&#91;</span>14<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\epsilon _{xx}\\\epsilon _{yy}\\\epsilon _{zz}\\2\epsilon _{yz}\\2\epsilon _{zx}\\2\epsilon _{xy}\end{bmatrix}}={\begin{bmatrix}{\tfrac {1}{E_{x}}}&amp;-{\tfrac {\nu _{yx}}{E_{y}}}&amp;-{\tfrac {\nu _{zx}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xy}}{E_{x}}}&amp;{\tfrac {1}{E_{y}}}&amp;-{\tfrac {\nu _{zy}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xz}}{E_{x}}}&amp;-{\tfrac {\nu _{yz}}{E_{y}}}&amp;{\tfrac {1}{E_{z}}}&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;{\tfrac {1}{G_{yz}}}&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{zx}}}&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{xy}}}\\\end{bmatrix}}{\begin{bmatrix}\sigma _{xx}\\\sigma _{yy}\\\sigma _{zz}\\\sigma _{yz}\\\sigma _{zx}\\\sigma _{xy}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>x</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>x</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>z</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>x</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\epsilon _{xx}\\\epsilon _{yy}\\\epsilon _{zz}\\2\epsilon _{yz}\\2\epsilon _{zx}\\2\epsilon _{xy}\end{bmatrix}}={\begin{bmatrix}{\tfrac {1}{E_{x}}}&amp;-{\tfrac {\nu _{yx}}{E_{y}}}&amp;-{\tfrac {\nu _{zx}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xy}}{E_{x}}}&amp;{\tfrac {1}{E_{y}}}&amp;-{\tfrac {\nu _{zy}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xz}}{E_{x}}}&amp;-{\tfrac {\nu _{yz}}{E_{y}}}&amp;{\tfrac {1}{E_{z}}}&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;{\tfrac {1}{G_{yz}}}&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{zx}}}&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{xy}}}\\\end{bmatrix}}{\begin{bmatrix}\sigma _{xx}\\\sigma _{yy}\\\sigma _{zz}\\\sigma _{yz}\\\sigma _{zx}\\\sigma _{xy}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/df46b38b0bd87d9f186577db28a94b56ef56fe1b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.005ex; width:59.886ex; height:27.176ex;" alt="{\displaystyle {\begin{bmatrix}\epsilon _{xx}\\\epsilon _{yy}\\\epsilon _{zz}\\2\epsilon _{yz}\\2\epsilon _{zx}\\2\epsilon _{xy}\end{bmatrix}}={\begin{bmatrix}{\tfrac {1}{E_{x}}}&amp;-{\tfrac {\nu _{yx}}{E_{y}}}&amp;-{\tfrac {\nu _{zx}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xy}}{E_{x}}}&amp;{\tfrac {1}{E_{y}}}&amp;-{\tfrac {\nu _{zy}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xz}}{E_{x}}}&amp;-{\tfrac {\nu _{yz}}{E_{y}}}&amp;{\tfrac {1}{E_{z}}}&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;{\tfrac {1}{G_{yz}}}&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{zx}}}&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{xy}}}\\\end{bmatrix}}{\begin{bmatrix}\sigma _{xx}\\\sigma _{yy}\\\sigma _{zz}\\\sigma _{yz}\\\sigma _{zx}\\\sigma _{xy}\end{bmatrix}}}"></span></dd></dl> <p>where </p> <ul><li><span class="texhtml"><i>E</i><sub><i>i</i></sub></span> is the <a href="/wiki/Young%27s_modulus" title="Young&#39;s modulus">Young's modulus</a> along axis <span class="texhtml mvar" style="font-style:italic;">i</span></li> <li><span class="texhtml"><i>G</i><sub><i>ij</i></sub></span> is the <a href="/wiki/Shear_modulus" title="Shear modulus">shear modulus</a> in direction <span class="texhtml mvar" style="font-style:italic;">j</span> on the plane whose normal is in direction <span class="texhtml mvar" style="font-style:italic;">i</span></li> <li><span class="texhtml"><i>ν</i><sub><i>ij</i></sub></span> is the Poisson ratio that corresponds to a contraction in direction <span class="texhtml mvar" style="font-style:italic;">j</span> when an extension is applied in direction <span class="texhtml mvar" style="font-style:italic;">i</span>.</li></ul> <p>The Poisson ratio of an orthotropic material is different in each direction (<span class="texhtml mvar" style="font-style:italic;">x</span>, <span class="texhtml mvar" style="font-style:italic;">y</span> and <span class="texhtml mvar" style="font-style:italic;">z</span>). However, the symmetry of the stress and strain tensors implies that not all the six Poisson's ratios in the equation are independent. There are only nine independent material properties: three elastic moduli, three shear moduli, and three Poisson's ratios. The remaining three Poisson's ratios can be obtained from the relations </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\nu _{yx}}{E_{y}}}={\frac {\nu _{xy}}{E_{x}}}\,,\qquad {\frac {\nu _{zx}}{E_{z}}}={\frac {\nu _{xz}}{E_{x}}}\,,\qquad {\frac {\nu _{yz}}{E_{y}}}={\frac {\nu _{zy}}{E_{z}}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>x</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>x</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>z</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mrow> <mspace width="thinmathspace" /> <mo>,</mo> <mspace width="2em" /> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\nu _{yx}}{E_{y}}}={\frac {\nu _{xy}}{E_{x}}}\,,\qquad {\frac {\nu _{zx}}{E_{z}}}={\frac {\nu _{xz}}{E_{x}}}\,,\qquad {\frac {\nu _{yz}}{E_{y}}}={\frac {\nu _{zy}}{E_{z}}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3643e0be73241ae506d8247a38e054e91ad207f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:44.836ex; height:5.676ex;" alt="{\displaystyle {\frac {\nu _{yx}}{E_{y}}}={\frac {\nu _{xy}}{E_{x}}}\,,\qquad {\frac {\nu _{zx}}{E_{z}}}={\frac {\nu _{xz}}{E_{x}}}\,,\qquad {\frac {\nu _{yz}}{E_{y}}}={\frac {\nu _{zy}}{E_{z}}}}"></span></dd></dl> <p>From the above relations we can see that if <span class="texhtml"><i>E</i><sub><i>x</i></sub> &gt; <i>E</i><sub><i>y</i></sub></span> then <span class="texhtml"><i>ν</i><sub><i>xy</i></sub> &gt; <i>ν</i><sub><i>yx</i></sub></span>. The larger ratio (in this case <span class="texhtml"><i>ν</i><sub><i>xy</i></sub></span>) is called the <b>major Poisson ratio</b> while the smaller one (in this case <span class="texhtml"><i>ν</i><sub><i>yx</i></sub></span>) is called the <b>minor Poisson ratio</b>. We can find similar relations between the other Poisson ratios. </p> <div class="mw-heading mw-heading3"><h3 id="Transversely_isotropic">Transversely isotropic</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=10" title="Edit section: Transversely isotropic"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p><a href="/wiki/Transversely_isotropic" class="mw-redirect" title="Transversely isotropic">Transversely isotropic</a> materials have <a href="/wiki/Transversely_isotropic" class="mw-redirect" title="Transversely isotropic">a plane of isotropy</a> in which the elastic properties are isotropic. If we assume that this plane of isotropy is the <span class="texhtml mvar" style="font-style:italic;">yz</span>-plane, then Hooke's law takes the form<sup id="cite_ref-Tan_15-0" class="reference"><a href="#cite_note-Tan-15"><span class="cite-bracket">&#91;</span>15<span class="cite-bracket">&#93;</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{bmatrix}\epsilon _{xx}\\\epsilon _{yy}\\\epsilon _{zz}\\2\epsilon _{yz}\\2\epsilon _{zx}\\2\epsilon _{xy}\end{bmatrix}}={\begin{bmatrix}{\tfrac {1}{E_{x}}}&amp;-{\tfrac {\nu _{yx}}{E_{y}}}&amp;-{\tfrac {\nu _{zx}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xy}}{E_{x}}}&amp;{\tfrac {1}{E_{y}}}&amp;-{\tfrac {\nu _{zy}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xz}}{E_{x}}}&amp;-{\tfrac {\nu _{yz}}{E_{y}}}&amp;{\tfrac {1}{E_{z}}}&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;{\tfrac {1}{G_{\rm {yz}}}}&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{\rm {zx}}}}&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{\rm {xy}}}}\\\end{bmatrix}}{\begin{bmatrix}\sigma _{xx}\\\sigma _{yy}\\\sigma _{zz}\\\sigma _{yz}\\\sigma _{zx}\\\sigma _{xy}\end{bmatrix}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>2</mn> <msub> <mi>&#x03F5;<!-- ϵ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>x</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>x</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>z</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">y</mi> <mi mathvariant="normal">z</mi> </mrow> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">z</mi> <mi mathvariant="normal">x</mi> </mrow> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mn>1</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">x</mi> <mi mathvariant="normal">y</mi> </mrow> </mrow> </msub> </mfrac> </mstyle> </mrow> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mrow> <mo>[</mo> <mtable rowspacing="4pt" columnspacing="1em"> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>x</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&#x03C3;<!-- σ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> </mtd> </mtr> </mtable> <mo>]</mo> </mrow> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{bmatrix}\epsilon _{xx}\\\epsilon _{yy}\\\epsilon _{zz}\\2\epsilon _{yz}\\2\epsilon _{zx}\\2\epsilon _{xy}\end{bmatrix}}={\begin{bmatrix}{\tfrac {1}{E_{x}}}&amp;-{\tfrac {\nu _{yx}}{E_{y}}}&amp;-{\tfrac {\nu _{zx}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xy}}{E_{x}}}&amp;{\tfrac {1}{E_{y}}}&amp;-{\tfrac {\nu _{zy}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xz}}{E_{x}}}&amp;-{\tfrac {\nu _{yz}}{E_{y}}}&amp;{\tfrac {1}{E_{z}}}&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;{\tfrac {1}{G_{\rm {yz}}}}&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{\rm {zx}}}}&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{\rm {xy}}}}\\\end{bmatrix}}{\begin{bmatrix}\sigma _{xx}\\\sigma _{yy}\\\sigma _{zz}\\\sigma _{yz}\\\sigma _{zx}\\\sigma _{xy}\end{bmatrix}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0e0ac8a0efc9eb11f27fa8d85fc8f8127e1bf359" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -13.005ex; width:59.787ex; height:27.176ex;" alt="{\displaystyle {\begin{bmatrix}\epsilon _{xx}\\\epsilon _{yy}\\\epsilon _{zz}\\2\epsilon _{yz}\\2\epsilon _{zx}\\2\epsilon _{xy}\end{bmatrix}}={\begin{bmatrix}{\tfrac {1}{E_{x}}}&amp;-{\tfrac {\nu _{yx}}{E_{y}}}&amp;-{\tfrac {\nu _{zx}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xy}}{E_{x}}}&amp;{\tfrac {1}{E_{y}}}&amp;-{\tfrac {\nu _{zy}}{E_{z}}}&amp;0&amp;0&amp;0\\-{\tfrac {\nu _{xz}}{E_{x}}}&amp;-{\tfrac {\nu _{yz}}{E_{y}}}&amp;{\tfrac {1}{E_{z}}}&amp;0&amp;0&amp;0\\0&amp;0&amp;0&amp;{\tfrac {1}{G_{\rm {yz}}}}&amp;0&amp;0\\0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{\rm {zx}}}}&amp;0\\0&amp;0&amp;0&amp;0&amp;0&amp;{\tfrac {1}{G_{\rm {xy}}}}\\\end{bmatrix}}{\begin{bmatrix}\sigma _{xx}\\\sigma _{yy}\\\sigma _{zz}\\\sigma _{yz}\\\sigma _{zx}\\\sigma _{xy}\end{bmatrix}}}"></span></dd></dl> <p>where we have used the <span class="texhtml mvar" style="font-style:italic;">yz</span>-plane of isotropy to reduce the number of constants, that is, </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{y}=E_{z},\qquad \nu _{xy}=\nu _{xz},\qquad \nu _{yx}=\nu _{zx}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> </mrow> </msub> <mo>,</mo> <mspace width="2em" /> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>z</mi> </mrow> </msub> <mo>,</mo> <mspace width="2em" /> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>x</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>x</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{y}=E_{z},\qquad \nu _{xy}=\nu _{xz},\qquad \nu _{yx}=\nu _{zx}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5e54038ceb69d1f15124f4eede93514e740c33fb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:39.239ex; height:2.843ex;" alt="{\displaystyle E_{y}=E_{z},\qquad \nu _{xy}=\nu _{xz},\qquad \nu _{yx}=\nu _{zx}.}"></span>.</dd></dl> <p>The symmetry of the stress and strain tensors implies that </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {\nu _{xy}}{E_{x}}}={\frac {\nu _{yx}}{E_{y}}},\qquad \nu _{yz}=\nu _{zy}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>x</mi> </mrow> </msub> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>x</mi> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> </mfrac> </mrow> <mo>,</mo> <mspace width="2em" /> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>z</mi> <mi>y</mi> </mrow> </msub> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {\nu _{xy}}{E_{x}}}={\frac {\nu _{yx}}{E_{y}}},\qquad \nu _{yz}=\nu _{zy}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/54f98ad8a900d586f81f37508dcd160dec8db4de" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.505ex; width:26.406ex; height:5.676ex;" alt="{\displaystyle {\frac {\nu _{xy}}{E_{x}}}={\frac {\nu _{yx}}{E_{y}}},\qquad \nu _{yz}=\nu _{zy}.}"></span></dd></dl> <p>This leaves us with six independent constants <span class="texhtml"><i>E</i><sub><i>x</i></sub></span>, <span class="texhtml"><i>E</i><sub><i>y</i></sub></span>, <span class="texhtml"><i>G</i><sub><i>xy</i></sub></span>, <span class="texhtml"><i>G</i><sub><i>yz</i></sub></span>, <span class="texhtml"><i>ν</i><sub><i>xy</i></sub></span>, <span class="texhtml"><i>ν</i><sub><i>yz</i></sub></span>. However, transverse isotropy gives rise to a further constraint between <span class="texhtml"><i>G</i><sub><i>yz</i></sub></span> and <span class="texhtml"><i>E</i><sub><i>y</i></sub></span>, <span class="texhtml"><i>ν</i><sub><i>yz</i></sub></span> which is </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{yz}={\frac {E_{y}}{2\left(1+\nu _{yz}\right)}}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> </mrow> </msub> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mi>y</mi> <mi>z</mi> </mrow> </msub> </mrow> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{yz}={\frac {E_{y}}{2\left(1+\nu _{yz}\right)}}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f292f29b6b0a51c03b303894c351a8f38d2d595e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.671ex; width:18.556ex; height:6.343ex;" alt="{\displaystyle G_{yz}={\frac {E_{y}}{2\left(1+\nu _{yz}\right)}}.}"></span></dd></dl> <p>Therefore, there are five independent elastic material properties two of which are Poisson's ratios. For the assumed plane of symmetry, the larger of <span class="texhtml"><i>ν</i><sub><i>xy</i></sub></span> and <span class="texhtml"><i>ν</i><sub><i>yx</i></sub></span> is the major Poisson ratio. The other major and minor Poisson ratios are equal. </p> <div class="mw-heading mw-heading2"><h2 id="Poisson's_ratio_values_for_different_materials"><span id="Poisson.27s_ratio_values_for_different_materials"></span>Poisson's ratio values for different materials</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=11" title="Edit section: Poisson&#039;s ratio values for different materials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure typeof="mw:File/Thumb"><a href="/wiki/File:SpiderGraph_PoissonRatio.gif" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/SpiderGraph_PoissonRatio.gif/500px-SpiderGraph_PoissonRatio.gif" decoding="async" width="500" height="342" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/1/13/SpiderGraph_PoissonRatio.gif/750px-SpiderGraph_PoissonRatio.gif 1.5x, //upload.wikimedia.org/wikipedia/commons/1/13/SpiderGraph_PoissonRatio.gif 2x" data-file-width="911" data-file-height="623" /></a><figcaption>Influences of selected <a href="/wiki/Glass" title="Glass">glass</a> component additions on Poisson's ratio of a specific base glass.<sup id="cite_ref-16" class="reference"><a href="#cite_note-16"><span class="cite-bracket">&#91;</span>16<span class="cite-bracket">&#93;</span></a></sup></figcaption></figure> <dl><dd><table class="wikitable sortable" style="border-collapse: collapse"> <tbody><tr bgcolor="#cccccc"> <th>Material </th> <th>Poisson's ratio </th></tr> <tr> <td><a href="/wiki/Rubber" class="mw-redirect" title="Rubber">rubber</a> </td> <td>0.4999<sup id="cite_ref-polymerphysics.net_17-0" class="reference"><a href="#cite_note-polymerphysics.net-17"><span class="cite-bracket">&#91;</span>17<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Gold" title="Gold">gold</a> </td> <td>0.42–0.44 </td></tr> <tr> <td>saturated <a href="/wiki/Clay" title="Clay">clay</a> </td> <td>0.40–0.49 </td></tr> <tr> <td><a href="/wiki/Magnesium" title="Magnesium">magnesium</a> </td> <td>0.252–0.289 </td></tr> <tr> <td><a href="/wiki/Titanium" title="Titanium">titanium</a> </td> <td>0.265–0.34 </td></tr> <tr> <td><a href="/wiki/Copper" title="Copper">copper</a> </td> <td>0.33 </td></tr> <tr> <td><a href="/wiki/Aluminium" title="Aluminium">aluminium</a> <a href="/wiki/Alloy" title="Alloy">alloy</a> </td> <td>0.32 </td></tr> <tr> <td><a href="/wiki/Clay" title="Clay">clay</a> </td> <td>0.30–0.45 </td></tr> <tr> <td><a href="/wiki/Stainless_steel" title="Stainless steel">stainless steel</a> </td> <td>0.30–0.31 </td></tr> <tr> <td><a href="/wiki/Steel" title="Steel">steel</a> </td> <td>0.27–0.30 </td></tr> <tr> <td><a href="/wiki/Cast_iron" title="Cast iron">cast iron</a> </td> <td>0.21–0.26 </td></tr> <tr> <td><a href="/wiki/Sand" title="Sand">sand</a> </td> <td>0.20–0.455 </td></tr> <tr> <td><a href="/wiki/Concrete" title="Concrete">concrete</a> </td> <td>0.1–0.2 </td></tr> <tr> <td><a href="/wiki/Glass" title="Glass">glass</a> </td> <td>0.18–0.3 </td></tr> <tr> <td><a href="/wiki/Metallic_glasses" class="mw-redirect" title="Metallic glasses">metallic glasses</a> </td> <td>0.276–0.409<sup id="cite_ref-18" class="reference"><a href="#cite_note-18"><span class="cite-bracket">&#91;</span>18<span class="cite-bracket">&#93;</span></a></sup> </td></tr> <tr> <td><a href="/wiki/Foam" title="Foam">foam</a> </td> <td>0.10–0.50 </td></tr> <tr> <td><a href="/wiki/Cork_(material)" title="Cork (material)">cork</a> </td> <td>0.0 </td></tr></tbody></table></dd></dl> <dl><dd><table class="wikitable sortable" style="border-collapse: collapse"> <tbody><tr bgcolor="#cccccc"> <th>Material</th> <th>Plane of symmetry</th> <th><span class="texhtml"><i>ν</i><sub><i>xy</i></sub></span></th> <th><span class="texhtml"><i>ν</i><sub><i>yx</i></sub></span></th> <th><span class="texhtml"><i>ν</i><sub><i>yz</i></sub></span></th> <th><span class="texhtml"><i>ν</i><sub><i>zy</i></sub></span></th> <th><span class="texhtml"><i>ν</i><sub><i>zx</i></sub></span></th> <th><span class="texhtml"><i>ν</i><sub><i>xz</i></sub></span> </th></tr> <tr> <td><a href="/wiki/Nomex" title="Nomex">Nomex</a> <a href="/wiki/Composite_honeycomb" class="mw-redirect" title="Composite honeycomb">honeycomb core</a> </td> <td><span class="texhtml mvar" style="font-style:italic;">xy</span>, ribbon in <span class="texhtml mvar" style="font-style:italic;">x</span> direction </td> <td>0.49 </td> <td>0.69 </td> <td>0.01 </td> <td>2.75 </td> <td>3.88 </td> <td>0.01 </td></tr> <tr> <td><a href="/wiki/Glass_fiber" title="Glass fiber">glass fiber</a> <a href="/wiki/Epoxy_resin" class="mw-redirect" title="Epoxy resin">epoxy resin</a> </td> <td><span class="texhtml mvar" style="font-style:italic;">xy</span> </td> <td>0.29 </td> <td>0.32 </td> <td>0.06 </td> <td>0.06 </td> <td>0.32 </td></tr></tbody></table></dd></dl> <div class="mw-heading mw-heading3"><h3 id="Negative_Poisson's_ratio_materials"><span id="Negative_Poisson.27s_ratio_materials"></span>Negative Poisson's ratio materials</h3><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=12" title="Edit section: Negative Poisson&#039;s ratio materials"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Some materials known as <a href="/wiki/Auxetic" class="mw-redirect" title="Auxetic">auxetic</a> materials display a negative Poisson's ratio. When subjected to positive strain in a longitudinal axis, the transverse strain in the material will actually be positive (i.e. it would increase the cross sectional area). For these materials, it is usually due to uniquely oriented, hinged molecular bonds. In order for these bonds to stretch in the longitudinal direction, the hinges must ‘open’ in the transverse direction, effectively exhibiting a positive strain.<sup id="cite_ref-19" class="reference"><a href="#cite_note-19"><span class="cite-bracket">&#91;</span>19<span class="cite-bracket">&#93;</span></a></sup> This can also be done in a structured way and lead to new aspects in material design as for <a href="/wiki/Mechanical_metamaterials" class="mw-redirect" title="Mechanical metamaterials">mechanical metamaterials</a>. </p><p>Studies have shown that certain solid wood types display negative Poisson's ratio exclusively during a compression <a href="/wiki/Creep_(deformation)" title="Creep (deformation)">creep</a> test.<sup id="cite_ref-20" class="reference"><a href="#cite_note-20"><span class="cite-bracket">&#91;</span>20<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-21" class="reference"><a href="#cite_note-21"><span class="cite-bracket">&#91;</span>21<span class="cite-bracket">&#93;</span></a></sup> Initially, the compression creep test shows positive Poisson's ratios, but gradually decreases until it reaches negative values. Consequently, this also shows that Poisson's ratio for wood is time-dependent during constant loading, meaning that the strain in the axial and transverse direction do not increase in the same rate. </p><p>Media with engineered microstructure may exhibit negative Poisson's ratio. In a simple case auxeticity is obtained removing material and creating a periodic porous media.<sup id="cite_ref-22" class="reference"><a href="#cite_note-22"><span class="cite-bracket">&#91;</span>22<span class="cite-bracket">&#93;</span></a></sup> Lattices can reach lower values of Poisson's ratio,<sup id="cite_ref-23" class="reference"><a href="#cite_note-23"><span class="cite-bracket">&#91;</span>23<span class="cite-bracket">&#93;</span></a></sup> which can be indefinitely close to the limiting value −1 in the isotropic case.<sup id="cite_ref-24" class="reference"><a href="#cite_note-24"><span class="cite-bracket">&#91;</span>24<span class="cite-bracket">&#93;</span></a></sup> </p><p>More than three hundred crystalline materials have negative Poisson's ratio.<sup id="cite_ref-25" class="reference"><a href="#cite_note-25"><span class="cite-bracket">&#91;</span>25<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-26" class="reference"><a href="#cite_note-26"><span class="cite-bracket">&#91;</span>26<span class="cite-bracket">&#93;</span></a></sup><sup id="cite_ref-27" class="reference"><a href="#cite_note-27"><span class="cite-bracket">&#91;</span>27<span class="cite-bracket">&#93;</span></a></sup> For example, Li, Na, K, Cu, Rb, Ag, Fe, Ni, Co, Cs, Au, Be, Ca, Zn Sr, Sb, MoS<sub>2</sub> and others. </p> <div class="mw-heading mw-heading2"><h2 id="Poisson_function">Poisson function</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=13" title="Edit section: Poisson function"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>At <a href="/wiki/Finite_strain_theory" title="Finite strain theory">finite strains</a>, the relationship between the transverse and axial strains <span class="texhtml"><i>ε</i><sub>trans</sub></span> and <span class="texhtml"><i>ε</i><sub>axial</sub></span> is typically not well described by the Poisson ratio. In fact, the Poisson ratio is often considered a function of the applied strain in the large strain regime. In such instances, the Poisson ratio is replaced by the Poisson function, for which there are several competing definitions.<sup id="cite_ref-28" class="reference"><a href="#cite_note-28"><span class="cite-bracket">&#91;</span>28<span class="cite-bracket">&#93;</span></a></sup> Defining the transverse stretch <span class="texhtml"><i>λ</i><sub>trans</sub> = <i>ε</i><sub>trans</sub> + 1</span> and axial stretch <span class="texhtml"><i>λ</i><sub>axial</sub> = <i>ε</i><sub>axial</sub> + 1</span>, where the transverse stretch is a function of the axial stretch, the most common are the Hencky, Biot, Green, and Almansi functions: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\begin{aligned}\nu ^{\text{Hencky}}&amp;=-{\frac {\ln \lambda _{\text{trans}}}{\ln \lambda _{\text{axial}}}}\\[6pt]\nu ^{\text{Biot}}&amp;={\frac {1-\lambda _{\text{trans}}}{\lambda _{\text{axial}}-1}}\\[6pt]\nu ^{\text{Green}}&amp;={\frac {1-\lambda _{\text{trans}}^{2}}{\lambda _{\text{axial}}^{2}-1}}\\[6pt]\nu ^{\text{Almansi}}&amp;={\frac {\lambda _{\text{trans}}^{-2}-1}{1-\lambda _{\text{axial}}^{-2}}}\end{aligned}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mtable columnalign="right left right left right left right left right left right left" rowspacing="0.9em 0.9em 0.9em 0.3em" columnspacing="0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0em" displaystyle="true"> <mtr> <mtd> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Hencky</mtext> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>trans</mtext> </mrow> </msub> </mrow> <mrow> <mi>ln</mi> <mo>&#x2061;<!-- ⁡ --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>axial</mtext> </mrow> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Biot</mtext> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>trans</mtext> </mrow> </msub> </mrow> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>axial</mtext> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Green</mtext> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>trans</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <msubsup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>axial</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <msup> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>Almansi</mtext> </mrow> </msup> </mtd> <mtd> <mi></mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <msubsup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>trans</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msubsup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mtext>axial</mtext> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> </mrow> </msubsup> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\begin{aligned}\nu ^{\text{Hencky}}&amp;=-{\frac {\ln \lambda _{\text{trans}}}{\ln \lambda _{\text{axial}}}}\\[6pt]\nu ^{\text{Biot}}&amp;={\frac {1-\lambda _{\text{trans}}}{\lambda _{\text{axial}}-1}}\\[6pt]\nu ^{\text{Green}}&amp;={\frac {1-\lambda _{\text{trans}}^{2}}{\lambda _{\text{axial}}^{2}-1}}\\[6pt]\nu ^{\text{Almansi}}&amp;={\frac {\lambda _{\text{trans}}^{-2}-1}{1-\lambda _{\text{axial}}^{-2}}}\end{aligned}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/43cdecb6568c8d4bb23922f3332da8341e960b6e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -14.671ex; width:21.466ex; height:30.509ex;" alt="{\displaystyle {\begin{aligned}\nu ^{\text{Hencky}}&amp;=-{\frac {\ln \lambda _{\text{trans}}}{\ln \lambda _{\text{axial}}}}\\[6pt]\nu ^{\text{Biot}}&amp;={\frac {1-\lambda _{\text{trans}}}{\lambda _{\text{axial}}-1}}\\[6pt]\nu ^{\text{Green}}&amp;={\frac {1-\lambda _{\text{trans}}^{2}}{\lambda _{\text{axial}}^{2}-1}}\\[6pt]\nu ^{\text{Almansi}}&amp;={\frac {\lambda _{\text{trans}}^{-2}-1}{1-\lambda _{\text{axial}}^{-2}}}\end{aligned}}}"></span></dd></dl> <div class="mw-heading mw-heading2"><h2 id="Applications_of_Poisson's_effect"><span id="Applications_of_Poisson.27s_effect"></span>Applications of Poisson's effect</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=14" title="Edit section: Applications of Poisson&#039;s effect"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>One area in which Poisson's effect has a considerable influence is in pressurized pipe flow. When the air or liquid inside a pipe is highly pressurized it exerts a uniform force on the inside of the pipe, resulting in a <a href="/wiki/Hoop_stress" class="mw-redirect" title="Hoop stress">hoop stress</a> within the pipe material. Due to Poisson's effect, this hoop stress will cause the pipe to increase in diameter and slightly decrease in length. The decrease in length, in particular, can have a noticeable effect upon the pipe joints, as the effect will accumulate for each section of pipe joined in series. A restrained joint may be pulled apart or otherwise prone to failure.<sup class="noprint Inline-Template Template-Fact" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citation_needed" title="Wikipedia:Citation needed"><span title="This claim needs references to reliable sources. (October 2012)">citation needed</span></a></i>&#93;</sup> </p><p>Another area of application for Poisson's effect is in the realm of <a href="/wiki/Structural_geology" title="Structural geology">structural geology</a>. Rocks, like most materials, are subject to Poisson's effect while under stress. In a geological timescale, excessive erosion or sedimentation of Earth's crust can either create or remove large vertical stresses upon the underlying rock. This rock will expand or contract in the vertical direction as a direct result of the applied stress, and it will also deform in the horizontal direction as a result of Poisson's effect. This change in strain in the horizontal direction can affect or form joints and dormant stresses in the rock.<sup id="cite_ref-29" class="reference"><a href="#cite_note-29"><span class="cite-bracket">&#91;</span>29<span class="cite-bracket">&#93;</span></a></sup> </p><p>Although <a href="/wiki/Cork_material" class="mw-redirect" title="Cork material">cork</a> was historically chosen to seal wine bottle for other reasons (including its inert nature, impermeability, flexibility, sealing ability, and resilience),<sup id="cite_ref-30" class="reference"><a href="#cite_note-30"><span class="cite-bracket">&#91;</span>30<span class="cite-bracket">&#93;</span></a></sup> cork's Poisson's ratio of zero provides another advantage. As the cork is inserted into the bottle, the upper part which is not yet inserted does not expand in diameter as it is compressed axially. The force needed to insert a cork into a bottle arises only from the friction between the cork and the bottle due to the radial compression of the cork. If the stopper were made of rubber, for example, (with a Poisson's ratio of about +0.5), there would be a relatively large additional force required to overcome the radial expansion of the upper part of the rubber stopper. </p><p>Most car mechanics are aware that it is hard to pull a rubber hose (such as a coolant hose) off a metal pipe stub, as the tension of pulling causes the diameter of the hose to shrink, gripping the stub tightly. (This is the same effect as shown in a <a href="/wiki/Chinese_finger_trap" title="Chinese finger trap">Chinese finger trap</a>.) Hoses can more easily be pushed off stubs instead using a wide flat blade. </p> <div class="mw-heading mw-heading2"><h2 id="See_also">See also</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=15" title="Edit section: See also"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a href="/wiki/Linear_elasticity" title="Linear elasticity">Linear elasticity</a></li> <li><a href="/wiki/Hooke%27s_law" title="Hooke&#39;s law">Hooke's law</a></li> <li><a href="/wiki/Impulse_excitation_technique" title="Impulse excitation technique">Impulse excitation technique</a></li> <li><a href="/wiki/Orthotropic_material" title="Orthotropic material">Orthotropic material</a></li> <li><a href="/wiki/Shear_modulus" title="Shear modulus">Shear modulus</a></li> <li><a href="/wiki/Young%27s_modulus" title="Young&#39;s modulus">Young's modulus</a></li> <li><a href="/wiki/Coefficient_of_thermal_expansion" class="mw-redirect" title="Coefficient of thermal expansion">Coefficient of thermal expansion</a></li></ul> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=16" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist"> <div class="mw-references-wrap mw-references-columns"><ol class="references"> <li id="cite_note-1"><span class="mw-cite-backlink"><b><a href="#cite_ref-1">^</a></b></span> <span class="reference-text">For soft materials, the bulk modulus (<span class="texhtml mvar" style="font-style:italic;">K</span>) is typically large compared to the shear modulus (<span class="texhtml mvar" style="font-style:italic;">G</span>) so that they can be regarded as incompressible, since it is easier to change shape than to compress. This results in the Young's modulus (<span class="texhtml mvar" style="font-style:italic;">E</span>) being <span class="texhtml"><i>E</i> = 3<i>G</i></span> and hence <span class="texhtml"><i>ν</i> = 0.5</span>.<style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFJastrzebski1959" class="citation book cs1">Jastrzebski, D. (1959). <i>Nature and Properties of Engineering Materials</i> (Wiley International&#160;ed.). John Wiley &amp; Sons, Inc.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Nature+and+Properties+of+Engineering+Materials&amp;rft.edition=Wiley+International&amp;rft.pub=John+Wiley+%26+Sons%2C+Inc&amp;rft.date=1959&amp;rft.aulast=Jastrzebski&amp;rft.aufirst=D.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-lakes-2"><span class="mw-cite-backlink"><b><a href="#cite_ref-lakes_2-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLakesWojciechowski2008" class="citation journal cs1">Lakes, R.; Wojciechowski, K. W. (2008). "Negative compressibility, negative Poisson's ratio, and stability". <i>Physica Status Solidi B</i>. <b>245</b> (3): 545–551. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2008PSSBR.245..545L">2008PSSBR.245..545L</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpssb.200777708">10.1002/pssb.200777708</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physica+Status+Solidi+B&amp;rft.atitle=Negative+compressibility%2C+negative+Poisson%27s+ratio%2C+and+stability&amp;rft.volume=245&amp;rft.issue=3&amp;rft.pages=545-551&amp;rft.date=2008&amp;rft_id=info%3Adoi%2F10.1002%2Fpssb.200777708&amp;rft_id=info%3Abibcode%2F2008PSSBR.245..545L&amp;rft.aulast=Lakes&amp;rft.aufirst=R.&amp;rft.au=Wojciechowski%2C+K.+W.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="#cite_ref-3">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGercek2007" class="citation journal cs1">Gercek, H. (January 2007). "Poisson's ratio values for rocks". <i>International Journal of Rock Mechanics and Mining Sciences</i>. <b>44</b> (1): 1–13. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2007IJRMM..44....1G">2007IJRMM..44....1G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.ijrmms.2006.04.011">10.1016/j.ijrmms.2006.04.011</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Rock+Mechanics+and+Mining+Sciences&amp;rft.atitle=Poisson%27s+ratio+values+for+rocks&amp;rft.volume=44&amp;rft.issue=1&amp;rft.pages=1-13&amp;rft.date=2007-01&amp;rft_id=info%3Adoi%2F10.1016%2Fj.ijrmms.2006.04.011&amp;rft_id=info%3Abibcode%2F2007IJRMM..44....1G&amp;rft.aulast=Gercek&amp;rft.aufirst=H.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFPark" class="citation book cs1">Park, R. J. T. <i>Seismic Performance of Steel-Encased Concrete Piles</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Seismic+Performance+of+Steel-Encased+Concrete+Piles&amp;rft.aulast=Park&amp;rft.aufirst=R.+J.+T.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources#What_information_to_include" title="Wikipedia:Citing sources"><span title="A complete citation is needed. (April 2024)">full citation needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMark2011" class="citation book cs1">Mark, Schenk (2011). <a rel="nofollow" class="external text" href="http://www.markschenk.com/research/files/PhD%20thesis%20-%20Mark%20Schenk.pdf"><i>Folded Shell Structures, PhD Thesis</i></a> <span class="cs1-format">(PDF)</span>. University of Cambridge, Clare College.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Folded+Shell+Structures%2C+PhD+Thesis&amp;rft.pub=University+of+Cambridge%2C+Clare+College&amp;rft.date=2011&amp;rft.aulast=Mark&amp;rft.aufirst=Schenk&amp;rft_id=http%3A%2F%2Fwww.markschenk.com%2Fresearch%2Ffiles%2FPhD%2520thesis%2520-%2520Mark%2520Schenk.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFWeiGuoDudteLiang2013" class="citation journal cs1">Wei, Z. Y.; Guo, Z. V.; Dudte, L.; Liang, H. Y.; Mahadevan, L. (2013-05-21). <a rel="nofollow" class="external text" href="https://www.seas.harvard.edu/softmat/downloads/2013-09.pdf">"Geometric Mechanics of Periodic Pleated Origami"</a> <span class="cs1-format">(PDF)</span>. <i>Physical Review Letters</i>. <b>110</b> (21): 215501. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1211.6396">1211.6396</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PhRvL.110u5501W">2013PhRvL.110u5501W</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevLett.110.215501">10.1103/PhysRevLett.110.215501</a>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/23745895">23745895</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:9145953">9145953</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+Letters&amp;rft.atitle=Geometric+Mechanics+of+Periodic+Pleated+Origami&amp;rft.volume=110&amp;rft.issue=21&amp;rft.pages=215501&amp;rft.date=2013-05-21&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A9145953%23id-name%3DS2CID&amp;rft_id=info%3Abibcode%2F2013PhRvL.110u5501W&amp;rft_id=info%3Aarxiv%2F1211.6396&amp;rft_id=info%3Apmid%2F23745895&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevLett.110.215501&amp;rft.aulast=Wei&amp;rft.aufirst=Z.+Y.&amp;rft.au=Guo%2C+Z.+V.&amp;rft.au=Dudte%2C+L.&amp;rft.au=Liang%2C+H.+Y.&amp;rft.au=Mahadevan%2C+L.&amp;rft_id=https%3A%2F%2Fwww.seas.harvard.edu%2Fsoftmat%2Fdownloads%2F2013-09.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-:0-7"><span class="mw-cite-backlink"><b><a href="#cite_ref-:0_7-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEidiniPaulino2015" class="citation journal cs1">Eidini, Maryam; Paulino, Glaucio H. (2015). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643767">"Unraveling metamaterial properties in zigzag-base folded sheets"</a>. <i>Science Advances</i>. <b>1</b> (8): e1500224. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1502.05977">1502.05977</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015SciA....1E0224E">2015SciA....1E0224E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1126%2Fsciadv.1500224">10.1126/sciadv.1500224</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2375-2548">2375-2548</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643767">4643767</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26601253">26601253</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Science+Advances&amp;rft.atitle=Unraveling+metamaterial+properties+in+zigzag-base+folded+sheets&amp;rft.volume=1&amp;rft.issue=8&amp;rft.pages=e1500224&amp;rft.date=2015&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4643767%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2015SciA....1E0224E&amp;rft_id=info%3Aarxiv%2F1502.05977&amp;rft.issn=2375-2548&amp;rft_id=info%3Adoi%2F10.1126%2Fsciadv.1500224&amp;rft_id=info%3Apmid%2F26601253&amp;rft.aulast=Eidini&amp;rft.aufirst=Maryam&amp;rft.au=Paulino%2C+Glaucio+H.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4643767&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEidini2016" class="citation journal cs1">Eidini, Maryam (2016). "Zigzag-base folded sheet cellular mechanical metamaterials". <i>Extreme Mechanics Letters</i>. <b>6</b>: 96–102. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1509.08104">1509.08104</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016ExML....6...96E">2016ExML....6...96E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.eml.2015.12.006">10.1016/j.eml.2015.12.006</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:118424595">118424595</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Extreme+Mechanics+Letters&amp;rft.atitle=Zigzag-base+folded+sheet+cellular+mechanical+metamaterials&amp;rft.volume=6&amp;rft.pages=96-102&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1509.08104&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A118424595%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.eml.2015.12.006&amp;rft_id=info%3Abibcode%2F2016ExML....6...96E&amp;rft.aulast=Eidini&amp;rft.aufirst=Maryam&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMousanezhadBabaeeEbrahimiGhosh2015" class="citation journal cs1">Mousanezhad, Davood; Babaee, Sahab; Ebrahimi, Hamid; Ghosh, Ranajay; Hamouda, Abdelmagid Salem; Bertoldi, Katia; Vaziri, Ashkan (2015-12-16). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4680941">"Hierarchical honeycomb auxetic metamaterials"</a>. <i>Scientific Reports</i>. <b>5</b>: 18306. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2015NatSR...518306M">2015NatSR...518306M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1038%2Fsrep18306">10.1038/srep18306</a>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/2045-2322">2045-2322</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4680941">4680941</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/26670417">26670417</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Scientific+Reports&amp;rft.atitle=Hierarchical+honeycomb+auxetic+metamaterials&amp;rft.volume=5&amp;rft.pages=18306&amp;rft.date=2015-12-16&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4680941%23id-name%3DPMC&amp;rft_id=info%3Abibcode%2F2015NatSR...518306M&amp;rft_id=info%3Apmid%2F26670417&amp;rft_id=info%3Adoi%2F10.1038%2Fsrep18306&amp;rft.issn=2045-2322&amp;rft.aulast=Mousanezhad&amp;rft.aufirst=Davood&amp;rft.au=Babaee%2C+Sahab&amp;rft.au=Ebrahimi%2C+Hamid&amp;rft.au=Ghosh%2C+Ranajay&amp;rft.au=Hamouda%2C+Abdelmagid+Salem&amp;rft.au=Bertoldi%2C+Katia&amp;rft.au=Vaziri%2C+Ashkan&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC4680941&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-10"><span class="mw-cite-backlink"><b><a href="#cite_ref-10">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMottRoland2012" class="citation journal cs1">Mott, P. H.; Roland, C. M. (3 April 2012). "Limits to Poisson's ratio in isotropic materials—general result for arbitrary deformation". <i>Physica Scripta</i>. <b>87</b> (5). Chemistry Division, Naval Research Laboratory: 055404. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1204.3859">1204.3859</a></span>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1088%2F0031-8949%2F87%2F05%2F055404">10.1088/0031-8949/87/05/055404</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:55920779">55920779</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physica+Scripta&amp;rft.atitle=Limits+to+Poisson%27s+ratio+in+isotropic+materials%E2%80%94general+result+for+arbitrary+deformation&amp;rft.volume=87&amp;rft.issue=5&amp;rft.pages=055404&amp;rft.date=2012-04-03&amp;rft_id=info%3Aarxiv%2F1204.3859&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A55920779%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1088%2F0031-8949%2F87%2F05%2F055404&amp;rft.aulast=Mott&amp;rft.aufirst=P.+H.&amp;rft.au=Roland%2C+C.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-11"><span class="mw-cite-backlink"><b><a href="#cite_ref-11">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFEpishinLisovenko2016" class="citation journal cs1">Epishin, A. I.; Lisovenko, D. S. (2016). "Extreme values of Poisson's ratio of cubic crystals". <i>Technical Physics</i>. <b>61</b> (10): 1516–1524. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JTePh..61.1516E">2016JTePh..61.1516E</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mechmat.2019.03.017">10.1016/j.mechmat.2019.03.017</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:140493258">140493258</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Technical+Physics&amp;rft.atitle=Extreme+values+of+Poisson%27s+ratio+of+cubic+crystals&amp;rft.volume=61&amp;rft.issue=10&amp;rft.pages=1516-1524&amp;rft.date=2016&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A140493258%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.mechmat.2019.03.017&amp;rft_id=info%3Abibcode%2F2016JTePh..61.1516E&amp;rft.aulast=Epishin&amp;rft.aufirst=A.+I.&amp;rft.au=Lisovenko%2C+D.+S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-12"><span class="mw-cite-backlink"><b><a href="#cite_ref-12">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGorodtsovLisovenko2019" class="citation journal cs1">Gorodtsov, V.A.; Lisovenko, D.S. (2019). "Extreme values of Young's modulus and Poisson's ratio of hexagonal crystals". <i>Mechanics of Materials</i>. <b>134</b>: 1–8. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2019MechM.134....1G">2019MechM.134....1G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mechmat.2019.03.017">10.1016/j.mechmat.2019.03.017</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:140493258">140493258</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mechanics+of+Materials&amp;rft.atitle=Extreme+values+of+Young%27s+modulus+and+Poisson%27s+ratio+of+hexagonal+crystals&amp;rft.volume=134&amp;rft.pages=1-8&amp;rft.date=2019&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A140493258%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.mechmat.2019.03.017&amp;rft_id=info%3Abibcode%2F2019MechM.134....1G&amp;rft.aulast=Gorodtsov&amp;rft.aufirst=V.A.&amp;rft.au=Lisovenko%2C+D.S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-Boresi-13"><span class="mw-cite-backlink"><b><a href="#cite_ref-Boresi_13-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBoresiSchmidtSidebottom1993" class="citation book cs1">Boresi, A. P; Schmidt, R. J.; Sidebottom, O. M. (1993). <i>Advanced Mechanics of Materials</i>. Wiley.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Mechanics+of+Materials&amp;rft.pub=Wiley&amp;rft.date=1993&amp;rft.aulast=Boresi&amp;rft.aufirst=A.+P&amp;rft.au=Schmidt%2C+R.+J.&amp;rft.au=Sidebottom%2C+O.+M.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (April 2024)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-Lekh-14"><span class="mw-cite-backlink"><b><a href="#cite_ref-Lekh_14-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLekhnitskii1981" class="citation book cs1">Lekhnitskii, S. G. (1981). <a rel="nofollow" class="external text" href="https://archive.org/details/lekhnitskii-theory-of-elasticity-of-an-anisotropic-body-mir-1981/page/36/mode/2up"><i>Theory of elasticity of an anisotropic elastic body</i></a>. Mir Publishing. p.&#160;36.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Theory+of+elasticity+of+an+anisotropic+elastic+body&amp;rft.pages=36&amp;rft.pub=Mir+Publishing&amp;rft.date=1981&amp;rft.aulast=Lekhnitskii&amp;rft.aufirst=S.+G.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Flekhnitskii-theory-of-elasticity-of-an-anisotropic-body-mir-1981%2Fpage%2F36%2Fmode%2F2up&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-Tan-15"><span class="mw-cite-backlink"><b><a href="#cite_ref-Tan_15-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFTan1994" class="citation book cs1">Tan, S. C. (1994). <i>Stress Concentrations in Laminated Composites</i>. Lancaster, PA: Technomic Publishing Company.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Stress+Concentrations+in+Laminated+Composites&amp;rft.place=Lancaster%2C+PA&amp;rft.pub=Technomic+Publishing+Company&amp;rft.date=1994&amp;rft.aulast=Tan&amp;rft.aufirst=S.+C.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span><sup class="noprint Inline-Template" style="white-space:nowrap;">&#91;<i><a href="/wiki/Wikipedia:Citing_sources" title="Wikipedia:Citing sources"><span title="This citation requires a reference to the specific page or range of pages in which the material appears. (April 2024)">page&#160;needed</span></a></i>&#93;</sup></span> </li> <li id="cite_note-16"><span class="mw-cite-backlink"><b><a href="#cite_ref-16">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFluegel" class="citation web cs1">Fluegel, Alexander. <a rel="nofollow" class="external text" href="http://www.glassproperties.com/poisson_ratio/">"Poisson's Ratio Calculation for Glasses"</a>. <i>www.glassproperties.com</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20171023140523/http://glassproperties.com/poisson_ratio/">Archived</a> from the original on 23 October 2017<span class="reference-accessdate">. Retrieved <span class="nowrap">28 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=www.glassproperties.com&amp;rft.atitle=Poisson%27s+Ratio+Calculation+for+Glasses&amp;rft.aulast=Fluegel&amp;rft.aufirst=Alexander&amp;rft_id=http%3A%2F%2Fwww.glassproperties.com%2Fpoisson_ratio%2F&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-polymerphysics.net-17"><span class="mw-cite-backlink"><b><a href="#cite_ref-polymerphysics.net_17-0">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFP._H._Mott;_C._M._Roland2009" class="citation journal cs1">P. H. Mott; C. M. Roland (20 October 2009). <a rel="nofollow" class="external text" href="http://polymerphysics.net/pdf/PhysRevB_80_132104_09.pdf">"Limits to Poisson's ratio in isotropic materials"</a> <span class="cs1-format">(PDF)</span>. <i>Physical Review B</i>. <b>80</b> (13): 132104. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/0909.4697">0909.4697</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2009PhRvB..80m2104M">2009PhRvB..80m2104M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1103%2FPhysRevB.80.132104">10.1103/PhysRevB.80.132104</a>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20141031190845/http://polymerphysics.net/pdf/PhysRevB_80_132104_09.pdf">Archived</a> <span class="cs1-format">(PDF)</span> from the original on 2014-10-31<span class="reference-accessdate">. Retrieved <span class="nowrap">2014-09-24</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physical+Review+B&amp;rft.atitle=Limits+to+Poisson%27s+ratio+in+isotropic+materials&amp;rft.volume=80&amp;rft.issue=13&amp;rft.pages=132104&amp;rft.date=2009-10-20&amp;rft_id=info%3Aarxiv%2F0909.4697&amp;rft_id=info%3Adoi%2F10.1103%2FPhysRevB.80.132104&amp;rft_id=info%3Abibcode%2F2009PhRvB..80m2104M&amp;rft.au=P.+H.+Mott%3B+C.+M.+Roland&amp;rft_id=http%3A%2F%2Fpolymerphysics.net%2Fpdf%2FPhysRevB_80_132104_09.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span><span class="cs1-maint citation-comment"><code class="cs1-code">{{<a href="/wiki/Template:Cite_journal" title="Template:Cite journal">cite journal</a>}}</code>: CS1 maint: multiple names: authors list (<a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">link</a>)</span></span> </li> <li id="cite_note-18"><span class="mw-cite-backlink"><b><a href="#cite_ref-18">^</a></b></span> <span class="reference-text">Journal of Applied Physics 110, 053521 (2011)</span> </li> <li id="cite_note-19"><span class="mw-cite-backlink"><b><a href="#cite_ref-19">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFLakes" class="citation web cs1">Lakes, Rod. <a rel="nofollow" class="external text" href="http://silver.neep.wisc.edu/~lakes/Poisson.html">"Negative Poisson's ratio"</a>. <i>silver.neep.wisc.edu</i>. <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180216025122/http://silver.neep.wisc.edu/~lakes/Poisson.html">Archived</a> from the original on 16 February 2018<span class="reference-accessdate">. Retrieved <span class="nowrap">28 April</span> 2018</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=silver.neep.wisc.edu&amp;rft.atitle=Negative+Poisson%27s+ratio&amp;rft.aulast=Lakes&amp;rft.aufirst=Rod&amp;rft_id=http%3A%2F%2Fsilver.neep.wisc.edu%2F~lakes%2FPoisson.html&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-20"><span class="mw-cite-backlink"><b><a href="#cite_ref-20">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFOzyharHeringNiemz2013" class="citation journal cs1">Ozyhar, Tomasz; Hering, Stefan; Niemz, Peter (March 2013). <a rel="nofollow" class="external text" href="https://doi.org/10.1122%2F1.4790170">"Viscoelastic characterization of wood: Time dependence of the orthotropic compliance in tension and compression"</a>. <i>Journal of Rheology</i>. <b>57</b> (2): 699–717. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013JRheo..57..699O">2013JRheo..57..699O</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.1122%2F1.4790170">10.1122/1.4790170</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/0148-6055">0148-6055</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+Rheology&amp;rft.atitle=Viscoelastic+characterization+of+wood%3A+Time+dependence+of+the+orthotropic+compliance+in+tension+and+compression&amp;rft.volume=57&amp;rft.issue=2&amp;rft.pages=699-717&amp;rft.date=2013-03&amp;rft.issn=0148-6055&amp;rft_id=info%3Adoi%2F10.1122%2F1.4790170&amp;rft_id=info%3Abibcode%2F2013JRheo..57..699O&amp;rft.aulast=Ozyhar&amp;rft.aufirst=Tomasz&amp;rft.au=Hering%2C+Stefan&amp;rft.au=Niemz%2C+Peter&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.1122%252F1.4790170&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-21"><span class="mw-cite-backlink"><b><a href="#cite_ref-21">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFJiangErik_ValentineLuNiemz2016" class="citation journal cs1">Jiang, Jiali; Erik Valentine, Bachtiar; Lu, Jianxiong; Niemz, Peter (2016-11-01). <a rel="nofollow" class="external text" href="http://doc.rero.ch/record/324934/files/hf-2016-0001.pdf">"Time dependence of the orthotropic compression Young's moduli and Poisson's ratios of Chinese fir wood"</a> <span class="cs1-format">(PDF)</span>. <i>Holzforschung</i>. <b>70</b> (11): 1093–1101. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1515%2Fhf-2016-0001">10.1515/hf-2016-0001</a>. <a href="/wiki/Hdl_(identifier)" class="mw-redirect" title="Hdl (identifier)">hdl</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://hdl.handle.net/20.500.11850%2F122097">20.500.11850/122097</a></span>. <a href="/wiki/ISSN_(identifier)" class="mw-redirect" title="ISSN (identifier)">ISSN</a>&#160;<a rel="nofollow" class="external text" href="https://search.worldcat.org/issn/1437-434X">1437-434X</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:137799672">137799672</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Holzforschung&amp;rft.atitle=Time+dependence+of+the+orthotropic+compression+Young%27s+moduli+and+Poisson%27s+ratios+of+Chinese+fir+wood&amp;rft.volume=70&amp;rft.issue=11&amp;rft.pages=1093-1101&amp;rft.date=2016-11-01&amp;rft_id=info%3Ahdl%2F20.500.11850%2F122097&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A137799672%23id-name%3DS2CID&amp;rft.issn=1437-434X&amp;rft_id=info%3Adoi%2F10.1515%2Fhf-2016-0001&amp;rft.aulast=Jiang&amp;rft.aufirst=Jiali&amp;rft.au=Erik+Valentine%2C+Bachtiar&amp;rft.au=Lu%2C+Jianxiong&amp;rft.au=Niemz%2C+Peter&amp;rft_id=http%3A%2F%2Fdoc.rero.ch%2Frecord%2F324934%2Ffiles%2Fhf-2016-0001.pdf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-22"><span class="mw-cite-backlink"><b><a href="#cite_ref-22">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCartaBrunBaldi2016" class="citation journal cs1">Carta, Giorgio; Brun, Michele; Baldi, Antonio (2016). "Design of a porous material with isotropic negative Poisson's ratio". <i>Mechanics of Materials</i>. <b>97</b>: 67–75. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016MechM..97...67C">2016MechM..97...67C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.mechmat.2016.02.012">10.1016/j.mechmat.2016.02.012</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Mechanics+of+Materials&amp;rft.atitle=Design+of+a+porous+material+with+isotropic+negative+Poisson%27s+ratio&amp;rft.volume=97&amp;rft.pages=67-75&amp;rft.date=2016&amp;rft_id=info%3Adoi%2F10.1016%2Fj.mechmat.2016.02.012&amp;rft_id=info%3Abibcode%2F2016MechM..97...67C&amp;rft.aulast=Carta&amp;rft.aufirst=Giorgio&amp;rft.au=Brun%2C+Michele&amp;rft.au=Baldi%2C+Antonio&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-23"><span class="mw-cite-backlink"><b><a href="#cite_ref-23">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCabrasBrun2016" class="citation journal cs1">Cabras, Luigi; Brun, Michele (2016). <a rel="nofollow" class="external text" href="https://id.elsevier.com/as/authorization.oauth2?platSite=SD%2Fscience&amp;scope=openid+email+profile+els_auth_info+urn%3Acom%3Aelsevier%3Aidp%3Apolicy%3Aproduct%3Ainst_assoc&amp;response_type=code&amp;redirect_uri=https%3A%2F%2Fwww.sciencedirect.com%2Fuser%2Fidentity%2Flanding&amp;authType=SINGLE_SIGN_IN&amp;prompt=none&amp;client_id=SDFE-v3&amp;state=retryCounter%3D0%26csrfToken%3D9d114051-9af7-432d-99c4-8f6c93676c1b%26idpPolicy%3Durn%253Acom%253Aelsevier%253Aidp%253Apolicy%253Aproduct%253Ainst_assoc%26returnUrl%3D%252Fscience%252Farticle%252Fpii%252FS0022509616301314%26prompt%3Dnone%26cid%3Darp-7372d8ce-0555-4781-b645-5c2ec1932a00">"A class of auxetic three-dimensional lattices"</a>. <i>Journal of the Mechanics and Physics of Solids</i>. <b>91</b>: 56–72. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1506.04919">1506.04919</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2016JMPSo..91...56C">2016JMPSo..91...56C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1016%2Fj.jmps.2016.02.010">10.1016/j.jmps.2016.02.010</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:85547530">85547530</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Journal+of+the+Mechanics+and+Physics+of+Solids&amp;rft.atitle=A+class+of+auxetic+three-dimensional+lattices&amp;rft.volume=91&amp;rft.pages=56-72&amp;rft.date=2016&amp;rft_id=info%3Aarxiv%2F1506.04919&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A85547530%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1016%2Fj.jmps.2016.02.010&amp;rft_id=info%3Abibcode%2F2016JMPSo..91...56C&amp;rft.aulast=Cabras&amp;rft.aufirst=Luigi&amp;rft.au=Brun%2C+Michele&amp;rft_id=https%3A%2F%2Fid.elsevier.com%2Fas%2Fauthorization.oauth2%3FplatSite%3DSD%252Fscience%26scope%3Dopenid%2Bemail%2Bprofile%2Bels_auth_info%2Burn%253Acom%253Aelsevier%253Aidp%253Apolicy%253Aproduct%253Ainst_assoc%26response_type%3Dcode%26redirect_uri%3Dhttps%253A%252F%252Fwww.sciencedirect.com%252Fuser%252Fidentity%252Flanding%26authType%3DSINGLE_SIGN_IN%26prompt%3Dnone%26client_id%3DSDFE-v3%26state%3DretryCounter%253D0%2526csrfToken%253D9d114051-9af7-432d-99c4-8f6c93676c1b%2526idpPolicy%253Durn%25253Acom%25253Aelsevier%25253Aidp%25253Apolicy%25253Aproduct%25253Ainst_assoc%2526returnUrl%253D%25252Fscience%25252Farticle%25252Fpii%25252FS0022509616301314%2526prompt%253Dnone%2526cid%253Darp-7372d8ce-0555-4781-b645-5c2ec1932a00&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-24"><span class="mw-cite-backlink"><b><a href="#cite_ref-24">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFCabrasBrun2014" class="citation journal cs1">Cabras, Luigi; Brun, Michele (2014). "Auxetic two-dimensional lattices with Poisson's ratio arbitrarily close to -1". <i>Proceedings of the Royal Society A</i>. <b>470</b> (2172): 20140538. <a href="/wiki/ArXiv_(identifier)" class="mw-redirect" title="ArXiv (identifier)">arXiv</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://arxiv.org/abs/1407.5679">1407.5679</a></span>. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2014RSPSA.47040538C">2014RSPSA.47040538C</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.2014.0538">10.1098/rspa.2014.0538</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:119321604">119321604</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Society+A&amp;rft.atitle=Auxetic+two-dimensional+lattices+with+Poisson%27s+ratio+arbitrarily+close+to+-1&amp;rft.volume=470&amp;rft.issue=2172&amp;rft.pages=20140538&amp;rft.date=2014&amp;rft_id=info%3Aarxiv%2F1407.5679&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A119321604%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1098%2Frspa.2014.0538&amp;rft_id=info%3Abibcode%2F2014RSPSA.47040538C&amp;rft.aulast=Cabras&amp;rft.aufirst=Luigi&amp;rft.au=Brun%2C+Michele&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-25"><span class="mw-cite-backlink"><b><a href="#cite_ref-25">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldsteinGorodtsovLisovenko2013" class="citation journal cs1">Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S. (2013). "Classification of cubic auxetics". <i>Physica Status Solidi B</i>. <b>250</b> (10): 2038–2043. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2013PSSBR.250.2038G">2013PSSBR.250.2038G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1002%2Fpssb.201384233">10.1002/pssb.201384233</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:117802510">117802510</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Physica+Status+Solidi+B&amp;rft.atitle=Classification+of+cubic+auxetics&amp;rft.volume=250&amp;rft.issue=10&amp;rft.pages=2038-2043&amp;rft.date=2013&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A117802510%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1002%2Fpssb.201384233&amp;rft_id=info%3Abibcode%2F2013PSSBR.250.2038G&amp;rft.aulast=Goldstein&amp;rft.aufirst=R.V.&amp;rft.au=Gorodtsov%2C+V.A.&amp;rft.au=Lisovenko%2C+D.S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-26"><span class="mw-cite-backlink"><b><a href="#cite_ref-26">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldsteinGorodtsovLisovenko2011" class="citation journal cs1">Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S. (2011). "Variability of elastic properties of hexagonal auxetics". <i>Doklady Physics</i>. <b>56</b> (12): 602–605. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2011DokPh..56..602G">2011DokPh..56..602G</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1134%2FS1028335811120019">10.1134/S1028335811120019</a>. <a href="/wiki/S2CID_(identifier)" class="mw-redirect" title="S2CID (identifier)">S2CID</a>&#160;<a rel="nofollow" class="external text" href="https://api.semanticscholar.org/CorpusID:120998323">120998323</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Doklady+Physics&amp;rft.atitle=Variability+of+elastic+properties+of+hexagonal+auxetics&amp;rft.volume=56&amp;rft.issue=12&amp;rft.pages=602-605&amp;rft.date=2011&amp;rft_id=https%3A%2F%2Fapi.semanticscholar.org%2FCorpusID%3A120998323%23id-name%3DS2CID&amp;rft_id=info%3Adoi%2F10.1134%2FS1028335811120019&amp;rft_id=info%3Abibcode%2F2011DokPh..56..602G&amp;rft.aulast=Goldstein&amp;rft.aufirst=R.V.&amp;rft.au=Gorodtsov%2C+V.A.&amp;rft.au=Lisovenko%2C+D.S.&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-27"><span class="mw-cite-backlink"><b><a href="#cite_ref-27">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFGoldsteinGorodtsovLisovenkoVolkov2015" class="citation journal cs1">Goldstein, R.V.; Gorodtsov, V.A.; Lisovenko, D.S.; Volkov, M.A. (2015). <a rel="nofollow" class="external text" href="https://doi.org/10.22226%2F2410-3535-2015-4-409-413">"Auxetics among 6-constant tetragonal crystals"</a>. <i>Letters on Materials</i>. <b>5</b> (4): 409–413. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://doi.org/10.22226%2F2410-3535-2015-4-409-413">10.22226/2410-3535-2015-4-409-413</a></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Letters+on+Materials&amp;rft.atitle=Auxetics+among+6-constant+tetragonal+crystals&amp;rft.volume=5&amp;rft.issue=4&amp;rft.pages=409-413&amp;rft.date=2015&amp;rft_id=info%3Adoi%2F10.22226%2F2410-3535-2015-4-409-413&amp;rft.aulast=Goldstein&amp;rft.aufirst=R.V.&amp;rft.au=Gorodtsov%2C+V.A.&amp;rft.au=Lisovenko%2C+D.S.&amp;rft.au=Volkov%2C+M.A.&amp;rft_id=https%3A%2F%2Fdoi.org%2F10.22226%252F2410-3535-2015-4-409-413&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-28"><span class="mw-cite-backlink"><b><a href="#cite_ref-28">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMihaiGoriely2017" class="citation journal cs1"><a href="/wiki/Angela_Mihai" title="Angela Mihai">Mihai, L. A.</a>; Goriely, A. (2017-11-03). <a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719638">"How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity"</a>. <i>Proceedings of the Royal Society A</i>. <b>473</b> (2207): 20170607. <a href="/wiki/Bibcode_(identifier)" class="mw-redirect" title="Bibcode (identifier)">Bibcode</a>:<a rel="nofollow" class="external text" href="https://ui.adsabs.harvard.edu/abs/2017RSPSA.47370607M">2017RSPSA.47370607M</a>. <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1098%2Frspa.2017.0607">10.1098/rspa.2017.0607</a>. <a href="/wiki/PMC_(identifier)" class="mw-redirect" title="PMC (identifier)">PMC</a>&#160;<span class="id-lock-free" title="Freely accessible"><a rel="nofollow" class="external text" href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5719638">5719638</a></span>. <a href="/wiki/PMID_(identifier)" class="mw-redirect" title="PMID (identifier)">PMID</a>&#160;<a rel="nofollow" class="external text" href="https://pubmed.ncbi.nlm.nih.gov/29225507">29225507</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Proceedings+of+the+Royal+Society+A&amp;rft.atitle=How+to+characterize+a+nonlinear+elastic+material%3F+A+review+on+nonlinear+constitutive+parameters+in+isotropic+finite+elasticity&amp;rft.volume=473&amp;rft.issue=2207&amp;rft.pages=20170607&amp;rft.date=2017-11-03&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5719638%23id-name%3DPMC&amp;rft_id=info%3Apmid%2F29225507&amp;rft_id=info%3Adoi%2F10.1098%2Frspa.2017.0607&amp;rft_id=info%3Abibcode%2F2017RSPSA.47370607M&amp;rft.aulast=Mihai&amp;rft.aufirst=L.+A.&amp;rft.au=Goriely%2C+A.&amp;rft_id=https%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC5719638&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-29"><span class="mw-cite-backlink"><b><a href="#cite_ref-29">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation web cs1"><a rel="nofollow" class="external text" href="http://www3.geosc.psu.edu/~jte2/geosc465/lect18.rtf">"Lecture Notes in Structural Geology – Effective Stress"</a><span class="reference-accessdate">. Retrieved <span class="nowrap">2019-07-03</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=unknown&amp;rft.btitle=Lecture+Notes+in+Structural+Geology+%E2%80%93+Effective+Stress&amp;rft_id=http%3A%2F%2Fwww3.geosc.psu.edu%2F~jte2%2Fgeosc465%2Flect18.rtf&amp;rfr_id=info%3Asid%2Fen.wikipedia.org%3APoisson%27s+ratio" class="Z3988"></span></span> </li> <li id="cite_note-30"><span class="mw-cite-backlink"><b><a href="#cite_ref-30">^</a></b></span> <span class="reference-text">Silva, et al. <a rel="nofollow" class="external text" href="https://thematking.com/business_industry/we-aint-just-mats/cork-products/int-materials-review-2005.pdf">"Cork: properties, capabilities and applications"</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170809095822/http://thematking.com/business_industry/we-aint-just-mats/cork-products/int-materials-review-2005.pdf">Archived</a> 2017-08-09 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a>, Retrieved May 4, 2017</span> </li> </ol></div></div> <div class="mw-heading mw-heading2"><h2 id="External_links">External links</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Poisson%27s_ratio&amp;action=edit&amp;section=17" title="Edit section: External links"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <ul><li><a rel="nofollow" class="external text" href="http://silver.neep.wisc.edu/~lakes/PoissonIntro.html">Meaning of Poisson's ratio</a></li> <li><a rel="nofollow" class="external text" href="http://silver.neep.wisc.edu/~lakes/Poisson.html">Negative Poisson's ratio materials</a></li> <li><a rel="nofollow" class="external text" href="http://home.um.edu.mt/auxetic">More on negative Poisson's ratio materials (auxetic)</a> <a rel="nofollow" class="external text" href="https://web.archive.org/web/20180208003939/http://home.um.edu.mt/auxetic">Archived</a> 2018-02-08 at the <a href="/wiki/Wayback_Machine" title="Wayback Machine">Wayback Machine</a></li></ul> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Elastic_moduli_for_homogeneous_isotropic_materials" style="padding:3px"><table class="nowraplinks mw-collapsible show navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Elastic_moduli" title="Template:Elastic moduli"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Elastic_moduli" title="Template talk:Elastic moduli"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Elastic_moduli" title="Special:EditPage/Template:Elastic moduli"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Elastic_moduli_for_homogeneous_isotropic_materials" style="font-size:114%;margin:0 4em"><a href="/wiki/Elastic_modulus" title="Elastic modulus">Elastic moduli</a> for homogeneous <a href="/wiki/Isotropic" class="mw-redirect" title="Isotropic">isotropic</a> materials</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bulk_modulus" title="Bulk modulus">Bulk modulus</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b76fce82a62ed5461908f0dc8f037de4e3686b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.066ex; height:2.176ex;" alt="{\displaystyle K}"></span>)</li> <li><a href="/wiki/Young%27s_modulus" title="Young&#39;s modulus">Young's modulus</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4232c9de2ee3eec0a9c0a19b15ab92daa6223f9b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.776ex; height:2.176ex;" alt="{\displaystyle E}"></span>)</li> <li><a href="/wiki/Lam%C3%A9_parameters" title="Lamé parameters">Lamé's first parameter</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43d0ea3c9c025af1be9128e62a18fa74bedda2a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.355ex; height:2.176ex;" alt="{\displaystyle \lambda }"></span>)</li> <li><a href="/wiki/Shear_modulus" title="Shear modulus">Shear modulus</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G,\mu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>,</mo> <mi>&#x03BC;<!-- μ --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G,\mu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7ed0d290f164079e9704807191c18f9415457bea" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:4.262ex; height:2.676ex;" alt="{\displaystyle G,\mu }"></span>)</li> <li><a class="mw-selflink selflink">Poisson's ratio</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu }"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu }</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c15bbbb971240cf328aba572178f091684585468" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.232ex; height:1.676ex;" alt="{\displaystyle \nu }"></span>)</li> <li><a href="/wiki/P-wave_modulus" title="P-wave modulus">P-wave modulus</a> (<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f82cade9898ced02fdd08712e5f0c0151758a0dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.442ex; height:2.176ex;" alt="{\displaystyle M}"></span>)</li></ul> </div></td></tr></tbody></table></div> <table class="wikitable mw-collapsible" width="100%" style="font-size:smaller; background:white" align="center"> <tbody><tr> <th colspan="8">Conversion formulae </th></tr> <tr> <td colspan="8">Homogeneous isotropic linear elastic materials have their elastic properties uniquely determined by any two moduli among these; thus, given any two, any other of the elastic moduli can be calculated according to these formulas, provided both for 3D materials (first part of the table) and for 2D materials (second part). </td></tr> <tr> <td style="background:#F0F0FF;"><b>3D formulae</b> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d12e227970b986c1ff219badec7438f7383bfdb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.906ex; height:2.176ex;" alt="{\displaystyle K=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>E</mi> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b75f04c79769676b88c45d4fef023a01294b670a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.616ex; height:2.176ex;" alt="{\displaystyle E=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda =\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda =\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fdf13c116950ce78ddbc7a016c3cd804e23ea86d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.196ex; height:2.176ex;" alt="{\displaystyle \lambda =\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>G</mi> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fa8a892590600356bf9957268977269f386821c6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.667ex; height:2.176ex;" alt="{\displaystyle G=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu =\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu =\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3b632d33a8bb2255e8a086b63953c599d3b6a718" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:4.073ex; height:1.676ex;" alt="{\displaystyle \nu =\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/843dc939c547010c55bd7753f7c94e6996934ca4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:5.283ex; height:2.176ex;" alt="{\displaystyle M=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;">Notes </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K,\,E)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>E</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K,\,E)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/996a015d617843aa00212a26839fbae210c834a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.072ex; height:2.843ex;" alt="{\displaystyle (K,\,E)}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>9</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cad8348883df915b9b03fb2820ec6b096640f4f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:9.215ex; height:4.343ex;" alt="{\displaystyle {\tfrac {3K(3K-E)}{9K-E}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3KE}{9K-E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mi>E</mi> </mrow> <mrow> <mn>9</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3KE}{9K-E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdd679253fa436a6900d1cf949d909d3b09cf3c0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.653ex; height:3.843ex;" alt="{\displaystyle {\tfrac {3KE}{9K-E}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3K-E}{6K}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mrow> <mrow> <mn>6</mn> <mi>K</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3K-E}{6K}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/52e22f238cec78b55c3b21bb03bd0f6bc122006b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.653ex; height:3.843ex;" alt="{\displaystyle {\tfrac {3K-E}{6K}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mi>K</mi> <mo>+</mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>9</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9c924e463a20a0f63bd2f876283e3fb1a965db68" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:9.215ex; height:4.343ex;" alt="{\displaystyle {\tfrac {3K(3K+E)}{9K-E}}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K,\,\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K,\,\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/423e5f4d1c8ee39ba6de7bc5e48df6837fff232a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.652ex; height:2.843ex;" alt="{\displaystyle (K,\,\lambda )}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>9</mn> <mi>K</mi> <mo stretchy="false">(</mo> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3233ebb13df867ba5551fefa7e092733fea80c42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:8.096ex; height:4.343ex;" alt="{\displaystyle {\tfrac {9K(K-\lambda )}{3K-\lambda }}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3(K-\lambda )}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mo stretchy="false">(</mo> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3(K-\lambda )}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e4d4ffacd8fb2de88a240a663a13067a7c3e921f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.635ex; height:4.176ex;" alt="{\displaystyle {\tfrac {3(K-\lambda )}{2}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda }{3K-\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mn>3</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda }{3K-\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f1c70a68ad578ac446b83ae2af368a85554e2f4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.356ex; height:3.843ex;" alt="{\displaystyle {\tfrac {\lambda }{3K-\lambda }}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3K-2\lambda \,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BB;<!-- λ --></mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3K-2\lambda \,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dccc234a5195e4cc32a106e7280ce2e082a9da43" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.974ex; height:2.343ex;" alt="{\displaystyle 3K-2\lambda \,}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K,\,G)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>G</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K,\,G)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bae48568e7a818eb72621f7cd602d0effc7e3648" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.123ex; height:2.843ex;" alt="{\displaystyle (K,\,G)}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {9KG}{3K+G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>9</mn> <mi>K</mi> <mi>G</mi> </mrow> <mrow> <mn>3</mn> <mi>K</mi> <mo>+</mo> <mi>G</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {9KG}{3K+G}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5440c8c124cded6c55e978cbf920e76e4883a51b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:5.689ex; height:4.009ex;" alt="{\displaystyle {\tfrac {9KG}{3K+G}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K-{\tfrac {2G}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>G</mi> </mrow> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K-{\tfrac {2G}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a5272b70cff4a6a17225acf399ea27a1948b4f59" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.856ex; height:3.843ex;" alt="{\displaystyle K-{\tfrac {2G}{3}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>G</mi> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>3</mn> <mi>K</mi> <mo>+</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b11dec1ab89c26fc5ad5719fd2932e1dc68f4cb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.791ex; height:4.343ex;" alt="{\displaystyle {\tfrac {3K-2G}{2(3K+G)}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K+{\tfrac {4G}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>K</mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>4</mn> <mi>G</mi> </mrow> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K+{\tfrac {4G}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a71d02abd602def118ed9f9228f0f686a06448d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.856ex; height:3.843ex;" alt="{\displaystyle K+{\tfrac {4G}{3}}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K,\,\nu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K,\,\nu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2f6df6fb9936ea5a0e15358e66802cafe9b747d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.528ex; height:2.843ex;" alt="{\displaystyle (K,\,\nu )}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 3K(1-2\nu )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>3</mn> <mi>K</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 3K(1-2\nu )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dd567543f973005ad7031789e6219f93463e6d87" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.822ex; height:2.843ex;" alt="{\displaystyle 3K(1-2\nu )\,}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3K\nu }{1+\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3K\nu }{1+\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1194366850f7d5421ab50b6c2706e58498f7ea96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.99ex; height:3.843ex;" alt="{\displaystyle {\tfrac {3K\nu }{1+\nu }}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/31c8588d1514e15c703af716b1d98c94ef2ad4c9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:8.192ex; height:4.843ex;" alt="{\displaystyle {\tfrac {3K(1-2\nu )}{2(1+\nu )}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c09e8d1337a766b61ba2b9948fa4af1503d2ede0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.37ex; height:4.343ex;" alt="{\displaystyle {\tfrac {3K(1-\nu )}{1+\nu }}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K,\,M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>K</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K,\,M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bb74f97b79a7d923d7036a9006af1437a58615e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.738ex; height:2.843ex;" alt="{\displaystyle (K,\,M)}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {9K(M-K)}{3K+M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>9</mn> <mi>K</mi> <mo stretchy="false">(</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mi>K</mi> <mo>+</mo> <mi>M</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {9K(M-K)}{3K+M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f0a754879220d62e4a49b2d4c5a9a5ac9ef939a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:8.865ex; height:4.343ex;" alt="{\displaystyle {\tfrac {9K(M-K)}{3K+M}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3K-M}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3K-M}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7da3dd9c26c427aaeb80a6f841626124c66dc665" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.124ex; height:3.676ex;" alt="{\displaystyle {\tfrac {3K-M}{2}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3(M-K)}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mo stretchy="false">(</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mi>K</mi> <mo stretchy="false">)</mo> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3(M-K)}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/322bd48e7d8cf39df6f267e9d4fb836db4a73702" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.404ex; height:4.176ex;" alt="{\displaystyle {\tfrac {3(M-K)}{4}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3K-M}{3K+M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>K</mi> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> </mrow> <mrow> <mn>3</mn> <mi>K</mi> <mo>+</mo> <mi>M</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3K-M}{3K+M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/73b822c78e943da6485611dfbdc74be5f78b15b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:6.124ex; height:3.843ex;" alt="{\displaystyle {\tfrac {3K-M}{3K+M}}}"></span> </td> <td style="text-align:center;"> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E,\,\lambda )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E,\,\lambda )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b5c948c9a642e3318131878edf4a3d45bfb90f8d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.361ex; height:2.843ex;" alt="{\displaystyle (E,\,\lambda )}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E+3\lambda +R}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>E</mi> <mo>+</mo> <mn>3</mn> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>R</mi> </mrow> <mn>6</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E+3\lambda +R}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a38418330bce4527d86325b426550cd9e160c575" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.676ex; height:3.843ex;" alt="{\displaystyle {\tfrac {E+3\lambda +R}{6}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E-3\lambda +R}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>E</mi> <mo>&#x2212;<!-- − --></mo> <mn>3</mn> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>R</mi> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E-3\lambda +R}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/afb261c4ee6f07fd89951fa28248a90f7b9d3025" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.676ex; height:3.676ex;" alt="{\displaystyle {\tfrac {E-3\lambda +R}{4}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2\lambda }{E+\lambda +R}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> <mrow> <mi>E</mi> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>R</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2\lambda }{E+\lambda +R}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c2a996d0bd87fb28da723345b090392d12e01118" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:6.854ex; height:3.843ex;" alt="{\displaystyle {\tfrac {2\lambda }{E+\lambda +R}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E-\lambda +R}{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>E</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>R</mi> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E-\lambda +R}{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/372ceea38591e2c69d5087588cab00087c749abb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.854ex; height:3.676ex;" alt="{\displaystyle {\tfrac {E-\lambda +R}{2}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle R={\sqrt {E^{2}+9\lambda ^{2}+2E\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>R</mi> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>9</mn> <msup> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>2</mn> <mi>E</mi> <mi>&#x03BB;<!-- λ --></mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle R={\sqrt {E^{2}+9\lambda ^{2}+2E\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8fedc22d764b6af93b68ad27937582d75919d76b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:23.58ex; height:3.509ex;" alt="{\displaystyle R={\sqrt {E^{2}+9\lambda ^{2}+2E\lambda }}}"></span> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E,\,G)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>G</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E,\,G)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ee52d776f2cb07c88fbac6567029158dff718e01" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.833ex; height:2.843ex;" alt="{\displaystyle (E,\,G)}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {EG}{3(3G-E)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>E</mi> <mi>G</mi> </mrow> <mrow> <mn>3</mn> <mo stretchy="false">(</mo> <mn>3</mn> <mi>G</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {EG}{3(3G-E)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94fef5491daefd3b9667bfd32eb6e4b3f31a67aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.585ex; height:4.343ex;" alt="{\displaystyle {\tfrac {EG}{3(3G-E)}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {G(E-2G)}{3G-E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mi>E</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mi>G</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {G(E-2G)}{3G-E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b592ec0480b2ca3a99ea29d9cbd0b631d777d4d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:8.055ex; height:4.509ex;" alt="{\displaystyle {\tfrac {G(E-2G)}{3G-E}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E}{2G}}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>E</mi> <mrow> <mn>2</mn> <mi>G</mi> </mrow> </mfrac> </mstyle> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E}{2G}}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b9fb70b8d93a1714d230f745d4bb0a3aa81031a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:6.953ex; height:3.676ex;" alt="{\displaystyle {\tfrac {E}{2G}}-1}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {G(4G-E)}{3G-E}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mn>4</mn> <mi>G</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mi>G</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {G(4G-E)}{3G-E}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/06fef6489910b32a86944f5fe2f5f0c1473e87c1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:8.055ex; height:4.509ex;" alt="{\displaystyle {\tfrac {G(4G-E)}{3G-E}}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E,\,\nu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E,\,\nu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7d858acfba62fc12da4ae6fa0759b9df87c51d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.238ex; height:2.843ex;" alt="{\displaystyle (E,\,\nu )}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E}{3(1-2\nu )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>E</mi> <mrow> <mn>3</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E}{3(1-2\nu )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/49073e20128a9ecf62b06e95a6e611808b4a1015" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.731ex; height:4.176ex;" alt="{\displaystyle {\tfrac {E}{3(1-2\nu )}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>E</mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7aa443ecbbd2c92a028d26ee25863bbc1592b4b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.16ex; height:4.176ex;" alt="{\displaystyle {\tfrac {E\nu }{(1+\nu )(1-2\nu )}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E}{2(1+\nu )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>E</mi> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E}{2(1+\nu )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ea91afdc4bb2364d6deb22ee5653d33451c8d7b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:5.909ex; height:4.176ex;" alt="{\displaystyle {\tfrac {E}{2(1+\nu )}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>E</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7abf15539e84aef12ea7f6aed6ac61b939e0897a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:10.16ex; height:4.843ex;" alt="{\displaystyle {\tfrac {E(1-\nu )}{(1+\nu )(1-2\nu )}}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E,\,M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>E</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E,\,M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/029a8efce5680f60845e7b4029cd8d714726474c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.448ex; height:2.843ex;" alt="{\displaystyle (E,\,M)}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3M-E+S}{6}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mo>+</mo> <mi>S</mi> </mrow> <mn>6</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3M-E+S}{6}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6df880ae07d8878db46e66ec91cde699a1172bbf" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:8.258ex; height:3.843ex;" alt="{\displaystyle {\tfrac {3M-E+S}{6}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {M-E+S}{4}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mi>E</mi> <mo>+</mo> <mi>S</mi> </mrow> <mn>4</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {M-E+S}{4}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cd8aa8a8f133559b802bf384ff144d2bfec3280c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.436ex; height:3.676ex;" alt="{\displaystyle {\tfrac {M-E+S}{4}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {3M+E-S}{8}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>3</mn> <mi>M</mi> <mo>+</mo> <mi>E</mi> <mo>&#x2212;<!-- − --></mo> <mi>S</mi> </mrow> <mn>8</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {3M+E-S}{8}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/53cddf1576995522248b1a396e8a790309691870" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:8.258ex; height:3.843ex;" alt="{\displaystyle {\tfrac {3M+E-S}{8}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E-M+S}{4M}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>E</mi> <mo>&#x2212;<!-- − --></mo> <mi>M</mi> <mo>+</mo> <mi>S</mi> </mrow> <mrow> <mn>4</mn> <mi>M</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E-M+S}{4M}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ba7b57d39482e416644c8d99a1ac18029b84711" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:7.436ex; height:3.676ex;" alt="{\displaystyle {\tfrac {E-M+S}{4M}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S=\pm {\sqrt {E^{2}+9M^{2}-10EM}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>S</mi> <mo>=</mo> <mo>&#x00B1;<!-- ± --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <msup> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>9</mn> <msup> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>&#x2212;<!-- − --></mo> <mn>10</mn> <mi>E</mi> <mi>M</mi> </msqrt> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle S=\pm {\sqrt {E^{2}+9M^{2}-10EM}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/91fb683e4525bf2f8fef0c060113d446025ec2a5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:28.517ex; height:3.509ex;" alt="{\displaystyle S=\pm {\sqrt {E^{2}+9M^{2}-10EM}}}"></span><br /> <p>There are two valid solutions.<br /> The plus sign leads to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu \geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2265;<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu \geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dec80f16f256f3990d91eb9966a90bbe0baee4b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.493ex; height:2.343ex;" alt="{\displaystyle \nu \geq 0}"></span>.<br /> </p> The minus sign leads to <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu \leq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo>&#x2264;<!-- ≤ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu \leq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/030f3e40f7ced9ec8cc73d667aa15f61f0a377e9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.493ex; height:2.343ex;" alt="{\displaystyle \nu \leq 0}"></span>.<br /><p class="mw-empty-elt"></p> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\lambda ,\,G)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>G</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\lambda ,\,G)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7bffd6d22cc67fd1a35a585b13d7b32a74ce6b1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.412ex; height:2.843ex;" alt="{\displaystyle (\lambda ,\,G)}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda +{\tfrac {2G}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>G</mi> </mrow> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda +{\tfrac {2G}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bfcd78f0e042c88176c6ba5c0f8dcebf89fe223a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.145ex; height:3.843ex;" alt="{\displaystyle \lambda +{\tfrac {2G}{3}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mn>2</mn> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>G</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d0994ccfa74411f35a8f0762379eddc3660bfec4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:8.58ex; height:4.509ex;" alt="{\displaystyle {\tfrac {G(3\lambda +2G)}{\lambda +G}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/569977b3b51798797b8ed7d287e828ef07cdb54a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.466ex; height:4.343ex;" alt="{\displaystyle {\tfrac {\lambda }{2(\lambda +G)}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda +2G\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BB;<!-- λ --></mi> <mo>+</mo> <mn>2</mn> <mi>G</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda +2G\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f04bd3c70df3389cd672961e8ba5636aa8d5fb48" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:7.572ex; height:2.343ex;" alt="{\displaystyle \lambda +2G\,}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\lambda ,\,\nu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\lambda ,\,\nu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cbafda646cd2c8251ec73dbe5efd428aee76544e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:5.818ex; height:2.843ex;" alt="{\displaystyle (\lambda ,\,\nu )}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mi>&#x03BD;<!-- ν --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8668d7ae1d4ba0bea79bc24b22969de2e0020b1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:6.046ex; height:4.343ex;" alt="{\displaystyle {\tfrac {\lambda (1+\nu )}{3\nu }}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mi>&#x03BD;<!-- ν --></mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/16ba478690ce90bc61e86d5b21ef89e8d97c0223" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:11.119ex; height:4.009ex;" alt="{\displaystyle {\tfrac {\lambda (1+\nu )(1-2\nu )}{\nu }}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0ae2f9d9801984c3a421791f68ed6d206906ce4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:6.868ex; height:4.176ex;" alt="{\displaystyle {\tfrac {\lambda (1-2\nu )}{2\nu }}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mi>&#x03BD;<!-- ν --></mi> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a4b0e21d0522f123eb9043c4e4352bbfd0944365" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:6.046ex; height:4.009ex;" alt="{\displaystyle {\tfrac {\lambda (1-\nu )}{\nu }}}"></span> </td> <td style="text-align:center;">Cannot be used when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu =0\Leftrightarrow \lambda =0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>&#x03BD;<!-- ν --></mi> <mo>=</mo> <mn>0</mn> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu =0\Leftrightarrow \lambda =0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d7e6655bc4e2949eee61d990716a2b8af684651d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:14.723ex; height:2.176ex;" alt="{\displaystyle \nu =0\Leftrightarrow \lambda =0}"></span> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\lambda ,\,M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03BB;<!-- λ --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\lambda ,\,M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3242e9c8067dcfac72d5c96bcec80ccda592d34e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.028ex; height:2.843ex;" alt="{\displaystyle (\lambda ,\,M)}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {M+2\lambda }{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>M</mi> <mo>+</mo> <mn>2</mn> <mi>&#x03BB;<!-- λ --></mi> </mrow> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {M+2\lambda }{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1df1550f26280e13b63e387c950d8e73a06d1820" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:5.622ex; height:3.843ex;" alt="{\displaystyle {\tfrac {M+2\lambda }{3}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {(M-\lambda )(M+2\lambda )}{M+\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>M</mi> <mo>+</mo> <mn>2</mn> <mi>&#x03BB;<!-- λ --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>M</mi> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {(M-\lambda )(M+2\lambda )}{M+\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/94c594e157229dfa81918f2d6de968ffe4cea963" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:12.144ex; height:4.343ex;" alt="{\displaystyle {\tfrac {(M-\lambda )(M+2\lambda )}{M+\lambda }}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {M-\lambda }{2}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> <mn>2</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {M-\lambda }{2}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ba0c175995ebb2020f1b31ad369bf52374d87816" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:4.8ex; height:3.676ex;" alt="{\displaystyle {\tfrac {M-\lambda }{2}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda }{M+\lambda }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mi>&#x03BB;<!-- λ --></mi> <mrow> <mi>M</mi> <mo>+</mo> <mi>&#x03BB;<!-- λ --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda }{M+\lambda }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6926e4029cdea679bccd9d770206e1d6ba9cc097" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:4.8ex; height:3.843ex;" alt="{\displaystyle {\tfrac {\lambda }{M+\lambda }}}"></span> </td> <td style="text-align:center;"> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G,\,\nu )}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G,\,\nu )}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/03de031e73561f10f24638feaf69d90abe32aea5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.289ex; height:2.843ex;" alt="{\displaystyle (G,\,\nu )}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>G</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e7f8f5046df3cc6a7152f9fa56845d5dbce78033" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.201ex; height:4.843ex;" alt="{\displaystyle {\tfrac {2G(1+\nu )}{3(1-2\nu )}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2G(1+\nu )\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <mi>G</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2G(1+\nu )\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8ecc39d8499aa0848351a6510b116bd2dfea06d8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.421ex; height:2.843ex;" alt="{\displaystyle 2G(1+\nu )\,}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2G\nu }{1-2\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>G</mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2G\nu }{1-2\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d011b18df127233873f4af03b50318509583006e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:4.63ex; height:3.843ex;" alt="{\displaystyle {\tfrac {2G\nu }{1-2\nu }}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <mi>G</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/036c5b70861f3145642c2d797f6cbf666ea26dbc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:7.201ex; height:4.343ex;" alt="{\displaystyle {\tfrac {2G(1-\nu )}{1-2\nu }}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G,\,M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>G</mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G,\,M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/40060aa6964ead07257199a60095ec47599c9455" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:7.499ex; height:2.843ex;" alt="{\displaystyle (G,\,M)}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-{\tfrac {4G}{3}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>4</mn> <mi>G</mi> </mrow> <mn>3</mn> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-{\tfrac {4G}{3}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bf22c9741623f0209e7585845196a3fa1ed6282a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:8.232ex; height:3.843ex;" alt="{\displaystyle M-{\tfrac {4G}{3}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {G(3M-4G)}{M-G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>G</mi> <mo stretchy="false">(</mo> <mn>3</mn> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>4</mn> <mi>G</mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mi>G</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {G(3M-4G)}{M-G}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0b53b71a131246c16879e071ac283f0cf16bc255" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:9.348ex; height:4.509ex;" alt="{\displaystyle {\tfrac {G(3M-4G)}{M-G}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M-2G\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>G</mi> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M-2G\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4777994467bbd835a560ddf3d9b7a9bb88f6be15" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:8.659ex; height:2.343ex;" alt="{\displaystyle M-2G\,}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {M-2G}{2M-2G}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>G</mi> </mrow> <mrow> <mn>2</mn> <mi>M</mi> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>G</mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {M-2G}{2M-2G}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d95ab5446ac8be62e025bbc4461d19ad03ddb0ba" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:6.777ex; height:4.009ex;" alt="{\displaystyle {\tfrac {M-2G}{2M-2G}}}"></span> </td> <td style="text-align:center;"> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\nu ,\,M)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <mi>&#x03BD;<!-- ν --></mi> <mo>,</mo> <mspace width="thinmathspace" /> <mi>M</mi> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\nu ,\,M)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1fb7e1e592dc27b6b7dd908dc0f1eaae129495bb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:6.905ex; height:2.843ex;" alt="{\displaystyle (\nu ,\,M)}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {M(1+\nu )}{3(1-\nu )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>M</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>3</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {M(1+\nu )}{3(1-\nu )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b555e35103ae080362cc5ea5e71c0a5fb01dfb3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:6.814ex; height:4.843ex;" alt="{\displaystyle {\tfrac {M(1+\nu )}{3(1-\nu )}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {M(1+\nu )(1-2\nu )}{1-\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>M</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {M(1+\nu )(1-2\nu )}{1-\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c18235e12644cbb022f23fb36c11fca9164c19ee" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:11.887ex; height:4.343ex;" alt="{\displaystyle {\tfrac {M(1+\nu )(1-2\nu )}{1-\nu }}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {M\nu }{1-\nu }}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>M</mi> <mi>&#x03BD;<!-- ν --></mi> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {M\nu }{1-\nu }}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a015af678fe0800a1b50744d82084099f15f462a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.808ex; height:3.676ex;" alt="{\displaystyle {\tfrac {M\nu }{1-\nu }}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {M(1-2\nu )}{2(1-\nu )}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mi>M</mi> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <mi>&#x03BD;<!-- ν --></mi> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {M(1-2\nu )}{2(1-\nu )}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a076de87f5e08e5bb0733e7008687fec9f88396d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.636ex; height:4.843ex;" alt="{\displaystyle {\tfrac {M(1-2\nu )}{2(1-\nu )}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td> </td></tr> <tr> <td style="background:#F0F0FF;"><b>2D formulae</b> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\mathrm {2D} }=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\mathrm {2D} }=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a6c0547931c4c1e3cc4ac771a535617a442d98d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.123ex; height:2.509ex;" alt="{\displaystyle K_{\mathrm {2D} }=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle E_{\mathrm {2D} }=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle E_{\mathrm {2D} }=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/145ff1eddd10383e2d0bf4f6eff8b5eeedb448f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.865ex; height:2.509ex;" alt="{\displaystyle E_{\mathrm {2D} }=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{\mathrm {2D} }=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{\mathrm {2D} }=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/70b691041358c0200dc4c170da6b8b62706e44a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.505ex; height:2.509ex;" alt="{\displaystyle \lambda _{\mathrm {2D} }=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle G_{\mathrm {2D} }=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle G_{\mathrm {2D} }=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b43b00c53cda00e94658abbcd45ed156af4c1d4a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.977ex; height:2.509ex;" alt="{\displaystyle G_{\mathrm {2D} }=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu _{\mathrm {2D} }=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu _{\mathrm {2D} }=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2eb28b6f1e836172c154325538936f09b55de993" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:6.299ex; height:2.009ex;" alt="{\displaystyle \nu _{\mathrm {2D} }=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{\mathrm {2D} }=\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{\mathrm {2D} }=\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ebd093c0d6e6d5c2b5f88ffbd7b23c3f0164cb20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:7.404ex; height:2.509ex;" alt="{\displaystyle M_{\mathrm {2D} }=\,}"></span> </td> <td style="text-align:center; background:#F0F0FF;">Notes </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K_{\mathrm {2D} },\,E_{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K_{\mathrm {2D} },\,E_{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e6610d0252ab47240ee324d52f781214686e42b7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.538ex; height:2.843ex;" alt="{\displaystyle (K_{\mathrm {2D} },\,E_{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/012be07cda111d8d43c481b55fba1c8cd9aa81da" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:14.594ex; height:4.676ex;" alt="{\displaystyle {\tfrac {2K_{\mathrm {2D} }(2K_{\mathrm {2D} }-E_{\mathrm {2D} })}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mn>4</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d225deea4bae144ad3163a592c84cba353a18b4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.246ex; height:4.509ex;" alt="{\displaystyle {\tfrac {K_{\mathrm {2D} }E_{\mathrm {2D} }}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/886783b8c6eba83c0af80170a833041a2bc91ff3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.246ex; height:4.509ex;" alt="{\displaystyle {\tfrac {2K_{\mathrm {2D} }-E_{\mathrm {2D} }}{2K_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>4</mn> <msubsup> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <mn>4</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce32fb675b775c5bdfca3f4b6659163a4b55c7b2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.246ex; height:5.009ex;" alt="{\displaystyle {\tfrac {4K_{\mathrm {2D} }^{2}}{4K_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K_{\mathrm {2D} },\,\lambda _{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K_{\mathrm {2D} },\,\lambda _{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b8e41320590a7de1bdd74d77ec4fb8c5de98c735" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.178ex; height:2.843ex;" alt="{\displaystyle (K_{\mathrm {2D} },\,\lambda _{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>4</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ff62a0404edd2ddaa137a027c26dcc9f5d54aa35" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:13.517ex; height:4.676ex;" alt="{\displaystyle {\tfrac {4K_{\mathrm {2D} }(K_{\mathrm {2D} }-\lambda _{\mathrm {2D} })}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8e0553633b1cd67e18d005fa1233921bba612bc7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.788ex; height:2.509ex;" alt="{\displaystyle K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mrow> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c03fbcd4f8880f2e465c96ab0105a73d82e4d4b6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:8.992ex; height:4.509ex;" alt="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/dadcbb465024372d667d981060d1e22f78032843" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.951ex; height:2.509ex;" alt="{\displaystyle 2K_{\mathrm {2D} }-\lambda _{\mathrm {2D} }}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K_{\mathrm {2D} },\,G_{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K_{\mathrm {2D} },\,G_{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c0d212f7396611e34fe1d734027cedaef6af70a4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.65ex; height:2.843ex;" alt="{\displaystyle (K_{\mathrm {2D} },\,G_{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>4</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5a1d3ae4367d4e17dfd09606481b88a4ed978fb6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:8.503ex; height:4.509ex;" alt="{\displaystyle {\tfrac {4K_{\mathrm {2D} }G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b0c746a534f84ea0488149bfc6547318c71d73b5" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.26ex; height:2.509ex;" alt="{\displaystyle K_{\mathrm {2D} }-G_{\mathrm {2D} }}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/de713b3e1c47a75f90ab0fbdd3f076a6b602edd6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:8.503ex; height:4.509ex;" alt="{\displaystyle {\tfrac {K_{\mathrm {2D} }-G_{\mathrm {2D} }}{K_{\mathrm {2D} }+G_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fbb4c1d4cc074eaf126bacc62266e79366205b58" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.26ex; height:2.509ex;" alt="{\displaystyle K_{\mathrm {2D} }+G_{\mathrm {2D} }}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (K_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (K_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e283c72d13d40002703e71729b759b3e50c537f9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.971ex; height:2.843ex;" alt="{\displaystyle (K_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3ceee5a40e74656050ebc02c44486365b4eff639" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:15.103ex; height:2.843ex;" alt="{\displaystyle 2K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })\,}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cf645b1d01ce663dbe446ca262fe7d8982a5987f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.567ex; height:4.343ex;" alt="{\displaystyle {\tfrac {2K_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7feea6eb18fa6e18abbb7f5156a077c877e44a0c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:10.125ex; height:4.509ex;" alt="{\displaystyle {\tfrac {K_{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{1+\nu _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>K</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/478b33d574f890091f0231524ec05f9f8b8ee8f1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:5.6ex; height:4.343ex;" alt="{\displaystyle {\tfrac {2K_{\mathrm {2D} }}{1+\nu _{\mathrm {2D} }}}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E_{\mathrm {2D} },\,G_{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E_{\mathrm {2D} },\,G_{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82f4b920c8f2b88eeddad760d3092c3fe6ade926" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.392ex; height:2.843ex;" alt="{\displaystyle (E_{\mathrm {2D} },\,G_{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E_{\mathrm {2D} }G_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mn>4</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E_{\mathrm {2D} }G_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3d08312a061b4190727b8cf4b3374b3a487ee0cd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.143ex; height:4.509ex;" alt="{\displaystyle {\tfrac {E_{\mathrm {2D} }G_{\mathrm {2D} }}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>4</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0ba3f089d5a578367ccfdde36e561d651b70db82" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:14.387ex; height:4.676ex;" alt="{\displaystyle {\tfrac {2G_{\mathrm {2D} }(E_{\mathrm {2D} }-2G_{\mathrm {2D} })}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mrow> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> <mo>&#x2212;<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1bc0b53a7580b8e0c920704ed43ffc27b9120799" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:8.804ex; height:4.343ex;" alt="{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2G_{\mathrm {2D} }}}-1}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>4</mn> <msubsup> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msubsup> </mrow> <mrow> <mn>4</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2235f7699f8a7c484ebe6ce70240ed6f08da4c9f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.143ex; height:5.009ex;" alt="{\displaystyle {\tfrac {4G_{\mathrm {2D} }^{2}}{4G_{\mathrm {2D} }-E_{\mathrm {2D} }}}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (E_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (E_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b77009ceec3987a55112023183a7ee301731b675" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.714ex; height:2.843ex;" alt="{\displaystyle (E_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c7a7b40ff685661adb0b9dfee6bd644d70b2e914" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.701ex; height:4.509ex;" alt="{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1-\nu _{\mathrm {2D} })}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/099970a35cbfe96ff5d719bf331a6d26b1a70d47" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.922ex; height:4.509ex;" alt="{\displaystyle {\tfrac {E_{\mathrm {2D} }\nu _{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mrow> <mn>2</mn> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2caca86f5b8824866bbbb6db17c6ce009ea598e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:7.701ex; height:4.509ex;" alt="{\displaystyle {\tfrac {E_{\mathrm {2D} }}{2(1+\nu _{\mathrm {2D} })}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>E</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mrow> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b2e9fe243a025d14cc19c4feb002fa281be09200" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:12.922ex; height:4.509ex;" alt="{\displaystyle {\tfrac {E_{\mathrm {2D} }}{(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\lambda _{\mathrm {2D} },\,G_{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\lambda _{\mathrm {2D} },\,G_{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e19fd95c2596c2d28dba16de09f7c918a4fc9262" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.032ex; height:2.843ex;" alt="{\displaystyle (\lambda _{\mathrm {2D} },\,G_{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2793b8b4c3ec84a326439a25264e5b988b625799" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:10.642ex; height:2.509ex;" alt="{\displaystyle \lambda _{\mathrm {2D} }+G_{\mathrm {2D} }}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>4</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>+</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fadfb075fa8e027e9917dcd1ba9bc67175d7c735" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:13.31ex; height:4.676ex;" alt="{\displaystyle {\tfrac {4G_{\mathrm {2D} }(\lambda _{\mathrm {2D} }+G_{\mathrm {2D} })}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/eab1dc2f5aab249f9dc05a1ee174b19186396346" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:8.888ex; height:4.509ex;" alt="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>+</mo> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c5308206440fd0cc39d9baa35004ee0675fec397" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:12.191ex; height:2.509ex;" alt="{\displaystyle \lambda _{\mathrm {2D} }+2G_{\mathrm {2D} }\,}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (\lambda _{\mathrm {2D} },\,\nu _{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (\lambda _{\mathrm {2D} },\,\nu _{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5761b070cd3f5e66294b5ff948d0d5f2ce9fd73b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.354ex; height:2.843ex;" alt="{\displaystyle (\lambda _{\mathrm {2D} },\,\nu _{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/372ee40f2f39a0530c89865308f0cfe92d46a88a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:9.688ex; height:4.509ex;" alt="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0fe813ef63bd6a0a2158043a1f270e7f2736bf49" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:15.731ex; height:4.343ex;" alt="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1+\nu _{\mathrm {2D} })(1-\nu _{\mathrm {2D} })}{\nu _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>2</mn> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e496450f903c59f63dc9ff43185abfc8771b7cf9" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:9.688ex; height:4.509ex;" alt="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }(1-\nu _{\mathrm {2D} })}{2\nu _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/775d9920e7cedfb6290becbb23ccae4407dc2131" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:3.645ex; height:4.176ex;" alt="{\displaystyle {\tfrac {\lambda _{\mathrm {2D} }}{\nu _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;">Cannot be used when <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \nu _{\mathrm {2D} }=0\Leftrightarrow \lambda _{\mathrm {2D} }=0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> <mo stretchy="false">&#x21D4;<!-- ⇔ --></mo> <msub> <mi>&#x03BB;<!-- λ --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>=</mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \nu _{\mathrm {2D} }=0\Leftrightarrow \lambda _{\mathrm {2D} }=0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/abda36be11717593314a048856e008148eab22aa" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:19.259ex; height:2.509ex;" alt="{\displaystyle \nu _{\mathrm {2D} }=0\Leftrightarrow \lambda _{\mathrm {2D} }=0}"></span> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/7a15ad10fa657886cd82c74e9cc0cd8faabb72b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.825ex; height:2.843ex;" alt="{\displaystyle (G_{\mathrm {2D} },\,\nu _{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/82c30e9987de68d9409550f95a806033d6bf05b8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:10.022ex; height:4.509ex;" alt="{\displaystyle {\tfrac {G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })}{1-\nu _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/20b78ca05d547b5b77f79626a3b1735716468790" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:14.957ex; height:2.843ex;" alt="{\displaystyle 2G_{\mathrm {2D} }(1+\nu _{\mathrm {2D} })\,}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7b74885d6aa702ca6d72909e74a0172966fb8d7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:7.464ex; height:4.343ex;" alt="{\displaystyle {\tfrac {2G_{\mathrm {2D} }\nu _{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <mrow> <mn>1</mn> <mo>&#x2212;<!-- − --></mo> <msub> <mi>&#x03BD;<!-- ν --></mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b6109dc44b8f000901eb7cd762c273aca1e2571" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.505ex; width:5.6ex; height:4.343ex;" alt="{\displaystyle {\tfrac {2G_{\mathrm {2D} }}{1-\nu _{\mathrm {2D} }}}}"></span> </td> <td> </td></tr> <tr> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle (G_{\mathrm {2D} },\,M_{\mathrm {2D} })}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo stretchy="false">(</mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>,</mo> <mspace width="thinmathspace" /> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle (G_{\mathrm {2D} },\,M_{\mathrm {2D} })}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6b59af291aea1f6bf2193881aa8272fabfd9d7d4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.931ex; height:2.843ex;" alt="{\displaystyle (G_{\mathrm {2D} },\,M_{\mathrm {2D} })}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2b720400365f3d72ef91064bcf17b97f5e6564cc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.541ex; height:2.509ex;" alt="{\displaystyle M_{\mathrm {2D} }-G_{\mathrm {2D} }}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <mn>4</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">(</mo> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo stretchy="false">)</mo> </mrow> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2e5e0a815db624389832f101dfb77a9a3d2c92b0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:13.946ex; height:4.676ex;" alt="{\displaystyle {\tfrac {4G_{\mathrm {2D} }(M_{\mathrm {2D} }-G_{\mathrm {2D} })}{M_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }\,}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mspace width="thinmathspace" /> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }\,}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6a8e1e8ddab785855909fc6450ee784327f49fff" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:13.09ex; height:2.509ex;" alt="{\displaystyle M_{\mathrm {2D} }-2G_{\mathrm {2D} }\,}"></span> </td> <td style="text-align:center;"> </td> <td style="text-align:center;"><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="false" scriptlevel="0"> <mfrac> <mrow> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> <mo>&#x2212;<!-- − --></mo> <mn>2</mn> <msub> <mi>G</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mrow> <msub> <mi>M</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> <mi mathvariant="normal">D</mi> </mrow> </mrow> </msub> </mfrac> </mstyle> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e1048dd64851e8dd14301a6894c023470ff055dd" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.671ex; width:9.524ex; height:4.509ex;" alt="{\displaystyle {\tfrac {M_{\mathrm {2D} }-2G_{\mathrm {2D} }}{M_{\mathrm {2D} }}}}"></span> </td> <td style="text-align:center;"> </td> <td> <p><br /> </p><p><br /> </p> </td></tr></tbody></table> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"><style data-mw-deduplicate="TemplateStyles:r1038841319">.mw-parser-output .tooltip-dotted{border-bottom:1px dotted;cursor:help}</style></div><div role="navigation" class="navbox authority-control" aria-label="Navbox" style="padding:3px"><table class="nowraplinks hlist navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Help:Authority_control" title="Help:Authority control">Authority control databases</a>: National <span class="mw-valign-text-top noprint" typeof="mw:File/Frameless"><a href="https://www.wikidata.org/wiki/Q190453#identifiers" title="Edit this at Wikidata"><img alt="Edit this at Wikidata" src="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/10px-OOjs_UI_icon_edit-ltr-progressive.svg.png" decoding="async" width="10" height="10" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/15px-OOjs_UI_icon_edit-ltr-progressive.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/8/8a/OOjs_UI_icon_edit-ltr-progressive.svg/20px-OOjs_UI_icon_edit-ltr-progressive.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"><ul><li><span class="uid"><span class="rt-commentedText tooltip tooltip-dotted" title="Poisson-Zahl"><a rel="nofollow" class="external text" href="https://d-nb.info/gnd/4337457-8">Germany</a></span></span></li></ul></div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐2z5zb Cached time: 20241122140559 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.902 seconds Real time usage: 1.130 seconds Preprocessor visited node count: 6608/1000000 Post‐expand include size: 113251/2097152 bytes Template argument size: 8687/2097152 bytes Highest expansion depth: 19/100 Expensive parser function count: 6/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 131166/5000000 bytes Lua time usage: 0.480/10.000 seconds Lua memory usage: 5925438/52428800 bytes Number of Wikibase entities loaded: 1/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 775.357 1 -total 49.14% 381.032 1 Template:Reflist 16.93% 131.268 19 Template:Cite_journal 16.64% 129.012 6 Template:Cite_book 12.17% 94.396 1 Template:Elastic_moduli 11.23% 87.098 1 Template:Short_description 11.16% 86.532 1 Template:Navbox 10.80% 83.758 5 Template:Fix 10.20% 79.076 59 Template:Math 6.23% 48.284 2 Template:Pagetype --> <!-- Saved in parser cache with key enwiki:pcache:idhash:241223-0!canonical and timestamp 20241122140559 and revision id 1257135598. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Poisson%27s_ratio&amp;oldid=1257135598">https://en.wikipedia.org/w/index.php?title=Poisson%27s_ratio&amp;oldid=1257135598</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Elasticity_(physics)" title="Category:Elasticity (physics)">Elasticity (physics)</a></li><li><a href="/wiki/Category:Mechanical_quantities" title="Category:Mechanical quantities">Mechanical quantities</a></li><li><a href="/wiki/Category:Dimensionless_numbers" title="Category:Dimensionless numbers">Dimensionless numbers</a></li><li><a href="/wiki/Category:Materials_science" title="Category:Materials science">Materials science</a></li><li><a href="/wiki/Category:Ratios" title="Category:Ratios">Ratios</a></li><li><a href="/wiki/Category:Solid_mechanics" title="Category:Solid mechanics">Solid mechanics</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:All_articles_with_incomplete_citations" title="Category:All articles with incomplete citations">All articles with incomplete citations</a></li><li><a href="/wiki/Category:Articles_with_incomplete_citations_from_April_2024" title="Category:Articles with incomplete citations from April 2024">Articles with incomplete citations from April 2024</a></li><li><a href="/wiki/Category:Wikipedia_articles_needing_page_number_citations_from_April_2024" title="Category:Wikipedia articles needing page number citations from April 2024">Wikipedia articles needing page number citations from April 2024</a></li><li><a href="/wiki/Category:CS1_maint:_multiple_names:_authors_list" title="Category:CS1 maint: multiple names: authors list">CS1 maint: multiple names: authors list</a></li><li><a href="/wiki/Category:Webarchive_template_wayback_links" title="Category:Webarchive template wayback links">Webarchive template wayback links</a></li><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li><li><a href="/wiki/Category:All_articles_with_unsourced_statements" title="Category:All articles with unsourced statements">All articles with unsourced statements</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_August_2024" title="Category:Articles with unsourced statements from August 2024">Articles with unsourced statements from August 2024</a></li><li><a href="/wiki/Category:Articles_with_unsourced_statements_from_October_2012" title="Category:Articles with unsourced statements from October 2012">Articles with unsourced statements from October 2012</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 13 November 2024, at 12:16<span class="anonymous-show">&#160;(UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Poisson%27s_ratio&amp;mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-rjnn6","wgBackendResponseTime":170,"wgPageParseReport":{"limitreport":{"cputime":"0.902","walltime":"1.130","ppvisitednodes":{"value":6608,"limit":1000000},"postexpandincludesize":{"value":113251,"limit":2097152},"templateargumentsize":{"value":8687,"limit":2097152},"expansiondepth":{"value":19,"limit":100},"expensivefunctioncount":{"value":6,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":131166,"limit":5000000},"entityaccesscount":{"value":1,"limit":400},"timingprofile":["100.00% 775.357 1 -total"," 49.14% 381.032 1 Template:Reflist"," 16.93% 131.268 19 Template:Cite_journal"," 16.64% 129.012 6 Template:Cite_book"," 12.17% 94.396 1 Template:Elastic_moduli"," 11.23% 87.098 1 Template:Short_description"," 11.16% 86.532 1 Template:Navbox"," 10.80% 83.758 5 Template:Fix"," 10.20% 79.076 59 Template:Math"," 6.23% 48.284 2 Template:Pagetype"]},"scribunto":{"limitreport-timeusage":{"value":"0.480","limit":"10.000"},"limitreport-memusage":{"value":5925438,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-2z5zb","timestamp":"20241122140559","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Poisson's ratio","url":"https:\/\/en.wikipedia.org\/wiki\/Poisson%27s_ratio","sameAs":"http:\/\/www.wikidata.org\/entity\/Q190453","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q190453","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2003-06-06T14:26:57Z","dateModified":"2024-11-13T12:16:36Z","image":"https:\/\/upload.wikimedia.org\/wikipedia\/commons\/6\/67\/Poisson_ratio_compression_example.svg","headline":"parameter of elastic materials: ratio of transverse strain to axial strain"}</script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10