CINXE.COM
Search results for: Phospholipase A2
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Phospholipase A2</title> <meta name="description" content="Search results for: Phospholipase A2"> <meta name="keywords" content="Phospholipase A2"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Phospholipase A2" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Phospholipase A2"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 10</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Phospholipase A2</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Reducing Phytic Acid in Rice Grain by Targeted Mutagenesis of a Phospholipase D Gene</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Saad%20Shoaib%20Khan">Muhammad Saad Shoaib Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Rasbin%20Basnet"> Rasbin Basnet</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingyao%20Shu"> Qingyao Shu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phospholipids are one of the major classes of lipid comprising 10% of total grain lipid in rice. Phospholipids are the main phosphorus containing lipid in the rice endosperm, contributing to rice palatability and seed storage property. However, in the rice grain, the majority of phosphorus occur in the form of phytic acid and are highly abundant in the bran. Phytic acid, also known as hexaphosphorylated inositol (IP6), are strong chelating agents which reduces the bioavailability of essential dietary nutrients and are therefore less desirable by rice breeders. We used the CRISPR/Cas9 system to generate mutants of a phospholipase D gene (PLDα1), which is responsible for the degradation of phospholipids into phosphatidic acid (PA). In the mutants, we found a significant reduction in the concentration of phytic acid in the grain as compared to the wild-type. The biochemical analysis of the PLDα1 mutants showed that the decrease in production of phosphatidic acid is due to reduced accumulation of CDP-diacylglycerolderived phosphatidylinositol (PI), ultimately leading to lower accumulation of phytic acid in mutants. These results showed that loss of function of PLD in rice leads to lower production of phytic acid, suggesting the potential application of Ospldα1 in breeding rice with less phytic acid. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CRISPR%2FCas9" title="CRISPR/Cas9">CRISPR/Cas9</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20D" title=" phospholipase D"> phospholipase D</a>, <a href="https://publications.waset.org/abstracts/search?q=phytic%20acid" title=" phytic acid"> phytic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=rice" title=" rice"> rice</a> </p> <a href="https://publications.waset.org/abstracts/99067/reducing-phytic-acid-in-rice-grain-by-targeted-mutagenesis-of-a-phospholipase-d-gene" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/99067.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Cryoinjuries in Sperm Cells: Effect of Adaptation of Steps in Cryopreservation Protocol for Boar Semen upon Post-Thaw Sperm Quality</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aftab%20Ali">Aftab Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cryopreservation of semen is one of the key factors for a successful breeding business along with other factors. To achieve high fertility in boar, one should know about spermatozoa response to different treatments proceeds during cryopreservation. The running project is highly focused on cryopreservation and its effects on sperm quality parameters in both boar and bull semen. Semen sample from A, B, C, and D, were subjected to different thawing conditions and were analyzed upon different treatments in the study. Parameters like sperm cell motility, viability, acrosome, DNA integrity, and phospholipase C zeta were detected by different established methods. Different techniques were used to assess different parameters. Motility was detected using computer assisted sperm analysis, phospholipase C zeta using luminometry while viability, acrosome integrity, and DNA integrity were analyzed using flow cytometry. Thawing conditions were noted to have an effect on sperm quality parameters with motility being the most critical parameter. The results further indicated that the most critical step during cryopreservation of boar semen is when sperm cells are subjected to freezing and thawing. The findings of the present study provide insight that; boar semen cryopreservation is still suboptimal in comparison to bull semen cryopreservation. Thus, there is a need to conduct more research to improve the fertilizing potential of cryopreserved boar semen. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cryopreservation" title="cryopreservation">cryopreservation</a>, <a href="https://publications.waset.org/abstracts/search?q=computer%20assisted%20sperm" title=" computer assisted sperm"> computer assisted sperm</a>, <a href="https://publications.waset.org/abstracts/search?q=flow%20cytometry" title=" flow cytometry"> flow cytometry</a>, <a href="https://publications.waset.org/abstracts/search?q=luminometry" title=" luminometry"> luminometry</a> </p> <a href="https://publications.waset.org/abstracts/104731/cryoinjuries-in-sperm-cells-effect-of-adaptation-of-steps-in-cryopreservation-protocol-for-boar-semen-upon-post-thaw-sperm-quality" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104731.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> The Impact of Enzymatic Treatments on the Pasting Behavior and Its Reflection on Stalling and Quality of Bread</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sayed%20Mostafa">Sayed Mostafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Shebl"> Mohamed Shebl</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The problem of bread stalling is still one of the most troubling problems for those interested in manufacturing bakery products, as increasing the freshness period of bread is considered one of the most important factors that help encourage this industry due to its important role in reducing expected losses. Therefore, this study aims to improve the quality of pan bread and increase its freshness period by enzymatic treatments, including maltogenic α-amylase (MAA), amyloglucosidase (AGS), glucoseoxidase (GOX) and phospholipase (PhL). Rheological and pasting behavior of wheat flour were estimated in addition to the physical, texture, and sensory parameters of the final product. The addition of MAA resulted in a decrease in peak viscosity, breakdown, setback, and pasting temperature. The addition of MAA also led to a reduction in falling number values. Enzymatic treatments (MAA and PhL) exhibited higher alkaline water retention capacity of pan bread compared to untreated pan bread (control) throughout different storage periods. Furthermore, other enzymes displayed varying effects on bread quality; for instance, AGS enhanced the crust color, while a high concentration of GOX improved the specific volume of the bread. Conclusion: The research findings demonstrate that the enzymatic treatments can significantly improve its quality attributes, such as specific volume, increase the alkaline water retention capacity with lower hardness value, which reflects bread freshness during storage periods, and improve sensory characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=anti-stalling%20agents" title="anti-stalling agents">anti-stalling agents</a>, <a href="https://publications.waset.org/abstracts/search?q=enzymatic%20treatments" title=" enzymatic treatments"> enzymatic treatments</a>, <a href="https://publications.waset.org/abstracts/search?q=maltogenic%20%CE%B1-amylase" title=" maltogenic α-amylase"> maltogenic α-amylase</a>, <a href="https://publications.waset.org/abstracts/search?q=amyloglucosidase" title=" amyloglucosidase"> amyloglucosidase</a>, <a href="https://publications.waset.org/abstracts/search?q=glucoseoxidase" title=" glucoseoxidase"> glucoseoxidase</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase" title=" phospholipase"> phospholipase</a>, <a href="https://publications.waset.org/abstracts/search?q=pasting%20behavior" title=" pasting behavior"> pasting behavior</a>, <a href="https://publications.waset.org/abstracts/search?q=wheat%20flour" title=" wheat flour"> wheat flour</a> </p> <a href="https://publications.waset.org/abstracts/194424/the-impact-of-enzymatic-treatments-on-the-pasting-behavior-and-its-reflection-on-stalling-and-quality-of-bread" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/194424.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">5</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Quantitative Proteome Analysis and Bioactivity Testing of New Zealand Honeybee Venom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Ghamsari">Maryam Ghamsari</a>, <a href="https://publications.waset.org/abstracts/search?q=Mitchell%20Nye-Wood"> Mitchell Nye-Wood</a>, <a href="https://publications.waset.org/abstracts/search?q=Kelvin%20Wang"> Kelvin Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Angela%20Juhasz"> Angela Juhasz</a>, <a href="https://publications.waset.org/abstracts/search?q=Michelle%20Colgrave"> Michelle Colgrave</a>, <a href="https://publications.waset.org/abstracts/search?q=Don%20Otter"> Don Otter</a>, <a href="https://publications.waset.org/abstracts/search?q=Jun%20Lu"> Jun Lu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nazimah%20Hamid"> Nazimah Hamid</a>, <a href="https://publications.waset.org/abstracts/search?q=Thao%20T.%20Le"> Thao T. Le</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Bee venom, a complex mixture of peptides, proteins, enzymes, and other bioactive compounds, has been widely studied for its therapeutic application. This study investigated the proteins present in New Zealand (NZ) honeybee venom (BV) using bottom-up proteomics. Two sample digestion techniques, in-solution digestion and filter-aided sample preparation (FASP), were employed to obtain the optimal method for protein digestion. Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH–MS) analysis was conducted to quantify the protein compositions of NZ BV and investigate variations in collection years. Our results revealed high protein content (158.12 µg/mL), with the FASP method yielding a larger number of identified proteins (125) than in-solution digestion (95). SWATH–MS indicated melittin and phospholipase A2 as the most abundant proteins. Significant variations in protein compositions across samples from different years (2018, 2019, 2021) were observed, with implications for venom's bioactivity. In vitro testing demonstrated immunomodulatory and antioxidant activities, with a viable range for cell growth established at 1.5-5 µg/mL. The study underscores the value of proteomic tools in characterizing bioactive compounds in bee venom, paving the way for deeper exploration into their therapeutic potentials. Further research is needed to fractionate the venom and elucidate the mechanisms of action for the identified bioactive components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=honeybee%20venom" title="honeybee venom">honeybee venom</a>, <a href="https://publications.waset.org/abstracts/search?q=proteomics" title=" proteomics"> proteomics</a>, <a href="https://publications.waset.org/abstracts/search?q=bioactivity" title=" bioactivity"> bioactivity</a>, <a href="https://publications.waset.org/abstracts/search?q=fractionation" title=" fractionation"> fractionation</a>, <a href="https://publications.waset.org/abstracts/search?q=swath-ms" title=" swath-ms"> swath-ms</a>, <a href="https://publications.waset.org/abstracts/search?q=melittin" title=" melittin"> melittin</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20a2" title=" phospholipase a2"> phospholipase a2</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20zealand" title=" new zealand"> new zealand</a>, <a href="https://publications.waset.org/abstracts/search?q=immunomodulatory" title=" immunomodulatory"> immunomodulatory</a>, <a href="https://publications.waset.org/abstracts/search?q=antioxidant" title=" antioxidant"> antioxidant</a> </p> <a href="https://publications.waset.org/abstracts/187480/quantitative-proteome-analysis-and-bioactivity-testing-of-new-zealand-honeybee-venom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/187480.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">39</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Protective Effect of Rosemary Extract against Toxicity Induced by Egyptian Naja haje Venom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walaa%20H.%20Salama">Walaa H. Salama</a>, <a href="https://publications.waset.org/abstracts/search?q=Azza%20M.%20Abdel-Aty"> Azza M. Abdel-Aty</a>, <a href="https://publications.waset.org/abstracts/search?q=Afaf%20S.%20Fahmy"> Afaf S. Fahmy</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Egyptian Cobra; Naja haje (Elapidae) is one of most common snakes, widely distributed in Egypt and its envenomation causes multi-organ failure leading to rapid death. Thus, Different medicinal plants showed a protective effect against venom toxicity and may complement the conventional antivenom therapy. Aim: The present study was designed to assess both the antioxidant capacity of methanolic extract of rosemary leaves and evaluate the neutralizing ability of the extract against hepatotoxicity induced by Naja haje venom. Methods: The total phenolic and flavonoid contents and the antioxidant capacity of the methanolic rosemary extract were estimated by DPPH and ABTS Scavenging methods. In addition, the rosemary extract were assessed for anti-venom properties under in vitro and in vivo standard assays. Results: The rosemary extract had high total phenolic and flavonoid content as 12 ± 2 g of gallic acid equivalent per 100 gram of dry weight (g GAE/100g dw) and 5.5 ± 0.8 g of catechin equivalent per 100 grams of dry weight (g CE/100g dw), respectively. In addition, the rosemary extract showed high antioxidant capacity. Furthermore, The rosemary extract were inhibited in vitro the enzymatic activities of phospholipase A₂, L-amino acid oxidase, and hyaluronidase of the venom in a dose-dependent manner. Moreover, indirect hemolytic activity, hepatotoxicity induced by venom were completely neutralized as shown by histological studies. Conclusion: The phenolic compounds of rosemary extract with potential antioxidant activity may be considered as a promising candidate for future therapeutics in snakebite therapy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antioxidant%20activity" title="antioxidant activity">antioxidant activity</a>, <a href="https://publications.waset.org/abstracts/search?q=neutralization" title=" neutralization"> neutralization</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20A%E2%82%82%20enzyme" title=" phospholipase A₂ enzyme"> phospholipase A₂ enzyme</a>, <a href="https://publications.waset.org/abstracts/search?q=snake%20venom" title=" snake venom"> snake venom</a> </p> <a href="https://publications.waset.org/abstracts/86772/protective-effect-of-rosemary-extract-against-toxicity-induced-by-egyptian-naja-haje-venom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86772.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">182</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Curative Role of Bromoenol Lactone, an Inhibitor of Phospholipase A2 Enzyme, during Cigarette Smoke Condensate Induced Anomalies in Lung Epithelium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Kumar">Subodh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sanjeev%20Kumar%20Sharma"> Sanjeev Kumar Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaurav%20Kaushik"> Gaurav Kaushik</a>, <a href="https://publications.waset.org/abstracts/search?q=Pramod%20Avti"> Pramod Avti</a>, <a href="https://publications.waset.org/abstracts/search?q=Phulen%20Sarma"> Phulen Sarma</a>, <a href="https://publications.waset.org/abstracts/search?q=Bikash%20Medhi"> Bikash Medhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishan%20Lal%20Khanduja"> Krishan Lal Khanduja</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: It is well known that cigarette smoke is one of the causative factors in various lung diseases especially cancer. Carcinogens and oxidant molecules present in cigarette smoke not only damage the cellular constituents (lipids, proteins, DNA) but may also regulate the molecular pathways involved in inflammation and cancer. Continuous oxidative stress caused by the constituents of cigarette smoke leads to higher PhospholipaseA₂ (PLA₂) activity, resulting in elevated levels of secondary metabolites whose role is well defined in cancer. To reduce the burden of chronic inflammation as well as oxidative stress, and higher levels of secondary metabolites, we checked the curative potential of PLA₂ inhibitor Bromoenol Lactone (BEL) during continuous exposure of cigarette smoke condensate (CSC). Aim: To check the therapeutic potential of Bromoenol Lactone (BEL), an inhibitor of PhospholipaseA₂s, in pathways of CSC-induced changes in type I and type II alveolar epithelial cells. Methods: Effect of BEL on CSC-induced PLA2 activity were checked using colorimetric assay, cellular toxicity using cell viability assay, membrane integrity using fluorescein di-acetate (FDA) uptake assay, reactive oxygen species (ROS) levels and apoptosis markers through flow cytometry, and cellular regulation using MAPKinases levels, in lung epithelium. Results: BEL significantly mimicked CSC-induced PLA₂ activity, ROS levels, apoptosis, and kinases level whereas improved cellular viability and membrane integrity. Conclusions: Current observations revealed that BEL may be a potential therapeutic agent during Cigarette smoke-induced anomalies in lung epithelium. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cigarette%20smoke%20condensate" title="cigarette smoke condensate">cigarette smoke condensate</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20A%E2%82%82" title=" phospholipase A₂"> phospholipase A₂</a>, <a href="https://publications.waset.org/abstracts/search?q=oxidative%20stress" title=" oxidative stress"> oxidative stress</a>, <a href="https://publications.waset.org/abstracts/search?q=alveolar%20epithelium" title=" alveolar epithelium"> alveolar epithelium</a>, <a href="https://publications.waset.org/abstracts/search?q=bromoenol%20lactone" title=" bromoenol lactone"> bromoenol lactone</a> </p> <a href="https://publications.waset.org/abstracts/100096/curative-role-of-bromoenol-lactone-an-inhibitor-of-phospholipase-a2-enzyme-during-cigarette-smoke-condensate-induced-anomalies-in-lung-epithelium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/100096.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">189</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Calcein Release from Liposomes Mediated by Phospholipase A₂ Activity: Effect of Cholesterol and Amphipathic Di and Tri Blocks Copolymers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Marco%20Soto-Arriaza">Marco Soto-Arriaza</a>, <a href="https://publications.waset.org/abstracts/search?q=Eduardo%20Cena-Ahumada"> Eduardo Cena-Ahumada</a>, <a href="https://publications.waset.org/abstracts/search?q=Jaime%20Melendez-Rojel"> Jaime Melendez-Rojel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Liposomes have been widely used as a model of lipid bilayer to study the physicochemical properties of biological membrane, encapsulation, transport and release of different molecules. Furthermore, extensive research has focused on improving the efficiency in the transport of drugs, developing tools that improve the release of the encapsulated drug from liposomes. In this context, the enzymatic activity of PLA₂, despite having been shown to be an effective tool to promote the release of drugs from liposomes, is still an open field of research. Aim: The aim of the present study is to explore the effect of cholesterol (Cho) and amphipathic di- and tri-block copolymers, on calcein release mediated by enzymatic activity of PLA2 in Dipalmitoylphosphatidylcholine (DPPC) liposomes under physiological conditions. Methods: Different dispersions of DPPC, cholesterol, di-block POE₄₅-PCL₅₂ or tri-block PCL₁₂-POE₄₅-PCL₁₂ were prepared by the extrusion method after five freezing/thawing cycles; in Phosphate buffer 10mM pH 7.4 in presence of calcein. DPPC liposomes/Calcein were centrifuged at 15000rpm 10 min to separate free calcein. Enzymatic activity assays of PLA₂ were performed at 37°C using the TBS buffer pH 7.4. The size distribution, polydispersity, Z-potential and Calcein encapsulation of DPPC liposomes was monitored. Results: PLA₂ activity showed a slower kinetic of calcein release up to 20 mol% of cholesterol, evidencing a minimum at 10 mol% and then a maximum at 18 mol%. Regardless of the percentage of cholesterol, up to 18 mol% a one-hundred percentage release of calcein was observed. At higher cholesterol concentrations, PLA₂ showed to be inefficient or not to be involved in calcein release. In assays where copolymers were added in a concentration lower than their cmc, a similar behavior to those showed in the presence of Cho was observed, that is a slower kinetic in calcein release. In both experimental approaches, a one-hundred percentage of calcein release was observed. PLA₂ was shown to be sensitive to the 4-(4-Octadecylphenyl)-4-oxobutenoic acid inhibitor and calcium, reducing the release of calcein to 0%. Cell viability of HeLa cells decreased 7% in the presence of DPPC liposomes after 3 hours of incubation and 17% and 23% at 5 and 15 hours, respectively. Conclusion: Calcein release from DPPC liposomes, mediated by PLA₂ activity, depends on the percentage of cholesterol and the presence of copolymers. Both, cholesterol up to 20 mol% and copolymers below it cmc could be applied to the regulation of the kinetics of antitumoral drugs release without inducing cell toxicity per se. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=amphipathic%20copolymers" title="amphipathic copolymers">amphipathic copolymers</a>, <a href="https://publications.waset.org/abstracts/search?q=calcein%20release" title=" calcein release"> calcein release</a>, <a href="https://publications.waset.org/abstracts/search?q=cholesterol" title=" cholesterol"> cholesterol</a>, <a href="https://publications.waset.org/abstracts/search?q=DPPC%20liposome" title=" DPPC liposome"> DPPC liposome</a>, <a href="https://publications.waset.org/abstracts/search?q=phospholipase%20A%E2%82%82" title=" phospholipase A₂"> phospholipase A₂</a> </p> <a href="https://publications.waset.org/abstracts/138744/calcein-release-from-liposomes-mediated-by-phospholipase-a2-activity-effect-of-cholesterol-and-amphipathic-di-and-tri-blocks-copolymers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138744.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Remarkable Difference in Neurotoxicity Between Two Phospholipases from Russell's Viper Venom: Insight Through Molecular Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kalyan%20S.%20Ghosh">Kalyan S. Ghosh</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20L.%20Dhananjaya"> B. L. Dhananjaya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Snake bite causes fatal injuries in multi-organs and even many deaths due to several adverse physiological effects of various phospholipases (PLA2s) present in snake venom. Though these PLA2s bear highly homologues sequences and also structure but exhibit a different extent of those pharmacological effects. In this study, we have explored the difference in the neurotoxicity of two PLA2 namely PLA2-V, PLA2-VIIIa present in the venom from Vipera russellii. Bioinformatics studies on sequences of these two proteins along with detailed structural comparison enable us to explore the differences unambiguously. The identification of the residues involved in neurotoxicity will further lead towards proper designing of inhibitors against such killing effects of the venom. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20potential" title="electrostatic potential">electrostatic potential</a>, <a href="https://publications.waset.org/abstracts/search?q=homology%20modeling" title=" homology modeling"> homology modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobicity" title=" hydrophobicity"> hydrophobicity</a>, <a href="https://publications.waset.org/abstracts/search?q=neurotoxicity" title=" neurotoxicity"> neurotoxicity</a>, <a href="https://publications.waset.org/abstracts/search?q=Phospholipase%20A2" title=" Phospholipase A2"> Phospholipase A2</a> </p> <a href="https://publications.waset.org/abstracts/15662/remarkable-difference-in-neurotoxicity-between-two-phospholipases-from-russells-viper-venom-insight-through-molecular-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Phytochemical Composition, Antimicrobial Potential and Antioxidant Activity of Peganum harmala L. Extracts</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Narayana%20Bhat">Narayana Bhat</a>, <a href="https://publications.waset.org/abstracts/search?q=Majda%20Khalil"> Majda Khalil</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamad%20Al-Mansour"> Hamad Al-Mansour</a>, <a href="https://publications.waset.org/abstracts/search?q=Anitha%20Manuvel"> Anitha Manuvel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vimla%20Yeddu"> Vimla Yeddu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of this study was to assess the antimicrobial and antioxidant potential and phytochemical composition of Peganum harmala L. For this purpose, powdered shoot, root, and seed samples were extracted in an accelerated solvent extractor (ASE) with methanol, ethanol, acetone, and dichloromethane. The residues were reconstituted in the above solvents and 10% dimethyl sulphoxide (DMSO). The antimicrobial activity of these extracts was tested against two bacterial (Escherichia coli E49 and Staphylococcus aureus CCUG 43507) and two fungi Candida albicans ATCC 24433, Candida glabrata ATCC 15545) strains using the well-diffusion method. The minimum inhibitory concentration (MIC) and growth pattern of these test strains were determined using microbroth dilution method, and the phospholipase assay was performed to detect tissue damage in the host cells. Results revealed that ethanolic, methanolic, and dichloromethane extracts of seeds exhibited significant antimicrobial activities against all tested strains, whereas the acetone extract of seeds was effective against E. coli only. Similarly, ethanolic and methanolic extracts of roots were effective against two bacterial strains only. One sixth of percent (0.6%) yield of methanol extract of seeds was found to be the MIC for Escherichia coli E49, Staphylococcus aureus CCUG 43507, and Candida glabrata ATCC 15545. Overall, seed extracts had greater antimicrobial activities compared to roots and shoot extracts. The original plant extract and MIC dilutions prevented phospholipase secretion in Staphylococcus aureus CCUG 43507 and Candida albicans ATCC 24433. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay revealed radical scavenging activities ranging from 71.80 ± 4.36% to 87.75 ± 1.70%. The main compound present in the root extract was 1-methyl-7-methoxy-beta-carboline (RT: 44.171), followed by norlapachol (3.62%), benzopyrazine (2.20%), palmitic acid (2.12%) and vasicinone (1.96%). In contrast, phenol,4-ethenyl-2-methoxy was in abundance in the methonolic extract of the shoot, whereas 1-methyl-7-methoxy-beta-carboline (79.59%), linoleic acid (9.05%), delta-tocopherol (5.02%), 9,12-octadecadienoic acid, methyl ester (2.65%), benzene, 1,1-1,2 ethanediyl bis 3,4dimethyl (1.15%), anthraquinone (0.58%), hexadecanoic acid, methyl ester (0.54%), palmitic acid (0.35%) and methyl stearate (0.18%) were present in the methanol extract of seeds. Major findings of this study, along with their relevance to developing effective, safe drugs, will be discussed in this presentation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medicinal%20plants" title="medicinal plants">medicinal plants</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20metabolites" title=" secondary metabolites"> secondary metabolites</a>, <a href="https://publications.waset.org/abstracts/search?q=phytochemical%20screening" title=" phytochemical screening"> phytochemical screening</a>, <a href="https://publications.waset.org/abstracts/search?q=bioprospecting" title=" bioprospecting"> bioprospecting</a>, <a href="https://publications.waset.org/abstracts/search?q=radical%20scavenging" title=" radical scavenging"> radical scavenging</a> </p> <a href="https://publications.waset.org/abstracts/111955/phytochemical-composition-antimicrobial-potential-and-antioxidant-activity-of-peganum-harmala-l-extracts" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111955.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Assessing the Blood-Brain Barrier (BBB) Permeability in PEA-15 Mutant Cat Brain using Magnetization Transfer (MT) Effect at 7T</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sultan%20Z.%20Mahmud">Sultan Z. Mahmud</a>, <a href="https://publications.waset.org/abstracts/search?q=Emily%20C.%20Graff"> Emily C. Graff</a>, <a href="https://publications.waset.org/abstracts/search?q=Adil%20Bashir"> Adil Bashir</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phosphoprotein enriched in astrocytes 15 kDa (PEA-15) is a multifunctional adapter protein which is associated with the regulation of apoptotic cell death. Recently it has been discovered that PEA-15 is crucial in normal neurodevelopment of domestic cats, a gyrencephalic animal model, although the exact function of PEA-15 in neurodevelopment is unknown. This study investigates how PEA-15 affects the blood-brain barrier (BBB) permeability in cat brain, which can cause abnormalities in tissue metabolite and energy supplies. Severe polymicrogyria and microcephaly have been observed in cats with a loss of function PEA-15 mutation, affecting the normal neurodevelopment of the cat. This suggests that the vital role of PEA-15 in neurodevelopment is associated with gyrification. Neurodevelopment is a highly energy demanding process. The mammalian brain depends on glucose as its main energy source. PEA-15 plays a very important role in glucose uptake and utilization by interacting with phospholipase D1 (PLD1). Mitochondria also plays a critical role in bioenergetics and essential to supply adequate energy needed for neurodevelopment. Cerebral blood flow regulates adequate metabolite supply and recent findings also showed that blood plasma contains mitochondria as well. So the BBB can play a very important role in regulating metabolite and energy supply in the brain. In this study the blood-brain permeability in cat brain was measured using MRI magnetization transfer (MT) effect on the perfusion signal. Perfusion is the tissue mass normalized supply of blood to the capillary bed. Perfusion also accommodates the supply of oxygen and other metabolites to the tissue. A fraction of the arterial blood can diffuse to the tissue, which depends on the BBB permeability. This fraction is known as water extraction fraction (EF). MT is a process of saturating the macromolecules, which has an effect on the blood that has been diffused into the tissue while having minimal effect on intravascular blood water that has not been exchanged with the tissue. Measurement of perfusion signal with and without MT enables to estimate the microvascular blood flow, EF and permeability surface area product (PS) in the brain. All the experiments were performed with Siemens 7T Magnetom with 32 channel head coil. Three control cats and three PEA-15 mutant cats were used for the study. Average EF in white and gray matter was 0.9±0.1 and 0.86±0.15 respectively, perfusion in white and gray matter was 85±15 mL/100g/min and 97±20 mL/100g/min respectively, PS in white and gray matter was 201±25 mL/100g/min and 225±35 mL/100g/min respectively for control cats. For PEA-15 mutant cats, average EF in white and gray matter was 0.81±0.15 and 0.77±0.2 respectively, perfusion in white and gray matter was 140±25 mL/100g/min and 165±18 mL/100g/min respectively, PS in white and gray matter was 240±30 mL/100g/min and 259±21 mL/100g/min respectively. This results show that BBB is compromised in PEA-15 mutant cat brain, where EF is decreased and perfusion as well as PS are increased in the mutant cats compared to the control cats. This findings might further explain the function of PEA-15 in neurodevelopment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BBB" title="BBB">BBB</a>, <a href="https://publications.waset.org/abstracts/search?q=cat%20brain" title=" cat brain"> cat brain</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetization%20transfer" title=" magnetization transfer"> magnetization transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=PEA-15" title=" PEA-15"> PEA-15</a> </p> <a href="https://publications.waset.org/abstracts/128208/assessing-the-blood-brain-barrier-bbb-permeability-in-pea-15-mutant-cat-brain-using-magnetization-transfer-mt-effect-at-7t" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128208.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>