CINXE.COM
Search results for: hybrid composites
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: hybrid composites</title> <meta name="description" content="Search results for: hybrid composites"> <meta name="keywords" content="hybrid composites"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="hybrid composites" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="hybrid composites"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2625</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: hybrid composites</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2625</span> Dielectric Properties of MWCNT-Muscovite/Epoxy Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nur%20Suraya%20Anis%20Ahmad%20Bakhtiar">Nur Suraya Anis Ahmad Bakhtiar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hazizan%20Md%20Akil"> Hazizan Md Akil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present work, the dielectric properties of Epoxy/MWCNTs-muscovite HYBRID and MIXED composites based on ratio 30:70 were studies. The multi-wall carbon nanotubes (MWCNTs) were prepared by two method; (a) muscovite-MWCNTs hybrids were synthesized by chemical vapor deposition (CVD) and (b) physically mixing of muscovite with MWCNTs. The effect of different preparations of the composites and filler loading was evaluated. It is revealed that the dielectric constants of HYBRID epoxy composites are slightly higher compared to MIXED epoxy composites. It is also indicated that the dielectric constant increased by increases the MWCNTs filler loading. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=muscovite" title="muscovite">muscovite</a>, <a href="https://publications.waset.org/abstracts/search?q=epoxy" title=" epoxy"> epoxy</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectric%20properties" title=" dielectric properties"> dielectric properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composite" title=" hybrid composite"> hybrid composite</a> </p> <a href="https://publications.waset.org/abstracts/20252/dielectric-properties-of-mwcnt-muscoviteepoxy-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20252.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">650</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2624</span> Study of the Microstructure and Mechanical Properties of Locally Developed Carbon Fibers-Silica Sand Nanoparticles Aluminium Based Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tahir%20Ahmad">Tahir Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Kamran"> M. Kamran</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ahmad"> R. Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20T.%20Z.%20Butt"> M. T. Z. Butt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid aluminum metal matrix composites with 1, 2, 3 and 4 wt. % of silica sand nanoparticles and electro-less nickel coated carbon fibers were successfully developed using sand casting technique. Epoxy coating of carbon fibers was removed and phosphorous-nickel coating was successfully applied via electro-less route. The developed hybrid composites were characterized using micro hardness tester, tensile testing, and optical microscopy. The gradual increase of reinforcing phases yielded improved mechanical properties such as hardness and tensile strength. The increase in hardness was attributed to the presence of silica sand nanoparticles whereas electro-less nickel coated carbon fibers enhanced the tensile properties of developed hybrid composites. The microstructure of the developed hybrid composites revealed the homogeneous distribution of both carbon fibers and silica sand nanoparticles in aluminum based hybrid composites. The formation of dendrite microstructure is the main cause of improving mechanical properties. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminum%20based%20hybrid%20composites" title="aluminum based hybrid composites">aluminum based hybrid composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure%20and%20mechanical%20properties%20relationship" title=" microstructure and mechanical properties relationship "> microstructure and mechanical properties relationship </a> </p> <a href="https://publications.waset.org/abstracts/36706/study-of-the-microstructure-and-mechanical-properties-of-locally-developed-carbon-fibers-silica-sand-nanoparticles-aluminium-based-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/36706.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2623</span> Effect of the Accelerated Carbonation in Fibercement Composites Reinforced with Eucalyptus Pulp and Nanofibrillated Cellulose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Viviane%20da%20Costa%20Correia">Viviane da Costa Correia</a>, <a href="https://publications.waset.org/abstracts/search?q=Sergio%20Francisco%20Santos"> Sergio Francisco Santos</a>, <a href="https://publications.waset.org/abstracts/search?q=Holmer%20Savastano%20Junior"> Holmer Savastano Junior</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this work was verify the influence of the accelerated carbonation in the physical and mechanical properties of the hybrid composites, reinforced with micro and nanofibers and composites with microfibers. The composites were produced by the slurry vacuum dewatering method, followed by pressing. It was produced using two formulations: 8% of eucalyptus pulp + 1% of the nanofibrillated cellulose and 9% of eucalyptus pulp, both were subjected to accelerated carbonation. The results showed that the accelerated carbonation contributed to improve the physical and mechanical properties of the hybrid composites and of the composites reinforced with microfibers (eucalyptus pulp). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbonation" title="carbonation">carbonation</a>, <a href="https://publications.waset.org/abstracts/search?q=cement%20composites" title=" cement composites"> cement composites</a>, <a href="https://publications.waset.org/abstracts/search?q=nanofibrillated%20cellulose" title=" nanofibrillated cellulose"> nanofibrillated cellulose</a>, <a href="https://publications.waset.org/abstracts/search?q=eucalyptus%20pulp" title=" eucalyptus pulp"> eucalyptus pulp</a> </p> <a href="https://publications.waset.org/abstracts/14125/effect-of-the-accelerated-carbonation-in-fibercement-composites-reinforced-with-eucalyptus-pulp-and-nanofibrillated-cellulose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14125.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2622</span> Influence of Stacking Sequence on Properties of Sheep-Wool/Glass Reinforced Epoxy Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20B.%20Manjunatha">G. B. Manjunatha </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Natural fibers have been considerable demand in recent years due to their ecofriendly and renewable nature. The advantages of low density, acceptable specific properties, better thermal and insulate properties with low cost.In the present study, hybrid composite associating Sheep wool fiber and glass fiber reinforced with epoxy were developed and investigated the effect of stacking sequence on physical and chemical properties. The hybrid composite was designed for engineering applications as an alternative material to glass fiber composites. The hybrid composite laminates were fabricated by using hand lay-up technique at total fiber volume fraction of 60% (Sheep wool fiber 30% and Glass fiber 30%) and 40% reinforcement. The specimen preparation and testing were conducted as per American Society for Testing and Materials (ASTM) standards. Three different stacking are used. The result shows that tensile and bending tests of sequence of glass fiber between sheep wool fiber have high strength and maximum bending compared to other sequence of composites. At the same time better moisture and chemical absorption were observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composites" title="hybrid composites">hybrid composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composites" title=" polymer composites"> polymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=stacking%20sequence" title=" stacking sequence"> stacking sequence</a> </p> <a href="https://publications.waset.org/abstracts/111033/influence-of-stacking-sequence-on-properties-of-sheep-woolglass-reinforced-epoxy-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/111033.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2621</span> Experimental and Numerical Investigation of Hardness and Compressive Strength of Hybrid Glass/Steel Fiber Reinforced Polymer Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amar%20Patnaik">Amar Patnaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Pankaj%20Agarwal"> Pankaj Agarwal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper investigates the experimental study of hardness and compressive strength of hybrid glass/steel fiber reinforced polymer composites by varying the glass and steel fiber layer in the epoxy matrix. The hybrid composites with four stacking sequences HSG-1, HSG-2, HSG-3, and HSG-4 were fabricated by the VARTM process under the controlled environment. The experimentally evaluated results of Vicker’s hardness of the fabricated composites increases with an increase in the fiber layers sequence showing the high resistance. The improvement of micro-structure ability has been observed from the SEM study, which governs in the enhancement of compressive strength. The finite element model was developed on ANSYS to predict the above said properties and further compared with experimental results. The results predicted by the numerical simulation are in good agreement with the experimental results. The hybrid composites developed in this study was identified as the preferred materials due to their excellent mechanical properties to replace the conventional materialsused in the marine structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20method" title="finite element method">finite element method</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial%20strength" title=" interfacial strength"> interfacial strength</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer%20composites" title=" polymer composites"> polymer composites</a>, <a href="https://publications.waset.org/abstracts/search?q=VARTM" title=" VARTM"> VARTM</a> </p> <a href="https://publications.waset.org/abstracts/147247/experimental-and-numerical-investigation-of-hardness-and-compressive-strength-of-hybrid-glasssteel-fiber-reinforced-polymer-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/147247.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">132</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2620</span> Development and Characterization of Wear Properties of Aluminum 8011 Hybrid Metal Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=H.%20K.%20Shivanand">H. K. Shivanand</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Yogananda"> A. Yogananda</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The objective of present investigation is to study the effect of reinforcements on the wear properties of E-Glass short fibers and Flyash reinforced Al 8011 hybrid metal matrix composites. The alloy of Al 8011 reinforced with E-glass and fly ash particulates are prepared by simple stir casting method. The MMC is obtained for different composition of E-glass and flyash particulates (varying E-glass with constant fly ash and varying flyash with constant E-glass percentage). The wear results of ascast hybrid composites with different compositions of reinforcements at varying sliding speeds and different loads are discussed. The results reveals that as the percentage of reinforcement increases wear rate will decrease. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20composites" title="metal matrix composites">metal matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=aluminum%20alloy%208011" title=" aluminum alloy 8011"> aluminum alloy 8011</a>, <a href="https://publications.waset.org/abstracts/search?q=stir%20casting" title=" stir casting"> stir casting</a>, <a href="https://publications.waset.org/abstracts/search?q=wear%20test" title=" wear test"> wear test</a> </p> <a href="https://publications.waset.org/abstracts/34617/development-and-characterization-of-wear-properties-of-aluminum-8011-hybrid-metal-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/34617.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">350</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2619</span> Corrosion Characterization of Al6061 Hybrid Metal Matrix Composites in Acid Medium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20V.%20Krupakara">P. V. Krupakara</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the high corrosion resistance developed by the hybrid metal matrix composites when compared with that of matrix alloy. Matrix selected is Al6061. Reinforcements selected are graphite and red mud particulates. The composites are prepared using liquid melt metallurgy technique using vortex method. Metal matrix composites containing 2 percent graphite and 2 percent red mud, 2 percent graphite and 4 percent red mud, 2 percent graphite and 6 percent of red mud are prepared. Bar castings are cut into cylindrical discs of 20mm diameter and 20mm thickness. Corrosion tests were conducted at room temperature (230 °C) using conventional weight loss method according to ASTM G69-80. The corrodents used for the test were hydrochloric acid solution of different concentrations. Specimens were tested for every 24 hours interval up to 96 hours. Four specimens for each condition and time were immersed in corrodent. In each case the corrosion rate decreases with increase in exposure time for matrix and metal matrix composites whatever may be the concentration of hydrochloric acid. This may be due to aluminium, which may induce passivation due to development of non-porous layer. As red mud content increases the composites become corrosion resistant due to insulating nature of ceramic material red mud and less exposure of matrix alloy in those metal matrix composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al6061" title="Al6061">Al6061</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=passivation" title=" passivation"> passivation</a>, <a href="https://publications.waset.org/abstracts/search?q=red%20mud" title=" red mud"> red mud</a>, <a href="https://publications.waset.org/abstracts/search?q=vortex" title=" vortex"> vortex</a> </p> <a href="https://publications.waset.org/abstracts/24636/corrosion-characterization-of-al6061-hybrid-metal-matrix-composites-in-acid-medium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24636.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">542</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2618</span> Mechanical and Tribological Properties of Al7075 Reinforced with Graphene-Beryl Hybrid Metal Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haneef">Mohamed Haneef</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanawaz%20Patil"> Shanawaz Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Syed%20Zameer"> Syed Zameer</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Mohsin%20Ali"> Mohammed Mohsin Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The emerging technologies and trends of present generation requires downsizing the unwieldy structures to light weight structures on one hand and integration of varied properties on other hand to meet the application demands. In the present investigation an attempt is made to familiarize and best possibilities of reinforcing agent in aluminum 7075 matrix with naturally occurring beryl (Be) and graphene (Gr) to develop a new hybrid composite material. A stir casting process was used to fabricate with fixed volume fraction of 6wt% weight beryl and various volume fractions of 0.5wt%, 1wt%, 1.5wt% and 2wt% of graphene. The properties such as tensile strength, hardness and dry sliding wear behavior of hybrid composites were examined. The crystallite size and morphology of the graphene and beryl particles were analyzed with X-ray diffraction (XRD) and scanning electron microscopy (SEM) respectively. It was observed that ultimate tensile strength and hardness of the hybrid composite increased with increasing reinforcement volume fraction as compared to specimen without reinforcement additions. The dry sliding wear behavior of the hybrid composites decreases as compared to Al7075 alloy without reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al7075" title="Al7075">Al7075</a>, <a href="https://publications.waset.org/abstracts/search?q=beryl" title=" beryl"> beryl</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=wear" title=" wear"> wear</a> </p> <a href="https://publications.waset.org/abstracts/102086/mechanical-and-tribological-properties-of-al7075-reinforced-with-graphene-beryl-hybrid-metal-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102086.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2617</span> Biological Applications of CNT Inherited Polyaniline Nano-Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yashfeen%20Khan">Yashfeen Khan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anees%20Ahmad"> Anees Ahmad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the last few decades, nano-composites have been the topic of interest. Presently, the modern era enlightens the synthesis of hybrid nano-composites over their individual counterparts because of higher application potentials and synergism. Recently, CNT hybrids have demonstrated their pronounced capability as effective sorbents for the removal of heavy metal ions (the root trouble) and organic contaminants due to their high specific surface area, enhanced reactivity, and sequestration characteristics. The present abstract discusses removal efficiencies of organic, inorganic pollutants through CNT/PANI/ composites. It also represents the widespread applications of CNT like monitoring biological systems, biosensors, as heat resources for treating cancer, fire retardant applications of polymer/CNT composites etc. And considering the same, this article aims to brief the scenario of CNT-PANI nano-composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biosensors" title="biosensors">biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=CNT" title=" CNT"> CNT</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrids" title=" hybrids"> hybrids</a>, <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title=" polyaniline"> polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=synergism" title=" synergism"> synergism</a> </p> <a href="https://publications.waset.org/abstracts/37064/biological-applications-of-cnt-inherited-polyaniline-nano-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37064.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">377</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2616</span> Fabrication Characteristics and Mechanical Behaviour of Fly Ash-Alumina Reinforced Zn-27Al Alloy Matrix Hybrid Composite Using Stir-Casting Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oluwagbenga%20B.%20Fatile">Oluwagbenga B. Fatile</a>, <a href="https://publications.waset.org/abstracts/search?q=Felix%20U.%20Idu"> Felix U. Idu</a>, <a href="https://publications.waset.org/abstracts/search?q=Olajide%20T.%20Sanya"> Olajide T. Sanya</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports the viability of developing Zn-27Al alloy matrix hybrid composites reinforced with alumina, graphite and fly ash (a solid waste byproduct of coal in thermal power plants). This research work was aimed at developing low cost-high performance Zn-27Al matrix composite with low density. Alumina particulates (Al2O3), graphite added with 0, 2, 3, 4, and 5 wt% fly ash were utilized to prepare 10wt% reinforcing phase with Zn-27Al alloy as matrix using two-step stir casting method. Density measurement estimated percentage porosity, tensile testing, micro hardness measurement, and optical microscopy were used to assess the performance of the composites produced. The results show that the hardness, ultimate tensile strength, and percent elongation of the hybrid composites decrease with increase in fly ash content. The maximum decrease in hardness and ultimate tensile strength of 13.72% and 15.25% respectively were observed for composite grade containing 5wt% fly ash. The percentage elongation of composite sample without fly ash is 8.9% which is comparable with that of the sample containing 2wt% fly ash with percentage elongation of 8.8%. The fracture toughness of the fly ash containing composites was, however, superior to those of composites without fly ash with 5wt% fly ash containing composite exhibiting the highest fracture toughness. The results show that fly ash can be utilized as complementary reinforcement in ZA-27 alloy matrix composite to reduce cost. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composite" title=" hybrid composite"> hybrid composite</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20behaviour" title=" mechanical behaviour"> mechanical behaviour</a>, <a href="https://publications.waset.org/abstracts/search?q=stir-cast" title=" stir-cast "> stir-cast </a> </p> <a href="https://publications.waset.org/abstracts/21365/fabrication-characteristics-and-mechanical-behaviour-of-fly-ash-alumina-reinforced-zn-27al-alloy-matrix-hybrid-composite-using-stir-casting-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21365.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">335</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2615</span> Prediction of Mechanical Strength of Multiscale Hybrid Reinforced Cementitious Composite</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salam%20Alrekabi">Salam Alrekabi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20B.%20Cundy"> A. B. Cundy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Haloob%20Al-Majidi"> Mohammed Haloob Al-Majidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Novel multiscale hybrid reinforced cementitious composites based on carbon nanotubes (MHRCC-CNT), and carbon nanofibers (MHRCC-CNF) are new types of cement-based material fabricated with micro steel fibers and nanofilaments, featuring superior strain hardening, ductility, and energy absorption. This study focused on established models to predict the compressive strength, and direct and splitting tensile strengths of the produced cementitious composites. The analysis was carried out based on the experimental data presented by the previous author’s study, regression analysis, and the established models that available in the literature. The obtained models showed small differences in the predictions and target values with experimental verification indicated that the estimation of the mechanical properties could be achieved with good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multiscale%20hybrid%20reinforced%20cementitious%20composites" title="multiscale hybrid reinforced cementitious composites">multiscale hybrid reinforced cementitious composites</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanotubes" title=" carbon nanotubes"> carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon%20nanofibers" title=" carbon nanofibers"> carbon nanofibers</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength%20prediction" title=" mechanical strength prediction"> mechanical strength prediction</a> </p> <a href="https://publications.waset.org/abstracts/84842/prediction-of-mechanical-strength-of-multiscale-hybrid-reinforced-cementitious-composite" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84842.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">161</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2614</span> Effect of Heat Treatment on Mechanical Properties and Wear Behavior of Al7075 Alloy Reinforced with Beryl and Graphene Hybrid Metal Matrix Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shanawaz%20Patil">Shanawaz Patil</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Haneef"> Mohamed Haneef</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Narayanaswamy"> K. S. Narayanaswamy </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the recent years, aluminum metal matrix composites were most widely used, which are finding wide applications in various field such as automobile, aerospace defense etc., due to their outstanding mechanical properties like low density, light weight, exceptional high levels of strength, stiffness, wear resistance, high temperature resistance, low coefficient of thermal expansion and good formability. In the present work, an effort is made to study the effect of heat treatment on mechanical properties of aluminum 7075 alloy reinforced with constant weight percentage of naturally occurring mineral beryl and varying weight percentage of graphene. The hybrid composites are developed with 0.5 wt. %, 1wt.%, 1.5 wt.% and 2 wt.% of graphene and 6 wt.% of beryl by stir casting liquid metallurgy route. The cast specimens of unreinforced aluminum alloy and hybrid composite samples were prepared for heat treatment process and subjected to solutionizing treatment (T6) at a temperature of 490±5 <sup>o</sup>C for 8 hours in a muffle furnace followed by quenching in boiling water. The microstructure analysis of as cast and heat treated hybrid composite specimens are examined by scanning electron microscope (SEM). The tensile test and hardness test of unreinforced aluminum alloy and hybrid composites are examined. The wear behavior is examined by pin-on disc apparatus. The results of as cast specimens and heat treated specimens were compared. The heat treated Al7075-Beryl-Graphene hybrid composite had better properties and significantly improved the ultimate tensile strength, hardness and reduced wear loss when compared to aluminum alloy and as cast hybrid composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beryl" title="beryl">beryl</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20treatment" title=" heat treatment"> heat treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/102073/effect-of-heat-treatment-on-mechanical-properties-and-wear-behavior-of-al7075-alloy-reinforced-with-beryl-and-graphene-hybrid-metal-matrix-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102073.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2613</span> Processing and Evaluation of Jute Fiber Reinforced Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20W.%20Dewan">Mohammad W. Dewan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jahangir%20Alam"> Jahangir Alam</a>, <a href="https://publications.waset.org/abstracts/search?q=Khurshida%20Sharmin"> Khurshida Sharmin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthetic fibers (carbon, glass, aramid, etc.) are generally utilized to make composite materials for better mechanical and thermal properties. However, they are expensive and non-biodegradable. In the perspective of Bangladesh, jute fibers are available, inexpensive, and comprising good mechanical properties. The improved properties (i.e., low cost, low density, eco-friendly) of natural fibers have made them a promising reinforcement in hybrid composites without sacrificing mechanical properties. In this study, jute and e-glass fiber reinforced hybrid composite materials are fabricated utilizing hand lay-up followed by a compression molding technique. Room temperature cured two-part epoxy resin is used as a matrix. Approximate 6-7 mm thick composite panels are fabricated utilizing 17 layers of woven glass and jute fibers with different fiber layering sequences- only jute, only glass, glass, and jute alternatively (g/j/g/j---) and 4 glass - 9 jute – 4 glass (4g-9j-4g). The fabricated composite panels are analyzed through fiber volume calculation, tensile test, bending test, and water absorption test. The hybridization of jute and glass fiber results in better tensile, bending, and water absorption properties than only jute fiber-reinforced composites, but inferior properties as compared to only glass fiber reinforced composites. Among different fiber layering sequences, 4g-9j-4g fibers layering sequence resulted in better tensile, bending, and water absorption properties. The effect of chemical treatment on the woven jute fiber and chopped glass microfiber infusion are also investigated in this study. Chemically treated jute fiber and 2 wt. % chopped glass microfiber infused hybrid composite shows about 12% improvements in flexural strength as compared to untreated and no micro-fiber infused hybrid composite panel. However, fiber chemical treatment and micro-filler do not have a significant effect on tensile strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compression%20molding" title="compression molding">compression molding</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20treatment" title=" chemical treatment"> chemical treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composites" title=" hybrid composites"> hybrid composites</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20properties" title=" mechanical properties"> mechanical properties</a> </p> <a href="https://publications.waset.org/abstracts/129701/processing-and-evaluation-of-jute-fiber-reinforced-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129701.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">158</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2612</span> Damage Tolerance of Composites Containing Hybrid, Carbon-Innegra, Fibre Reinforcements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Armin%20Solemanifar">Armin Solemanifar</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Wilkinson"> Arthur Wilkinson</a>, <a href="https://publications.waset.org/abstracts/search?q=Kinjalkumar%20Patel"> Kinjalkumar Patel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Carbon fibre (CF) - polymer laminate composites have very low densities (approximately 40% lower than aluminium), high strength and high stiffness but in terms of toughness properties they often require modifications. For example, adding rubbers or thermoplastics toughening agents are common ways of improving the interlaminar fracture toughness of initially brittle thermoset composite matrices. The main aim of this project was to toughen CF-epoxy resin laminate composites using hybrid CF-fabrics incorporating Innegra™ a commercial highly-oriented polypropylene (PP) fibre, in which more than 90% of its crystal orientation is parallel to the fibre axis. In this study, the damage tolerance of hybrid (carbon-Innegra, CI) composites was investigated. Laminate composites were produced by resin-infusion using: pure CF fabric; fabrics with different ratios of commingled CI, and two different types of pure Innegra fabrics (Innegra 1 and Innegra 2). Dynamic mechanical thermal analysis (DMTA) was used to measure the glass transition temperature (Tg) of the composite matrix and values of flexural storage modulus versus temperature. Mechanical testing included drop-weight impact, compression-after-impact (CAI), and interlaminar (short-beam) shear strength (ILSS). Ultrasonic C-Scan imaging was used to determine the impact damage area and scanning electron microscopy (SEM) to observe the fracture mechanisms that occur during failure of the composites. For all composites, 8 layers of fabrics were used with a quasi-isotropic sequence of [-45°, 0°, +45°, 90°]s. DMTA showed the Tg of all composites to be approximately same (123 ±3°C) and that flexural storage modulus (before the onset of Tg) was the highest for the pure CF composite while the lowest were for the Innegra 1 and 2 composites. Short-beam shear strength of the commingled composites was higher than other composites, while for Innegra 1 and 2 composites only inelastic deformation failure was observed during the short-beam test. During impact, the Innegra 1 composite withstood up to 40 J without any perforation while for the CF perforation occurred at 10 J. The rate of reduction in compression strength upon increasing the impact energy was lowest for the Innegra 1 and 2 composites, while CF showed the highest rate. On the other hand, the compressive strength of the CF composite was highest of all the composites at all impacted energy levels. The predominant failure modes for Innegra composites observed in cross-sections of fractured specimens were fibre pull-out, micro-buckling, and fibre plastic deformation; while fibre breakage and matrix delamination were a major failure observed in the commingled composites due to the more brittle behaviour of CF. Thus, Innegra fibres toughened the CF composites but only at the expense of reducing compressive strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composite" title="hybrid composite">hybrid composite</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20fibre" title=" thermoplastic fibre"> thermoplastic fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=compression%20strength" title=" compression strength"> compression strength</a>, <a href="https://publications.waset.org/abstracts/search?q=damage%20tolerance" title=" damage tolerance"> damage tolerance</a> </p> <a href="https://publications.waset.org/abstracts/50246/damage-tolerance-of-composites-containing-hybrid-carbon-innegra-fibre-reinforcements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50246.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">295</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2611</span> Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Noor%20Zuhaira%20Abd%20Aziz">Noor Zuhaira Abd Aziz</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hybrid%20composites" title="Hybrid composites">Hybrid composites</a>, <a href="https://publications.waset.org/abstracts/search?q=Water%20absorption" title=" Water absorption"> Water absorption</a>, <a href="https://publications.waset.org/abstracts/search?q=Mechanical%20properties" title=" Mechanical properties "> Mechanical properties </a> </p> <a href="https://publications.waset.org/abstracts/17840/effects-of-kenaf-and-rice-husk-on-water-absorption-and-flexural-properties-of-kenafcaco3hdpe-and-rice-huskcaco3hdpe-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17840.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">462</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2610</span> Cladding Technology for Metal-Hybrid Composites with Network-Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ha-Guk%20Jeong">Ha-Guk Jeong</a>, <a href="https://publications.waset.org/abstracts/search?q=Jong-Beom%20Lee"> Jong-Beom Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cladding process is very typical technology for manufacturing composite materials by the hydrostatic extrusion. Because there is no friction between the metal and the container, it can be easily obtained in uniform flow during the deformation. The general manufacturing process for a metal-matrix composite in the solid state, mixing metal powders and ceramic powders with a suited volume ratio, prior to be compressed or extruded at the cold or hot condition in a can. Since through a plurality of unit processing steps of dispersing the materials having a large difference in their characteristics and physical mixing, the process is complicated and leads to non-uniform dispersion of ceramics. It is difficult and hard to reach a uniform ideal property in the coherence problems at the interface between the metal and the ceramic reinforcements. Metal hybrid composites, which presented in this report, are manufactured through the traditional plastic deformation processes like hydrostatic extrusion, caliber-rolling, and drawing. By the previous process, the realization of uniform macro and microstructure is surely possible. In this study, as a constituent material, aluminum, copper, and titanium have been used, according to the component ratio, excellent characteristics of each material were possible to produce a metal hybrid composite that appears to maximize. MgB₂ superconductor wire also fabricated via the same process. It will be introduced to their unique artistic and thermal characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cladding%20process" title="cladding process">cladding process</a>, <a href="https://publications.waset.org/abstracts/search?q=metal-hybrid%20composites" title=" metal-hybrid composites"> metal-hybrid composites</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrostatic%20extrusion" title=" hydrostatic extrusion"> hydrostatic extrusion</a>, <a href="https://publications.waset.org/abstracts/search?q=electronic%2Fthermal%20characteristics" title=" electronic/thermal characteristics"> electronic/thermal characteristics</a> </p> <a href="https://publications.waset.org/abstracts/92271/cladding-technology-for-metal-hybrid-composites-with-network-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/92271.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">180</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2609</span> Experimental Investigation and Analysis of Wear Parameters on Al/Sic/Gr: Metal Matrix Hybrid Composite by Taguchi Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rachit%20Marwaha">Rachit Marwaha</a>, <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Dev%20Gupta"> Rahul Dev Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Vivek%20Jain"> Vivek Jain</a>, <a href="https://publications.waset.org/abstracts/search?q=Krishan%20Kant%20Sharma"> Krishan Kant Sharma </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Metal matrix hybrid composites (MMHCs) are now gaining their usage in aerospace, automotive and other industries because of their inherent properties like high strength to weight ratio, hardness and wear resistance, good creep behaviour, light weight, design flexibility and low wear rate etc. Al alloy base matrix reinforced with silicon carbide (10%) and graphite (5%) particles was fabricated by stir casting process. The wear and frictional properties of metal matrix hybrid composites were studied by performing dry sliding wear test using pin on disc wear test apparatus. Experiments were conducted based on the plan of experiments generated through Taguchi’s technique. A L9 Orthogonal array was selected for analysis of data. Investigation to find the influence of applied load, sliding speed and track diameter on wear rate as well as coefficient of friction during wearing process was carried out using ANOVA. Objective of the model was chosen as smaller the better characteristics to analyse the dry sliding wear resistance. Results show that track diameter has highest influence followed by load and sliding speed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20method" title="Taguchi method">Taguchi method</a>, <a href="https://publications.waset.org/abstracts/search?q=orthogonal%20array" title=" orthogonal array"> orthogonal array</a>, <a href="https://publications.waset.org/abstracts/search?q=ANOVA" title=" ANOVA"> ANOVA</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20matrix%20hybrid%20composites" title=" metal matrix hybrid composites"> metal matrix hybrid composites</a> </p> <a href="https://publications.waset.org/abstracts/3556/experimental-investigation-and-analysis-of-wear-parameters-on-alsicgr-metal-matrix-hybrid-composite-by-taguchi-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3556.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">329</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2608</span> Design and Synthesis of Gradient Nanocomposite Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pu%20Ying-Chih">Pu Ying-Chih</a>, <a href="https://publications.waset.org/abstracts/search?q=Yang%20Yin-Ju"> Yang Yin-Ju</a>, <a href="https://publications.waset.org/abstracts/search?q=Hang%20Jian-Yi"> Hang Jian-Yi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jang%20Guang-Way"> Jang Guang-Way </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic-Inorganic hybrid materials consisting of graded distributions of inorganic nano particles in organic polymer matrices were successfully prepared by the sol-gel process. Optical and surface properties of the resulting nano composites can be manipulated by changing their compositions and nano particle distribution gradients. Applications of gradient nano composite materials include sealants for LED packaging and screen lenses for smartphones. Optical transparency, prism coupler, TEM, SEM, Energy Dispersive X-ray Spectrometer (EDX), Izod impact strength, conductivity, pencil hardness, and thermogravimetric characterizations of the nano composites were performed and the results will be presented. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Gradient" title="Gradient">Gradient</a>, <a href="https://publications.waset.org/abstracts/search?q=Hybrid" title=" Hybrid"> Hybrid</a>, <a href="https://publications.waset.org/abstracts/search?q=Nanocomposite" title=" Nanocomposite"> Nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=Organic-Inorganic" title=" Organic-Inorganic"> Organic-Inorganic</a> </p> <a href="https://publications.waset.org/abstracts/25011/design-and-synthesis-of-gradient-nanocomposite-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25011.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">506</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2607</span> Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Koul">S. Koul</a>, <a href="https://publications.waset.org/abstracts/search?q=Joshua%20Adedamola"> Joshua Adedamola</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ICP" title="ICP">ICP</a>, <a href="https://publications.waset.org/abstracts/search?q=dopant" title=" dopant"> dopant</a>, <a href="https://publications.waset.org/abstracts/search?q=EMI" title=" EMI"> EMI</a>, <a href="https://publications.waset.org/abstracts/search?q=shielding" title=" shielding"> shielding</a> </p> <a href="https://publications.waset.org/abstracts/164742/intrinsically-dual-doped-conductive-polymer-system-for-electromagnetic-shielding-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/164742.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2606</span> Preparation and Characterization of Hybrid Perovskite Enhanced with PVDF for Pressure Sensing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20E.%20Harb">Mohamed E. Harb</a>, <a href="https://publications.waset.org/abstracts/search?q=Enas%20Moustafa"> Enas Moustafa</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaker%20Ebrahim"> Shaker Ebrahim</a>, <a href="https://publications.waset.org/abstracts/search?q=Moataz%20Soliman"> Moataz Soliman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper pressure detectors were synthesized and characterized using hybrid perovskite/PVDF composites as an active layer. Methylammonium lead iodide (MAPbI₃) was synthesized from methylammonium iodide (MAI) (CH₃NH₃I) and lead iodide (PbI₂). Composites of perovskite/PVDF using different weight ratio were prepared as the active material. PVDF with weights percentages of 6%, 8%, and 10% was used. All prepared materials were investigated by x-ray diffraction (XRD), Fourier transforms infrared spectrum (FTIR) and scanning electron microscopy (SEM). A Versastat 4 Potentiostat Galvanostat instrument was used to perform the current-voltage characteristics of the fabricated sensors. The pressure sensors exhibited a voltage increase with applying different forces. Also, the current-voltage characteristics (CV) showed different effects with applying forces. So, the results showed a good pressure sensing performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perovskite%20semiconductor" title="perovskite semiconductor">perovskite semiconductor</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20perovskite" title=" hybrid perovskite"> hybrid perovskite</a>, <a href="https://publications.waset.org/abstracts/search?q=PVDF" title=" PVDF"> PVDF</a>, <a href="https://publications.waset.org/abstracts/search?q=Pressure%20sensing" title=" Pressure sensing"> Pressure sensing</a> </p> <a href="https://publications.waset.org/abstracts/96658/preparation-and-characterization-of-hybrid-perovskite-enhanced-with-pvdf-for-pressure-sensing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/96658.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">207</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2605</span> Mechanical Properties of Carbon Fibre Reinforced Thermoplastic Composites Consisting of Recycled Carbon Fibres and Polyamide 6 Fibres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mir%20Mohammad%20Badrul%20Hasan">Mir Mohammad Badrul Hasan</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20Abdkader"> Anwar Abdkader</a>, <a href="https://publications.waset.org/abstracts/search?q=Chokri%20Cherif"> Chokri Cherif</a> </p> <p class="card-text"><strong>Abstract:</strong></p> With the increasing demand and use of carbon fibre reinforced composites (CFRC), disposal of the carbon fibres (CF) and end of life composite parts is gaining tremendous importance on the issue especially of sustainability. Furthermore, a number of processes (e. g. pyrolysis, solvolysis, etc.) are available currently to obtain recycled CF (rCF) from end-of-life CFRC. Since the CF waste or rCF are neither allowed to be thermally degraded nor landfilled (EU Directive 1999/31/EC), profitable recycling and re-use concepts are urgently necessary. Currently, the market for materials based on rCF mainly consists of random mats (nonwoven) made from short fibres. The strengths of composites that can be achieved from injection-molded components and from nonwovens are between 200-404 MPa and are characterized by low performance and suitable for non-structural applications such as in aircraft and vehicle interiors. On the contrary, spinning rCF to yarn constructions offers good potential for higher CFRC material properties due to high fibre orientation and compaction of rCF. However, no investigation is reported till yet on the direct comparison of the mechanical properties of thermoplastic CFRC manufactured from virgin CF filament yarn and spun yarns from staple rCF. There is a lack of understanding on the level of performance of the composites that can be achieved from hybrid yarns consisting of rCF and PA6 fibres. In this drop back, extensive research works are being carried out at the Textile Machinery and High-Performance Material Technology (ITM) on the development of new thermoplastic CFRC from hybrid yarns consisting of rCF. For this purpose, a process chain is developed at the ITM starting from fibre preparation to hybrid yarns manufacturing consisting of staple rCF by mixing with thermoplastic fibres. The objective is to apply such hybrid yarns for the manufacturing of load bearing textile reinforced thermoplastic CFRCs. In this paper, the development of innovative multi-component core-sheath hybrid yarn structures consisting of staple rCF and polyamide 6 (PA 6) on a DREF-3000 friction spinning machine is reported. Furthermore, Unidirectional (UD) CFRCs are manufactured from the developed hybrid yarns, and the mechanical properties of the composites such as tensile and flexural properties are analyzed. The results show that the UD composite manufactured from the developed hybrid yarns consisting of staple rCF possesses approximately 80% of the tensile strength and E-module to those produced from virgin CF filament yarn. The results show a huge potential of the DREF-3000 friction spinning process to develop composites from rCF for high-performance applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=recycled%20carbon%20fibres" title="recycled carbon fibres">recycled carbon fibres</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20yarn" title=" hybrid yarn"> hybrid yarn</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20spinning" title=" friction spinning"> friction spinning</a>, <a href="https://publications.waset.org/abstracts/search?q=thermoplastic%20composite" title=" thermoplastic composite"> thermoplastic composite</a> </p> <a href="https://publications.waset.org/abstracts/86016/mechanical-properties-of-carbon-fibre-reinforced-thermoplastic-composites-consisting-of-recycled-carbon-fibres-and-polyamide-6-fibres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86016.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">255</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2604</span> Synthesis and Properties of Photocured Surface Modified Polyaniline Hybrid Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Asli%20Beyler%20%C3%87i%CC%87%C4%9Fi%CC%87l">Asli Beyler Çi̇ği̇l</a>, <a href="https://publications.waset.org/abstracts/search?q=Memet%20Vezi%CC%87r%20Kahraman"> Memet Vezi̇r Kahraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Organic–inorganic hybrids have become an effective source of advanced materials because they combine the advantages of both the organic moiety such as flexibility, low dielectric constant, and processability, and inorganic moiety as rigidity, strength, durability, and thermal stability. By incorporating cross-linkable side chains, the hybrid materials can be made photosensitive and UV curable, which offers many advantages including low processing temperature, low equipment cost and compatibility. In this study, uv-curable organic-inorganic hybrid material, which was contained surface modified polyaniline particles (PANI), was prepared. PANI surface photografted with hydroxy ethyl methacrylate (HEMA) to produce hydroxyl groups. Hydroxyl functionalized PANI/HEMA was acrylated using isocyanato ethyl methacrylate (IEM) in order to improve the dispersion and interfacial interaction in composites. UV-curable formulation was prepared by mixing the surface modified PANI, polyethylene glycol diacrylate (PEGDA), trimethylolpropane triacrylate (TMPTA), hydrolized 3- methacryloxypropyltrimethoxysilane (hyd. MEMO) and photoinitiator. Chemical structure of nano-hybrid material was characterized by FTIR. FTIR spectra showed that the photografting of PANI was prepared successfully. Thermal properties of the nano-hybrid material were determined by thermogravimetric analysis (TGA). The morphology of the nano-hybrid material was performed by scanning electron microscopy (SEM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polyaniline" title="polyaniline">polyaniline</a>, <a href="https://publications.waset.org/abstracts/search?q=photograft" title=" photograft"> photograft</a>, <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title=" sol-gel"> sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=uv-curable%20polymer" title=" uv-curable polymer"> uv-curable polymer</a> </p> <a href="https://publications.waset.org/abstracts/44891/synthesis-and-properties-of-photocured-surface-modified-polyaniline-hybrid-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">302</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2603</span> Reinforcing Effects of Natural Micro-Particles on the Dynamic Impact Behaviour of Hybrid Bio-Composites Made of Short Kevlar Fibers Reinforced Thermoplastic Composite Armor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edison%20E.%20Haro">Edison E. Haro</a>, <a href="https://publications.waset.org/abstracts/search?q=Akindele%20G.%20Odeshi"> Akindele G. Odeshi</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20A.%20Szpunar"> Jerzy A. Szpunar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hybrid bio-composites are developed for use in protective armor through positive hybridization offered by reinforcement of high-density polyethylene (HDPE) with Kevlar short fibers and palm wood micro-fillers. The manufacturing process involved a combination of extrusion and compression molding techniques. The mechanical behavior of Kevlar fiber reinforced HDPE with and without palm wood filler additions are compared. The effect of the weight fraction of the added palm wood micro-fillers is also determined. The Young modulus was found to increase as the weight fraction of organic micro-particles increased. However, the flexural strength decreased with increasing weight fraction of added micro-fillers. The interfacial interactions between the components were investigated using scanning electron microscopy. The influence of the size, random alignment and distribution of the natural micro-particles was evaluated. Ballistic impact and dynamic shock loading tests were performed to determine the optimum proportion of Kevlar short fibers and organic micro-fillers needed to improve impact strength of the HDPE. These results indicate a positive hybridization by deposition of organic micro-fillers on the surface of short Kevlar fibers used in reinforcing the thermoplastic matrix leading to enhancement of the mechanical strength and dynamic impact behavior of these materials. Therefore, these hybrid bio-composites can be promising materials for different applications against high velocity impacts. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hybrid%20bio-composites" title="hybrid bio-composites">hybrid bio-composites</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20nano-fillers" title=" organic nano-fillers"> organic nano-fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=dynamic%20shocking%20loading" title=" dynamic shocking loading"> dynamic shocking loading</a>, <a href="https://publications.waset.org/abstracts/search?q=ballistic%20impacts" title=" ballistic impacts"> ballistic impacts</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20absorption" title=" energy absorption"> energy absorption</a> </p> <a href="https://publications.waset.org/abstracts/109084/reinforcing-effects-of-natural-micro-particles-on-the-dynamic-impact-behaviour-of-hybrid-bio-composites-made-of-short-kevlar-fibers-reinforced-thermoplastic-composite-armor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/109084.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2602</span> Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Thirunavukkarasu">J. Thirunavukkarasu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Poulet"> M. Poulet</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Turner"> T. Turner</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Pickering"> S. Pickering</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is combined with a proportion of glass fiber, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled without sizing agent was identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrostatic%20charging" title="electrostatic charging">electrostatic charging</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20fiber%20composites" title=" hybrid fiber composites"> hybrid fiber composites</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20fiber%20composites" title=" short fiber composites"> short fiber composites</a> </p> <a href="https://publications.waset.org/abstracts/138679/separation-of-composites-for-recycling-measurement-of-electrostatic-charge-of-carbon-and-glass-fiber-particles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/138679.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2601</span> Design and Analysis of a Rear Bumper of an Automobile with a Hybrid Polymer Composite of Oil Palm Empty Fruit Bunch Fiber/Banana Fibres</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20O.%20Ologe">S. O. Ologe</a>, <a href="https://publications.waset.org/abstracts/search?q=U.%20P.%20Anaidhuno"> U. P. Anaidhuno</a>, <a href="https://publications.waset.org/abstracts/search?q=Duru%20C.%20A."> Duru C. A.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research investigated the design and analysis of a rear bumper of an automobile with a hybrid polymer composite of OPEBF/Banana fibre. OPEBF/Banana fibre hybrid polymers composite is of low cost, lightweight, as well as possesses satisfactory mechanical properties. In this research work, hybrid composites have been developed using the hand layup technique based on the percentage combination of OPEBF/Banana fibre at 10:90, 20:80, 30:70, 40:60, 50:50. 60:40, 70:30. 20:80, 90:10, 95:5. The mechanical properties in the context of compressive strength of 65MPa, a flexural strength of 20MPa, and impact strength of 3.25Joule were observed, and the simulation analysis on the induction of 500N load at the factor of safety of 3 was observed to have displayed a good strength suitable for automobile bumper with the advantages of weight reduction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=OPEBF" title="OPEBF">OPEBF</a>, <a href="https://publications.waset.org/abstracts/search?q=Banana" title=" Banana"> Banana</a>, <a href="https://publications.waset.org/abstracts/search?q=fibre" title=" fibre"> fibre</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid" title=" hybrid"> hybrid</a> </p> <a href="https://publications.waset.org/abstracts/151667/design-and-analysis-of-a-rear-bumper-of-an-automobile-with-a-hybrid-polymer-composite-of-oil-palm-empty-fruit-bunch-fiberbanana-fibres" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/151667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">113</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2600</span> Synthesis and Study the Effect of HNTs on PVA/Chitosan Composite Material</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Malek%20Ali">Malek Ali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Composites materials of Poly (vinyl alcohol) (PVA)/Chitosan (CS) have been synthesized and characterized successfully. HNTs have been added to composites to enhance the mechanical and degradation properties by hydrogen bonding interactions, compatibility, and chemical crosslink between HNTs and PVA. PVA/CS/HNTs composites prepared with different concentration ratio. SEM micrographs of composites surface showed that more agglomeration with more chitosan ratio. Mechanical and degradation properties were characterized and the result indicates that Mechanical and degradation of 80%PVA/5%Chitosan/15%HNTs higher than the others PVA/CS/HNTs composites. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=PVA%2Fchitosan" title="PVA/chitosan">PVA/chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=composites" title=" composites"> composites</a>, <a href="https://publications.waset.org/abstracts/search?q=PVA%2FCS%2FHNTs" title=" PVA/CS/HNTs"> PVA/CS/HNTs</a>, <a href="https://publications.waset.org/abstracts/search?q=HNTs" title=" HNTs"> HNTs</a> </p> <a href="https://publications.waset.org/abstracts/42719/synthesis-and-study-the-effect-of-hnts-on-pvachitosan-composite-material" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">292</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2599</span> Electromagnetic Interface Shielding of Graphene Oxide–Carbon Nanotube Hybrid ABS Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeevan%20Jyoti">Jeevan Jyoti</a>, <a href="https://publications.waset.org/abstracts/search?q=Bhanu%20Pratap%20Singh"> Bhanu Pratap Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20R.%20Dhakate"> S. R. Dhakate</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present study, multiwalled carbon nanotubes (MWCNTs) and reduced graphene oxide (RGO) were synthesized by chemical vapor deposition and Improved Hummer’s method, respectively and their composite with acrylonitrile butadiene styrene (ABS) were prepared by twin screw co rotating extrusion technique. The electromagnetic interference (EMI) shielding effectiveness of graphene oxide carbon nanotube (GCNTs) hybrid composites was investigated and the results were compared with EMI shielding of carbon nanotube (CNTs) and reduced graphene oxide (RGO) in the frequency range of 12.4-18 GHz (Ku-band). The experimental results indicate that the EMI shielding effectiveness of these composites is achieved up to –21 dB for 10 wt. % loading of GCNT loading. The mechanism of improvement in EMI shielding effectiveness is discussed by resolving their contribution in absorption and reflection loss. The main reason for such a high improved shielding effectiveness has been attributed to the significant improvement in the electrical conductivity of the composites. The electrical conductivity of these GCNT/ABS composites was increased from 10-13 S/cm to 10-7 S/cm showing the improvement of the 6 order of the magnitude. Scanning electron microscopic (SEM) and high resolution transmission electron microscopic (HRTEM) studies showed that the GCNTs were uniformly dispersed in the ABS polymer matrix. GCNTs form a network throughout the polymer matrix and promote the reinforcement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ABS" title="ABS">ABS</a>, <a href="https://publications.waset.org/abstracts/search?q=EMI%20shielding" title=" EMI shielding"> EMI shielding</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwalled%20carbon%20nanotubes" title=" multiwalled carbon nanotubes"> multiwalled carbon nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=reduced%20graphene%20oxide" title=" reduced graphene oxide"> reduced graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=oxide-carbon%20nanotube%20%28GCNTs%29" title=" oxide-carbon nanotube (GCNTs)"> oxide-carbon nanotube (GCNTs)</a>, <a href="https://publications.waset.org/abstracts/search?q=twin%20screw%20extruder" title=" twin screw extruder"> twin screw extruder</a>, <a href="https://publications.waset.org/abstracts/search?q=multiwall%20carbon%20nanotube" title=" multiwall carbon nanotube"> multiwall carbon nanotube</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20conductivity" title=" electrical conductivity"> electrical conductivity</a> </p> <a href="https://publications.waset.org/abstracts/39268/electromagnetic-interface-shielding-of-graphene-oxide-carbon-nanotube-hybrid-abs-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39268.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">361</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2598</span> Experimental Investigation on Mechanical Properties of Rice Husk Filled Jute Reinforced Composites</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Priyankar%20P.%20Deka">Priyankar P. Deka</a>, <a href="https://publications.waset.org/abstracts/search?q=Sutanu%20Samanta"> Sutanu Samanta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes the development of new class of epoxy based hybrid composites reinforced with jute and filled with rice husk flour. Rice husk flour is added in 0%, 1%, 3%, 5% by weight. Epoxy resin and triethylene tetramine (T.E.T.A) is used as matrix and hardener respectively. It investigates the mechanical properties of the composites and a comparison is done for monolithic jute composite and the filled ones. The specimens are prepared according to the ASTM standards and experimentation is carried out using INSTRON 8801. The result shows that with the increase of filler percentage the tensile properties increases but compressive and flexural properties decreases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jute" title="jute">jute</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20characterization" title=" mechanical characterization"> mechanical characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20fiber" title=" natural fiber"> natural fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=rice%20husk" title=" rice husk"> rice husk</a> </p> <a href="https://publications.waset.org/abstracts/37807/experimental-investigation-on-mechanical-properties-of-rice-husk-filled-jute-reinforced-composites" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37807.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2597</span> Corrosion Behaviour of Al-Mg-Si Alloy Matrix Hybrid Composite Reinforced with Cassava Peel Ash and Silicon Carbide</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Oji">B. Oji</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20Olaniran"> O. Olaniran</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The prospect of improving the corrosion property of Al 6063 alloy based hybrid composites reinforced with cassava peel ash (CPA) and silicon carbide (SiC) is the target of this research. It seeks to determine the viability of using locally sourced material (CPA) as a complimentary reinforcement for SiC to produce low cost high performance aluminum matrix composite. The CPA was mixed with the SiC in the ratios 0:1, 1:3, 1:1, 3:1 and 1:0 for 8 wt % reinforcement in the produced composites by double stir-casting method. The microstructures of the composites were studied before and after corrosion using the scanning electron microscopy which reveals the matrix (dark region) and eutectic phase (lamellar region). The corrosion rate was studied in accordance with ASTM G59-97 (2014) using an AutoLab potentiostat (Versa STAT 400) with versaSTUDIO electrochemical software which analyses the results obtained. The result showed that Al 6063 alloy exhibited good corrosion resistance in 0.3M H₂SO₄ and 3.5 wt. % NaCl solutions with sample C containing the 25% wt CPA showing the highest resistance to corrosion with corrosion rate of 0.0046 mmpy as compared to the control sample which has a value of 13.233 mmpy. Sample B, D, E, and F also showed a corrosion rate of 3.9502, 2.6903, 2.1223, and 5.7344 mmpy which indicated a better corrosion rate than the control in the acidic environment. The corrosion rate in the saline medium shows that sample E with 75% wt CPA has the lowest corrosion rate of 0.0422 mmpy as compared to the control sample with 0.0873 mmpy corrosion rate. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Al-Mg-Si%20alloy" title="Al-Mg-Si alloy">Al-Mg-Si alloy</a>, <a href="https://publications.waset.org/abstracts/search?q=AutoLab%20potentiostat" title=" AutoLab potentiostat"> AutoLab potentiostat</a>, <a href="https://publications.waset.org/abstracts/search?q=Cassava%20Peel%20Ash" title=" Cassava Peel Ash"> Cassava Peel Ash</a>, <a href="https://publications.waset.org/abstracts/search?q=CPA" title=" CPA"> CPA</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20composite" title=" hybrid composite"> hybrid composite</a>, <a href="https://publications.waset.org/abstracts/search?q=stir-cast%20method" title=" stir-cast method"> stir-cast method</a> </p> <a href="https://publications.waset.org/abstracts/108972/corrosion-behaviour-of-al-mg-si-alloy-matrix-hybrid-composite-reinforced-with-cassava-peel-ash-and-silicon-carbide" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/108972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2596</span> An Overview on Aluminum Matrix Composites: Liquid State Processing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Jordan">S. P. Jordan</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Christian"> G. Christian</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Jeffs"> S. P. Jeffs</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern composite materials are increasingly being chosen in replacement of heavier metallic material systems within many engineering fields including aerospace and automotive industries. The increasing push towards satisfying environmental targets are fuelling new material technologies and manufacturing processes. This paper will introduce materials and manufacturing processes using metal matrix composites along with manufacturing processes optimized at Alvant Ltd., based in Basingstoke in the UK which offers modern, cost effective, selectively reinforced composites for light-weighting applications within engineering. An overview and introduction into modern optimized manufacturing methods capable of producing viable replacements for heavier metallic and lower temperature capable polymer composites are offered. A review of the capabilities and future applications of this viable material is discussed to highlight the potential involved in further optimization of old manufacturing techniques, to fully realize the potential to lightweight material using cost-effective methods. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aluminium%20matrix%20composites" title="aluminium matrix composites">aluminium matrix composites</a>, <a href="https://publications.waset.org/abstracts/search?q=light-weighting" title=" light-weighting"> light-weighting</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20squeeze%20casting" title=" hybrid squeeze casting"> hybrid squeeze casting</a>, <a href="https://publications.waset.org/abstracts/search?q=strategically%20placed%20reinforcements" title=" strategically placed reinforcements"> strategically placed reinforcements</a> </p> <a href="https://publications.waset.org/abstracts/129014/an-overview-on-aluminum-matrix-composites-liquid-state-processing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/129014.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=87">87</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=88">88</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=hybrid%20composites&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>