CINXE.COM
Search results for: averaging
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: averaging</title> <meta name="description" content="Search results for: averaging"> <meta name="keywords" content="averaging"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="averaging" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="averaging"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 100</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: averaging</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Effect of Different By-Products on Growth Performance, Carcass Characteristics and Serum Parameters of Growing Simmental Crossbred Cattle</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fei%20Wang">Fei Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jie%20Meng"> Jie Meng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingxiang%20Meng"> Qingxiang Meng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> China is rich in straw and by-product resources, whose utilization has always been a hot topic. The objective of this study was to investigate the effect of feeding soybean straw and wine distiller’s grain as a replacement for corn stover on performance of beef cattle. Sixty Simmental×local crossbred bulls averaging 12 months old and 335.7 ± 39.1 kg of body weight (BW) were randomly assigned into four groups (15 animals per group) and allocated to a diet with 40% maize stover (MSD), a diet with 40% wrapping package maize silage (PMSD), a diet with 12% soybean straw plus 28% maize stover (SSD) and a diet with 12% wine distiller’s grain plus 28% maize stover (WDD). Bulls were fed ad libitum an TMR consisting of 36.0% maize, 12.5% of DDGS, 5.0% of cottonseed meal, 4.0% of soybean meal and 40.0% of by-product as described above. Treatment period lasted for 22 weeks, consisting of 1 week of dietary adaptation. The results showed that dry matter intake (DMI) was significantly higher (P < 0.01) for PMSD group than MSD and SSD groups during 0-7 week and 8-14week, and PMSD and WDD groups had higher (P < 0.05) DMI values than MSD and SSD groups during the whole period. Average daily gain (ADG) values were 1.56, 1.72, 1.68 and 1.58 kg for MSD, PMSD, SSD and WDD groups respectively, although the differences were not significant (P > 0.05). The value of blood sugar concentration was significantly higher (P < 0.01) for MSD group than WDD group, and the blood urea nitrogen concentration of SSD group was lower (P < 0.05) than MSD and WDD groups. No significant difference (P > 0.05) of serum total cholesterol, triglycerides or total protein content was observed among the different groups. Ten bulls with similar body weight were selected at the end of feeding trial and slaughtered for measurement of slaughtering performance, carcass quality and meat chemical composition. SSD group had significantly lower (P < 0.05) shear force value and cooking loss than MSD and PMSD groups. The pH values of MSD and SSD groups were lower (P < 0.05) than PMSD and WDD groups. WDD group had a higher fat color brightness (L*) value than PMSD and SSD groups. There were no significant differences in dressing percentage, meat percentage, top grade meat weight, ribeye area, marbling score, meat color and meat chemical compositions among different dietary treatments. Based on these results, the packed maize stover silage showed a potential of improving the average daily gain and feed intake of beef cattle. Soybean straw had a significant effect on improving the tenderness and reducing cooking loss of beef. In general, soybean straw and packed maize stover silage would be beneficial to nitrogen deposition and showed a potential to substitute maize stover in beef cattle diets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=beef%20cattle" title="beef cattle">beef cattle</a>, <a href="https://publications.waset.org/abstracts/search?q=by-products" title=" by-products"> by-products</a>, <a href="https://publications.waset.org/abstracts/search?q=carcass%20quality" title=" carcass quality"> carcass quality</a>, <a href="https://publications.waset.org/abstracts/search?q=growth%20performance" title=" growth performance"> growth performance</a> </p> <a href="https://publications.waset.org/abstracts/27138/effect-of-different-by-products-on-growth-performance-carcass-characteristics-and-serum-parameters-of-growing-simmental-crossbred-cattle" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">517</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Racial Distress in the Digital Age: A Mixed-Methods Exploration of the Effects of Social Media Exposure to Police Brutality on Black Students</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amanda%20M.%20McLeroy">Amanda M. McLeroy</a>, <a href="https://publications.waset.org/abstracts/search?q=Tiera%20Tanksley"> Tiera Tanksley</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The 2020 movement for Black Lives, ignited by anti-Black police brutality and exemplified by the public execution of George Floyd, underscored the dual potential of social media for political activism and perilous exposure to traumatic content for Black students. This study employs Critical Race Technology Theory (CRTT) to scrutinize algorithmic anti-blackness and its impact on Black youth's lives and educational experiences. The research investigates the consequences of vicarious exposure to police brutality on social media among Black adolescents through qualitative interviews and quantitative scale data. The findings reveal an unprecedented surge in exposure to viral police killings since 2020, resulting in profound physical, socioemotional, and educational effects on Black youth. CRTT forms the theoretical basis, challenging the notion of digital technologies as post-racial and neutral, aiming to dismantle systemic biases within digital systems. Black youth, averaging over 13 hours of daily social media use, face constant exposure to graphic images of Black individuals dying. The study connects this exposure to a range of physical, socioemotional, and mental health consequences, emphasizing the urgent need for understanding and support. The research proposes questions to explore the extent of police brutality exposure and its effects on Black youth. Qualitative interviews with high school and college students and quantitative scale data from undergraduates contribute to a nuanced understanding of the impact of police brutality exposure on Black youth. Themes of unprecedented exposure to viral police killings, physical and socioemotional effects, and educational consequences emerge from the analysis. The study uncovers how vicarious experiences of negative police encounters via social media lead to mistrust, fear, and psychosomatic symptoms among Black adolescents. Implications for educators and counselors are profound, emphasizing the cultivation of empathy, provision of mental health support, integration of media literacy education, and encouragement of activism. Recognizing family and community influences is crucial for comprehensive support. Professional development opportunities in culturally responsive teaching and trauma-informed approaches are recommended for educators. In conclusion, creating a supportive educational environment that addresses the emotional impact of social media exposure to police brutality is crucial for the well-being and development of Black adolescents. Counselors, through safe spaces and collaboration, play a vital role in supporting Black youth facing the distressing effects of social media exposure to police brutality. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=black%20youth" title="black youth">black youth</a>, <a href="https://publications.waset.org/abstracts/search?q=mental%20health" title=" mental health"> mental health</a>, <a href="https://publications.waset.org/abstracts/search?q=police%20brutality" title=" police brutality"> police brutality</a>, <a href="https://publications.waset.org/abstracts/search?q=social%20media" title=" social media"> social media</a> </p> <a href="https://publications.waset.org/abstracts/179192/racial-distress-in-the-digital-age-a-mixed-methods-exploration-of-the-effects-of-social-media-exposure-to-police-brutality-on-black-students" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/179192.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">54</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Ruminal Fermentation of Biologically Active Nitrate- and Nitro-Containing Forages</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Robin%20Anderson">Robin Anderson</a>, <a href="https://publications.waset.org/abstracts/search?q=David%20Nisbet"> David Nisbet</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nitrate, 3-nitro-1-propionic acid (NPA) and 3-nitro-1-propanol (NPOH) are biologically active chemicals that can accumulate naturally in rangeland grasses forages consumed by grazing cattle, sheep and goats. While toxic to livestock if accumulations and amounts consumed are high enough, particularly in animals having no recent exposure to the forages, these chemicals are known to be potent inhibitors of methane-producing bacteria inhabiting the rumen. Consequently, there is interest in examining their potential use as anti-methanogenic compounds to decrease methane emissions by grazing ruminants. Presently, rumen microbes, collected freshly from a cannulated Holstein cow maintained on 50:50 corn based concentrate:alfalfa diet were mixed (10 mL fluid) in 18 x 150 mm crimp top tubes with 0.5 of high nitrate-containing barley (Hordeum vulgare; containing 272 µmol nitrate per g forage dry matter), and NPA- or NPOH- containing milkvetch forages (Astragalus canadensis and Astragalus miser containing 80 and 174 soluble µmol NPA or NPOH/g forage dry matter respectively). Incubations containing 0.5 g alfalfa (Medicago sativa) were used as controls. Tubes (3 per each respective forage) were capped and incubated anaerobically (using oxygen free carbon dioxide) for 24 h at 39oC after which time amounts of total gas produced were measured via volume displacement and headspace samples were analyzed by gas chromatography to determine concentrations of hydrogen and methane. Fluid samples were analyzed by gas chromatography to measure accumulations of fermentation acids. A completely randomized analysis of variance revealed that the nitrate-containing barley and both the NPA- and the NPOH-containing milkvetches significantly decreased methane production, by > 50%, when compared to methane produced by populations incubated similarly with alfalfa (70.4 ± 3.6 µmol/ml incubation fluid). Accumulations of hydrogen, which are typically increased when methane production is inhibited, by incubations with the nitrate-containing barley and the NPA- and NPOH-containing milkvetches did not differ from accumulations observed in the alfalfa controls (0.09 ± 0.04 µmol/mL incubation fluid). Accumulations of fermentation acids produced in the incubations containing the high-nitrate barley and the NPA- and NPOH-containing milkvetches likewise did not differ from accumulations observed in incubations containing alfalfa (123.5 ± 10.8, 36.0 ± 3.0, 17.1 ± 1.5, 3.5 ± 0.3, 2.3 ± 0.2, 2.2 ± 0.2 µmol/mL incubation fluid for acetate, propionate, butyrate, valerate, isobutyrate, and isovalerate, respectively). This finding indicates the microbial populations did not compensate for the decreased methane production via compensatory changes in production of fermentative acids. Stoichiometric estimation of fermentation balance revealed that > 77% of reducing equivalents generated during fermentation of the forages were recovered in fermentation products and the recoveries did not differ between the alfalfa incubations and those with the high-nitrate barley or the NPA- or NPOH-containing milkvetches. Stoichiometric estimates of amounts of hexose fermented similarly did not differ between the nitrate-, NPA and NPOH-containing incubations and those with the alfalfa, averaging 99.6 ± 37.2 µmol hexose consumed/mL of incubation fluid. These results suggest that forages containing nitrate, NPA or NPOH may be useful to reduce methane emissions of grazing ruminants provided risks of toxicity can be effectively managed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nitrate" title="nitrate">nitrate</a>, <a href="https://publications.waset.org/abstracts/search?q=nitropropanol" title=" nitropropanol"> nitropropanol</a>, <a href="https://publications.waset.org/abstracts/search?q=nitropropionic%20acid" title=" nitropropionic acid"> nitropropionic acid</a>, <a href="https://publications.waset.org/abstracts/search?q=rumen%20methane%20emissions" title=" rumen methane emissions"> rumen methane emissions</a> </p> <a href="https://publications.waset.org/abstracts/121493/ruminal-fermentation-of-biologically-active-nitrate-and-nitro-containing-forages" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/121493.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Population Diversity of Dalmatian Pyrethrum Based on Pyrethrin Content and Composition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Filip%20Varga">Filip Varga</a>, <a href="https://publications.waset.org/abstracts/search?q=Nina%20Jeran"> Nina Jeran</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Biosic"> Martina Biosic</a>, <a href="https://publications.waset.org/abstracts/search?q=Zlatko%20Satovic"> Zlatko Satovic</a>, <a href="https://publications.waset.org/abstracts/search?q=Martina%20Grdisa"> Martina Grdisa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir./ Sch. Bip.), a species endemic to the eastern Adriatic coastline, is the source of natural insecticide pyrethrin. Pyrethrin is a mixture of six compounds (pyrethrin I and II, cinerin I and II, jasmolin I and II) that exhibits high insecticidal activity with no detrimental effects to the environment. A recently optimized matrix-solid phase dispersion method (MSPD), using florisil as the sorbent, acetone-ethyl acetate (1:1, v/v) as the elution solvent, and sodium sulfate anhydrous as the drying agent was utilized to extract the pyrethrins from 10 wild populations (20 individuals per population) distributed along the Croatian coast. All six components in the extracts were qualitatively and quantitatively determined by high-performance liquid chromatography with a diode array detector (HPLC-DAD). Pearson’s correlation index was calculated between pyrethrin compounds, and differences between the populations using the analysis of variance were tested. Additionally, the correlation of each pyrethrin component with spatio-ecological variables (bioclimate, soil properties, elevation, solar radiation, and distance from the coastline) was calculated. Total pyrethrin content ranged from 0.10% to 1.35% of dry flower weight, averaging 0.58% across all individuals. Analysis of variance revealed significant differences between populations based on all six pyrethrin compounds and total pyrethrin content. On average, the lowest total pyrethrin content was found in the population from Pelješac peninsula (0.22% of dry flower weight) in which total pyrethrin content lower than 0.18% was detected in 55% of the individuals. The highest average total pyrethrin content was observed in the population from island Zlarin (0.87% of dry flower weight), in which total pyrethrin content higher than 1.00% was recorded in only 30% of the individuals. Pyrethrin I/pyrethrin II ratio as a measure of extract quality ranged from 0.21 (population from the island Čiovo) to 5.88 (population from island Mali Lošinj) with an average of 1.77 across all individuals. By far, the lowest quality of extracts was found in the population from Mt. Biokovo (pyrethrin I/II ratio lower than 0.72 in 40% of individuals) due to the high pyrethrin II content typical for this population. Pearson’s correlation index revealed a highly significant positive correlation between pyrethrin I content and total pyrethrin content and a strong negative correlation between pyrethrin I and pyrethrin II. The results of this research clearly indicate high intra- and interpopulation diversity of Dalmatian pyrethrum with regards to pyrethrin content and composition. The information obtained has potential use in plant genetic resources conservation and biodiversity monitoring. Possibly the largest potential lies in designing breeding programs aimed at increasing pyrethrin content in commercial breeding lines and reintroduction in agriculture in Croatia. Acknowledgment: This work has been fully supported by the Croatian Science Foundation under the project ‘Genetic background of Dalmatian pyrethrum (Tanacetum cinerariifolium /Trevir/ Sch. Bip.) insecticidal potential’ - (PyrDiv) (IP-06-2016-9034). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Dalmatian%20pyrethrum" title="Dalmatian pyrethrum">Dalmatian pyrethrum</a>, <a href="https://publications.waset.org/abstracts/search?q=HPLC" title=" HPLC"> HPLC</a>, <a href="https://publications.waset.org/abstracts/search?q=MSPD" title=" MSPD"> MSPD</a>, <a href="https://publications.waset.org/abstracts/search?q=pyrethrin" title=" pyrethrin"> pyrethrin</a> </p> <a href="https://publications.waset.org/abstracts/134054/population-diversity-of-dalmatian-pyrethrum-based-on-pyrethrin-content-and-composition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Photonic Dual-Microcomb Ranging with Extreme Speed Resolution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20R.%20Galiev">R. R. Galiev</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20I.%20Lykov"> I. I. Lykov</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20E.%20Shitikov"> A. E. Shitikov</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20A.%20Bilenko"> I. A. Bilenko</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dual-comb interferometry is based on the mixing of two optical frequency combs with slightly different lines spacing which results in the mapping of the optical spectrum into the radio-frequency domain for future digitizing and numerical processing. The dual-comb approach enables diverse applications, including metrology, fast high-precision spectroscopy, and distance range. Ordinary frequency-modulated continuous-wave (FMCW) laser-based Light Identification Detection and Ranging systems (LIDARs) suffer from two main disadvantages: slow and unreliable mechanical, spatial scan and a rather wide linewidth of conventional lasers, which limits speed measurement resolution. Dual-comb distance measurements with Allan deviations down to 12 nanometers at averaging times of 13 microseconds, along with ultrafast ranging at acquisition rates of 100 megahertz, allowing for an in-flight sampling of gun projectiles moving at 150 meters per second, was previously demonstrated. Nevertheless, pump lasers with EDFA amplifiers made the device bulky and expensive. An alternative approach is a direct coupling of the laser to a reference microring cavity. Backscattering can tune the laser to the eigenfrequency of the cavity via the so-called self-injection locked (SIL) effect. Moreover, the nonlinearity of the cavity allows a solitonic frequency comb generation in the very same cavity. In this work, we developed a fully integrated, power-efficient, electrically driven dual-micro comb source based on the semiconductor lasers SIL to high-quality integrated Si3N4 microresonators. We managed to obtain robust 1400-1700 nm combs generation with a 150 GHz or 1 THz lines spacing and measure less than a 1 kHz Lorentzian withs of stable, MHz spaced beat notes in a GHz band using two separated chips, each pumped by its own, self-injection locked laser. A deep investigation of the SIL dynamic allows us to find out the turn-key operation regime even for affordable Fabry-Perot multifrequency lasers used as a pump. It is important that such lasers are usually more powerful than DFB ones, which were also tested in our experiments. In order to test the advantages of the proposed techniques, we experimentally measured a minimum detectable speed of a reflective object. It has been shown that the narrow line of the laser locked to the microresonator provides markedly better velocity accuracy, showing velocity resolution down to 16 nm/s, while the no-SIL diode laser only allowed 160 nm/s with good accuracy. The results obtained are in agreement with the estimations and open up ways to develop LIDARs based on compact and cheap lasers. Our implementation uses affordable components, including semiconductor laser diodes and commercially available silicon nitride photonic circuits with microresonators. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dual-comb%20spectroscopy" title="dual-comb spectroscopy">dual-comb spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=LIDAR" title=" LIDAR"> LIDAR</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20microresonator" title=" optical microresonator"> optical microresonator</a>, <a href="https://publications.waset.org/abstracts/search?q=self-injection%20locking" title=" self-injection locking"> self-injection locking</a> </p> <a href="https://publications.waset.org/abstracts/150845/photonic-dual-microcomb-ranging-with-extreme-speed-resolution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/150845.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">72</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> QIP: Introducing a Dedicated Ozurdex Clinic</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaisnavy%20Govindasamy">Vaisnavy Govindasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Saba%20Ishrat"> Saba Ishrat</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: The Dexamethasone Intravitreal Implant 0.7 mg (OzurdexTM, Allergan®) is a biodegradable corticosteroid implant approved by the FDA for managing diabetic macular edema (DMO), macular edema following branch retinal vein occlusion (BRVO) or central retinal vein occlusion (CRVO), and posterior segment non-infectious uveitis. This implant can release dexamethasone over a six-month period, exhibiting peak effectiveness between 60 and 90 days post-administration. The intravitreal injection should be performed under sterile conditions. At James Cook University Hospital (JCUH), Ozurdex injections are currently administered in the Vitreo-Retinal (VR) theatre. This study aimed to evaluate the feasibility and potential advantages of establishing a dedicated clinic for Ozurdex administration separate from the VR theatre setting. Method: Retrospectively, data of all Ozurdex injections administered between October 2021 to October 2022 was collected from operating theatre registers at JCUH. Data pertaining to the indications for Ozurdex; waiting times from referral date to date of injection; duration of theatre time consumed; and post-injection complications were collected from electronic notes. The resources needed to establish a dedicated Ozurdex clinic were evaluated. Over a six-month period from October 2023 to March 2024, we gathered data on utilization of theatre 28. Results: A total of 135 Ozurdex injections were administered. Among the indications, uveitis represented 47.3% of cases, DMO with 23.6% and RVO with 22.9%. Remaining cases lacked sufficient data. Each Ozurdex injection procedure consumed 15 minutes in the VR theatre list. Complications arose in 5% of injections, totaling 7 cases. These included glaucoma, ocular hypertension, subconjunctival haemorrhage and implant migration. Waiting times averaged 6 weeks from date for referral to procedure date. We also found that, on an average theatre 28 was offered but remained unused for 4 days, totalling eight sessions in a month. Analysis: Establishing a sperate Ozurdex clinic would improve the quality of patient care in following ways: 1.Decrease injection waiting times (currently averaging 6 weeks), leading to better visual outcomes. 2.Free up approximately three hours of theatre time in Vitreo-Retina theatres each month, allowing for 3-4 additional surgeries. Reduce waiting times for critical retinal surgeries and enhance visual outcomes. 3.Provide additional training opportunities for trainees and retina fellows, improving their skills. 4.Optimize the use of empty theatre slots (theatre 28) currently experiencing underutilization of resources. Conclusion: These findings support the implementation of a separate clinic for administering Ozurdex injections at JCUH. It is evident that introducing a dedicated clinic will enhance operational efficiency, optimise resource utilsation, and improve overall quality of care for patients undergoing this treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=opthalmology" title="opthalmology">opthalmology</a>, <a href="https://publications.waset.org/abstracts/search?q=ozurdex" title=" ozurdex"> ozurdex</a>, <a href="https://publications.waset.org/abstracts/search?q=efficiency" title=" efficiency"> efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=complication" title=" complication"> complication</a> </p> <a href="https://publications.waset.org/abstracts/191111/qip-introducing-a-dedicated-ozurdex-clinic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/191111.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">21</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Wind Tunnel Tests on Ground-Mounted and Roof-Mounted Photovoltaic Array Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chao-Yang%20Huang">Chao-Yang Huang</a>, <a href="https://publications.waset.org/abstracts/search?q=Rwey-Hua%20Cherng"> Rwey-Hua Cherng</a>, <a href="https://publications.waset.org/abstracts/search?q=Chung-Lin%20Fu"> Chung-Lin Fu</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Lung%20Lo"> Yuan-Lung Lo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Solar energy is one of the replaceable choices to reduce the CO2 emission produced by conventional power plants in the modern society. As an island which is frequently visited by strong typhoons and earthquakes, it is an urgent issue for Taiwan to make an effort in revising the local regulations to strengthen the safety design of photovoltaic systems. Currently, the Taiwanese code for wind resistant design of structures does not have a clear explanation on photovoltaic systems, especially when the systems are arranged in arrayed format. Furthermore, when the arrayed photovoltaic system is mounted on the rooftop, the approaching flow is significantly altered by the building and led to different pressure pattern in the different area of the photovoltaic system. In this study, L-shape arrayed photovoltaic system is mounted on the ground of the wind tunnel and then mounted on the building rooftop. The system is consisted of 60 PV models. Each panel model is equivalent to a full size of 3.0 m in depth and 10.0 m in length. Six pressure taps are installed on the upper surface of the panel model and the other six are on the bottom surface to measure the net pressures. Wind attack angle is varied from 0° to 360° in a 10° interval for the worst concern due to wind direction. The sampling rate of the pressure scanning system is set as high enough to precisely estimate the peak pressure and at least 20 samples are recorded for good ensemble average stability. Each sample is equivalent to 10-minute time length in full scale. All the scale factors, including timescale, length scale, and velocity scale, are properly verified by similarity rules in low wind speed wind tunnel environment. The purpose of L-shape arrayed system is for the understanding the pressure characteristics at the corner area. Extreme value analysis is applied to obtain the design pressure coefficient for each net pressure. The commonly utilized Cook-and-Mayne coefficient, 78%, is set to the target non-exceedance probability for design pressure coefficients under Gumbel distribution. Best linear unbiased estimator method is utilized for the Gumbel parameter identification. Careful time moving averaging method is also concerned in data processing. Results show that when the arrayed photovoltaic system is mounted on the ground, the first row of the panels reveals stronger positive pressure than that mounted on the rooftop. Due to the flow separation occurring at the building edge, the first row of the panels on the rooftop is most in negative pressures; the last row, on the other hand, shows positive pressures because of the flow reattachment. Different areas also have different pressure patterns, which corresponds well to the regulations in ASCE7-16 describing the area division for design values. Several minor observations are found according to parametric studies, such as rooftop edge effect, parapet effect, building aspect effect, row interval effect, and so on. General comments are then made for the proposal of regulation revision in Taiwanese code. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamic%20force%20coefficient" title="aerodynamic force coefficient">aerodynamic force coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=ground-mounted" title=" ground-mounted"> ground-mounted</a>, <a href="https://publications.waset.org/abstracts/search?q=roof-mounted" title=" roof-mounted"> roof-mounted</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20test" title=" wind tunnel test"> wind tunnel test</a>, <a href="https://publications.waset.org/abstracts/search?q=photovoltaic" title=" photovoltaic"> photovoltaic</a> </p> <a href="https://publications.waset.org/abstracts/98046/wind-tunnel-tests-on-ground-mounted-and-roof-mounted-photovoltaic-array-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98046.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bitewulign%20Mekonnen">Bitewulign Mekonnen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title="machine learning">machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a>, <a href="https://publications.waset.org/abstracts/search?q=near-infrared%20spectroscopy" title=" near-infrared spectroscopy"> near-infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20machine" title=" support vector machine"> support vector machine</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/168834/comprehensive-machine-learning-based-glucose-sensing-from-near-infrared-spectra" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/168834.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">94</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> Analysis of Short Counter-Flow Heat Exchanger (SCFHE) Using Non-Circular Micro-Tubes Operated on Water-CuO Nanofluid</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Avdhesh%20K.%20Sharma">Avdhesh K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Key, in the development of energy-efficient micro-scale heat exchanger devices, is to select large heat transfer surface to volume ratio without much expanse on re-circulated pumps. The increased interest in short heat exchanger (SHE) is due to accessibility of advanced technologies for manufacturing of micro-tubes in range of 1 micron m - 1 mm. Such SHE using micro-tubes are highly effective for high flux heat transfer technologies. Nanofluids, are used to enhance the thermal conductivity of re-circulated coolant and thus enhances heat transfer rate further. Higher viscosity associated with nanofluid expands more pumping power. Thus, there is a trade-off between heat transfer rate and pressure drop with geometry of micro-tubes. Herein, a novel design of short counter flow heat exchanger (SCFHE) using non-circular micro-tubes flooded with CuO-water nanofluid is conceptualized by varying the ratio of surface area to cross-sectional area of micro-tubes. A framework for comparative analysis of SCFHE using micro-tubes non-circular shape flooded by CuO-water nanofluid is presented. In SCFHE concept, micro-tubes having various geometrical shapes (viz., triangular, rectangular and trapezoidal) has been arranged row-wise to facilitate two aspects: (1) allowing easy flow distribution for cold and hot stream, and (2) maximizing the thermal interactions with neighboring channels. Adequate distribution of rows for cold and hot flow streams enables above two aspects. For comparative analysis, a specific volume or cross-section area is assigned to each elemental cell (which includes flow area and area corresponds to half wall thickness). A specific volume or cross-section area is assumed to be constant for each elemental cell (which includes flow area and half wall thickness area) and variation in surface area is allowed by selecting different geometry of micro-tubes in SCFHE. Effective thermal conductivity model for CuO-water nanofluid has been adopted, while the viscosity values for water based nanofluids are obtained empirically. Correlations for Nusselt number (Nu) and Poiseuille number (Po) for micro-tubes have been derived or adopted. Entrance effect is accounted for. Thermal and hydrodynamic performances of SCFHE are defined in terms of effectiveness and pressure drop or pumping power, respectively. For defining the overall performance index of SCFHE, two links are employed. First one relates heat transfer between the fluid streams q and pumping power PP as (=qj/PPj); while another link relates effectiveness eff and pressure drop dP as (=effj/dPj). For analysis, the inlet temperatures of hot and cold streams are varied in usual range of 20dC-65dC. Fully turbulent regime is seldom encountered in micro-tubes and transition of flow regime occurs much early (i.e., ~Re=1000). Thus, Re is fixed at 900, however, the uncertainty in Re due to addition of nanoparticles in base fluid is quantified by averaging of Re. Moreover, for minimizing error, volumetric concentration is limited to range 0% to ≤4% only. Such framework may be helpful in utilizing maximum peripheral surface area of SCFHE without any serious severity on pumping power and towards developing advanced short heat exchangers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CuO-water%20nanofluid" title="CuO-water nanofluid">CuO-water nanofluid</a>, <a href="https://publications.waset.org/abstracts/search?q=non-circular%20micro-tubes" title=" non-circular micro-tubes"> non-circular micro-tubes</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20index" title=" performance index"> performance index</a>, <a href="https://publications.waset.org/abstracts/search?q=short%20counter%20flow%20heat%20exchanger" title=" short counter flow heat exchanger"> short counter flow heat exchanger</a> </p> <a href="https://publications.waset.org/abstracts/59446/analysis-of-short-counter-flow-heat-exchanger-scfhe-using-non-circular-micro-tubes-operated-on-water-cuo-nanofluid" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59446.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">213</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Kazemi">Ali Kazemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=financial%20market%20prediction" title="financial market prediction">financial market prediction</a>, <a href="https://publications.waset.org/abstracts/search?q=graph%20convolutional%20networks%20%28GCNs%29" title=" graph convolutional networks (GCNs)"> graph convolutional networks (GCNs)</a>, <a href="https://publications.waset.org/abstracts/search?q=long%20short-term%20memory%20%28LSTM%29" title=" long short-term memory (LSTM)"> long short-term memory (LSTM)</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptocurrency%20forecasting" title=" cryptocurrency forecasting"> cryptocurrency forecasting</a> </p> <a href="https://publications.waset.org/abstracts/184980/revolutionizing-financial-forecasts-enhancing-predictions-with-graph-convolutional-networks-gcn-long-short-term-memory-lstm-fusion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/184980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">66</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=averaging&page=3" rel="prev">‹</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=averaging&page=1">1</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=averaging&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=averaging&page=3">3</a></li> <li class="page-item active"><span class="page-link">4</span></li> <li class="page-item disabled"><span class="page-link">›</span></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>