CINXE.COM
Hierarchical Clustering Algorithms in Data Mining
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Hierarchical Clustering Algorithms in Data Mining</title> <meta name="description" content="Hierarchical Clustering Algorithms in Data Mining"> <meta name="keywords" content="Clustering, method, algorithm, hierarchical, survey."> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <meta name="citation_title" content="Hierarchical Clustering Algorithms in Data Mining"> <meta name="citation_author" content="Z. Abdullah"> <meta name="citation_author" content="A. R. Hamdan"> <meta name="citation_publication_date" content="2015/09/01"> <meta name="citation_journal_title" content="International Journal of Computer and Information Engineering"> <meta name="citation_volume" content="9"> <meta name="citation_issue" content="10"> <meta name="citation_firstpage" content="2194"> <meta name="citation_lastpage" content="2199"> <meta name="citation_pdf_url" content="https://publications.waset.org/10002625/pdf"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value=""> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 33093</div> </div> </div> </div> <div class="card publication-listing mt-3 mb-3"> <h5 class="card-header" style="font-size:.9rem">Hierarchical Clustering Algorithms in Data Mining</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Z.%20Abdullah">Z. Abdullah</a>, <a href="https://publications.waset.org/search?q=A.%20R.%20Hamdan"> A. R. Hamdan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Clustering is a process of grouping objects and data into groups of clusters to ensure that data objects from the same cluster are identical to each other. Clustering algorithms in one of the area in data mining and it can be classified into partition, hierarchical, density based and grid based. Therefore, in this paper we do survey and review four major hierarchical clustering algorithms called CURE, ROCK, CHAMELEON and BIRCH. The obtained state of the art of these algorithms will help in eliminating the current problems as well as deriving more robust and scalable algorithms for clustering. <iframe src="https://publications.waset.org/10002625.pdf" style="width:100%; height:400px;" frameborder="0"></iframe> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Clustering" title="Clustering">Clustering</a>, <a href="https://publications.waset.org/search?q=method" title=" method"> method</a>, <a href="https://publications.waset.org/search?q=algorithm" title=" algorithm"> algorithm</a>, <a href="https://publications.waset.org/search?q=hierarchical" title=" hierarchical"> hierarchical</a>, <a href="https://publications.waset.org/search?q=survey." title=" survey."> survey.</a> </p> <p class="card-text"><strong>Digital Object Identifier (DOI):</strong> <a href="https://doi.org/10.5281/zenodo.1109341" target="_blank">doi.org/10.5281/zenodo.1109341</a> </p> <a href="https://publications.waset.org/10002625/hierarchical-clustering-algorithms-in-data-mining" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002625/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002625/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002625/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002625/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002625/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002625/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002625/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002625/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002625/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002625/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002625.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3376</span> </span> <p class="card-text"><strong>References:</strong></p> <br>[1] M. Brown, “Data mining techniques” Retrieved from http://www.ibm.com/developerworks/library/ba-data-mining-techniques/ <br>[2] S. Guha, R. Rastogi, and K. Shim, “ROCK: A robust clustering algorithm for categorical attributes” Proceeding of 15th International Conference on Data Engineering – ACM SIGKDD, pp. 512-521, 1999. <br>[3] M. Dutta, A.K. Mahanta, and A.K. Pujari, “QROCK: A quick version of the ROCK algorithm for clustering of categorical data,” Pattern Recognition Letters, 26 (15), pp. 2364-2373, 2005. <br>[4] L. Feng, M-H. Qiu, Y-X. Wang, Q-L. Xiang and K. Liu, "A fast divisive clustering algorithm using an improved discrete particle swarm optimizer, Pattern Recognition Letters, 31, pp. 1216-1225, 2010 <br>[5] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An efficient data clustering method for very large databases,” NewsLetter – ACMSIGMOD, 25 (2), pp. 103-114, 1996. <br>[6] S. Guha, R. Rastogi, and K. Shim, “CURE: An efficient clustering algorithm for large databases,” News Letter – ACM-SIGMOD, 7(2), pp. 73-84, 1998. <br>[7] G. Karypis, E-H Han, and V. Kumar, “CHAMELEON: A Hierarchical Clustering Algorithm Using Dynamic Modeling,” IEEE Computer, 32 (8), 68-75, 1999. <br>[8] R.O. Duda and P.E. Hart, (1973). Pattern Classification and Scene Analysis. A Wiley-Interscience Publication, New York. <br>[9] R.T. Ng and J. Han, "Efficient and effective clustering methods for spartial data mining," Proceeding of the VLDB Conference, pp. 144-155, 1994. <br>[10] Y. Zhao and G. Karypis, “Evaluation of hierarchical clustering algorithms for document datasets,” Proceedings of the 11th International Conference on Information and Knowledge Management – ACM, pp. 515-524, 2002. <br>[11] S. Salvador and P. Chan. “Determining the number of clusters/segments in hierarchical clustering/segmentation algorithms,” Tools with Artificial Intelligence - IEEE, pp. 576-584, 2004. <br>[12] H. Koga, T. Ishibashi, and T. Watanabe. “Fast agglomerative hierarchical clustering algorithm using Locality-Sensitive Hashing,” Knowledge and Information Systems, 12 (1), pp. 25-53, 2007. <br>[13] V.S. Murthy, E, Vamsidhar, J.S. Kumar, and P.S Rao, “Content based image retrieval using Hierarchical and K-means clustering techniques,” International Journal of Engineering Science and Technology, 2 (3), pp. 209-212, 2010. <br>[14] S.J. Horng, M.Y. Su, Y.H. Chen, T.W. Kao, R.J. Chen, J.L. Lai, and C.D. Perkasa, “A novel intrusion detection system based on hierarchical clustering and support vector machines,” Expert Systems with Applications, 38 (1), pp. 306-313, 2011. <br>[15] M.F. Balcan, Y. Liang, and P. Gupta, “Robust hierarchical clustering,” Journal of Machine Learning Research, 15, pp. 3831-3871, 2014. <br>[16] S.M. Szilágyi, and L. Szilágyi, “A fast hierarchical clustering algorithm for large-scale protein sequence data sets,” Computers in Biology and Medicine, 48, pp. 94-101, 2014. <br>[17] R.T. Ng, and J. Han, “CLARANS: A Method for Clustering Objects for Spatial Data Mining,” IEEE Transactions on Knowledge and Data Engineering, 14 (5), pp. 1003-1016, 2005. <br>[18] Z. Huang, “Extensions to the k-means algorithm for clustering large data sets with categorical values,” Data Mining and Knowledge Discovery, 2 (3), pp. 283-304, 1998. <br>[19] H. Huang, Y. Gao, K. Chiew, L. Chen, and Q. He, “Towards effective and efficient mining of arbitrary shaped clusters,” Proceeding of 30th International Conference on Data Engineering – IEEE, pp. 28-39, 2008 <br>[20] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: An Efficient Data Clustering Method for Very Large Databases,” Proceedings of the 1996 ACM SIGMOD international conference on Management of data - SIGMOD '96. pp. 103-114, 1996. <br>[21] H. Huang, Y. Gao, K. Chiew, K, L. Chen and Q. He, “Towards Effective and Efficient Mining of Arbitrary Shaped Clusters,” IEEE 30th ICDE Conference, pp. 28-39, 2014. <br>[22] P. Berkhin, “A survey of clustering data mining techniques,” Grouping Multidimensional Data – Springer, pp. 25-71, 2006. <br>[23] M. Halkidi, Y. Batistakis, and M. Vazirgiannis, “On clustering validation techniques,” Journal of Intelligent Information Systems, 17 (2-3), pp. 107-145, 2001. <br>[24] J. Meng, S-J. Gao, and Y. Huang, “Enrichment constrained timedependent clustering analysis for finding meaningful temporal transcription modules,” Bioinformatics, 25 (12), pp. 1521–1527, 2009. <br>[25] A.T. Ernst and M. Krishnamoorthy, “Solution algorithms for the capacitated single allocation hub location problem,” Annals of Operations Research, 86, pp. 141-159, 1999. <br>[26] M. Laan, and K. Pollard, "A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap," Journal of Statistical Planning and Inference, 117 (2), p.275-303, Dec 2002. <br>[27] Y. Zhao, G. Karypis, and U. Fayyad, “Hierarchical Clustering Algorithms for Document Datasets,” Journal Data Mining and Knowledge Discovery archive, 10 (2), pp. 141-168, March 2005 <br>[28] S.A. Mingoti, and J.O. Lima, “Comparing SOM neural network with Fuzzy c-means, K-means and traditional hierarchical clustering algorithms,” European Journal of Operational Research - Science Direct. 174 (3), pp. 1742–17591, November 2006. <br>[29] A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke, “Personalized recommendation in social tagging systems using hierarchical clustering,” Proceedings of the 2008 ACM conference on Recommender systems, pp. 259-266 (2008). <br>[30] H. Koga, T. Ishibashi, and T, Watanabe, “Fast agglomerative hierarchical clustering algorithm using Locality-Sensitive Hashing,” Knowledge and Information Systems,12 (1), pp. 25-53, May 2007 <br>[31] O.A. Abbas, Comparisons between Data Clustering Algorithms, The International Arab Journal of Information Technology, 5 (3), pp.320 – 325, 2008. <br>[32] G. Xin, W.H. Yang, and B. DeGang, “EEHCA: An energy-efficient hierarchical clustering algorithm for wireless sensor networks,” Information Technology Journal, 7 (2), pp. 245-252, 2008. <br>[33] A.K. Jain,, “Data clustering: 50 years beyond K-means,” Pattern Recognition Letters - Science Direct, 31 (8), pp. 651–666, June 2010 <br>[34] V.S. Murthy, E. Vamsidhar, J.S. Kumar, and P.S. Rao, “Content based image retrieval using Hierarchical and K-means clustering techniques,” International Journal of Engineering Science and Technology, 2 (3), pp. 209-212, 2010. <br>[35] Y. Cai, and Y. Sun, “ESPRIT-Tree: hierarchical clustering analysis of millions of 16S rRNA pyrosequences in quasilinear computational time”. Nucleic Acids Res, 2011. <br>[36] S.J. Horng, M.Y. Su, Y.H. Chen, T.W. Kao, R.J. Chen, J.L. Lai, and C.D. Perkasa, “ A novel intrusion detection system based on hierarchical clustering and support vector machines,” Exp. Sys. W. Appl., 38, pp. 306-313, 2011. <br>[37] G. Kou, and C. Lou, “Multiple factor hierarchical clustering algorithm for large scale web page and search engine click stream data,” Annals of Operations Research, 197 (1), pp. 123-134, August 2012 . <br>[38] A. Krishnamurthy, S. Balakrishnan, M. Xu, and A. Singh, “Efficient active algorithms for hierarchical clustering,” Proceedings of the 29th International Conference on Machine Learning, pp. 887-894, 2012. <br>[39] P. Langfelder, and S. Horvath, “Fast R functions for robust correlations and hierarchical clustering,” J Stat Softw., 46 (11), pp. 1-17, March 2012. <br>[40] Y., Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, “Algorithm portfolios based on cost-sensitive hierarchical clustering,” Proceedings of the 23rd international joint conference on Artificial Intelligence, pp. 608-614, 2013. <br>[41] M. Meila, and D. Heckerman, “An experimental comparison of several clustering and initialization methods,” Proceedings of the 14th conference on Uncertainty in artificial intelligence, pp. 386-395, 1998 <br>[42] D. Müllner, “Fastcluster: Fast hierarchical, agglomerative clustering routines for R and Python,” Journal of Statistical Software, 53 (9), pp. 1- 18, 2013. <br>[43] M.F. Balcan, Y. Liang, and P. Gupta, “Robust hierarchical clustering” arXiv preprint arXiv:1401.0247, 2014. <br>[44] F. Murtagh, and P. Legendre, “ Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion?”, Journal of Classification Archive, 31 (3), pp. 274.295, October 2014. <br>[45] S.M. Szilágyi, and L. Szilágyi, “A fast hierarchical clustering algorithm for large-scale protein sequence data sets,” Comput. Biol. Med., 48, pp. 94–101 (2014). <br>[46] E. Rashedi, A. Mirzaei, and M. Rahmati, “An information theoretic approach to hierarchical clustering combination,” Neurocomputing, 148, pp. 487-497, 2015. <br>[47] K. Ding, C. Huo, Y. Xu, Z. Zhong, and C. Pan, “ Sparse hierarchal clustering for VHR image change detection,” Geoscience and Remote Sensing Letters, IEEE, 12 (3), pp. 577 – 581, 2015. </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>