CINXE.COM

Search results for: Circulating Tumor Cells (CTC)

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Circulating Tumor Cells (CTC)</title> <meta name="description" content="Search results for: Circulating Tumor Cells (CTC)"> <meta name="keywords" content="Circulating Tumor Cells (CTC)"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Circulating Tumor Cells (CTC)" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Circulating Tumor Cells (CTC)"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 3790</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Circulating Tumor Cells (CTC)</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3790</span> An Improved Circulating Tumor Cells Analysis Method for Identifying Tumorous Blood Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Salvador%20Garcia%20Bernal">Salvador Garcia Bernal</a>, <a href="https://publications.waset.org/abstracts/search?q=Chi%20Zheng"> Chi Zheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Keqi%20Zhang"> Keqi Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Mao"> Lei Mao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Circulating Tumor Cells (CTC) is used to detect tumoral cell metastases using blood samples of patients with cancer (lung, breast, etc.). Using an immunofluorescent method a three channel image (Red, Green, and Blue) are obtained. These set of images usually overpass the 11 x 30 M pixels in size. An aided tool is designed for imaging cell analysis to segmented and identify the tumorous cell based on the three markers signals. Our Method, it is cell-based (area and cell shape) considering each channel information and extracting and making decisions if it is a valid CTC. The system also gives information about number and size of tumor cells found in the sample. We present results in real-life samples achieving acceptable performance in identifying CTCs in short time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29" title="Circulating Tumor Cells (CTC)">Circulating Tumor Cells (CTC)</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20analysis" title=" cell analysis"> cell analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunofluorescent" title=" immunofluorescent"> immunofluorescent</a>, <a href="https://publications.waset.org/abstracts/search?q=medical%20image%20analysis" title=" medical image analysis"> medical image analysis</a> </p> <a href="https://publications.waset.org/abstracts/81401/an-improved-circulating-tumor-cells-analysis-method-for-identifying-tumorous-blood-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81401.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3789</span> Discriminant Function Based on Circulating Tumor Cells for Accurate Diagnosis of Metastatic Breast Cancer</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hatem%20A.%20El-Mezayen">Hatem A. El-Mezayen</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmed%20Abdelmajeed"> Ahmed Abdelmajeed</a>, <a href="https://publications.waset.org/abstracts/search?q=Fatehya%20Metwally"> Fatehya Metwally</a>, <a href="https://publications.waset.org/abstracts/search?q=Usama%20Elsaly"> Usama Elsaly</a>, <a href="https://publications.waset.org/abstracts/search?q=Salwa%20Atef"> Salwa Atef</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor metastasis involves the dissemination of malignant cells into the basement membrane and vascular system contributes to the circulating pool of these markers. In this context our aim has been focused on development of a non-invasive. Circulating tumor cells (CTCs) represent a unique liquid biopsy carrying comprehensive biological information of the primary tumor. Herein, we sought to develop a novel score based on the combination of the most significant CTCs biomarkers with and routine laboratory tests for accurate detection of metastatic breast cancer. Methods: Cytokeratin 18 (CK18), Cytokeratin 19 (CK19), and CA15.3 were assayed in metastatic breast cancer (MBC) patients (75), non-MBC patients (50) and healthy control (20). Results: Areas under receiving operating curve (AUCs) were calculated and used for construction on novel score. A novel score named MBC-CTCs = CA15.3 (U/L) × 0.08 + CK 18 % × 2.9 + CK19 × 3.1– 510. That function correctly classified 87% of metastatic breast cancer at cut-off value = 0.55. (i.e great than 0.55 indicates patients with metastatic breast cancer and less than 0.55 indicates patients with non-metastatic breast cancer). Conclusion: MBC-CTCs is a novel, non-invasive and simple can applied to discriminate patients with metastatic breast cancer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metastatic%20breast%20cancer" title="metastatic breast cancer">metastatic breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=circulating%20tumor%20cells" title=" circulating tumor cells"> circulating tumor cells</a>, <a href="https://publications.waset.org/abstracts/search?q=cytokeratin" title=" cytokeratin"> cytokeratin</a>, <a href="https://publications.waset.org/abstracts/search?q=EpiCam" title=" EpiCam"> EpiCam</a> </p> <a href="https://publications.waset.org/abstracts/146716/discriminant-function-based-on-circulating-tumor-cells-for-accurate-diagnosis-of-metastatic-breast-cancer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146716.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">214</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3788</span> Determination of Circulating Tumor Cells in Breast Cancer Patients by Electrochemical Biosensor</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6k%C3%A7e%20Erdemir">Gökçe Erdemir</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%B0lhan%20Yayl%C4%B1m"> İlhan Yaylım</a>, <a href="https://publications.waset.org/abstracts/search?q=Serap%20Erdem-Kuruca"> Serap Erdem-Kuruca</a>, <a href="https://publications.waset.org/abstracts/search?q=Musa%20Mutlu%20Can"> Musa Mutlu Can</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It has been determined that the main reason for the death of cancer disease is caused by metastases rather than the primary tumor. The cells that leave the primary tumor and enter the circulation and cause metastasis in the secondary organs are called "circulating tumor cells" (CTCs). The presence and number of circulating tumor cells has been associated with poor prognosis in many major types of cancer, including breast, prostate, and colorectal cancer. It is thought that knowledge of circulating tumor cells, which are seen as the main cause of cancer-related deaths due to metastasis, plays a key role in the diagnosis and treatment of cancer. The fact that tissue biopsies used in cancer diagnosis and follow-up are an invasive method and are insufficient in understanding the risk of metastasis and the progression of the disease have led to new searches. Liquid biopsy tests performed with a small amount of blood sample taken from the patient for the detection of CTCs are easy and reliable, as well as allowing more than one sample to be taken over time to follow the prognosis. However, since these cells are found in very small amounts in the blood, it is very difficult to capture them and specially designed analytical techniques and devices are required. Methods based on the biological and physical properties of the cells are used to capture these cells in the blood. Early diagnosis is very important in following the prognosis of tumors of epithelial origin such as breast, lung, colon and prostate. Molecules such as EpCAM, vimentin, and cytokeratins are expressed on the surface of cells that pass into the circulation from very few primary tumors and reach secondary organs from the circulation, and are used in the diagnosis of cancer in the early stage. For example, increased EpCAM expression in breast and prostate cancer has been associated with prognosis. These molecules can be determined in some blood or body fluids to be taken from patients. However, more sensitive methods are required to be able to determine when they are at a low level according to the course of the disease. The aim is to detect these molecules found in very few cancer cells with the help of sensitive, fast-sensing biosensors, first in breast cancer cells reproduced in vitro and then in blood samples taken from breast cancer patients. In this way, cancer cells can be diagnosed early and easily and effectively treated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electrochemical%20biosensors" title="electrochemical biosensors">electrochemical biosensors</a>, <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title=" breast cancer"> breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=circulating%20tumor%20cells" title=" circulating tumor cells"> circulating tumor cells</a>, <a href="https://publications.waset.org/abstracts/search?q=EpCAM" title=" EpCAM"> EpCAM</a>, <a href="https://publications.waset.org/abstracts/search?q=Vimentin" title=" Vimentin"> Vimentin</a>, <a href="https://publications.waset.org/abstracts/search?q=Cytokeratins" title=" Cytokeratins"> Cytokeratins</a> </p> <a href="https://publications.waset.org/abstracts/140961/determination-of-circulating-tumor-cells-in-breast-cancer-patients-by-electrochemical-biosensor" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140961.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3787</span> Effects of Different Types of Perioperative Analgesia on Minimal Residual Disease Development After Colon Cancer Surgery</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lubomir%20Vecera">Lubomir Vecera</a>, <a href="https://publications.waset.org/abstracts/search?q=Tomas%20Gabrhelik"> Tomas Gabrhelik</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20Tolmaci"> Benjamin Tolmaci</a>, <a href="https://publications.waset.org/abstracts/search?q=Josef%20Srovnal"> Josef Srovnal</a>, <a href="https://publications.waset.org/abstracts/search?q=Emil%20Berta"> Emil Berta</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Prasil"> Petr Prasil</a>, <a href="https://publications.waset.org/abstracts/search?q=Petr%20Stourac"> Petr Stourac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer is the second leading cause of death worldwide and colon cancer is the second most common type of cancer. Currently, there are only a few studies evaluating the effect of postoperative analgesia on the prognosis of patients undergoing radical colon cancer surgery. Postoperative analgesia in patients undergoing colon cancer surgery is usually managed in two ways, either with strong opioids (morphine, piritramide) or epidural analgesia. In our prospective study, we evaluated the effect of postoperative analgesia on the presence of circulating tumor cells or minimal residual disease after colon cancer surgery. A total of 60 patients who underwent radical colon cancer surgery were enrolled in this prospective, randomized, two-center study. Patients were randomized into three groups, namely piritramide, morphine and postoperative epidural analgesia. We evaluated the presence of carcinoembryonic antigen (CEA) and cytokeratin 20 (CK-20) mRNA positive circulating tumor cells in peripheral blood before surgery, immediately after surgery, on postoperative day two and one month after surgery. The presence of circulating tumor cells was assessed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). In the priritramide postoperative analgesia group, the presence of CEA mRNA positive cells was significantly lower on a postoperative day two compared to the other groups (p=0.04). The value of CK-20 mRNA positive cells was the same in all groups on all days. In all groups, both types of circulating tumor cells returned to normal levels one month after surgery. Demographic and baseline clinical characteristics were similar in all groups. Compared with morphine and epidural analgesia, piritramide significantly reduces the amount of CEA mRNA positive circulating tumor cells after radical colon cancer surgery. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20progression" title="cancer progression">cancer progression</a>, <a href="https://publications.waset.org/abstracts/search?q=colon%20cancer" title=" colon cancer"> colon cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=minimal%20residual%20disease" title=" minimal residual disease"> minimal residual disease</a>, <a href="https://publications.waset.org/abstracts/search?q=perioperative%20analgesia." title=" perioperative analgesia."> perioperative analgesia.</a> </p> <a href="https://publications.waset.org/abstracts/144502/effects-of-different-types-of-perioperative-analgesia-on-minimal-residual-disease-development-after-colon-cancer-surgery" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144502.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3786</span> Cell Elevator: A Novel Technique for Cell Sorting and Circulating Tumor Cell Detection and Discrimination</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kevin%20Zhao">Kevin Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Norman%20J.%20Horing"> Norman J. Horing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A methodology for cells sorting and circulating tumor cell detection and discrimination is presented in this paper. The technique is based on Dielectrophoresis and microfluidic device theory. Specifically, the sorting of the cells is realized by adjusting the relation among the sedimentation forces, the drag force provided by the fluid, and the Dielectrophortic force that is relevant to the bias voltage applied on the device. The relation leads to manipulation of the elevation of the cells of the same kind to a height by controlling the bias voltage. Once the cells have been lifted to a position next to the bottom of the cell collection channel, the buffer fluid flashes them into the cell collection channel. Repeated elevation of the cells leads to a complete sorting of the cells in the sample chamber. A proof-of-principle example is presented which verifies the feasibility of the methodology. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cell%20sorter" title="cell sorter">cell sorter</a>, <a href="https://publications.waset.org/abstracts/search?q=CTC%20cell" title=" CTC cell"> CTC cell</a>, <a href="https://publications.waset.org/abstracts/search?q=detection%20and%20discrimination" title=" detection and discrimination"> detection and discrimination</a>, <a href="https://publications.waset.org/abstracts/search?q=dielectrophoresisords" title=" dielectrophoresisords"> dielectrophoresisords</a>, <a href="https://publications.waset.org/abstracts/search?q=simulation" title=" simulation"> simulation</a> </p> <a href="https://publications.waset.org/abstracts/40753/cell-elevator-a-novel-technique-for-cell-sorting-and-circulating-tumor-cell-detection-and-discrimination" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40753.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">432</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3785</span> Sheathless, Viscoelastic Circulating Tumor Cell Separation Using Closed-Loop Microfluidics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hyunjung%20Lim">Hyunjung Lim</a>, <a href="https://publications.waset.org/abstracts/search?q=Jeonghun%20Nam"> Jeonghun Nam</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyuk%20Choi"> Hyuk Choi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> High-throughput separation is an essential technique for cancer research and diagnosis. Here, we propose a viscoelastic microfluidic device for sheathless, high-throughput isolation of circulating tumor cells (CTCs) from white blood cells. Here, we demonstrate a viscoelastic method for separation and concentration of CTCs using closed-loop microfluidics. Our device is a rectangular straight channel with a low aspect ratio. Also, to achieve high-efficiency, high-throughput processing, we used a polymer solution with low viscosity. At the inlet, CTCs and white blood cells (WBCs) were randomly injected into the microchannel. Due to the viscoelasticity-induced lateral migration to the equilibrium positions, large CTCs could be collected from the side outlet while small WBCs were removed at the center outlet. By recirculating the collected CTCs from the side outlet back to the sample reservoir, continuous separation and concentration of CTCs could be achieved with high separation efficiency (~ 99%). We believe that our device has the potential to be applied in resource-limited clinical settings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circulating%20tumor%20cell" title="circulating tumor cell">circulating tumor cell</a>, <a href="https://publications.waset.org/abstracts/search?q=closed-loop%20microfluidics" title=" closed-loop microfluidics"> closed-loop microfluidics</a>, <a href="https://publications.waset.org/abstracts/search?q=concentration" title=" concentration"> concentration</a>, <a href="https://publications.waset.org/abstracts/search?q=separation" title=" separation"> separation</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20fluid" title=" viscoelastic fluid"> viscoelastic fluid</a> </p> <a href="https://publications.waset.org/abstracts/90891/sheathless-viscoelastic-circulating-tumor-cell-separation-using-closed-loop-microfluidics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/90891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">153</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3784</span> Antibody-Conjugated Nontoxic Arginine-Doped Fe3O4 Nanoparticles for Magnetic Circulating Tumor Cells Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=F.%20Kashanian">F. Kashanian</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Masoudi"> M. M. Masoudi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Akbari"> A. Akbari</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Shamloo"> A. Shamloo</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20R.%20Zand"> M. R. Zand</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20S.%20Salehi"> S. S. Salehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nano-sized materials present new opportunities in biology and medicine and they are used as biomedical tools for investigation, separation of molecules and cells. To achieve more effective cancer therapy, it is essential to select cancer cells exactly. This research suggests that using the antibody-functionalized nontoxic Arginine-doped magnetic nanoparticles (A-MNPs), has been prosperous in detection, capture, and magnetic separation of circulating tumor cells (CTCs) in tumor tissue. In this study, A-MNPs were synthesized via a simple precipitation reaction and directly immobilized Ep-CAM EBA-1 antibodies over superparamagnetic A-MNPs for Mucin BCA-225 in breast cancer cell. The samples were characterized by vibrating sample magnetometer (VSM), FT-IR spectroscopy, Tunneling Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM). These antibody-functionalized nontoxic A-MNPs were used to capture breast cancer cell. Through employing a strong permanent magnet, the magnetic separation was achieved within a few seconds. Antibody-Conjugated nontoxic Arginine-doped Fe<sub>3</sub>O<sub>4</sub> nanoparticles have the potential for the future study to capture CTCs which are released from tumor tissue and for drug delivery, and these results demonstrate that the antibody-conjugated A-MNPs can be used in magnetic hyperthermia techniques for cancer treatment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor%20tissue" title="tumor tissue">tumor tissue</a>, <a href="https://publications.waset.org/abstracts/search?q=antibody" title=" antibody"> antibody</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20nanoparticle" title=" magnetic nanoparticle"> magnetic nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=CTCs%20capturing" title=" CTCs capturing"> CTCs capturing</a> </p> <a href="https://publications.waset.org/abstracts/67417/antibody-conjugated-nontoxic-arginine-doped-fe3o4-nanoparticles-for-magnetic-circulating-tumor-cells-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/67417.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3783</span> Stability Analysis of Tumor-Immune Fractional Order Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadia%20Arshad">Sadia Arshad</a>, <a href="https://publications.waset.org/abstracts/search?q=Yifa%20Tang"> Yifa Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Dumitru%20Baleanu"> Dumitru Baleanu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A fractional order mathematical model is proposed that incorporate CD8+ cells, natural killer cells, cytokines and tumor cells. The tumor cells growth in the absence of an immune response is modeled by logistic law as it was the simplest form for which predictions also agreed with the experimental data. Natural Killer Cells are our first line of defense. NK cells directly kill tumor cells through several mechanisms, including the release of cytoplasmic granules containing perforin and granzyme, expression of tumor necrosis factor (TNF) family members. The effect of the NK cells on the tumor cell population is expressed with the product term. Rational form is used to describe interaction between CD8+ cells and tumor cells. A number of cytokines are produced by NKs, including tumor necrosis factor TNF, IFN, and interleukin (IL-10). Source term for cytokines is modeled by Michaelis-Menten form to indicate the saturated effects of the immune response. Stability of the equilibrium points is discussed for biologically significant values of bifurcation parameters. We studied the treatment of fractional order system by investigating analytical conditions of tumor eradication. Numerical simulations are presented to illustrate the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20model" title="cancer model">cancer model</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20calculus" title=" fractional calculus"> fractional calculus</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulations" title=" numerical simulations"> numerical simulations</a>, <a href="https://publications.waset.org/abstracts/search?q=stability%20analysis" title=" stability analysis"> stability analysis</a> </p> <a href="https://publications.waset.org/abstracts/52821/stability-analysis-of-tumor-immune-fractional-order-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52821.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3782</span> Single Cell Analysis of Circulating Monocytes in Prostate Cancer Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Leander%20Van%20Neste">Leander Van Neste</a>, <a href="https://publications.waset.org/abstracts/search?q=Kirk%20Wojno"> Kirk Wojno</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The innate immune system reacts to foreign insult in several unique ways, one of which is phagocytosis of perceived threats such as cancer, bacteria, and viruses. The goal of this study was to look for evidence of phagocytosed RNA from tumor cells in circulating monocytes. While all monocytes possess phagocytic capabilities, the non-classical CD14+/FCGR3A+ monocytes and the intermediate CD14++/FCGR3A+ monocytes most actively remove threatening ‘external’ cellular materials. Purified CD14-positive monocyte samples from fourteen patients recently diagnosed with clinically localized prostate cancer (PCa) were investigated by single-cell RNA sequencing using the 10X Genomics protocol followed by paired-end sequencing on Illumina’s NovaSeq. Similarly, samples were processed and used as controls, i.e., one patient underwent biopsy but was found not to harbor prostate cancer (benign), three young, healthy men, and three men previously diagnosed with prostate cancer that recently underwent (curative) radical prostatectomy (post-RP). Sequencing data were mapped using 10X Genomics’ CellRanger software and viable cells were subsequently identified using CellBender, removing technical artifacts such as doublets and non-cellular RNA. Next, data analysis was performed in R, using the Seurat package. Because the main goal was to identify differences between PCa patients and ‘control’ patients, rather than exploring differences between individual subjects, the individual Seurat objects of all 21 patients were merged into one Seurat object per Seurat’s recommendation. Finally, the single-cell dataset was normalized as a whole prior to further analysis. Cell identity was assessed using the SingleR and cell dex packages. The Monaco Immune Data was selected as the reference dataset, consisting of bulk RNA-seq data of sorted human immune cells. The Monaco classification was supplemented with normalized PCa data obtained from The Cancer Genome Atlas (TCGA), which consists of bulk RNA sequencing data from 499 prostate tumor tissues (including 1 metastatic) and 52 (adjacent) normal prostate tissues. SingleR was subsequently run on the combined immune cell and PCa datasets. As expected, the vast majority of cells were labeled as having a monocytic origin (~90%), with the most noticeable difference being the larger number of intermediate monocytes in the PCa patients (13.6% versus 7.1%; p<.001). In men harboring PCa, 0.60% of all purified monocytes were classified as harboring PCa signals when the TCGA data were included. This was 3-fold, 7.5-fold, and 4-fold higher compared to post-RP, benign, and young men, respectively (all p<.001). In addition, with 7.91%, the number of unclassified cells, i.e., cells with pruned labels due to high uncertainty of the assigned label, was also highest in men with PCa, compared to 3.51%, 2.67%, and 5.51% of cells in post-RP, benign, and young men, respectively (all p<.001). It can be postulated that actively phagocytosing cells are hardest to classify due to their dual immune cell and foreign cell nature. Hence, the higher number of unclassified cells and intermediate monocytes in PCa patients might reflect higher phagocytic activity due to tumor burden. This also illustrates that small numbers (~1%) of circulating peripheral blood monocytes that have interacted with tumor cells might still possess detectable phagocytosed tumor RNA. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circulating%20monocytes" title="circulating monocytes">circulating monocytes</a>, <a href="https://publications.waset.org/abstracts/search?q=phagocytic%20cells" title=" phagocytic cells"> phagocytic cells</a>, <a href="https://publications.waset.org/abstracts/search?q=prostate%20cancer" title=" prostate cancer"> prostate cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20immune%20response" title=" tumor immune response"> tumor immune response</a> </p> <a href="https://publications.waset.org/abstracts/141106/single-cell-analysis-of-circulating-monocytes-in-prostate-cancer-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141106.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">162</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3781</span> Identification of Functional T Cell Receptors Reactive to Tumor Antigens from the T Cell Repertoire of Healthy Donors</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isaac%20Quiros-Fernandez">Isaac Quiros-Fernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Angel%20Cid-Arregui"> Angel Cid-Arregui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tumor-reactive T cell receptors (TCRs) are being subject of intense investigation since they offer great potential in adoptive cell therapies against cancer. However, the identification of tumor-specific TCRs has proven challenging, for instance, due to the limited expansion capacity of tumor-infiltrating T cells (TILs) and the extremely low frequencies of tumor-reactive T cells in the repertoire of patients and healthy donors. We have developed an approach for rapid identification and characterization of neoepitope-reactive TCRs from the T cell repertoire of healthy donors. CD8 T cells isolated from multiple donors are subjected to a first sorting step after staining with HLA multimers carrying the peptide of interest. The isolated cells are expanded for two weeks, after which a second sorting is performed using the same peptide-HLA multimers. The cells isolated in this way are then processed for single-cell sequencing of their TCR alpha and beta chains. Newly identified TCRs are cloned in appropriate expression vectors for functional analysis on Jurkat, NK92, and primary CD8 T cells and tumor cells expressing the appropriate antigen. We have identified TCRs specifically binding HLA-A2 presenting epitopes of tumor antigens, which are capable of inducing TCR-mediated cell activation and cytotoxicity in target cancer cell lines. This method allows the identification of tumor-reactive TCRs in about two to three weeks, starting from peripheral blood samples of readily available healthy donors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer" title="cancer">cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=TCR" title=" TCR"> TCR</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20antigens" title=" tumor antigens"> tumor antigens</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy" title=" immunotherapy"> immunotherapy</a> </p> <a href="https://publications.waset.org/abstracts/153990/identification-of-functional-t-cell-receptors-reactive-to-tumor-antigens-from-the-t-cell-repertoire-of-healthy-donors" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153990.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3780</span> Tumor Cell Detection, Isolation and Monitoring Using Bi-Layer Magnetic Microfluidic Chip </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Seyfoori">Amir Seyfoori</a>, <a href="https://publications.waset.org/abstracts/search?q=Ehsan%20%20Samiei"> Ehsan Samiei</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Akbari"> Mohsen Akbari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of microtechnology for detection and high yield isolation of circulating tumor cells (CTCs) has shown enormous promise as an indication of clinical metastasis prognosis and cancer treatment monitoring. The Immunomagnetic assay has been also coupled to microtechnology to improve the selectivity and efficiency of the current methods of cancer biomarker isolation. In this way, generation and configuration of the local high gradient magnetic field play essential roles in such assay. Additionally, considering the intrinsic heterogeneity of cancer cells, real-time analysis of isolated cells is necessary to characterize their responses to therapy. Totally, on-chip isolation and monitoring of the specific tumor cells is considered as a pressing need in the way of modified cancer therapy. To address these challenges, we have developed a bi-layer magnetic-based microfluidic chip for enhanced CTC detection and capturing. Micromagnet arrays at the bottom layer of the chip were fabricated using a new method of magnetic nanoparticle paste deposition so that they were arranged at the center of the chain microchannel with the lowest fluid velocity zone. Breast cancer cells labelled with EPCAM-conjugated smart microgels were immobilized on the tip of the micromagnets with greater localized magnetic field and stronger cell-micromagnet interaction. Considering different magnetic nano-powder usage (MnFe2O4 & gamma-Fe2O3) and micromagnet shapes (ellipsoidal & arrow), the capture efficiency of the systems was adjusted while the higher CTC capture efficiency was acquired for MnFe2O4 arrow micromagnet as around 95.5%. As a proof of concept of on-chip tumor cell monitoring, magnetic smart microgels made of thermo-responsive poly N-isopropylacrylamide-co-acrylic acid (PNIPAM-AA) composition were used for both purposes of targeted cell capturing as well as cell monitoring using antibody conjugation and fluorescent dye loading at the same time. In this regard, magnetic microgels were successfully used as cell tracker after isolation process so that by raising the temperature up to 37⁰ C, they released the contained dye and stained the targeted cell just after capturing. This microfluidic device was able to provide a platform for detection, isolation and efficient real-time analysis of specific CTCs in the liquid biopsy of breast cancer patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=circulating%20tumor%20cells" title="circulating tumor cells">circulating tumor cells</a>, <a href="https://publications.waset.org/abstracts/search?q=microfluidic" title=" microfluidic"> microfluidic</a>, <a href="https://publications.waset.org/abstracts/search?q=immunomagnetic" title=" immunomagnetic"> immunomagnetic</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20isolation" title=" cell isolation"> cell isolation</a> </p> <a href="https://publications.waset.org/abstracts/125158/tumor-cell-detection-isolation-and-monitoring-using-bi-layer-magnetic-microfluidic-chip" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125158.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3779</span> IL-21 Production by CD4+ Effector T Cells and Frequency of Circulating Follicular Helper T Cells Are Increased in Type 1 Diabetes Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ferreira%20RC">Ferreira RC</a>, <a href="https://publications.waset.org/abstracts/search?q=Simons%20HZ"> Simons HZ</a>, <a href="https://publications.waset.org/abstracts/search?q=Thompson%20WS"> Thompson WS</a>, <a href="https://publications.waset.org/abstracts/search?q=Cutler%20AJ"> Cutler AJ</a>, <a href="https://publications.waset.org/abstracts/search?q=Dopico%20XC"> Dopico XC</a>, <a href="https://publications.waset.org/abstracts/search?q=Smyth%20DJ"> Smyth DJ</a>, <a href="https://publications.waset.org/abstracts/search?q=Mashar%20M"> Mashar M</a>, <a href="https://publications.waset.org/abstracts/search?q=Schuilenburg%20H"> Schuilenburg H</a>, <a href="https://publications.waset.org/abstracts/search?q=Walker%20NM"> Walker NM</a>, <a href="https://publications.waset.org/abstracts/search?q=Dunger%20DB"> Dunger DB</a>, <a href="https://publications.waset.org/abstracts/search?q=Wallace%20C"> Wallace C</a>, <a href="https://publications.waset.org/abstracts/search?q=Todd%20JA"> Todd JA</a>, <a href="https://publications.waset.org/abstracts/search?q=Wicker%20LS"> Wicker LS</a>, <a href="https://publications.waset.org/abstracts/search?q=Pekalski%20ML"> Pekalski ML</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Type 1 diabetes is caused by autoimmune destruction of insulin-secreting beta cells in the pancreas. T cells are known to play an important role in this immune-mediated destruction; however, there is no general consensus regarding alterations in cytokine production or T cell subsets in peripheral blood of patients with type 1 diabetes. Using polychromatic flow cytometry of peripheral blood mononuclear cells (PBMCs), we assessed production of the proinflammatory cytokines IL-21, IFN-γ and IL-17 by memory CD4 T effector (Teff) cells in 69 patients with type 1 diabetes and 61 healthy donors. We found a 21.9% (95% CI 5.8, 40.2; p = 3.9 × 10(-3)) higher frequency of IL-21(+) CD45RA(-) memory CD4(+) Teffs in patients with type 1 diabetes (geometric mean 5.92% [95% CI 5.44, 6.44]) compared with healthy donors (geometric mean 4.88% [95% CI 4.33, 5.50]). In a separate cohort of 30 patients with type 1 diabetes and 32 healthy donors, we assessed the frequency of circulating T follicular helper (Tfh) cells in whole blood. Consistent with the increased production of IL-21, we also found a 14.9% increase in circulating Tfh cells in the patients with type 1 diabetes (95% CI 2.9, 26.9; p = 0.016). Analysis of IL-21 production by PBMCs from a subset of 46 of the 62 donors immunophenotyped for Tfh showed that frequency of Tfh cells was associated with the frequency of IL-21+ cells (r2 = 0.174, p = 0.004). These results indicate that increased IL-21 production is likely to be an aetiological factor in the pathogenesis of type 1 diabetes that could be considered as a potential therapeutic target. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=T%20follicular%20helper%20cell" title="T follicular helper cell">T follicular helper cell</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-21" title=" IL-21"> IL-21</a>, <a href="https://publications.waset.org/abstracts/search?q=IL-17" title=" IL-17"> IL-17</a>, <a href="https://publications.waset.org/abstracts/search?q=type%201%20diabetes" title=" type 1 diabetes"> type 1 diabetes</a> </p> <a href="https://publications.waset.org/abstracts/32813/il-21-production-by-cd4-effector-t-cells-and-frequency-of-circulating-follicular-helper-t-cells-are-increased-in-type-1-diabetes-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32813.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">380</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3778</span> Studying the Anti-Cancer Effects of Thymoquinone on Tumor Cells Through Natural Killer Cells Activity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nouf%20A.%20Aldarmahi">Nouf A. Aldarmahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Nesrin%20I.%20Tarbiah"> Nesrin I. Tarbiah</a>, <a href="https://publications.waset.org/abstracts/search?q=Nuha%20A.%20Alkhattabi"> Nuha A. Alkhattabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Huda%20F.%20Alshaibi"> Huda F. Alshaibi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigella sativa which is known as dark cumin is a well-known example for a widely applicable herbal medicine. Nigella sativa can be effective in a variety of diseases such as hypertension, diabetes, bronchitis, gastrointestinal upset, and cancer. The anticancer effect of Nigella sativa appeared to be mediated by immune-modulatory effect through stimulating human natural killer (NK) cells. This is a type of lymphocytes which is part of the innate immunity, also known as the first line of defense in the body against pathogens. This study investigated the effect of thymoquinone as a major component of Nigella sativa on the molecular cytotoxic pathway of NK cell and the role of thymoquinone therapeutic effect on NK cells. NK cells were cultured with breast tumor cells in different ways and cultured media was collected and the concentration of perforin, granzyme B and interferon-α were measured by ELISA. The cytotoxic effect of NK cells on breast tumor cells was enhanced in the presence of thymoquinone, with increased activity of perforin in NK cells. This improved anticancer effect of thymoquinone on breast cancer cells. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer">breast cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer%20cells" title=" cancer cells"> cancer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20killer%20cells" title=" natural killer cells"> natural killer cells</a>, <a href="https://publications.waset.org/abstracts/search?q=thymoquinone" title=" thymoquinone"> thymoquinone</a> </p> <a href="https://publications.waset.org/abstracts/149104/studying-the-anti-cancer-effects-of-thymoquinone-on-tumor-cells-through-natural-killer-cells-activity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/149104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">241</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3777</span> Evaluation of Tumor Microenvironment Using Molecular Imaging</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fakhrosadat%20Sajjadian">Fakhrosadat Sajjadian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Ghasemi%20Shayan"> Ramin Ghasemi Shayan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The tumor microenvironment plays an fundamental part in tumor start, movement, metastasis, and treatment resistance. It varies from ordinary tissue in terms of its extracellular network, vascular and lymphatic arrange, as well as physiological conditions. The clinical application of atomic cancer imaging is regularly prevented by the tall commercialization costs of focused on imaging operators as well as the constrained clinical applications and little showcase measure of a few operators. . Since numerous cancer types share comparable characteristics of the tumor microenvironment, the capacity to target these biomarkers has the potential to supply clinically translatable atomic imaging advances for numerous types encompassing cancer and broad clinical applications. Noteworthy advance has been made in focusing on the tumor microenvironment for atomic cancer imaging. In this survey, we summarize the standards and methodologies of later progresses in atomic imaging of the tumor microenvironment, utilizing distinctive imaging modalities for early discovery and conclusion of cancer. To conclude, The tumor microenvironment (TME) encompassing tumor cells could be a profoundly energetic and heterogeneous composition of safe cells, fibroblasts, forerunner cells, endothelial cells, flagging atoms and extracellular network (ECM) components. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=molecular" title="molecular">molecular</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging" title=" imaging"> imaging</a>, <a href="https://publications.waset.org/abstracts/search?q=TME" title=" TME"> TME</a>, <a href="https://publications.waset.org/abstracts/search?q=medicine" title=" medicine"> medicine</a> </p> <a href="https://publications.waset.org/abstracts/182733/evaluation-of-tumor-microenvironment-using-molecular-imaging" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/182733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">45</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3776</span> Development and Characterization of Site Specific Peptide Conjugated Polymeric Nanoparticles for Efficient Delivery of Paclitaxel</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Madhu%20Gupta">Madhu Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Sharma"> Vikas Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Suresh%20P.%20Vyas"> Suresh P. Vyas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> CD13 receptors are abundantly overexpressed in tumor cells as well as in neovasculature. The CD13 receptors were selected as a targeted site and polymeric nanoparticles (NPs) as a targeted delivery system. By combining these, a cyclic NGR (cNGR) peptide ligand was coupled on the terminal end of polyethylene glycol-b-poly(lactic-co-glycolic acid) (PEG-b-PLGA) and prepared the dual targeted-NPs (cNGR-PEG-PTX-NPs) to enhance the intracellular delivery of anticancer drug to tumor cells and tumor endothelial cells via ligand-receptor interaction. In-vitro cytotoxicity studies confirmed that the presence of cNGR enhanced the cytotoxic efficiency by 2.8 folds in Human Umbilical Vein Endothelial (HUVEC) cells, while cytotoxicity was improved by 2.6 folds in human fibrosarcoma (HT-1080) cells as compared to non-specific stealth NPs. Compared with other tested NPs, cNGR-PEG-PTX-NPs revealed more cytotoxicity by inducing more apoptosis and higher intracellular uptake. The tumor volume inhibition rate was 59.7% in case of cNGR-PEG-PTX-NPs that was comparatively more with other formulations, indicating that cNGR-PEG-PTX-NPs could more effectively inhibit tumor growth. As a consequence, the cNGR-PEG-PTX-NPs play a key role in enhancing tumor therapeutic efficiency for treatment of CD13 receptor specific solid tumor. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cyclic%20NGR" title="cyclic NGR">cyclic NGR</a>, <a href="https://publications.waset.org/abstracts/search?q=CD13%20receptor" title=" CD13 receptor"> CD13 receptor</a>, <a href="https://publications.waset.org/abstracts/search?q=targeted%20polymeric%20NPs" title=" targeted polymeric NPs"> targeted polymeric NPs</a>, <a href="https://publications.waset.org/abstracts/search?q=solid%20tumor" title=" solid tumor"> solid tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=intracellular%20delivery" title=" intracellular delivery "> intracellular delivery </a> </p> <a href="https://publications.waset.org/abstracts/30544/development-and-characterization-of-site-specific-peptide-conjugated-polymeric-nanoparticles-for-efficient-delivery-of-paclitaxel" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30544.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">437</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3775</span> Zinc Oxide Nanoparticles as Support for Classical Anti-cancer Therapies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nadine%20Wiesmann">Nadine Wiesmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Melanie%20Viel"> Melanie Viel</a>, <a href="https://publications.waset.org/abstracts/search?q=Christoph%20Buhr"> Christoph Buhr</a>, <a href="https://publications.waset.org/abstracts/search?q=Rachel%20Tanner"> Rachel Tanner</a>, <a href="https://publications.waset.org/abstracts/search?q=Wolfgang%20Tremel"> Wolfgang Tremel</a>, <a href="https://publications.waset.org/abstracts/search?q=Juergen%20Brieger"> Juergen Brieger</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Recidivation of tumors and the development of resistances against the classical anti-tumor approaches represent a major challenge we face when treating cancer. In order to master this challenge, we are in desperate need of new treatment options beyond the beaten tracks. Zinc oxide nanoparticles (ZnO NPs) represent such an innovative approach. Zinc oxide is characterized by a high level of biocompatibility, concurrently ZnO NPs are able to exert anti-tumor effects. By concentration of the nanoparticles at the tumor site, tumor cells can specifically be exposed to the nanoparticles while low zinc concentrations at off-target sites are tolerated well and can be excreted easily. We evaluated the toxicity of ZnO NPs in vitro with the help of immortalized tumor cell lines and primary cells stemming from healthy tissue. Additionally, the Chorioallantoic Membrane Assay (CAM Assay) was employed to gain insights into the in vivo behavior of the nanoparticles. We could show that ZnO NPs interact with tumor cells as nanoparticulate matter. Furthermore, the extensive release of zinc ions from the nanoparticles nearby and within the tumor cells results in overload with zinc. Beyond that, ZnO NPs were found to further the generation of reactive oxygen species (ROS). We were able to show that tumor cells were more prone to the toxic effects of ZnO NPs at intermediate concentrations compared to fibroblasts. With the help of ZnO NPs covered by a silica shell in which FITC dye was incorporated, we were able to track ZnO NPs within tumor cells as well as within a whole organism in the CAM assay after injection into the bloodstream. Depending on the applied concentrations, selective tumor cell killing seems feasible. Furthermore, the combinational treatment of tumor cells with radiotherapy and ZnO NPs shows promising results. Still, further investigations are needed to gain a better understanding of the interaction between ZnO NPs and the human body to be able to pave the way for their application as an innovative anti-tumor agent in the clinics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20oxide%20nanoparticles" title="metal oxide nanoparticles">metal oxide nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=nanomedicine" title=" nanomedicine"> nanomedicine</a>, <a href="https://publications.waset.org/abstracts/search?q=overcome%20resistances%20against%20classical%20treatment%20options" title=" overcome resistances against classical treatment options"> overcome resistances against classical treatment options</a>, <a href="https://publications.waset.org/abstracts/search?q=zinc%20oxide%20nanoparticles" title=" zinc oxide nanoparticles"> zinc oxide nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/126048/zinc-oxide-nanoparticles-as-support-for-classical-anti-cancer-therapies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">128</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3774</span> High-Throughput, Purification-Free, Multiplexed Profiling of Circulating miRNA for Discovery, Validation, and Diagnostics</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Hidalgo%20de%20Quintana">J. Hidalgo de Quintana</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Stoner"> I. Stoner</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Tackett"> M. Tackett</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Doran"> G. Doran</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20Rafferty"> C. Rafferty</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Windemuth"> A. Windemuth</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Tytell"> J. Tytell</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Pregibon"> D. Pregibon</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have developed the Multiplexed Circulating microRNA assay that allows the detection of up to 68 microRNA targets per sample. The assay combines particle­based multiplexing, using patented Firefly hydrogel particles, with single­ step RT-PCR signal. Thus, the Circulating microRNA assay leverages PCR sensitivity while eliminating the need for separate reverse transcription reactions and mitigating amplification biases introduced by target­-specific qPCR. Furthermore, the ability to multiplex targets in each well eliminates the need to split valuable samples into multiple reactions. Results from the Circulating microRNA assay are interpreted using Firefly Analysis Workbench, which allows visualization, normalization, and export of experimental data. To aid discovery and validation of biomarkers, we have generated fixed panels for Oncology, Cardiology, Neurology, Immunology, and Liver Toxicology. Here we present the data from several studies investigating circulating and tumor microRNA, showcasing the ability of the technology to sensitively and specifically detect microRNA biomarker signatures from fluid specimens. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title="biomarkers">biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=biofluids" title=" biofluids"> biofluids</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNA" title=" miRNA"> miRNA</a>, <a href="https://publications.waset.org/abstracts/search?q=photolithography" title=" photolithography"> photolithography</a>, <a href="https://publications.waset.org/abstracts/search?q=flowcytometry" title=" flowcytometry"> flowcytometry</a> </p> <a href="https://publications.waset.org/abstracts/46466/high-throughput-purification-free-multiplexed-profiling-of-circulating-mirna-for-discovery-validation-and-diagnostics" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46466.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3773</span> Th2 and Th17 Subsets in the Circulation of Psoriasis Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chakrit%20Thapphan">Chakrit Thapphan</a>, <a href="https://publications.waset.org/abstracts/search?q=Suteeraporn%20Chaowattanapanit"> Suteeraporn Chaowattanapanit</a>, <a href="https://publications.waset.org/abstracts/search?q=Sorutsiri%20Chareonsudjai"> Sorutsiri Chareonsudjai</a>, <a href="https://publications.waset.org/abstracts/search?q=Wisitsak%20Phoksawat"> Wisitsak Phoksawat</a>, <a href="https://publications.waset.org/abstracts/search?q=Supranee%20Phantanawiboon"> Supranee Phantanawiboon</a>, <a href="https://publications.waset.org/abstracts/search?q=Kiatichai%20Faksri"> Kiatichai Faksri</a>, <a href="https://publications.waset.org/abstracts/search?q=Steve%20W.%20Edwards"> Steve W. Edwards</a>, <a href="https://publications.waset.org/abstracts/search?q=Kanin%20Salao"> Kanin Salao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Psoriasis is a chronic inflammatory disease of the skin that is mediated by crosstalk between keratinocytes and immune cells, especially CD4+ T helper (Th) cells. To date, psoriasis is established as a T helper 17 (Th17) cell-mediated inflammatory process driven by the over-expression of Th17. However, the role of other CD4+T helper cells is rather controversial. Objective: Our study, thereby, aimed to characterize and analyze T cell subsets in the circulating blood of psoriasis patients and compare them to healthy controls. Methods: Peripheral blood mononuclear cells were isolated from the participants and stained with fluorescent dye-conjugated monoclonal antibodies specific for intracellular cytokines, including interferon-gamma (IFN- γ), interleukin (IL-4), IL-17 and forkhead box P3 (FOXP3), that can be used to define T helper 1 (Th1) cells, T helper 2 (Th2), T helper 17 (Th17) and regulatory T cells (Treg) respectively. Results: We found that the numbers of Th2 (59.6% ± 17.0) and Th17 (4.0% ± 2.0) cells in the circulating blood of psoriasis patients were significantly higher than those of the healthy controls (p= 0.0007 and 0.0013 respectively). In contrast, the numbers of Th1 and Treg cells were not significantly different between psoriasis patients and healthy controls (p= 0.0593 and 0.8518, respectively). Additionally, when adjusting these numbers of Th cells to Treg, we observed a similar trend that the ratio of Th2/Treg and Th17/Treg also elevated (p = 0.0007 and 0.0047, respectively). Conclusion: Taken together, our results suggest an imbalanced T exhibit toward the Th2 and Th17 skewed-immune responses in psoriasis patients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=psoriasis" title="psoriasis">psoriasis</a>, <a href="https://publications.waset.org/abstracts/search?q=Th%20cell%20subsets" title=" Th cell subsets"> Th cell subsets</a>, <a href="https://publications.waset.org/abstracts/search?q=Th2%20cells" title=" Th2 cells"> Th2 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Th17%20cells" title=" Th17 cells"> Th17 cells</a>, <a href="https://publications.waset.org/abstracts/search?q=Treg%20cells" title=" Treg cells"> Treg cells</a> </p> <a href="https://publications.waset.org/abstracts/162515/th2-and-th17-subsets-in-the-circulation-of-psoriasis-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/162515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3772</span> U11 Functionalised Luminescent Gold Nanoclusters for Pancreatic Tumor Cells Labelling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Regina%20M.%20Chiechio">Regina M. Chiechio</a>, <a href="https://publications.waset.org/abstracts/search?q=R%C3%A9mi%20Leguev%C3%A9l"> Rémi Leguevél</a>, <a href="https://publications.waset.org/abstracts/search?q=Helene%20Solhi"> Helene Solhi</a>, <a href="https://publications.waset.org/abstracts/search?q=Marie%20Madeleine%20Gueguen"> Marie Madeleine Gueguen</a>, <a href="https://publications.waset.org/abstracts/search?q=Stephanie%20Dutertre"> Stephanie Dutertre</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier"> Xavier</a>, <a href="https://publications.waset.org/abstracts/search?q=Jean-Pierre%20Bazureau"> Jean-Pierre Bazureau</a>, <a href="https://publications.waset.org/abstracts/search?q=Olivier%20Mignen"> Olivier Mignen</a>, <a href="https://publications.waset.org/abstracts/search?q=Pascale%20Even-Hernandez"> Pascale Even-Hernandez</a>, <a href="https://publications.waset.org/abstracts/search?q=Paolo%20Musumeci"> Paolo Musumeci</a>, <a href="https://publications.waset.org/abstracts/search?q=Maria%20Jose%20Lo%20Faro"> Maria Jose Lo Faro</a>, <a href="https://publications.waset.org/abstracts/search?q=Valerie%20Marchi"> Valerie Marchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to their ultra-small size, high electron density, and low toxicity, gold nanoclusters (Au NCs) have unique photoelectrochemical and luminescence properties that make them very interesting for diagnosis bio-imaging and theranostics. These applications require control of their delivery and interaction with cells; for this reason, the surface chemistry of Au NCs is essential to determine their interaction with the targeted biological objects. Here we demonstrate their ability as markers of pancreatic tumor cells. By functionalizing the surface of the NCs with a recognition peptite (U11), the nanostructures are able to preferentially bind to pancreatic cancer cells via a receptor (uPAR) overexpressed by these cells. Furthermore, the NCs can mark even the nucleus without the need of fixing the cells. These nanostructures can therefore be used as a non-toxic, multivalent luminescent platform, capable of selectively recognizing tumor cells for bioimaging, drug delivery, and radiosensitization. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=gold%20nanoclusters" title="gold nanoclusters">gold nanoclusters</a>, <a href="https://publications.waset.org/abstracts/search?q=luminescence" title=" luminescence"> luminescence</a>, <a href="https://publications.waset.org/abstracts/search?q=biomarkers" title=" biomarkers"> biomarkers</a>, <a href="https://publications.waset.org/abstracts/search?q=pancreatic%20cancer" title=" pancreatic cancer"> pancreatic cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=biomedical%20applications" title=" biomedical applications"> biomedical applications</a>, <a href="https://publications.waset.org/abstracts/search?q=bioimaging" title=" bioimaging"> bioimaging</a>, <a href="https://publications.waset.org/abstracts/search?q=fluorescent%20probes" title=" fluorescent probes"> fluorescent probes</a>, <a href="https://publications.waset.org/abstracts/search?q=drug%20delivery" title=" drug delivery"> drug delivery</a> </p> <a href="https://publications.waset.org/abstracts/146031/u11-functionalised-luminescent-gold-nanoclusters-for-pancreatic-tumor-cells-labelling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146031.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3771</span> Metastatic Ovarian Tumor Discovered Accidentally during Cesarean Section in a 34 Year Old Woman: A Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ghada%20E.%20Esheba">Ghada E. Esheba</a>, <a href="https://publications.waset.org/abstracts/search?q=Ghufran%20Kheshaifaty"> Ghufran Kheshaifaty</a>, <a href="https://publications.waset.org/abstracts/search?q=Kholoud%20%20Al-Harbi"> Kholoud Al-Harbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafa%27a%20Al-Harbi"> Wafa&#039;a Al-Harbi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ala%27a%20Al-Orabi"> Ala&#039;a Al-Orabi</a>, <a href="https://publications.waset.org/abstracts/search?q=Moayad%20Turkistani"> Moayad Turkistani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Krukenberg tumor is a rare metastatic ovarian carcinoma that usually occurs in female between 30 - 40 year old and rarely seen after menopause. Stomach is the most common primary site. Histopathological features of krukenberg tumors appear as diffuse stromal proliferation, mucus-production, and numerous signet-cells and these tumors spread mostly by lymphatic route. Treatment and prognostic factors are not well established. This study describes a 34 year old female with a unilateral ovarian mass discovered accidentally during cesarean section delivery and it was misdiagnosed as luteoma of pregnancy, but histopathological examination showed a diffuse infiltration of the ovary and omentum by signet ring cells. These findings were not correlated with luteoma of pregnancy or any other types of primary ovarian tumors like surface epithelial tumor, sex cord stromal tumor or germ cell tumor. However, after the analysis of immunohistochemical results (negative CK7, positive CK20 and CDX-2), the finding was the diagnostic of metastatic krukenberg tumor. Two weeks later, the patient was evaluated and a large gastric tumor was found in her stomach and she underwent gastrectomy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=CK7" title="CK7">CK7</a>, <a href="https://publications.waset.org/abstracts/search?q=CK20" title=" CK20"> CK20</a>, <a href="https://publications.waset.org/abstracts/search?q=CDX-2" title=" CDX-2"> CDX-2</a>, <a href="https://publications.waset.org/abstracts/search?q=Krukenburg%20tumor" title=" Krukenburg tumor"> Krukenburg tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=metastatic%20ovarian%20tumor" title=" metastatic ovarian tumor"> metastatic ovarian tumor</a> </p> <a href="https://publications.waset.org/abstracts/59354/metastatic-ovarian-tumor-discovered-accidentally-during-cesarean-section-in-a-34-year-old-woman-a-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59354.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">315</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3770</span> Based on MR Spectroscopy, Metabolite Ratio Analysis of MRI Images for Metastatic Lesion</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hossain%20A">Hossain A</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossain%20S."> Hossain S.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Introduction: In a small cohort, we sought to assess the magnetic resonance spectroscopy's (MRS) ability to predict the presence of metastatic lesions. Method: A Popular Diagnostic Centre Limited enrolled patients with neuroepithelial tumors. The 1H CSI MRS of the brain allows us to detect changes in the concentration of specific metabolites caused by metastatic lesions. Among these metabolites are N-acetyl-aspartate (NNA), creatine (Cr), and choline (Cho). For Cho, NAA, Cr, and Cr₂, the metabolic ratio was calculated using the division method. Results: The NAA values were 0.63 and 5.65 for tumor cells, 1.86 and 5.66 for normal cells, and 1.86 and 5.66 for normal cells 2. NAA values for normal cells 1 were 1.84, 10.6, and 1.86 for normal cells 2, respectively. Cho levels were as low as 0.8 and 10.53 in the tumor cell, compared to 1.12 and 2.7 in the normal cell 1 and 1.24 and 6.36 in the normal cell 2. Cho/Cr₂ barely distinguished itself from the other ratios in terms of significance. For tumor cells, the ratios of Cho/NAA, Cho/Cr₂, NAA/Cho, and NAA/Cr₂ were significant. Normal cell 1 had significant Cho/NAA, Cho/Cr, NAA/Cho, and NAA/Cr ratios. Conclusion: The clinical result can be improved by using 1H-MRSI to guide the size of resection for metastatic lesions. Even though it is non-invasive and doesn't present any difficulties during the procedure, MRS has been shown to predict the detection of metastatic lesions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metabolite%20ratio" title="metabolite ratio">metabolite ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=MRI%20images" title=" MRI images"> MRI images</a>, <a href="https://publications.waset.org/abstracts/search?q=metastatic%20lesion" title=" metastatic lesion"> metastatic lesion</a>, <a href="https://publications.waset.org/abstracts/search?q=MR%20spectroscopy" title=" MR spectroscopy"> MR spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=N-acetyl-aspartate" title=" N-acetyl-aspartate"> N-acetyl-aspartate</a> </p> <a href="https://publications.waset.org/abstracts/154048/based-on-mr-spectroscopy-metabolite-ratio-analysis-of-mri-images-for-metastatic-lesion" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">96</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3769</span> Exploring Nanoformulations for Therapeutic Induction of Necroptosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianjiao%20Chu">Tianjiao Chu</a>, <a href="https://publications.waset.org/abstracts/search?q=Carla%20Rios%20Luci"> Carla Rios Luci</a>, <a href="https://publications.waset.org/abstracts/search?q=Christy%20Maksoudian"> Christy Maksoudian</a>, <a href="https://publications.waset.org/abstracts/search?q=Ara%20Sargsian"> Ara Sargsian</a>, <a href="https://publications.waset.org/abstracts/search?q=Bella%20B.%20Manshian"> Bella B. Manshian</a>, <a href="https://publications.waset.org/abstracts/search?q=Stefaan%20J.%20Soenen"> Stefaan J. Soenen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nanomaterials have gained high interest in their use as potent anticancer agents. Apart from delivering chemotherapeutic agents in order to reduce off-target effects, molecular agents have also been widely explored. The advances in our understanding of cell biology and cell death mechanisms1 has generated a broad library of potential therapeutic targets by siRNA, mRNA, or pDNA complexes. In the present study, we explore the ability of pDNA-polyplexes to induce tumor-specific necroptosis. This results in a cascade of effects, where immunogenic cell death potentiates anti-tumor immune responses and results in an influx of dendritic cells and cytotoxic T cells, rendering the tumor more amenable to immune checkpoint inhibition. This study aims to explore whether the induction of necroptosis in a subpopulation of tumor cells can be used to potentiate immune checkpoint inhibition studies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanoparticle" title="nanoparticle">nanoparticle</a>, <a href="https://publications.waset.org/abstracts/search?q=MLKL" title=" MLKL"> MLKL</a>, <a href="https://publications.waset.org/abstracts/search?q=necroptosis" title=" necroptosis"> necroptosis</a>, <a href="https://publications.waset.org/abstracts/search?q=immunotherapy" title=" immunotherapy"> immunotherapy</a> </p> <a href="https://publications.waset.org/abstracts/152549/exploring-nanoformulations-for-therapeutic-induction-of-necroptosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">139</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3768</span> Ancelim: Health System Restoration Protocol for Cancer Patients</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mark%20Berry">Mark Berry</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A number of studies have identified several factors involved in the malignant progression of cancer cells. The Primary modulator in driving inflammation to these transformed cells has been identified as the transcription factor known as nuclear factor-κB. This essential regulator of inflammation and the development of cancer, combined with a microenvironment of inflammation and signaling molecules, plays a major role in the malignant progression of cancer, and this progression is the result of the mutagenic predisposition of persistent substances that combat infection at tumor sites and other areas of chronic inflammation. Inflammation-induced tumors, and their inflammatory cells and regulators may be the primary source of metastasis of tumor cells through angiogenesis. Previous research on cytokines and chemokines, including their downstream targets, has been the focus of the cancer/inflammation connection. The identification of the biological mechanisms of other proteins vital to the inflammation cascade and their interactions are crucial to novel and effective therapeutic protocols for the treatment of inflammation-induced cancers. The Ancelim HSRP Protocol is just such a therapeutic intervention. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ancelim" title="ancelim">ancelim</a>, <a href="https://publications.waset.org/abstracts/search?q=cancer" title=" cancer"> cancer</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor" title=" tumor"> tumor</a> </p> <a href="https://publications.waset.org/abstracts/37512/ancelim-health-system-restoration-protocol-for-cancer-patients" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37512.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3767</span> Breast Cancer Cellular Immunotherapies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zahra%20Shokrolahi">Zahra Shokrolahi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Reza%20Atashzar"> Mohammad Reza Atashzar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The goals of treating patients with breast cancer are to cure the disease, prolong survival, and improve quality of life. Immune cells in the tumor microenvironment have an important role in regulating tumor progression. The term of cellular immunotherapy refers to the administration of living cells to a patient; this type of immunotherapy can be active, such as a dendritic cell (DC) vaccine, in that the cells can stimulate an anti-tumour response in the patient, or the therapy can be passive, whereby the cells have intrinsic anti-tumour activity; this is known as adoptive cell transfer (ACT) and includes the use of autologous or allogeneic lymphocytes that may, or may not, be modified. The most important breast cancer cellular immunotherapies involving the use of T cells and natural killer (NK) cells in adoptive cell transfer, as well as dendritic cells vaccines. T cell-based therapies including tumour-infiltrating lymphocytes (TILs), engineered TCR-T cells, chimeric antigen receptor (CAR T cell), Gamma-delta (γδ) T cells, natural killer T (NKT) cells. NK cell-based therapies including lymphokine-activated killers (LAK), cytokine-induced killer (CIK) cells, CAR-NK cells. Adoptive cell therapy has some advantages and disadvantages some. TILs cell strictly directed against tumor-specific antigens but are inactive against tumor changes due to immunoediting. CIK cell have MHC-independent cytotoxic effect and also need concurrent high dose IL-2 administration. CAR T cell are MHC-independent; overcome tumor MHC molecule downregulation; potent in recognizing any cell surface antigen (protein, carbohydrate or glycolipid); applicable to a broad range of patients and T cell populations; production of large numbers of tumor-specific cells in a moderately short period of time. Meanwhile CAR T cells capable of targeting only cell surface antigens; lethal toxicity due to cytokine storm reported. Here we present the most popular cancer cellular immunotherapy approaches and discuss their clinical relevance referring to data acquired from clinical trials .To date, clinical experience and efficacy suggest that combining more than one immunotherapy interventions, in conjunction with other treatment options like chemotherapy, radiotherapy and targeted or epigenetic therapy, should guide the way to cancer cure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=breast%20cancer" title="breast cancer ">breast cancer </a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20therapy" title=" cell therapy "> cell therapy </a>, <a href="https://publications.waset.org/abstracts/search?q=CAR%20T%20cell" title=" CAR T cell "> CAR T cell </a>, <a href="https://publications.waset.org/abstracts/search?q=CIK%20cells" title=" CIK cells "> CIK cells </a> </p> <a href="https://publications.waset.org/abstracts/135914/breast-cancer-cellular-immunotherapies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/135914.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">130</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3766</span> ESDN Expression in the Tumor Microenvironment Coordinates Melanoma Progression</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Roberto%20Coppo">Roberto Coppo</a>, <a href="https://publications.waset.org/abstracts/search?q=Francesca%20Orso"> Francesca Orso</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Dettori"> Daniela Dettori</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20Quaglino"> Elena Quaglino</a>, <a href="https://publications.waset.org/abstracts/search?q=Lei%20Nie"> Lei Nie</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehran%20M.%20Sadeghi"> Mehran M. Sadeghi</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniela%20Taverna"> Daniela Taverna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Malignant melanoma is currently the fifth most common cancer in the white population and it is fatal in its metastatic stage. Several research studies in recent years have provided evidence that cancer initiation and progression are driven by genetic alterations of the tumor and paracrine interactions between tumor and microenvironment. Scattered data show that the Endothelial and Smooth muscle cell-Derived Neuropilin-like molecule (ESDN) controls cell proliferation and movement of stroma and tumor cells. To investigate the role of ESDN in the tumor microenvironment during melanoma progression, murine melanoma cells (B16 or B16-F10) were injected in ESDN knockout mice in order to evaluate how the absence of ESDN in stromal cells could influence melanoma progression. While no effect was found on primary tumor growth, increased cell extravasation and lung metastasis formation was observed in ESDN knockout mice compared to wild type controls. In order to understand how cancer cells cross the endothelial barrier during metastatic dissemination in an ESDN-null microenvironment, structure, and permeability of lung blood vessels were analyzed. Interestingly, ESDN knockout mice showed structurally altered and more permeable vessels compared to wild type animals. Since cell surface molecules mediate the process of tumor cell extravasation, the expression of a panel of extravasation-related ligands and receptors was analyzed. Importantly, modulations of N-cadherin, E-selectin, ICAM-1 and VAP-1 were observed in ESDN knockout endothelial cells, suggesting the presence of a favorable tumor microenvironment which facilitates melanoma cell extravasation and metastasis formation in the absence of ESDN. Furthermore, a potential contribution of immune cells in tumor dissemination was investigated. An increased recruitment of macrophages in the lungs of ESDN knockout mice carrying subcutaneous B16-F10 tumors was found. In conclusion, our data suggest a functional role of ESDN in the tumor microenvironment during melanoma progression and the identification of the mechanisms that regulate tumor cell extravasation could lead to the development of new therapies to reduce metastasis formation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=melanoma" title="melanoma">melanoma</a>, <a href="https://publications.waset.org/abstracts/search?q=tumor%20microenvironment" title=" tumor microenvironment"> tumor microenvironment</a>, <a href="https://publications.waset.org/abstracts/search?q=extravasation" title=" extravasation"> extravasation</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20surface%20molecules" title=" cell surface molecules"> cell surface molecules</a> </p> <a href="https://publications.waset.org/abstracts/44830/esdn-expression-in-the-tumor-microenvironment-coordinates-melanoma-progression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44830.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">334</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3765</span> Benign Osteoblastoma of the Mandible Resection and Replacement of the Defects with Decellularized Cattle Bone Scaffold with Mesenchymal Bone Marrow Stem Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Mardaleishvili">K. Mardaleishvili</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Loladze"> G. Loladze</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Shatirishivili"> G. Shatirishivili</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Chakhunashvili"> D. Chakhunashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Vishnevskaya"> A. Vishnevskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kakabadze"> Z. Kakabadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Benign osteoblastoma is a benign tumor of the bone, usually affecting the vertebrae and long tubular bones. It is a rarely seen tumor of the facial bones. The authors present a case of a 28-year-old male patient with a tumor in mandibular body. The lesion was radically resected and histological analysis of the specimen demonstrated features typical of a benign osteoblastoma. The defect of the jaw was reconstructed with titanium implants and decellularized and lyophilized cattle bone matrix with mesenchymal bone marrow stem cells transplantation. This presentation describes the procedures for rehabilitating a patient with decellularized bone scaffold in the region of the face, recovering the facial contours and esthetics of the patient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=facial%20bones" title="facial bones">facial bones</a>, <a href="https://publications.waset.org/abstracts/search?q=osteoblastoma" title=" osteoblastoma"> osteoblastoma</a>, <a href="https://publications.waset.org/abstracts/search?q=stem%20cells" title=" stem cells"> stem cells</a>, <a href="https://publications.waset.org/abstracts/search?q=transplantation" title=" transplantation"> transplantation</a> </p> <a href="https://publications.waset.org/abstracts/21112/benign-osteoblastoma-of-the-mandible-resection-and-replacement-of-the-defects-with-decellularized-cattle-bone-scaffold-with-mesenchymal-bone-marrow-stem-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21112.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">421</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3764</span> MicroRNA Expression Distinguishes Neutrophil Subtypes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20I.%20You">R. I. You</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20L.%20Ho"> C. L. Ho</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20S.%20Dai"> M. S. Dai</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20M.%20Hung"> H. M. Hung</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20F.%20Yen"> S. F. Yen</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Chen"> C. S. Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Y.%20Chao"> T. Y. Chao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Neutrophils are the most abundant innate immune cells to against invading microorganisms. Numerous data shown neutrophils have plasticity in response to physiological and pathological conditions. Tumor-associated neutrophils (TAN) exist in distinct types of tumor and play an important role in cancer biology. Different transcriptomic profiles of neutrophils in tumor and non-tumor samples have been identified. Several miRNAs have been recognized as regulators of gene expression in neutrophil, which may have key roles in neutrophil activation. However, the miRNAs expression patterns in TAN are not well known. To address this question, magnetic bead isolated neutrophils from tumor-bearing mice were used in this study. We analyzed production of reactive oxygen species (ROS) by luminol-dependent chemiluminescence assay. The expression of miRNAs targeting NADPH oxidase, ROS generation and autophagy was explored using quantitative real-time polymerase chain reaction. Our data suggest that tumor environment influence neutrophil develop to differential states of activation via miRNAs regulation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tumor-associated%20neutrophil" title="tumor-associated neutrophil">tumor-associated neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=miRNAs" title=" miRNAs"> miRNAs</a>, <a href="https://publications.waset.org/abstracts/search?q=neutrophil" title=" neutrophil"> neutrophil</a>, <a href="https://publications.waset.org/abstracts/search?q=ROS" title=" ROS "> ROS </a> </p> <a href="https://publications.waset.org/abstracts/13682/microrna-expression-distinguishes-neutrophil-subtypes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/13682.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">470</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3763</span> SEM Detection of Folate Receptor in a Murine Breast Cancer Model Using Secondary Antibody-Conjugated, Gold-Coated Magnetite Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yasser%20A.%20Ahmed">Yasser A. Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Juleen%20M%20Dickson"> Juleen M Dickson</a>, <a href="https://publications.waset.org/abstracts/search?q=Evan%20S.%20Krystofiak"> Evan S. Krystofiak</a>, <a href="https://publications.waset.org/abstracts/search?q=Julie%20A.%20Oliver"> Julie A. Oliver</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Cancer cells urgently need folate to support their rapid division. Folate receptors (FR) are over-expressed on a wide range of tumor cells, including breast cancer cells. FR are distributed over the entire surface of cancer cells, but are polarized to the apical surface of normal cells. Targeting of cancer cells using specific surface molecules such as folate receptors may be one of the strategies used to kill cancer cells without hurting the neighing normal cells. The aim of the current study was to try a method of SEM detecting FR in a murine breast cancer cell model (4T1 cells) using secondary antibody conjugated to gold or gold-coated magnetite nanoparticles. 4T1 cells were suspended in RPMI medium witth FR antibody and incubated with secondary antibody for fluorescence microscopy. The cells were cultured on 30mm Thermanox coverslips for 18 hours, labeled with FR antibody then incubated with secondary antibody conjugated to gold or gold-coated magnetite nanoparticles and processed to scanning electron microscopy (SEM) analysis. The fluorescence microscopy study showed strong punctate FR expression on 4T1 cell membrane. With SEM, the labeling with gold or gold-coated magnetite conjugates showed a similar pattern. Specific labeling occurred in nanoparticle clusters, which are clearly visualized in backscattered electron images. The 4T1 tumor cell model may be useful for the development of FR-targeted tumor therapy using gold-coated magnetite nano-particles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cancer%20cell" title="cancer cell">cancer cell</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=cell%20culture" title=" cell culture"> cell culture</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/17858/sem-detection-of-folate-receptor-in-a-murine-breast-cancer-model-using-secondary-antibody-conjugated-gold-coated-magnetite-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17858.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">734</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3762</span> Activation of TNF-α from Human Endothelial Cells by Exposure of the Mitochondrial Stress Protein (Hsp60) Secreted from THP-1 Monocytes to High Glucose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ryan%20D.%20Martinus">Ryan D. Martinus</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Inflammation of the endothelium is an important process leading to diabetic atherosclerosis. However, the molecular mechanisms by which diabetes contributes to endothelial inflammation remain to be established. Using In-vitro cultured Human cells and Hsp60 specific ELISA assays, we show that Hsp60 is not only induced in Human monocyte cells under hyperglycaemic conditions but that the Hsp60 is also secreted from these cells. Furthermore, we also demonstrate that the Hsp60 secreted from these monocyte cells is also able to activate Toll-like receptor-4 (TLR4) from Human endothelial cells. This suggests that a potential link may exist between the hyperglycaemia-induced expression of Hsp60 in monocyte cells and vascular inflammation. Circulating levels of Hsp60 due to mitochondrial stress in diabetes patients could, therefore, be an important modulator of inflammation in endothelial cells and thus contribute to the increased incidences of atherosclerosis in diabetes mellitus. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mitochondria" title="mitochondria">mitochondria</a>, <a href="https://publications.waset.org/abstracts/search?q=Hsp60" title=" Hsp60"> Hsp60</a>, <a href="https://publications.waset.org/abstracts/search?q=inflammation" title=" inflammation"> inflammation</a>, <a href="https://publications.waset.org/abstracts/search?q=diabetes%20mellitus" title=" diabetes mellitus"> diabetes mellitus</a> </p> <a href="https://publications.waset.org/abstracts/107492/activation-of-tnf-a-from-human-endothelial-cells-by-exposure-of-the-mitochondrial-stress-protein-hsp60-secreted-from-thp-1-monocytes-to-high-glucose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/107492.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">181</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3761</span> Undifferentiated Embryonal Sarcoma of Liver: A Rare Case Report</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Thieu-Thi%20Tra%20My">Thieu-Thi Tra My</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Undifferentiated embryonal sarcoma of the liver (UESL), a rare malignant mesenchymal tumor, is commonly seen in children. The symptoms and imaging were not specific, so it could be mimicked with other tumors or liver abscesses. The tumor often appears as a large heterogeneous echoic solid mass with small cystic areas while showing a cyst-like appearance on CT and MRI. The histopathological manifestation of the UESL consisted of stellate-shaped and spindle cells scattered on a myxoid background with high mitotic count. Cells with multiple or bizarre nuclear were also observed. Here, we aimed to describe a 9-year-old male diagnosed with UESL focused on imaging and histopathological characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=undifferentiated%20embryonal%20sarcoma%20of%20liver" title="undifferentiated embryonal sarcoma of liver">undifferentiated embryonal sarcoma of liver</a>, <a href="https://publications.waset.org/abstracts/search?q=UESL" title=" UESL"> UESL</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20sarcoma" title=" liver sarcoma"> liver sarcoma</a>, <a href="https://publications.waset.org/abstracts/search?q=liver%20tumor" title=" liver tumor"> liver tumor</a>, <a href="https://publications.waset.org/abstracts/search?q=children" title=" children"> children</a> </p> <a href="https://publications.waset.org/abstracts/170077/undifferentiated-embryonal-sarcoma-of-liver-a-rare-case-report" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/170077.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=126">126</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=127">127</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=Circulating%20Tumor%20Cells%20%28CTC%29&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10