CINXE.COM

Search results for: electron diffraction spectroscopy

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: electron diffraction spectroscopy</title> <meta name="description" content="Search results for: electron diffraction spectroscopy"> <meta name="keywords" content="electron diffraction spectroscopy"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="electron diffraction spectroscopy" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="electron diffraction spectroscopy"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4017</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: electron diffraction spectroscopy</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4017</span> Basic Evaluation for Polyetherimide Membrane Using Spectroscopy Techniques </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hanan%20Alenezi">Hanan Alenezi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Membrane performance depends on the kind of solvent used in preparation. A membrane made by Polyetherimide (PEI) was evaluated for gas separation using X-Ray Diffraction (XRD), Scanning electron microscope (SEM), and Energy Dispersive X-Ray Spectroscopy (EDS). The purity and the thickness are detected to evaluate the membrane in order to optimize PEI membrane preparation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Energy%20Dispersive%20X-Ray%20Spectroscopy%20%28EDS%29" title="Energy Dispersive X-Ray Spectroscopy (EDS)">Energy Dispersive X-Ray Spectroscopy (EDS)</a>, <a href="https://publications.waset.org/abstracts/search?q=Membrane" title=" Membrane"> Membrane</a>, <a href="https://publications.waset.org/abstracts/search?q=Polyetherimide%20PEI" title=" Polyetherimide PEI"> Polyetherimide PEI</a>, <a href="https://publications.waset.org/abstracts/search?q=Scanning%20electron%20microscope%20%28SEM%29" title=" Scanning electron microscope (SEM)"> Scanning electron microscope (SEM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Solvent" title=" Solvent"> Solvent</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Ray%20Diffraction%20%28XRD%29" title=" X-Ray Diffraction (XRD)"> X-Ray Diffraction (XRD)</a> </p> <a href="https://publications.waset.org/abstracts/120499/basic-evaluation-for-polyetherimide-membrane-using-spectroscopy-techniques" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120499.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">183</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4016</span> Preparation and Structural Analysis of Nano-Ciprofloxacin by Fourier Transform X-Ray Diffraction, Infra-Red Spectroscopy, and Semi Electron Microscope (SEM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Ghammamy">Shahriar Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Saboony"> Mehrnoosh Saboony</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: To evaluate the spectral specification (IR-XRD and SEM) of nano-ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and its characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation enhances the antibacterial property of nano-ciprofloxacin in comparison to ciprofloxacin. IR spectrum of nano-ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano-ciprofloxacin were sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano-ciprofloxacin shows the diameter of particles equal to 90.9nm. (on the basis of Scherer Equation). SEM image shows the global shape for nano-ciprofloxacin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=ciprofloxacin" title=" ciprofloxacin"> ciprofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a>, <a href="https://publications.waset.org/abstracts/search?q=IR" title=" IR"> IR</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/16676/preparation-and-structural-analysis-of-nano-ciprofloxacin-by-fourier-transform-x-ray-diffraction-infra-red-spectroscopy-and-semi-electron-microscope-sem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16676.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">514</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4015</span> Preparation and Structural Analysis of Nano Ciprofloxacin by Fourier Transform Infra-Red Spectroscopy, X-Ray Diffraction and Semi Electron Microscope (SEM)</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shahriar%20Ghammamy">Shahriar Ghammamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Mehrnoosh%20Saboony"> Mehrnoosh Saboony</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Purpose: to evaluate the spectral specification(IR-XRD and SEM) of nano ciprofloxacin that prepared by up-down method (satellite mill). Methods: the ciprofloxacin was minimized to nano-scale with satellite mill and it,s characterization evaluated by Infrared spectroscopy, XRD diffraction and semi electron microscope (SEM). Expectation: to enhance the antibacterial property of nano ciprofloxacin in comparison to ciprofloxacin.IR spectrum of nano ciprofloxacin compared with spectrum of ciprofloxacin, and both of them were almost agreement with a difference: the peaks in spectrum of nano ciprofloxacin was sharper than peaks in spectrum of ciprofloxacin. X-Ray powder diffraction analysis of nano ciprofloxacin showes the diameter of particles equal to 90.9 nm (on the basis of scherrer equation). SEM image showes the global shape for nano ciprofloxacin. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibiotic" title="antibiotic">antibiotic</a>, <a href="https://publications.waset.org/abstracts/search?q=ciprofloxacin" title=" ciprofloxacin"> ciprofloxacin</a>, <a href="https://publications.waset.org/abstracts/search?q=nano" title=" nano"> nano</a>, <a href="https://publications.waset.org/abstracts/search?q=IR" title=" IR"> IR</a>, <a href="https://publications.waset.org/abstracts/search?q=XRD" title=" XRD"> XRD</a>, <a href="https://publications.waset.org/abstracts/search?q=SEM" title=" SEM"> SEM</a> </p> <a href="https://publications.waset.org/abstracts/16667/preparation-and-structural-analysis-of-nano-ciprofloxacin-by-fourier-transform-infra-red-spectroscopy-x-ray-diffraction-and-semi-electron-microscope-sem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16667.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">410</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4014</span> Use of Simultaneous Electron Backscatter Diffraction and Energy Dispersive X-Ray Spectroscopy Techniques to Characterize High-Temperature Oxides Formed on Nickel-Based Superalloys Exposed to Super-Critical Water Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Sanayei">Mohsen Sanayei</a>, <a href="https://publications.waset.org/abstracts/search?q=Jerzy%20Szpunar"> Jerzy Szpunar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sami%20Penttil%C3%A4"> Sami Penttilä</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Exposure of Nickel-based superalloys to high temperature and harsh environment such as Super-Critical Water (SCW) environment leads to the formation of oxide scales composed of multiple and complex phases that are difficult to differentiate with conventional analysis techniques. In this study, we used simultaneous Electron Backscatter Diffraction (EBSD) and Energy Dispersive X-ray Spectroscopy (EDS) to analyze the complex oxide scales formed on several Nickel-based Superalloys exposed to high temperature SCW. Multi-layered structures of Iron, Nickel, Chromium and Molybdenum oxides and spinels were clearly identified using the simultaneous EBSD-EDS analysis technique. Furthermore, the orientation relationship between the oxide scales and the substrate has been investigated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=electron%20backscatter%20diffraction" title="electron backscatter diffraction">electron backscatter diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20dispersive%20x-ray%20spectroscopy" title=" energy dispersive x-ray spectroscopy"> energy dispersive x-ray spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=superalloy" title=" superalloy"> superalloy</a>, <a href="https://publications.waset.org/abstracts/search?q=super-critical%20water" title=" super-critical water"> super-critical water</a> </p> <a href="https://publications.waset.org/abstracts/70076/use-of-simultaneous-electron-backscatter-diffraction-and-energy-dispersive-x-ray-spectroscopy-techniques-to-characterize-high-temperature-oxides-formed-on-nickel-based-superalloys-exposed-to-super-critical-water-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/70076.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">316</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4013</span> Ceramic Composites and Its Applications for Pb Adsorption</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=C.%20L.%20Popa">C. L. Popa</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20L.%20Iconaru"> S. L. Iconaru</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Costescu"> A. Costescu</a>, <a href="https://publications.waset.org/abstracts/search?q=C.%20S.%20Ciobanu"> C. S. Ciobanu</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Motelica%20Heino"> M. Motelica Heino</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Guegan"> R. Guegan</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Predoi"> D. Predoi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Surface functionalization of ceramic composites with a special focus on tetraethyl orthosilicate (TEOS) and hydroxyapatite (HAp) is discoursed. Mesoporous ceramic HAp-TEOS composites were prepared by the incorporation of hydroxyapatite into tetraethyl orthosilicate by sol-gel method. The resulting samples were analysed by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy and nitrogen physisorption. The removal of Pb2+ ions from aqueous solutions was evaluated using Atomic Absorbtion Spectroscopy (AAS). Removal experiments of Pb2+ ions were carried out in aqueous solutions with controlled Pb2+ at pH ~ 3 and pH ~ 5. After removal experiment of Pb2+ at pH 3 and pH 5, porous hydroxyapatite nanoparticles is transformed into PbHAp_3 and PbHAp_5 via the adsorption of Pb2+ ions followed by the cation exchange reaction. The diffraction patterns show that THAp nanoparticles were successfully coated with teos without any structural changes. On the other, the AAS analysis showed that THAp can be useful in the removal Pb2+ from water contaminated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=teos" title="teos">teos</a>, <a href="https://publications.waset.org/abstracts/search?q=hydroxyapatite" title=" hydroxyapatite"> hydroxyapatite</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20applications" title=" environment applications"> environment applications</a>, <a href="https://publications.waset.org/abstracts/search?q=biosystems%20engineering" title=" biosystems engineering"> biosystems engineering</a> </p> <a href="https://publications.waset.org/abstracts/2457/ceramic-composites-and-its-applications-for-pb-adsorption" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2457.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4012</span> Chromia-Carbon Nanocomposite Materials for Energy Storage Devices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20A.%20Nadeem">Muhammad A. Nadeem</a>, <a href="https://publications.waset.org/abstracts/search?q=Shaheed%20Ullah"> Shaheed Ullah</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The article reports the synthesis of Cr2O3/C nanocomposites obtained by the direct carbonization of PFA/MIL-101(Cr) bulk composite. The nanocomposites were characterized by various instrumental techniques like powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED) and the surface characterized were investigated via N2 adsorption/desorption analysis. TEM and SAED analysis shows that turbostatic graphitic carbon was obtained with high crystallinity. The nanocomposites were tested for electrochemical supercapacitor and the faradic and non-Faradic processes were checked through cyclic voltammetry (CV). The maximum specific capacitance calculated for Cr2O3/C 900 sample from CV measurement is 301 F g-1 at 2 mV s-1 due to its maximum charge storing capacity as confirm by frequency response analysis. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title="nanocomposites">nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=transmission%20electron%20microscopy" title=" transmission electron microscopy"> transmission electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=non-faradic%20process" title=" non-faradic process"> non-faradic process</a> </p> <a href="https://publications.waset.org/abstracts/14190/chromia-carbon-nanocomposite-materials-for-energy-storage-devices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4011</span> Rb-Modified Few-Layered Graphene for Gas Sensing Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vasant%20Reddy">Vasant Reddy</a>, <a href="https://publications.waset.org/abstracts/search?q=Shivani%20A.%20Singh"> Shivani A. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20S.%20More"> Pravin S. More</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present investigation, we demonstrated the fabrication of few-layers of graphene sheets with alkali metal i.e. Rb-G using chemical route method. The obtained materials were characterized by means of chemical, structural and electrical techniques, using the ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and 4 points probe, respectively. The XRD studies were carried out to understand the phase of the samples where we found a sharp peak of Rb-G at 26.470. UV-Spectroscopy of Graphene and Rb-modified graphene samples shows the absorption peaks at ~248 nm and ~318 nm respectively. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20route" title="chemical route">chemical route</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-spectroscopy" title=" UV-spectroscopy"> UV-spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/79789/rb-modified-few-layered-graphene-for-gas-sensing-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">269</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4010</span> Effect of Preparation Temperature on Producing Graphene Oxide by Chemical Oxidation Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashad%20Al-Gaashani">Rashad Al-Gaashani</a>, <a href="https://publications.waset.org/abstracts/search?q=Muataz%20A.%20Atieh"> Muataz A. Atieh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, the effect of preparation temperature, namely room temperature (RT), 40, 60, and 85°C, on producing of high-quality graphene oxide (GO) has been investigated. GO samples have been prepared by chemical oxidation of graphite via a safe improved chemical technique using a blend of two deferent acids: sulphuric acid (H₂SO₄) and phosphoric acid (H₃PO₄) with volume ratio 4:1, respectively. potassium permanganate (KMnO₄) and hydrogen peroxide (H₂O₂) were applied as oxidizing agents. In this work, sodium nitrate (NaNO₃) was excluded, so the emission of hazardous explosive gases such as NO₂ and N₂O₂ was shunned. Ice and oil baths were used to carefully control the temperature. Several characterization instruments including X-Ray diffraction, transmission electron microscopy, scanning electron microscopy, electron dispersive spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and UV-vis spectroscopy were used to study and compare the synthesized samples. The results indicated that GO can be prepared at RT with graphite oxide, and the purity of GO increased with rising of the solvent temperature. Optical properties of GO samples were studied using UV-vis absorption spectra. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20method" title="chemical method">chemical method</a>, <a href="https://publications.waset.org/abstracts/search?q=graphite" title=" graphite"> graphite</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a> </p> <a href="https://publications.waset.org/abstracts/110671/effect-of-preparation-temperature-on-producing-graphene-oxide-by-chemical-oxidation-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">163</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4009</span> Microwave Synthesis, Optical Properties and Surface Area Studies of NiO Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayed%20S.%20Al-Shihri">Ayed S. Al-Shihri</a>, <a href="https://publications.waset.org/abstracts/search?q=Abul%20Kalam"> Abul Kalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdullah%20G.%20Al-Sehemi"> Abdullah G. Al-Sehemi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gaohui%20Du"> Gaohui Du</a>, <a href="https://publications.waset.org/abstracts/search?q=Tokeer%20Ahmad"> Tokeer Ahmad</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20Irfan"> Ahmad Irfan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We report here the synthesis of nickel oxide (NiO) nanoparticles by microwave-assisted method, using a common precipitating agent followed by calcination in air at 400°C. The effect of the microwave and pH on the crystallite size, morphology, structure, energy band gap and surface area of NiO have been investigated by means of powder X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Fourier transform infrared spectroscopy (FTIR), ultraviolet visible spectroscopy (UV-vis) and BET surface area studies. X-ray diffraction studies showed the formation of monophasic and highly crystalline cubic NiO. TEM analysis led to decrease the average grain size of NiO nanoparticles from 16.5 nm to 14 nm on increasing the amount of NaOH. FTIR studies also confirm the formation of NiO nanoparticles. It was observed that on increasing the volume of NaOH, the optical band gap energy (2.85 eV to 2.95 eV) and specific surface area (33.1 to 39.8 m2/g) increases, however the average particles size decreases (16.5 nm to 14 nm). This method may be extended to large scale synthesis of other metal oxides nanoparticles and the present study could be used for the potential applications in water treatment and many other fields. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BET%20surface%20area%20analysis" title="BET surface area analysis">BET surface area analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20microscopy" title=" electron microscopy"> electron microscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=optical%20properties" title=" optical properties"> optical properties</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20techniques" title=" X-ray techniques "> X-ray techniques </a> </p> <a href="https://publications.waset.org/abstracts/10258/microwave-synthesis-optical-properties-and-surface-area-studies-of-nio-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">396</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4008</span> Spectroscopy Investigation of Ni0.5Zn0.5Fe2O4 Nano Ferrite Prepared by Soft Mechanochemical Synthesis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Z.%20%C5%BD.%20Lazarevi%C4%87">Z. Ž. Lazarević</a>, <a href="https://publications.waset.org/abstracts/search?q=%C4%8C.%20Jovaleki%C4%87"> Č. Jovalekić</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20N.%20Ivanovski"> V. N. Ivanovski</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20%C5%BD.%20Rom%C4%8Devi%C4%87"> N. Ž. Romčević</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel-zinc ferrite, Ni0.5Zn0.5Fe2O4 was prepared by mechanochemical route in a planetary ball mill starting from mixture of the appropriate quantities of the Ni(OH)2, Zn(OH)2 and Fe(OH)3 hydroxide powders. In order to monitor the progress of chemical reaction and confirm phase formation, powder samples obtained after 5 h and 10 h of milling were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), IR, Raman and Mössbauer spectroscopy. It is shown that the soft mechanochemical method, i.e. mechanochemical activation of hydroxides, produces high quality single phase Ni0.5Zn0.5Fe2O4 samples in much more efficient way. From the IR spectroscopy of single phase samples it is obvious that energy of modes depends on the ratio of cations. It is obvious that all samples have more than 5 Raman active modes predicted by group theory in the normal spinel structure. Deconvolution of measured spectra allows one to conclude that all complex bands in the spectra are made of individual peaks with the intensities that vary from spectrum to spectrum. The deconvolution of Raman spectra alows to separate contributions of different cations to a particular type of vibration and to estimate the degree of inversion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ferrite" title="ferrite">ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=infrared%20spectroscopy" title=" infrared spectroscopy"> infrared spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=Raman%20spectroscopy" title=" Raman spectroscopy"> Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=M%C3%B6ssbauer%20spectroscopy" title=" Mössbauer spectroscopy"> Mössbauer spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/30920/spectroscopy-investigation-of-ni05zn05fe2o4-nano-ferrite-prepared-by-soft-mechanochemical-synthesis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30920.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">505</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4007</span> Structural and Electrochemical Characterization of Columnar-Structured Mn-Doped Bi26Mo10O69-d Electrolytes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Maria%20V.%20Morozova">Maria V. Morozova</a>, <a href="https://publications.waset.org/abstracts/search?q=Zoya%20A.%20Mikhaylovskaya"> Zoya A. Mikhaylovskaya</a>, <a href="https://publications.waset.org/abstracts/search?q=Elena%20S.%20Buyanova"> Elena S. Buyanova</a>, <a href="https://publications.waset.org/abstracts/search?q=Sofia%20A.%20Petrova"> Sofia A. Petrova</a>, <a href="https://publications.waset.org/abstracts/search?q=Ksenia%20V.%20Arishina"> Ksenia V. Arishina</a>, <a href="https://publications.waset.org/abstracts/search?q=Robert%20G.%20Zaharov"> Robert G. Zaharov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work is devoted to the investigation of two series of doped bismuth molybdates: Bi₂₆-₂ₓMn₂ₓMo₁₀O₆₉-d and Bi₂₆Mo₁₀-₂yMn₂yO₆₉-d. Complex oxides were synthesized by conventional solid state technology and by co-precipitation method. The products were identified by powder diffraction. The powders and ceramic samples were examined by means of densitometry, laser diffraction, and electron microscopic methods. Porosity of the ceramic materials was estimated using the hydrostatic method. The electrical conductivity measurements were carried out using impedance spectroscopy method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth%20molybdate" title="bismuth molybdate">bismuth molybdate</a>, <a href="https://publications.waset.org/abstracts/search?q=columnar%20structures" title=" columnar structures"> columnar structures</a>, <a href="https://publications.waset.org/abstracts/search?q=impedance%20spectroscopy" title=" impedance spectroscopy"> impedance spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=oxygen%20ionic%20conductors" title=" oxygen ionic conductors"> oxygen ionic conductors</a> </p> <a href="https://publications.waset.org/abstracts/38423/structural-and-electrochemical-characterization-of-columnar-structured-mn-doped-bi26mo10o69-d-electrolytes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">436</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4006</span> Elaboration and Characterization of Silver Nanoparticles for Therapeutic and Environmental Applications</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manel%20Bouloudenine">Manel Bouloudenine</a>, <a href="https://publications.waset.org/abstracts/search?q=Karima%20Djeddou"> Karima Djeddou</a>, <a href="https://publications.waset.org/abstracts/search?q=Hadjer%20Ben%20Manser"> Hadjer Ben Manser</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Soualah%20Alila"> Hana Soualah Alila</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohmed%20Bououdina"> Mohmed Bououdina</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This survey research involves the elaboration and characterization of silver nanoparticles for therapeutic and environmental applications. The silver nanoparticles "Ag NPs" were synthesized by reducing AgNO3 with microwaves. The characterization of nanoparticles was done by using Transmission Electron Microscopy " TEM ", Energy Dispersive Spectroscopy "EDS", Selected Area Electron Diffraction "SEAD", UV-Visible Spectroscopy and Dynamic Light Scattering "DLS". Transmission Electron Microscopy and Electron Diffraction have confirmed the nanoscale, the shape, and the crystalline quality of as synthesized silver nanoparticles. Elementary analysis has proved the purity of Ag NPs and the presence of the Surface Plasmon Resonance phenomenon "SPR". A strong absorption shift was observed in the visible range of the UV-visible spectrum of as synthesized Ag NPs, which indicates the presence of metallic silver. When the strong absorption in the ultraviolet range of the spectrum has revealed the presence of ionic Ag NPs ionic Ag aggregates species. The autocorrelation function measured by the Dynamic Light Scattering has shown a strong monodispersed character of Ag NPs, which is indicated by the presence of a single size population, with a minima and a maxima laying between 40 and 111 nm. Related to other research, our results confirm the performance properties of as synthesized Ag NPs, which allows them to be performing in many technological applications, including therapeutic and environmental ones. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=silvers%20nanoparticles" title="silvers nanoparticles">silvers nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=microwaves" title=" microwaves"> microwaves</a>, <a href="https://publications.waset.org/abstracts/search?q=EDS" title=" EDS"> EDS</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a> </p> <a href="https://publications.waset.org/abstracts/146054/elaboration-and-characterization-of-silver-nanoparticles-for-therapeutic-and-environmental-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146054.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4005</span> Anodization-Assisted Synthesis of Shape-Controlled Cubic Zirconia Nanotubes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ibrahim%20Dauda%20Muhammad">Ibrahim Dauda Muhammad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mokhtar%20Awang"> Mokhtar Awang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To synthesize a specific phase of zirconia (ZrO₂) nanotubes, zirconium (Zr) foil was subjected to the anodization process in a fluorine-containing electrochemical bath for a fixed duration. The resulting zirconia nanotubes (ZNTs) were then characterized using various techniques, including UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX), and X-ray diffraction (XRD). The XRD diffraction pattern confirmed that the ZNTs were crystalline, with a predominant texture along the [111] direction, indicating that the majority of the phase was cubic. TEM images revealed that most of the nanotubes were vertically aligned and self-organized, with diameters ranging from 32.9 to 38.8 nm and wall thicknesses between 3.0 and 7.3 nm. Additionally, the synthesized ZNTs had a length-to-width ratio of 235, which closely matches the ratio of 240 observed in another study where anodization was not used. This study demonstrates that a specific phase of zirconia nanotube can be successfully synthesized, with promising potential applications in catalysis and other areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=zirconia%20nanotubes" title="zirconia nanotubes">zirconia nanotubes</a>, <a href="https://publications.waset.org/abstracts/search?q=anodization" title=" anodization"> anodization</a>, <a href="https://publications.waset.org/abstracts/search?q=characterization" title=" characterization"> characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=cubic%20phase" title=" cubic phase"> cubic phase</a> </p> <a href="https://publications.waset.org/abstracts/192982/anodization-assisted-synthesis-of-shape-controlled-cubic-zirconia-nanotubes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/192982.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">18</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4004</span> Preparation of Carbon Monoliths from PET Waste and Their Use in Solar Interfacial Water Evaporation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andrea%20Alfaro%20Barajas">Andrea Alfaro Barajas</a>, <a href="https://publications.waset.org/abstracts/search?q=Arturo%20I.%20Martinez"> Arturo I. Martinez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> 3D photothermal structure of carbon was synthesized using PET bottles waste and sodium chloride through controlled carbonization. Characterization techniques such as X-ray photoelectron spectroscopy, X-ray diffraction, BET, scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, spectrophotometry, and mechanical compression were carried out. The carbon showed physical integrity > 90%, an absorbance > 90% between 300-1000nm of the solar spectrum, and a high specific surface area from 450 to 620 m2/g. The X-ray was employed to examine the phase structure; the obtained pattern shows an amorphous material. A higher intensity of band D with respect to band G was confirmed by Raman Spectroscopy. C-OH, COOH, C-O, and C-C bonds were obtained from the deconvolution of the high-resolution C1s orbital. Macropores of 160 to 180µm and micropores of 0.5 to 2nm were observed by SEM and TEM images, respectively. Such combined characteristics of carbon confer efficient evaporation of water under 1 sun irradiation > 60%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solar-absorber" title="solar-absorber">solar-absorber</a>, <a href="https://publications.waset.org/abstracts/search?q=carbon" title=" carbon"> carbon</a>, <a href="https://publications.waset.org/abstracts/search?q=water-evaporation" title=" water-evaporation"> water-evaporation</a>, <a href="https://publications.waset.org/abstracts/search?q=interfacial" title=" interfacial "> interfacial </a> </p> <a href="https://publications.waset.org/abstracts/128720/preparation-of-carbon-monoliths-from-pet-waste-and-their-use-in-solar-interfacial-water-evaporation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/128720.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">151</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4003</span> The Synthesis of AgInS₂/SnS₂ Nanocomposites with Enhanced Photocatalytic Degradation of Norfloxacin</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mingmei%20Zhang">Mingmei Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xinyong%20Li"> Xinyong Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> AgInS₂/SnS₂ (AIS) nanocomposites were synthesized by a simple hydrothermal method. The morphology and composition of the fabricated AIS nanocomposites were investigated by field-emission scanning electron microscopy (SEM), X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and X-ray photoelectron spectroscopy (XPS). Moreover, the as-prepared AIS photocatalysts exhibited excellent photocatalytic activities for the degradation of Norfloxacin (NOR), mainly due to its high optical absorption and separation efficiency of photogenerated electron-hole pairs, as evidenced by UV–vis diffusion reflection spectra (DRS) and Surface photovoltage (SPV) spectra. Furthermore, the interfacial charges transfer mechanism was also discussed by DFT calculations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=AIS%20nanocomposites" title="AIS nanocomposites">AIS nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=electron-hole%20pairs" title=" electron-hole pairs"> electron-hole pairs</a>, <a href="https://publications.waset.org/abstracts/search?q=charges%20transfer" title=" charges transfer"> charges transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=DFTcaculations" title=" DFTcaculations"> DFTcaculations</a> </p> <a href="https://publications.waset.org/abstracts/84274/the-synthesis-of-agins2sns2-nanocomposites-with-enhanced-photocatalytic-degradation-of-norfloxacin" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/84274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4002</span> Texture Observation of Bending by XRD and EBSD Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takashi%20Sakai">Takashi Sakai</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuri%20Shimomura"> Yuri Shimomura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The crystal orientation is a factor that affects the microscopic material properties. Crystal orientation determines the anisotropy of the polycrystalline material. And it is closely related to the mechanical properties of the material. In this paper, for pure copper polycrystalline material, two different methods; X-Ray Diffraction (XRD) and Electron Backscatter Diffraction (EBSD); and the crystal orientation were analyzed. In the latter method, it is possible that the X-ray beam diameter is thicker as compared to the former, to measure the crystal orientation macroscopically relatively. By measurement of the above, we investigated the change in crystal orientation and internal tissues of pure copper. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bending" title="bending">bending</a>, <a href="https://publications.waset.org/abstracts/search?q=electron%20backscatter%20diffraction" title=" electron backscatter diffraction"> electron backscatter diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=microstructure" title=" microstructure"> microstructure</a>, <a href="https://publications.waset.org/abstracts/search?q=IPF%20map" title=" IPF map"> IPF map</a>, <a href="https://publications.waset.org/abstracts/search?q=orientation%20distribution%20function" title=" orientation distribution function"> orientation distribution function</a> </p> <a href="https://publications.waset.org/abstracts/74539/texture-observation-of-bending-by-xrd-and-ebsd-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74539.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4001</span> Coordination Polymer Hydrogels Based on Coinage Metals and Nucleobase Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lamia%20L.%20G.%20Al-Mahamad">Lamia L. G. Al-Mahamad</a>, <a href="https://publications.waset.org/abstracts/search?q=Benjamin%20R.%20Horrocks"> Benjamin R. Horrocks</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Houlton"> Andrew Houlton</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Hydrogels based on metal coordination polymers of nucleosides and a range of metal ions (Au, Ag, Cu) have been prepared and characterized by atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, ultraviolet-visible absorption spectroscopy, and powder X-ray diffraction. AFM images of the xerogels revealed the formation of extremely long polymer molecules (> 10 micrometers, the maximum scan range). This result is also consistent with TEM images which show a fibrous morphology. Oxidative doping of the Au-nucleoside fibres produces an electrically conductive nanowire. No sharp Bragg peaks were found at the at the X-ray diffraction pattern for metal ions hydrogels indicating that the samples were amorphous, but instead the data showed broad peaks in the range 20 < Q < 40 and correspond to distances d=2μ/Q. The data was analysed using a simplified Rietveld method by fitting a regression model to obtain the distance between atoms. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20ions" title=" metal ions"> metal ions</a>, <a href="https://publications.waset.org/abstracts/search?q=nanowire" title=" nanowire"> nanowire</a>, <a href="https://publications.waset.org/abstracts/search?q=nucleoside" title=" nucleoside"> nucleoside</a> </p> <a href="https://publications.waset.org/abstracts/63323/coordination-polymer-hydrogels-based-on-coinage-metals-and-nucleobase-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63323.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">263</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4000</span> A Simple Chemical Precipitation Method of Titanium Dioxide Nanoparticles Using Polyvinyl Pyrrolidone as a Capping Agent and Their Characterization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V.%20P.%20Muhamed%20Shajudheen">V. P. Muhamed Shajudheen</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Viswanathan"> K. Viswanathan</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Anitha%20Rani"> K. Anitha Rani</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Uma%20Maheswari"> A. Uma Maheswari</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Saravana%20Kumar"> S. Saravana Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, a simple chemical precipitation route for the preparation of titanium dioxide nanoparticles, synthesized by using titanium tetra isopropoxide as a precursor and polyvinyl pyrrolidone (PVP) as a capping agent, is reported. The Differential Scanning Calorimetry (DSC) and Thermo Gravimetric Analysis (TGA) of the samples were recorded and the phase transformation temperature of titanium hydroxide, Ti(OH)<sub>4</sub> to titanium oxide, TiO<sub>2</sub> was investigated. The as-prepared Ti(OH)<sub>4</sub> precipitate was annealed at 800&deg;C to obtain TiO<sub>2</sub> nanoparticles. The thermal, structural, morphological and textural characterizations of the TiO<sub>2</sub> nanoparticle samples were carried out by different techniques such as DSC-TGA, X-Ray Diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Micro Raman spectroscopy, UV-Visible absorption spectroscopy (UV-Vis), Photoluminescence spectroscopy (PL) and Field Effect Scanning Electron Microscopy (FESEM) techniques. The as-prepared precipitate was characterized using DSC-TGA and confirmed the mass loss of around 30%. XRD results exhibited no diffraction peaks attributable to anatase phase, for the reaction products, after the solvent removal. The results indicate that the product is purely rutile. The vibrational frequencies of two main absorption bands of prepared samples are discussed from the results of the FTIR analysis. The formation of nanosphere of diameter of the order of 10 nm, has been confirmed by FESEM. The optical band gap was found by using UV-Visible spectrum. From photoluminescence spectra, a strong emission was observed. The obtained results suggest that this method provides a simple, efficient and versatile technique for preparing TiO<sub>2</sub> nanoparticles and it has the potential to be applied to other systems for photocatalytic activity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=TiO2%20nanoparticles" title="TiO2 nanoparticles">TiO2 nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical%20precipitation%20route" title=" chemical precipitation route"> chemical precipitation route</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transition" title=" phase transition"> phase transition</a>, <a href="https://publications.waset.org/abstracts/search?q=Fourier%20Transform%20Infra-Red%20spectroscopy%20%28FTIR%29" title=" Fourier Transform Infra-Red spectroscopy (FTIR)"> Fourier Transform Infra-Red spectroscopy (FTIR)</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-Raman%20spectroscopy" title=" micro-Raman spectroscopy"> micro-Raman spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=UV-Visible%20absorption%20spectroscopy%20%28UV-Vis%29" title=" UV-Visible absorption spectroscopy (UV-Vis)"> UV-Visible absorption spectroscopy (UV-Vis)</a>, <a href="https://publications.waset.org/abstracts/search?q=Photoluminescence%20Spectroscopy%20%28PL%29%20and%20Field%20Effect%20Scanning%20electron%20microscopy%20%28FESEM%29" title=" Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)"> Photoluminescence Spectroscopy (PL) and Field Effect Scanning electron microscopy (FESEM)</a> </p> <a href="https://publications.waset.org/abstracts/47692/a-simple-chemical-precipitation-method-of-titanium-dioxide-nanoparticles-using-polyvinyl-pyrrolidone-as-a-capping-agent-and-their-characterization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47692.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3999</span> Modified Silicates as Dissolved Oxygen Sensors in Water: Structural and Optical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Andile%20Mkhohlakali">Andile Mkhohlakali</a>, <a href="https://publications.waset.org/abstracts/search?q=Tien-Chien%20Jen"> Tien-Chien Jen</a>, <a href="https://publications.waset.org/abstracts/search?q=James%20Tshilongo"> James Tshilongo</a>, <a href="https://publications.waset.org/abstracts/search?q=Happy%20Mabowa"> Happy Mabowa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Among different parameters, oxygen is one of the most important analytes of interest, dissolved oxygen (DO) concentration is very crucial and significant for various areas of physical, chemical, and environmental monitoring. Herein we report oxygen-sensitive luminophores -based lanthanum(III) trifluoromethanesulfonate), [La]³⁺ was encapsulated into SiO₂-based xerogel matrix. The nanosensor is composed of organically modified silica nanoparticles, doped with the luminescent oxygen–sensitive lanthanum(III) trifluoromethanesulfonate complex. The precursor materials used for sensing film were triethyl ethoxy silane (TEOS) and (3-Mercaptopropyltriethoxysilane) (MPTMS- TEOS) used for SiO2-baed matrices. Brunauer–Emmett–Teller (BET), and BJH indicate that the SiO₂ transformed from microporous to mesoporous upon the addition of La³⁺ luminophore with increased surface area (SBET). The typical amorphous SiO₂ based xerogels were revealed with X-Ray diffraction (XRD) and Selected Area Electron Diffraction (SAED) analysis. Scanning electron microscope- (SEM) and transmission electron microscope (TEM) showed the porous morphology and reduced particle for SiO₂ and La-SiO₂ xerogels respectively. The existence of elements, siloxane networks, and thermal stability of xerogel was confirmed by energy dispersive spectroscopy (EDS), Fourier-transform infrared spectroscopy (FTIR), and Thermographic analysis (TGA). UV-Vis spectroscopy and photoluminescence (PL) have been used to characterize the optical properties of xerogels. La-SiO₂ demonstrates promising characteristic features of an active sensing film for dissolved oxygen in the water. Keywords: Sol-gel, ORMOSILs, encapsulation, Luminophores quenching, O₂-sensing <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sol-gel" title="sol-gel">sol-gel</a>, <a href="https://publications.waset.org/abstracts/search?q=ORMOSILs" title=" ORMOSILs"> ORMOSILs</a>, <a href="https://publications.waset.org/abstracts/search?q=luminophores%20quenching" title=" luminophores quenching"> luminophores quenching</a>, <a href="https://publications.waset.org/abstracts/search?q=O%E2%82%82-sensing" title=" O₂-sensing"> O₂-sensing</a> </p> <a href="https://publications.waset.org/abstracts/148199/modified-silicates-as-dissolved-oxygen-sensors-in-water-structural-and-optical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148199.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">122</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3998</span> Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Yadav">R. S. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Havlica"> J. Havlica</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ku%C5%99itka"> I. Kuřitka</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kozakova"> Z. Kozakova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Masilko"> J. Masilko</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kalina"> L. Kalina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hajd%C3%BAchov%C3%A1"> M. Hajdúchová</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Enev"> V. Enev</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wasserbauer"> J. Wasserbauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nickel%20ferrite" title="nickel ferrite">nickel ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20property" title=" magnetic property"> magnetic property</a>, <a href="https://publications.waset.org/abstracts/search?q=NiFe2O4" title=" NiFe2O4"> NiFe2O4</a> </p> <a href="https://publications.waset.org/abstracts/29332/structural-and-magnetic-properties-of-nife2o4-spinel-ferrite-nanoparticles-synthesized-by-starch-assisted-sol-gel-auto-combustion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29332.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3997</span> X-Ray Diffraction and Mӧssbauer Studies of Nanostructured Ni45Al45Fe10 Powders Elaborated by Mechanical Alloying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Ammouchi">N. Ammouchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We have studied the effect of milling time on the structural and hyperfine properties of Ni45Al45Fe10 compound elaborated by mechanical alloying. The elaboration was performed by using the planetary ball mill at different milling times. The as milled powders were characterized by X-ray diffraction (XRD) and Mӧssbauer spectroscopy. From XRD diffraction spectra, we show that the β NiAl(Fe) was completely formed after 24 h of milling time. When the milling time increases, the lattice parameter increases, whereas the grain size decreases to a few nanometres and the mean level of microstrains increases. The analysis of Mӧssbauer spectra indicates that, in addition to a ferromagnetic phase, α-Fe, a paramagnetic disordered phase Ni Al (Fe) solid solution is observed after 2h and only this phase is present after 12h. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=NiAlFe" title="NiAlFe">NiAlFe</a>, <a href="https://publications.waset.org/abstracts/search?q=nanostructured%20powders" title=" nanostructured powders"> nanostructured powders</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=M%D3%A7ssbauer%20spectroscopy" title=" Mӧssbauer spectroscopy"> Mӧssbauer spectroscopy</a> </p> <a href="https://publications.waset.org/abstracts/17005/x-ray-diffraction-and-mssbauer-studies-of-nanostructured-ni45al45fe10-powders-elaborated-by-mechanical-alloying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17005.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3996</span> Synthesis and Characterization of Some Nano-Structured Metal Hexacyanoferrates Using Sapindus mukorossi, a Natural Surfactant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Uma%20Shanker">Uma Shanker</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidhisha%20Jassal"> Vidhisha Jassal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A novel green route was used to synthesize few metal hexacyanoferrates (FeHCF, NiHCF, CoHCF and CuHCF) nanoparticles using Sapindus mukorossias a natural surfactant and water as a solvent. The synthesized nanoparticles were characterized by Powder X-ray diffraction (PXRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR) and Thermo gravimetric techniques. Trasmission electron microscopic images showed that synthesized MHCF nanoparticles exhibited cubic and spherical shapes with exceptionally small sizes ranging from 3nm - 186 nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=metal%20hexacyanoferrates" title="metal hexacyanoferrates">metal hexacyanoferrates</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20surfactant" title=" natural surfactant"> natural surfactant</a>, <a href="https://publications.waset.org/abstracts/search?q=Sapindus%20mukorossias" title=" Sapindus mukorossias"> Sapindus mukorossias</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles "> nanoparticles </a> </p> <a href="https://publications.waset.org/abstracts/17815/synthesis-and-characterization-of-some-nano-structured-metal-hexacyanoferrates-using-sapindus-mukorossi-a-natural-surfactant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/17815.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">526</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3995</span> Electrophoretic Deposition of Ultrasonically Synthesized Nanostructured Conducting Poly(o-phenylenediamine)-Co-Poly(1-naphthylamine) Film for Detection of Glucose</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vaibhav%20Budhiraja">Vaibhav Budhiraja</a>, <a href="https://publications.waset.org/abstracts/search?q=Chandra%20Mouli%20Pandey"> Chandra Mouli Pandey</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The ultrasonic synthesis of nanostructured conducting copolymer is an effective technique to synthesize polymer with desired chemical properties. This tailored nanostructure, shows tremendous improvement in sensitivity and stability to detect a variety of analytes. The present work reports ultrasonically synthesized nanostructured conducting poly(o-phenylenediamine)-co-poly(1-naphthylamine) (POPD-co-PNA). The synthesized material has been characterized using Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible spectroscopy, transmission electron microscopy, X-ray diffraction and cyclic voltammetry. FTIR spectroscopy confirmed random copolymerization, while UV-visible studies reveal the variation in polaronic states upon copolymerization. High crystallinity was achieved via ultrasonic synthesis which was confirmed by X-ray diffraction, and the controlled morphology of the nanostructures was confirmed by transmission electron microscopy analysis. Cyclic voltammetry shows that POPD-co-PNA has rather high electrochemical activity. This behavior was explained on the basis of variable orientations adopted by the conducting polymer chains. The synthesized material was electrophoretically deposited at onto indium tin oxide coated glass substrate which is used as cathode and parallel platinum plate as the counter electrode. The fabricated bioelectrode was further used for detection of glucose by crosslinking of glucose oxidase in the PODP-co-PNA film. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.72, charge transfer rate constant (ks) of 21.77 s⁻¹ and diffusion coefficient 7.354 × 10⁻¹⁵ cm²s⁻¹. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=conducting" title="conducting">conducting</a>, <a href="https://publications.waset.org/abstracts/search?q=electrophoretic" title=" electrophoretic"> electrophoretic</a>, <a href="https://publications.waset.org/abstracts/search?q=glucose" title=" glucose"> glucose</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%28o-phenylenediamine%29" title=" poly (o-phenylenediamine)"> poly (o-phenylenediamine)</a>, <a href="https://publications.waset.org/abstracts/search?q=poly%20%281-naphthylamine%29" title=" poly (1-naphthylamine)"> poly (1-naphthylamine)</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic" title=" ultrasonic"> ultrasonic</a> </p> <a href="https://publications.waset.org/abstracts/89460/electrophoretic-deposition-of-ultrasonically-synthesized-nanostructured-conducting-polyo-phenylenediamine-co-poly1-naphthylamine-film-for-detection-of-glucose" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89460.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">142</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3994</span> Fe-Doped Graphene Nanoparticles for Gas Sensing Applications </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shivani%20A.%20Singh">Shivani A. Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Pravin%20S.%20More"> Pravin S. More</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the present inspection, we indicate the falsification of Fe-doped graphene nanoparticles by modified Hummers method. Structural and physiochemical properties of the resulting pallets were explored with the help of ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD) and scanning electron microscopy (SEM), Photoluminescence spectroscopy (PL) for graphene sample exhibits absorption peaks ~248nm. Pure graphene shows PL peak at 348 nm. After doping of Fe with graphene the PL peak shifted from 348 nm to 332 nm. The oxidation degree, i.e. the relative amount of oxygen functional groups was estimated from the relative intensities of the oxygen related bands (ORB) in the FTIR measurements. These analyses show that this modified material can be useful for gas sensing applications and to be used in diverse areas. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chemical%20doping" title="chemical doping">chemical doping</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensing" title=" gas sensing"> gas sensing</a>, <a href="https://publications.waset.org/abstracts/search?q=sensing" title=" sensing"> sensing</a> </p> <a href="https://publications.waset.org/abstracts/79785/fe-doped-graphene-nanoparticles-for-gas-sensing-applications" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/79785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3993</span> Analyzing the Evolution of Polythiophene Nanoparticles Optically, Structurally, and Morphologically as a Sers (Surface-Enhanced Raman Spectroscopy) Sensor Pb²⁺ Detection in River Water</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Temesgen%20Geremew">Temesgen Geremew</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study investigates the evolution of polythiophene nanoparticles (PThNPs) as surface-enhanced Raman spectroscopy (SERS) sensors for Pb²⁺ detection in river water. We analyze the PThNPs' optical, structural, and morphological properties at different stages of their development to understand their SERS performance. Techniques like UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) are employed for characterization. The SERS sensitivity towards Pb²⁺ is evaluated by monitoring the peak intensity of a specific Raman band upon increasing metal ion concentration. The study aims to elucidate the relationship between the PThNPs' characteristics and their SERS efficiency for Pb²⁺ detection, paving the way for optimizing their design and fabrication for improved sensing performance in real-world environmental monitoring applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=polythiophene" title="polythiophene">polythiophene</a>, <a href="https://publications.waset.org/abstracts/search?q=Pb2%2B" title=" Pb2+"> Pb2+</a>, <a href="https://publications.waset.org/abstracts/search?q=SERS" title=" SERS"> SERS</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/183151/analyzing-the-evolution-of-polythiophene-nanoparticles-optically-structurally-and-morphologically-as-a-sers-surface-enhanced-raman-spectroscopy-sensor-pb2-detection-in-river-water" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183151.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">56</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3992</span> In-situ Raman Spectroscopy of Flexible Graphene Oxide Films Containing Pt Nanoparticles in The Presense of Atomic Hydrogen</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Moafi">Ali Moafi</a>, <a href="https://publications.waset.org/abstracts/search?q=Kourosh%20Kalantarzadeh"> Kourosh Kalantarzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Richard%20Kaner"> Richard Kaner</a>, <a href="https://publications.waset.org/abstracts/search?q=Parviz%20Parvin"> Parviz Parvin</a>, <a href="https://publications.waset.org/abstracts/search?q=Ebrahim%20Asl%20Soleimani"> Ebrahim Asl Soleimani</a>, <a href="https://publications.waset.org/abstracts/search?q=Dougal%20McCulloch"> Dougal McCulloch</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In-situ Raman spectroscopy of flexible graphene-oxide films examined upon exposure to hydrogen gas, air, and synthetic air. The changes in D and G peaks are attributed to defects responding to atomic hydrogen spilled over from the catalytic behavior of Pt nanoparticles distributed all over the film. High-resolution transmission electron microscopy images (HRTEM) as well as electron energy loss spectroscopy (EELS) were carried out to define the density of the samples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=in%20situ%20Raman%20Spectroscopy" title="in situ Raman Spectroscopy">in situ Raman Spectroscopy</a>, <a href="https://publications.waset.org/abstracts/search?q=EELS" title=" EELS"> EELS</a>, <a href="https://publications.waset.org/abstracts/search?q=TEM" title=" TEM"> TEM</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene%20oxide" title=" graphene oxide"> graphene oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=graphene" title=" graphene"> graphene</a>, <a href="https://publications.waset.org/abstracts/search?q=atomic%20hydrogen" title=" atomic hydrogen"> atomic hydrogen</a> </p> <a href="https://publications.waset.org/abstracts/23835/in-situ-raman-spectroscopy-of-flexible-graphene-oxide-films-containing-pt-nanoparticles-in-the-presense-of-atomic-hydrogen" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23835.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3991</span> Fabrication of Tin Oxide and Metal Doped Tin Oxide for Gas Sensor Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Goban%20Kumar%20Panneer%20Selvam">Goban Kumar Panneer Selvam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In past years, there is lots of death caused due to harmful gases. So its very important to monitor harmful gases for human safety, and semiconductor material play important role in producing effective gas sensors.A novel solvothermal synthesis method based on sol-gel processing was prepared to deposit tin oxide thin films on glass substrate at high temperature for gas sensing application. The structure and morphology of tin oxide were analyzed by X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The SEM analysis of how spheres shape in tin oxide nanoparticles. The structure characterization of tin oxide studied by X-ray diffraction shows 8.95 nm (calculated by sheers equation). The UV visible spectroscopy indicated a maximum absorption band shown at 390 nm. Further dope tin oxide with selected metals to attain maximum sensitivity using dip coating technique with different immersion and sensing characterization are measured. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tin%20oxide" title="tin oxide">tin oxide</a>, <a href="https://publications.waset.org/abstracts/search?q=gas%20sensor" title=" gas sensor"> gas sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=chlorine%20free" title=" chlorine free"> chlorine free</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity" title=" sensitivity"> sensitivity</a>, <a href="https://publications.waset.org/abstracts/search?q=crystalline%20size" title=" crystalline size"> crystalline size</a> </p> <a href="https://publications.waset.org/abstracts/154626/fabrication-of-tin-oxide-and-metal-doped-tin-oxide-for-gas-sensor-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154626.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">147</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3990</span> Effect of Deposition Time on Structural, Electrical, and Optical Properties of Tin Sulfide Thin Films Deposited by Spray Ultrasonic </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=I.%20Bouhaf%20Kharkhachi">I. Bouhaf Kharkhachi</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Attaf"> A. Attaf</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tin sulfide thin films on glass substrate were prepared by spray ultrasonic technique, at different experimental conditions. The influence of deposition time (2, 4, 6, 8 and 10 min) on different properties of thin films, such us, (XRD) and (UV) spectroscopy visible spectrum was investigated. X-ray diffraction showing that thin films crystallized in SnS, SnS2, and Sn2S3 phases. The results of (UV) spectroscopy visible spectrum show that films deposited at 4 min are large transmittance 60% in the visible region. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=SnS" title="SnS">SnS</a>, <a href="https://publications.waset.org/abstracts/search?q=thin%20films" title=" thin films"> thin films</a>, <a href="https://publications.waset.org/abstracts/search?q=ultrasonic%20spray" title=" ultrasonic spray"> ultrasonic spray</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=UV%20spectroscopy%20visible" title=" UV spectroscopy visible"> UV spectroscopy visible</a> </p> <a href="https://publications.waset.org/abstracts/24557/effect-of-deposition-time-on-structural-electrical-and-optical-properties-of-tin-sulfide-thin-films-deposited-by-spray-ultrasonic" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24557.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3989</span> Particle Size Dependent Magnetic Properties of CuFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=R.%20S.%20Yadav">R. S. Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Havlica"> J. Havlica</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Ku%C5%99itka"> I. Kuřitka</a>, <a href="https://publications.waset.org/abstracts/search?q=Z.%20Kozakova"> Z. Kozakova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Masilko"> J. Masilko</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20Kalina"> L. Kalina</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Hajd%C3%BAchov%C3%A1"> M. Hajdúchová</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Enev"> V. Enev</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Wasserbauer"> J. Wasserbauer</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this work, copper ferrite CuFe2O4 spinel ferrite nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of CuFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 530 cm-1 (ν1) and around 360 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in copper ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of CuFe2O4 nanoparticles was also observed. The change in magnetic properties with change of particle size is due to cation redistribution, which was confirmed by X-Ray photoelectron study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=copper%20ferrite" title="copper ferrite">copper ferrite</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=magnetic%20property" title=" magnetic property"> magnetic property</a>, <a href="https://publications.waset.org/abstracts/search?q=CuFe2O4" title=" CuFe2O4"> CuFe2O4</a> </p> <a href="https://publications.waset.org/abstracts/19923/particle-size-dependent-magnetic-properties-of-cufe2o4-spinel-ferrite-nanoparticles-synthesized-by-starch-assisted-sol-gel-auto-combustion-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/19923.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">460</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3988</span> Synthesis of Iron-Based Perovskite Type Catalysts from Rust Wastes as a Source of Iron</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20P.%20Joshi">M. P. Joshi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Deganello"> F. Deganello</a>, <a href="https://publications.waset.org/abstracts/search?q=L.%20F.%20Liotta"> L. F. Liotta</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20La%20Parola"> V. La Parola</a>, <a href="https://publications.waset.org/abstracts/search?q=G.%20Pantaleo"> G. Pantaleo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For the first time, commercial iron nitrate was replaced by rust wastes, as a source of Iron for the preparation of LaFeO₃ powders by solution combustion synthesis (SCS). A detailed comparison with a reference powder obtained by SCS, starting from a commercial iron nitrate, was also performed. Several techniques such as X-ray diffraction combined with Rietveld refinement, mass plasma atomic emission spectroscopy, nitrogen adsorption measurements, temperature programmed reduction, X-ray photoelectron spectroscopy, Fourier transform analysis and scanning electron microscopy were used for the characterization of the rust wastes as well as of the perovskite powders. The performance of this ecofriendly material was evaluated by testing the activity and selectivity in the propylene oxidation, in order to use it for the benefit of the environment. Characterization and performance results clearly evidenced limitations and peculiarities of this new approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=perovskite%20type%20catalysts" title="perovskite type catalysts">perovskite type catalysts</a>, <a href="https://publications.waset.org/abstracts/search?q=solution%20combustion%20synthesis" title=" solution combustion synthesis"> solution combustion synthesis</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20diffraction" title=" X-ray diffraction"> X-ray diffraction</a>, <a href="https://publications.waset.org/abstracts/search?q=rust%20wastes" title=" rust wastes"> rust wastes</a> </p> <a href="https://publications.waset.org/abstracts/76645/synthesis-of-iron-based-perovskite-type-catalysts-from-rust-wastes-as-a-source-of-iron" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76645.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=133">133</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=134">134</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=electron%20diffraction%20spectroscopy&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10