CINXE.COM

Search results for: contractive-like operator

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: contractive-like operator</title> <meta name="description" content="Search results for: contractive-like operator"> <meta name="keywords" content="contractive-like operator"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="contractive-like operator" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="contractive-like operator"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 406</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: contractive-like operator</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">376</span> Analysis of Formation Methods of Range Profiles for an X-Band Coastal Surveillance Radar</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Van%20Loi">Nguyen Van Loi</a>, <a href="https://publications.waset.org/abstracts/search?q=Le%20Thanh%20Son"> Le Thanh Son</a>, <a href="https://publications.waset.org/abstracts/search?q=Tran%20Trung%20Kien"> Tran Trung Kien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper deals with the problem of the formation of range profiles (RPs) for an X-band coastal surveillance radar. Two popular methods, the difference operator method, and the window-based method, are reviewed and analyzed via two tests with different datasets. The test results show that although the original window-based method achieves a better performance than the difference operator method, it has three main drawbacks that are the use of 3 or 4 peaks of an RP for creating the windows, the extension of the window size using the power sum of three adjacent cells in the left and the right sides of the windows and the same threshold applied for all types of vessels to finish the formation process of RPs. These drawbacks lead to inaccurate RPs due to the low signal-to-clutter ratio. Therefore, some suggestions are proposed to improve the original window-based method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=range%20profile" title="range profile">range profile</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20operator%20method" title=" difference operator method"> difference operator method</a>, <a href="https://publications.waset.org/abstracts/search?q=window-based%20method" title=" window-based method"> window-based method</a>, <a href="https://publications.waset.org/abstracts/search?q=automatic%20target%20recognition" title=" automatic target recognition"> automatic target recognition</a> </p> <a href="https://publications.waset.org/abstracts/134878/analysis-of-formation-methods-of-range-profiles-for-an-x-band-coastal-surveillance-radar" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/134878.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">375</span> Field Deployment of Corrosion Inhibitor Developed for Sour Oil and Gas Carbon Steel Pipelines</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jeremy%20Moloney">Jeremy Moloney</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A major oil and gas operator in western Canada producing approximately 50,000 BOE per day of sour fluids was experiencing increased water production along with decreased oil production over several years. The higher water volumes being produced meant an increase in the operator鈥檚 incumbent corrosion inhibitor (CI) chemical requirements but with reduced oil production revenues. Thus, a cost-effective corrosion inhibitor solution was sought to deliver enhanced corrosion mitigation of the carbon steel pipeline infrastructure but at reduced chemical injection dose rates. This paper presents the laboratory work conducted on the development of a corrosion inhibitor under the operator鈥檚 simulated sour operating conditions and then subsequent field testing of the product. The new CI not only provided extremely good levels of general and localized corrosion inhibition and outperformed the incumbent CI under the laboratory test conditions but did so at vastly lower concentrations. In turn, the novel CI product facilitated field chemical injection rates to be optimized and reduced by 40% compared with the incumbent whilst maintaining superior corrosion protection resulting in significant cost savings and associated sustainability benefits for the operator. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=carbon%20steel" title="carbon steel">carbon steel</a>, <a href="https://publications.waset.org/abstracts/search?q=sour%20gas" title=" sour gas"> sour gas</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20sulphide" title=" hydrogen sulphide"> hydrogen sulphide</a>, <a href="https://publications.waset.org/abstracts/search?q=localized%20corrosion" title=" localized corrosion"> localized corrosion</a>, <a href="https://publications.waset.org/abstracts/search?q=pitting" title=" pitting"> pitting</a>, <a href="https://publications.waset.org/abstracts/search?q=corrosion%20inhibitor" title=" corrosion inhibitor"> corrosion inhibitor</a> </p> <a href="https://publications.waset.org/abstracts/169648/field-deployment-of-corrosion-inhibitor-developed-for-sour-oil-and-gas-carbon-steel-pipelines" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/169648.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">85</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">374</span> Subclasses of Bi-Univalent Functions Associated with Hohlov Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rashidah%20Omar">Rashidah Omar</a>, <a href="https://publications.waset.org/abstracts/search?q=Suzeini%20Abdul%20Halim"> Suzeini Abdul Halim</a>, <a href="https://publications.waset.org/abstracts/search?q=Aini%20Janteng"> Aini Janteng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The coefficients estimate problem for Taylor-Maclaurin series is still an open problem especially for a function in the subclass of bi-univalent functions. A function <em>f </em>系<em> A </em>is said to be bi-univalent in the open unit disk <em>D</em> if both <em>f </em>and <em>f<sup>-1</sup></em> are univalent in <em>D</em>. The symbol <em>A</em> denotes the class of all analytic functions <em>f</em> in <em>D</em> and it is normalized by the conditions <em>f</em>(0) = <em>f&rsquo;</em>(0) &ndash; 1=0. The class of bi-univalent is denoted by &nbsp;The subordination concept is used in determining second and third Taylor-Maclaurin coefficients. The upper bound for second and third coefficients is estimated for functions in the subclasses of bi-univalent functions which are subordinated to the function &phi;. An analytic function <em>f</em> is subordinate to an analytic function <em>g</em> if there is an analytic function <em>w</em> defined on <em>D</em> with <em>w</em>(0) = 0 and |<em>w</em>(z)| &lt; 1 satisfying <em>f</em>(<em>z</em>) = <em>g</em>[<em>w</em>(<em>z</em>)]. In this paper, two subclasses of bi-univalent functions associated with Hohlov operator are introduced. The bound for second and third coefficients of functions in these subclasses is determined using subordination. The findings would generalize the previous related works of several earlier authors. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=analytic%20functions" title="analytic functions">analytic functions</a>, <a href="https://publications.waset.org/abstracts/search?q=bi-univalent%20functions" title=" bi-univalent functions"> bi-univalent functions</a>, <a href="https://publications.waset.org/abstracts/search?q=Hohlov%20operator" title=" Hohlov operator"> Hohlov operator</a>, <a href="https://publications.waset.org/abstracts/search?q=subordination" title=" subordination"> subordination</a> </p> <a href="https://publications.waset.org/abstracts/72671/subclasses-of-bi-univalent-functions-associated-with-hohlov-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/72671.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">373</span> Data-Driven Dynamic Overbooking Model for Tour Operators</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kannapha%20Amaruchkul">Kannapha Amaruchkul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We formulate a dynamic overbooking model for a tour operator, in which most reservations contain at least two people. The cancellation rate and the timing of the cancellation may depend on the group size. We propose two overbooking policies, namely economic- and service-based. In an economic-based policy, we want to minimize the expected oversold and underused cost, whereas, in a service-based policy, we ensure that the probability of an oversold situation does not exceed the pre-specified threshold. To illustrate the applicability of our approach, we use tour package data in 2016-2018 from a tour operator in Thailand to build a data-driven robust optimization model, and we tested the proposed overbooking policy in 2019. We also compare the data-driven approach to the conventional approach of fitting data into a probability distribution. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=applied%20stochastic%20model" title="applied stochastic model">applied stochastic model</a>, <a href="https://publications.waset.org/abstracts/search?q=data-driven%20robust%20optimization" title=" data-driven robust optimization"> data-driven robust optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=overbooking" title=" overbooking"> overbooking</a>, <a href="https://publications.waset.org/abstracts/search?q=revenue%20management" title=" revenue management"> revenue management</a>, <a href="https://publications.waset.org/abstracts/search?q=tour%20operator" title=" tour operator"> tour operator</a> </p> <a href="https://publications.waset.org/abstracts/125929/data-driven-dynamic-overbooking-model-for-tour-operators" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125929.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">372</span> LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=V%C3%ADctor%20D.%20Rodr%C3%ADguez">V铆ctor D. Rodr铆guez</a>, <a href="https://publications.waset.org/abstracts/search?q=Edith%20P.%20Estupi%C3%B1%C3%A1n"> Edith P. Estupi帽谩n</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20C.%20Mart%C3%ADnez"> Juan C. Mart铆nez</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogot&aacute; using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=BLER" title="BLER">BLER</a>, <a href="https://publications.waset.org/abstracts/search?q=LTE" title=" LTE"> LTE</a>, <a href="https://publications.waset.org/abstracts/search?q=network" title=" network"> network</a>, <a href="https://publications.waset.org/abstracts/search?q=qualipoc" title=" qualipoc"> qualipoc</a>, <a href="https://publications.waset.org/abstracts/search?q=SNR." title=" SNR. "> SNR. </a> </p> <a href="https://publications.waset.org/abstracts/126065/lte-performance-analysis-in-the-city-of-bogota-northern-zone-for-two-different-mobile-broadband-operators-over-qualipoc" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/126065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">115</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">371</span> Vibration Propagation in Body-in-White Structures Through Structural Intensity Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Takhchi">Jamal Takhchi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The understanding of vibration propagation in complex structures such as automotive body in white remains a challenging issue in car design regarding NVH performances. The current analysis is limited to the low frequency range where modal concepts are dominant. Higher frequencies, between 200 and 1000 Hz, will become critical With the rise of electrification. EVs annoying sounds are mostly whines created by either Gears or e-motors between 300 Hz and 2 kHz. Structural intensity analysis was Experienced a few years ago on finite element models. The application was promising but limited by the fact that the propagating 3D intensity vector field is masked by a rotational Intensity field. This rotational field should be filtered using a differential operator. The expression of this operator in the framework of finite element modeling is not yet known. The aim of the proposed work is to implement this operator in the current dynamic solver (NASTRAN) of Stellantis and develop the Expected methodology for the mid-frequency structural analysis of electrified vehicles. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=structural%20intensity" title="structural intensity">structural intensity</a>, <a href="https://publications.waset.org/abstracts/search?q=NVH" title=" NVH"> NVH</a>, <a href="https://publications.waset.org/abstracts/search?q=body%20in%20white" title=" body in white"> body in white</a>, <a href="https://publications.waset.org/abstracts/search?q=irrotatational%20intensity" title=" irrotatational intensity"> irrotatational intensity</a> </p> <a href="https://publications.waset.org/abstracts/142155/vibration-propagation-in-body-in-white-structures-through-structural-intensity-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142155.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">370</span> Analysis of Nuclear Power Plant Operator Activities and Risk Factors Using an EEG System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=John%20Gaber">John Gaber</a>, <a href="https://publications.waset.org/abstracts/search?q=Youssef%20Ahmed"> Youssef Ahmed</a>, <a href="https://publications.waset.org/abstracts/search?q=Hossam%20A.Gabbar"> Hossam A.Gabbar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Ren"> Jing Ren</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nuclear Power Plant (NPP) operators have a large responsibility on their shoulders. They must allow the plant to generate a high amount of energy while inspecting and maintaining the safety of the plant. This type of occupation comes with high amounts of mental fatigue, and a small mistake can have grave consequences. Electroencephalography (EEG) is a method of gathering the electromagnetic waves emitted by a human brain. We propose a safety system by monitoring brainwaves for signs of mental fatigue. This requires an analysis of the tasks and mental models of the NPP operator, as well as risk factors on mental fatigue and attention that NPP operators face when performing their tasks. The brain waves generated from experiencing mental fatigue can then be monitored for. These factors are analyzed, developing an EEG-based monitoring system, which aims to alert NPP operators when levels of mental fatigue and attention start affecting their performance in task completion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=EEG" title="EEG">EEG</a>, <a href="https://publications.waset.org/abstracts/search?q=power%20plant%20operator" title=" power plant operator"> power plant operator</a>, <a href="https://publications.waset.org/abstracts/search?q=psychology" title=" psychology"> psychology</a>, <a href="https://publications.waset.org/abstracts/search?q=task%20analysis" title=" task analysis"> task analysis</a> </p> <a href="https://publications.waset.org/abstracts/154276/analysis-of-nuclear-power-plant-operator-activities-and-risk-factors-using-an-eeg-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154276.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">99</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">369</span> 3D Receiver Operator Characteristic Histogram</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xiaoli%20Zhang">Xiaoli Zhang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xiongfei%20Li"> Xiongfei Li</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuncong%20Feng"> Yuncong Feng</a> </p> <p class="card-text"><strong>Abstract:</strong></p> ROC curves, as a widely used evaluating tool in machine learning field, are the tradeoff of true positive rate and negative rate. However, they are blamed for ignoring some vital information in the evaluation process, such as the amount of information about the target that each instance carries, predicted score given by each classification model to each instance. Hence, in this paper, a new classification performance method is proposed by extending the Receiver Operator Characteristic (ROC) curves to 3D space, which is denoted as 3D ROC Histogram. In the histogram, the <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=performance%20evaluation" title=" performance evaluation"> performance evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=receiver%20operating%20characteristic%20histogram" title=" receiver operating characteristic histogram"> receiver operating characteristic histogram</a>, <a href="https://publications.waset.org/abstracts/search?q=hardness%20prediction" title=" hardness prediction"> hardness prediction</a> </p> <a href="https://publications.waset.org/abstracts/44143/3d-receiver-operator-characteristic-histogram" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/44143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">313</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">368</span> Stability of Property (gm) under Perturbation and Spectral Properties Type Weyl Theorems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20H.%20M.%20Rashid">M. H. M. Rashid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A Banach space operator T obeys property (gm) if the isolated points of the spectrum &sigma;(T) of T which are eigenvalues are exactly those points &lambda; of the spectrum for which T &minus; &lambda;I is a left Drazin invertible. In this article, we study the stability of property (gm), for a bounded operator acting on a Banach space, under perturbation by finite rank operators, by nilpotent operators, by quasi-nilpotent operators, or more generally by algebraic operators commuting with T. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Weyl%27s%20Theorem" title="Weyl&#039;s Theorem">Weyl&#039;s Theorem</a>, <a href="https://publications.waset.org/abstracts/search?q=Weyl%20Spectrum" title=" Weyl Spectrum"> Weyl Spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=Polaroid%20operators" title=" Polaroid operators"> Polaroid operators</a>, <a href="https://publications.waset.org/abstracts/search?q=property%20%28gm%29" title=" property (gm)"> property (gm)</a> </p> <a href="https://publications.waset.org/abstracts/102478/stability-of-property-gm-under-perturbation-and-spectral-properties-type-weyl-theorems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102478.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">178</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">367</span> Second Order Solitary Solutions to the Hodgkin-Huxley Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tadas%20Telksnys">Tadas Telksnys</a>, <a href="https://publications.waset.org/abstracts/search?q=Zenonas%20Navickas"> Zenonas Navickas</a>, <a href="https://publications.waset.org/abstracts/search?q=Minvydas%20Ragulskis"> Minvydas Ragulskis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Necessary and sufficient conditions for the existence of second order solitary solutions to the Hodgkin-Huxley equation are derived in this paper. The generalized multiplicative operator of differentiation helps not only to construct closed-form solitary solutions but also automatically generates conditions of their existence in the space of the equation's parameters and initial conditions. It is demonstrated that bright, kink-type solitons and solitary solutions with singularities can exist in the Hodgkin-Huxley equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hodgkin-Huxley%20equation" title="Hodgkin-Huxley equation">Hodgkin-Huxley equation</a>, <a href="https://publications.waset.org/abstracts/search?q=solitary%20solution" title=" solitary solution"> solitary solution</a>, <a href="https://publications.waset.org/abstracts/search?q=existence%20condition" title=" existence condition"> existence condition</a>, <a href="https://publications.waset.org/abstracts/search?q=operator%20method" title=" operator method"> operator method</a> </p> <a href="https://publications.waset.org/abstracts/37370/second-order-solitary-solutions-to-the-hodgkin-huxley-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37370.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">381</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">366</span> Super-ellipsoidal Potential Function for Autonomous Collision Avoidance of a Teleoperated UAV</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Qasim">Mohammed Qasim</a>, <a href="https://publications.waset.org/abstracts/search?q=Kyoung-Dae%20Kim"> Kyoung-Dae Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we present the design of the super-ellipsoidal potential function (SEPF), that can be used for autonomous collision avoidance of an unmanned aerial vehicle (UAV) in a 3-dimensional space. In the design of SEPF, we have the full control over the shape and size of the potential function. In particular, we can adjust the length, width, height, and the amount of flattening at the tips of the potential function so that the collision avoidance motion vector generated from the potential function can be adjusted accordingly. Based on the idea of the SEPF, we also propose an approach for the local autonomy of a UAV for its collision avoidance when the UAV is teleoperated by a human operator. In our proposed approach, a teleoperated UAV can not only avoid collision autonomously with other surrounding objects but also track the operator&rsquo;s control input as closely as possible. As a result, an operator can always be in control of the UAV for his/her high-level guidance and navigation task without worrying too much about the UAVs collision avoidance while it is being teleoperated. The effectiveness of the proposed approach is demonstrated through a human-in-the-loop simulation of quadrotor UAV teleoperation using virtual robot experimentation platform (v-rep) and Matlab programs. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20potential%20function" title="artificial potential function">artificial potential function</a>, <a href="https://publications.waset.org/abstracts/search?q=autonomous%20collision%20avoidance" title=" autonomous collision avoidance"> autonomous collision avoidance</a>, <a href="https://publications.waset.org/abstracts/search?q=teleoperation" title=" teleoperation"> teleoperation</a>, <a href="https://publications.waset.org/abstracts/search?q=quadrotor" title=" quadrotor"> quadrotor</a> </p> <a href="https://publications.waset.org/abstracts/42043/super-ellipsoidal-potential-function-for-autonomous-collision-avoidance-of-a-teleoperated-uav" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">399</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">365</span> Methodology for Obtaining Food Licenses in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rathna%20Malhotra%20Gaur">Rathna Malhotra Gaur</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Owing to multiplicity and competition in the Indian food industry, it was always important for the government of India to bring in reforms that would protect the interest of the consumer and also the food operator. To further this objective, Food Safety, and Standards Act, 2006 (hereinafter referred to as FSSAI) was enacted for laying down science-based standards for articles and food and to regulate their storage, distribution, manufacture, same and import and to ensure safe food availability to the citizens of India. One of the safeguards towards consumer interest is the enactment of Food Safety and Standards (Licensing and Registration of Food Businesses, Regulation, 2011 within the mandate of FSSAI. It is mandatory for every food operator in India to get the registration certificate and procurement of food Licenses before starting operations in the country. All the nuances pertaining to the procurement of licenses are dealt with under these regulations. These regulations also lay down detailed provisions with regard to the conditions that the operator has to adhere to once the License is procured, going to the integrities of the safety and hygiene standards to be maintained by the food operators. This paper is an exhaustive effort to examine the provisions of obtaining the registration and License in India and the conditions that need to be fulfilled subsequently and further on the validity and renewal of these Food Licenses. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20laws" title="food laws">food laws</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20licenses" title=" food licenses"> food licenses</a>, <a href="https://publications.waset.org/abstracts/search?q=food%20registration" title=" food registration"> food registration</a>, <a href="https://publications.waset.org/abstracts/search?q=penalty" title=" penalty"> penalty</a> </p> <a href="https://publications.waset.org/abstracts/141893/methodology-for-obtaining-food-licenses-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/141893.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">177</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">364</span> Hydraulic Resources Management under Imperfect Competition with Thermal Plants in the Wholesale Electricity Market</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdessalem%20Abbassi">Abdessalem Abbassi</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahlem%20Dakhlaoui"> Ahlem Dakhlaoui</a>, <a href="https://publications.waset.org/abstracts/search?q=Lota%20D.%20Tamini"> Lota D. Tamini</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we analyze infinite discrete-time games between hydraulic and thermal power operators in the wholesale electricity market under Cournot competition. We consider a deregulated electrical industry where certain demand is satisfied by hydraulic and thermal technologies. The hydraulic operator decides the production in each season of each period that maximizes the sum of expected profits from power generation with respect to the stochastic dynamic constraint on the water stored in the dam, the environmental constraint and the non-negative output constraint. In contrast, the thermal plant is operated with quadratic cost function, with respect to the capacity production constraint and the non-negativity output constraint. We show that under imperfect competition, the hydraulic operator has a strategic storage of water in the peak season. Then, we quantify the strategic inter-annual and intra-annual water transfer and compare the numerical results. Finally, we show that the thermal operator can restrict the hydraulic output without compensation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymmetric%20risk%20aversion" title="asymmetric risk aversion">asymmetric risk aversion</a>, <a href="https://publications.waset.org/abstracts/search?q=electricity%20wholesale%20market" title=" electricity wholesale market"> electricity wholesale market</a>, <a href="https://publications.waset.org/abstracts/search?q=hydropower%20dams" title=" hydropower dams"> hydropower dams</a>, <a href="https://publications.waset.org/abstracts/search?q=imperfect%20competition" title=" imperfect competition"> imperfect competition</a> </p> <a href="https://publications.waset.org/abstracts/38733/hydraulic-resources-management-under-imperfect-competition-with-thermal-plants-in-the-wholesale-electricity-market" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38733.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">359</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">363</span> Controlling the Process of a Chicken Dressing Plant through Statistical Process Control</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jasper%20Kevin%20C.%20Dionisio">Jasper Kevin C. Dionisio</a>, <a href="https://publications.waset.org/abstracts/search?q=Denise%20Mae%20M.%20Unsay"> Denise Mae M. Unsay</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In a manufacturing firm, controlling the process ensures that optimum efficiency, productivity, and quality in an organization are achieved. An operation with no standardized procedure yields a poor productivity, inefficiency, and an out of control process. This study focuses on controlling the small intestine processing of a chicken dressing plant through the use of Statistical Process Control (SPC). Since the operation does not employ a standard procedure and does not have an established standard time, the process through the assessment of the observed time of the overall operation of small intestine processing, through the use of X-Bar R Control Chart, is found to be out of control. In the solution of this problem, the researchers conduct a motion and time study aiming to establish a standard procedure for the operation. The normal operator was picked through the use of Westinghouse Rating System. Instead of utilizing the traditional motion and time study, the researchers used the X-Bar R Control Chart in determining the process average of the process that is used for establishing the standard time. The observed time of the normal operator was noted and plotted to the X-Bar R Control Chart. Out of control points that are due to assignable cause were removed and the process average, or the average time the normal operator conducted the process, which was already in control and free form any outliers, was obtained. The process average was then used in determining the standard time of small intestine processing. As a recommendation, the researchers suggest the implementation of the standard time established which is with consonance to the standard procedure which was adopted from the normal operator. With that recommendation, the whole operation will induce a 45.54 % increase in their productivity. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=motion%20and%20time%20study" title="motion and time study">motion and time study</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20controlling" title=" process controlling"> process controlling</a>, <a href="https://publications.waset.org/abstracts/search?q=statistical%20process%20control" title=" statistical process control"> statistical process control</a>, <a href="https://publications.waset.org/abstracts/search?q=X-Bar%20R%20Control%20chart" title=" X-Bar R Control chart"> X-Bar R Control chart</a> </p> <a href="https://publications.waset.org/abstracts/78980/controlling-the-process-of-a-chicken-dressing-plant-through-statistical-process-control" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/78980.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">362</span> Operator Optimization Based on Hardware Architecture Alignment Requirements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Qingqing%20Gai">Qingqing Gai</a>, <a href="https://publications.waset.org/abstracts/search?q=Junxing%20Shen"> Junxing Shen</a>, <a href="https://publications.waset.org/abstracts/search?q=Yu%20Luo"> Yu Luo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the hardware architecture characteristics, some operators tend to acquire better performance if the input/output tensor dimensions are aligned to a certain minimum granularity, such as convolution and deconvolution commonly used in deep learning. Furthermore, if the requirements are not met, the general strategy is to pad with 0 to satisfy the requirements, potentially leading to the under-utilization of the hardware resources. Therefore, for the convolution and deconvolution whose input and output channels do not meet the minimum granularity alignment, we propose to transfer the W-dimensional data to the C-dimension for computation (W2C) to enable the C-dimension to meet the hardware requirements. This scheme also reduces the number of computations in the W-dimension. Although this scheme substantially increases computation, the operator鈥檚 speed can improve significantly. It achieves remarkable speedups on multiple hardware accelerators, including Nvidia Tensor cores, Qualcomm digital signal processors (DSPs), and Huawei neural processing units (NPUs). All you need to do is modify the network structure and rearrange the operator weights offline without retraining. At the same time, for some operators, such as the Reducemax, we observe that transferring the Cdimensional data to the W-dimension(C2W) and replacing the Reducemax with the Maxpool can accomplish acceleration under certain circumstances. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convolution" title="convolution">convolution</a>, <a href="https://publications.waset.org/abstracts/search?q=deconvolution" title=" deconvolution"> deconvolution</a>, <a href="https://publications.waset.org/abstracts/search?q=W2C" title=" W2C"> W2C</a>, <a href="https://publications.waset.org/abstracts/search?q=C2W" title=" C2W"> C2W</a>, <a href="https://publications.waset.org/abstracts/search?q=alignment" title=" alignment"> alignment</a>, <a href="https://publications.waset.org/abstracts/search?q=hardware%20accelerator" title=" hardware accelerator"> hardware accelerator</a> </p> <a href="https://publications.waset.org/abstracts/157366/operator-optimization-based-on-hardware-architecture-alignment-requirements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157366.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">104</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">361</span> An Iterative Family for Solution of System of Nonlinear Equations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sonia%20Sonia">Sonia Sonia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a family of iterative scheme for solving nonlinear systems of equations which have wide application in sciences and engineering. The proposed iterative family is based upon some parameters which generates many different iterative schemes. This family is completely derivative free and uses first of divided difference operator. Moreover some numerical experiments are performed and compared with existing methods. Analysis of convergence shows that the presented family has fourth-order of convergence. The dynamical behaviour of proposed family and local convergence have also been discussed. The numerical performance and convergence region comparison demonstrates that proposed family is efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=convergence" title="convergence">convergence</a>, <a href="https://publications.waset.org/abstracts/search?q=divided%20difference%20operator" title=" divided difference operator"> divided difference operator</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system" title=" nonlinear system"> nonlinear system</a>, <a href="https://publications.waset.org/abstracts/search?q=Newton%27s%20method" title=" Newton&#039;s method"> Newton&#039;s method</a> </p> <a href="https://publications.waset.org/abstracts/80719/an-iterative-family-for-solution-of-system-of-nonlinear-equations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">360</span> Consensus-Oriented Analysis Model for Knowledge Management Failure Evaluation in Uncertain Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amir%20Ghasem%20Norouzi">Amir Ghasem Norouzi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mahdi%20Zowghi"> Mahdi Zowghi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study propose a framework based on the fuzzy T-Norms, T-conorm, a novel operator, and multi-expert approach to help organizations build awareness of the critical influential factors on the success of knowledge management (KM) implementation, analysis the failure of knowledge management. This study considers the complex uncertainty concept that is in knowledge management implementing capability (KMIC) and it is used by fuzzy logic for this reason. The contribution of our paper is shown with an empirical study in a nonprofit educational organization evaluation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title="fuzzy logic">fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=knowledge%20management" title=" knowledge management"> knowledge management</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20expert%20analysis" title=" multi expert analysis"> multi expert analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=consensus%20oriented%20average%20operator" title=" consensus oriented average operator"> consensus oriented average operator</a> </p> <a href="https://publications.waset.org/abstracts/23075/consensus-oriented-analysis-model-for-knowledge-management-failure-evaluation-in-uncertain-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/23075.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">627</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">359</span> A Fuzzy TOPSIS Based Model for Safety Risk Assessment of Operational Flight Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Borjalilu">N. Borjalilu</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Rabiei"> P. Rabiei</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Enjoo"> A. Enjoo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Flight Data Monitoring (FDM) program assists an operator in aviation industries to identify, quantify, assess and address operational safety risks, in order to improve safety of flight operations. FDM is a powerful tool for an aircraft operator integrated into the operator&rsquo;s Safety Management System (SMS), allowing to detect, confirm, and assess safety issues and to check the effectiveness of corrective actions, associated with human errors. This article proposes a model for safety risk assessment level of flight data in a different aspect of event focus based on fuzzy set values. It permits to evaluate the operational safety level from the point of view of flight activities. The main advantages of this method are proposed qualitative safety analysis of flight data. This research applies the opinions of the aviation experts through a number of questionnaires Related to flight data in four categories of occurrence that can take place during an accident or an incident such as: Runway Excursions (RE), Controlled Flight Into Terrain (CFIT), Mid-Air Collision (MAC), Loss of Control in Flight (LOC-I). By weighting each one (by F-TOPSIS) and applying it to the number of risks of the event, the safety risk of each related events can be obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=F-topsis" title="F-topsis">F-topsis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20set" title=" fuzzy set"> fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20data%20monitoring%20%28FDM%29" title=" flight data monitoring (FDM)"> flight data monitoring (FDM)</a>, <a href="https://publications.waset.org/abstracts/search?q=flight%20safety" title=" flight safety"> flight safety</a> </p> <a href="https://publications.waset.org/abstracts/88089/a-fuzzy-topsis-based-model-for-safety-risk-assessment-of-operational-flight-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/88089.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">358</span> Split Monotone Inclusion and Fixed Point Problems in Real Hilbert Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Francis%20O.%20Nwawuru">Francis O. Nwawuru</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The convergence analysis of split monotone inclusion problems and fixed point problems of certain nonlinear mappings are investigated in the setting of real Hilbert spaces. Inertial extrapolation term in the spirit of Polyak is incorporated to speed up the rate of convergence. Under standard assumptions, a strong convergence of the proposed algorithm is established without computing the resolvent operator or involving Yosida approximation method. The stepsize involved in the algorithm does not depend on the spectral radius of the linear operator. Furthermore, applications of the proposed algorithm in solving some related optimization problems are also considered. Our result complements and extends numerous results in the literature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fixedpoint" title="fixedpoint">fixedpoint</a>, <a href="https://publications.waset.org/abstracts/search?q=hilbertspace" title=" hilbertspace"> hilbertspace</a>, <a href="https://publications.waset.org/abstracts/search?q=monotonemapping" title=" monotonemapping"> monotonemapping</a>, <a href="https://publications.waset.org/abstracts/search?q=resolventoperators" title=" resolventoperators"> resolventoperators</a> </p> <a href="https://publications.waset.org/abstracts/183967/split-monotone-inclusion-and-fixed-point-problems-in-real-hilbert-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/183967.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">52</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">357</span> Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Wedad%20Albalawi">Wedad Albalawi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy鈥揝teklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H篓older. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=time%20scales" title="time scales">time scales</a>, <a href="https://publications.waset.org/abstracts/search?q=inequality%20of%20Hardy" title=" inequality of Hardy"> inequality of Hardy</a>, <a href="https://publications.waset.org/abstracts/search?q=inequality%20of%20Coposon" title=" inequality of Coposon"> inequality of Coposon</a>, <a href="https://publications.waset.org/abstracts/search?q=Steklov%20operator" title=" Steklov operator"> Steklov operator</a> </p> <a href="https://publications.waset.org/abstracts/173546/hardy-type-inequalities-of-two-dimensional-on-time-scales-via-steklov-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/173546.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">76</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">356</span> Applying Sliding Autonomy for a Human-Robot Team on USARSim</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fang%20Tang">Fang Tang</a>, <a href="https://publications.waset.org/abstracts/search?q=Jacob%20Longazo"> Jacob Longazo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a sliding autonomy approach for coordinating a team of robots to assist the human operator to accomplish tasks while adapting to new or unexpected situations by requesting help from the human operator. While sliding autonomy has been well studied in the context of controlling a single robot. Much work needs to be done to apply sliding autonomy to a multi-robot team, especially human-robot team. Our approach aims at a hierarchical sliding control structure, with components that support human-robot collaboration. We validated our approach in the USARSim simulation and demonstrated that the human-robot team's overall performance can be improved under the sliding autonomy control. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sliding%20autonomy" title="sliding autonomy">sliding autonomy</a>, <a href="https://publications.waset.org/abstracts/search?q=multi-robot%20team" title=" multi-robot team"> multi-robot team</a>, <a href="https://publications.waset.org/abstracts/search?q=human-robot%20collaboration" title=" human-robot collaboration"> human-robot collaboration</a>, <a href="https://publications.waset.org/abstracts/search?q=USARSim" title=" USARSim"> USARSim</a> </p> <a href="https://publications.waset.org/abstracts/27177/applying-sliding-autonomy-for-a-human-robot-team-on-usarsim" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27177.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">545</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">355</span> Mixed Number Algebra and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Md.%20Shah%20Alam">Md. Shah Alam</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Mushfiq Ahmad has defined a Mixed Number, which is the sum of a scalar and a Cartesian vector. He has also defined the elementary group operations of Mixed numbers i.e. the norm of Mixed numbers, the product of two Mixed numbers, the identity element and the inverse. It has been observed that Mixed Number is consistent with Pauli matrix algebra and a handy tool to work with Dirac electron theory. Its use as a mathematical method in Physics has been studied. (1) We have applied Mixed number in Quantum Mechanics: Mixed Number version of Displacement operator, Vector differential operator, and Angular momentum operator has been developed. Mixed Number method has also been applied to Klein-Gordon equation. (2) We have applied Mixed number in Electrodynamics: Mixed Number version of Maxwell鈥檚 equation, the Electric and Magnetic field quantities and Lorentz Force has been found. (3) An associative transformation of Mixed Number numbers fulfilling Lorentz invariance requirement is developed. (4) We have applied Mixed number algebra as an extension of Complex number. Mixed numbers and the Quaternions have isomorphic correspondence, but they are different in algebraic details. The multiplication of unit Mixed number and the multiplication of unit Quaternions are different. Since Mixed Number has properties similar to those of Pauli matrix algebra, Mixed Number algebra is a more convenient tool to deal with Dirac equation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=mixed%20number" title="mixed number">mixed number</a>, <a href="https://publications.waset.org/abstracts/search?q=special%20relativity" title=" special relativity"> special relativity</a>, <a href="https://publications.waset.org/abstracts/search?q=quantum%20mechanics" title=" quantum mechanics"> quantum mechanics</a>, <a href="https://publications.waset.org/abstracts/search?q=electrodynamics" title=" electrodynamics"> electrodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=pauli%20matrix" title=" pauli matrix"> pauli matrix</a> </p> <a href="https://publications.waset.org/abstracts/39999/mixed-number-algebra-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">364</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">354</span> A Hybrid Based Algorithm to Solve the Multi-objective Minimum Spanning Tree Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Boumesbah%20Asma">Boumesbah Asma</a>, <a href="https://publications.waset.org/abstracts/search?q=Chergui%20Mohamed%20El-amine"> Chergui Mohamed El-amine</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Since it has been shown that the multi-objective minimum spanning tree problem (MOST) is NP-hard even with two criteria, we propose in this study a hybrid NSGA-II algorithm with an exact mutation operator, which is only used with low probability, to find an approximation to the Pareto front of the problem. In a connected graph G, a spanning tree T of G being a connected and cycle-free graph, if k edges of G\T are added to T, we obtain a partial graph H of G inducing a reduced size multi-objective spanning tree problem compared to the initial one. With a weak probability for the mutation operator, an exact method for solving the reduced MOST problem considering the graph H is then used to give birth to several mutated solutions from a spanning tree T. Then, the selection operator of NSGA-II is activated to obtain the Pareto front approximation. Finally, an adaptation of the VNS metaheuristic is called for further improvements on this front. It allows finding good individuals to counterbalance the diversification and the intensification during the optimization search process. Experimental comparison studies with an exact method show promising results and indicate that the proposed algorithm is efficient. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=minimum%20spanning%20tree" title="minimum spanning tree">minimum spanning tree</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20objective%20linear%20optimization" title=" multiple objective linear optimization"> multiple objective linear optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=combinatorial%20optimization" title=" combinatorial optimization"> combinatorial optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=non-sorting%20genetic%20algorithm" title=" non-sorting genetic algorithm"> non-sorting genetic algorithm</a>, <a href="https://publications.waset.org/abstracts/search?q=variable%20neighborhood%20search" title=" variable neighborhood search"> variable neighborhood search</a> </p> <a href="https://publications.waset.org/abstracts/157395/a-hybrid-based-algorithm-to-solve-the-multi-objective-minimum-spanning-tree-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/157395.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">91</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">353</span> Strap Tension Adjusting Device for Non-Invasive Positive Pressure Ventilation Mask Fitting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yoshie%20Asahara">Yoshie Asahara</a>, <a href="https://publications.waset.org/abstracts/search?q=Hidekuni%20Takao"> Hidekuni Takao</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Non-invasive positive pressure ventilation (NPPV), a type of ventilation therapy, is a treatment in which a mask is attached to the patient's face and delivers gas into the mask to support breathing. The NPPV mask uses a strap, which is necessary to attach and secure the mask in the appropriate facial position, but the tensile strength of the strap is adjusted by the sensation of the hands. The strap uniformity and fine-tuning strap tension are judged by the skill of the operator and the amount felt by the finger. In the future, additional strap operation and adjustment methods will be required to meet the needs for reducing the burden on the patient鈥檚 face. In this study, we fabricated a mechanism that can measure, adjust and fix the tension of the straps. A small amount of strap tension can be adjusted by rotating the shaft. This makes it possible to control the slight strap tension that is difficult to grasp with the sense of the operator's hand. In addition, this mechanism allows the operator to control the strap while controlling the movement of the mask body. This leads to the establishment of a suitable mask fitting method for each patient. The developed mechanism enables the operation and fine reproducible adjustment of the strap tension and the mask balance, reducing the burden on the face. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=balance%20of%20the%20mask%20strap" title="balance of the mask strap">balance of the mask strap</a>, <a href="https://publications.waset.org/abstracts/search?q=fine%20adjustment" title=" fine adjustment"> fine adjustment</a>, <a href="https://publications.waset.org/abstracts/search?q=film%20sensor" title=" film sensor"> film sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=mask%20fitting%20technique" title=" mask fitting technique"> mask fitting technique</a>, <a href="https://publications.waset.org/abstracts/search?q=mask%20strap%20tension" title=" mask strap tension"> mask strap tension</a> </p> <a href="https://publications.waset.org/abstracts/144719/strap-tension-adjusting-device-for-non-invasive-positive-pressure-ventilation-mask-fitting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/144719.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">238</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">352</span> Matrix Valued Difference Equations with Spectral Singularities</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Serifenur%20Cebesoy">Serifenur Cebesoy</a>, <a href="https://publications.waset.org/abstracts/search?q=Yelda%20Aygar"> Yelda Aygar</a>, <a href="https://publications.waset.org/abstracts/search?q=Elgiz%20Bairamov"> Elgiz Bairamov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we examine some spectral properties of non-selfadjoint matrix-valued difference equations consisting of a polynomial type Jost solution. The aim of this study is to investigate the eigenvalues and spectral singularities of the difference operator L which is expressed by the above-mentioned difference equation. Firstly, thanks to the representation of polynomial type Jost solution of this equation, we obtain asymptotics and some analytical properties. Then, using the uniqueness theorems of analytic functions, we guarantee that the operator L has a finite number of eigenvalues and spectral singularities. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=asymptotics" title="asymptotics">asymptotics</a>, <a href="https://publications.waset.org/abstracts/search?q=continuous%20spectrum" title=" continuous spectrum"> continuous spectrum</a>, <a href="https://publications.waset.org/abstracts/search?q=difference%20equations" title=" difference equations"> difference equations</a>, <a href="https://publications.waset.org/abstracts/search?q=eigenvalues" title=" eigenvalues"> eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=jost%20functions" title=" jost functions"> jost functions</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20singularities" title=" spectral singularities"> spectral singularities</a> </p> <a href="https://publications.waset.org/abstracts/32256/matrix-valued-difference-equations-with-spectral-singularities" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/32256.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">446</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">351</span> 1D Klein-Gordon Equation in an Infinite Square Well with PT Symmetry Boundary Conditions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Suleiman%20Bashir%20Adamu">Suleiman Bashir Adamu</a>, <a href="https://publications.waset.org/abstracts/search?q=Lawan%20Sani%20Taura"> Lawan Sani Taura</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We study the role of boundary conditions via -symmetric quantum mechanics, where denotes parity operator and denotes time reversal operator. Using the one-dimensional Schr枚dinger Hamiltonian for a free particle in an infinite square well, we introduce symmetric boundary conditions. We find solutions of the 1D Klein-Gordon equation for a free particle in an infinite square well with Hermitian boundary and symmetry boundary conditions, where in both cases the energy eigenvalues and eigenfunction, respectively, are obtained. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eigenvalues" title="Eigenvalues">Eigenvalues</a>, <a href="https://publications.waset.org/abstracts/search?q=Eigenfunction" title=" Eigenfunction"> Eigenfunction</a>, <a href="https://publications.waset.org/abstracts/search?q=Hamiltonian" title=" Hamiltonian"> Hamiltonian</a>, <a href="https://publications.waset.org/abstracts/search?q=Klein-%20Gordon%20equation" title=" Klein- Gordon equation"> Klein- Gordon equation</a>, <a href="https://publications.waset.org/abstracts/search?q=PT-symmetric%20quantum%20mechanics" title=" PT-symmetric quantum mechanics"> PT-symmetric quantum mechanics</a> </p> <a href="https://publications.waset.org/abstracts/50876/1d-klein-gordon-equation-in-an-infinite-square-well-with-pt-symmetry-boundary-conditions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50876.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">350</span> Proximal Method of Solving Split System of Minimization Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anteneh%20Getachew%20Gebrie">Anteneh Getachew Gebrie</a>, <a href="https://publications.waset.org/abstracts/search?q=Rabian%20Wangkeeree"> Rabian Wangkeeree</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The purpose of this paper is to introduce iterative algorithm solving split system of minimization problem given as a task of 铿乶ding a common minimizer point of 铿乶ite family of proper, lower semicontinuous convex functions and whose image under a bounded linear operator is also common minimizer point of another 铿乶ite family of proper, lower semicontinuous convex functions. We obtain strong convergence of the sequence generated by our algorithm under some suitable conditions on the parameters. The iterative schemes are developed with a way of selecting the step sizes such that the information of operator norm is not necessary. Some applications and numerical experiment is given to analyse the e铿僣iency of our algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hilbert%20Space" title="Hilbert Space">Hilbert Space</a>, <a href="https://publications.waset.org/abstracts/search?q=minimization%20problems" title=" minimization problems"> minimization problems</a>, <a href="https://publications.waset.org/abstracts/search?q=Moreau-Yosida%20approximate" title=" Moreau-Yosida approximate"> Moreau-Yosida approximate</a>, <a href="https://publications.waset.org/abstracts/search?q=split%20feasibility%20problem" title=" split feasibility problem"> split feasibility problem</a> </p> <a href="https://publications.waset.org/abstracts/119147/proximal-method-of-solving-split-system-of-minimization-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119147.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">144</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">349</span> Model Based Optimization of Workplace Ergonomics by Workpiece and Resource Positioning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Edward%20Hage">Edward Hage</a>, <a href="https://publications.waset.org/abstracts/search?q=Pieter%20Lietaert"> Pieter Lietaert</a>, <a href="https://publications.waset.org/abstracts/search?q=Gabriel%20Abedrabbo"> Gabriel Abedrabbo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Musculoskeletal disorders are an important category of work-related diseases. They are often caused by working in non-ergonomic postures and are preventable with proper workplace design, possibly including human-machine collaboration. This paper presents a methodology and a supporting software prototype to design a simple assembly cell with minimal ergonomic risk. The methodology helps to determine the optimal position and orientation of workpieces and workplace resources for specific operator assembly actions. The methodology is tested on an industrial use case: a collaborative robot (cobot) assisted assembly of a clamping device. It is shown that the automated methodology results in a workplace design with significantly reduced ergonomic risk to the operator compared to a manual design of the cell. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ergonomics%20optimization" title="ergonomics optimization">ergonomics optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20for%20ergonomics" title=" design for ergonomics"> design for ergonomics</a>, <a href="https://publications.waset.org/abstracts/search?q=workplace%20design" title=" workplace design"> workplace design</a>, <a href="https://publications.waset.org/abstracts/search?q=pose%20generation" title=" pose generation"> pose generation</a> </p> <a href="https://publications.waset.org/abstracts/153056/model-based-optimization-of-workplace-ergonomics-by-workpiece-and-resource-positioning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/153056.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">124</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">348</span> Analysis of the Relationship between the Unitary Impulse Response for the nth-Volterra Kernel of a Duffing Oscillator System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Guillermo%20Manuel%20Flores%20Figueroa">Guillermo Manuel Flores Figueroa</a>, <a href="https://publications.waset.org/abstracts/search?q=Juan%20Alejandro%20Vazquez%20Feijoo"> Juan Alejandro Vazquez Feijoo</a>, <a href="https://publications.waset.org/abstracts/search?q=Jose%20Navarro%20Antonio"> Jose Navarro Antonio</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A continuous nonlinear system response may be obtained by an infinite sum of the so-called Volterra operators. Each operator is obtained from multidimensional convolution of nth-order between the nth-order Volterra kernel and the system input. These operators can also be obtained from the Associated Linear Equations (ALEs) that are linear models of subsystems which inputs and outputs are of the same nth-order. Each ALEs produces a particular nth-Volterra operator. As linear models a unitary impulse response can be obtained from them. This work shows the relationship between this unitary impulse responses and the corresponding order Volterra kernel. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Volterra%20series" title="Volterra series">Volterra series</a>, <a href="https://publications.waset.org/abstracts/search?q=frequency%20response%20functions%20FRF" title=" frequency response functions FRF"> frequency response functions FRF</a>, <a href="https://publications.waset.org/abstracts/search?q=associated%20linear%20equations%20ALEs" title=" associated linear equations ALEs"> associated linear equations ALEs</a>, <a href="https://publications.waset.org/abstracts/search?q=unitary%20response%20function" title=" unitary response function"> unitary response function</a>, <a href="https://publications.waset.org/abstracts/search?q=Voterra%20kernel" title=" Voterra kernel"> Voterra kernel</a> </p> <a href="https://publications.waset.org/abstracts/29423/analysis-of-the-relationship-between-the-unitary-impulse-response-for-the-nth-volterra-kernel-of-a-duffing-oscillator-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29423.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">670</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">347</span> Differentiation of the Functional in an Optimization Problem for Coefficients of Elliptic Equations with Unbounded Nonlinearity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aigul%20Manapova">Aigul Manapova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We consider an optimal control problem in the higher coefficient of nonlinear equations with a divergent elliptic operator and unbounded nonlinearity, and the Dirichlet boundary condition. The conditions imposed on the coefficients of the state equation are assumed to hold only in a small neighborhood of the exact solution to the original problem. This assumption suggests that the state equation involves nonlinearities of unlimited growth and considerably expands the class of admissible functions as solutions of the state equation. We obtain formulas for the first partial derivatives of the objective functional with respect to the control functions. To calculate the gradients the numerical solutions of the state and adjoint problems are used. We also prove that the gradient of the cost function is Lipchitz continuous. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cost%20functional" title="cost functional">cost functional</a>, <a href="https://publications.waset.org/abstracts/search?q=differentiability" title=" differentiability"> differentiability</a>, <a href="https://publications.waset.org/abstracts/search?q=divergent%20elliptic%20operator" title=" divergent elliptic operator"> divergent elliptic operator</a>, <a href="https://publications.waset.org/abstracts/search?q=optimal%20control" title=" optimal control"> optimal control</a>, <a href="https://publications.waset.org/abstracts/search?q=unbounded%20nonlinearity" title=" unbounded nonlinearity"> unbounded nonlinearity</a> </p> <a href="https://publications.waset.org/abstracts/86468/differentiation-of-the-functional-in-an-optimization-problem-for-coefficients-of-elliptic-equations-with-unbounded-nonlinearity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/86468.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">172</span> </span> </div> </div> <ul class="pagination"> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=1" rel="prev">&lsaquo;</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=1">1</a></li> <li class="page-item active"><span class="page-link">2</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=13">13</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=14">14</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=contractive-like%20operator&amp;page=3" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10