CINXE.COM

Asas D'Alembert - Wikipedia bahasa Indonesia, ensiklopedia bebas

<!doctype html> <html class="client-nojs mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0" lang="id" dir="ltr"> <head> <base href="https://id.m.wikipedia.org/wiki/Asas_D'Alembert"> <meta charset="UTF-8"> <title>Asas D'Alembert - Wikipedia bahasa Indonesia, ensiklopedia bebas</title> <script>(function(){var className="client-js mf-expand-sections-clientpref-0 mf-font-size-clientpref-small mw-mf-amc-clientpref-0";var cookie=document.cookie.match(/(?:^|; )idwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":[",\t.",".\t,"],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy","wgMonthNames":["","Januari","Februari","Maret","April","Mei","Juni","Juli","Agustus","September","Oktober","November","Desember"],"wgRequestId":"3820202c-7d3c-45ca-97cd-03f42da47b2e","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Asas_D'Alembert","wgTitle":"Asas D'Alembert","wgCurRevisionId":25414180,"wgRevisionId":25414180,"wgArticleId":4246232,"wgIsArticle":true, "wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgPageViewLanguage":"id","wgPageContentLanguage":"id","wgPageContentModel":"wikitext","wgRelevantPageName":"Asas_D'Alembert","wgRelevantArticleId":4246232,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{"accuracy":{"levels":2}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"id","pageLanguageDir":"ltr","pageVariantFallbacks":"id"},"wgMFMode":"stable","wgMFAmc":false,"wgMFAmcOutreachActive":false,"wgMFAmcOutreachUserEligible":false,"wgMFLazyLoadImages":true,"wgMFEditNoticesFeatureConflict":false,"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":true,"nearby":true},"wgMFIsSupportedEditRequest":true,"wgMFScriptPath":"", "wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":true,"wgEditSubmitButtonLabelPublish":true,"wgSectionTranslationMissingLanguages":[{"lang":"ace","autonym":"Acèh","dir":"ltr"},{"lang":"ady","autonym":"адыгабзэ","dir":"ltr"},{"lang":"alt","autonym":"алтай тил","dir":"ltr"},{"lang":"am","autonym":"አማርኛ","dir":"ltr"},{"lang":"ami","autonym":"Pangcah","dir":"ltr"},{"lang":"an","autonym":"aragonés","dir":"ltr"},{"lang":"ang","autonym":"Ænglisc","dir":"ltr"},{"lang":"ann","autonym":"Obolo","dir":"ltr"},{"lang":"anp","autonym":"अंगिका","dir":"ltr"},{"lang":"ary","autonym":"الدارجة","dir":"rtl"},{"lang":"arz","autonym":"مصرى","dir":"rtl"},{"lang":"as","autonym":"অসমীয়া","dir":"ltr"},{"lang":"ast","autonym":"asturianu","dir":"ltr"},{"lang":"av","autonym":"авар","dir":"ltr"},{"lang":"avk","autonym":"Kotava","dir":"ltr"},{"lang":"awa","autonym": "अवधी","dir":"ltr"},{"lang":"ay","autonym":"Aymar aru","dir":"ltr"},{"lang":"az","autonym":"azərbaycanca","dir":"ltr"},{"lang":"azb","autonym":"تۆرکجه","dir":"rtl"},{"lang":"ba","autonym":"башҡортса","dir":"ltr"},{"lang":"ban","autonym":"Basa Bali","dir":"ltr"},{"lang":"bar","autonym":"Boarisch","dir":"ltr"},{"lang":"bbc","autonym":"Batak Toba","dir":"ltr"},{"lang":"bcl","autonym":"Bikol Central","dir":"ltr"},{"lang":"bdr","autonym":"Bajau Sama","dir":"ltr"},{"lang":"be","autonym":"беларуская","dir":"ltr"},{"lang":"bew","autonym":"Betawi","dir":"ltr"},{"lang":"bg","autonym":"български","dir":"ltr"},{"lang":"bho","autonym":"भोजपुरी","dir":"ltr"},{"lang":"bi","autonym":"Bislama","dir":"ltr"},{"lang":"bjn","autonym":"Banjar","dir":"ltr"},{"lang":"blk","autonym":"ပအိုဝ်ႏဘာႏသာႏ","dir":"ltr"},{"lang":"bm","autonym":"bamanankan","dir":"ltr"},{"lang":"bn","autonym":"বাংলা","dir":"ltr"},{"lang":"bo", "autonym":"བོད་ཡིག","dir":"ltr"},{"lang":"bpy","autonym":"বিষ্ণুপ্রিয়া মণিপুরী","dir":"ltr"},{"lang":"br","autonym":"brezhoneg","dir":"ltr"},{"lang":"bs","autonym":"bosanski","dir":"ltr"},{"lang":"btm","autonym":"Batak Mandailing","dir":"ltr"},{"lang":"bug","autonym":"Basa Ugi","dir":"ltr"},{"lang":"cdo","autonym":"閩東語 / Mìng-dĕ̤ng-ngṳ̄","dir":"ltr"},{"lang":"ce","autonym":"нохчийн","dir":"ltr"},{"lang":"ceb","autonym":"Cebuano","dir":"ltr"},{"lang":"ch","autonym":"Chamoru","dir":"ltr"},{"lang":"chr","autonym":"ᏣᎳᎩ","dir":"ltr"},{"lang":"ckb","autonym":"کوردی","dir":"rtl"},{"lang":"co","autonym":"corsu","dir":"ltr"},{"lang":"cr","autonym":"Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ","dir":"ltr"},{"lang":"crh","autonym":"qırımtatarca","dir":"ltr"},{"lang":"cu","autonym":"словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ","dir":"ltr"},{"lang":"cy","autonym":"Cymraeg","dir":"ltr"},{"lang":"da","autonym": "dansk","dir":"ltr"},{"lang":"dag","autonym":"dagbanli","dir":"ltr"},{"lang":"dga","autonym":"Dagaare","dir":"ltr"},{"lang":"din","autonym":"Thuɔŋjäŋ","dir":"ltr"},{"lang":"diq","autonym":"Zazaki","dir":"ltr"},{"lang":"dsb","autonym":"dolnoserbski","dir":"ltr"},{"lang":"dtp","autonym":"Kadazandusun","dir":"ltr"},{"lang":"dv","autonym":"ދިވެހިބަސް","dir":"rtl"},{"lang":"dz","autonym":"ཇོང་ཁ","dir":"ltr"},{"lang":"ee","autonym":"eʋegbe","dir":"ltr"},{"lang":"el","autonym":"Ελληνικά","dir":"ltr"},{"lang":"eml","autonym":"emiliàn e rumagnòl","dir":"ltr"},{"lang":"eo","autonym":"Esperanto","dir":"ltr"},{"lang":"et","autonym":"eesti","dir":"ltr"},{"lang":"eu","autonym":"euskara","dir":"ltr"},{"lang":"fat","autonym":"mfantse","dir":"ltr"},{"lang":"ff","autonym":"Fulfulde","dir":"ltr"},{"lang":"fi","autonym":"suomi","dir":"ltr"},{"lang":"fj","autonym":"Na Vosa Vakaviti","dir":"ltr"},{"lang":"fo","autonym":"føroyskt","dir":"ltr"},{"lang":"fon","autonym": "fɔ̀ngbè","dir":"ltr"},{"lang":"frp","autonym":"arpetan","dir":"ltr"},{"lang":"frr","autonym":"Nordfriisk","dir":"ltr"},{"lang":"fur","autonym":"furlan","dir":"ltr"},{"lang":"fy","autonym":"Frysk","dir":"ltr"},{"lang":"gag","autonym":"Gagauz","dir":"ltr"},{"lang":"gan","autonym":"贛語","dir":"ltr"},{"lang":"gcr","autonym":"kriyòl gwiyannen","dir":"ltr"},{"lang":"gl","autonym":"galego","dir":"ltr"},{"lang":"glk","autonym":"گیلکی","dir":"rtl"},{"lang":"gn","autonym":"Avañe'ẽ","dir":"ltr"},{"lang":"gom","autonym":"गोंयची कोंकणी / Gõychi Konknni","dir":"ltr"},{"lang":"gor","autonym":"Bahasa Hulontalo","dir":"ltr"},{"lang":"gpe","autonym":"Ghanaian Pidgin","dir":"ltr"},{"lang":"gu","autonym":"ગુજરાતી","dir":"ltr"},{"lang":"guc","autonym":"wayuunaiki","dir":"ltr"},{"lang":"gur","autonym":"farefare","dir":"ltr"},{"lang":"guw","autonym":"gungbe","dir":"ltr"},{"lang":"gv","autonym":"Gaelg","dir":"ltr"},{"lang":"ha","autonym":"Hausa","dir": "ltr"},{"lang":"hak","autonym":"客家語 / Hak-kâ-ngî","dir":"ltr"},{"lang":"haw","autonym":"Hawaiʻi","dir":"ltr"},{"lang":"hif","autonym":"Fiji Hindi","dir":"ltr"},{"lang":"hr","autonym":"hrvatski","dir":"ltr"},{"lang":"hsb","autonym":"hornjoserbsce","dir":"ltr"},{"lang":"ht","autonym":"Kreyòl ayisyen","dir":"ltr"},{"lang":"hyw","autonym":"Արեւմտահայերէն","dir":"ltr"},{"lang":"ia","autonym":"interlingua","dir":"ltr"},{"lang":"iba","autonym":"Jaku Iban","dir":"ltr"},{"lang":"ie","autonym":"Interlingue","dir":"ltr"},{"lang":"ig","autonym":"Igbo","dir":"ltr"},{"lang":"igl","autonym":"Igala","dir":"ltr"},{"lang":"ilo","autonym":"Ilokano","dir":"ltr"},{"lang":"io","autonym":"Ido","dir":"ltr"},{"lang":"is","autonym":"íslenska","dir":"ltr"},{"lang":"iu","autonym":"ᐃᓄᒃᑎᑐᑦ / inuktitut","dir":"ltr"},{"lang":"jam","autonym":"Patois","dir":"ltr"},{"lang":"jv","autonym":"Jawa","dir":"ltr"},{"lang":"ka","autonym":"ქართული","dir":"ltr"},{"lang":"kaa", "autonym":"Qaraqalpaqsha","dir":"ltr"},{"lang":"kab","autonym":"Taqbaylit","dir":"ltr"},{"lang":"kbd","autonym":"адыгэбзэ","dir":"ltr"},{"lang":"kbp","autonym":"Kabɩyɛ","dir":"ltr"},{"lang":"kcg","autonym":"Tyap","dir":"ltr"},{"lang":"kg","autonym":"Kongo","dir":"ltr"},{"lang":"kge","autonym":"Kumoring","dir":"ltr"},{"lang":"ki","autonym":"Gĩkũyũ","dir":"ltr"},{"lang":"kl","autonym":"kalaallisut","dir":"ltr"},{"lang":"km","autonym":"ភាសាខ្មែរ","dir":"ltr"},{"lang":"kn","autonym":"ಕನ್ನಡ","dir":"ltr"},{"lang":"koi","autonym":"перем коми","dir":"ltr"},{"lang":"krc","autonym":"къарачай-малкъар","dir":"ltr"},{"lang":"ks","autonym":"कॉशुर / کٲشُر","dir":"rtl"},{"lang":"ku","autonym":"kurdî","dir":"ltr"},{"lang":"kus","autonym":"Kʋsaal","dir":"ltr"},{"lang":"kv","autonym":"коми","dir":"ltr"},{"lang":"kw","autonym":"kernowek","dir":"ltr"},{"lang":"ky","autonym":"кыргызча","dir":"ltr"},{"lang":"lad", "autonym":"Ladino","dir":"ltr"},{"lang":"lb","autonym":"Lëtzebuergesch","dir":"ltr"},{"lang":"lez","autonym":"лезги","dir":"ltr"},{"lang":"lg","autonym":"Luganda","dir":"ltr"},{"lang":"li","autonym":"Limburgs","dir":"ltr"},{"lang":"lij","autonym":"Ligure","dir":"ltr"},{"lang":"lld","autonym":"Ladin","dir":"ltr"},{"lang":"lmo","autonym":"lombard","dir":"ltr"},{"lang":"ln","autonym":"lingála","dir":"ltr"},{"lang":"lo","autonym":"ລາວ","dir":"ltr"},{"lang":"lt","autonym":"lietuvių","dir":"ltr"},{"lang":"ltg","autonym":"latgaļu","dir":"ltr"},{"lang":"lv","autonym":"latviešu","dir":"ltr"},{"lang":"mad","autonym":"Madhurâ","dir":"ltr"},{"lang":"mai","autonym":"मैथिली","dir":"ltr"},{"lang":"map-bms","autonym":"Basa Banyumasan","dir":"ltr"},{"lang":"mdf","autonym":"мокшень","dir":"ltr"},{"lang":"mg","autonym":"Malagasy","dir":"ltr"},{"lang":"mhr","autonym":"олык марий","dir":"ltr"},{"lang":"mi","autonym":"Māori","dir":"ltr"},{"lang":"min","autonym": "Minangkabau","dir":"ltr"},{"lang":"mk","autonym":"македонски","dir":"ltr"},{"lang":"ml","autonym":"മലയാളം","dir":"ltr"},{"lang":"mn","autonym":"монгол","dir":"ltr"},{"lang":"mni","autonym":"ꯃꯤꯇꯩ ꯂꯣꯟ","dir":"ltr"},{"lang":"mnw","autonym":"ဘာသာမန်","dir":"ltr"},{"lang":"mos","autonym":"moore","dir":"ltr"},{"lang":"mr","autonym":"मराठी","dir":"ltr"},{"lang":"mrj","autonym":"кырык мары","dir":"ltr"},{"lang":"ms","autonym":"Bahasa Melayu","dir":"ltr"},{"lang":"mt","autonym":"Malti","dir":"ltr"},{"lang":"mwl","autonym":"Mirandés","dir":"ltr"},{"lang":"my","autonym":"မြန်မာဘာသာ","dir":"ltr"},{"lang":"myv","autonym":"эрзянь","dir":"ltr"},{"lang":"mzn","autonym":"مازِرونی","dir":"rtl"},{"lang":"nah","autonym":"Nāhuatl","dir":"ltr"},{"lang":"nan","autonym":"閩南語 / Bân-lâm-gú","dir":"ltr"},{"lang":"nap","autonym":"Napulitano","dir":"ltr"},{"lang":"nb","autonym":"norsk bokmål", "dir":"ltr"},{"lang":"nds","autonym":"Plattdüütsch","dir":"ltr"},{"lang":"nds-nl","autonym":"Nedersaksies","dir":"ltr"},{"lang":"ne","autonym":"नेपाली","dir":"ltr"},{"lang":"new","autonym":"नेपाल भाषा","dir":"ltr"},{"lang":"nia","autonym":"Li Niha","dir":"ltr"},{"lang":"nl","autonym":"Nederlands","dir":"ltr"},{"lang":"nqo","autonym":"ߒߞߏ","dir":"rtl"},{"lang":"nr","autonym":"isiNdebele seSewula","dir":"ltr"},{"lang":"nso","autonym":"Sesotho sa Leboa","dir":"ltr"},{"lang":"ny","autonym":"Chi-Chewa","dir":"ltr"},{"lang":"oc","autonym":"occitan","dir":"ltr"},{"lang":"om","autonym":"Oromoo","dir":"ltr"},{"lang":"or","autonym":"ଓଡ଼ିଆ","dir":"ltr"},{"lang":"os","autonym":"ирон","dir":"ltr"},{"lang":"pa","autonym":"ਪੰਜਾਬੀ","dir":"ltr"},{"lang":"pag","autonym":"Pangasinan","dir":"ltr"},{"lang":"pam","autonym":"Kapampangan","dir":"ltr"},{"lang":"pap","autonym":"Papiamentu","dir":"ltr"},{"lang":"pcd","autonym":"Picard","dir":"ltr"},{ "lang":"pcm","autonym":"Naijá","dir":"ltr"},{"lang":"pdc","autonym":"Deitsch","dir":"ltr"},{"lang":"pms","autonym":"Piemontèis","dir":"ltr"},{"lang":"pnb","autonym":"پنجابی","dir":"rtl"},{"lang":"ps","autonym":"پښتو","dir":"rtl"},{"lang":"pwn","autonym":"pinayuanan","dir":"ltr"},{"lang":"qu","autonym":"Runa Simi","dir":"ltr"},{"lang":"rm","autonym":"rumantsch","dir":"ltr"},{"lang":"rn","autonym":"ikirundi","dir":"ltr"},{"lang":"ro","autonym":"română","dir":"ltr"},{"lang":"rsk","autonym":"руски","dir":"ltr"},{"lang":"rue","autonym":"русиньскый","dir":"ltr"},{"lang":"rup","autonym":"armãneashti","dir":"ltr"},{"lang":"rw","autonym":"Ikinyarwanda","dir":"ltr"},{"lang":"sa","autonym":"संस्कृतम्","dir":"ltr"},{"lang":"sah","autonym":"саха тыла","dir":"ltr"},{"lang":"sat","autonym":"ᱥᱟᱱᱛᱟᱲᱤ","dir":"ltr"},{"lang":"sc","autonym":"sardu","dir":"ltr"},{"lang":"scn","autonym":"sicilianu","dir":"ltr"},{"lang":"sco","autonym": "Scots","dir":"ltr"},{"lang":"sd","autonym":"سنڌي","dir":"rtl"},{"lang":"se","autonym":"davvisámegiella","dir":"ltr"},{"lang":"sg","autonym":"Sängö","dir":"ltr"},{"lang":"sgs","autonym":"žemaitėška","dir":"ltr"},{"lang":"sh","autonym":"srpskohrvatski / српскохрватски","dir":"ltr"},{"lang":"shi","autonym":"Taclḥit","dir":"ltr"},{"lang":"shn","autonym":"ၽႃႇသႃႇတႆး ","dir":"ltr"},{"lang":"si","autonym":"සිංහල","dir":"ltr"},{"lang":"sk","autonym":"slovenčina","dir":"ltr"},{"lang":"skr","autonym":"سرائیکی","dir":"rtl"},{"lang":"sm","autonym":"Gagana Samoa","dir":"ltr"},{"lang":"smn","autonym":"anarâškielâ","dir":"ltr"},{"lang":"sn","autonym":"chiShona","dir":"ltr"},{"lang":"so","autonym":"Soomaaliga","dir":"ltr"},{"lang":"srn","autonym":"Sranantongo","dir":"ltr"},{"lang":"ss","autonym":"SiSwati","dir":"ltr"},{"lang":"st","autonym":"Sesotho","dir":"ltr"},{"lang":"stq","autonym":"Seeltersk","dir":"ltr"},{"lang":"su","autonym": "Sunda","dir":"ltr"},{"lang":"sw","autonym":"Kiswahili","dir":"ltr"},{"lang":"szl","autonym":"ślůnski","dir":"ltr"},{"lang":"ta","autonym":"தமிழ்","dir":"ltr"},{"lang":"tay","autonym":"Tayal","dir":"ltr"},{"lang":"tcy","autonym":"ತುಳು","dir":"ltr"},{"lang":"tdd","autonym":"ᥖᥭᥰ ᥖᥬᥲ ᥑᥨᥒᥰ","dir":"ltr"},{"lang":"tet","autonym":"tetun","dir":"ltr"},{"lang":"tg","autonym":"тоҷикӣ","dir":"ltr"},{"lang":"ti","autonym":"ትግርኛ","dir":"ltr"},{"lang":"tk","autonym":"Türkmençe","dir":"ltr"},{"lang":"tl","autonym":"Tagalog","dir":"ltr"},{"lang":"tly","autonym":"tolışi","dir":"ltr"},{"lang":"tn","autonym":"Setswana","dir":"ltr"},{"lang":"to","autonym":"lea faka-Tonga","dir":"ltr"},{"lang":"tpi","autonym":"Tok Pisin","dir":"ltr"},{"lang":"tr","autonym":"Türkçe","dir":"ltr"},{"lang":"trv","autonym":"Seediq","dir":"ltr"},{"lang":"ts","autonym":"Xitsonga","dir":"ltr"},{"lang":"tt","autonym":"татарча / tatarça","dir":"ltr"},{"lang":"tum", "autonym":"chiTumbuka","dir":"ltr"},{"lang":"tw","autonym":"Twi","dir":"ltr"},{"lang":"ty","autonym":"reo tahiti","dir":"ltr"},{"lang":"tyv","autonym":"тыва дыл","dir":"ltr"},{"lang":"udm","autonym":"удмурт","dir":"ltr"},{"lang":"ur","autonym":"اردو","dir":"rtl"},{"lang":"ve","autonym":"Tshivenda","dir":"ltr"},{"lang":"vec","autonym":"vèneto","dir":"ltr"},{"lang":"vep","autonym":"vepsän kel’","dir":"ltr"},{"lang":"vi","autonym":"Tiếng Việt","dir":"ltr"},{"lang":"vls","autonym":"West-Vlams","dir":"ltr"},{"lang":"vo","autonym":"Volapük","dir":"ltr"},{"lang":"vro","autonym":"võro","dir":"ltr"},{"lang":"wa","autonym":"walon","dir":"ltr"},{"lang":"war","autonym":"Winaray","dir":"ltr"},{"lang":"wo","autonym":"Wolof","dir":"ltr"},{"lang":"wuu","autonym":"吴语","dir":"ltr"},{"lang":"xal","autonym":"хальмг","dir":"ltr"},{"lang":"xh","autonym":"isiXhosa","dir":"ltr"},{"lang":"xmf","autonym":"მარგალური","dir":"ltr"},{"lang":"yi","autonym": "ייִדיש","dir":"rtl"},{"lang":"yo","autonym":"Yorùbá","dir":"ltr"},{"lang":"yue","autonym":"粵語","dir":"ltr"},{"lang":"za","autonym":"Vahcuengh","dir":"ltr"},{"lang":"zgh","autonym":"ⵜⴰⵎⴰⵣⵉⵖⵜ ⵜⴰⵏⴰⵡⴰⵢⵜ","dir":"ltr"},{"lang":"zu","autonym":"isiZulu","dir":"ltr"}],"wgSectionTranslationTargetLanguages":["ace","ady","alt","am","ami","an","ang","ann","anp","ar","ary","arz","as","ast","av","avk","awa","ay","az","azb","ba","ban","bar","bbc","bcl","bdr","be","bew","bg","bho","bi","bjn","blk","bm","bn","bo","bpy","br","bs","btm","bug","ca","cdo","ce","ceb","ch","chr","ckb","co","cr","crh","cs","cu","cy","da","dag","de","dga","din","diq","dsb","dtp","dv","dz","ee","el","eml","eo","es","et","eu","fa","fat","ff","fi","fj","fo","fon","fr","frp","frr","fur","fy","gag","gan","gcr","gl","glk","gn","gom","gor","gpe","gu","guc","gur","guw","gv","ha","hak","haw","he","hi","hif","hr","hsb","ht","hu","hy","hyw","ia","iba","ie","ig","igl","ilo","io","is","it","iu", "ja","jam","jv","ka","kaa","kab","kbd","kbp","kcg","kg","kge","ki","kk","kl","km","kn","ko","koi","krc","ks","ku","kus","kv","kw","ky","lad","lb","lez","lg","li","lij","lld","lmo","ln","lo","lt","ltg","lv","mad","mai","map-bms","mdf","mg","mhr","mi","min","mk","ml","mn","mni","mnw","mos","mr","mrj","ms","mt","mwl","my","myv","mzn","nah","nan","nap","nb","nds","nds-nl","ne","new","nia","nl","nn","nqo","nr","nso","ny","oc","om","or","os","pa","pag","pam","pap","pcd","pcm","pdc","pl","pms","pnb","ps","pt","pwn","qu","rm","rn","ro","rsk","rue","rup","rw","sa","sah","sat","sc","scn","sco","sd","se","sg","sgs","sh","shi","shn","si","sk","skr","sl","sm","smn","sn","so","sq","sr","srn","ss","st","stq","su","sv","sw","szl","ta","tay","tcy","tdd","te","tet","tg","th","ti","tk","tl","tly","tn","to","tpi","tr","trv","ts","tt","tum","tw","ty","tyv","udm","ur","uz","ve","vec","vep","vi","vls","vo","vro","wa","war","wo","wuu","xal","xh","xmf","yi","yo","yue","za","zgh","zh","zu"], "isLanguageSearcherCXEntrypointEnabled":true,"mintEntrypointLanguages":["ace","ast","azb","bcl","bjn","bh","crh","ff","fon","ig","is","ki","ks","lmo","min","sat","ss","tn","vec"],"wgWikibaseItemId":"Q753007","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false,"wgMinervaPermissions":{"watchable":true,"watch":false},"wgMinervaFeatures":{"beta":false,"donate":true,"mobileOptionsLink":true,"categories":false,"pageIssues":true,"talkAtTop":false,"historyInPageActions":false,"overflowSubmenu":false,"tabsOnSpecials":true,"personalMenu":false,"mainMenuExpanded":false,"echo":true,"nightMode":false},"wgMinervaDownloadNamespaces":[0]};RLSTATE={"ext.gadget.charinsert-styles":"ready","ext.globalCssJs.user.styles":"ready","site.styles":"ready", "user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.cite.styles":"ready","ext.math.styles":"ready","skins.minerva.styles":"ready","skins.minerva.content.styles.images":"ready","mediawiki.hlist":"ready","skins.minerva.codex.styles":"ready","skins.minerva.icons":"ready","ext.wikimediamessages.styles":"ready","mobile.init.styles":"ready","ext.relatedArticles.styles":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","site","mediawiki.page.ready","skins.minerva.scripts","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.watchlist-notice","ext.gadget.charinsert","ext.gadget.refToolbar","ext.gadget.AdvancedSiteNotices","ext.gadget.switcher","ext.gadget.Bagikan","ext.gadget.CurIDLink","ext.urlShortener.toolbar","ext.centralauth.centralautologin","ext.popups","mobile.init","ext.echo.centralauth","ext.relatedArticles.readMore.bootstrap","ext.eventLogging", "ext.wikimediaEvents","ext.navigationTiming","ext.cx.eventlogging.campaigns","ext.cx.entrypoints.mffrequentlanguages","ext.cx.entrypoints.languagesearcher.init","mw.externalguidance.init","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","oojs-ui.styles.icons-media","oojs-ui-core.icons","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=ext.cite.styles%7Cext.math.styles%7Cext.relatedArticles.styles%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cmediawiki.hlist%7Cmobile.init.styles%7Cskins.minerva.codex.styles%7Cskins.minerva.content.styles.images%7Cskins.minerva.icons%2Cstyles%7Cwikibase.client.init&amp;only=styles&amp;skin=minerva"> <script async src="/w/load.php?lang=id&amp;modules=startup&amp;only=scripts&amp;raw=1&amp;skin=minerva"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=ext.gadget.charinsert-styles&amp;only=styles&amp;skin=minerva"> <link rel="stylesheet" href="/w/load.php?lang=id&amp;modules=site.styles&amp;only=styles&amp;skin=minerva"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="theme-color" content="#eaecf0"> <meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes, minimum-scale=0.25, maximum-scale=5.0"> <meta property="og:title" content="Asas D'Alembert - Wikipedia bahasa Indonesia, ensiklopedia bebas"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="manifest" href="/w/api.php?action=webapp-manifest"> <link rel="alternate" type="application/x-wiki" title="Sunting" href="/w/index.php?title=Asas_D%27Alembert&amp;action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (id)"> <link rel="EditURI" type="application/rsd+xml" href="//id.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://id.wikipedia.org/wiki/Asas_D%27Alembert"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.id"> <link rel="dns-prefetch" href="//meta.wikimedia.org"> <link rel="dns-prefetch" href="//login.wikimedia.org"> <meta http-equiv="X-Translated-By" content="Google"> <meta http-equiv="X-Translated-To" content="en"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.1hbgkFx4Qn8.O/am=DgY/d=1/rs=AN8SPfqlmAPxwfG457BPbRXwNq39oSMGHg/m=corsproxy" data-sourceurl="https://id.m.wikipedia.org/wiki/Asas_D'Alembert"></script> <link href="https://fonts.googleapis.com/css2?family=Material+Symbols+Outlined:opsz,wght,FILL,GRAD@20..48,100..700,0..1,-50..200" rel="stylesheet"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.1hbgkFx4Qn8.O/am=DgY/d=1/exm=corsproxy/ed=1/rs=AN8SPfqlmAPxwfG457BPbRXwNq39oSMGHg/m=phishing_protection" data-phishing-protection-enabled="false" data-forms-warning-enabled="true" data-source-url="https://id.m.wikipedia.org/wiki/Asas_D'Alembert"></script> <meta name="robots" content="none"> </head> <body class="mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Asas_D_Alembert rootpage-Asas_D_Alembert stable issues-group-B skin-minerva action-view skin--responsive mw-mf-amc-disabled mw-mf"> <script type="text/javascript" src="https://www.gstatic.com/_/translate_http/_/js/k=translate_http.tr.en_GB.1hbgkFx4Qn8.O/am=DgY/d=1/exm=corsproxy,phishing_protection/ed=1/rs=AN8SPfqlmAPxwfG457BPbRXwNq39oSMGHg/m=navigationui" data-environment="prod" data-proxy-url="https://id-m-wikipedia-org.translate.goog" data-proxy-full-url="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-source-url="https://id.m.wikipedia.org/wiki/Asas_D'Alembert" data-source-language="auto" data-target-language="en" data-display-language="en-GB" data-detected-source-language="id" data-is-source-untranslated="false" data-source-untranslated-url="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://id.m.wikipedia.org/wiki/Asas_D'Alembert&amp;anno=2" data-client="tr"></script> <div id="mw-mf-viewport"> <div id="mw-mf-page-center"><a class="mw-mf-page-center__mask" href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#"></a> <header class="header-container header-chrome"> <div class="minerva-header"> <nav class="navigation-drawer toggle-list view-border-box"><input type="checkbox" id="main-menu-input" class="toggle-list__checkbox" role="button" aria-haspopup="true" aria-expanded="false" aria-labelledby="mw-mf-main-menu-button"> <label role="button" for="main-menu-input" id="mw-mf-main-menu-button" aria-hidden="true" data-event-name="ui.mainmenu" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet toggle-list__toggle"> <span class="minerva-icon minerva-icon--menu"></span> <span></span> </label> <div id="mw-mf-page-left" class="menu view-border-box"> <ul id="p-navigation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--home" href="https://id-m-wikipedia-org.translate.goog/wiki/Halaman_Utama?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--home"></span> <span class="toggle-list-item__label">Beranda</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--random" href="https://id-m-wikipedia-org.translate.goog/wiki/Istimewa:Halaman_sembarang?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="minerva-icon minerva-icon--die"></span> <span class="toggle-list-item__label">Sembarang</span> </a></li> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--nearby" href="https://id-m-wikipedia-org.translate.goog/wiki/Istimewa:Nearby?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.nearby" data-mw="interface"> <span class="minerva-icon minerva-icon--mapPin"></span> <span class="toggle-list-item__label">Sekitaran</span> </a></li> </ul> <ul id="p-personal" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--login" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Istimewa:Masuk_log&amp;returnto=Asas+D'Alembert&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.login" data-mw="interface"> <span class="minerva-icon minerva-icon--logIn"></span> <span class="toggle-list-item__label">Masuk log</span> </a></li> </ul> <ul id="pt-preferences" class="toggle-list__list"> <li class="toggle-list-item skin-minerva-list-item-jsonly"><a class="toggle-list-item__anchor menu__item--settings" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Istimewa:MobileOptions&amp;returnto=Asas+D'Alembert&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.settings" data-mw="interface"> <span class="minerva-icon minerva-icon--settings"></span> <span class="toggle-list-item__label">Pengaturan</span> </a></li> </ul> <ul id="p-donation" class="toggle-list__list"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--donate" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source%3Ddonate%26utm_medium%3Dsidebar%26utm_campaign%3DC13_id.wikipedia.org%26uselang%3Did%26utm_key%3Dminerva" data-event-name="menu.donate" data-mw="interface"> <span class="minerva-icon minerva-icon--heart"></span> <span class="toggle-list-item__label">Menyumbang</span> </a></li> </ul> <ul class="hlist"> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--about" href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Tentang?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Tentang Wikipedia</span> </a></li> <li class="toggle-list-item "><a class="toggle-list-item__anchor menu__item--disclaimers" href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Penyangkalan_umum?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-mw="interface"> <span class="toggle-list-item__label">Penyangkalan</span> </a></li> </ul> </div><label class="main-menu-mask" for="main-menu-input"></label> </nav> <div class="branding-box"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Halaman_Utama?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <span><img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </span> </a> </div> <form action="/w/index.php" method="get" class="minerva-search-form"> <div class="search-box"><input type="hidden" name="title" value="Istimewa:Pencarian"> <input class="search skin-minerva-search-trigger" id="searchInput" type="search" name="search" placeholder="Telusuri Wikipedia" aria-label="Telusuri Wikipedia" autocapitalize="sentences" title="Cari di Wikipedia [f]" accesskey="f"> <span class="search-box-icon-overlay"><span class="minerva-icon minerva-icon--search"></span> </span> </div><button id="searchIcon" class="cdx-button cdx-button--size-large cdx-button--icon-only cdx-button--weight-quiet skin-minerva-search-trigger"> <span class="minerva-icon minerva-icon--search"></span> <span>Cari</span> </button> </form> <nav class="minerva-user-navigation" aria-label="Navigasi pengguna"> </nav> </div> </header> <main id="content" class="mw-body"> <div class="banner-container"> <div id="siteNotice"></div> </div> <div class="pre-content heading-holder"> <div class="page-heading"> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Asas D'Alembert</span></h1> <div class="tagline"></div> </div> <nav class="page-actions-menu"> <ul id="p-views" class="page-actions-menu__list"> <li id="language-selector" class="page-actions-menu__list-item"><a role="button" href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#p-lang" data-mw="interface" data-event-name="menu.languages" title="Bahasa" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet language-selector"> <span class="minerva-icon minerva-icon--language"></span> <span>Bahasa</span> </a></li> <li id="page-actions-watch" class="page-actions-menu__list-item"><a role="button" id="ca-watch" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Istimewa:Masuk_log&amp;returnto=Asas+D'Alembert&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.watch" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet menu__item--page-actions-watch"> <span class="minerva-icon minerva-icon--star"></span> <span>Pantau</span> </a></li> <li id="page-actions-edit" class="page-actions-menu__list-item"><a role="button" id="ca-edit" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" data-event-name="menu.edit" data-mw="interface" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet edit-page menu__item--page-actions-edit"> <span class="minerva-icon minerva-icon--edit"></span> <span>Sunting</span> </a></li> </ul> </nav><!-- version 1.0.2 (change every time you update a partial) --> <div id="mw-content-subtitle"></div> </div> <div id="bodyContent" class="content"> <div id="mw-content-text" class="mw-body-content"> <script>function mfTempOpenSection(id){var block=document.getElementById("mf-section-"+id);block.className+=" open-block";block.previousSibling.className+=" open-block";}</script> <div class="mw-content-ltr mw-parser-output" lang="id" dir="ltr"> <section class="mf-section-0" id="mf-section-0"> <p><b>Asas d'Alembert</b>, juga dikenal sebagai <b>asas Lagrange-d'Alembert</b>, adalah pernyataan hukum gerak klasik yang mendasar. Dinamakan sesuai dengan penemunya, fisikawan dan matematikawan Prancis <a href="https://id-m-wikipedia-org.translate.goog/wiki/Jean_le_Rond_d%27Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Jean le Rond d'Alembert">Jean le Rond d'Alembert</a>, dan matematikawan Prancis-Italia <a href="https://id-m-wikipedia-org.translate.goog/wiki/Joseph-Louis_de_Lagrange?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Joseph-Louis de Lagrange">Joseph Louis de Lagrange.</a> Asas d'Alembert menggeneralisasi <a href="https://id-m-wikipedia-org.translate.goog/wiki/Kerja_maya?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Kerja maya">prinsip kerja maya</a> dari sistem <a href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Statis&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Statis (halaman belum tersedia)">statis</a> ke <a href="https://id-m-wikipedia-org.translate.goog/wiki/Dinamis?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-disambig" title="Dinamis">dinamis</a> dengan memperkenalkan <i>gaya inersia</i>, dimana jika ditambahkan pada gaya yang diterapkan dalam suatu sistem akan menghasilkan keseimbangan dinamis.<sup id="cite_ref-:0_1-0" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:0-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-2" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup></p> <p>Asas d'Alembert dapat diterapkan dalam kasus kendala kinematik yang bergantung pada kecepatan.<sup id="cite_ref-:0_1-1" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:0-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup>:92</sup> Asas ini tidak berlaku untuk perpindahan yang tidak dapat dipulihkan, seperti <a href="https://id-m-wikipedia-org.translate.goog/wiki/Gesekan?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Gesekan">gesekan</a> geser, dan diperlukan spesifikasi yang lebih umum tentang ketidakberubahan.<sup id="cite_ref-3" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-:1_4-0" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:1-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></p> <div id="toc" class="toc" role="navigation" aria-labelledby="mw-toc-heading"> <input type="checkbox" role="button" id="toctogglecheckbox" class="toctogglecheckbox" style="display:none"> <div class="toctitle" lang="id" dir="ltr"> <h2 id="mw-toc-heading">Daftar isi</h2><span class="toctogglespan"><label class="toctogglelabel" for="toctogglecheckbox"></label></span> </div> <ul> <li class="toclevel-1 tocsection-1"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Pernyataan_asas"><span class="tocnumber">1</span> <span class="toctext">Pernyataan asas</span></a></li> <li class="toclevel-1 tocsection-2"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Turunan"><span class="tocnumber">2</span> <span class="toctext">Turunan</span></a> <ul> <li class="toclevel-2 tocsection-3"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Kasus_umum_dengan_massa_variabel"><span class="tocnumber">2.1</span> <span class="toctext">Kasus umum dengan massa variabel</span></a></li> <li class="toclevel-2 tocsection-4"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Kasus_khusus_dengan_massa_konstan"><span class="tocnumber">2.2</span> <span class="toctext">Kasus khusus dengan massa konstan</span></a></li> </ul></li> <li class="toclevel-1 tocsection-5"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Gaya_inersia_asas_d'Alembert"><span class="tocnumber">3</span> <span class="toctext">Gaya inersia asas d'Alembert</span></a></li> <li class="toclevel-1 tocsection-6"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Ekuilibrium_dinamis"><span class="tocnumber">4</span> <span class="toctext">Ekuilibrium dinamis</span></a></li> <li class="toclevel-1 tocsection-7"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Formulasi_menggunakan_Lagrangian"><span class="tocnumber">5</span> <span class="toctext">Formulasi menggunakan Lagrangian</span></a></li> <li class="toclevel-1 tocsection-8"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Generalisasi_untuk_termodinamika"><span class="tocnumber">6</span> <span class="toctext">Generalisasi untuk termodinamika</span></a></li> <li class="toclevel-1 tocsection-9"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#Referensi"><span class="tocnumber">7</span> <span class="toctext">Referensi</span></a></li> </ul> </div> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(1)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Pernyataan_asas">Pernyataan asas</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;section=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Pernyataan asas" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-1 collapsible-block" id="mf-section-1"> <p>Asas ini menyatakan bahwa jumlah perbedaan antara <a href="https://id-m-wikipedia-org.translate.goog/wiki/Gaya_(fisika)?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gaya (fisika)">gaya</a> yang bekerja pada sistem partikel masif dan <a href="https://id-m-wikipedia-org.translate.goog/wiki/Turunan_waktu?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Turunan waktu">turunan waktu</a> dari <a href="https://id-m-wikipedia-org.translate.goog/wiki/Momentum?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Momentum">momentum</a> sistem itu sendiri yang diproyeksikan ke <a href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Perpindahan_maya&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Perpindahan maya (halaman belum tersedia)">perpindahan maya</a> apa pun yang konsisten dengan batasan sistem adalah nol. Dengan demikian, dalam notasi matematika, prinsip d'Alembert dituliskan sebagai berikut.</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}(\mathbf {F} _{i}-m_{i}{\dot {\mathbf {v} }}_{i}-{\dot {m}}_{i}\mathbf {v} _{i})\cdot \delta \mathbf {r} _{i}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> m </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{i}(\mathbf {F} _{i}-m_{i}{\dot {\mathbf {v} }}_{i}-{\dot {m}}_{i}\mathbf {v} _{i})\cdot \delta \mathbf {r} _{i}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9ddcfebd252a92f0a8d875c0bd829af4e2fb9e3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.319ex; height:5.509ex;" alt="{\displaystyle \sum _{i}(\mathbf {F} _{i}-m_{i}{\dot {\mathbf {v} }}_{i}-{\dot {m}}_{i}\mathbf {v} _{i})\cdot \delta \mathbf {r} _{i}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 32.319ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/e9ddcfebd252a92f0a8d875c0bd829af4e2fb9e3" data-alt="{\displaystyle \sum _{i}(\mathbf {F} _{i}-m_{i}{\dot {\mathbf {v} }}_{i}-{\dot {m}}_{i}\mathbf {v} _{i})\cdot \delta \mathbf {r} _{i}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>dimana:</p> <ul> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah sebuah bilangan bulat yang digunakan untuk mengindikasikan (melalui subskrip) sebuah variabel yang berhubungan dengan partikel tertentu di dalam sistem,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.482ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.482ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" data-alt="{\displaystyle \mathbf {F} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah total gaya yang diberikan (tidak termasuk gaya pembatas) pada partikel ke-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec8e804f69706d3f5ad235f4f983220c8df7c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.84ex; height:2.009ex;" alt="{\displaystyle m_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.84ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec8e804f69706d3f5ad235f4f983220c8df7c2" data-alt="{\displaystyle m_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah massa partikel ke-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {v} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {v} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.211ex; height:2.009ex;" alt="{\displaystyle \mathbf {v} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.211ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/51747274b58895dd357bb270ba1b5cb71e4fa355" data-alt="{\displaystyle \mathbf {v} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah kecepatan partikel ke-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a56ef713418eb51bfcd06f4833292c71b063af42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.95ex; height:2.676ex;" alt="{\displaystyle \delta \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.95ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a56ef713418eb51bfcd06f4833292c71b063af42" data-alt="{\displaystyle \delta \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah perpindahan maya partikel ke-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, konsisten dengan batasan.</li> </ul> <p>Notasi titik Newton digunakan untuk merepresentasikan turunan terhadap waktu. Persamaan di atas sering disebut asas d'Alembert, tetapi pertama kali ditulis dalam bentuk variasi ini oleh <a href="https://id-m-wikipedia-org.translate.goog/wiki/Joseph-Louis_de_Lagrange?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Joseph-Louis de Lagrange">Joseph Louis de Lagrange</a>. Kontribusi d'Alembert adalah untuk menunjukkan bahwa dalam totalitas sistem dinamis, gaya pembatas menghilang. Artinya, gaya umum <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {Q} _{j}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> Q </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {Q} _{j}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f00b18e86dfa7c5aab74007ab36cca660a8ba6a7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.171ex; width:2.918ex; height:3.009ex;" alt="{\displaystyle \mathbf {Q} _{j}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.918ex;height: 3.009ex;vertical-align: -1.171ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f00b18e86dfa7c5aab74007ab36cca660a8ba6a7" data-alt="{\displaystyle \mathbf {Q} _{j}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> tidak perlu menyertakan gaya pembatas. Ini setara dengan yang agak lebih rumit yaitu <a href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_Gauss_tentang_batasan_terkecil&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Asas Gauss tentang batasan terkecil (halaman belum tersedia)">asas Gauss tentang batasan terkecil</a>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(2)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Turunan">Turunan</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;section=2&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Turunan" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-2 collapsible-block" id="mf-section-2"> <div class="mw-heading mw-heading3"> <h3 id="Kasus_umum_dengan_massa_variabel">Kasus umum dengan massa variabel</h3><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;section=3&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Kasus umum dengan massa variabel" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <p>Pernyataan umum asas d'Alembert menyebutkan "<a href="https://id-m-wikipedia-org.translate.goog/wiki/Turunan_waktu?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Turunan waktu">turunan waktu</a> dari <a href="https://id-m-wikipedia-org.translate.goog/wiki/Momentum?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Momentum">momentum</a> sistem". Berdasarkan hukum kedua Newton, turunan waktu pertama dari momentum adalah gaya. Momentum massa ke-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah hasil kali antara massa dan kecepatannya:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {p} _{i}=m_{i}\mathbf {v} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> p </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {p} _{i}=m_{i}\mathbf {v} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c28e54c5e37ede6999487907d71ee8499d0d69ef" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:10.434ex; height:2.176ex;" alt="{\displaystyle \mathbf {p} _{i}=m_{i}\mathbf {v} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 10.434ex;height: 2.176ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c28e54c5e37ede6999487907d71ee8499d0d69ef" data-alt="{\displaystyle \mathbf {p} _{i}=m_{i}\mathbf {v} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>dan turunan waktunya adalah</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\mathbf {p} }}_{i}={\dot {m}}_{i}\mathbf {v} _{i}+m_{i}{\dot {\mathbf {v} }}_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> p </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> m </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\dot {\mathbf {p} }}_{i}={\dot {m}}_{i}\mathbf {v} _{i}+m_{i}{\dot {\mathbf {v} }}_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c2b119a006243de5bc3b43a42eb812311c6409c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.325ex; height:2.676ex;" alt="{\displaystyle {\dot {\mathbf {p} }}_{i}={\dot {m}}_{i}\mathbf {v} _{i}+m_{i}{\dot {\mathbf {v} }}_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 18.325ex;height: 2.676ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/3c2b119a006243de5bc3b43a42eb812311c6409c" data-alt="{\displaystyle {\dot {\mathbf {p} }}_{i}={\dot {m}}_{i}\mathbf {v} _{i}+m_{i}{\dot {\mathbf {v} }}_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Di banyak aplikasi, massa adalah konstan dan persamaan ini dirubah menjadi</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {\mathbf {p} }}_{i}=m_{i}{\dot {\mathbf {v} }}_{i}=m_{i}\mathbf {a} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> p </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\dot {\mathbf {p} }}_{i}=m_{i}{\dot {\mathbf {v} }}_{i}=m_{i}\mathbf {a} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01bb885739d53753464d53cbcf5e43ae71c199f4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:18.472ex; height:2.676ex;" alt="{\displaystyle {\dot {\mathbf {p} }}_{i}=m_{i}{\dot {\mathbf {v} }}_{i}=m_{i}\mathbf {a} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 18.472ex;height: 2.676ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/01bb885739d53753464d53cbcf5e43ae71c199f4" data-alt="{\displaystyle {\dot {\mathbf {p} }}_{i}=m_{i}{\dot {\mathbf {v} }}_{i}=m_{i}\mathbf {a} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Namun, beberapa aplikasi melibatkan perubahan massa (misalnya, rantai yang digulung atau dibuka) dan dalam kasus tersebut kedua istilah <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\dot {m}}_{i}\mathbf {v} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> m </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\dot {m}}_{i}\mathbf {v} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88c1fc364c60fd8ce080b4be91d32c6f797d5859" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.051ex; height:2.509ex;" alt="{\displaystyle {\dot {m}}_{i}\mathbf {v} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 5.051ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/88c1fc364c60fd8ce080b4be91d32c6f797d5859" data-alt="{\displaystyle {\dot {m}}_{i}\mathbf {v} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> dan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{i}{\dot {\mathbf {v} }}_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{i}{\dot {\mathbf {v} }}_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a22ada9b8435eecce5f9767cbf03282cab1199" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:5.051ex; height:2.509ex;" alt="{\displaystyle m_{i}{\dot {\mathbf {v} }}_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 5.051ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f8a22ada9b8435eecce5f9767cbf03282cab1199" data-alt="{\displaystyle m_{i}{\dot {\mathbf {v} }}_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> harus tetap ada, sehingga</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}(\mathbf {F} _{i}-m_{i}\mathbf {a} _{i}-{\dot {m}}_{i}\mathbf {v} _{i})\cdot \delta \mathbf {r} _{i}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> m </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> v </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{i}(\mathbf {F} _{i}-m_{i}\mathbf {a} _{i}-{\dot {m}}_{i}\mathbf {v} _{i})\cdot \delta \mathbf {r} _{i}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4bfeb962994d6199ea327a14e4009868d41c1e6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:32.208ex; height:5.509ex;" alt="{\displaystyle \sum _{i}(\mathbf {F} _{i}-m_{i}\mathbf {a} _{i}-{\dot {m}}_{i}\mathbf {v} _{i})\cdot \delta \mathbf {r} _{i}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 32.208ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d4bfeb962994d6199ea327a14e4009868d41c1e6" data-alt="{\displaystyle \sum _{i}(\mathbf {F} _{i}-m_{i}\mathbf {a} _{i}-{\dot {m}}_{i}\mathbf {v} _{i})\cdot \delta \mathbf {r} _{i}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <div class="mw-heading mw-heading3"> <h3 id="Kasus_khusus_dengan_massa_konstan">Kasus khusus dengan massa konstan</h3><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;section=4&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Kasus khusus dengan massa konstan" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <p>Pertimbangkan hukum Newton untuk sistem partikel dengan massa konstan, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>. Gaya total pada setiap partikel adalah<sup id="cite_ref-:2_5-0" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:2-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{i}^{(T)}=m_{i}\mathbf {a} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> T </mi> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> = </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} _{i}^{(T)}=m_{i}\mathbf {a} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/549d6aabbba8648aacb2490636358ec9d57e07d6" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:12.389ex; height:3.676ex;" alt="{\displaystyle \mathbf {F} _{i}^{(T)}=m_{i}\mathbf {a} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 12.389ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/549d6aabbba8648aacb2490636358ec9d57e07d6" data-alt="{\displaystyle \mathbf {F} _{i}^{(T)}=m_{i}\mathbf {a} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>dimana:</p> <ul> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.482ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.482ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" data-alt="{\displaystyle \mathbf {F} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah gaya total yang bekerja pada partikel sistem,</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{i}\mathbf {a} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{i}\mathbf {a} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb0b7015885937d38b6ab4fec236ecd571657906" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:4.939ex; height:2.009ex;" alt="{\displaystyle m_{i}\mathbf {a} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 4.939ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/fb0b7015885937d38b6ab4fec236ecd571657906" data-alt="{\displaystyle m_{i}\mathbf {a} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah gaya inersia yang dihasilkan dari gaya total.</li> </ul> <p>Memindahkan gaya inersia ke kiri memberikan ekspresi yang dapat dianggap mewakili keseimbangan kuasi-statis, tetapi sebenarnya hanya merupakan manipulasi aljabar kecil dari hukum Newton:<sup id="cite_ref-:2_5-1" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:2-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{i}^{(T)}-m_{i}\mathbf {a} _{i}=\mathbf {0} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> T </mi> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> −<!-- − --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mn mathvariant="bold"> 0 </mn> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} _{i}^{(T)}-m_{i}\mathbf {a} _{i}=\mathbf {0} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7f0227341c9e6e6dc8edce6130cad5a2eacd555" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:16.566ex; height:3.676ex;" alt="{\displaystyle \mathbf {F} _{i}^{(T)}-m_{i}\mathbf {a} _{i}=\mathbf {0} }"> </noscript><span class="lazy-image-placeholder" style="width: 16.566ex;height: 3.676ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f7f0227341c9e6e6dc8edce6130cad5a2eacd555" data-alt="{\displaystyle \mathbf {F} _{i}^{(T)}-m_{i}\mathbf {a} _{i}=\mathbf {0} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Mempertimbangkan <a href="https://id-m-wikipedia-org.translate.goog/wiki/Kerja_maya?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Kerja maya">kerja maya</a>, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta W}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mi> W </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta W} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/973e6b089758466f338610e76ab50fd4093efbc8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:3.484ex; height:2.343ex;" alt="{\displaystyle \delta W}"> </noscript><span class="lazy-image-placeholder" style="width: 3.484ex;height: 2.343ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/973e6b089758466f338610e76ab50fd4093efbc8" data-alt="{\displaystyle \delta W}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, dilakukan oleh gaya total dan inersia secara bersamaan melalui perpindahan maya yang berubah-ubah, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a56ef713418eb51bfcd06f4833292c71b063af42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.95ex; height:2.676ex;" alt="{\displaystyle \delta \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.95ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a56ef713418eb51bfcd06f4833292c71b063af42" data-alt="{\displaystyle \delta \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, dari sistem mengarah ke identitas nol, karena gaya yang terlibat berjumlah nol untuk setiap partikel.<sup id="cite_ref-:2_5-2" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:2-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta W=\sum _{i}\mathbf {F} _{i}^{(T)}\cdot \delta \mathbf {r} _{i}-\sum _{i}m_{i}\mathbf {a} _{i}\cdot \delta \mathbf {r} _{i}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mi> W </mi> <mo> = </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo stretchy="false"> ( </mo> <mi> T </mi> <mo stretchy="false"> ) </mo> </mrow> </msubsup> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta W=\sum _{i}\mathbf {F} _{i}^{(T)}\cdot \delta \mathbf {r} _{i}-\sum _{i}m_{i}\mathbf {a} _{i}\cdot \delta \mathbf {r} _{i}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b42995b6dd8da9e115f96d40a6b37dd7376c243" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:39.717ex; height:5.676ex;" alt="{\displaystyle \delta W=\sum _{i}\mathbf {F} _{i}^{(T)}\cdot \delta \mathbf {r} _{i}-\sum _{i}m_{i}\mathbf {a} _{i}\cdot \delta \mathbf {r} _{i}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 39.717ex;height: 5.676ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4b42995b6dd8da9e115f96d40a6b37dd7376c243" data-alt="{\displaystyle \delta W=\sum _{i}\mathbf {F} _{i}^{(T)}\cdot \delta \mathbf {r} _{i}-\sum _{i}m_{i}\mathbf {a} _{i}\cdot \delta \mathbf {r} _{i}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Persamaan vektor asli dapat dipulihkan dengan mengenali bahwa ekspresi kerja harus berlaku untuk perpindahan yang berubah-ubah. Memisahkan gaya total menjadi gaya yang diterapkan, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.482ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.482ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" data-alt="{\displaystyle \mathbf {F} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, dan gaya pembatas, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61e9b87195beeab6d53f1debbc855c8d7b9e2d1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.731ex; height:2.509ex;" alt="{\displaystyle \mathbf {C} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.731ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61e9b87195beeab6d53f1debbc855c8d7b9e2d1f" data-alt="{\displaystyle \mathbf {C} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, menghasilkan<sup id="cite_ref-:2_5-3" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:2-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta W=\sum _{i}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}+\sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}-\sum _{i}m_{i}\mathbf {a} _{i}\cdot \delta \mathbf {r} _{i}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mi> W </mi> <mo> = </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta W=\sum _{i}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}+\sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}-\sum _{i}m_{i}\mathbf {a} _{i}\cdot \delta \mathbf {r} _{i}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89d36cf41cff9f0160ae05770c26f7dae2f27f7a" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:51.791ex; height:5.509ex;" alt="{\displaystyle \delta W=\sum _{i}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}+\sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}-\sum _{i}m_{i}\mathbf {a} _{i}\cdot \delta \mathbf {r} _{i}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 51.791ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/89d36cf41cff9f0160ae05770c26f7dae2f27f7a" data-alt="{\displaystyle \delta W=\sum _{i}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}+\sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}-\sum _{i}m_{i}\mathbf {a} _{i}\cdot \delta \mathbf {r} _{i}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Jika perpindahan maya sembarang diasumsikan dalam arah yang ortogonal terhadap gaya pembatas (biasanya tidak demikian sehingga turunan ini hanya berlaku untuk kasus-kasus khusus), gaya pembatas tidak bekerja. Perpindahan tersebut dikatakan konsisten dengan batasan.<sup id="cite_ref-6" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> Hal ini mengarah pada perumusan asas d'Alembert, yang menyatakan bahwa perbedaan gaya yang diterapkan dan gaya inersia untuk sistem dinamis tidak melakukan kerja maya:<sup id="cite_ref-:2_5-4" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:2-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta W=\sum _{i}(\mathbf {F} _{i}-m_{i}\mathbf {a} _{i})\cdot \delta \mathbf {r} _{i}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mi> W </mi> <mo> = </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> −<!-- − --> </mo> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta W=\sum _{i}(\mathbf {F} _{i}-m_{i}\mathbf {a} _{i})\cdot \delta \mathbf {r} _{i}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdae5d0aa2a3751e012935f269751c18e2a1512c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:30.899ex; height:5.509ex;" alt="{\displaystyle \delta W=\sum _{i}(\mathbf {F} _{i}-m_{i}\mathbf {a} _{i})\cdot \delta \mathbf {r} _{i}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 30.899ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/cdae5d0aa2a3751e012935f269751c18e2a1512c" data-alt="{\displaystyle \delta W=\sum _{i}(\mathbf {F} _{i}-m_{i}\mathbf {a} _{i})\cdot \delta \mathbf {r} _{i}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Ada juga prinsip yang sesuai untuk sistem statis yang disebut <a href="https://id-m-wikipedia-org.translate.goog/wiki/Kerja_maya?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Kerja maya">prinsip kerja maya untuk gaya yang diterapkan</a>.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(3)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Gaya_inersia_asas_d'Alembert"><span id="Gaya_inersia_asas_d.27Alembert"></span>Gaya inersia asas d'Alembert</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;section=5&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Gaya inersia asas d'Alembert" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-3 collapsible-block" id="mf-section-3"> <p>D'Alembert menunjukkan bahwa seseorang dapat mengubah benda tegar yang berakselerasi menjadi sistem statis yang setara dengan menambahkan "<a href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Gaya_inersia&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Gaya inersia (halaman belum tersedia)">gaya inersia</a>" dan "torsi inersia" atau momen. Gaya inersia harus bekerja melalui pusat massa dan torsi inersia dapat bekerja di mana saja. Sistem ini kemudian dapat dianalisis persis seperti sistem statis yang mengalami "gaya dan momen inersia" ini dan gaya eksternal. Keuntungannya adalah bahwa dalam sistem statis yang setara, seseorang dapat mengambil momen di titik mana pun (bukan hanya pusat massa). Hal ini sering kali menghasilkan perhitungan yang lebih sederhana karena gaya apa pun (pada gilirannya) dapat dihilangkan dari persamaan momen dengan memilih titik yang sesuai untuk menerapkan persamaan momen (jumlah momen = nol). Bahkan dalam mata kuliah Dasar-Dasar Dinamika dan Kinematika Mesin, asas ini membantu dalam menganalisis gaya yang bekerja pada sebuah sambungan mekanisme ketika bergerak. Dalam buku teks dinamika teknik, hal ini kadang disebut sebagai <i>asas d'Alembert</i>.</p> <p>Beberapa pendidik memperingatkan bahwa upaya untuk menggunakan mekanika inersia d'Alembert mengarahkan siswa untuk sering membuat kesalahan tanda.<sup id="cite_ref-:3_7-0" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:3-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> Penyebab potensial dari kesalahan ini adalah tanda <a href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Gaya_inersia&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Gaya inersia (halaman belum tersedia)">gaya inersia</a>. Gaya inersia dapat digunakan untuk menggambarkan gaya semu dalam <a href="https://id-m-wikipedia-org.translate.goog/wiki/Kerangka_acuan_non-inersia?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Kerangka acuan non-inersia">kerangka acuan non-inersia</a> yang memiliki percepatan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {a} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {a} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a957216653a9ee0d0133dcefd13fb75e36b8b9d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.299ex; height:1.676ex;" alt="{\displaystyle \mathbf {a} }"> </noscript><span class="lazy-image-placeholder" style="width: 1.299ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/1a957216653a9ee0d0133dcefd13fb75e36b8b9d" data-alt="{\displaystyle \mathbf {a} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> terhadap <a href="https://id-m-wikipedia-org.translate.goog/wiki/Kerangka_acuan_inersia?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Kerangka acuan inersia">kerangka acuan inersia</a>. Dalam kerangka acuan non-inersia, sebuah massa yang diam dan memiliki percepatan nol dalam sistem acuan inersia, karena tidak ada gaya yang bekerja padanya, masih akan memiliki percepatan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -\mathbf {a} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -\mathbf {a} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a3cf31849160dbc62a43fc0f601083f526edac1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:3.108ex; height:2.176ex;" alt="{\displaystyle -\mathbf {a} }"> </noscript><span class="lazy-image-placeholder" style="width: 3.108ex;height: 2.176ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/2a3cf31849160dbc62a43fc0f601083f526edac1" data-alt="{\displaystyle -\mathbf {a} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> dan gaya inersia semu, atau semu atau <a href="https://id-m-wikipedia-org.translate.goog/wiki/Gaya_fiktif?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Gaya fiktif">gaya fiktif</a> <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle -m\mathbf {a} }"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo> −<!-- − --> </mo> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle -m\mathbf {a} } </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/040f0b07b224d2cf09bad79500239ad901b15597" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.148ex; height:2.176ex;" alt="{\displaystyle -m\mathbf {a} }"> </noscript><span class="lazy-image-placeholder" style="width: 5.148ex;height: 2.176ex;vertical-align: -0.505ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/040f0b07b224d2cf09bad79500239ad901b15597" data-alt="{\displaystyle -m\mathbf {a} }" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> akan tampak bekerja padanya: dalam situasi ini gaya inersia memiliki tanda minus.<sup id="cite_ref-:3_7-1" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:3-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup></p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(4)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Ekuilibrium_dinamis">Ekuilibrium dinamis</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;section=6&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Ekuilibrium dinamis" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-4 collapsible-block" id="mf-section-4"> <p>Bentuk prinsip kerja maya d'Alembert menyatakan bahwa sistem benda tegar berada dalam ekuilibrium dinamis ketika kerja maya dari jumlah gaya yang diterapkan dan gaya inersia adalah nol untuk setiap perpindahan maya sistem. Dengan demikian, ekuilibrium dinamis dari sistem <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> n </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle n} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.395ex; height:1.676ex;" alt="{\displaystyle n}"> </noscript><span class="lazy-image-placeholder" style="width: 1.395ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a601995d55609f2d9f5e233e36fbe9ea26011b3b" data-alt="{\displaystyle n}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> benda tegar dengan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> koordinat umum membutuhkan</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta W=\left(Q_{1}+Q_{1}^{*}\right)\delta q_{1}+\dots +\left(Q_{m}+Q_{m}^{*}\right)\delta q_{m}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mi> W </mi> <mo> = </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> Q </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <msubsup> <mi> Q </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msubsup> </mrow> <mo> ) </mo> </mrow> <mi> δ<!-- δ --> </mi> <msub> <mi> q </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> + </mo> <mo> ⋯<!-- ⋯ --> </mo> <mo> + </mo> <mrow> <mo> ( </mo> <mrow> <msub> <mi> Q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </msub> <mo> + </mo> <msubsup> <mi> Q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msubsup> </mrow> <mo> ) </mo> </mrow> <mi> δ<!-- δ --> </mi> <msub> <mi> q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> m </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta W=\left(Q_{1}+Q_{1}^{*}\right)\delta q_{1}+\dots +\left(Q_{m}+Q_{m}^{*}\right)\delta q_{m}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cc098044bcae5184e1ed291a850c2b496a63e78" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:49.033ex; height:3.009ex;" alt="{\displaystyle \delta W=\left(Q_{1}+Q_{1}^{*}\right)\delta q_{1}+\dots +\left(Q_{m}+Q_{m}^{*}\right)\delta q_{m}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 49.033ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/6cc098044bcae5184e1ed291a850c2b496a63e78" data-alt="{\displaystyle \delta W=\left(Q_{1}+Q_{1}^{*}\right)\delta q_{1}+\dots +\left(Q_{m}+Q_{m}^{*}\right)\delta q_{m}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>untuk setiap set perpindahan maya <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta q_{j}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <msub> <mi> q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta q_{j}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/441a20906f8cb69dffa8848cd7593c525cfc9a8c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.995ex; height:3.009ex;" alt="{\displaystyle \delta q_{j}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.995ex;height: 3.009ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/441a20906f8cb69dffa8848cd7593c525cfc9a8c" data-alt="{\displaystyle \delta q_{j}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> dengan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{j}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> Q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Q_{j}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5db0ad37e47589c5a9f270ca9c06affdacd6c66f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:2.748ex; height:2.843ex;" alt="{\displaystyle Q_{j}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.748ex;height: 2.843ex;vertical-align: -1.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5db0ad37e47589c5a9f270ca9c06affdacd6c66f" data-alt="{\displaystyle Q_{j}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah gaya terapan yang digeneralisasi dan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{j}^{*}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msubsup> <mi> Q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Q_{j}^{*}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a551182a25fb29d5afdae30915c7f02d6271aa7" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:2.893ex; height:3.176ex;" alt="{\displaystyle Q_{j}^{*}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.893ex;height: 3.176ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/9a551182a25fb29d5afdae30915c7f02d6271aa7" data-alt="{\displaystyle Q_{j}^{*}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah gaya inersia yang digeneralisasi. Kondisi ini menghasilkan persamaan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>:</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle Q_{j}+Q_{j}^{*}=0,\quad j=1,\ldots ,m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> Q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> + </mo> <msubsup> <mi> Q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mo> ∗<!-- ∗ --> </mo> </mrow> </msubsup> <mo> = </mo> <mn> 0 </mn> <mo> , </mo> <mspace width="1em"></mspace> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle Q_{j}+Q_{j}^{*}=0,\quad j=1,\ldots ,m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95bfa99b688b7eade253db22b619c280e6af00a0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.338ex; width:28.536ex; height:3.176ex;" alt="{\displaystyle Q_{j}+Q_{j}^{*}=0,\quad j=1,\ldots ,m}"> </noscript><span class="lazy-image-placeholder" style="width: 28.536ex;height: 3.176ex;vertical-align: -1.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95bfa99b688b7eade253db22b619c280e6af00a0" data-alt="{\displaystyle Q_{j}+Q_{j}^{*}=0,\quad j=1,\ldots ,m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>juga dapat ditulis dengan</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {d}{dt}}{\frac {\partial T}{\partial {\dot {q}}_{j}}}-{\frac {\partial T}{\partial q_{j}}}=Q_{j},\quad j=1,\ldots ,m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi> d </mi> <mrow> <mi> d </mi> <mi> t </mi> </mrow> </mfrac> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> T </mi> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> q </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> T </mi> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mi> q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> = </mo> <msub> <mi> Q </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> j </mi> </mrow> </msub> <mo> , </mo> <mspace width="1em"></mspace> <mi> j </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> …<!-- … --> </mo> <mo> , </mo> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle {\frac {d}{dt}}{\frac {\partial T}{\partial {\dot {q}}_{j}}}-{\frac {\partial T}{\partial q_{j}}}=Q_{j},\quad j=1,\ldots ,m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a924bb447328a81071627f9ed5defa771816f4b" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.838ex; width:35.915ex; height:6.343ex;" alt="{\displaystyle {\frac {d}{dt}}{\frac {\partial T}{\partial {\dot {q}}_{j}}}-{\frac {\partial T}{\partial q_{j}}}=Q_{j},\quad j=1,\ldots ,m}"> </noscript><span class="lazy-image-placeholder" style="width: 35.915ex;height: 6.343ex;vertical-align: -2.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4a924bb447328a81071627f9ed5defa771816f4b" data-alt="{\displaystyle {\frac {d}{dt}}{\frac {\partial T}{\partial {\dot {q}}_{j}}}-{\frac {\partial T}{\partial q_{j}}}=Q_{j},\quad j=1,\ldots ,m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Hasilnya adalah seperangkat persamaan gerak <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> m </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:2.04ex; height:1.676ex;" alt="{\displaystyle m}"> </noscript><span class="lazy-image-placeholder" style="width: 2.04ex;height: 1.676ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0a07d98bb302f3856cbabc47b2b9016692e3f7bc" data-alt="{\displaystyle m}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> yang mendefinisikan dinamika sistem benda tegar.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(5)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Formulasi_menggunakan_Lagrangian">Formulasi menggunakan Lagrangian</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;section=7&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Formulasi menggunakan Lagrangian" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-5 collapsible-block" id="mf-section-5"> <p>Asas d'Alembert dapat ditulis ulang dalam bentuk Lagrangian <b>L=T-V</b> dari sistem sebagai versi umum dari <a href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_Hamilton&amp;action=edit&amp;redlink=1&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="new" title="Asas Hamilton (halaman belum tersedia)">asas Hamilton</a> sebagai berikut,</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \int _{t_{1}}^{t_{2}}L(\mathbf {r} ,{\dot {\mathbf {r} }},t)dt+\sum _{i}\int _{t_{1}}^{t_{2}}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}dt=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </msubsup> <mi> L </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> t </mi> <mo> + </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mi> d </mi> <mi> t </mi> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta \int _{t_{1}}^{t_{2}}L(\mathbf {r} ,{\dot {\mathbf {r} }},t)dt+\sum _{i}\int _{t_{1}}^{t_{2}}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}dt=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13e18fac392d7b7c896ec5186371c014acc19bdb" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.084ex; height:6.843ex;" alt="{\displaystyle \delta \int _{t_{1}}^{t_{2}}L(\mathbf {r} ,{\dot {\mathbf {r} }},t)dt+\sum _{i}\int _{t_{1}}^{t_{2}}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}dt=0}"> </noscript><span class="lazy-image-placeholder" style="width: 41.084ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/13e18fac392d7b7c896ec5186371c014acc19bdb" data-alt="{\displaystyle \delta \int _{t_{1}}^{t_{2}}L(\mathbf {r} ,{\dot {\mathbf {r} }},t)dt+\sum _{i}\int _{t_{1}}^{t_{2}}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}dt=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>dimana:</p> <ul> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {r} =(\mathbf {r} _{1},...,\mathbf {r} _{N})}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> = </mo> <mo stretchy="false"> ( </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> <mo> , </mo> <mo> . </mo> <mo> . </mo> <mo> . </mo> <mo> , </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> N </mi> </mrow> </msub> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {r} =(\mathbf {r} _{1},...,\mathbf {r} _{N})} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a18dda81ea83087fcd9ee3deb6b5880512e484af" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:16.129ex; height:2.843ex;" alt="{\displaystyle \mathbf {r} =(\mathbf {r} _{1},...,\mathbf {r} _{N})}"> </noscript><span class="lazy-image-placeholder" style="width: 16.129ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a18dda81ea83087fcd9ee3deb6b5880512e484af" data-alt="{\displaystyle \mathbf {r} =(\mathbf {r} _{1},...,\mathbf {r} _{N})}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.482ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.482ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" data-alt="{\displaystyle \mathbf {F} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah gaya yang diterapkan</li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \mathbf {r} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta \mathbf {r} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a56ef713418eb51bfcd06f4833292c71b063af42" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.95ex; height:2.676ex;" alt="{\displaystyle \delta \mathbf {r} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.95ex;height: 2.676ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a56ef713418eb51bfcd06f4833292c71b063af42" data-alt="{\displaystyle \delta \mathbf {r} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah perpindahan maya dari partikel ke-<span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle i}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> i </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle i} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:0.802ex; height:2.176ex;" alt="{\displaystyle i}"> </noscript><span class="lazy-image-placeholder" style="width: 0.802ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/add78d8608ad86e54951b8c8bd6c8d8416533d20" data-alt="{\displaystyle i}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, konsisten dengan batasan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d106d7b6ccfe3d57c7b943cd7b5908a4f922e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.363ex; height:5.509ex;" alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 15.363ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d106d7b6ccfe3d57c7b943cd7b5908a4f922e8" data-alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></li> <li>kurva kritis memenuhi batasan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e8cba73d9a3c6951492c142d5f4a8f019a067a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.375ex; height:5.509ex;" alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 14.375ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e8cba73d9a3c6951492c142d5f4a8f019a067a8" data-alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></li> </ul> <p>Dengan Lagrangian</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(\mathbf {r} ,{\dot {\mathbf {r} }},t)=\sum _{i}{\frac {1}{2}}m_{i}{\dot {\mathbf {r} }}_{i}^{2}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L(\mathbf {r} ,{\dot {\mathbf {r} }},t)=\sum _{i}{\frac {1}{2}}m_{i}{\dot {\mathbf {r} }}_{i}^{2}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57ec898fdc7448fec62340dc8878b564d33fe091" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.46ex; height:6.343ex;" alt="{\displaystyle L(\mathbf {r} ,{\dot {\mathbf {r} }},t)=\sum _{i}{\frac {1}{2}}m_{i}{\dot {\mathbf {r} }}_{i}^{2}}"> </noscript><span class="lazy-image-placeholder" style="width: 22.46ex;height: 6.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/57ec898fdc7448fec62340dc8878b564d33fe091" data-alt="{\displaystyle L(\mathbf {r} ,{\dot {\mathbf {r} }},t)=\sum _{i}{\frac {1}{2}}m_{i}{\dot {\mathbf {r} }}_{i}^{2}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>pernyataan sebelumnya dari asas d'Alembert dipulihkan.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(6)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Generalisasi_untuk_termodinamika">Generalisasi untuk termodinamika</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;section=8&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Generalisasi untuk termodinamika" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-6 collapsible-block" id="mf-section-6"> <p>Ekstensi dari asas d'Alembert dapat digunakan dalam termodinamika.<sup id="cite_ref-:1_4-1" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:1-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup> Sebagai contoh, untuk <a href="https://id-m-wikipedia-org.translate.goog/wiki/Sistem_termodinamika?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sistem termodinamika">sistem termodinamika</a> yang tertutup secara adiabatik yang dijelaskan oleh Lagrangian yang bergantung pada entropi tunggal <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle S}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> S </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle S} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:1.499ex; height:2.176ex;" alt="{\displaystyle S}"> </noscript><span class="lazy-image-placeholder" style="width: 1.499ex;height: 2.176ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4611d85173cd3b508e67077d4a1252c9c05abca2" data-alt="{\displaystyle S}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> dan dengan massa konstan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec8e804f69706d3f5ad235f4f983220c8df7c2" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.84ex; height:2.009ex;" alt="{\displaystyle m_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.84ex;height: 2.009ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/95ec8e804f69706d3f5ad235f4f983220c8df7c2" data-alt="{\displaystyle m_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span>, seperti</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle L(\mathbf {r} ,{\dot {\mathbf {r} }},S,t)=\sum _{i}{\frac {1}{2}}m_{i}{\dot {\mathbf {r} }}_{i}^{2}-V(\mathbf {r} ,S)}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> L </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> S </mi> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mo> = </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn> 1 </mn> <mn> 2 </mn> </mfrac> </mrow> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msubsup> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msubsup> <mo> −<!-- − --> </mo> <mi> V </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> , </mo> <mi> S </mi> <mo stretchy="false"> ) </mo> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle L(\mathbf {r} ,{\dot {\mathbf {r} }},S,t)=\sum _{i}{\frac {1}{2}}m_{i}{\dot {\mathbf {r} }}_{i}^{2}-V(\mathbf {r} ,S)} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8352e79f297bb089599ceac4b4e5a4ad65dfca2f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:35.065ex; height:6.343ex;" alt="{\displaystyle L(\mathbf {r} ,{\dot {\mathbf {r} }},S,t)=\sum _{i}{\frac {1}{2}}m_{i}{\dot {\mathbf {r} }}_{i}^{2}-V(\mathbf {r} ,S)}"> </noscript><span class="lazy-image-placeholder" style="width: 35.065ex;height: 6.343ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/8352e79f297bb089599ceac4b4e5a4ad65dfca2f" data-alt="{\displaystyle L(\mathbf {r} ,{\dot {\mathbf {r} }},S,t)=\sum _{i}{\frac {1}{2}}m_{i}{\dot {\mathbf {r} }}_{i}^{2}-V(\mathbf {r} ,S)}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>dituliskan sebagai berikut</p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta \int _{t_{1}}^{t_{2}}L(\mathbf {r} ,{\dot {\mathbf {r} }},S,t)dt+\sum _{i}\int _{t_{1}}^{t_{2}}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}dt=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </msubsup> <mi> L </mi> <mo stretchy="false"> ( </mo> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> , </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> , </mo> <mi> S </mi> <mo> , </mo> <mi> t </mi> <mo stretchy="false"> ) </mo> <mi> d </mi> <mi> t </mi> <mo> + </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msubsup> <mo> ∫<!-- ∫ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 1 </mn> </mrow> </msub> </mrow> <mrow class="MJX-TeXAtom-ORD"> <msub> <mi> t </mi> <mrow class="MJX-TeXAtom-ORD"> <mn> 2 </mn> </mrow> </msub> </mrow> </msubsup> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mi> d </mi> <mi> t </mi> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta \int _{t_{1}}^{t_{2}}L(\mathbf {r} ,{\dot {\mathbf {r} }},S,t)dt+\sum _{i}\int _{t_{1}}^{t_{2}}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}dt=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63f6c9a21c938a2aa48b5665bdf3e8680d383ac4" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:43.617ex; height:6.843ex;" alt="{\displaystyle \delta \int _{t_{1}}^{t_{2}}L(\mathbf {r} ,{\dot {\mathbf {r} }},S,t)dt+\sum _{i}\int _{t_{1}}^{t_{2}}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}dt=0}"> </noscript><span class="lazy-image-placeholder" style="width: 43.617ex;height: 6.843ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/63f6c9a21c938a2aa48b5665bdf3e8680d383ac4" data-alt="{\displaystyle \delta \int _{t_{1}}^{t_{2}}L(\mathbf {r} ,{\dot {\mathbf {r} }},S,t)dt+\sum _{i}\int _{t_{1}}^{t_{2}}\mathbf {F} _{i}\cdot \delta \mathbf {r} _{i}dt=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>dimana batasan sebelumnya <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d106d7b6ccfe3d57c7b943cd7b5908a4f922e8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:15.363ex; height:5.509ex;" alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 15.363ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/d2d106d7b6ccfe3d57c7b943cd7b5908a4f922e8" data-alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> dan <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e8cba73d9a3c6951492c142d5f4a8f019a067a8" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:14.375ex; height:5.509ex;" alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 14.375ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/4e8cba73d9a3c6951492c142d5f4a8f019a067a8" data-alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> digeneralisasi untuk melibatkan entropi sebagai:</p> <ul> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}+T\delta S=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <mi> δ<!-- δ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mi> T </mi> <mi> δ<!-- δ --> </mi> <mi> S </mi> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}+T\delta S=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bccda4ea8b30f8ac58214f071b00ed88e5e51eae" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:22.388ex; height:5.509ex;" alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}+T\delta S=0}"> </noscript><span class="lazy-image-placeholder" style="width: 22.388ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/bccda4ea8b30f8ac58214f071b00ed88e5e51eae" data-alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot \delta \mathbf {r} _{i}+T\delta S=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></li> <li><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}+T{\dot {S}}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <mi> T </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> S </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}+T{\dot {S}}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/060571f53b564d1af2b1457be2c3cdd63b6b472c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:20.424ex; height:5.509ex;" alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}+T{\dot {S}}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 20.424ex;height: 5.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/060571f53b564d1af2b1457be2c3cdd63b6b472c" data-alt="{\displaystyle \sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}+T{\dot {S}}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></li> </ul> <p>Di sini <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle T=\partial V/\partial S}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> T </mi> <mo> = </mo> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> V </mi> <mrow class="MJX-TeXAtom-ORD"> <mo> / </mo> </mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> S </mi> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle T=\partial V/\partial S} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cc6c2cd0b54cf080bed8094a1f9c64415b1fa4e" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:11.82ex; height:2.843ex;" alt="{\displaystyle T=\partial V/\partial S}"> </noscript><span class="lazy-image-placeholder" style="width: 11.82ex;height: 2.843ex;vertical-align: -0.838ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0cc6c2cd0b54cf080bed8094a1f9c64415b1fa4e" data-alt="{\displaystyle T=\partial V/\partial S}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah suhu sistem, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {F} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {F} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.482ex; height:2.509ex;" alt="{\displaystyle \mathbf {F} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.482ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5d49039f831a156e0c33270962d8d159d553a8bc" data-alt="{\displaystyle \mathbf {F} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah gaya eksternal, <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \mathbf {C} _{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \mathbf {C} _{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61e9b87195beeab6d53f1debbc855c8d7b9e2d1f" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.731ex; height:2.509ex;" alt="{\displaystyle \mathbf {C} _{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 2.731ex;height: 2.509ex;vertical-align: -0.671ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/61e9b87195beeab6d53f1debbc855c8d7b9e2d1f" data-alt="{\displaystyle \mathbf {C} _{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> adalah gaya disipatif internal. Hal ini menghasilkan persamaan keseimbangan mekanis dan termal:<sup id="cite_ref-:1_4-2" class="reference"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_note-:1-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup></p> <p><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle m_{i}\mathbf {a} _{i}=-{\frac {\partial V}{\partial \mathbf {r} _{i}}}+\mathbf {C} _{i}+\mathbf {F} _{i},\;\;i=1,...,N\qquad \qquad T{\dot {S}}=-\sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi> m </mi> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> a </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> = </mo> <mo> −<!-- − --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <mi> V </mi> </mrow> <mrow> <mi mathvariant="normal"> ∂<!-- ∂ --> </mi> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mrow> </mfrac> </mrow> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> + </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> F </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> , </mo> <mspace width="thickmathspace"></mspace> <mspace width="thickmathspace"></mspace> <mi> i </mi> <mo> = </mo> <mn> 1 </mn> <mo> , </mo> <mo> . </mo> <mo> . </mo> <mo> . </mo> <mo> , </mo> <mi> N </mi> <mspace width="2em"></mspace> <mspace width="2em"></mspace> <mi> T </mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> S </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mo> −<!-- − --> </mo> <munder> <mo> ∑<!-- ∑ --> </mo> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </munder> <msub> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> C </mi> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> <mo> ⋅<!-- ⋅ --> </mo> <msub> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="bold"> r </mi> </mrow> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi> i </mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle m_{i}\mathbf {a} _{i}=-{\frac {\partial V}{\partial \mathbf {r} _{i}}}+\mathbf {C} _{i}+\mathbf {F} _{i},\;\;i=1,...,N\qquad \qquad T{\dot {S}}=-\sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be5049626984963b59eb982be06da84bc8925493" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:67.324ex; height:6.509ex;" alt="{\displaystyle m_{i}\mathbf {a} _{i}=-{\frac {\partial V}{\partial \mathbf {r} _{i}}}+\mathbf {C} _{i}+\mathbf {F} _{i},\;\;i=1,...,N\qquad \qquad T{\dot {S}}=-\sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}}"> </noscript><span class="lazy-image-placeholder" style="width: 67.324ex;height: 6.509ex;vertical-align: -3.005ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/be5049626984963b59eb982be06da84bc8925493" data-alt="{\displaystyle m_{i}\mathbf {a} _{i}=-{\frac {\partial V}{\partial \mathbf {r} _{i}}}+\mathbf {C} _{i}+\mathbf {F} _{i},\;\;i=1,...,N\qquad \qquad T{\dot {S}}=-\sum _{i}\mathbf {C} _{i}\cdot {\dot {\mathbf {r} }}_{i}}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span></p> <p>Aplikasi umum dari asas ini mencakup sistem termo-mekanis, transportasi membran, dan reaksi kimia.</p> <p>Untuk <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"> <math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \delta S={\dot {S}}=0}"><semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi> δ<!-- δ --> </mi> <mi> S </mi> <mo> = </mo> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mover> <mi> S </mi> <mo> ˙<!-- ˙ --> </mo> </mover> </mrow> </mrow> <mo> = </mo> <mn> 0 </mn> </mstyle> </mrow> <annotation encoding="application/x-tex"> {\displaystyle \delta S={\dot {S}}=0} </annotation> </semantics> </math></span> <noscript> <img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db451cade3308f2063a6320943828144398ec027" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.338ex; width:11.48ex; height:2.843ex;" alt="{\displaystyle \delta S={\dot {S}}=0}"> </noscript><span class="lazy-image-placeholder" style="width: 11.48ex;height: 2.843ex;vertical-align: -0.338ex;" data-src="https://wikimedia.org/api/rest_v1/media/math/render/svg/db451cade3308f2063a6320943828144398ec027" data-alt="{\displaystyle \delta S={\dot {S}}=0}" data-class="mwe-math-fallback-image-inline mw-invert skin-invert">&nbsp;</span></span> asas dan persamaan d'Alembert klasik ditemukan kembali.</p> </section> <div class="mw-heading mw-heading2 section-heading" onclick="mfTempOpenSection(7)"> <span class="indicator mf-icon mf-icon-expand mf-icon--small"></span> <h2 id="Referensi">Referensi</h2><span class="mw-editsection"> <a role="button" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=edit&amp;section=9&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Sunting bagian: Referensi" class="cdx-button cdx-button--size-large cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--icon-only cdx-button--weight-quiet "> <span class="minerva-icon minerva-icon--edit"></span> <span>sunting</span> </a> </span> </div> <section class="mf-section-7 collapsible-block" id="mf-section-7"> <ol class="references"> <li id="cite_note-:0-1"><span class="mw-cite-backlink">^ <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:0_1-0"><sup><i><b>a</b></i></sup></a> <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:0_1-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><cite class="citation book">Lanczos, Cornelius (1964). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://archive.org/details/variationalprinc00lanc"><i>The variational principles of mechanics</i></a>. Internet Archive. Toronto, University of Toronto Press.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=The+variational+principles+of+mechanics&amp;rft.pub=Toronto%2C+University+of+Toronto+Press&amp;rft.date=1964&amp;rft.aulast=Lanczos&amp;rft.aufirst=Cornelius&amp;rft_id=http%3A%2F%2Farchive.org%2Fdetails%2Fvariationalprinc00lanc&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AAsas+D%27Alembert" class="Z3988"><span style="display:none;">&nbsp;</span></span></span></li> <li id="cite_note-2"><span class="mw-cite-backlink"><b><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-2">^</a></b></span> <span class="reference-text"><cite class="citation book">Alembert, Jean Le Rond d' (1743). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://books.google.co.id/books?id%3DXrEWAAAAQAAJ%26redir_esc%3Dy"><i>Traité de dynamique</i></a> (dalam bahasa Prancis). David l'aîné.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Trait%C3%A9+de+dynamique&amp;rft.pub=David+l%27a%C3%AEn%C3%A9&amp;rft.date=1743&amp;rft.aulast=Alembert&amp;rft.aufirst=Jean+Le+Rond+d%27&amp;rft_id=https%3A%2F%2Fbooks.google.co.id%2Fbooks%3Fid%3DXrEWAAAAQAAJ%26redir_esc%3Dy&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AAsas+D%27Alembert" class="Z3988"><span style="display:none;">&nbsp;</span></span></span></li> <li id="cite_note-3"><span class="mw-cite-backlink"><b><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-3">^</a></b></span> <span class="reference-text"><cite class="citation journal">Udwadia, F.E.; Kalaba, R.E. (2002-09). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://linkinghub.elsevier.com/retrieve/pii/S0020746201000336">"On the foundations of analytical dynamics"</a>. <i>International Journal of Non-Linear Mechanics</i> (dalam bahasa Inggris). <b>37</b> (6): 1079–1090. <a href="https://id-m-wikipedia-org.translate.goog/wiki/Digital_object_identifier?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.1016%252FS0020-7462%252801%252900033-6">10.1016/S0020-7462(01)00033-6</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=International+Journal+of+Non-Linear+Mechanics&amp;rft.atitle=On+the+foundations+of+analytical+dynamics&amp;rft.chron=2002-09&amp;rft.volume=37&amp;rft.issue=6&amp;rft.pages=1079-1090&amp;rft_id=info%3Adoi%2F10.1016%2FS0020-7462%2801%2900033-6&amp;rft.aulast=Udwadia&amp;rft.aufirst=F.E.&amp;rft.au=Kalaba%2C+R.E.&amp;rft_id=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS0020746201000336&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AAsas+D%27Alembert" class="Z3988"><span style="display:none;">&nbsp;</span></span> <span style="display:none;font-size:100%" class="error citation-comment">Periksa nilai tanggal di: <code style="color:inherit; border:inherit; padding:inherit;">|date=</code> (<a href="https://id-m-wikipedia-org.translate.goog/wiki/Bantuan:Galat_CS1?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#bad_date" title="Bantuan:Galat CS1">bantuan</a>)</span></span></li> <li id="cite_note-:1-4"><span class="mw-cite-backlink">^ <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:1_4-0"><sup><i><b>a</b></i></sup></a> <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:1_4-1"><sup><i><b>b</b></i></sup></a> <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:1_4-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><cite class="citation journal">Gay-Balmaz, François; Yoshimura, Hiroaki (2018-12-23). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://www.mdpi.com/1099-4300/21/1/8">"From Lagrangian Mechanics to Nonequilibrium Thermodynamics: A Variational Perspective"</a>. <i>Entropy</i> (dalam bahasa Inggris). <b>21</b> (1): 8. <a href="https://id-m-wikipedia-org.translate.goog/wiki/Digital_object_identifier?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="Digital object identifier">doi</a>:<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://doi.org/10.3390%252Fe21010008">10.3390/e21010008</a>. <a href="https://id-m-wikipedia-org.translate.goog/wiki/International_Standard_Serial_Number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="International Standard Serial Number">ISSN</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://www.worldcat.org/issn/1099-4300">1099-4300</a>. <a href="https://id-m-wikipedia-org.translate.goog/wiki/PubMed_Central?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="PubMed Central">PMC</a>&nbsp;<span class="plainlinks"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514189">7514189</a> <span typeof="mw:File"><span title="Dapat diakses gratis"> <noscript> <img alt="alt=Dapat diakses gratis" src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" decoding="async" width="9" height="14" class="mw-file-element" data-file-width="512" data-file-height="813"> </noscript><span class="lazy-image-placeholder" style="width: 9px;height: 14px;" data-src="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png" data-alt="alt=Dapat diakses gratis" data-width="9" data-height="14" data-srcset="//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/14px-Lock-green.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/18px-Lock-green.svg.png 2x" data-class="mw-file-element">&nbsp;</span></span></span></span>. <a href="https://id-m-wikipedia-org.translate.goog/wiki/PubMed_Identifier?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="PubMed Identifier">PMID</a>&nbsp;<a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://www.ncbi.nlm.nih.gov/pubmed/33266724">33266724</a> <span style="font-size:100%" class="error citation-comment">Periksa nilai <code style="color:inherit; border:inherit; padding:inherit;">|pmid=</code> (<a href="https://id-m-wikipedia-org.translate.goog/wiki/Bantuan:Galat_CS1?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#bad_pmid" title="Bantuan:Galat CS1">bantuan</a>)</span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Entropy&amp;rft.atitle=From+Lagrangian+Mechanics+to+Nonequilibrium+Thermodynamics%3A+A+Variational+Perspective&amp;rft.volume=21&amp;rft.issue=1&amp;rft.pages=8&amp;rft.date=2018-12-23&amp;rft_id=%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMCPMC7514189&amp;rft.issn=1099-4300&amp;rft_id=info%3Apmid%2F33266724&amp;rft_id=info%3Adoi%2F10.3390%2Fe21010008&amp;rft.aulast=Gay-Balmaz&amp;rft.aufirst=Fran%C3%A7ois&amp;rft.au=Yoshimura%2C+Hiroaki&amp;rft_id=http%3A%2F%2Fwww.mdpi.com%2F1099-4300%2F21%2F1%2F8&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AAsas+D%27Alembert" class="Z3988"><span style="display:none;">&nbsp;</span></span><span class="citation-comment" style="display:none; color:#33aa33; margin-left:0.3em">Pemeliharaan CS1: Format PMC (<a href="https://id-m-wikipedia-org.translate.goog/wiki/Kategori:Pemeliharaan_CS1:_Format_PMC?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Kategori:Pemeliharaan CS1: Format PMC">link</a>) </span></span></li> <li id="cite_note-:2-5"><span class="mw-cite-backlink">^ <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:2_5-0"><sup><i><b>a</b></i></sup></a> <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:2_5-1"><sup><i><b>b</b></i></sup></a> <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:2_5-2"><sup><i><b>c</b></i></sup></a> <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:2_5-3"><sup><i><b>d</b></i></sup></a> <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:2_5-4"><sup><i><b>e</b></i></sup></a></span> <span class="reference-text"><cite class="citation book">Torby, Bruce J. (1984). <a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://archive.org/details/advanceddynamics0000torb"><i>Advanced Dynamics for engineers</i></a>. HRW series in mechanical engineering. New York: Holt, Rinehart and Winston. <a href="https://id-m-wikipedia-org.translate.goog/wiki/International_Standard_Book_Number?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" class="mw-redirect" title="International Standard Book Number">ISBN</a>&nbsp;<a href="https://id-m-wikipedia-org.translate.goog/wiki/Istimewa:Sumber_buku/978-0-03-063366-9?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB" title="Istimewa:Sumber buku/978-0-03-063366-9">978-0-03-063366-9</a>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&amp;rft.genre=book&amp;rft.btitle=Advanced+Dynamics+for+engineers&amp;rft.place=New+York&amp;rft.series=HRW+series+in+mechanical+engineering&amp;rft.pub=Holt%2C+Rinehart+and+Winston&amp;rft.date=1984&amp;rft.isbn=978-0-03-063366-9&amp;rft.aulast=Torby&amp;rft.aufirst=Bruce+J.&amp;rft_id=https%3A%2F%2Farchive.org%2Fdetails%2Fadvanceddynamics0000torb&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AAsas+D%27Alembert" class="Z3988"><span style="display:none;">&nbsp;</span></span></span></li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-6">^</a></b></span> <span class="reference-text"><cite class="citation journal">Jong, Ing-Chang (2005). "Improving Mechanics of Materials". <i>Teaching Students Work and Virtual Work Method in Statics: A Guiding Strategy with Illustrative Examples</i>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=article&amp;rft.jtitle=Teaching+Students+Work+and+Virtual+Work+Method+in+Statics%3A++A+Guiding+Strategy+with+Illustrative+Examples&amp;rft.atitle=Improving+Mechanics+of+Materials&amp;rft.date=2005&amp;rft.aulast=Jong&amp;rft.aufirst=Ing-Chang&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AAsas+D%27Alembert" class="Z3988"><span style="display:none;">&nbsp;</span></span></span></li> <li id="cite_note-:3-7"><span class="mw-cite-backlink">^ <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:3_7-0"><sup><i><b>a</b></i></sup></a> <a href="https://id-m-wikipedia-org.translate.goog/wiki/Asas_D'Alembert?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB#cite_ref-:3_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><cite class="citation web"><a rel="nofollow" class="external text" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=http://ruina.tam.cornell.edu/Book/">"Ruina/Pratap Dynamics Text"</a>. <i>ruina.tam.cornell.edu</i><span class="reference-accessdate">. Diakses tanggal <span class="nowrap">2024-02-25</span></span>.</cite><span title="ctx_ver=Z39.88-2004&amp;rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&amp;rft.genre=unknown&amp;rft.jtitle=ruina.tam.cornell.edu&amp;rft.atitle=Ruina%2FPratap+Dynamics+Text&amp;rft_id=http%3A%2F%2Fruina.tam.cornell.edu%2FBook%2F&amp;rfr_id=info%3Asid%2Fid.wikipedia.org%3AAsas+D%27Alembert" class="Z3988"><span style="display:none;">&nbsp;</span></span></span></li> </ol><!-- NewPP limit report Parsed by mw‐api‐int.codfw.main‐849f99967d‐42pmf Cached time: 20241122220004 Cache expiry: 2592000 Reduced expiry: false Complications: [show‐toc] CPU time usage: 0.141 seconds Real time usage: 0.237 seconds Preprocessor visited node count: 712/1000000 Post‐expand include size: 13230/2097152 bytes Template argument size: 0/2097152 bytes Highest expansion depth: 4/100 Expensive parser function count: 0/500 Unstrip recursion depth: 0/20 Unstrip post‐expand size: 13840/5000000 bytes Lua time usage: 0.038/10.000 seconds Lua memory usage: 2157820/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 70.760 1 -total 76.30% 53.990 3 Templat:Cite_book 17.00% 12.027 3 Templat:Cite_journal 5.71% 4.037 1 Templat:Cite_web --> <!-- Saved in parser cache with key idwiki:pcache:idhash:4246232-0!canonical and timestamp 20241122220004 and revision id 25414180. Rendering was triggered because: api-parse --> </section> </div><!-- MobileFormatter took 0.021 seconds --><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --> <noscript> <img src="https://login.m.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1&amp;mobile=1" alt="" width="1" height="1" style="border: none; position: absolute;"> </noscript> <div class="printfooter" data-nosnippet=""> Diperoleh dari "<a dir="ltr" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://id.wikipedia.org/w/index.php?title%3DAsas_D%2527Alembert%26oldid%3D25414180">https://id.wikipedia.org/w/index.php?title=Asas_D%27Alembert&amp;oldid=25414180</a>" </div> </div> </div> <div class="post-content" id="page-secondary-actions"> </div> </main> <footer class="mw-footer minerva-footer" role="contentinfo"><a class="last-modified-bar" href="https://id-m-wikipedia-org.translate.goog/w/index.php?title=Asas_D'Alembert&amp;action=history&amp;_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB"> <div class="post-content last-modified-bar__content"><span class="minerva-icon minerva-icon-size-medium minerva-icon--modified-history"></span> <span class="last-modified-bar__text modified-enhancement" data-user-name="InternetArchiveBot" data-user-gender="unknown" data-timestamp="1710026207"> <span>Terakhir diubah pada 9 Maret 2024, pukul 23.16</span> </span> <span class="minerva-icon minerva-icon-size-small minerva-icon--expand"></span> </div></a> <div class="post-content footer-content"> <div id="mw-data-after-content"> <div class="read-more-container"></div> </div> <div id="p-lang"> <h4>Bahasa</h4> <section> <ul id="p-variants" class="minerva-languages"></ul> <ul class="minerva-languages"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ar.wikipedia.org/wiki/%25D9%2585%25D8%25A8%25D8%25AF%25D8%25A3_%25D8%25AF%25D8%25A7%25D9%2584%25D9%2585%25D8%25A8%25D9%258A%25D8%25B1" title="مبدأ دالمبير – Arab" lang="ar" hreflang="ar" data-title="مبدأ دالمبير" data-language-autonym="العربية" data-language-local-name="Arab" class="interlanguage-link-target"><span>العربية</span></a></li> <li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ca.wikipedia.org/wiki/Principi_de_d%2527Alembert" title="Principi de d'Alembert – Katalan" lang="ca" hreflang="ca" data-title="Principi de d'Alembert" data-language-autonym="Català" data-language-local-name="Katalan" class="interlanguage-link-target"><span>Català</span></a></li> <li class="interlanguage-link interwiki-cs mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://cs.wikipedia.org/wiki/D%2527Alembert%25C5%25AFv_princip" title="D'Alembertův princip – Cheska" lang="cs" hreflang="cs" data-title="D'Alembertův princip" data-language-autonym="Čeština" data-language-local-name="Cheska" class="interlanguage-link-target"><span>Čeština</span></a></li> <li class="interlanguage-link interwiki-de mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://de.wikipedia.org/wiki/D%25E2%2580%2599Alembertsches_Prinzip" title="D’Alembertsches Prinzip – Jerman" lang="de" hreflang="de" data-title="D’Alembertsches Prinzip" data-language-autonym="Deutsch" data-language-local-name="Jerman" class="interlanguage-link-target"><span>Deutsch</span></a></li> <li class="interlanguage-link interwiki-en mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://en.wikipedia.org/wiki/D%2527Alembert%2527s_principle" title="D'Alembert's principle – Inggris" lang="en" hreflang="en" data-title="D'Alembert's principle" data-language-autonym="English" data-language-local-name="Inggris" class="interlanguage-link-target"><span>English</span></a></li> <li class="interlanguage-link interwiki-es mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://es.wikipedia.org/wiki/Principio_de_d%2527Alembert" title="Principio de d'Alembert – Spanyol" lang="es" hreflang="es" data-title="Principio de d'Alembert" data-language-autonym="Español" data-language-local-name="Spanyol" class="interlanguage-link-target"><span>Español</span></a></li> <li class="interlanguage-link interwiki-fa mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fa.wikipedia.org/wiki/%25D8%25A7%25D8%25B5%25D9%2584_%25D8%25AF%25D8%25A7%25D9%2584%25D8%25A7%25D9%2585%25D8%25A8%25D8%25B1" title="اصل دالامبر – Persia" lang="fa" hreflang="fa" data-title="اصل دالامبر" data-language-autonym="فارسی" data-language-local-name="Persia" class="interlanguage-link-target"><span>فارسی</span></a></li> <li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://fr.wikipedia.org/wiki/Principe_de_d%2527Alembert" title="Principe de d'Alembert – Prancis" lang="fr" hreflang="fr" data-title="Principe de d'Alembert" data-language-autonym="Français" data-language-local-name="Prancis" class="interlanguage-link-target"><span>Français</span></a></li> <li class="interlanguage-link interwiki-he mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://he.wikipedia.org/wiki/%25D7%25A2%25D7%25A7%25D7%25A8%25D7%2595%25D7%259F_%25D7%2593%2527%25D7%2590%25D7%259C%25D7%259E%25D7%2591%25D7%25A8" title="עקרון ד'אלמבר – Ibrani" lang="he" hreflang="he" data-title="עקרון ד'אלמבר" data-language-autonym="עברית" data-language-local-name="Ibrani" class="interlanguage-link-target"><span>עברית</span></a></li> <li class="interlanguage-link interwiki-hi mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hi.wikipedia.org/wiki/%25E0%25A4%25A6%25E0%25A4%25BE%25E0%25A4%25B2%25E0%25A4%25BE%25E0%25A4%2581%25E0%25A4%25B5%25E0%25A5%2587%25E0%25A4%25AF%25E0%25A4%25B0_%25E0%25A4%2595%25E0%25A4%25BE_%25E0%25A4%25B8%25E0%25A4%25BF%25E0%25A4%25A6%25E0%25A5%258D%25E0%25A4%25A7%25E0%25A4%25BE%25E0%25A4%25A8%25E0%25A5%258D%25E0%25A4%25A4" title="दालाँवेयर का सिद्धान्त – Hindi" lang="hi" hreflang="hi" data-title="दालाँवेयर का सिद्धान्त" data-language-autonym="हिन्दी" data-language-local-name="Hindi" class="interlanguage-link-target"><span>हिन्दी</span></a></li> <li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hu.wikipedia.org/wiki/D%25E2%2580%2599Alembert-elv" title="D’Alembert-elv – Hungaria" lang="hu" hreflang="hu" data-title="D’Alembert-elv" data-language-autonym="Magyar" data-language-local-name="Hungaria" class="interlanguage-link-target"><span>Magyar</span></a></li> <li class="interlanguage-link interwiki-hy mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://hy.wikipedia.org/wiki/%25D4%25B4%2527%25D4%25B1%25D5%25AC%25D5%25A1%25D5%25B4%25D5%25A2%25D5%25A5%25D6%2580%25D5%25AB_%25D5%25BD%25D5%25AF%25D5%25A6%25D5%25A2%25D5%25B8%25D6%2582%25D5%25B6%25D6%2584" title="Դ'Ալամբերի սկզբունք – Armenia" lang="hy" hreflang="hy" data-title="Դ'Ալամբերի սկզբունք" data-language-autonym="Հայերեն" data-language-local-name="Armenia" class="interlanguage-link-target"><span>Հայերեն</span></a></li> <li class="interlanguage-link interwiki-it mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://it.wikipedia.org/wiki/Principio_di_D%2527Alembert" title="Principio di D'Alembert – Italia" lang="it" hreflang="it" data-title="Principio di D'Alembert" data-language-autonym="Italiano" data-language-local-name="Italia" class="interlanguage-link-target"><span>Italiano</span></a></li> <li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ja.wikipedia.org/wiki/%25E3%2583%2580%25E3%2583%25A9%25E3%2583%25B3%25E3%2583%2599%25E3%2583%25BC%25E3%2583%25AB%25E3%2581%25AE%25E5%258E%259F%25E7%2590%2586" title="ダランベールの原理 – Jepang" lang="ja" hreflang="ja" data-title="ダランベールの原理" data-language-autonym="日本語" data-language-local-name="Jepang" class="interlanguage-link-target"><span>日本語</span></a></li> <li class="interlanguage-link interwiki-kk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://kk.wikipedia.org/wiki/%25D0%2594%25E2%2580%2599%25D0%2590%25D0%25BB%25D0%25B0%25D0%25BC%25D0%25B1%25D0%25B5%25D1%2580_%25D0%25BF%25D1%2580%25D0%25B8%25D0%25BD%25D1%2586%25D0%25B8%25D0%25BF%25D1%2596" title="Д’Аламбер принципі – Kazakh" lang="kk" hreflang="kk" data-title="Д’Аламбер принципі" data-language-autonym="Қазақша" data-language-local-name="Kazakh" class="interlanguage-link-target"><span>Қазақша</span></a></li> <li class="interlanguage-link interwiki-ko mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ko.wikipedia.org/wiki/%25EB%258B%25AC%25EB%259E%2591%25EB%25B2%25A0%25EB%25A5%25B4%25EC%259D%2598_%25EC%259B%2590%25EB%25A6%25AC" title="달랑베르의 원리 – Korea" lang="ko" hreflang="ko" data-title="달랑베르의 원리" data-language-autonym="한국어" data-language-local-name="Korea" class="interlanguage-link-target"><span>한국어</span></a></li> <li class="interlanguage-link interwiki-nn mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://nn.wikipedia.org/wiki/D%2527Alemberts_prinsipp" title="D'Alemberts prinsipp – Nynorsk Norwegia" lang="nn" hreflang="nn" data-title="D'Alemberts prinsipp" data-language-autonym="Norsk nynorsk" data-language-local-name="Nynorsk Norwegia" class="interlanguage-link-target"><span>Norsk nynorsk</span></a></li> <li class="interlanguage-link interwiki-pl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pl.wikipedia.org/wiki/Zasada_d%25E2%2580%2599Alemberta" title="Zasada d’Alemberta – Polski" lang="pl" hreflang="pl" data-title="Zasada d’Alemberta" data-language-autonym="Polski" data-language-local-name="Polski" class="interlanguage-link-target"><span>Polski</span></a></li> <li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://pt.wikipedia.org/wiki/Princ%25C3%25ADpio_de_d%2527Alembert" title="Princípio de d'Alembert – Portugis" lang="pt" hreflang="pt" data-title="Princípio de d'Alembert" data-language-autonym="Português" data-language-local-name="Portugis" class="interlanguage-link-target"><span>Português</span></a></li> <li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://ru.wikipedia.org/wiki/%25D0%259F%25D1%2580%25D0%25B8%25D0%25BD%25D1%2586%25D0%25B8%25D0%25BF_%25D0%25B4%25E2%2580%2599%25D0%2590%25D0%25BB%25D0%25B0%25D0%25BC%25D0%25B1%25D0%25B5%25D1%2580%25D0%25B0" title="Принцип д’Аламбера – Rusia" lang="ru" hreflang="ru" data-title="Принцип д’Аламбера" data-language-autonym="Русский" data-language-local-name="Rusia" class="interlanguage-link-target"><span>Русский</span></a></li> <li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sl.wikipedia.org/wiki/D%2527Alembertovo_na%25C4%258Delo" title="D'Alembertovo načelo – Sloven" lang="sl" hreflang="sl" data-title="D'Alembertovo načelo" data-language-autonym="Slovenščina" data-language-local-name="Sloven" class="interlanguage-link-target"><span>Slovenščina</span></a></li> <li class="interlanguage-link interwiki-sq mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sq.wikipedia.org/wiki/Parimi_i_D%2527Alembertit" title="Parimi i D'Alembertit – Albania" lang="sq" hreflang="sq" data-title="Parimi i D'Alembertit" data-language-autonym="Shqip" data-language-local-name="Albania" class="interlanguage-link-target"><span>Shqip</span></a></li> <li class="interlanguage-link interwiki-sr mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sr.wikipedia.org/wiki/%25D0%259B%25D0%25B0%25D0%25B3%25D1%2580%25D0%25B0%25D0%25BD%25D0%25B6-%25D0%2594%25D0%25B0%25D0%25BB%25D0%25B0%25D0%25BC%25D0%25B1%25D0%25B5%25D1%2580%25D0%25BE%25D0%25B2_%25D0%25BF%25D1%2580%25D0%25B8%25D0%25BD%25D1%2586%25D0%25B8%25D0%25BF" title="Лагранж-Даламберов принцип – Serbia" lang="sr" hreflang="sr" data-title="Лагранж-Даламберов принцип" data-language-autonym="Српски / srpski" data-language-local-name="Serbia" class="interlanguage-link-target"><span>Српски / srpski</span></a></li> <li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://sv.wikipedia.org/wiki/D%2527Alemberts_princip" title="D'Alemberts princip – Swedia" lang="sv" hreflang="sv" data-title="D'Alemberts princip" data-language-autonym="Svenska" data-language-local-name="Swedia" class="interlanguage-link-target"><span>Svenska</span></a></li> <li class="interlanguage-link interwiki-te mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://te.wikipedia.org/wiki/%25E0%25B0%25A1%25E0%25B1%2580%25E0%25B0%2585%25E0%25B0%25B2%25E0%25B0%2582%25E0%25B0%25AC%25E0%25B0%25B0%25E0%25B1%258D%25E0%25B0%259F%25E0%25B1%258D_%25E0%25B0%25B8%25E0%25B1%2582%25E0%25B0%25A4%25E0%25B1%258D%25E0%25B0%25B0%25E0%25B0%25AE%25E0%25B1%2581" title="డీఅలంబర్ట్ సూత్రము – Telugu" lang="te" hreflang="te" data-title="డీఅలంబర్ట్ సూత్రము" data-language-autonym="తెలుగు" data-language-local-name="Telugu" class="interlanguage-link-target"><span>తెలుగు</span></a></li> <li class="interlanguage-link interwiki-th mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://th.wikipedia.org/wiki/%25E0%25B8%25AB%25E0%25B8%25A5%25E0%25B8%25B1%25E0%25B8%2581%25E0%25B8%2581%25E0%25B8%25B2%25E0%25B8%25A3%25E0%25B8%2594%25E0%25B8%25B2%25E0%25B8%25A5%25E0%25B9%2587%25E0%25B8%25AD%25E0%25B8%2587%25E0%25B9%2581%25E0%25B8%259A%25E0%25B8%25A3%25E0%25B9%258C" title="หลักการดาล็องแบร์ – Thai" lang="th" hreflang="th" data-title="หลักการดาล็องแบร์" data-language-autonym="ไทย" data-language-local-name="Thai" class="interlanguage-link-target"><span>ไทย</span></a></li> <li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://uk.wikipedia.org/wiki/%25D0%259F%25D1%2580%25D0%25B8%25D0%25BD%25D1%2586%25D0%25B8%25D0%25BF_%25D0%25B4%2527%25D0%2590%25D0%25BB%25D0%25B0%25D0%25BC%25D0%25B1%25D0%25B5%25D1%2580%25D0%25B0_%25E2%2580%2594_%25D0%259B%25D0%25B0%25D0%25B3%25D1%2580%25D0%25B0%25D0%25BD%25D0%25B6%25D0%25B0" title="Принцип д'Аламбера — Лагранжа – Ukraina" lang="uk" hreflang="uk" data-title="Принцип д'Аламбера — Лагранжа" data-language-autonym="Українська" data-language-local-name="Ukraina" class="interlanguage-link-target"><span>Українська</span></a></li> <li class="interlanguage-link interwiki-uz mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://uz.wikipedia.org/wiki/D%2527Alembert_prinsipi" title="D'Alembert prinsipi – Uzbek" lang="uz" hreflang="uz" data-title="D'Alembert prinsipi" data-language-autonym="Oʻzbekcha / ўзбекча" data-language-local-name="Uzbek" class="interlanguage-link-target"><span>Oʻzbekcha / ўзбекча</span></a></li> <li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh.wikipedia.org/wiki/%25E9%2581%2594%25E6%259C%2597%25E8%25B2%259D%25E7%2588%25BE%25E5%258E%259F%25E7%2590%2586" title="達朗貝爾原理 – Tionghoa" lang="zh" hreflang="zh" data-title="達朗貝爾原理" data-language-autonym="中文" data-language-local-name="Tionghoa" class="interlanguage-link-target"><span>中文</span></a></li> <li class="interlanguage-link interwiki-zh-yue mw-list-item"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://zh-yue.wikipedia.org/wiki/%25E9%2581%2594%25E6%259E%2597%25E4%25BC%25AF%25E7%2589%25B9%25E5%258E%259F%25E5%2589%2587" title="達林伯特原則 – Kanton" lang="yue" hreflang="yue" data-title="達林伯特原則" data-language-autonym="粵語" data-language-local-name="Kanton" class="interlanguage-link-target"><span>粵語</span></a></li> </ul> </section> </div> <div class="minerva-footer-logo"> <img src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" alt="Wikipedia" width="120" height="18" style="width: 7.5em; height: 1.125em;"> </div> <ul id="footer-info" class="footer-info hlist hlist-separated"> <li id="footer-info-lastmod">Halaman ini terakhir diubah pada 9 Maret 2024, pukul 23.16.</li> <li id="footer-info-copyright">Konten tersedia di bawah <a class="external" rel="nofollow" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://creativecommons.org/licenses/by-sa/4.0/deed.id">CC BY-SA 4.0</a> kecuali dinyatakan lain.</li> </ul> <ul id="footer-places" class="footer-places hlist hlist-separated"> <li id="footer-places-privacy"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Kebijakan privasi</a></li> <li id="footer-places-about"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Tentang?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Tentang Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="https://id-m-wikipedia-org.translate.goog/wiki/Wikipedia:Penyangkalan_umum?_x_tr_sl=auto&amp;_x_tr_tl=en&amp;_x_tr_hl=en-GB">Penyangkalan</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Kode Etik</a></li> <li id="footer-places-developers"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://developer.wikimedia.org">Pengembang</a></li> <li id="footer-places-statslink"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://stats.wikimedia.org/%23/id.wikipedia.org">Statistik</a></li> <li id="footer-places-cookiestatement"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Pernyataan kuki</a></li> <li id="footer-places-terms-use"><a href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://foundation.m.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use">Ketentuan Penggunaan</a></li> <li id="footer-places-desktop-toggle"><a id="mw-mf-display-toggle" href="https://translate.google.com/website?sl=auto&amp;tl=en&amp;hl=en-GB&amp;u=https://id.wikipedia.org/w/index.php?title%3DAsas_D'Alembert%26mobileaction%3Dtoggle_view_desktop" data-event-name="switch_to_desktop">Tampilan komputer (PC)</a></li> </ul> </div> </footer> </div> </div> <div class="mw-notification-area" data-mw="interface"></div><!-- v:8.3.1 --> <script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-7dfb9d98f5-xht8x","wgBackendResponseTime":157,"wgPageParseReport":{"limitreport":{"cputime":"0.141","walltime":"0.237","ppvisitednodes":{"value":712,"limit":1000000},"postexpandincludesize":{"value":13230,"limit":2097152},"templateargumentsize":{"value":0,"limit":2097152},"expansiondepth":{"value":4,"limit":100},"expensivefunctioncount":{"value":0,"limit":500},"unstrip-depth":{"value":0,"limit":20},"unstrip-size":{"value":13840,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 70.760 1 -total"," 76.30% 53.990 3 Templat:Cite_book"," 17.00% 12.027 3 Templat:Cite_journal"," 5.71% 4.037 1 Templat:Cite_web"]},"scribunto":{"limitreport-timeusage":{"value":"0.038","limit":"10.000"},"limitreport-memusage":{"value":2157820,"limit":52428800}},"cachereport":{"origin":"mw-api-int.codfw.main-849f99967d-42pmf","timestamp":"20241122220004","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Asas D'Alembert","url":"https:\/\/id.wikipedia.org\/wiki\/Asas_D%27Alembert","sameAs":"http:\/\/www.wikidata.org\/entity\/Q753007","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q753007","author":{"@type":"Organization","name":"Kontributor dari proyek Wikimedia."},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2024-02-25T11:52:46Z","dateModified":"2024-03-09T23:16:47Z"}</script> <script>(window.NORLQ=window.NORLQ||[]).push(function(){var ns,i,p,img;ns=document.getElementsByTagName('noscript');for(i=0;i<ns.length;i++){p=ns[i].nextSibling;if(p&&p.className&&p.className.indexOf('lazy-image-placeholder')>-1){img=document.createElement('img');img.setAttribute('src',p.getAttribute('data-src'));img.setAttribute('width',p.getAttribute('data-width'));img.setAttribute('height',p.getAttribute('data-height'));img.setAttribute('alt',p.getAttribute('data-alt'));p.parentNode.replaceChild(img,p);}}});</script> <script>function gtElInit() {var lib = new google.translate.TranslateService();lib.translatePage('id', 'en', function () {});}</script> <script src="https://translate.google.com/translate_a/element.js?cb=gtElInit&amp;hl=en-GB&amp;client=wt" type="text/javascript"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10