CINXE.COM

Search results for: character segmentation

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: character segmentation</title> <meta name="description" content="Search results for: character segmentation"> <meta name="keywords" content="character segmentation"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="character segmentation" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="character segmentation"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 547</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: character segmentation</h1> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">547</span> Myanmar Character Recognition Using Eight Direction Chain Code Frequency Features </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Kyi%20Pyar%20Zaw">Kyi Pyar Zaw</a>, <a href="https://publications.waset.org/search?q=Zin%20Mar%20Kyu"> Zin Mar Kyu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Character recognition is the process of converting a text image file into editable and searchable text file. Feature Extraction is the heart of any character recognition system. The character recognition rate may be low or high depending on the extracted features. In the proposed paper, 25 features for one character are used in character recognition. Basically, there are three steps of character recognition such as character segmentation, feature extraction and classification. In segmentation step, horizontal cropping method is used for line segmentation and vertical cropping method is used for character segmentation. In the Feature extraction step, features are extracted in two ways. The first way is that the 8 features are extracted from the entire input character using eight direction chain code frequency extraction. The second way is that the input character is divided into 16 blocks. For each block, although 8 feature values are obtained through eight-direction chain code frequency extraction method, we define the sum of these 8 feature values as a feature for one block. Therefore, 16 features are extracted from that 16 blocks in the second way. We use the number of holes feature to cluster the similar characters. We can recognize the almost Myanmar common characters with various font sizes by using these features. All these 25 features are used in both training part and testing part. In the classification step, the characters are classified by matching the all features of input character with already trained features of characters.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chain%20code%20frequency" title="Chain code frequency">Chain code frequency</a>, <a href="https://publications.waset.org/search?q=character%20recognition" title=" character recognition"> character recognition</a>, <a href="https://publications.waset.org/search?q=feature%20extraction" title=" feature extraction"> feature extraction</a>, <a href="https://publications.waset.org/search?q=features%20matching" title=" features matching"> features matching</a>, <a href="https://publications.waset.org/search?q=segmentation." title=" segmentation."> segmentation.</a> </p> <a href="https://publications.waset.org/10009080/myanmar-character-recognition-using-eight-direction-chain-code-frequency-features" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009080/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009080/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009080/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009080/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009080/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009080/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009080/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009080/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009080/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009080/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009080.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">753</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">546</span> A Character Detection Method for Ancient Yi Books Based on Connected Components and Regressive Character Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Xu%20Han">Xu Han</a>, <a href="https://publications.waset.org/search?q=Shanxiong%20Chen"> Shanxiong Chen</a>, <a href="https://publications.waset.org/search?q=Shiyu%20Zhu"> Shiyu Zhu</a>, <a href="https://publications.waset.org/search?q=Xiaoyu%20Lin"> Xiaoyu Lin</a>, <a href="https://publications.waset.org/search?q=Fujia%20Zhao"> Fujia Zhao</a>, <a href="https://publications.waset.org/search?q=Dingwang%20Wang"> Dingwang Wang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Character detection is an important issue for character recognition of ancient Yi books. The accuracy of detection directly affects the recognition effect of ancient Yi books. Considering the complex layout, the lack of standard typesetting and the mixed arrangement between images and texts, we propose a character detection method for ancient Yi books based on connected components and regressive character segmentation. First, the scanned images of ancient Yi books are preprocessed with nonlocal mean filtering, and then a modified local adaptive threshold binarization algorithm is used to obtain the binary images to segment the foreground and background for the images. Second, the non-text areas are removed by the method based on connected components. Finally, the single character in the ancient Yi books is segmented by our method. The experimental results show that the method can effectively separate the text areas and non-text areas for ancient Yi books and achieve higher accuracy and recall rate in the experiment of character detection, and effectively solve the problem of character detection and segmentation in character recognition of ancient books. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Computing%20methodologies" title="Computing methodologies">Computing methodologies</a>, <a href="https://publications.waset.org/search?q=interest%20point" title=" interest point"> interest point</a>, <a href="https://publications.waset.org/search?q=salient%20region%20detections" title=" salient region detections"> salient region detections</a>, <a href="https://publications.waset.org/search?q=image%20segmentation." title=" image segmentation."> image segmentation.</a> </p> <a href="https://publications.waset.org/10011087/a-character-detection-method-for-ancient-yi-books-based-on-connected-components-and-regressive-character-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011087/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011087/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011087/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011087/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011087/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011087/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011087/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011087/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011087/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011087/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011087.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">865</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">545</span> Character Segmentation Method for a License Plate with Topological Transform</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Jaedo%20Kim">Jaedo Kim</a>, <a href="https://publications.waset.org/search?q=Youngjoon%20Han"> Youngjoon Han</a>, <a href="https://publications.waset.org/search?q=Hernsoo%20Hahn"> Hernsoo Hahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper propose the robust character segmentation method for license plate with topological transform such as twist,rotation. The first step of the proposed method is to find a candidate region for character and license plate. The character or license plate must be appeared as closed loop in the edge image. In the case of detecting candidate for character region, the evaluation of detected region is using topological relationship between each character. When this method decides license plate candidate region, character features in the region with binarization are used. After binarization for the detected candidate region, each character region is decided again. In this step, each character region is fitted more than previous step. In the next step, the method checks other character regions with different scale near the detected character regions, because most license plates have license numbers with some meaningful characters around them. The method uses perspective projection for geometrical normalization. If there is topological distortion in the character region, the method projects the region on a template which is defined as standard license plate using perspective projection. In this step, the method is able to separate each number region and small meaningful characters. The evaluation results are tested with a number of test images. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=License%20Plate%20Detection" title="License Plate Detection">License Plate Detection</a>, <a href="https://publications.waset.org/search?q=Character%20Segmentation" title=" Character Segmentation"> Character Segmentation</a>, <a href="https://publications.waset.org/search?q=Perspective%20Projection" title=" Perspective Projection"> Perspective Projection</a>, <a href="https://publications.waset.org/search?q=Topological%20Transform." title=" Topological Transform."> Topological Transform.</a> </p> <a href="https://publications.waset.org/1727/character-segmentation-method-for-a-license-plate-with-topological-transform" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/1727/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/1727/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/1727/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/1727/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/1727/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/1727/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/1727/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/1727/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/1727/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/1727/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/1727.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1935</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">544</span> Recognition-based Segmentation in Persian Character Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mohsen%20Zand">Mohsen Zand</a>, <a href="https://publications.waset.org/search?q=Ahmadreza%20Naghsh%20Nilchi"> Ahmadreza Naghsh Nilchi</a>, <a href="https://publications.waset.org/search?q=S.%20Amirhassan%20Monadjemi"> S. Amirhassan Monadjemi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Optical character recognition of cursive scripts presents a number of challenging problems in both segmentation and recognition processes in different languages, including Persian. In order to overcome these problems, we use a newly developed Persian word segmentation method and a recognition-based segmentation technique to overcome its segmentation problems. This method is robust as well as flexible. It also increases the system-s tolerances to font variations. The implementation results of this method on a comprehensive database show a high degree of accuracy which meets the requirements for commercial use. Extended with a suitable pre and post-processing, the method offers a simple and fast framework to develop a full OCR system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=OCR" title="OCR">OCR</a>, <a href="https://publications.waset.org/search?q=Persian" title=" Persian"> Persian</a>, <a href="https://publications.waset.org/search?q=Recognition" title=" Recognition"> Recognition</a>, <a href="https://publications.waset.org/search?q=Segmentation." title=" Segmentation."> Segmentation.</a> </p> <a href="https://publications.waset.org/9003/recognition-based-segmentation-in-persian-character-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9003/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9003/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9003/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9003/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9003/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9003/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9003/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9003/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9003/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9003/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9003.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1840</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">543</span> A Study of Touching Characters in Degraded Gurmukhi Text</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20K.%20Jindal">M. K. Jindal</a>, <a href="https://publications.waset.org/search?q=G.%20S.%20Lehal"> G. S. Lehal</a>, <a href="https://publications.waset.org/search?q=R.%20K.%20Sharma"> R. K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper a study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis.Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Character%20Segmentation" title="Character Segmentation">Character Segmentation</a>, <a href="https://publications.waset.org/search?q=Middle%20Zone" title=" Middle Zone"> Middle Zone</a>, <a href="https://publications.waset.org/search?q=Touching%0ACharacters." title=" Touching Characters."> Touching Characters.</a> </p> <a href="https://publications.waset.org/13525/a-study-of-touching-characters-in-degraded-gurmukhi-text" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/13525/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/13525/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/13525/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/13525/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/13525/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/13525/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/13525/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/13525/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/13525/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/13525/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/13525.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1841</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">542</span> A Comparative Study of Image Segmentation Algorithms</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mehdi%20Hosseinzadeh">Mehdi Hosseinzadeh</a>, <a href="https://publications.waset.org/search?q=Parisa%20Khoshvaght"> Parisa Khoshvaght</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In some applications, such as image recognition or compression, segmentation refers to the process of partitioning a digital image into multiple segments. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. Image segmentation is to classify or cluster an image into several parts (regions) according to the feature of image, for example, the pixel value or the frequency response. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image. Several image segmentation algorithms were proposed to segment an image before recognition or compression. Up to now, many image segmentation algorithms exist and be extensively applied in science and daily life. According to their segmentation method, we can approximately categorize them into region-based segmentation, data clustering, and edge-base segmentation. In this paper, we give a study of several popular image segmentation algorithms that are available. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Segmentation" title="Image Segmentation">Image Segmentation</a>, <a href="https://publications.waset.org/search?q=hierarchical%20segmentation" title=" hierarchical segmentation"> hierarchical segmentation</a>, <a href="https://publications.waset.org/search?q=partitional%20segmentation" title=" partitional segmentation"> partitional segmentation</a>, <a href="https://publications.waset.org/search?q=density%20estimation." title=" density estimation."> density estimation.</a> </p> <a href="https://publications.waset.org/10002407/a-comparative-study-of-image-segmentation-algorithms" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10002407/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10002407/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10002407/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10002407/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10002407/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10002407/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10002407/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10002407/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10002407/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10002407/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10002407.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2918</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">541</span> Unconstrained Arabic Online Handwritten Words Segmentation using New HMM State Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Randa%20Ibrahim%20Elanwar">Randa Ibrahim Elanwar</a>, <a href="https://publications.waset.org/search?q=Mohsen%20Rashwan"> Mohsen Rashwan</a>, <a href="https://publications.waset.org/search?q=Samia%20Mashali"> Samia Mashali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this paper we propose a segmentation system for unconstrained Arabic online handwriting. An essential problem addressed by analytical-based word recognition system. The system is composed of two-stages the first is a newly special designed hidden Markov model (HMM) and the second is a rules based stage. In our system, handwritten words are broken up into characters by simultaneous segmentation-recognition using HMMs of unique design trained using online features most of which are novel. The HMM output characters boundaries represent the proposed segmentation points (PSP) which are then validated by rules-based post stage without any contextual information help to solve different segmentation errors. The HMM has been designed and tested using a self collected dataset (OHASD) [1]. Most errors cases are cured and remarkable segmentation enhancement is achieved. Very promising word and character segmentation rates are obtained regarding the unconstrained Arabic handwriting difficulty and not using context help.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Arabic" title="Arabic">Arabic</a>, <a href="https://publications.waset.org/search?q=Hidden%20Markov%20Models" title=" Hidden Markov Models"> Hidden Markov Models</a>, <a href="https://publications.waset.org/search?q=online%20handwriting" title=" online handwriting"> online handwriting</a>, <a href="https://publications.waset.org/search?q=word%20segmentation" title=" word segmentation"> word segmentation</a> </p> <a href="https://publications.waset.org/15261/unconstrained-arabic-online-handwritten-words-segmentation-using-new-hmm-state-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15261/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15261/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15261/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15261/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15261/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15261/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15261/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15261/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15261/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15261/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15261.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1836</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">540</span> Segmentation Problems and Solutions in Printed Degraded Gurmukhi Script</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=M.%20K.%20Jindal">M. K. Jindal</a>, <a href="https://publications.waset.org/search?q=G.%20S.%20Lehal"> G. S. Lehal</a>, <a href="https://publications.waset.org/search?q=R.%20K.%20Sharma"> R. K. Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Character segmentation is an important preprocessing step for text recognition. In degraded documents, existence of touching characters decreases recognition rate drastically, for any optical character recognition (OCR) system. In this paper we have proposed a complete solution for segmenting touching characters in all the three zones of printed Gurmukhi script. A study of touching Gurmukhi characters is carried out and these characters have been divided into various categories after a careful analysis. Structural properties of the Gurmukhi characters are used for defining the categories. New algorithms have been proposed to segment the touching characters in middle zone, upper zone and lower zone. These algorithms have shown a reasonable improvement in segmenting the touching characters in degraded printed Gurmukhi script. The algorithms proposed in this paper are applicable only to machine printed text. We have also discussed a new and useful technique to segment the horizontally overlapping lines. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Character%20Segmentation" title="Character Segmentation">Character Segmentation</a>, <a href="https://publications.waset.org/search?q=Middle%20Zone" title=" Middle Zone"> Middle Zone</a>, <a href="https://publications.waset.org/search?q=Upper%20Zone" title=" Upper Zone"> Upper Zone</a>, <a href="https://publications.waset.org/search?q=Lower%20Zone" title=" Lower Zone"> Lower Zone</a>, <a href="https://publications.waset.org/search?q=Touching%20Characters" title=" Touching Characters"> Touching Characters</a>, <a href="https://publications.waset.org/search?q=Horizontally%20Overlapping%20Lines." title=" Horizontally Overlapping Lines."> Horizontally Overlapping Lines.</a> </p> <a href="https://publications.waset.org/5398/segmentation-problems-and-solutions-in-printed-degraded-gurmukhi-script" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/5398/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/5398/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/5398/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/5398/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/5398/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/5398/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/5398/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/5398/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/5398/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/5398/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/5398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1696</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">539</span> A Review on Image Segmentation Techniques and Performance Measures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=David%20Libouga%20Li%20Gwet">David Libouga Li Gwet</a>, <a href="https://publications.waset.org/search?q=Marius%20Otesteanu"> Marius Otesteanu</a>, <a href="https://publications.waset.org/search?q=Ideal%20Oscar%20Libouga"> Ideal Oscar Libouga</a>, <a href="https://publications.waset.org/search?q=Laurent%20Bitjoka"> Laurent Bitjoka</a>, <a href="https://publications.waset.org/search?q=Gheorghe%20D.%20Popa"> Gheorghe D. Popa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Image segmentation is a method to extract regions of interest from an image. It remains a fundamental problem in computer vision. The increasing diversity and the complexity of segmentation algorithms have led us firstly, to make a review and classify segmentation techniques, secondly to identify the most used measures of segmentation performance and thirdly, discuss deeply on segmentation philosophy in order to help the choice of adequate segmentation techniques for some applications. To justify the relevance of our analysis, recent algorithms of segmentation are presented through the proposed classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Classification" title="Classification">Classification</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=measures%20of%20performance." title=" measures of performance."> measures of performance.</a> </p> <a href="https://publications.waset.org/10009909/a-review-on-image-segmentation-techniques-and-performance-measures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10009909/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10009909/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10009909/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10009909/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10009909/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10009909/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10009909/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10009909/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10009909/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10009909/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10009909.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2051</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">538</span> Persian/Arabic Document Segmentation Based On Pyramidal Image Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Seyyed%20Yasser%20Hashemi">Seyyed Yasser Hashemi</a>, <a href="https://publications.waset.org/search?q=Khalil%20Monfaredi"> Khalil Monfaredi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Automatic transformation of paper documents into electronic documents requires document segmentation at the first stage. However, some parameters restrictions such as variations in character font sizes, different text line spacing, and also not uniform document layout structures altogether have made it difficult to design a general-purpose document layout analysis algorithm for many years. Thus in most previously reported methods it is inevitable to include these parameters. This problem becomes excessively acute and severe, especially in Persian/Arabic documents. Since the Persian/Arabic scripts differ considerably from the English scripts, most of the proposed methods for the English scripts do not render good results for the Persian scripts. In this paper, we present a novel parameter-free method for segmenting the Persian/Arabic document images which also works well for English scripts. This method segments the document image into maximal homogeneous regions and identifies them as texts and non-texts based on a pyramidal image structure. In other words the proposed method is capable of document segmentation without considering the character font sizes, text line spacing, and document layout structures. This algorithm is examined for 150 Arabic/Persian and English documents and document segmentation process are done successfully for 96 percent of documents.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Persian%2FArabic%20document" title="Persian/Arabic document">Persian/Arabic document</a>, <a href="https://publications.waset.org/search?q=document%20segmentation" title=" document segmentation"> document segmentation</a>, <a href="https://publications.waset.org/search?q=Pyramidal%20Image%20Structure" title=" Pyramidal Image Structure"> Pyramidal Image Structure</a>, <a href="https://publications.waset.org/search?q=skew%20detection%20and%20correction." title=" skew detection and correction."> skew detection and correction.</a> </p> <a href="https://publications.waset.org/9998467/persianarabic-document-segmentation-based-on-pyramidal-image-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9998467/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9998467/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9998467/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9998467/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9998467/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9998467/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9998467/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9998467/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9998467/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9998467/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9998467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1765</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">537</span> Lung Segmentation Algorithm for CAD System in CTA Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20%C3%96zkan">H. 脰zkan</a>, <a href="https://publications.waset.org/search?q=O.%20Osman"> O. Osman</a>, <a href="https://publications.waset.org/search?q=S.%20%C5%9Eahin"> S. 艦ahin</a>, <a href="https://publications.waset.org/search?q=M.%20M.%20Atasoy"> M. M. Atasoy</a>, <a href="https://publications.waset.org/search?q=H.%20Barutca"> H. Barutca</a>, <a href="https://publications.waset.org/search?q=A.%20F.%20Boz"> A. F. Boz</a>, <a href="https://publications.waset.org/search?q=A.%20Olsun"> A. Olsun</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In this study, we present a new and fast algorithm for lung segmentation using CTA images. This process is quite important especially at lung vessel segmentation, detection of pulmonary emboly, finding nodules or segmentation of airways. Applied method has been carried out at four steps. At first step, images have been applied optimal threshold. At the second one, the subsegment vessels, which have a place in lung region and which are in small dimension, have been removed. At the third one, identifying and segmentation of lungs and airway edges have been carried out. Lastly, by throwing away the airway, lung segmentation has been presented.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Lung%20segmentation" title="Lung segmentation">Lung segmentation</a>, <a href="https://publications.waset.org/search?q=computed%20tomography%0D%0Aangiography" title=" computed tomography angiography"> computed tomography angiography</a>, <a href="https://publications.waset.org/search?q=computer-aided%20diagnostic%20system" title=" computer-aided diagnostic system"> computer-aided diagnostic system</a> </p> <a href="https://publications.waset.org/15507/lung-segmentation-algorithm-for-cad-system-in-cta-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15507/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15507/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15507/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15507/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15507/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15507/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15507/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15507/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15507/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15507/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15507.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2008</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">536</span> Simultaneous Segmentation and Recognition of Arabic Characters in an Unconstrained On-Line Cursive Handwritten Document</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Randa%20I.%20Elanwar">Randa I. Elanwar</a>, <a href="https://publications.waset.org/search?q=Mohsen%20A.%20Rashwan"> Mohsen A. Rashwan</a>, <a href="https://publications.waset.org/search?q=Samia%20A.%20Mashali"> Samia A. Mashali</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The last two decades witnessed some advances in the development of an Arabic character recognition (CR) system. Arabic CR faces technical problems not encountered in any other language that make Arabic CR systems achieve relatively low accuracy and retards establishing them as market products. We propose the basic stages towards a system that attacks the problem of recognizing online Arabic cursive handwriting. Rule-based methods are used to perform simultaneous segmentation and recognition of word portions in an unconstrained cursively handwritten document using dynamic programming. The output of these stages is in the form of a ranked list of the possible decisions. A new technique for text line separation is also used.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Arabic%20handwriting" title="Arabic handwriting">Arabic handwriting</a>, <a href="https://publications.waset.org/search?q=character%20recognition" title=" character recognition"> character recognition</a>, <a href="https://publications.waset.org/search?q=cursive%20handwriting" title=" cursive handwriting"> cursive handwriting</a>, <a href="https://publications.waset.org/search?q=on-line%20recognition." title=" on-line recognition."> on-line recognition.</a> </p> <a href="https://publications.waset.org/15152/simultaneous-segmentation-and-recognition-of-arabic-characters-in-an-unconstrained-on-line-cursive-handwritten-document" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15152/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15152/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15152/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15152/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15152/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15152/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15152/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15152/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15152/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15152/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15152.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1901</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">535</span> A Comparative Study of Image Segmentation using Edge-Based Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Rajiv%20Kumar">Rajiv Kumar</a>, <a href="https://publications.waset.org/search?q=Arthanariee%20A.%20M."> Arthanariee A. M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Image segmentation is the process to segment a given image into several parts so that each of these parts present in the image can be further analyzed. There are numerous techniques of image segmentation available in literature. In this paper, authors have been analyzed the edge-based approach for image segmentation. They have been implemented the different edge operators like Prewitt, Sobel, LoG, and Canny on the basis of their threshold parameter. The results of these operators have been shown for various images.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Edge%20Operator" title="Edge Operator">Edge Operator</a>, <a href="https://publications.waset.org/search?q=Edge-based%20Segmentation" title=" Edge-based Segmentation"> Edge-based Segmentation</a>, <a href="https://publications.waset.org/search?q=Image%20Segmentation" title=" Image Segmentation"> Image Segmentation</a>, <a href="https://publications.waset.org/search?q=Matlab%2010.4." title=" Matlab 10.4."> Matlab 10.4.</a> </p> <a href="https://publications.waset.org/16809/a-comparative-study-of-image-segmentation-using-edge-based-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/16809/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/16809/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/16809/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/16809/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/16809/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/16809/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/16809/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/16809/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/16809/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/16809/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/16809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">3606</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">534</span> Ottoman Script Recognition Using Hidden Markov Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Ay%C5%9Fe%20Onat">Ay艧e Onat</a>, <a href="https://publications.waset.org/search?q=Ferruh%20Yildiz"> Ferruh Yildiz</a>, <a href="https://publications.waset.org/search?q=Mesut%20G%C3%BCnd%C3%BCz"> Mesut G眉nd眉z</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an OCR system for segmentation, feature extraction and recognition of Ottoman Scripts has been developed using handwritten characters. Detection of handwritten characters written by humans is a difficult process. Segmentation and feature extraction stages are based on geometrical feature analysis, followed by the chain code transformation of the main strokes of each character. The output of segmentation is well-defined segments that can be fed into any classification approach. The classes of main strokes are identified through left-right Hidden Markov Model (HMM). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Chain%20Code" title="Chain Code">Chain Code</a>, <a href="https://publications.waset.org/search?q=HMM" title=" HMM"> HMM</a>, <a href="https://publications.waset.org/search?q=Ottoman%20Script%20Recognition" title=" Ottoman Script Recognition"> Ottoman Script Recognition</a>, <a href="https://publications.waset.org/search?q=OCR" title="OCR">OCR</a> </p> <a href="https://publications.waset.org/4689/ottoman-script-recognition-using-hidden-markov-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4689/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4689/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4689/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4689/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4689/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4689/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4689/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4689/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4689/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4689/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4689.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2319</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">533</span> Fast Document Segmentation Using Contourand X-Y Cut Technique</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Boontee%20Kruatrachue">Boontee Kruatrachue</a>, <a href="https://publications.waset.org/search?q=Narongchai%20Moongfangklang"> Narongchai Moongfangklang</a>, <a href="https://publications.waset.org/search?q=Kritawan%20Siriboon"> Kritawan Siriboon </a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>This paper describes fast and efficient method for page segmentation of document containing nonrectangular block. The segmentation is based on edge following algorithm using small window of 16 by 32 pixels. This segmentation is very fast since only border pixels of paragraph are used without scanning the whole page. Still, the segmentation may contain error if the space between them is smaller than the window used in edge following. Consequently, this paper reduce this error by first identify the missed segmentation point using direction information in edge following then, using X-Y cut at the missed segmentation point to separate the connected columns. The advantage of the proposed method is the fast identification of missed segmentation point. This methodology is faster with fewer overheads than other algorithms that need to access much more pixel of a document.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Contour%20Direction%20Technique" title="Contour Direction Technique">Contour Direction Technique</a>, <a href="https://publications.waset.org/search?q=Missed%20SegmentationPoints" title=" Missed SegmentationPoints"> Missed SegmentationPoints</a>, <a href="https://publications.waset.org/search?q=Page%20Segmentation" title=" Page Segmentation"> Page Segmentation</a>, <a href="https://publications.waset.org/search?q=Recursive%20X-Y%20Cut%20Technique" title=" Recursive X-Y Cut Technique"> Recursive X-Y Cut Technique</a> </p> <a href="https://publications.waset.org/15977/fast-document-segmentation-using-contourand-x-y-cut-technique" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/15977/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/15977/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/15977/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/15977/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/15977/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/15977/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/15977/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/15977/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/15977/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/15977/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/15977.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2784</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">532</span> A Comparative Study of Medical Image Segmentation Methods for Tumor Detection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Mayssa%20Bensalah">Mayssa Bensalah</a>, <a href="https://publications.waset.org/search?q=Atef%20Boujelben"> Atef Boujelben</a>, <a href="https://publications.waset.org/search?q=Mouna%20Baklouti"> Mouna Baklouti</a>, <a href="https://publications.waset.org/search?q=Mohamed%20Abid"> Mohamed Abid</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Image segmentation has a fundamental role in analysis and interpretation for many applications. The automated segmentation of organs and tissues throughout the body using computed imaging has been rapidly increasing. Indeed, it represents one of the most important parts of clinical diagnostic tools. In this paper, we discuss a thorough literature review of recent methods of tumour segmentation from medical images which are briefly explained with the recent contribution of various researchers. This study was followed by comparing these methods in order to define new directions to develop and improve the performance of the segmentation of the tumour area from medical images.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Features%20extraction" title="Features extraction">Features extraction</a>, <a href="https://publications.waset.org/search?q=image%20segmentation" title=" image segmentation"> image segmentation</a>, <a href="https://publications.waset.org/search?q=medical%20images" title=" medical images"> medical images</a>, <a href="https://publications.waset.org/search?q=tumour%20detection." title=" tumour detection."> tumour detection.</a> </p> <a href="https://publications.waset.org/10011999/a-comparative-study-of-medical-image-segmentation-methods-for-tumor-detection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011999/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011999/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011999/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011999/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011999/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011999/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011999/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011999/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011999/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011999/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011999.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">588</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">531</span> Automatic Number Plate Recognition System Based on Deep Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=T.%20Damak">T. Damak</a>, <a href="https://publications.waset.org/search?q=O.%20Kriaa"> O. Kriaa</a>, <a href="https://publications.waset.org/search?q=A.%20Baccar"> A. Baccar</a>, <a href="https://publications.waset.org/search?q=M.%20A.%20Ben%20Ayed"> M. A. Ben Ayed</a>, <a href="https://publications.waset.org/search?q=N.%20Masmoudi"> N. Masmoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Automatic%20number%20plate%20recognition" title="Automatic number plate recognition">Automatic number plate recognition</a>, <a href="https://publications.waset.org/search?q=character%20segmentation" title=" character segmentation"> character segmentation</a>, <a href="https://publications.waset.org/search?q=convolutional%20neural%20network" title=" convolutional neural network"> convolutional neural network</a>, <a href="https://publications.waset.org/search?q=CNN" title=" CNN"> CNN</a>, <a href="https://publications.waset.org/search?q=deep%20learning" title=" deep learning"> deep learning</a>, <a href="https://publications.waset.org/search?q=number%20plate%20localization." title=" number plate localization. "> number plate localization. </a> </p> <a href="https://publications.waset.org/10011141/automatic-number-plate-recognition-system-based-on-deep-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10011141/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10011141/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10011141/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10011141/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10011141/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10011141/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10011141/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10011141/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10011141/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10011141/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10011141.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1286</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">530</span> 3D Anisotropic Diffusion for Liver Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Wan%20Nural%20Jawahir%20Wan%20Yussof">Wan Nural Jawahir Wan Yussof</a>, <a href="https://publications.waset.org/search?q=Hans%20Burkhardt"> Hans Burkhardt</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Liver segmentation is the first significant process for liver diagnosis of the Computed Tomography. It segments the liver structure from other abdominal organs. Sophisticated filtering techniques are indispensable for a proper segmentation. In this paper, we employ a 3D anisotropic diffusion as a preprocessing step. While removing image noise, this technique preserve the significant parts of the image, typically edges, lines or other details that are important for the interpretation of the image. The segmentation task is done by using thresholding with automatic threshold values selection and finally the false liver region is eliminated using 3D connected component. The result shows that by employing the 3D anisotropic filtering, better liver segmentation results could be achieved eventhough simple segmentation technique is used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=3D%20Anisotropic%20Diffusion" title="3D Anisotropic Diffusion">3D Anisotropic Diffusion</a>, <a href="https://publications.waset.org/search?q=non-linear%20filtering" title=" non-linear filtering"> non-linear filtering</a>, <a href="https://publications.waset.org/search?q=CT%20Liver." title=" CT Liver."> CT Liver.</a> </p> <a href="https://publications.waset.org/9741/3d-anisotropic-diffusion-for-liver-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9741/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9741/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9741/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9741/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9741/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9741/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9741/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9741/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9741/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9741/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9741.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1597</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">529</span> Image Segmentation Based on Graph Theoretical Approach to Improve the Quality of Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Deepthi%20Narayan">Deepthi Narayan</a>, <a href="https://publications.waset.org/search?q=Srikanta%20Murthy%20K."> Srikanta Murthy K.</a>, <a href="https://publications.waset.org/search?q=G.%20Hemantha%20Kumar"> G. Hemantha Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Graph based image segmentation techniques are considered to be one of the most efficient segmentation techniques which are mainly used as time & space efficient methods for real time applications. How ever, there is need to focus on improving the quality of segmented images obtained from the earlier graph based methods. This paper proposes an improvement to the graph based image segmentation methods already described in the literature. We contribute to the existing method by proposing the use of a weighted Euclidean distance to calculate the edge weight which is the key element in building the graph. We also propose a slight modification of the segmentation method already described in the literature, which results in selection of more prominent edges in the graph. The experimental results show the improvement in the segmentation quality as compared to the methods that already exist, with a slight compromise in efficiency. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Graph%20based%20image%20segmentation" title="Graph based image segmentation">Graph based image segmentation</a>, <a href="https://publications.waset.org/search?q=threshold" title=" threshold"> threshold</a>, <a href="https://publications.waset.org/search?q=Weighted%20Euclidean%20distance." title="Weighted Euclidean distance.">Weighted Euclidean distance.</a> </p> <a href="https://publications.waset.org/7317/image-segmentation-based-on-graph-theoretical-approach-to-improve-the-quality-of-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/7317/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/7317/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/7317/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/7317/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/7317/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/7317/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/7317/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/7317/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/7317/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/7317/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/7317.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1563</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">528</span> Hippocampus Segmentation using a Local Prior Model on its Boundary</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Dimitrios%20Zarpalas">Dimitrios Zarpalas</a>, <a href="https://publications.waset.org/search?q=Anastasios%20Zafeiropoulos"> Anastasios Zafeiropoulos</a>, <a href="https://publications.waset.org/search?q=Petros%20Daras"> Petros Daras</a>, <a href="https://publications.waset.org/search?q=Nicos%20Maglaveras">Nicos Maglaveras</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Segmentation techniques based on Active Contour Models have been strongly benefited from the use of prior information during their evolution. Shape prior information is captured from a training set and is introduced in the optimization procedure to restrict the evolution into allowable shapes. In this way, the evolution converges onto regions even with weak boundaries. Although significant effort has been devoted on different ways of capturing and analyzing prior information, very little thought has been devoted on the way of combining image information with prior information. This paper focuses on a more natural way of incorporating the prior information in the level set framework. For proof of concept the method is applied on hippocampus segmentation in T1-MR images. Hippocampus segmentation is a very challenging task, due to the multivariate surrounding region and the missing boundary with the neighboring amygdala, whose intensities are identical. The proposed method, mimics the human segmentation way and thus shows enhancements in the segmentation accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Medical%20imaging%20%26%20processing" title="Medical imaging &amp; processing">Medical imaging &amp; processing</a>, <a href="https://publications.waset.org/search?q=Brain%20MRI%20segmentation" title=" Brain MRI segmentation"> Brain MRI segmentation</a>, <a href="https://publications.waset.org/search?q=hippocampus%20segmentation" title="hippocampus segmentation">hippocampus segmentation</a>, <a href="https://publications.waset.org/search?q=hippocampus-amygdala%20missingboundary" title=" hippocampus-amygdala missingboundary"> hippocampus-amygdala missingboundary</a>, <a href="https://publications.waset.org/search?q=weak%20boundary%20segmentation" title=" weak boundary segmentation"> weak boundary segmentation</a>, <a href="https://publications.waset.org/search?q=region%20based%20segmentation" title=" region based segmentation"> region based segmentation</a>, <a href="https://publications.waset.org/search?q=prior%20information" title="prior information">prior information</a>, <a href="https://publications.waset.org/search?q=local%20weighting%20scheme%20in%20level%20sets" title=" local weighting scheme in level sets"> local weighting scheme in level sets</a>, <a href="https://publications.waset.org/search?q=spatialdistribution%20of%20labels" title=" spatialdistribution of labels"> spatialdistribution of labels</a>, <a href="https://publications.waset.org/search?q=gradient%20distribution%20on%20boundary." title=" gradient distribution on boundary."> gradient distribution on boundary.</a> </p> <a href="https://publications.waset.org/3608/hippocampus-segmentation-using-a-local-prior-model-on-its-boundary" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/3608/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/3608/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/3608/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/3608/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/3608/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/3608/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/3608/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/3608/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/3608/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/3608/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/3608.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1752</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">527</span> Multidimensional Sports Spectators Segmentation and Social Media Marketing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Schmid">B. Schmid</a>, <a href="https://publications.waset.org/search?q=C.%20Kexel"> C. Kexel</a>, <a href="https://publications.waset.org/search?q=E.%20Djafarova"> E. Djafarova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Understanding consumers is elementary for practitioners in marketing. Consumers of sports events, the sports spectators, are a particularly complex consumer crowd. In order to identify and define their profiles different segmentation approaches can be found in literature, one of them being multidimensional segmentation. Multidimensional segmentation models correspond to the broad range of attitudes, behaviours, motivations and beliefs of sports spectators, other than earlier models. Moreover, in sports there are some well-researched disciplines (e.g. football or North American sports) where consumer profiles and marketing strategies are elaborate and others where no research at all can be found. For example, there is almost no research on athletics spectators. This paper explores the current state of research on sports spectators segmentation. An in-depth literature review provides the framework for a spectators segmentation in athletics. On this basis, additional potential consumer groups and implications for social media marketing will be explored. The findings are the basis for further research. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Multidimensional%20segmentation" title="Multidimensional segmentation">Multidimensional segmentation</a>, <a href="https://publications.waset.org/search?q=social%20media" title=" social media"> social media</a>, <a href="https://publications.waset.org/search?q=sports%20marketing" title=" sports marketing"> sports marketing</a>, <a href="https://publications.waset.org/search?q=sports%20spectators%20segmentation." title=" sports spectators segmentation."> sports spectators segmentation.</a> </p> <a href="https://publications.waset.org/10005081/multidimensional-sports-spectators-segmentation-and-social-media-marketing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10005081/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10005081/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10005081/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10005081/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10005081/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10005081/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10005081/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10005081/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10005081/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10005081/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10005081.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2613</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">526</span> Color Image Segmentation Using SVM Pixel Classification Image</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=K.%20Sakthivel">K. Sakthivel</a>, <a href="https://publications.waset.org/search?q=R.%20Nallusamy"> R. Nallusamy</a>, <a href="https://publications.waset.org/search?q=C.%20Kavitha"> C. Kavitha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>The goal of image segmentation is to cluster pixels into salient image regions. Segmentation could be used for object recognition, occlusion boundary estimation within motion or stereo systems, image compression, image editing, or image database lookup. In this paper, we present a color image segmentation using support vector machine (SVM) pixel classification. Firstly, the pixel level color and texture features of the image are extracted and they are used as input to the SVM classifier. These features are extracted using the homogeneity model and Gabor Filter. With the extracted pixel level features, the SVM Classifier is trained by using FCM (Fuzzy C-Means).The image segmentation takes the advantage of both the pixel level information of the image and also the ability of the SVM Classifier. The Experiments show that the proposed method has a very good segmentation result and a better efficiency, increases the quality of the image segmentation compared with the other segmentation methods proposed in the literature.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Segmentation" title="Image Segmentation">Image Segmentation</a>, <a href="https://publications.waset.org/search?q=Support%20Vector%20Machine" title=" Support Vector Machine"> Support Vector Machine</a>, <a href="https://publications.waset.org/search?q=Fuzzy%20C%E2%80%93Means" title=" Fuzzy C鈥揗eans"> Fuzzy C鈥揗eans</a>, <a href="https://publications.waset.org/search?q=Pixel%20Feature" title=" Pixel Feature"> Pixel Feature</a>, <a href="https://publications.waset.org/search?q=Texture%20Feature" title=" Texture Feature"> Texture Feature</a>, <a href="https://publications.waset.org/search?q=Homogeneity%0D%0Amodel" title=" Homogeneity model"> Homogeneity model</a>, <a href="https://publications.waset.org/search?q=Gabor%20Filter." title=" Gabor Filter."> Gabor Filter.</a> </p> <a href="https://publications.waset.org/10000781/color-image-segmentation-using-svm-pixel-classification-image" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000781/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000781/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000781/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000781/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000781/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000781/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000781/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000781/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000781/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000781/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">6747</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">525</span> Segmentation of Ascending and Descending Aorta in CTA Images</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20%C3%96zkan">H. 脰zkan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, a new and fast algorithm for Ascending Aorta (AscA) and Descending Aorta (DesA) segmentation is presented using Computed Tomography Angiography images. This process is quite important especially at the detection of aortic plaques, aneurysms, calcification or stenosis. The applied method has been carried out at four steps. At first step, lung segmentation is achieved. At the second one, Mediastinum Region (MR) is detected to use in the segmentation. At the third one, images have been applied optimal threshold and components which are outside of the MR were removed. Lastly, identifying and segmentation of AscA and DesA have been carried out. The performance of the applied method is found quite well for radiologists and it gives enough results to the surgeries medically. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Ascending%20aorta%20%28AscA%29" title="Ascending aorta (AscA)">Ascending aorta (AscA)</a>, <a href="https://publications.waset.org/search?q=Descending%20aorta%20%28DesA%29" title=" Descending aorta (DesA)"> Descending aorta (DesA)</a>, <a href="https://publications.waset.org/search?q=Computed%20tomography%20angiography%20%28CTA%29" title=" Computed tomography angiography (CTA)"> Computed tomography angiography (CTA)</a>, <a href="https://publications.waset.org/search?q=Computer%20aided%0Adetection%20%28CAD%29" title=" Computer aided detection (CAD)"> Computer aided detection (CAD)</a>, <a href="https://publications.waset.org/search?q=Segmentation" title=" Segmentation"> Segmentation</a> </p> <a href="https://publications.waset.org/313/segmentation-of-ascending-and-descending-aorta-in-cta-images" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/313/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/313/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/313/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/313/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/313/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/313/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/313/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/313/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/313/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/313/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/313.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1833</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">524</span> Image Segmentation Using 2-D Histogram in RGB Color Space in Digital Libraries </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=El%20Asnaoui%20Khalid">El Asnaoui Khalid</a>, <a href="https://publications.waset.org/search?q=Aksasse%20Brahim"> Aksasse Brahim</a>, <a href="https://publications.waset.org/search?q=Ouanan%20Mohammed"> Ouanan Mohammed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an unsupervised color image segmentation method. It is based on a hierarchical analysis of 2-D histogram in RGB color space. This histogram minimizes storage space of images and thus facilitates the operations between them. The improved segmentation approach shows a better identification of objects in a color image and, at the same time, the system is fast. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20segmentation" title="Image segmentation">Image segmentation</a>, <a href="https://publications.waset.org/search?q=hierarchical%20analysis" title=" hierarchical analysis"> hierarchical analysis</a>, <a href="https://publications.waset.org/search?q=2-D%20histogram" title=" 2-D histogram"> 2-D histogram</a>, <a href="https://publications.waset.org/search?q=Classification." title=" Classification."> Classification.</a> </p> <a href="https://publications.waset.org/10003798/image-segmentation-using-2-d-histogram-in-rgb-color-space-in-digital-libraries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10003798/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10003798/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10003798/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10003798/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10003798/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10003798/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10003798/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10003798/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10003798/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10003798/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10003798.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1626</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">523</span> Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=B.%20Thiagarajan">B. Thiagarajan</a>, <a href="https://publications.waset.org/search?q=R.%20Bremananth"> R. Bremananth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Conditional%20random%20field" title="Conditional random field">Conditional random field</a>, <a href="https://publications.waset.org/search?q=Magnetic%20resonance" title=" Magnetic resonance"> Magnetic resonance</a>, <a href="https://publications.waset.org/search?q=Markov%20random%20field" title=" Markov random field"> Markov random field</a>, <a href="https://publications.waset.org/search?q=Modified%20artificial%20bee%20colony." title=" Modified artificial bee colony."> Modified artificial bee colony.</a> </p> <a href="https://publications.waset.org/10000092/brain-image-segmentation-using-conditional-random-field-based-on-modified-artificial-bee-colony-optimization-algorithm" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10000092/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10000092/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10000092/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10000092/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10000092/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10000092/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10000092/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10000092/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10000092/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10000092/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10000092.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2948</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">522</span> Color Image Segmentation Using Kekre-s Algorithm for Vector Quantization</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=H.%20B.%20Kekre">H. B. Kekre</a>, <a href="https://publications.waset.org/search?q=Tanuja%20K.%20Sarode"> Tanuja K. Sarode</a>, <a href="https://publications.waset.org/search?q=Bhakti%20Raul"> Bhakti Raul</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper we propose segmentation approach based on Vector Quantization technique. Here we have used Kekre-s fast codebook generation algorithm for segmenting low-altitude aerial image. This is used as a preprocessing step to form segmented homogeneous regions. Further to merge adjacent regions color similarity and volume difference criteria is used. Experiments performed with real aerial images of varied nature demonstrate that this approach does not result in over segmentation or under segmentation. The vector quantization seems to give far better results as compared to conventional on-the-fly watershed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Image%20Segmentation" title="Image Segmentation">Image Segmentation</a>, <a href="https://publications.waset.org/search?q=" title=""></a>, <a href="https://publications.waset.org/search?q=Codebook" title=" Codebook"> Codebook</a>, <a href="https://publications.waset.org/search?q=Codevector" title=" Codevector"> Codevector</a>, <a href="https://publications.waset.org/search?q=data%0Acompression" title=" data compression"> data compression</a>, <a href="https://publications.waset.org/search?q=Encoding" title=" Encoding"> Encoding</a> </p> <a href="https://publications.waset.org/9491/color-image-segmentation-using-kekre-s-algorithm-for-vector-quantization" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/9491/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/9491/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/9491/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/9491/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/9491/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/9491/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/9491/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/9491/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/9491/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/9491/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/9491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">2195</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">521</span> A Selective Markovianity Approach for Image Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=A.%20Melouah">A. Melouah</a>, <a href="https://publications.waset.org/search?q=H.%20Merouani"> H. Merouani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new Markovianity approach is introduced in this paper. This approach reduces the response time of classic Markov Random Fields approach. First, one region is determinated by a clustering technique. Then, this region is excluded from the study. The remaining pixel form the study zone and they are selected for a Markovianity segmentation task. With Selective Markovianity approach, segmentation process is faster than classic one. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Markovianity" title="Markovianity">Markovianity</a>, <a href="https://publications.waset.org/search?q=response%20time" title=" response time"> response time</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=study%20zone." title=" study zone."> study zone.</a> </p> <a href="https://publications.waset.org/10668/a-selective-markovianity-approach-for-image-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10668/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10668/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10668/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10668/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10668/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10668/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10668/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10668/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10668/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10668/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10668.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1458</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">520</span> A new Adaptive Approach for Histogram based Mouth Segmentation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Axel%20Panning">Axel Panning</a>, <a href="https://publications.waset.org/search?q=Robert%20Niese"> Robert Niese</a>, <a href="https://publications.waset.org/search?q=Ayoub%20Al-Hamadi"> Ayoub Al-Hamadi</a>, <a href="https://publications.waset.org/search?q=Bernd%20Michaelis"> Bernd Michaelis</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The segmentation of mouth and lips is a fundamental problem in facial image analyisis. In this paper we propose a method for lip segmentation based on rg-color histogram. Statistical analysis shows, using the rg-color-space is optimal for this purpose of a pure color based segmentation. Initially a rough adaptive threshold selects a histogram region, that assures that all pixels in that region are skin pixels. Based on that pixels we build a gaussian model which represents the skin pixels distribution and is utilized to obtain a refined, optimal threshold. We are not incorporating shape or edge information. In experiments we show the performance of our lip pixel segmentation method compared to the ground truth of our dataset and a conventional watershed algorithm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Feature%20extraction" title="Feature extraction">Feature extraction</a>, <a href="https://publications.waset.org/search?q=Segmentation" title=" Segmentation"> Segmentation</a>, <a href="https://publications.waset.org/search?q=Image%20processing" title=" Image processing"> Image processing</a>, <a href="https://publications.waset.org/search?q=Application" title=" Application"> Application</a> </p> <a href="https://publications.waset.org/10143/a-new-adaptive-approach-for-histogram-based-mouth-segmentation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10143/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10143/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10143/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10143/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10143/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10143/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10143/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10143/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10143/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10143/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10143.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">1788</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">519</span> Automatic Vehicle Identification by Plate Recognition</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Serkan%20Ozbay">Serkan Ozbay</a>, <a href="https://publications.waset.org/search?q=Ergun%20Ercelebi"> Ergun Ercelebi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Automatic Vehicle Identification (AVI) has many applications in traffic systems (highway electronic toll collection, red light violation enforcement, border and customs checkpoints, etc.). License Plate Recognition is an effective form of AVI systems. In this study, a smart and simple algorithm is presented for vehicle-s license plate recognition system. The proposed algorithm consists of three major parts: Extraction of plate region, segmentation of characters and recognition of plate characters. For extracting the plate region, edge detection algorithms and smearing algorithms are used. In segmentation part, smearing algorithms, filtering and some morphological algorithms are used. And finally statistical based template matching is used for recognition of plate characters. The performance of the proposed algorithm has been tested on real images. Based on the experimental results, we noted that our algorithm shows superior performance in car license plate recognition. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Character%20recognizer" title="Character recognizer">Character recognizer</a>, <a href="https://publications.waset.org/search?q=license%20plate%20recognition" title=" license plate recognition"> license plate recognition</a>, <a href="https://publications.waset.org/search?q=plate%0Aregion%20extraction" title=" plate region extraction"> plate region extraction</a>, <a href="https://publications.waset.org/search?q=segmentation" title=" segmentation"> segmentation</a>, <a href="https://publications.waset.org/search?q=smearing" title=" smearing"> smearing</a>, <a href="https://publications.waset.org/search?q=template%20matching." title=" template matching."> template matching.</a> </p> <a href="https://publications.waset.org/4283/automatic-vehicle-identification-by-plate-recognition" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/4283/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/4283/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/4283/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/4283/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/4283/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/4283/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/4283/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/4283/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/4283/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/4283/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/4283.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">7586</span> </span> </div> </div> <div class="card publication-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">518</span> An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/search?q=Yanwen%20Li">Yanwen Li</a>, <a href="https://publications.waset.org/search?q=Shuguo%20Xie"> Shuguo Xie</a> </p> <p class="card-text"><strong>Abstract:</strong></p> <p>In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.</p> <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/search?q=Gradient%20image" title="Gradient image">Gradient image</a>, <a href="https://publications.waset.org/search?q=segmentation%20and%20extract" title=" segmentation and extract"> segmentation and extract</a>, <a href="https://publications.waset.org/search?q=mean-shift%20algorithm" title=" mean-shift algorithm"> mean-shift algorithm</a>, <a href="https://publications.waset.org/search?q=dictionary%20learning." title=" dictionary learning."> dictionary learning.</a> </p> <a href="https://publications.waset.org/10008139/an-image-segmentation-algorithm-for-gradient-target-based-on-mean-shift-and-dictionary-learning" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/10008139/apa" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">APA</a> <a href="https://publications.waset.org/10008139/bibtex" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">BibTeX</a> <a href="https://publications.waset.org/10008139/chicago" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Chicago</a> <a href="https://publications.waset.org/10008139/endnote" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">EndNote</a> <a href="https://publications.waset.org/10008139/harvard" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">Harvard</a> <a href="https://publications.waset.org/10008139/json" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">JSON</a> <a href="https://publications.waset.org/10008139/mla" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">MLA</a> <a href="https://publications.waset.org/10008139/ris" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">RIS</a> <a href="https://publications.waset.org/10008139/xml" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">XML</a> <a href="https://publications.waset.org/10008139/iso690" target="_blank" rel="nofollow" class="btn btn-primary btn-sm">ISO 690</a> <a href="https://publications.waset.org/10008139.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">970</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=18">18</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=19">19</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/search?q=character%20segmentation&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10