CINXE.COM

Search results for: manufacturing wastes

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: manufacturing wastes</title> <meta name="description" content="Search results for: manufacturing wastes"> <meta name="keywords" content="manufacturing wastes"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="manufacturing wastes" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="manufacturing wastes"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 2518</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: manufacturing wastes</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2518</span> A Multi-Objective Methodology for Selecting Lean Initiatives in Modular Construction Companies</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Saba%20Shams%20Bidhendi">Saba Shams Bidhendi</a>, <a href="https://publications.waset.org/abstracts/search?q=Steven%20Goh"> Steven Goh</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Wandel"> Andrew Wandel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The implementation of lean manufacturing initiatives has produced significant impacts in improving operational performance and reducing manufacturing wastes in the production process. However, selecting an appropriate set of lean strategies is critical to avoid misapplication of the lean manufacturing techniques and consequential increase in non-value-adding activities. To the author&rsquo;s best knowledge, there is currently no methodology to select lean strategies that considers their impacts on manufacturing wastes and performance metrics simultaneously. In this research, a multi-objective methodology is proposed that suggests an appropriate set of lean initiatives based on their impacts on performance metrics and manufacturing wastes and within manufacturers&rsquo; resource limitation. The proposed methodology in this research suggests the best set of lean initiatives for implementation that have highest impacts on identified critical performance metrics and manufacturing wastes. Therefore, manufacturers can assure that implementing suggested lean tools improves their production performance and reduces manufacturing wastes at the same time. A case study was conducted to show the effectiveness and validate the proposed model and methodologies. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=lean%20strategies" title=" lean strategies"> lean strategies</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes" title=" manufacturing wastes"> manufacturing wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20performance" title=" manufacturing performance"> manufacturing performance</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making" title=" decision making"> decision making</a> </p> <a href="https://publications.waset.org/abstracts/97420/a-multi-objective-methodology-for-selecting-lean-initiatives-in-modular-construction-companies" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97420.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">192</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2517</span> A Review on the Usage of Ceramic Wastes in Concrete Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Zimbili">O. Zimbili</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Salim"> W. Salim</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Ndambuki"> M. Ndambuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction and Demolition (C&D) wastes contribute the highest percentage of wastes worldwide (75%). Furthermore, ceramic materials contribute the highest percentage of wastes within the C&D wastes (54%). The current option for disposal of ceramic wastes is landfill. This is due to unavailability of standards, avoidance of risk, lack of knowledge and experience in using ceramic wastes in construction. The ability of ceramic wastes to act as a pozzolanic material in the production of cement has been effectively explored. The results proved that temperatures used in the manufacturing of these tiles (about 900 ⁰C) are sufficient to activate pozzolanic properties of clay. They also showed that, after optimization (11-14% substitution), the cement blend performs better, with no morphological differences between the cement blended with ceramic waste, and that blended with other pozzolanic materials. Sanitary ware and electrical insulator porcelain wastes are some wastes investigated for usage as aggregates in concrete production. When optimized, both produced good results, better than when natural aggregates are used. However, the research on ceramic wastes as partial substitute for fine aggregates or cement has not been overly exploited as the other areas. This review has been concluded with focus on investigating whether ceramic wall tile wastes used as partial substitute for cement and fine aggregates could prove to be beneficial since the two materials are the most high-priced during concrete production. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blended" title="blended">blended</a>, <a href="https://publications.waset.org/abstracts/search?q=morphological" title=" morphological"> morphological</a>, <a href="https://publications.waset.org/abstracts/search?q=pozzolanic" title=" pozzolanic"> pozzolanic</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste "> waste </a> </p> <a href="https://publications.waset.org/abstracts/2534/a-review-on-the-usage-of-ceramic-wastes-in-concrete-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2534.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">367</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2516</span> Research on Eco-Sustainable Recycling of Industrial Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liliana%20Cr%C4%83c">Liliana Crăc</a>, <a href="https://publications.waset.org/abstracts/search?q=Nicolae%20Giorgi"> Nicolae Giorgi</a>, <a href="https://publications.waset.org/abstracts/search?q=Gheorghe%20Fometescu"> Gheorghe Fometescu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Romania, billions of tonnes of wastes are generated yearly, an important amount being stored within industrial dumps that covers high soil areas and affects the environment quality, especially of ground and surface waters. Landfill represents in Romania the most important way for wastes removal, over 75% being generated every year, the costs with the dumps construction being considerable. In most of the cases, the wastes generated mainly by the energy industry, oil exploitation and metallurgy, are still considered wastes with NO-use, and their removal and neutralization represent for transport, handling and storing, high non-productive expenses which raise the cost of the useful products obtained. The paper presents a recycling idea of three types of wastes in order to use them for building materials manufacturing, by promoting ECOWASTES LIFE+ project, whose aim is to demonstrate that the recycling of waste from energy industry (coal combustion waste), petroleum extraction (drilling mud) and metallurgy (steelmaking slag) is technically feasible. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fly%20ash" title="fly ash">fly ash</a>, <a href="https://publications.waset.org/abstracts/search?q=drilled%20solid%20wastes" title=" drilled solid wastes"> drilled solid wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=metallurgical%20slag" title=" metallurgical slag"> metallurgical slag</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a> </p> <a href="https://publications.waset.org/abstracts/15190/research-on-eco-sustainable-recycling-of-industrial-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15190.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">312</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2515</span> Lean Manufacturing Implementation in Fused Plastic Bags Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tareq%20Issa">Tareq Issa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lean manufacturing is concerned with the implementation of several tools and methodologies that aim for the continuous elimination of wastes throughout manufacturing process flow in the production system. This research addresses the implementation of lean principles and tools in a small-medium industry focusing on 'fused' plastic bags production company in Amman, Jordan. In this production operation, the major type of waste to eliminate include material, waiting-transportation, and setup wastes. The primary goal is to identify and implement selected lean strategies to eliminate waste in the manufacturing process flow. A systematic approach was used for the implementation of lean principles and techniques, through the application of Value Stream Mapping analysis. The current state value stream map was constructed to improve the plastic bags manufacturing process through identifying opportunities to eliminate waste and its sources. Also, the future-state value stream map was developed describing improvements in the overall manufacturing process resulting from eliminating wastes. The implementation of VSM, 5S, Kanban, Kaizen, and Reduced lot size methods have provided significant benefits and results. Productivity has increased to 95.4%, delivery schedule attained at 99-100%, reduction in total inventory to 1.4 days and the setup time for the melting process was reduced to about 30 minutes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20implementation" title="lean implementation">lean implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20bags%20industry" title=" plastic bags industry"> plastic bags industry</a>, <a href="https://publications.waset.org/abstracts/search?q=value%20stream%20map" title=" value stream map"> value stream map</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20flow" title=" process flow"> process flow</a> </p> <a href="https://publications.waset.org/abstracts/91127/lean-manufacturing-implementation-in-fused-plastic-bags-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91127.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">175</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2514</span> The Effects of Agricultural Waste Compost Applications on Soil Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ilker%20S%C3%B6nmez">Ilker Sönmez</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kaplan"> Mustafa Kaplan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The wastes that come out as a result of agricultural productions are disposed randomly and always by burning. Agricultural wastes have a great volume and agricultural wastes cause environmental pollution. Spent mushroom compost and cut flower carnation wastes have a serious potential in Turkey and especially in Antalya. One of the best evaluation methods of agricultural wastes is composting methods and so agricultural wastes transformed for a new product. In this study, agricultural wastes were evaluated the effects of compost and organic material on soil pH, EC, soil organic matter, and macro-micro nutrient contents of soil that it growth carnation. The effects of compost applications on soils were found to be statistically significant. Organic material applications have caused an increase in all physical and chemical parameters except for pH that pH decreased with compost added in soils. The best results among the compost applications were determined R1 compost that R1 compost included %75 Carnation Wastes + %25 Spent Mushroom Compost. The structural properties of soils can be improved with reusing of agricultural wastes by composting so it can be provided that decreasing the harmful effects of organic wastes on the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20wastes" title="agricultural wastes">agricultural wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=carnation%20wastes" title=" carnation wastes"> carnation wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=composting" title=" composting"> composting</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20material" title=" organic material"> organic material</a>, <a href="https://publications.waset.org/abstracts/search?q=spent%20mushroom%20compost" title=" spent mushroom compost"> spent mushroom compost</a> </p> <a href="https://publications.waset.org/abstracts/28976/the-effects-of-agricultural-waste-compost-applications-on-soil-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">383</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2513</span> Manufacturing Commercial Bricks with Construction and Demolition Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Kara">Mustafa Kara</a>, <a href="https://publications.waset.org/abstracts/search?q=Yasemin%20Kilic"> Yasemin Kilic</a>, <a href="https://publications.waset.org/abstracts/search?q=Bahattin%20Murat%20Demir"> Bahattin Murat Demir</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%9Cmit%20Ustaoglu"> Ümit Ustaoglu</a>, <a href="https://publications.waset.org/abstracts/search?q=Cavit%20Unal"> Cavit Unal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper reports utilization of different kind of construction and demolition wastes (C&D) in the production of bricks at industrial scale. Plastered brick waste and tile wastes were collected from ISTAÇ Co. Compost and Recovery Plant, Istanbul, Turkey. Plastered brick waste and tile waste are mixed with brick clay in the proportion of 0-30% and fired at 900ºC. The physical and mechanical properties of the produced bricks were determined and evaluated according to IKIZLER Brick Company Production values, Brick Industry Association (BIA) and Turkish Standards (TS). The resulted showed that plastered brick waste and tile waste can be used to produce good quality brick for various engineering applications in construction and building. The replacement of brick clay by plastered brick waste and tile waste at the levels of 30% has good effects on the compressive strength of the bricks. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commercial%20brick" title="commercial brick">commercial brick</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20and%20demolition%20waste" title=" construction and demolition waste"> construction and demolition waste</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a> </p> <a href="https://publications.waset.org/abstracts/49267/manufacturing-commercial-bricks-with-construction-and-demolition-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/49267.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">357</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2512</span> Wastes of Oil Drilling: Treatment Techniques and Their Effectiveness</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abbas%20Hadj%20Abbas">Abbas Hadj Abbas</a>, <a href="https://publications.waset.org/abstracts/search?q=Hacini%20%20Massaoud"> Hacini Massaoud</a>, <a href="https://publications.waset.org/abstracts/search?q=Aiad%20Lahcen"> Aiad Lahcen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Hassi-Messoud’s oil industry, the systems which are water based (WBM) are generally used for drilling in the first phase. For the rest of the well, the oil mud systems are employed (OBM). In the field of oil exploration, panoply of chemical products is employed in the drilling fluids formulation. These components of different natures and whose toxicity and biodegradability are of ill-defined parameters are; however, thrown into nature. In addition to the hydrocarbon (HC, such as diesel) which is a major constituent of oil based mud, we also can notice spills as well as a variety of other products and additives on the drilling sites. These wastes are usually stored in places called (crud wastes). These may cause major problems to the ecosystem. To treat these wastes, we have considered two methods which are: solidification/ stabilization (chemical) and thermal. So that we can evaluate the techniques of treatment, a series of analyses are performed on dozens of specimens of wastes before treatment. After that, and on the basis of our analyses of wastes, we opted for diagnostic treatments of pollution before and after solidification and stabilization. Finally, we have done some analyses before and after the thermal treatment to check the efficiency of the methods followed in the study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=wastes%20treatment" title="wastes treatment">wastes treatment</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20oil%20pollution" title=" the oil pollution"> the oil pollution</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20norms" title=" the norms"> the norms</a>, <a href="https://publications.waset.org/abstracts/search?q=wastes%20drilling" title=" wastes drilling"> wastes drilling</a> </p> <a href="https://publications.waset.org/abstracts/52890/wastes-of-oil-drilling-treatment-techniques-and-their-effectiveness" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52890.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2511</span> Aflatoxin Contamination of Abattoir Wastes in Ogun State, Nigeria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20F.%20Gbadebo">A. F. Gbadebo</a>, <a href="https://publications.waset.org/abstracts/search?q=O.%20O.%20Atanda"> O. O. Atanda</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20C.%20Adetunji"> M. C. Adetunji</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study investigated the level of aflatoxin contamination of abattoir wastes in Ogun State, Nigeria, due to continued complaints of poor hygiene of abattoir centers in the states as a result of improper disposal of abattoir wastes. Wastes from the three senatorial districts of the state were evaluated for their levels of aflatoxin contamination. The moisture content, total plate count, fungal counts, percentage frequency of fungal occurrence as well as the level of aflatoxin contamination of the abattoir wastes were determined by standard methods. The moisture content of the wastes ranged between 79.10-87.46 %, total plate count from 1.37-3.27×10³cfu/ml, and fungal counts from 2.73-3.30×10²cfu/ml. Four fungal species: Aspergillus niger, Aspergillus flavus, Aspergillus ochraceus, and Penicillium citrinum were isolated from the wastes, with Aspergillus flavus having the highest percentage frequency of occurrence of 29.76%. The aflatoxin content of the samples was found to range between 3.20-4.80 µg/kg. These findings showed that abattoir wastes from Ogun State are contaminated with aflatoxins and pose a health risk to humans and animals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=abattoir%20wastes" title="abattoir wastes">abattoir wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=aflatoxin" title=" aflatoxin"> aflatoxin</a>, <a href="https://publications.waset.org/abstracts/search?q=microbial%20load" title=" microbial load"> microbial load</a>, <a href="https://publications.waset.org/abstracts/search?q=Ogun%20state" title=" Ogun state"> Ogun state</a> </p> <a href="https://publications.waset.org/abstracts/156770/aflatoxin-contamination-of-abattoir-wastes-in-ogun-state-nigeria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/156770.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2510</span> Performance of Self-Compacting Mortars Containing Foam Glass Granulate</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Brahim%20Safi">Brahim Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=Djamila%20Aboutaleb"> Djamila Aboutaleb</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20Saidi"> Mohammed Saidi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdelbaki%20Benmounah"> Abdelbaki Benmounah</a>, <a href="https://publications.waset.org/abstracts/search?q=Fahima%20Benbrahim"> Fahima Benbrahim </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The inorganic wastes are currently used in the manufacture of concretes as mineral additions by cement substitution or as fine/coarse aggregates by replacing traditional aggregates. In this respect, this study aims to valorize the mineral wastes in particular glass wastes to produce granulated foam glass (as fine aggregates). Granulated foam glasses (GFG) were prepared from the glass powder (glass cullet) and foaming agent (limestone) according to applied manufacturing of GFG (at a heat treatment 850 ° C for 20min). After, self-compacting mortars were elaborated with fine aggregate (sand) and other variant mortars with granulated foam glass at volume ratio (0, 30, 50 and 100 %). Rheological characterization tests (fluidity) and physic-mechanical (density, porosity /absorption of water and mechanical tests) were carried out on studied mortars. The results obtained show that a slightly decreasing of compressive strength of mortars having lightness very important for building construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glass%20wastes" title="glass wastes">glass wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20aggregate" title=" lightweight aggregate"> lightweight aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=mortar" title=" mortar"> mortar</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidity" title=" fluidity"> fluidity</a>, <a href="https://publications.waset.org/abstracts/search?q=density" title=" density"> density</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a> </p> <a href="https://publications.waset.org/abstracts/40043/performance-of-self-compacting-mortars-containing-foam-glass-granulate" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40043.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">228</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2509</span> An Evaluative Approach for Successful Implementation of Lean and Green Manufacturing in Indian SMEs</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Satya%20S.%20N.%20Narayana">Satya S. N. Narayana</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Parthiban"> P. Parthiban</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20Niranjan"> T. Niranjan</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Kannan"> N. Kannan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Enterprises adopt methodologies to increase their business performance and to stay competent in the volatile global market. Lean manufacturing is one such manufacturing paradigm which focuses on reduction of cost by elimination of wastes or non-value added activities. With increased awareness about social responsibility and the necessary to meet the terms of the environmental policy, green manufacturing is becoming increasingly important for industries. Large plants have more resources, have started implementing lean and green practices and they are getting good results. Small and medium scale enterprises (SMEs) are facing problems in implementing lean and green concept. This paper aims to identify the key issues for implementation of lean and green concept in Indian SMEs. The key factors identified based on literature review and expert opinions are grouped into different levels by Modified Interpretive Structural Modeling (MISM) to explore the importance among the factors to implement lean and green manufacturing. Finally, Fuzzy Analytic Network Process (FANP) method has been used to determine the extent to which the main principles of lean and green manufacturing have been carried out in the six Indian medium scale manufacturing industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20manufacturing" title="lean manufacturing">lean manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20manufacturing" title=" green manufacturing"> green manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=MISM" title=" MISM"> MISM</a>, <a href="https://publications.waset.org/abstracts/search?q=FANP" title=" FANP"> FANP</a> </p> <a href="https://publications.waset.org/abstracts/52263/an-evaluative-approach-for-successful-implementation-of-lean-and-green-manufacturing-in-indian-smes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52263.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">541</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2508</span> Agricultural Solid Wastes Generation in Nigeria and Their Recycling Potentials into Building Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Usman%20Aliyu%20Jalam">Usman Aliyu Jalam</a>, <a href="https://publications.waset.org/abstracts/search?q=Shuaibu%20Alolo%20Sumaila"> Shuaibu Alolo Sumaila</a>, <a href="https://publications.waset.org/abstracts/search?q=Sa%E2%80%99adiya%20Iliyasu%20Muhammed"> Sa’adiya Iliyasu Muhammed </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Modern building industry lays much emphasis on sophisticated materials that have high embodied energy with intrinsic distinctiveness for damaging the environment. But today, advances in solid waste management have resulted in alternative building materials as partial or complete replacement of the conventional materials like cement, aggregate etc particularly for low cost housing. Investigations carried out revealed that an estimated 18.0 million tonnes of agricultural solid wastes are being generated in Nigeria annually. This constitutes a problem not only to the natural environment but also to the built environment more particularly with the way the wastes are being dispose of. The paper has discussed the present status on the generation and utilisation of agricultural solid wastes, their recycling potentials and environmental implications. It further discovered that although considerable quantity of these wastes were found to have the potentials of being recycled as building materials, the availability of the appropriate technology remains a big challenge in the country. Moreover, majority of the wastes type have gained popularity as fuel. As such, the economic and environmental benefits of recycling the wastes and the use of the wastes as fuel need further investigation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=materials" title=" materials"> materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Nigeria" title=" Nigeria"> Nigeria</a> </p> <a href="https://publications.waset.org/abstracts/6662/agricultural-solid-wastes-generation-in-nigeria-and-their-recycling-potentials-into-building-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2507</span> Performance Enhancement of Autopart Manufacturing Industry Using Lean Manufacturing Strategies: A Case Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Raman%20Kumar">Raman Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Jasgurpreet%20Singh%20Chohan"> Jasgurpreet Singh Chohan</a>, <a href="https://publications.waset.org/abstracts/search?q=Chander%20Shekhar%20Verma"> Chander Shekhar Verma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Today, the manufacturing industries respond rapidly to new demands and compete in this continuously changing environment, thus seeking out new methods allowing them to remain competitive and flexible simultaneously. The aim of the manufacturing organizations is to reduce manufacturing costs and wastes through system simplification, organizational potential, and proper infrastructural planning by using modern techniques like lean manufacturing. In India, large number of medium and large scale manufacturing industries has successfully implemented lean manufacturing techniques. Keeping in view the above-mentioned facts, different tools will be involved in the successful implementation of the lean approach. The present work is focused on the auto part manufacturing industry to improve the performance of the recliner assembly line. There is a number of lean manufacturing tools available, but the experience and complete knowledge of manufacturing processes are required to select an appropriate tool for a specific process. Fishbone diagrams (scrap, inventory, and waiting) have been drawn to identify the root cause of different. Effect of cycle time reduction on scrap and inventory is analyzed thoroughly in the case company. Results have shown that there is a decrease in inventory cost by 7 percent after the successful implementation of the lean tool. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20tool" title="lean tool">lean tool</a>, <a href="https://publications.waset.org/abstracts/search?q=fish-bone%20diagram" title=" fish-bone diagram"> fish-bone diagram</a>, <a href="https://publications.waset.org/abstracts/search?q=cycle%20time%20reduction" title=" cycle time reduction"> cycle time reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=case%20study" title=" case study"> case study</a> </p> <a href="https://publications.waset.org/abstracts/110274/performance-enhancement-of-autopart-manufacturing-industry-using-lean-manufacturing-strategies-a-case-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2506</span> Estimation of Desktop E-Wastes in Delhi Using Multivariate Flow Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sumay%20Bhojwani">Sumay Bhojwani</a>, <a href="https://publications.waset.org/abstracts/search?q=Ashutosh%20Chandra"> Ashutosh Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Mamita%20Devaburman"> Mamita Devaburman</a>, <a href="https://publications.waset.org/abstracts/search?q=Akriti%20Bhogal"> Akriti Bhogal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article uses the Material flow analysis for estimating e-wastes in the Delhi/NCR region. The Material flow analysis is based on sales data obtained from various sources. Much of the data available for the sales is unreliable because of the existence of a huge informal sector. The informal sector in India accounts for more than 90%. Therefore, the scope of this study is only limited to the formal one. Also, for projection of the sales data till 2030, we have used regression (linear) to avoid complexity. The actual sales in the years following 2015 may vary non-linearly but we have assumed a basic linear relation. The purpose of this study was to know an approximate quantity of desktop e-wastes that we will have by the year 2030 so that we start preparing ourselves for the ineluctable investment in the treatment of these ever-rising e-wastes. The results of this study can be used to install a treatment plant for e-wastes in Delhi. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=e-wastes" title="e-wastes">e-wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=Delhi" title=" Delhi"> Delhi</a>, <a href="https://publications.waset.org/abstracts/search?q=desktops" title=" desktops"> desktops</a>, <a href="https://publications.waset.org/abstracts/search?q=estimation" title=" estimation"> estimation</a> </p> <a href="https://publications.waset.org/abstracts/37549/estimation-of-desktop-e-wastes-in-delhi-using-multivariate-flow-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37549.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">258</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2505</span> Pre-Eliminary Design Adjustable Workstation for Piston Assembly Line Considering Anthropometric for Indonesian People</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Yuri%20M.%20Zagloel">T. Yuri M. Zagloel</a>, <a href="https://publications.waset.org/abstracts/search?q=Inaki%20M.%20Hakim"> Inaki M. Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Syarafi%20A.%20M."> Syarafi A. M.</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Manufacturing process has been considered as one of the most important activity in business process. It correlates with productivity and quality of the product so industries could fulfill customer’s demand. With the increasing demand from customer, industries must improve their manufacturing ability such as shorten lead time and reduce wastes on their process. Lean manufacturing has been considered as one of the tools to waste elimination in manufacturing or service industri. Workforce development is one practice in lean manufacturing that can reduce waste generated from operator such as waste of unnecessary motion. Anthropometric approach is proposed to determine the recommended measurement in operator’s work area. The method will get some dimensions from Indonesia people that related to piston workstation. The result from this research can be obtained new design for the workarea considering ergonomic aspect. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adjustable" title="adjustable">adjustable</a>, <a href="https://publications.waset.org/abstracts/search?q=anthropometric" title=" anthropometric"> anthropometric</a>, <a href="https://publications.waset.org/abstracts/search?q=ergonomic" title=" ergonomic"> ergonomic</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/37613/pre-eliminary-design-adjustable-workstation-for-piston-assembly-line-considering-anthropometric-for-indonesian-people" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37613.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">400</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2504</span> Taguchi Robust Design for Optimal Setting of Process Wastes Parameters in an Automotive Parts Manufacturing Company</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Chikwendu%20Okpala">Charles Chikwendu Okpala</a>, <a href="https://publications.waset.org/abstracts/search?q=Christopher%20Chukwutoo%20Ihueze"> Christopher Chukwutoo Ihueze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As a technique that reduces variation in a product by lessening the sensitivity of the design to sources of variation, rather than by controlling their sources, Taguchi Robust Design entails the designing of ideal goods, by developing a product that has minimal variance in its characteristics and also meets the desired exact performance. This paper examined the concept of the manufacturing approach and its application to brake pad product of an automotive parts manufacturing company. Although the firm claimed that only defects, excess inventory, and over-production were the few wastes that grossly affect their productivity and profitability, a careful study and analysis of their manufacturing processes with the application of Single Minute Exchange of Dies (SMED) tool showed that the waste of waiting is the fourth waste that bedevils the firm. The selection of the Taguchi L9 orthogonal array which is based on the four parameters and the three levels of variation for each parameter revealed that with a range of 2.17, that waiting is the major waste that the company must reduce in order to continue to be viable. Also, to enhance the company&rsquo;s throughput and profitability, the wastes of over-production, excess inventory, and defects with ranges of 2.01, 1.46, and 0.82, ranking second, third, and fourth respectively must also be reduced to the barest minimum. After proposing -33.84 as the highest optimum Signal-to-Noise ratio to be maintained for the waste of waiting, the paper advocated for the adoption of all the tools and techniques of Lean Production System (LPS), and Continuous Improvement (CI), and concluded by recommending SMED in order to drastically reduce set up time which leads to unnecessary waiting. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lean%20production%20system" title="lean production system">lean production system</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20minute%20exchange%20of%20dies" title=" single minute exchange of dies"> single minute exchange of dies</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20to%20noise%20ratio" title=" signal to noise ratio"> signal to noise ratio</a>, <a href="https://publications.waset.org/abstracts/search?q=Taguchi%20robust%20design" title=" Taguchi robust design"> Taguchi robust design</a>, <a href="https://publications.waset.org/abstracts/search?q=waste" title=" waste"> waste</a> </p> <a href="https://publications.waset.org/abstracts/97907/taguchi-robust-design-for-optimal-setting-of-process-wastes-parameters-in-an-automotive-parts-manufacturing-company" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97907.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">126</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2503</span> Characterization of Coastal Solid Waste: Basis for the Development of Waste Collector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arnold%20I.%20Malag">Arnold I. Malag</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study wants to establish the data on the characteristics of coastal solid waste in main Island of Masbate as a model for technology interventions. The research utilized the Google Maps to measure the coastal length and Fishbowl Method for area identification. The solid wastes gathered were classified as residual, non-biodegradable, recyclable wastes, and special wastes, based on the waste analysis and characterization manual of Philippine Environmental Governance Project. The wastes were evaluated by weight in kg., dimension in cm., and characteristics as floating or non-floating. Based on the dimension of coastal solid waste, the biodegradable, recyclable, residual and special waste have the average of 40.95 cm., 16.25 cm., 31.37 cm., and 0.725cm. respectively. The waste in the coastal areas is dominated by biodegradable, followed by residual, then recyclable and special wastes with the data of 0.566 kg/m, 0.533 kg/m, 0.114 kg/m and .0007 kg/m respectively. The 97.15% of solid wastes collected is characterized as “floating”, where in the sources are the nearest rivers and waterways and/or the nearest populated areas adjacent to the island. This accumulation of solid wastes can be minimized and controlled by utilizing a floating equipment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=solid%20waste" title="solid waste">solid waste</a>, <a href="https://publications.waset.org/abstracts/search?q=coastal%20waste" title=" coastal waste"> coastal waste</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20characterization" title=" waste characterization"> waste characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20collector" title=" waste collector"> waste collector</a> </p> <a href="https://publications.waset.org/abstracts/161892/characterization-of-coastal-solid-waste-basis-for-the-development-of-waste-collector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/161892.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">83</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2502</span> Reuse of Refractory Brick Wastes (RBW) as a Supplementary Cementitious Materials in a High Performance Fiber-Reinforced Concrete </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20Safi">B. Safi</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Amrane"> B. Amrane</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Saidi"> M. Saidi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The main purpose of this study is to evaluate the reuse of refractory brick wastes (RBW) as a supplementary cementitious materials (by a total replacement of silica fume) to produce a high performance fiber-reinforced concrete (HPFRC). This work presents an experimental study on the formulation and physico-mechanical characterization of ultra high performance fiber reinforced concretes based on three types of refractory brick wastes. These have been retrieved from the manufacturing unit of float glass MFG (Mediterranean Float Glass) after their use in the oven basin (ie d. they are considered waste unit). Three compositions of concrete (HPFRC) were established based on three types of refractory brick wastes (finely crushed), with the dosage of each type of bricks is kept constant, similar the dosage of silica fume used for the control concrete. While all the other components and the water/binder ratio are maintained constant with the same quantity of the superplasticizer. The performance of HPFRC, were evaluated by determining the essential characteristics of fresh and hardened concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=refractory%20bricks" title="refractory bricks">refractory bricks</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=fiber" title=" fiber"> fiber</a>, <a href="https://publications.waset.org/abstracts/search?q=fluidity" title=" fluidity"> fluidity</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title=" compressive strength"> compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=tensile%20strength" title=" tensile strength "> tensile strength </a> </p> <a href="https://publications.waset.org/abstracts/20643/reuse-of-refractory-brick-wastes-rbw-as-a-supplementary-cementitious-materials-in-a-high-performance-fiber-reinforced-concrete" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20643.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">602</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2501</span> Managing Construction Wastes in Nigeria for Sustainable Development</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ezekiel%20Ejiofor%20Nnadi">Ezekiel Ejiofor Nnadi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Nigeria construction industry is known for its active construction activities. This has earmarked the industry to be the key to economic growth of the nation. It has largest employer of labour and gives sustenance to other industries like manufacturing industry. While this is a sign of growth and prosperity; the waste generated by the industry has always been a problem and a serious concern. It results in wastage of economic gain and has resultant health effect on the populace apart from injury being sustained on sites. This work provides a platform to learn more about construction waste, its management strategy and how to reduce waste production in Nigeria construction industry. Construction sites, waste management authority and public health institutions in Lagos as the centre of most construction activities in Nigeria were selected, and a set of questionnaire was administered to using the systematic sampling technique. Descriptive statistics and relative importance index (RII) technique were employed for the analysis of the data gathered. The findings of the analysis show that excessive wastes reduce contractors’ profit margin and also that some construction wastes contain hazardous and toxic elements such as lead, asbestos or radioactive materials which required proper handling and effective disposal. The conclusion was drawn that the check on waste on construction sites starts with the designers to the contractors who execute on site. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20cost" title="construction cost">construction cost</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20industry" title=" construction industry"> construction industry</a>, <a href="https://publications.waset.org/abstracts/search?q=economic%20growth" title=" economic growth"> economic growth</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20wastes" title=" materials wastes"> materials wastes</a> </p> <a href="https://publications.waset.org/abstracts/85649/managing-construction-wastes-in-nigeria-for-sustainable-development" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85649.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2500</span> Legal Regulation and Critical Analysis for an Effectively Treatment of Pharmaceutical Waste </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Merita%20Dauti">Merita Dauti</a>, <a href="https://publications.waset.org/abstracts/search?q=Edita%20Alili-Idrizi"> Edita Alili-Idrizi</a>, <a href="https://publications.waset.org/abstracts/search?q=Sihana%20Ahmeti%20%E2%80%93Lika"> Sihana Ahmeti –Lika</a>, <a href="https://publications.waset.org/abstracts/search?q=Ledjan%20Malaj"> Ledjan Malaj </a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extermination and proper disposal of pharmaceutical wastes from expired and unused medications remains a disputable issue due to their specific nature and characteristics. Even though the hazards from these wastes are already well known in terms of environment and human health, people still treat them as usual wastes. At a national level, in many countries the management of pharmaceutical and medical wastes has been one of the main objectives in order to protect people’s health and the environment. Even though many legal regulations exist in this respect, there has not been a single law that would clearly explain the procedures of returning medicines, ways of selection, treatment and extermination of pharmaceutical wastes. This paper aims at analyzing the practices of pharmaceutical waste management and treatment in some European countries as well as a review of the legislation and official guidelines in managing these kinds of wastes and protecting the environment and human health. A suitable treatment and management of expired medications and other similar wastes would be in the interest of public health in the first place, as well as in the interest of healthcare institutions and other bodies engaged in environment protection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=pharmaceutical%20waste" title="pharmaceutical waste">pharmaceutical waste</a>, <a href="https://publications.waset.org/abstracts/search?q=legal%20regulation" title=" legal regulation"> legal regulation</a>, <a href="https://publications.waset.org/abstracts/search?q=proper%20disposal" title=" proper disposal"> proper disposal</a>, <a href="https://publications.waset.org/abstracts/search?q=environment%20pollution" title=" environment pollution"> environment pollution</a> </p> <a href="https://publications.waset.org/abstracts/10453/legal-regulation-and-critical-analysis-for-an-effectively-treatment-of-pharmaceutical-waste" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10453.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">333</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2499</span> Sustainability of Green Supply Chain for a Steel Industry Using Mixed Linear Programing Model</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ameen%20Alawneh">Ameen Alawneh</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The cost of material management across the supply chain represents a major contributor to the overall cost of goods in many companies both manufacturing and service sectors. This fact combined with the fierce competition make supply chains more efficient and cost effective. It also requires the companies to improve the quality of the products and services, increase the effectiveness of supply chain operations, focus on customer needs, reduce wastes and costs across the supply chain. As a heavy industry, steel manufacturing companies in particular are nowadays required to be more environmentally conscious due to their contribution to air, soil, and water pollution that results from emissions and wastes across their supply chains. Steel companies are increasingly looking for methods to reduce or cost cut in the operations and provide extra value to their customers to stay competitive under the current low margins. In this research we develop a green framework model for the sustainability of a steel company supply chain using Mixed integer Linear programming. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Supply%20chain" title="Supply chain">Supply chain</a>, <a href="https://publications.waset.org/abstracts/search?q=Mixed%20Integer%20linear%20programming" title=" Mixed Integer linear programming"> Mixed Integer linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=heavy%20industry" title=" heavy industry"> heavy industry</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20pollution" title=" water pollution"> water pollution</a> </p> <a href="https://publications.waset.org/abstracts/21123/sustainability-of-green-supply-chain-for-a-steel-industry-using-mixed-linear-programing-model" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21123.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">448</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2498</span> 3D Modeling of Tunis Soft Soil Settlement Reinforced with Plastic Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Aya%20Rezgui">Aya Rezgui</a>, <a href="https://publications.waset.org/abstracts/search?q=Lasaad%20Ajam"> Lasaad Ajam</a>, <a href="https://publications.waset.org/abstracts/search?q=Belgacem%20Jalleli"> Belgacem Jalleli</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Tunis soft soils present a difficult challenge as construction sites and for Geotechnical works. Currently, different techniques are used to improve such soil properties taking into account the environmental considerations. One of the recent methods is involving plastic wastes as a reinforcing materials. The present study pertains to the development of a numerical model for predicting the behavior of Tunis Soft soil (TSS) improved with recycled Monobloc chair wastes.3D numerical models for unreinforced TSS and reinforced TSS aims to evaluate settlement reduction and the values of consolidation times in oedometer conditions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tunis%20soft%20soil" title="Tunis soft soil">Tunis soft soil</a>, <a href="https://publications.waset.org/abstracts/search?q=settlement" title=" settlement"> settlement</a>, <a href="https://publications.waset.org/abstracts/search?q=plastic%20wastes" title=" plastic wastes"> plastic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=finte%20-difference" title=" finte -difference"> finte -difference</a>, <a href="https://publications.waset.org/abstracts/search?q=FLAC3D%20modeling" title=" FLAC3D modeling"> FLAC3D modeling</a> </p> <a href="https://publications.waset.org/abstracts/146070/3d-modeling-of-tunis-soft-soil-settlement-reinforced-with-plastic-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146070.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">134</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2497</span> Lagrangian Approach for Modeling Marine Litter Transport</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarra%20Zaied">Sarra Zaied</a>, <a href="https://publications.waset.org/abstracts/search?q=Arthur%20Bonpain"> Arthur Bonpain</a>, <a href="https://publications.waset.org/abstracts/search?q=Pierre%20Yves%20Fravallo"> Pierre Yves Fravallo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The permanent supply of marine litter implies their accumulation in the oceans, which causes the presence of more compact wastes layers. Their Spatio-temporal distribution is never homogeneous and depends mainly on the hydrodynamic characteristics of the environment and the size and location of the wastes. As part of optimizing collect of marine plastic wastes, it is important to measure and monitor their evolution over time. For this, many research studies have been dedicated to describing the wastes behavior in order to identify their accumulation in oceans areas. Several models are therefore developed to understand the mechanisms that allow the accumulation and the displacements of marine litter. These models are able to accurately simulate the drift of wastes to study their behavior and stranding. However, these works aim to study the wastes behavior over a long period of time and not at the time of waste collection. This work investigates the transport of floating marine litter (FML) to provide basic information that can help in optimizing wastes collection by proposing a model for predicting their behavior during collection. The proposed study is based on a Lagrangian modeling approach that uses the main factors influencing the dynamics of the waste. The performance of the proposed method was assessed on real data collected from the Copernicus Marine Environment Monitoring Service (CMEMS). Evaluation results in the Java Sea (Indonesia) prove that the proposed model can effectively predict the position and the velocity of marine wastes during collection. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=floating%20marine%20litter" title="floating marine litter">floating marine litter</a>, <a href="https://publications.waset.org/abstracts/search?q=lagrangian%20transport" title=" lagrangian transport"> lagrangian transport</a>, <a href="https://publications.waset.org/abstracts/search?q=particle-tracking%20model" title=" particle-tracking model"> particle-tracking model</a>, <a href="https://publications.waset.org/abstracts/search?q=wastes%20drift" title=" wastes drift"> wastes drift</a> </p> <a href="https://publications.waset.org/abstracts/139690/lagrangian-approach-for-modeling-marine-litter-transport" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139690.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">191</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2496</span> Physicochemical Characterization of Waste from Vegetal Extracts Industry for Use as Briquettes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ma%C3%ADra%20O.%20Palm">Maíra O. Palm</a>, <a href="https://publications.waset.org/abstracts/search?q=Cintia%20Marangoni"> Cintia Marangoni</a>, <a href="https://publications.waset.org/abstracts/search?q=Ozair%20Souza"> Ozair Souza</a>, <a href="https://publications.waset.org/abstracts/search?q=Noeli%20Sellin"> Noeli Sellin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Wastes from a vegetal extracts industry (cocoa, oak, Guarana and mate) were characterized by particle size, proximate and ultimate analysis, lignocellulosic fractions, high heating value, thermal analysis (Thermogravimetric analysis &ndash; TGA, and Differential thermal analysis - DTA) and energy density to evaluate their potential as biomass in the form of briquettes for power generation. All wastes presented adequate particle sizes to briquettes production. The wastes showed high moisture content, requiring previous drying for use as briquettes. Cocoa and oak wastes had the highest volatile matter contents with maximum mass loss at 310 &ordm;C and 450 &ordm;C, respectively. The solvents used in the aroma extraction process influenced in the moisture content of the wastes, which was higher for mate due to water has been used as solvent. All wastes showed an insignificant loss mass after 565 &deg;C, hence resulting in low ash content. High carbon and hydrogen contents and low sulfur and nitrogen contents were observed ensuring a low generation of sulfur and nitrous oxides. Mate and cocoa exhibited the highest carbon and lignin content, and high heating value. The dried wastes had high heating value, from 17.1 MJ/kg to 20.8 MJ/kg. The results indicate the energy potential of wastes for use as fuel in power generation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agro-industrial%20waste" title="agro-industrial waste">agro-industrial waste</a>, <a href="https://publications.waset.org/abstracts/search?q=biomass" title=" biomass"> biomass</a>, <a href="https://publications.waset.org/abstracts/search?q=briquettes" title=" briquettes"> briquettes</a>, <a href="https://publications.waset.org/abstracts/search?q=combustion" title=" combustion"> combustion</a> </p> <a href="https://publications.waset.org/abstracts/73017/physicochemical-characterization-of-waste-from-vegetal-extracts-industry-for-use-as-briquettes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73017.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">206</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2495</span> Using Construction Wastes and Recyclable Materials in Sustainable Concrete Manufacture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20T.%20El-Hawary">Mohamed T. El-Hawary</a>, <a href="https://publications.waset.org/abstracts/search?q=Carsten%20Koenke"> Carsten Koenke</a>, <a href="https://publications.waset.org/abstracts/search?q=Amr%20M.%20El-Nemr"> Amr M. El-Nemr</a>, <a href="https://publications.waset.org/abstracts/search?q=Nagy%20F.%20Hanna"> Nagy F. Hanna</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Sustainable construction materials using solid construction wastes are of great environmental and economic significance. Construction wastes, demolishing wastes, and wastes coming out from the preparation of traditional materials could be used in sustainable concrete manufacture, which is the main scope of this paper. Ceramics, clay bricks, marble, recycled concrete, and many other materials should be tested and validated for use in the manufacture of green concrete. Introducing waste materials in concrete helps in reducing the required landfills, leaving more space for land investments, and decrease the environmental impact of the concrete buildings industry in both stages -construction and demolition-. In this paper, marble aggregate is used as a replacement for the natural aggregate in sustainable green concrete production. The results showed that marble aggregates can be used as a full replacement for the natural aggregates in eco-friendly green concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coarse%20aggregate%20replacement" title="coarse aggregate replacement">coarse aggregate replacement</a>, <a href="https://publications.waset.org/abstracts/search?q=economical%20designs" title=" economical designs"> economical designs</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20concrete" title=" green concrete"> green concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=marble%20aggregates" title=" marble aggregates"> marble aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainability" title=" sustainability"> sustainability</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/119963/using-construction-wastes-and-recyclable-materials-in-sustainable-concrete-manufacture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/119963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">148</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2494</span> Reduction Conditions of Briquetted Solid Wastes Generated by the Integrated Iron and Steel Plant</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G%C3%B6khan%20Polat">Gökhan Polat</a>, <a href="https://publications.waset.org/abstracts/search?q=Dicle%20Kocao%C4%9Flu%20Y%C4%B1lmazer"> Dicle Kocaoğlu Yılmazer</a>, <a href="https://publications.waset.org/abstracts/search?q=Muhlis%20Nezihi%20Sar%C4%B1dede"> Muhlis Nezihi Sarıdede</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Iron oxides are the main input to produce iron in integrated iron and steel plants. During production of iron from iron oxides, some wastes with high iron content occur. These main wastes can be classified as basic oxygen furnace (BOF) sludge, flue dust and rolling scale. Recycling of these wastes has a great importance for both environmental effects and reduction of production costs. In this study, recycling experiments were performed on basic oxygen furnace sludge, flue dust and rolling scale which contain 53.8%, 54.3% and 70.2% iron respectively. These wastes were mixed together with coke as reducer and these mixtures are pressed to obtain cylindrical briquettes. These briquettes were pressed under various compacting forces from 1 ton to 6 tons. Also, both stoichiometric and twice the stoichiometric cokes were added to investigate effect of coke amount on reduction properties of the waste mixtures. Then, these briquettes were reduced at 1000°C and 1100°C during 30, 60, 90, 120 and 150 min in a muffle furnace. According to the results of reduction experiments, the effect of compacting force, temperature and time on reduction ratio of the wastes were determined. It is found that 1 ton compacting force, 150 min reduction time and 1100°C are the optimum conditions to obtain reduction ratio higher than 75%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Coke" title="Coke">Coke</a>, <a href="https://publications.waset.org/abstracts/search?q=iron%20oxide%20wastes" title=" iron oxide wastes"> iron oxide wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=reduction" title=" reduction"> reduction</a> </p> <a href="https://publications.waset.org/abstracts/47134/reduction-conditions-of-briquetted-solid-wastes-generated-by-the-integrated-iron-and-steel-plant" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47134.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">340</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2493</span> Conical Spouted Bed Combustor for Combustion of Vine Shoots Wastes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20J.%20San%20Jos%C3%A9">M. J. San José</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Alvarez"> S. Alvarez</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20L%C3%B3pez"> R. López</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to prove the applicability of a conical spouted bed combustor for the thermal exploitation of vineyard pruning wastes, the flow regimes of beds consisting of vine shoot beds and an inert bed were established under different operating conditions. The effect of inlet air temperature on the minimum spouted velocity was evaluated. Batch combustion of vine shoots in a conical spouted bed combustor was conducted at temperatures in the range 425-550 &ordm;C with an inert bed. The experimental values of combustion efficiency of vine shoot calculated from the concentration the exhaust gases were assessed. The high experimental combustion efficiency obtained evidenced the proper suitability of the conical spouted bed combustor for the thermal combustion of vine shoots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biomass%20wastes" title="biomass wastes">biomass wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20combustion" title=" thermal combustion"> thermal combustion</a>, <a href="https://publications.waset.org/abstracts/search?q=conical%20spouted%20beds" title=" conical spouted beds"> conical spouted beds</a>, <a href="https://publications.waset.org/abstracts/search?q=vineyard%20wastes" title=" vineyard wastes"> vineyard wastes</a> </p> <a href="https://publications.waset.org/abstracts/91570/conical-spouted-bed-combustor-for-combustion-of-vine-shoots-wastes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/91570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">199</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2492</span> Framework for Improving Manufacturing &quot;Implicit Competitiveness&quot; by Enhancing Monozukuri Capability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Takahiro%20Togawa">Takahiro Togawa</a>, <a href="https://publications.waset.org/abstracts/search?q=Nguyen%20Huu%20Phuc"> Nguyen Huu Phuc</a>, <a href="https://publications.waset.org/abstracts/search?q=Shigeyuki%20Haruyama"> Shigeyuki Haruyama</a>, <a href="https://publications.waset.org/abstracts/search?q=Oke%20Oktavianty"> Oke Oktavianty</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our research focuses on a framework which analyses the relationship between product/process architecture, manufacturing organizational capability and manufacturing &quot;implicit competitiveness&quot; in order to improve manufacturing implicit competitiveness. We found that 1) there is a relationship between architecture-based manufacturing organizational capability and manufacturing implicit competitiveness, and 2) analysis and measures conducted in manufacturing organizational capability proved effective to improve manufacturing implicit competitiveness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=implicit%20competitiveness" title="implicit competitiveness">implicit competitiveness</a>, <a href="https://publications.waset.org/abstracts/search?q=QCD" title=" QCD"> QCD</a>, <a href="https://publications.waset.org/abstracts/search?q=organizational%20capacity" title=" organizational capacity"> organizational capacity</a>, <a href="https://publications.waset.org/abstracts/search?q=architectural%20strategy" title=" architectural strategy"> architectural strategy</a> </p> <a href="https://publications.waset.org/abstracts/64771/framework-for-improving-manufacturing-implicit-competitiveness-by-enhancing-monozukuri-capability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2491</span> Sustainable Use of Agricultural Waste to Enhance Food Security and Conserve the Environment</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20M.%20Tawfik">M. M. Tawfik</a>, <a href="https://publications.waset.org/abstracts/search?q=Ezzat%20M.%20Abd%20El%20Lateef"> Ezzat M. Abd El Lateef</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20B.%20Mekki"> B. B. Mekki</a>, <a href="https://publications.waset.org/abstracts/search?q=Amany%20A.%20Bahr"> Amany A. Bahr</a>, <a href="https://publications.waset.org/abstracts/search?q=Magda%20H.%20Mohamed"> Magda H. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Gehan%20S.%20Bakhoom"> Gehan S. Bakhoom</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The rapid increase in the world’s population coupled by decrease the arable land per capita has resulted into an increased demand for food which has in turn led to the production of large amounts of agricultural wastes, both at the farmer, municipality and city levels. Agricultural wastes can be a valuable resource for improving food security. Unfortunately, agricultural wastes are likely to cause pollution to the environment or even harm to human health. This calls for increased public awareness on the benefits and potential hazards of agricultural wastes, especially in developing countries. Agricultural wastes (residual stalks, straw, leaves, roots, husks, shells etcetera) and animal waste (manures) are widely available, renewable and virtually free, hence they can be an important resource. They can be converted into heat, steam, charcoal, methanol, ethanol, bio diesel as well as raw materials (animal feed, composting, energy and biogas construction etcetera). agricultural wastes are likely to cause pollution to the environment or even harm to human health, if it is not used in a sustainable manner. Organic wastes could be considered an important source of biofertilizer for enhancing food security in the small holder farming communities that would not afford use of expensive inorganic fertilizers. Moreover, these organic wastes contain high levels of nitrogen, phosphorus, potassium, and organic matter important for improving nutrient status of soils in urban agriculture. Organic compost leading to improved crop yields and its nutritional values as compared with inorganic fertilization. This paper briefly reviews how agricultural wastes can be used to enhance food security and conserve the environment. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=agricultural%20waste" title="agricultural waste">agricultural waste</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20compost" title=" organic compost"> organic compost</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a>, <a href="https://publications.waset.org/abstracts/search?q=valuable%20resources" title=" valuable resources"> valuable resources</a> </p> <a href="https://publications.waset.org/abstracts/22402/sustainable-use-of-agricultural-waste-to-enhance-food-security-and-conserve-the-environment" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22402.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">520</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2490</span> A Review of the Run to Run (R to R) Control in the Manufacturing Processes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khalil%20Aghapouramin">Khalil Aghapouramin</a>, <a href="https://publications.waset.org/abstracts/search?q=Mostafa%20Ranjbar"> Mostafa Ranjbar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Run- to- Run (R2 R) control was developed in order to monitor and control different semiconductor manufacturing processes based upon the fundamental engineering frameworks. This technology allows rectification in the optimum direction. This control always had a significant potency in which was appeared in a variety of processes. The term run to run refers to the case where the act of control would take with the aim of getting batches of silicon wafers which produced in a manufacturing process. In the present work, a brief review about run-to-run control investigated which mainly is effective in the manufacturing process. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Run-to-Run%20%28R2R%29%20control" title="Run-to-Run (R2R) control">Run-to-Run (R2R) control</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=process%20in%20engineering" title=" process in engineering"> process in engineering</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing%20controls" title=" manufacturing controls"> manufacturing controls</a> </p> <a href="https://publications.waset.org/abstracts/48352/a-review-of-the-run-to-run-r-to-r-control-in-the-manufacturing-processes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/48352.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">493</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2489</span> Anaerobic Digestion of Organic Wastes for Biogas Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ayhan%20Varol">Ayhan Varol</a>, <a href="https://publications.waset.org/abstracts/search?q=Aysenur%20Ugurlu"> Aysenur Ugurlu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Due to the depletion of fossil fuels and climate change, there is a rising interest in renewable energy sources. In this concept, a wide range of biomass (energy crops, animal manure, solid wastes, etc.) are used for energy production. There has been a growing interest in biomethane production from biomass. Biomethane production from organic wastes is a promising alternative for waste management by providing organic matter stabilization. Anaerobic digestion of organic material produces biogas, and organic substrate is degraded into a more stable material. Therefore, anaerobic digestion technology helps reduction of carbon emissions and produces renewable energy. The hydraulic retention time (HRT) and organic loading rate (OLR), as well as TS (VS) loadings, influences the anaerobic digestion of organic wastes significantly. The optimum range for HRT varies between 15 days to 30 days, whereas OLR differs between 0.5 to 5 g/L.d depending on the substrate type and its lipid, protein and carbohydrate contents. The organic wastes have biogas production potential through anaerobic digestion. In this study, biomethane production potential of wastes like sugar beet bagasse, agricultural residues, food wastes, olive mill pulp, and dairy manure having different characteristics was investigated in mesophilic CSTR reactor, and their performances were compared. The reactor was mixed in order to provide homogenized content at a rate of 80 rpm. The organic matter content of these wastes was between 85 to 94 % with 61% (olive pulp) to 22 % (food waste) dry matter content. The hydraulic retention time changed between 20-30 days. High biogas productions, 13.45 to 5.70 mL/day, were achieved from the wastes studied when operated at 9 to 10.5% TS loadings where OLR varied between 2.92 and 3.95 gVS/L.day. The results showed that food wastes have higher specific methane production rate and volumetric methane production potential than the other wastes studied, under the similar OLR values. The SBP was 680, 585, 540, 390 and 295 mL/g VS for food waste, agricultural residues, sugar beet bagasse, olive pulp and dairy manure respectively. The methane content of the biogas varied between 72 and 60 %. The volatile solids conversion rate for food waste was 62%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=biogas%20production" title="biogas production">biogas production</a>, <a href="https://publications.waset.org/abstracts/search?q=organic%20wastes" title=" organic wastes"> organic wastes</a>, <a href="https://publications.waset.org/abstracts/search?q=biomethane" title=" biomethane"> biomethane</a>, <a href="https://publications.waset.org/abstracts/search?q=anaerobic%20digestion" title=" anaerobic digestion"> anaerobic digestion</a> </p> <a href="https://publications.waset.org/abstracts/52438/anaerobic-digestion-of-organic-wastes-for-biogas-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/52438.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=83">83</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=84">84</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=manufacturing%20wastes&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10