CINXE.COM
Search results for: educational buildings
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: educational buildings</title> <meta name="description" content="Search results for: educational buildings"> <meta name="keywords" content="educational buildings"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="educational buildings" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="educational buildings"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 4810</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: educational buildings</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4810</span> Energy Efficient Lighting in Educational Buildings through the Example of a High School in Istanbul</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nihan%20Gurel%20Ulusan">Nihan Gurel Ulusan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is obvious that electrical energy, which is an inseparable part of modern day’s human and also the most important power source of our age, should be generated on a level that will suffice the nation’s requirements. The electrical energy used for a sustainable architectural design should be reduced as much as possible. Designing the buildings as energy efficient systems which aim at reducing the artificial illumination loads has been a current subject of our times as a result of concepts gaining importance like conscious consumption of energy sources, environment-friendly designs and sustainability. Reducing the consumption of electrical energy regarding the artificial lighting carries great significance, especially in the volumes which are used all day long like the educational buildings. Starting out with such an aim in this paper, the educational buildings are explored in terms of energy efficient lighting. Firstly, illumination techniques, illumination systems, light sources, luminaries, illumination controls and 'efficient energy' usage in lighting are mentioned. In addition, natural and artificial lighting systems used in educational buildings and also the spaces building up these kind buildings are examined in terms of energy efficient lighting. Lastly, the illumination properties of the school sample chosen for this study, Kağıthane Anadolu Lisesi, a typical high school in Istanbul, is observed. Suggestions are made in order to improve the system by evaluating the illumination properties of the classes with the survey carried out with the users. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20buildings" title="educational buildings">educational buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient" title=" energy efficient"> energy efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=illumination%20techniques" title=" illumination techniques"> illumination techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=lighting" title=" lighting"> lighting</a> </p> <a href="https://publications.waset.org/abstracts/64601/energy-efficient-lighting-in-educational-buildings-through-the-example-of-a-high-school-in-istanbul" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">282</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4809</span> Accessibility for the Disabled in Public Buildings: The Case of a Nigerian University</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20P.%20Akinbogun">S. P. Akinbogun</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Oloruntoyin"> P. Oloruntoyin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> One of the millennium development goals is the reduction of illiteracy. The state of user friendliness of the educational buildings is expected to play a significant role in the quest, particularly among the physically challenged. This study considers the state of access of educational buildings to disabled on wheel chair and crutches. It draws context from one of the federal universities in Nigeria. The study is basically qualitative; data were collected through structured interview and observation to assess compliance with the prescribed accessibility standard of academic buildings in the Federal University of Technology Akure. The study found that narrow entrances and routes of buildings, raised steps at entrances of the buildings, and ramps were absent. This implies exclusion as it renders most of the buildings inaccessible to wheelchair users. Perhaps, it accounts for low enrolment of wheelchair users in the institution despite many of them in the city. The implication is a challenge in the achievement of the millennium development goal concerning the reduction in the level of illiteracy in the country. The study suggests that government should strictly ensure that public buildings should satisfy or retrofitted to meet disabled access before development approval. This should be followed with the issuance of certificate of compliance upon completion. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=public%20building" title="public building">public building</a>, <a href="https://publications.waset.org/abstracts/search?q=accessibility" title=" accessibility"> accessibility</a>, <a href="https://publications.waset.org/abstracts/search?q=physically%20challenged" title=" physically challenged"> physically challenged</a>, <a href="https://publications.waset.org/abstracts/search?q=education" title=" education "> education </a> </p> <a href="https://publications.waset.org/abstracts/120827/accessibility-for-the-disabled-in-public-buildings-the-case-of-a-nigerian-university" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120827.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4808</span> The Necessity of Retrofitting for Masonry Buildings in Turkey</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soner%20G%C3%BCler">Soner Güler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a>, <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel"> Eylem Güzel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry buildings constitute major part of building stock in Turkey. Masonry buildings were built up especially in rural areas and underdeveloped regions due to economic reasons. Almost all of these masonry buildings are not designed and detailed according to any design guidelines by designers. As a result of this, masonry buildings were totally collapsed or heavily damaged when subjected to destructive earthquake effects. Thus, these masonry buildings that were built up in our country must be retrofitted to improve their seismic performance. In this study, new seismic retrofitting techniques that is easy to apply and low-cost are summarized and the importance of seismic retrofitting is also emphasized for existing masonry buildings in Turkey. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=masonry%20buildings" title="masonry buildings">masonry buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20effects" title=" earthquake effects"> earthquake effects</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20retrofitting%20techniques" title=" seismic retrofitting techniques"> seismic retrofitting techniques</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/31789/the-necessity-of-retrofitting-for-masonry-buildings-in-turkey" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31789.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">343</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4807</span> A Case Study on Post-Occupancy Evaluation of User Satisfaction in Higher Educational Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yuanhong%20Zhao">Yuanhong Zhao</a>, <a href="https://publications.waset.org/abstracts/search?q=Qingping%20Yang"> Qingping Yang</a>, <a href="https://publications.waset.org/abstracts/search?q=Andrew%20Fox"> Andrew Fox</a>, <a href="https://publications.waset.org/abstracts/search?q=Tao%20Zhang"> Tao Zhang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Post-occupancy evaluation (POE) is a systematic approach to assess the actual building performance after the building has been occupied for some time. In this paper, a structured POE assessment was conducted using the building use survey (BUS) methodology in two higher educational buildings in the United Kingdom. This study aims to help close the building performance gap, provide optimized building operation suggestions, and to improve occupants’ satisfaction level. In this research, the questionnaire survey investigated the influences of environmental factors on user satisfaction from the main aspects of building overall design, thermal comfort, perceived control, indoor environment quality for noise, lighting, ventilation, and other non-environmental factors, such as the background information about age, sex, time in buildings, workgroup size, and so on. The results indicate that the occupant satisfaction level with the main aspects of building overall design, indoor environment quality, and thermal comfort in summer and winter on both two buildings, which is lower than the benchmark data. The feedback of this POE assessment has been reported to the building management team to allow managers to develop high-performance building operation plans. Finally, this research provided improvement suggestions to the building operation system to narrow down the performance gap and improve the user work experience satisfaction and productivity level. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20performance%20assessment%20systems" title="building performance assessment systems">building performance assessment systems</a>, <a href="https://publications.waset.org/abstracts/search?q=higher%20educational%20buildings" title=" higher educational buildings"> higher educational buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=post-occupancy%20evaluation" title=" post-occupancy evaluation"> post-occupancy evaluation</a>, <a href="https://publications.waset.org/abstracts/search?q=user%20satisfaction" title=" user satisfaction"> user satisfaction</a> </p> <a href="https://publications.waset.org/abstracts/130740/a-case-study-on-post-occupancy-evaluation-of-user-satisfaction-in-higher-educational-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130740.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">152</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4806</span> Influences of High Rise Buildings on Local Air Flow Characteristics on External Surfaces of Neighboring Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Meral%20Yucel">Meral Yucel</a>, <a href="https://publications.waset.org/abstracts/search?q=Vildan%20Ok"> Vildan Ok</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study indicates the wind effects of 49-storey height four towers on a high-density urban area-consisting of 10-12 storey height buildings called Goztepe in Istanbul, Turkey. For this purpose, four towers and close environments are modeled in 1/500 scale for wind tunnel test. Three neighboring buildings are chosen to find out the pressure coefficient changes on the surfaces of the buildings according to the construction order of these four towers and wind directions. Results were compared with the 'TS 498 Wind Standard of Tall Buildings in Istanbul' which is prepared by Istanbul Metropolitan Municipality in 2009. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=high%20rise%20buildings" title="high rise buildings">high rise buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=pressure%20coefficients" title=" pressure coefficients"> pressure coefficients</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20tunnel%20experiments" title=" wind tunnel experiments"> wind tunnel experiments</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20standard%20of%20tall%20buildings" title=" wind standard of tall buildings"> wind standard of tall buildings</a> </p> <a href="https://publications.waset.org/abstracts/9456/influences-of-high-rise-buildings-on-local-air-flow-characteristics-on-external-surfaces-of-neighboring-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9456.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">281</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4805</span> A Study on Strategy of Coordinative Symbiosis between New and Old Buildings: Case Study of Shanghai Citic Plaza and Surroundings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tianyi%20Qin">Tianyi Qin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Along with the acceleration of Chinese urbanization, the expansion, renovation and demolition of old buildings is on the stage together with the design and construction of new buildings every day in downtown of the old city area. The coordinative symbiosis between new and old buildings is an important problem which needs to be solved in the process of urban development. By studying and analyzing the case of Shanghai Citic Plaza and surroundings, this paper contributes to discussing the concept, value and problems to be solved of the coordination of new and old buildings, meanwhile, striking the balance between new and old buildings from the aspects of architectural form, space, function and local context. As a result, the strategy of the coordinative symbiosis between new and old buildings is summarized, which can offer some guiding principles to urban development from now on. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=coordinative%20symbiosis" title="coordinative symbiosis">coordinative symbiosis</a>, <a href="https://publications.waset.org/abstracts/search?q=new%20and%20old%20buildings" title=" new and old buildings"> new and old buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=Shanghai%20Citic%20Plaza" title=" Shanghai Citic Plaza"> Shanghai Citic Plaza</a>, <a href="https://publications.waset.org/abstracts/search?q=strategy" title=" strategy"> strategy</a> </p> <a href="https://publications.waset.org/abstracts/71201/a-study-on-strategy-of-coordinative-symbiosis-between-new-and-old-buildings-case-study-of-shanghai-citic-plaza-and-surroundings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71201.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4804</span> An Assessment of Thermal Comfort and Air Quality in Educational Space: A Case Study of Design Studios in the Arab Academy for Science, Technology and Maritime Transport, Alexandria</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bakr%20Gomaa">Bakr Gomaa</a>, <a href="https://publications.waset.org/abstracts/search?q=Hana%20Awad"> Hana Awad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A stuffy room is one of the indicators of poor indoor air quality. Through working in an educational building in Alexandria, it is noticed that one of the rooms is smelly. A field study is conducted in a private university building in Alexandria to achieve indoor sustainable educational environment. Additionally, the indoor air quality is empirically assessed, and thermal comfort is identified in educational buildings, in studio halls specifically during lecture hours. The current research uses qualitative and quantitative methods in the form of literature review, investigation and test measurements. At a similar time that the teachers and students fill in a questionnaire regarding the concept of indoor climate, thermal comfort variables are determined. The indoor thermal conditions of the studio are assessed through three variables including Fanger’s comfort indicators (calculated using PMV, predicted mean vote and PPD, predicted percentage of dissatisfied people), the actual people clothing and metabolic rate. Actual measurements of air quality are obtained in a case study in an architectural building. Results have proved that indoor climatic conditions as air flow and temperature are inconvenient to inhabitants. Regarding questionnaire results, occupants appear to be uncomfortable in both seasons, with result percentages out of the acceptable range. Finally, further researches will center on how to preserve thermal comfort in school buildings since it has a vital influence on the student’s knowledge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20buildings" title="educational buildings">educational buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=Indoor%20air%20quality" title=" Indoor air quality"> Indoor air quality</a>, <a href="https://publications.waset.org/abstracts/search?q=productivity" title=" productivity"> productivity</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/102974/an-assessment-of-thermal-comfort-and-air-quality-in-educational-space-a-case-study-of-design-studios-in-the-arab-academy-for-science-technology-and-maritime-transport-alexandria" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/102974.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">195</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4803</span> Energy Consumption and Energy Conservation Potential for HVAC System in Commercial Buildings Sector in India</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rishabh%20Agrawal">Rishabh Agrawal</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20C.%20Kaushik"> S. C. Kaushik</a>, <a href="https://publications.waset.org/abstracts/search?q=T.%20S.%20Bhatti"> T. S. Bhatti</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to reduce energy consumption for sustainable development, continuous energy consumption tracking of building energy systems are essential. In this paper an assessment study has been done to identify the energy consumption & energy conservation potential for commercial buildings sector in Karnataka state, India. There are a total of 326 commercial buildings in the state of Karnataka who has qualified as designated consumers (i.e., having a Contract Demand ≥ 600 KVA), was consider for the study. It has estimated that the annual electricity sale to commercial sector is 3.62 Billion Units (BU) in alone Karnataka State, India, which is an account for 9.57 % of the total electricity sold. The commercial sector constitutes Government & private establishments, hospitals, hotels, restaurants, educational institutions, malls etc. Total 326 commercial buildings in the state accounting for annual energy consumption of 1295.72 Million Units (MU) which works out to about 35% of the sectoral consumption. The annual energy savings potential for 326 commercial buildings is assessed to be 0.25 BU. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=commercial%20buildings" title="commercial buildings">commercial buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=connected%20load" title=" connected load"> connected load</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20studies" title=" energy conservation studies"> energy conservation studies</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20savings" title=" energy savings"> energy savings</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20conservation%20strategy" title=" energy conservation strategy"> energy conservation strategy</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title=" energy efficiency"> energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20energy" title=" thermal energy"> thermal energy</a>, <a href="https://publications.waset.org/abstracts/search?q=HVAC%20system" title=" HVAC system"> HVAC system</a> </p> <a href="https://publications.waset.org/abstracts/33896/energy-consumption-and-energy-conservation-potential-for-hvac-system-in-commercial-buildings-sector-in-india" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">580</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4802</span> Observed Damages to Adobe Masonry Buildings after 2011 Van Earthquake</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Eylem%20G%C3%BCzel">Eylem Güzel</a>, <a href="https://publications.waset.org/abstracts/search?q=Soner%20G%C3%BCler"> Soner Güler</a>, <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20G%C3%BClen"> Mustafa Gülen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Masonry is the oldest building materials since ancient times. Adobe, stone, brick are the most widespread materials used in the construction of masonry buildings. Masonry buildings compose of a large part of building stock especially in rural areas and underdeveloped regions of Turkey. The seismic performance of adobe masonry buildings is vulnerable against earthquake effects. In this study, after 2011 Van earthquake with magnitude 7.2 Mw, damages occurred in existing adobe masonry buildings in Van city is investigated. The observed damages and reasons of adobe masonry buildings in design and construction phase are specified and evaluated. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adobe%20masonry%20buildings" title="adobe masonry buildings">adobe masonry buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake%20effects" title=" earthquake effects"> earthquake effects</a>, <a href="https://publications.waset.org/abstracts/search?q=damages" title=" damages"> damages</a>, <a href="https://publications.waset.org/abstracts/search?q=seismic%20performance" title=" seismic performance"> seismic performance</a> </p> <a href="https://publications.waset.org/abstracts/31790/observed-damages-to-adobe-masonry-buildings-after-2011-van-earthquake" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31790.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">319</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4801</span> Learning from Inclusive Education of Exceptional and Normal Children in Primary School for Architectural Design</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Pastraporn">T. Pastraporn</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Panida"> J. Panida</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Gasamapong"> P. Gasamapong</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Jintana"> N. Jintana</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The study of inclusive educational environment of exceptional and normal children at the regional centre for special education aimed to establish guidelines for creating an environment for inclusive education. Buildings utilization of thirty-five elementary schools providing inclusive educational program in Bangkok were analyzed to study the following aspects: 1) The environment of exceptional and normal students’ inclusive classes at the regional centre for special education 2) The patterns of the environment suited to the exceptional and normal students’ inclusive classes 3) Environmental management policies for the inclusive classes of exceptional and normal students. Information was gathered from surveys, observations, questionnaires, document analysis, interviews, and non-experimental research. The findings showed that the usable spaces in school buildings were designated to enhance the three kinds of social learning experience: 1) Support class control 2) Help developing students’ personality consisting of physical, verbal and emotional expressions that are socially accepted 3) Recognition and learning, which are needed for the increasing of learning experience, were caused by having an interaction with the environment. Thus, the school buildings’ space designation positively affected the environmental management of exceptional and normal students’ inclusive classes. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=learning%20environment" title="learning environment">learning environment</a>, <a href="https://publications.waset.org/abstracts/search?q=inclusive%20education" title=" inclusive education"> inclusive education</a>, <a href="https://publications.waset.org/abstracts/search?q=school%20buildings" title=" school buildings"> school buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=exceptional%20and%20normal%20children" title=" exceptional and normal children"> exceptional and normal children</a> </p> <a href="https://publications.waset.org/abstracts/39823/learning-from-inclusive-education-of-exceptional-and-normal-children-in-primary-school-for-architectural-design" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/39823.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">331</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4800</span> Evaluation of Traditional Methods in Construction and Their Effects on Reinforced-Concrete Buildings Behavior</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=E.%20H.%20N.%20Gashti">E. H. N. Gashti</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Zarrini"> M. Zarrini</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Irannezhad"> M. Irannezhad</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20R.%20Langroudi"> J. R. Langroudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Using ETABS software, this study analyzed 23 buildings to evaluate effects of mistakes during construction phase on buildings structural behavior. For modelling, two different loadings were assumed: 1) design loading and 2) loading due to the effects of mistakes in construction phase. Research results determined that considering traditional construction methods for buildings resulted in a significant increase in dead loads and consequently intensified the displacements and base-shears of buildings under seismic loads. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=reinforced-concrete%20buildings" title="reinforced-concrete buildings">reinforced-concrete buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=construction%20mistakes" title=" construction mistakes"> construction mistakes</a>, <a href="https://publications.waset.org/abstracts/search?q=base-shear" title=" base-shear"> base-shear</a>, <a href="https://publications.waset.org/abstracts/search?q=displacements" title=" displacements"> displacements</a>, <a href="https://publications.waset.org/abstracts/search?q=failure" title=" failure"> failure</a> </p> <a href="https://publications.waset.org/abstracts/15970/evaluation-of-traditional-methods-in-construction-and-their-effects-on-reinforced-concrete-buildings-behavior" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15970.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">270</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4799</span> Green Building Practices: Harmonizing Non-Governmental Organizations Roles and Energy Efficiency</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abimbola%20A.%20Adebayo">Abimbola A. Adebayo</a>, <a href="https://publications.waset.org/abstracts/search?q=Kikelomo%20I.%20Adebayo"> Kikelomo I. Adebayo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Green buildings provide serious challenges for governments all over the world with regard to achieving energy efficiency in buildings. Energy efficient buildings are needed to keep up with minimal impacts on the environment throughout their cycle and to enhance sustainable development. The lack of awareness and benefits of energy efficient buildings have given rise to NGO’s playing important role in filling data gaps, publicizing information, and undertaking awareness raising and policy engagement activities. However, these roles are countered by concerns about subsidies for evaluations, incentives to facilitate data-sharing, and incentives to finance independent research. On the basis of literature review on experiences with NGO’s involvement in energy efficient buildings, this article identifies governance strategies that stimulate the harmonization of NGO’s roles in green buildings with the objective to increase energy efficiency in buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20efficiency" title="energy efficiency">energy efficiency</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20buildings" title=" green buildings"> green buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=NGOs" title=" NGOs"> NGOs</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development"> sustainable development</a> </p> <a href="https://publications.waset.org/abstracts/87891/green-building-practices-harmonizing-non-governmental-organizations-roles-and-energy-efficiency" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87891.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4798</span> Genealogy of a Building: Tarikhaneh</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohadeseh%20Salari%20Sardari">Mohadeseh Salari Sardari</a> </p> <p class="card-text"><strong>Abstract:</strong></p> As Muslims conquered Iran, their first impression was to show their power over others. They needed mosques for their multiple needs like prayer, tax collecting, law-making, hearing of law cases, and most important of all, as a seat of government. Sometimes they did not have time to build mosques and only began to build them after years of ruling. Many religious buildings with pre-Islamic past survived in Iran, most of the fire temples in cities were destroyed or changed radically, but some deserted temples outside of cities survived, and based on these surviving buildings, we can trace changes in fire temples inside cities and discover how they were adapted and expanded to be mosques. In addition, there are some other buildings with doubts about their date of construction. These buildings might be transitional buildings between two different historical eras or might be an old building with a slight change. One of these interesting buildings is Tarikhaneh, a small, simple yet striking building. By tracing Tarikhaneh’s roots in other buildings like fire temples and secular buildings existed before Arab invasion, it can be better understood how the original form of Tatikhaneh was. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=iranian%20architecture" title="iranian architecture">iranian architecture</a>, <a href="https://publications.waset.org/abstracts/search?q=early%20mosques" title=" early mosques"> early mosques</a>, <a href="https://publications.waset.org/abstracts/search?q=fire%20temples" title=" fire temples"> fire temples</a>, <a href="https://publications.waset.org/abstracts/search?q=adaptation%20and%20reuse" title=" adaptation and reuse"> adaptation and reuse</a> </p> <a href="https://publications.waset.org/abstracts/148065/genealogy-of-a-building-tarikhaneh" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">137</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4797</span> Seismic Performance Assessment of Pre-70 RC Frame Buildings with FEMA P-58 </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Cardone">D. Cardone </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Past earthquakes have shown that seismic events may incur large economic losses in buildings. FEMA P-58 provides engineers a practical tool for the performance seismic assessment of buildings. In this study, FEMA P-58 is applied to two typical Italian pre-1970 reinforced concrete frame buildings, characterized by plain rebars as steel reinforcement and masonry infills and partitions. Given that suitable tools for these buildings are missing in FEMA P- 58, specific fragility curves and loss functions are first developed. Next, building performance is evaluated following a time-based assessment approach. Finally, expected annual losses for the selected buildings are derived and compared with past applications to old RC frame buildings representative of the US building stock. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=FEMA%20P-58" title="FEMA P-58">FEMA P-58</a>, <a href="https://publications.waset.org/abstracts/search?q=RC%20frame%20buildings" title=" RC frame buildings"> RC frame buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=plain%20rebars" title=" plain rebars"> plain rebars</a>, <a href="https://publications.waset.org/abstracts/search?q=Masonry%20infills" title=" Masonry infills"> Masonry infills</a>, <a href="https://publications.waset.org/abstracts/search?q=fragility%20functions" title=" fragility functions"> fragility functions</a>, <a href="https://publications.waset.org/abstracts/search?q=loss%20functions" title=" loss functions"> loss functions</a>, <a href="https://publications.waset.org/abstracts/search?q=expected%20annual%20loss" title=" expected annual loss"> expected annual loss</a> </p> <a href="https://publications.waset.org/abstracts/51136/seismic-performance-assessment-of-pre-70-rc-frame-buildings-with-fema-p-58" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/51136.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4796</span> Analysis of Thermal Comfort in Educational Buildings Using Computer Simulation: A Case Study in Federal University of Parana, Brazil</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ana%20Julia%20C.%20Kfouri">Ana Julia C. Kfouri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A prerequisite of any building design is to provide security to the users, taking the climate and its physical and physical-geometrical variables into account. It is also important to highlight the relevance of the right material elements, which arise between the person and the agent, and must provide improved thermal comfort conditions and low environmental impact. Furthermore, technology is constantly advancing, as well as computational simulations for projects, and they should be used to develop sustainable building and to provide higher quality of life for its users. In relation to comfort, the more satisfied the building users are, the better their intellectual performance will be. Based on that, the study of thermal comfort in educational buildings is of relative relevance, since the thermal characteristics in these environments are of vital importance to all users. Moreover, educational buildings are large constructions and when they are poorly planned and executed they have negative impacts to the surrounding environment, as well as to the user satisfaction, throughout its whole life cycle. In this line of thought, to evaluate university classroom conditions, it was accomplished a detailed case study on the thermal comfort situation at Federal University of Parana (UFPR). The main goal of the study is to perform a thermal analysis in three classrooms at UFPR, in order to address the subjective and physical variables that influence thermal comfort inside the classroom. For the assessment of the subjective components, a questionnaire was applied in order to evaluate the reference for the local thermal conditions. Regarding the physical variables, it was carried out on-site measurements, which consist of performing measurements of air temperature and air humidity, both inside and outside the building, as well as meteorological variables, such as wind speed and direction, solar radiation and rainfall, collected from a weather station. Then, a computer simulation based on results from the EnergyPlus software to reproduce air temperature and air humidity values of the three classrooms studied was conducted. The EnergyPlus outputs were analyzed and compared with the on-site measurement results to be possible to come out with a conclusion related to the local thermal conditions. The methodological approach included in the study allowed a distinct perspective in an educational building to better understand the classroom thermal performance, as well as the reason of such behavior. Finally, the study induces a reflection about the importance of thermal comfort for educational buildings and propose thermal alternatives for future projects, as well as a discussion about the significant impact of using computer simulation on engineering solutions, in order to improve the thermal performance of UFPR’s buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=computer%20simulation" title="computer simulation">computer simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20buildings" title=" educational buildings"> educational buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=EnergyPlus" title=" EnergyPlus"> EnergyPlus</a>, <a href="https://publications.waset.org/abstracts/search?q=humidity" title=" humidity"> humidity</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature" title=" temperature"> temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20comfort" title=" thermal comfort"> thermal comfort</a> </p> <a href="https://publications.waset.org/abstracts/77102/analysis-of-thermal-comfort-in-educational-buildings-using-computer-simulation-a-case-study-in-federal-university-of-parana-brazil" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/77102.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4795</span> Teaching 'Sustainable Architecture' to Pre-School Children by School Building for a Clean Future</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Cimen%20Ozburak">Cimen Ozburak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Pollution and the consumption of natural resources are significant global concerns. These problems have to be resolved in order to create a cleaner environment for the world. It is believed that sustainable building designs may reduce environmental problems throughout the world. It is known that if children receive environmental education in early childhood, they will be more likely to construct sustainable living systems and environment when they are older. School buildings can be used as educational material for teaching the natural and artificial environment in environmental education. In this study, the effect of school buildings on environmental education is examined by using the literature review method along with various examples. The selected examples in the study were analyzed according to 4 main criteria of LEED green building certification systems. These are the use of sustainable utilization of land, efficient utilization of water, efficient utilization of energy and efficient utilization of materials. According to the literature review, children who are educated in buildings designed according to these criteria, they will be environmentally sensitive individuals when they are older. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clean%20future" title="clean future">clean future</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20sustainable%20pre-schools" title=" educational sustainable pre-schools"> educational sustainable pre-schools</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20education" title=" environmental education"> environmental education</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20systems" title=" sustainable systems"> sustainable systems</a> </p> <a href="https://publications.waset.org/abstracts/69944/teaching-sustainable-architecture-to-pre-school-children-by-school-building-for-a-clean-future" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/69944.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">254</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4794</span> Indoor Thermal Comfort in Educational Buildings in the State of Kuwait</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sana%20El-Azzeh">Sana El-Azzeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Farraj%20Al-Ajmi"> Farraj Al-Ajmi</a>, <a href="https://publications.waset.org/abstracts/search?q=Abdulrahman%20Al-Aqqad"> Abdulrahman Al-Aqqad</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohamed%20Salem"> Mohamed Salem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal comfort is defined according to ANSI/ASHRAE Standard 55 as a condition of mind that expresses satisfaction with the thermal environment and is assessed by subjective evaluation. Sustaining this standard of thermal comfort for occupants of buildings or other enclosures is one of the important goals of HVAC design engineers. This paper presents a study of thermal comfort and adaptive behaviors of occupants who occupies two locations at the campus of the Australian College of Kuwait. A longitudinal survey and field measurement were conducted to measure thermal comfort, adaptive behaviors, and indoor environment qualities. The study revealed that female occupants in the selected locations felt warmer than males and needed more air velocity and lower temperature. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=indoor%20thermal%20comfort" title="indoor thermal comfort">indoor thermal comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=educational%20facility" title=" educational facility"> educational facility</a>, <a href="https://publications.waset.org/abstracts/search?q=gender%20analysis" title=" gender analysis"> gender analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=dry%20desert%20climate" title=" dry desert climate"> dry desert climate</a> </p> <a href="https://publications.waset.org/abstracts/132734/indoor-thermal-comfort-in-educational-buildings-in-the-state-of-kuwait" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/132734.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">157</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4793</span> Development of a Green Star Certification Tool for Existing Buildings in South Africa</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bouwer%20Kleynhans">Bouwer Kleynhans</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The built environment is responsible for about 40% of the world’s energy consumption and generates one third of global carbon dioxide emissions. The Green Building Council of South Africa’s (GBCSA) current rating tools are all for new buildings. By far the largest portion of buildings exist stock and therefore the need to develop a certification tool for existing buildings. Direct energy measurement comprises 27% of the total available points in this tool. The aim of this paper is to describe the development process of a green star certification tool for existing buildings in South Africa with specific emphasis on the energy measurement criteria. Successful implementation of this tool within the property market will ensure a reduced carbon footprint of buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=certification%20tool" title="certification tool">certification tool</a>, <a href="https://publications.waset.org/abstracts/search?q=development%20process" title=" development process"> development process</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20buildings" title=" green buildings"> green buildings</a> </p> <a href="https://publications.waset.org/abstracts/9572/development-of-a-green-star-certification-tool-for-existing-buildings-in-south-africa" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9572.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">322</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4792</span> Seismic Evaluation of Reinforced Concrete Buildings in Myanmar, Based on Microtremor Measurement</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Khaing%20Su%20Su%20Than">Khaing Su Su Than</a>, <a href="https://publications.waset.org/abstracts/search?q=Hibino%20Yo"> Hibino Yo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Seismic evaluation is needed upon the buildings in Myanmar. Microtremor measurement was conducted in the main cities, Mandalay and Yangon. In order to evaluate the seismic properties of buildings currently under construction, seismic information was gathered for six buildings in Yangon city and four buildings in Mandalay city. The investigated buildings vary from 12m-80 m in height, and mostly public residence structures. The predominant period obtained from frequency results of the investigated buildings were given by horizontal to vertical spectral ratio (HVSR) for each building. The fundamental period results have been calculated in the form of Fourier amplitude spectra of translation along with the main structure. Based on that, the height (H)-period(T) relationship was observed as T=0.012H-0.017H in the buildings of Yangon and, observed the relationship as T=0.014H-0.019H in the buildings of Mandalay. The results showed that the relationship between height and natural period was slightly under the relationship T=0.02H that is used for Japanese reinforced concrete buildings, which indicated that the results depend on the properties and characteristics of materials used. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=HVSR" title="HVSR">HVSR</a>, <a href="https://publications.waset.org/abstracts/search?q=height-period%20relationship" title=" height-period relationship"> height-period relationship</a>, <a href="https://publications.waset.org/abstracts/search?q=microtremor" title=" microtremor"> microtremor</a>, <a href="https://publications.waset.org/abstracts/search?q=Myanmar%20earthquake" title=" Myanmar earthquake"> Myanmar earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20structures" title=" reinforced concrete structures"> reinforced concrete structures</a> </p> <a href="https://publications.waset.org/abstracts/110356/seismic-evaluation-of-reinforced-concrete-buildings-in-myanmar-based-on-microtremor-measurement" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/110356.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">156</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4791</span> Investigation on the Physical Conditions of Façade Systems of Campus Buildings by Infrared Thermography Tests</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20T%C3%BCrkmeno%C4%9Flu%20Bayraktar">N. Türkmenoğlu Bayraktar</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Kishal%C4%B1"> E. Kishalı</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Campus buildings are educational facilities where various amount of energy consumption for lighting, heating, cooling and ventilation occurs. Some of the new universities in Turkey, where this investigation takes place, still continue their educational activities in existing buildings primarily designed for different architectural programs and converted to campus buildings via changes of function, space organizations and structural interventions but most of the time without consideration of appropriate micro climatic conditions. Reducing energy consumption in these structures not only contributes to the national economy but also mitigates the negative effects on environment. Furthermore, optimum thermal comfort conditions should be provided during the refurbishment of existing campus structures and their building envelope. Considering this issue, the first step is to investigate the climatic performance of building elements regarding refurbishment process. In the context of the study Kocaeli University, Faculty of Design and Architecture building constructed in 1980s in Anıtpark campus located in the central part of Kocaeli, Turkey was investigated. Climatic factors influencing thermal conditions; the deteriorations on building envelope; temperature distribution; heat losses from façade elements observed by thermography were presented in order to improve strategies for retrofit process for the building envelope. Within the scope of the survey, refurbishment strategies towards providing optimum climatic comfort conditions, increasing energy efficiency of building envelope were proposed. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20envelope" title="building envelope">building envelope</a>, <a href="https://publications.waset.org/abstracts/search?q=IRT" title=" IRT"> IRT</a>, <a href="https://publications.waset.org/abstracts/search?q=refurbishment" title=" refurbishment"> refurbishment</a>, <a href="https://publications.waset.org/abstracts/search?q=non-destructive%20test" title=" non-destructive test"> non-destructive test</a> </p> <a href="https://publications.waset.org/abstracts/63785/investigation-on-the-physical-conditions-of-facade-systems-of-campus-buildings-by-infrared-thermography-tests" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/63785.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4790</span> Preliminary Investigation of Hospital Buildings Maintenance Management in Malaysia</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christtestimony%20Oluwafemi%20Jesumoroti">Christtestimony Oluwafemi Jesumoroti</a>, <a href="https://publications.waset.org/abstracts/search?q=AbdulLateef%20Ashola%20Olanrewaju"> AbdulLateef Ashola Olanrewaju</a>, <a href="https://publications.waset.org/abstracts/search?q=Khor%20Soo%20Cheen"> Khor Soo Cheen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The worth of buildings is known by the quality of the maintenance imbibe in them. Maintenance management being carried out in the hospitals has a direct impact on the performance of the hospital buildings, environment, and sustainable infrastructure, and as such, there is a need to give it adequate attention. The media and reports on hospital buildings maintenance management in Malaysia were not favorable. Hospital buildings in Malaysia need to have proper structure for maintenance management and sustainability as this will enhance the good infrastructure for users and the entire nation. The paper reports the preliminary results of the determinants of maintenance in hospital buildings. To achieve the aim of this research, a survey questionnaire was administered to the users of the hospital buildings. The findings of the study revealed that there are lack of maintenance standard, use of poor quality components and materials, Improper response time, Poor complaint reporting system. Hence, the influent of rework, thorough responsibilities of quality performance of hospital buildings, and others are the results of the investigations. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=sustainable%20infrastructure" title="sustainable infrastructure">sustainable infrastructure</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20performance" title=" optimum performance"> optimum performance</a>, <a href="https://publications.waset.org/abstracts/search?q=implementation" title=" implementation"> implementation</a>, <a href="https://publications.waset.org/abstracts/search?q=key%20performance%20indicators" title=" key performance indicators"> key performance indicators</a>, <a href="https://publications.waset.org/abstracts/search?q=maintenance%20policies" title=" maintenance policies"> maintenance policies</a> </p> <a href="https://publications.waset.org/abstracts/131048/preliminary-investigation-of-hospital-buildings-maintenance-management-in-malaysia" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131048.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">155</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4789</span> Effect of Blast Loads on the Seismically Designed Reinforced Concrete Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jhuma%20Debnath">Jhuma Debnath</a>, <a href="https://publications.waset.org/abstracts/search?q=Hrishikesh%20Sharma"> Hrishikesh Sharma</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The work done here in this paper is dedicated to studying the effect of high blast explosives over the seismically designed buildings. Buildings are seismically designed in SAP 2000 software to simulate seismic designs of buildings using response spectrum method. Later these buildings have been studied applying blast loads with the same amount of the blast explosives. This involved varying the standoff distances of the buildings from the blast explosion. The study found out that, for a seismically designed building, the minimum standoff distance is to be at least 120m from the place of explosion for an average blast explosive weight of 20kg TNT. This has shown that the building does not fail due to this huge explosive weight of TNT but resists immediate collapse of the building. The results also show that the adverse effect of the column failure due to blasting is reduced to 73.75% from 22.5% due to the increase of the standoff distance from the blast loads. The maximum affected locations due to the blast loads are also detected in this study. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=blast%20loads" title="blast loads">blast loads</a>, <a href="https://publications.waset.org/abstracts/search?q=seismically%20designed%20buildings" title=" seismically designed buildings"> seismically designed buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=standoff%20distance" title=" standoff distance"> standoff distance</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete%20buildings" title=" reinforced concrete buildings"> reinforced concrete buildings</a> </p> <a href="https://publications.waset.org/abstracts/98209/effect-of-blast-loads-on-the-seismically-designed-reinforced-concrete-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/98209.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">235</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4788</span> Clients’ Priorities in Design and Delivery of Green Projects: South African Perspective</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Charles%20Mothobiso">Charles Mothobiso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study attempts to identify the client’s main priority when delivering green projects. The aim is to compare whether clients’ interests are similar when delivering conventional buildings as compared to green buildings. Private clients invest more in green buildings as compared to government and parastatal entities. Private clients prioritize on maximizing a return on investment and they mainly invest in energy-saving buildings that have low life cycle costs. Private clients are perceived to be more knowledgeable about the benefits of green building projects as compared to government and parastatal clients. A shortage of expertise and managerial skill leads to the low adaptation of green buildings in government and parastatal projects. Other factors that seem to prevent the adoption of green buildings are the preparedness of the supply chain within the industry and inappropriate procurement strategies adopted by clients. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=construction%20clients" title="construction clients">construction clients</a>, <a href="https://publications.waset.org/abstracts/search?q=design%20team" title=" design team"> design team</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20buildings" title=" green buildings"> green buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=procurement" title=" procurement"> procurement</a> </p> <a href="https://publications.waset.org/abstracts/55634/clients-priorities-in-design-and-delivery-of-green-projects-south-african-perspective" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/55634.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4787</span> Impact of Building Orientation on Energy Performance of Buildings in Kabul, Afghanistan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Karimi">Mustafa Karimi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chikamoto%20Tomoyuki"> Chikamoto Tomoyuki</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The building sector consumes 36% of total global energy used, whereas only residential buildings are responsible for 22% of that. In residential buildings, energy used for space heating and cooling represents the majority part of the total energy consumption. Although Afghanistan is amongst the lowest in energy usage globally, residential buildings’ energy consumption has caused serious environmental issues, especially in the capital city, Kabul. After decades of war in Afghanistan, redevelopment of the built environment started from scratch in the past years; therefore, to create sustainable urban areas, it is critical to find the most energy-efficient design parameters for buildings that will last for decades. This study aims to assess the impact of building orientation on the energy performance of buildings in Kabul. It is found that the optimal orientation for buildings in Kabul is South and South-southeast, while West-northwest and Northeast orientations are the worst in terms of energy performance. The difference in the total energy consumption between the best and the worst orientation is 17.5%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20orientation" title="building orientation">building orientation</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20consumption" title=" energy consumption"> energy consumption</a>, <a href="https://publications.waset.org/abstracts/search?q=residential%20buildings" title=" residential buildings"> residential buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=Kabul" title=" Kabul"> Kabul</a>, <a href="https://publications.waset.org/abstracts/search?q=environmental%20issues" title=" environmental issues"> environmental issues</a> </p> <a href="https://publications.waset.org/abstracts/152170/impact-of-building-orientation-on-energy-performance-of-buildings-in-kabul-afghanistan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/152170.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">133</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4786</span> Societal Acceptance of Trombe Wall in Buildings in Mediterranean Region: A Case Cyprus</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Soad%20Abokhamis%20Mousavi">Soad Abokhamis Mousavi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The Trombe wall is an ancient technique that continues to serve as an effective feature of a passive solar system. However, in practice, architects and their clients are not opting for the Trombe wall because of the view of the Trombe wall on the facades of the buildings. Therefore, this study has two main goals, and one of the goals is to find out why the Trombe wall is not considered in the buildings in the Mediterranean region. And the second goal is to find a solution to facilitate the societal acceptance of the Trombe walls in buildings. To cover the goals, the present work attempts to develop and design a different Trombe Wall with different Materials and views in the facades of the buildings. A qualitative data method was used in this article. The qualitative method was developed based on observation and questionnaires with different clients and expert architects in the selected region. Results indicate that the view of the Trombe wall in the facade of buildings can be used with different designs in order to not affect the beauty of the buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trombe%20wall" title="trombe wall">trombe wall</a>, <a href="https://publications.waset.org/abstracts/search?q=societal%20acceptance" title=" societal acceptance"> societal acceptance</a>, <a href="https://publications.waset.org/abstracts/search?q=building" title=" building"> building</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficacy" title=" energy efficacy"> energy efficacy</a> </p> <a href="https://publications.waset.org/abstracts/160411/societal-acceptance-of-trombe-wall-in-buildings-in-mediterranean-region-a-case-cyprus" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/160411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">81</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4785</span> Feasibility Analysis of Active and Passive Technical Integration of Rural Buildings</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chanchan%20Liu">Chanchan Liu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In the process of urbanization in China, the rapid development of urban construction has been achieved, but a large number of rural buildings still continue the construction mode many years ago. This paper mainly analyzes the rural residential buildings in the hot summer and cold winter regions analyze the active and passive technologies of the buildings. It explored the feasibility of realizing the sustainable development of rural buildings in an economically reasonable range, using mainly passive technologies, innovative building design methods, reducing the buildings’ demand for conventional energy, and supplementing them with renewable energy sources. On this basis, appropriate technology and regional characteristics are proposed to keep the rural architecture retain its characteristics in the development process. It is hoped that this exploration can provide reference and help for the development of rural buildings in the hot summer and cold winter regions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=the%20rural%20building" title="the rural building">the rural building</a>, <a href="https://publications.waset.org/abstracts/search?q=active%20technology" title=" active technology"> active technology</a>, <a href="https://publications.waset.org/abstracts/search?q=passive%20technology" title=" passive technology"> passive technology</a>, <a href="https://publications.waset.org/abstracts/search?q=sustainable%20development" title=" sustainable development "> sustainable development </a> </p> <a href="https://publications.waset.org/abstracts/97116/feasibility-analysis-of-active-and-passive-technical-integration-of-rural-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/97116.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4784</span> Wind Comfort and Safety of People in the Vicinity of Tall Buildings </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mohan%20Kotamrazu">Mohan Kotamrazu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Tall buildings block and divert strong upper level winds to the ground. These high velocity winds many a time create adverse wind effects at ground level which can be uncomfortable and even compromise the safety of pedestrians and people who frequent the spaces in the vicinity of tall buildings. Discomfort can be experienced around the entrances and corners of tall buildings. Activities such as strolling or sitting in a park, waiting for a bus near a tall building can become highly unpleasant. For the elderly unpleasant conditions can also become dangerous leading to accidents and injuries. Today there is a growing concern among architects, planners and urban designers about the wind environment in the vicinity of tall building. Regulating authorities insist on wind tunnel testing of tall buildings in cities such as Wellington, Auckland, Boston, San Francisco, etc. prior to granting permission for their construction The present paper examines the different ways that tall buildings can induce strong winds at pedestrian level and their impact on people who frequent the spaces around tall buildings. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=tall%20buildings" title="tall buildings">tall buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20effects" title=" wind effects"> wind effects</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20comfort" title=" wind comfort"> wind comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=wind%20safety" title=" wind safety"> wind safety</a> </p> <a href="https://publications.waset.org/abstracts/45360/wind-comfort-and-safety-of-people-in-the-vicinity-of-tall-buildings" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45360.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4783</span> Wakala Buildings of Mamluk Era in Cairo, Egypt and Its Rating According to Rating Criteria of Leadership in Energy and Environmental Design V4</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Fathy">M. Fathy</a>, <a href="https://publications.waset.org/abstracts/search?q=I.%20Maarouf"> I. Maarouf</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20El-Sayary"> S. El-Sayary</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Our buildings are responsible for around 50% of energy consumption and most of this consumption because of spaces design, low heat isolation building material and occupant presence and behavior in buildings beside non-efficient architectural treatments. It has been shown to have large impact on heating, cooling and ventilation demand, energy consumption of lighting and appliances, and building controls. This paper aims to focus on passive treatments in Wakala Buildings in Cairo and how far it meets the LEED Criteria as the LEED – Leadership in Energy and Environmental Design – considered the widest spread rating system in the world. By studying Wakala buildings in Cairo, there are a lot of environmental potentials in it in the field of passive treatments and energy efficiency that could be found in examples by surveying and analyzing Wakala buildings. Besides the environmental treatments through the natural materials and façade architectural treatments, there is a measuring phase to declare the efficiency of the Wakala building through temperature decline between outdoor and indoor the Wakala building. Also, measuring how far the indoor conditions matched the thermal comfort for occupants. After measuring the Wakala buildings, it is the role of applying the criteria of LEED rating system to find out how fare Wakala buildings meet the LEED rating system criteria. After all, the building technologies used in Wakala buildings in the field of passive design and caused that energy efficiency would be clear and what is needed for Wakala buildings to have a LEED Certification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy%20awareness" title="energy awareness">energy awareness</a>, <a href="https://publications.waset.org/abstracts/search?q=historical%20commercial%20buildings" title=" historical commercial buildings"> historical commercial buildings</a>, <a href="https://publications.waset.org/abstracts/search?q=LEED" title=" LEED"> LEED</a>, <a href="https://publications.waset.org/abstracts/search?q=Wakala%20buildings" title=" Wakala buildings"> Wakala buildings</a> </p> <a href="https://publications.waset.org/abstracts/76419/wakala-buildings-of-mamluk-era-in-cairo-egypt-and-its-rating-according-to-rating-criteria-of-leadership-in-energy-and-environmental-design-v4" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76419.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">203</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4782</span> Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Musa%20H.%20Arslan">Musa H. Arslan</a>, <a href="https://publications.waset.org/abstracts/search?q=Murat%20Ceylan"> Murat Ceylan</a>, <a href="https://publications.waset.org/abstracts/search?q=Tayfun%20Koyuncu"> Tayfun Koyuncu </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, an artificial intelligence-based (ANN based) analytical method has been developed for analyzing earthquake performances of the reinforced concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code- 2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=artificial%20intelligence" title="artificial intelligence">artificial intelligence</a>, <a href="https://publications.waset.org/abstracts/search?q=earthquake" title=" earthquake"> earthquake</a>, <a href="https://publications.waset.org/abstracts/search?q=performance" title=" performance"> performance</a>, <a href="https://publications.waset.org/abstracts/search?q=reinforced%20concrete" title=" reinforced concrete"> reinforced concrete</a> </p> <a href="https://publications.waset.org/abstracts/33801/determining-earthquake-performances-of-existing-reinforced-concrete-buildings-by-using-ann" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33801.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4781</span> Net Zero Energy Schools: The Starting Block for the Canadian Energy Neutral K-12 Schools</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hamed%20Hakim">Hamed Hakim</a>, <a href="https://publications.waset.org/abstracts/search?q=Roderic%20Archambault"> Roderic Archambault</a>, <a href="https://publications.waset.org/abstracts/search?q=Charles%20J.%20Kibert"> Charles J. Kibert</a>, <a href="https://publications.waset.org/abstracts/search?q=Maryam%20Mirhadi%20Fard"> Maryam Mirhadi Fard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Changes in the patterns of life in the late 20th and early 21st century have created new challenges for educational systems. Greening the physical environment of school buildings has emerged as a response to some of those challenges and led to the design of energy efficient K-12 school buildings. With the advancement in knowledge and technology, the successful construction of Net Zero Energy Schools, such as the Lady Bird Johnson Middle School demonstrates a cutting edge generation of sustainable schools, and solves the former challenge of attaining energy self-sufficient educational facilities. There are approximately twenty net zero energy K-12 schools in the U.S. of which about six are located in Climate Zone 5 and 6 based on ASHRAE climate zone classification. This paper aims to describe and analyze the current status of energy efficient and NZE schools in Canada. An attempt is made to study existing U.S. energy neutral strategies closest to the climate zones in Canada (zones 5 and 6) and identify the best practices for Canadian schools. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Canada%20K-12%20schools" title="Canada K-12 schools">Canada K-12 schools</a>, <a href="https://publications.waset.org/abstracts/search?q=green%20school" title=" green school"> green school</a>, <a href="https://publications.waset.org/abstracts/search?q=energy%20efficient" title=" energy efficient"> energy efficient</a>, <a href="https://publications.waset.org/abstracts/search?q=net-zero%20energy%20schools" title=" net-zero energy schools"> net-zero energy schools</a> </p> <a href="https://publications.waset.org/abstracts/29725/net-zero-energy-schools-the-starting-block-for-the-canadian-energy-neutral-k-12-schools" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/29725.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">404</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=160">160</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=161">161</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=educational%20buildings&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>