CINXE.COM
Search results for: superabsorbent materials
<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: superabsorbent materials</title> <meta name="description" content="Search results for: superabsorbent materials"> <meta name="keywords" content="superabsorbent materials"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="superabsorbent materials" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="superabsorbent materials"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 6875</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: superabsorbent materials</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6875</span> Evaluation of Superabsorbent Application on Corn Yield under Deficit Irrigation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Davoud%20Khodadadi%20Dehkordi">Davoud Khodadadi Dehkordi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research was planned in order to study the effect of drought stress and different levels of Superabsorbent and their effect on grain yield, biologic yield and harvest index. In this study, 3 different depths of irrigation were considered as the main treatment I1, I2, I3 as 100, 75 and 50 percent of water requirement of plants respectively and different levels of Superabsorbent were used as secondary treatment (S0, S1, S2 and S3, equal to 0 (control), 15, 30 and 45 gr/m2 respectively). According to the results, independent effects of irrigation and Superabsorbent treatments at 1% level on biologic and grain yield of corn were significant. In addition, independent effect of irrigation treatments at 5% level on harvest index was significant. But independent effect of Superabsorbent treatments on harvest index was not significant. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn" title="corn">corn</a>, <a href="https://publications.waset.org/abstracts/search?q=deficit%20irrigation" title=" deficit irrigation"> deficit irrigation</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent" title=" superabsorbent"> superabsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=yield" title=" yield"> yield</a> </p> <a href="https://publications.waset.org/abstracts/24469/evaluation-of-superabsorbent-application-on-corn-yield-under-deficit-irrigation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/24469.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6874</span> Effect of Superabsorbent for the Improvement of Car Seat's Thermal Comfort</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Funda%20Buyuk%20Mazari">Funda Buyuk Mazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Adnan%20Mazari"> Adnan Mazari</a>, <a href="https://publications.waset.org/abstracts/search?q=Antonin%20Havelka"> Antonin Havelka</a>, <a href="https://publications.waset.org/abstracts/search?q=Jakub%20Wiener"> Jakub Wiener</a>, <a href="https://publications.waset.org/abstracts/search?q=Jawad%20Naeem"> Jawad Naeem</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The use of super absorbent polymers (SAP) for moisture absorption and comfort is still unexplored. In this research the efficiency of different SAP fibrous webs are determined under different moisture percentage to examine the sorption and desorption efficiency. The SAP fibrous web with low thickness and high moisture absorption are tested with multilayer sandwich structure of car seat cover to determine the moisture absorption through cover material. Sweating guarded hot plate (SGHP) from company Atlas is used to determine the moisture permeability of different car seat cover with superabsorbent layer closed with impermeable polyurethane foam. It is observed that the SAP fibrous layers are very effective in absorbing and desorbing water vapor under extreme high and low moisture percentages respectively. In extreme humid condition (95 %RH) the 20g of SAP layer absorbs nearly 3g of water vapor per hour and reaches the maximum absorption capacity in 6 hours. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=car%20seat" title="car seat">car seat</a>, <a href="https://publications.waset.org/abstracts/search?q=comfort" title=" comfort"> comfort</a>, <a href="https://publications.waset.org/abstracts/search?q=SAF" title=" SAF"> SAF</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent" title=" superabsorbent"> superabsorbent</a> </p> <a href="https://publications.waset.org/abstracts/43231/effect-of-superabsorbent-for-the-improvement-of-car-seats-thermal-comfort" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/43231.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">475</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6873</span> The Effect of Nitrogen Fertilizer Use Efficiency in Corn Yield and Yield Components in Cultivars KSC 704</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Elham%20Bagherzadeh">Elham Bagherzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Fadaee"> Mohammad Fadaee</a>, <a href="https://publications.waset.org/abstracts/search?q=Rouhollah%20Keykhosravi"> Rouhollah Keykhosravi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to survey the nitrogen use efficiency in corn, the experimental plot in a randomized complete block design 2014 agricultural farm was Islamic Azad University of Karaj. The main factor was four levels of nitrogen fertilizer (respectively control, 150, 200 and 250 kg nitrogen fertilizer) and subplots consisted two levels of superabsorbent polymer Stockosorb (use, do not use). Analysis of variance is showed that different nitrogen levels and different superabsorbent of levels statistically significant. Comparisons average also showed there is a significant difference between use and non-use of superabsorbent. The results showed the interactions nitrogen and SAP by one percent level has a significant and effect on Fresh weight per plant, plant dry weight, biological yield, harvest index, cob diameter, cob dry weight, leaf width, leaf area were at the level of five percent statistical significant effect on Ear weight and grain yield. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=corn" title="corn">corn</a>, <a href="https://publications.waset.org/abstracts/search?q=nitrogen" title=" nitrogen"> nitrogen</a>, <a href="https://publications.waset.org/abstracts/search?q=comparison" title=" comparison"> comparison</a>, <a href="https://publications.waset.org/abstracts/search?q=biological%20yield" title=" biological yield"> biological yield</a> </p> <a href="https://publications.waset.org/abstracts/45828/the-effect-of-nitrogen-fertilizer-use-efficiency-in-corn-yield-and-yield-components-in-cultivars-ksc-704" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45828.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">358</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6872</span> Synthesis, Characterization and Applications of Novel Hydrogels Based On Chitosan Derivatives</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mahmoud%20H.%20Aboul-Ela">Mahmoud H. Aboul-Ela</a>, <a href="https://publications.waset.org/abstracts/search?q=Riham%20R.%20Mohamed"> Riham R. Mohamed</a>, <a href="https://publications.waset.org/abstracts/search?q=Magdy%20W.%20Sabaa"> Magdy W. Sabaa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Synthesis of cross-linked hydrogels composed of trimethyl chitosan (TMC) and poly(vinyl alcohol) (PVA) in different weight ratios in presence of glutaraldehyde as cross-linking agent. Characterization of the prepared hydrogels was done using FTIR, XRD, SEM and TGA. The prepared hydrogels were investigated as adsorbent materials for some transition metal ions from their aqueous solutions. Moreover, the swell ability of the prepared hydrogels was also investigated in both acidic and alkaline pHs, as well as in simulated body fluid (SBF). <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=trimethyl%20chitosan" title="trimethyl chitosan">trimethyl chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogels" title=" hydrogels"> hydrogels</a>, <a href="https://publications.waset.org/abstracts/search?q=metal%20uptake" title=" metal uptake"> metal uptake</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials" title=" superabsorbent materials "> superabsorbent materials </a> </p> <a href="https://publications.waset.org/abstracts/15018/synthesis-characterization-and-applications-of-novel-hydrogels-based-on-chitosan-derivatives" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15018.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6871</span> Synthesis and Properties of Chitosan-Graft-Polyacrylamide/Gelatin Superabsorbent Composites for Wastewater Purification</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Hafida%20Ferfera-Harrar">Hafida Ferfera-Harrar</a>, <a href="https://publications.waset.org/abstracts/search?q=Nacera%20Aiouaz"> Nacera Aiouaz</a>, <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Dairi"> Nassima Dairi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Super absorbents polymers received much attention and are used in many fields because of their superior characters to traditional absorbents, e.g., sponge and cotton. So, it is very important but challenging to prepare highly and fast-swelling super absorbents. A reliable, efficient and low-cost technique for removing heavy metal ions from waste water is the adsorption using bio-adsorbents obtained from biological materials, such as polysaccharides-based hydrogels super absorbents. In this study, novel multi-functional super absorbent composites type semi-interpenetrating polymer networks (Semi-IPNs) were prepared via graft polymerization of acrylamide onto chitosan backbone in presence of gelatin, CTS-g-PAAm/Ge, using potassium persulfate and N,N’ -methylenebisacrylamide as initiator and cross linker, respectively. These hydrogels were also partially hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. The formation of the grafted network was evidenced by Fourier Transform Infrared Spectroscopy (ATR-FTIR) and thermo gravimetric Analysis (TGA). The porous structures were observed by Scanning Electron Microscope (SEM). From TGA analysis, it was concluded that the incorporation of the Ge in the CTS-g-PAAm network has marginally affected its thermal stability. The effect of gelatin content on the swelling capacities of these super absorbent composites was examined in various media (distilled water, saline and pH-solutions).The water absorbency was enhanced by adding Ge in the network, where the optimum value was reached at 2 wt. % of Ge. Their hydrolysis has not only greatly optimized their absorption capacity but also improved the swelling kinetic. These materials have also showed reswelling ability. We believe that these super-absorbing materials would be very effective for the adsorption of harmful metal ions from waste water. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=chitosan" title="chitosan">chitosan</a>, <a href="https://publications.waset.org/abstracts/search?q=gelatin" title=" gelatin"> gelatin</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent" title=" superabsorbent"> superabsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20absorbency" title=" water absorbency"> water absorbency</a> </p> <a href="https://publications.waset.org/abstracts/25966/synthesis-and-properties-of-chitosan-graft-polyacrylamidegelatin-superabsorbent-composites-for-wastewater-purification" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/25966.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">463</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6870</span> Poly(Acrylamide-Co-Itaconic Acid) Nanocomposite Hydrogels and Its Use in the Removal of Lead in Aqueous Solution</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Majid%20Farsadrouh%20Rashti">Majid Farsadrouh Rashti</a>, <a href="https://publications.waset.org/abstracts/search?q=Alireza%20Mohammadinejad"> Alireza Mohammadinejad</a>, <a href="https://publications.waset.org/abstracts/search?q=Amir%20Shafiee%20Kisomi"> Amir Shafiee Kisomi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lead (Pb²⁺), a cation, is a prime constituent of the majority of the industrial effluents such as mining, smelting and coal combustion, Pb-based painting and Pb containing pipes in water supply systems, paper and pulp refineries, printing, paints and pigments, explosive manufacturing, storage batteries, alloy and steel industries. The maximum permissible limit of lead in the water used for drinking and domesticating purpose is 0.01 mg/L as advised by Bureau of Indian Standards, BIS. This becomes the acceptable 'safe' level of lead(II) ions in water beyond which, the water becomes unfit for human use and consumption, and is potential enough to lead health problems and epidemics leading to kidney failure, neuronal disorders, and reproductive infertility. Superabsorbent hydrogels are loosely crosslinked hydrophilic polymers that in contact with aqueous solution can easily water and swell to several times to their initial volume without dissolving in aqueous medium. Superabsorbents are kind of hydrogels capable to swell and absorb a large amount of water in their three-dimensional networks. While the shapes of hydrogels do not change extensively during swelling, because of tremendously swelling capacity of superabsorbent, their shape will broadly change.Because of their superb response to changing environmental conditions including temperature pH, and solvent composition, superabsorbents have been attracting in numerous industrial applications. For instance, water retention property and subsequently. Natural-based superabsorbent hydrogels have attracted much attention in medical pharmaceutical, baby diapers, agriculture, and horticulture because of their non-toxicity, biocompatibility, and biodegradability. Novel superabsorbent hydrogel nanocomposites were prepared by graft copolymerization of acrylamide and itaconic acid in the presence of nanoclay (laponite), using methylene bisacrylamide (MBA) and potassium persulfate, former as a crosslinking agent and the second as an initiator. The superabsorbent hydrogel nanocomposites structure was characterized by FTIR spectroscopy, SEM and TGA Spectroscopy adsorption of metal ions on poly (AAm-co-IA). The equilibrium swelling values of copolymer was determined by gravimetric method. During the adsorption of metal ions on polymer, residual metal ion concentration in the solution and the solution pH were measured. The effects of the clay content of the hydrogel on its metal ions uptake behavior were studied. The NC hydrogels may be considered as a good candidate for environmental applications to retain more water and to remove heavy metals. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorption" title="adsorption">adsorption</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title=" hydrogel"> hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposite" title=" nanocomposite"> nanocomposite</a>, <a href="https://publications.waset.org/abstracts/search?q=super%20adsorbent" title=" super adsorbent"> super adsorbent</a> </p> <a href="https://publications.waset.org/abstracts/80094/polyacrylamide-co-itaconic-acid-nanocomposite-hydrogels-and-its-use-in-the-removal-of-lead-in-aqueous-solution" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80094.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6869</span> Relation between Properties of Internally Cured Concrete and Water Cement Ratio</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Manzur">T. Manzur</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Iffat"> S. Iffat</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20A.%20Noor"> M. A. Noor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, relationship between different properties of IC concrete and water cement ratio, obtained from a comprehensive experiment conducted on IC using local materials (Burnt clay chips- BC) is presented. In addition, saturated SAP was used as an IC material in some cases. Relationships have been developed through regression analysis. The focus of this analysis is on developing relationship between a dependent variable and an independent variable. Different percent replacements of BC and water cement ratios were used. Compressive strength, modulus of elasticity, water permeability and chloride permeability were tested and variations of these parameters were analyzed with respect to water cement ratio. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressive%20strength" title="compressive strength">compressive strength</a>, <a href="https://publications.waset.org/abstracts/search?q=concrete" title=" concrete"> concrete</a>, <a href="https://publications.waset.org/abstracts/search?q=curing" title=" curing"> curing</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight" title=" lightweight"> lightweight</a>, <a href="https://publications.waset.org/abstracts/search?q=aggregate" title=" aggregate"> aggregate</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent%20polymer" title=" superabsorbent polymer"> superabsorbent polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=internal%20curing" title=" internal curing"> internal curing</a> </p> <a href="https://publications.waset.org/abstracts/30326/relation-between-properties-of-internally-cured-concrete-and-water-cement-ratio" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/30326.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">464</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6868</span> Green Synthesis of Nanosilver-Loaded Hydrogel Nanocomposites for Antibacterial Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=D.%20Berdous">D. Berdous</a>, <a href="https://publications.waset.org/abstracts/search?q=H.%20Ferfera-Harrar"> H. Ferfera-Harrar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superabsorbent polymers (SAPs) or hydrogels with three-dimensional hydrophilic network structure are high-performance water absorbent and retention materials. The in situ synthesis of metal nanoparticles within polymeric network as antibacterial agents for bio-applications is an approach that takes advantage of the existing free-space into networks, which not only acts as a template for nucleation of nanoparticles, but also provides long term stability and reduces their toxicity by delaying their oxidation and release. In this work, SAP/nanosilver nanocomposites were successfully developed by a unique green process at room temperature, which involves in situ formation of silver nanoparticles (AgNPs) within hydrogels as a template. The aim of this study is to investigate whether these AgNPs-loaded hydrogels are potential candidates for antimicrobial applications. Firstly, the superabsorbents were prepared through radical copolymerization via grafting and crosslinking of acrylamide (AAm) onto chitosan backbone (Cs) using potassium persulfate as initiator and N,N’-methylenebisacrylamide as the crosslinker. Then, they were hydrolyzed to achieve superabsorbents with ampholytic properties and uppermost swelling capacity. Lastly, the AgNPs were biosynthesized and entrapped into hydrogels through a simple, eco-friendly and cost-effective method using aqueous silver nitrate as a silver precursor and curcuma longa tuber-powder extracts as both reducing and stabilizing agent. The formed superabsorbents nanocomposites (Cs-g-PAAm)/AgNPs were characterized by X-ray Diffraction (XRD), UV-visible Spectroscopy, Attenuated Total reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), Inductively Coupled Plasma (ICP), and Thermogravimetric Analysis (TGA). Microscopic surface structure analyzed by Transmission Electron Microscopy (TEM) has showed spherical shapes of AgNPs with size in the range of 3-15 nm. The extent of nanosilver loading was decreased by increasing Cs content into network. The silver-loaded hydrogel was thermally more stable than the unloaded dry hydrogel counterpart. The swelling equilibrium degree (Q) and centrifuge retention capacity (CRC) in deionized water were affected by both contents of Cs and the entrapped AgNPs. The nanosilver-embedded hydrogels exhibited antibacterial activity against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em> bacteria. These comprehensive results suggest that the elaborated AgNPs-loaded nanomaterials could be used to produce valuable wound dressing. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=antibacterial%20activity" title="antibacterial activity">antibacterial activity</a>, <a href="https://publications.waset.org/abstracts/search?q=nanocomposites" title=" nanocomposites"> nanocomposites</a>, <a href="https://publications.waset.org/abstracts/search?q=silver%20nanoparticles" title=" silver nanoparticles"> silver nanoparticles</a>, <a href="https://publications.waset.org/abstracts/search?q=superabsorbent%20Hydrogel" title=" superabsorbent Hydrogel"> superabsorbent Hydrogel</a> </p> <a href="https://publications.waset.org/abstracts/53585/green-synthesis-of-nanosilver-loaded-hydrogel-nanocomposites-for-antibacterial-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/53585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6867</span> An Economic Way to Toughen Poly Acrylic Acid Superabsorbent Polymer Using Hyper Branched Polymer </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nazila%20Dehbari">Nazila Dehbari</a>, <a href="https://publications.waset.org/abstracts/search?q=Javad%20Tavakoli"> Javad Tavakoli</a>, <a href="https://publications.waset.org/abstracts/search?q=Yakani%20Kambu"> Yakani Kambu</a>, <a href="https://publications.waset.org/abstracts/search?q=Youhong%20Tang"> Youhong Tang </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superabsorbent hydrogels (SAP), as an enviro-sensitive material have been widely used for industrial and biomedical applications due to their unique structure and capabilities. Poor mechanical properties of SAPs - which is extremely related to their large volume change – count as a great weakness in adopting for high-tech applications. Therefore, improving SAPs’ mechanical properties via toughening methods by mixing different types of cross-linked polymer or introducing energy-dissipating mechanisms is highly focused. In this work, in order to change the intrinsic brittle character of commercialized Poly Acrylic Acid (here as SAP) to be semi-ductile, a commercial available highly branched tree-like dendritic polymers with numerous –OH end groups known as hyper-branched polymer (HB) has been added to PAA-SAP system in a single step, cost effective and environment friendly solvent casting method. Samples were characterized by FTIR, SEM and TEM and their physico-chemical characterization including swelling capabilities, hydraulic permeability, surface tension and thermal properties had been performed. Toughness energy, stiffness, elongation at breaking point, viscoelastic properties and samples extensibility were mechanical properties that had been performed and characterized as a function of samples lateral cracks’ length in different HB concentration. Addition of HB to PAA-SAP significantly improved mechanical and surface properties. Increasing equilibrium swelling ratio by about 25% had been experienced by the SAP-HB samples in comparison with SAPs; however, samples swelling kinetics remained without changes as initial rate of water uptake and equilibrium time haven’t been subjected to any changes. Thermal stability analysis showed that HB is participating in hybrid network formation while improving mechanical properties. Samples characterization by TEM showed that, the aggregated HB polymer binders into nano-spheres with diameter in range of 10–200 nm. So well dispersion in the SAP matrix occurred as it was predictable due to the hydrophilic character of the numerous hydroxyl groups at the end of HB which enhance the compatibility of HB with PAA-SAP. As the profused -OH groups in HB could react with -COOH groups in the PAA-SAP during the curing process, the formation of a 2D structure in the SAP-HB could be attributed to the strong interfacial adhesion between HB and the PAA-SAP matrix which hinders the activity of PAA chains (SEM analysis). FTIR spectra introduced new peaks at 1041 and 1121 cm-1 that attributed to the C–O(–OH) stretching hydroxyl and O–C stretching ester groups of HB polymer binder indicating the incorporation of HB polymer into the SAP structure. SAP-HB polymer has significant effects on the final mechanical properties. The brittleness of PAA hydrogels are decreased by introducing HB as the fracture energies of hydrogels increased from 8.67 to 26.67. PAA-HBs’ stretch ability enhanced about 10 folds while reduced as a function of different notches depth. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=superabsorbent%20polymer" title="superabsorbent polymer">superabsorbent polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=toughening" title=" toughening"> toughening</a>, <a href="https://publications.waset.org/abstracts/search?q=viscoelastic%20properties" title=" viscoelastic properties"> viscoelastic properties</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrogel%20network" title=" hydrogel network"> hydrogel network</a> </p> <a href="https://publications.waset.org/abstracts/54490/an-economic-way-to-toughen-poly-acrylic-acid-superabsorbent-polymer-using-hyper-branched-polymer" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54490.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">323</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6866</span> Preparation of IPNs and Effect of Swift Heavy Ions Irradiation on their Physico-Chemical Properties</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20S%20Kaith">B. S Kaith</a>, <a href="https://publications.waset.org/abstracts/search?q=K.%20Sharma"> K. Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Kumar"> V. Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20Kalia"> S. Kalia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superabsorbent are three-dimensional networks of linear or branched polymeric chains which can uptake large volume of biological fluids. The ability is due to the presence of functional groups like –NH2, -COOH and –OH. Such cross-linked products based on natural materials, such as cellulose, starch, dextran, gum and chitosan, because of their easy availability, low production cost, non-toxicity and biodegradability have attracted the attention of Scientists and Technologists all over the world. Since natural polymers have better biocompatibility and are non-toxic than most synthetic one, therefore, such materials can be applied in the preparation of controlled drug delivery devices, biosensors, tissue engineering, contact lenses, soil conditioning, removal of heavy metal ions and dyes. Gums are natural potential antioxidants and are used as food additives. They have excellent properties like high solubility, pH stability, non-toxicity and gelling characteristics. Till date lot of methods have been applied for the synthesis and modifications of cross-linked materials with improved properties suitable for different applications. It is well known that ion beam irradiation can play a crucial role to synthesize, modify, crosslink or degrade polymeric materials. High energetic heavy ions irradiation on polymer film induces significant changes like chain scission, cross-linking, structural changes, amorphization and degradation in bulk. Various researchers reported the effects of low and heavy ion irradiation on the properties of polymeric materials and observed significant improvement in optical, electrical, chemical, thermal and dielectric properties. Moreover, modifications induced in the materials mainly depend on the structure, the ion beam parameters like energy, linear energy transfer, fluence, mass, charge and the nature of the target material. Ion-beam irradiation is a useful technique for improving the surface properties of biodegradable polymers without missing the bulk properties. Therefore, a considerable interest has been grown to study the effects of SHIs irradiation on the properties of synthesized semi-IPNs and IPNs. The present work deals with the preparation of semi-IPNs and IPNs and impact of SHI like O7+ and Ni9+ irradiation on optical, chemical, structural, morphological and thermal properties along with impact on different applications. The results have been discussed on the basis of Linear Energy Transfer (LET) of the ions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adsorbent" title="adsorbent">adsorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=gel" title=" gel"> gel</a>, <a href="https://publications.waset.org/abstracts/search?q=IPNs" title=" IPNs"> IPNs</a>, <a href="https://publications.waset.org/abstracts/search?q=semi-IPNs" title=" semi-IPNs "> semi-IPNs </a> </p> <a href="https://publications.waset.org/abstracts/31530/preparation-of-ipns-and-effect-of-swift-heavy-ions-irradiation-on-their-physico-chemical-properties" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/31530.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">372</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6865</span> Swelling Hydrogels on the Base Nitron Fiber Wastes for Water Keeping in Sandy Soils</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Alim%20Asamatdinov">Alim Asamatdinov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Superabsorbent polymer hydrogels can swell to absorb huge volumes of water or aqueous solutions. This property has led to many practical applications of these new materials, particularly in agriculture for improving the water retention of soils and the water supply of plants. This article reviews the methods of polymeric hydrogels, measurements and treatments of their properties, as well as their effects on soil and on plant growth. The thermodynamic approach used to describe the swelling behaviour of polymer networks proves to be quite helpful in modelling the hydrogel efficiency of water-absorbing additives. The paper presents the results of a study of the physical and chemical properties of hydrogels based on of the production of "Nitron" (Polyacrylonitrile) wastes fibre and salts of the 3-rd transition metals and formalin. The developed hydrogels HG-Al, HG-Cr and HG-formalin have been tested for water holding the capacity of sand. Such a conclusion was also confirmed by data from the method of determining the wilting point by vegetative thumbnails. In the entering process using a dose of 0.1% of the swelling polymeric hydrogel in sand with a culture of barley the difference between the wilting point in comparison with the control was negligible. This indicates that the moisture which was contained in the hydrogel is involved in moisture availability for plant growth, to the same extent as that in the capillaries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogel" title="hydrogel">hydrogel</a>, <a href="https://publications.waset.org/abstracts/search?q=chemical" title=" chemical"> chemical</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer" title=" polymer"> polymer</a>, <a href="https://publications.waset.org/abstracts/search?q=sandy" title=" sandy"> sandy</a>, <a href="https://publications.waset.org/abstracts/search?q=colloid" title=" colloid"> colloid</a> </p> <a href="https://publications.waset.org/abstracts/103804/swelling-hydrogels-on-the-base-nitron-fiber-wastes-for-water-keeping-in-sandy-soils" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/103804.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">143</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6864</span> Effects of Using Super-Absorbent Polymers on Physiological Indexes of Maize</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shoaei%20Shahram">Shoaei Shahram</a>, <a href="https://publications.waset.org/abstracts/search?q=Rafiei%20Felora"> Rafiei Felora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To study the effects of using superabsorbent polymers on physiological of maize in deficit Irrigation condition .an experiment carried out in split plot factorial based on completely Randomized Block design (RCBD) with three replication in 2012years. Deficit Irrigation was applied by three different Irrigation amount. Super absorbent polymers in 3 levels were and two veriety of maize allocated in sub plots. there was significant difference between Irrigation levels in all experimental Traits by increasing in deficit irrigation. Results of this research showed water stress significantly decreased relative water content (RWC) LAI,Ash percentage in both hybrids, and increased Cell membrane percentage and SPAD,ADF percent.whereas the application of super absorbent polymer compensated the negative effect of drought stress, especially in high rates of polymer application .These mentioned rates of polymer had the best effect to all of the studied traits. These findings can be suggested that the irrigation intervals of corn could be increased by application of super absorbent polymer. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=super%20absorbent" title="super absorbent">super absorbent</a>, <a href="https://publications.waset.org/abstracts/search?q=p%20hysiological" title="p hysiological">p hysiological</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20stress" title=" water stress"> water stress</a>, <a href="https://publications.waset.org/abstracts/search?q=zea%20maize" title=" zea maize"> zea maize</a> </p> <a href="https://publications.waset.org/abstracts/33414/effects-of-using-super-absorbent-polymers-on-physiological-indexes-of-maize" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33414.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">320</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6863</span> Experimental Approach and Numerical Modeling of Thermal Properties of Porous Materials: Application to Construction Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Nassima%20Sotehi">Nassima Sotehi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This article presents experimental and numerical results concerning the thermal properties of the porous materials used as heat insulator in the buildings sector. Initially, the thermal conductivity of three types of studied walls (classic concrete, concrete with cork aggregate and polystyrene concrete) was measured in experiments by the method of the boxes. Then a numerical modeling of the heat and mass transfers which occur within porous materials was applied to these walls. This work shows the influence of the presence of water in building materials on their thermophysical properties, as well as influence of the nature of materials and dosage of fibers introduced within these materials on the thermal and mass transfers. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=modeling" title="modeling">modeling</a>, <a href="https://publications.waset.org/abstracts/search?q=porous%20media" title=" porous media"> porous media</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20materials" title=" thermal materials"> thermal materials</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20properties" title=" thermal properties"> thermal properties</a> </p> <a href="https://publications.waset.org/abstracts/38381/experimental-approach-and-numerical-modeling-of-thermal-properties-of-porous-materials-application-to-construction-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/38381.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">472</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6862</span> Leaf Image Processing: Review</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=T.%20Vijayashree">T. Vijayashree</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Gopal"> A. Gopal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The aim of the work is to classify and authenticate medicinal plant materials and herbs widely used for Indian herbal medicinal preparation. The quality and authenticity of these raw materials are to be ensured for the preparation of herbal medicines. These raw materials are to be carefully screened, analyzed and documented due to mistaken of look-alike materials which do not have medicinal characteristics. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authenticity" title="authenticity">authenticity</a>, <a href="https://publications.waset.org/abstracts/search?q=standardization" title=" standardization"> standardization</a>, <a href="https://publications.waset.org/abstracts/search?q=principal%20component%20analysis" title=" principal component analysis"> principal component analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=imaging%20processing" title=" imaging processing"> imaging processing</a>, <a href="https://publications.waset.org/abstracts/search?q=signal%20processing" title=" signal processing"> signal processing</a> </p> <a href="https://publications.waset.org/abstracts/5441/leaf-image-processing-review" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5441.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">246</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6861</span> Material Analysis for Temple Painting Conservation in Taiwan</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chen-Fu%20Wang">Chen-Fu Wang</a>, <a href="https://publications.waset.org/abstracts/search?q=Lin-Ya%20Kung"> Lin-Ya Kung</a> </p> <p class="card-text"><strong>Abstract:</strong></p> For traditional painting materials, the artisan used to combine the pigments with different binders to create colors. As time goes by, the materials used for painting evolved from natural to chemical materials. The vast variety of ingredients used in chemical materials has complicated restoration work; it makes conservation work more difficult. Conservation work also becomes harder when the materials cannot be easily identified; therefore, it is essential that we take a more scientific approach to assist in conservation work. Paintings materials are high molecular weight polymer, and their analysis is very complicated as well other contamination such as smoke and dirt can also interfere with the analysis of the material. The current methods of composition analysis of painting materials include Fourier transform infrared spectroscopy (FT-IR), mass spectrometer, Raman spectroscopy, X-ray diffraction spectroscopy (XRD), each of which has its own limitation. In this study, FT-IR was used to analyze the components of the paint coating. We have taken the most commonly seen materials as samples and deteriorated it. The aged information was then used for the database to exam the temple painting materials. By observing the FT-IR changes over time, we can tell all of the painting materials will be deteriorated by the UV light, but only the speed of its degradation had some difference. From the deterioration experiment, the acrylic resin resists better than the others. After collecting the painting materials aging information on FT-IR, we performed some test on the paintings on the temples. It was found that most of the artisan used tune-oil for painting materials, and some other paintings used chemical materials. This method is now working successfully on identifying the painting materials. However, the method is destructive and high cost. In the future, we will work on the how to know the painting materials more efficiently. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=temple%20painting" title="temple painting">temple painting</a>, <a href="https://publications.waset.org/abstracts/search?q=painting%20material" title=" painting material"> painting material</a>, <a href="https://publications.waset.org/abstracts/search?q=conservation" title=" conservation"> conservation</a>, <a href="https://publications.waset.org/abstracts/search?q=FT-IR" title=" FT-IR"> FT-IR</a> </p> <a href="https://publications.waset.org/abstracts/61781/material-analysis-for-temple-painting-conservation-in-taiwan" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61781.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6860</span> Polymer Industrial Floors: The Possibility of Using Secondary Raw Materials from Solar Panels</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Kosikova">J. Kosikova</a>, <a href="https://publications.waset.org/abstracts/search?q=B.%20Vacenovska"> B. Vacenovska</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20Vyhnankova"> M. Vyhnankova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The paper reports on the subject of recycling and further use of secondary raw materials obtained from solar panels, which is becoming a very up to date topic in recent years. Recycling these panels is very difficult and complex, and the use of resulting secondary raw materials is still not fully resolved. Within the research carried out at the Brno University of Technology, new polymer materials used for industrial floors are being developed. Secondary raw materials are incorporated into these polymers as fillers. One of the tested filler materials was glass obtained from solar panels. The following text describes procedures and results of the tests that were performed on these materials, confirming the possibility of the use of solar panel glass in industrial polymer flooring systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fillers" title="fillers">fillers</a>, <a href="https://publications.waset.org/abstracts/search?q=industrial%20floors" title=" industrial floors"> industrial floors</a>, <a href="https://publications.waset.org/abstracts/search?q=recycling" title=" recycling"> recycling</a>, <a href="https://publications.waset.org/abstracts/search?q=secondary%20raw%20material" title=" secondary raw material"> secondary raw material</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20panel" title=" solar panel"> solar panel</a> </p> <a href="https://publications.waset.org/abstracts/10578/polymer-industrial-floors-the-possibility-of-using-secondary-raw-materials-from-solar-panels" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10578.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">287</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6859</span> Study of Hydrothermal Behavior of Thermal Insulating Materials Based on Natural Fibers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=J.%20Zach">J. Zach</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Hroudova"> J. Hroudova</a>, <a href="https://publications.waset.org/abstracts/search?q=J.%20Brozovsky"> J. Brozovsky </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thermal insulation materials based on natural fibers represent a very promising area of materials based on natural easy renewable row sources. These materials may be in terms of the properties of most competing synthetic insulations, but show somewhat higher moisture sensitivity and thermal insulation properties are strongly influenced by the density and orientation of fibers. The paper described the problem of hygrothermal behavior of thermal insulation materials based on natural plant and animal fibers. This is especially the dependence of the thermal properties of these materials on the type of fiber, bulk density, temperature, moisture and the fiber orientation. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thermal%20insulating%20materials" title="thermal insulating materials">thermal insulating materials</a>, <a href="https://publications.waset.org/abstracts/search?q=hemp%20fibers" title=" hemp fibers"> hemp fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=sheep%20wool%20fibers" title=" sheep wool fibers"> sheep wool fibers</a>, <a href="https://publications.waset.org/abstracts/search?q=thermal%20conductivity" title=" thermal conductivity"> thermal conductivity</a>, <a href="https://publications.waset.org/abstracts/search?q=moisture" title=" moisture"> moisture</a> </p> <a href="https://publications.waset.org/abstracts/12473/study-of-hydrothermal-behavior-of-thermal-insulating-materials-based-on-natural-fibers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">391</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6858</span> The Impact of Using Authentic Materials on Students' Motivation in Learning Indonesian Language as a Foreign Language</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ratna%20Elizabeth">Ratna Elizabeth</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Motivation is a very important factor since it contributes a lot to the students’ success in learning a language. Using authentic materials is believed as a mean of increasing the motivation. The materials define as authentic if they are not specifically written for the purpose of language teaching. They are genuine spoken or written language data which are drawn from many different sources. The intention of this study is to investigate the impact of using of authentic materials on students’ motivation. A single case study is conducted to the grade 9 students who learn Indonesian Language as a Foreign Language (ILFL) at an international school in Jakarta, Indonesia. Questionnaires are also distributed to the students to know their perceptions on the using of authentic materials. The results show that the using of authentic materials has increased the students’ motivation in learning the language. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authentic%20materials" title="authentic materials">authentic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=ILFL" title=" ILFL"> ILFL</a>, <a href="https://publications.waset.org/abstracts/search?q=language%20learning" title=" language learning"> language learning</a>, <a href="https://publications.waset.org/abstracts/search?q=motivation" title=" motivation"> motivation</a> </p> <a href="https://publications.waset.org/abstracts/56953/the-impact-of-using-authentic-materials-on-students-motivation-in-learning-indonesian-language-as-a-foreign-language" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/56953.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">388</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6857</span> Language Teachers as Materials Developers in China: A Multimethod Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jiao%20Li">Jiao Li</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Language teachers have been expected to play diversified new roles in times of educational changes. Considering the critical role that materials play in teaching and learning, language teachers have been increasingly involved in developing materials. Using identity as an analytic lens, this study aims to explore language teachers’ experiences as materials developers in China, focusing on the challenges they face and responses to them. It will adopt a multimethod approach. At the first stage, about 12 language teachers who have developed or are developing materials will be interviewed to have a broad view of their experiences. At the second stage, three language teachers who are developing materials will be studied by collecting interview data, policy documents, and data obtained from online observation of their group meetings so as to gain a deeper understanding of their experiences in materials development. It is expected that this study would have implications for teacher development, materials development, and curriculum development as well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=educational%20changes" title="educational changes">educational changes</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20development" title=" teacher development"> teacher development</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20identity" title=" teacher identity"> teacher identity</a>, <a href="https://publications.waset.org/abstracts/search?q=teacher%20learning" title=" teacher learning"> teacher learning</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20development" title=" materials development"> materials development</a> </p> <a href="https://publications.waset.org/abstracts/125771/language-teachers-as-materials-developers-in-china-a-multimethod-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125771.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">129</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6856</span> A Review: Recycled Materials Used in Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oghenerukome%20Akponovo">Oghenerukome Akponovo</a>, <a href="https://publications.waset.org/abstracts/search?q=Lynda%20I.%20Onyebuchukwu"> Lynda I. Onyebuchukwu</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Construction waste, along with that of many other industries, contributes significantly to the world's annual solid waste totals. Most of these materials, such as ash from rice hulls, slags, cement kiln dust, tire ash, plastic waste (PW), and silica fumes, end up in landfills or waterways. Some of them might even end up polluting the air from high in the atmosphere. It's sustainable, cheap, and environmentally friendly to recycle these items into new building supplies. When constructing a "Green" structure, the materials employed have the potential to either exacerbate environmental imbalance or maintain a stable ecosystem. The purpose of this research is to take stock of what is already known about recycling's potential in the construction industry and to identify its deficiencies. Therefore, this study systematically reviews the wide range of recycled materials that go into building construction. Recognizing that the construction industry's use of recycled materials has an influence on the environment and that investigating these materials may have a substantial economic impact if they were discovered <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building" title="building">building</a>, <a href="https://publications.waset.org/abstracts/search?q=construction" title=" construction"> construction</a>, <a href="https://publications.waset.org/abstracts/search?q=recycled%20materials" title=" recycled materials"> recycled materials</a>, <a href="https://publications.waset.org/abstracts/search?q=waste%20management" title=" waste management"> waste management</a> </p> <a href="https://publications.waset.org/abstracts/159098/a-review-recycled-materials-used-in-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/159098.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">106</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6855</span> The Use of Authentic Materials in the Chinese Language Classroom</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yiwen%20Jin">Yiwen Jin</a>, <a href="https://publications.waset.org/abstracts/search?q=Jing%20Xiao"> Jing Xiao</a>, <a href="https://publications.waset.org/abstracts/search?q=Pinfang%20Su"> Pinfang Su</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The idea of adapting authentic materials in language teaching is from the communicative method in the 1970s. Different from the language in language textbooks, authentic materials is not deliberately written, it is from the native speaker’s real life and contains real information, which can meet social needs. It could improve learners ' interest, create authentic context and improve learners ' communicative competence. Authentic materials play an important role in CFL(Chinese as a foreign language) classroom. Different types of authentic materials can be used in different ways during learning and teaching. Because of the COVID-19 pandemic,a lot of Chinese learners are learning Chinese without the real language environment. Although there are some well-written textbooks, there is a certain distance between textbook language materials and daily life. Learners cannot automatically fill this gap. That is why it is necessary to apply authentic materials as a supplement to the language textbook to create the real context. Chinese teachers around the world are working together, trying to integrate the resources and apply authentic materials through different approach. They apply authentic materials in the form of new textbooks, manuals, apps and short videos they collect and create to help Chinese learning and teaching. A review of previous research on authentic materials and the Chinese teachers’ attempt to adapt it in the classroom are offered in this manuscript. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=authentic%20materials" title="authentic materials">authentic materials</a>, <a href="https://publications.waset.org/abstracts/search?q=Chinese%20as%20a%20second%20language" title=" Chinese as a second language"> Chinese as a second language</a>, <a href="https://publications.waset.org/abstracts/search?q=developmental%20use%20of%20digital%20resources" title=" developmental use of digital resources"> developmental use of digital resources</a>, <a href="https://publications.waset.org/abstracts/search?q=materials%20development%20for%20language%20teaching" title=" materials development for language teaching"> materials development for language teaching</a> </p> <a href="https://publications.waset.org/abstracts/143062/the-use-of-authentic-materials-in-the-chinese-language-classroom" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143062.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">173</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6854</span> Microtomographic Analysis of Friction Materials Used in the Brakes of Railway Vehicles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Miko%C5%82aj%20Szyca">Mikołaj Szyca</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Friction elements of rail vehicle brakes are more and more often made of composite materials that displace cast iron. Materials are tested primarily in terms of their dynamic abilities, but the material structure of brake pads and linings changes during operation. In connection with the above, the changes taking place in the tested rubbing materials were analyzed using X-ray computed tomography in order to obtain data on changes in the structure of the material immediately after production and after a certain number of operating cycles. The implementation of microtomography research for experimental work on new friction materials may result in increasing the potential for the production of new composites by eliminating unfavorable material factors and, consequently, improving the dynamic parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20materials" title="composite materials">composite materials</a>, <a href="https://publications.waset.org/abstracts/search?q=friction%20pair" title=" friction pair"> friction pair</a>, <a href="https://publications.waset.org/abstracts/search?q=X-ray%20computed%20microtomography" title=" X-ray computed microtomography"> X-ray computed microtomography</a>, <a href="https://publications.waset.org/abstracts/search?q=railway" title=" railway"> railway</a> </p> <a href="https://publications.waset.org/abstracts/146421/microtomographic-analysis-of-friction-materials-used-in-the-brakes-of-railway-vehicles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146421.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">77</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6853</span> Radiological Hazard Assessments and Control of Radionuclides Emitted from Building Materials in Kuwait Using Expert Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Abdulla%20Almulla">Abdulla Almulla</a>, <a href="https://publications.waset.org/abstracts/search?q=Wafaa%20Mahdi"> Wafaa Mahdi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Building materials can make a significant contribution to the level of natural radioactivity in closed dwelling areas. Therefore, developing an expert system for monitoring the activity concentrations (ACs) of naturally occurring radioactive materials (NORMs) existing in building materials is useful for limiting the population’s exposure to gamma radiation emitted from those materials. The present work not only is aimed at examining the indoor radon concentration emitted by the building materials that are originated from various countries but are commercially available in Kuwait, but also is aimed at developing an expert system for monitoring the radiation emitted from these materials and classifying it as normal (acceptable) or dangerous (unacceptable). This system makes it possible to always monitor any radiological risks to human health. When detecting high doses of radiation, the system gives warning messages. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title="building materials">building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=NORMs" title=" NORMs"> NORMs</a>, <a href="https://publications.waset.org/abstracts/search?q=HNBRA" title=" HNBRA"> HNBRA</a>, <a href="https://publications.waset.org/abstracts/search?q=radionuclides" title=" radionuclides"> radionuclides</a>, <a href="https://publications.waset.org/abstracts/search?q=activity%20concentrations" title=" activity concentrations"> activity concentrations</a>, <a href="https://publications.waset.org/abstracts/search?q=expert%20systems" title=" expert systems"> expert systems</a> </p> <a href="https://publications.waset.org/abstracts/154286/radiological-hazard-assessments-and-control-of-radionuclides-emitted-from-building-materials-in-kuwait-using-expert-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/154286.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6852</span> Capacity Building of Extension Agents for Sustainable Dissemination of Agricultural Information and Technologies in Developing Countries</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Michael%20T.%20Ajayi">Michael T. Ajayi</a>, <a href="https://publications.waset.org/abstracts/search?q=Oluwakemi%20E.%20Fapojuwo"> Oluwakemi E. Fapojuwo</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Farmers are in need of regular and relevant information relating to new technologies. Production of extension materials has been found to be useful in facilitating the process. Extension materials help to provide information to reach large numbers of farmers quickly and economically. However, as good as extension materials are, previous materials produced are not used by farmers. The reasons for this include lack of involvement of farmers in the production of the extension materials, most of the extension materials are not relevant to the farmers’ environments, the agricultural extension agents lack capacity to prepare the materials, and many extension agents lack commitment. These problems led to this innovative capacity building of extension agents. This innovative approach involves five stages. The first stage is the diagnostic survey of farmers’ environment to collect useful information. The second stage is the development and production of draft extension materials. The third stage is the field testing and evaluation of draft materials by the same farmers that were involved at the diagnostic stage. The fourth stage is the revision of the draft extension materials by incorporating suggestions from farmers. The fifth stage is the action plans. This process improves the capacity of agricultural extension agents in the preparation of extension materials and also promotes engagement of farmers and beneficiaries in the process. The process also makes farmers assume some level of ownership of the exercise and the extension materials. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=capacity%20building" title="capacity building">capacity building</a>, <a href="https://publications.waset.org/abstracts/search?q=extension%20agents" title=" extension agents"> extension agents</a>, <a href="https://publications.waset.org/abstracts/search?q=dissemination" title=" dissemination"> dissemination</a>, <a href="https://publications.waset.org/abstracts/search?q=information%2Ftechnologies" title=" information/technologies"> information/technologies</a> </p> <a href="https://publications.waset.org/abstracts/12624/capacity-building-of-extension-agents-for-sustainable-dissemination-of-agricultural-information-and-technologies-in-developing-countries" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/12624.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6851</span> Experimental and Numerical Processes of Open Die Forging of Multimetallic Materials with the Usage of Different Lubricants</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Isik%20Cetintav">Isik Cetintav</a>, <a href="https://publications.waset.org/abstracts/search?q=Cenk%20Misirli"> Cenk Misirli</a>, <a href="https://publications.waset.org/abstracts/search?q=Yilmaz%20Can"> Yilmaz Can</a>, <a href="https://publications.waset.org/abstracts/search?q=Damla%20Gunel"> Damla Gunel</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This work investigates experimental and numerical analysis of open die forging of multimetallic materials. Multimetallic material production has recently become an interesting research field. The mechanical properties of the materials to be used for the formation of multimetallic materials and the mechanical properties of the multimetallic materials produced will be compared and the material flows of the use of different lubricants will be examined. Furthermore, in this work, the mechanical properties of multimetallic metallic materials produced using different materials will be examined by using different lubricants. The advantages and disadvantages of different lubricants will be approached with the bi-metallic material to be produced. Cylindrical specimens consisting of two different materials were used in the experiments. Specimens were prepared as aluminum sleeve and copper core and upset at different reduction. This metal combination present a material model of which chemical composition is different. ABAQUS software was used for the simulations. Simulation and experimental results have also shown reasonable agreement. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multimetallic" title="multimetallic">multimetallic</a>, <a href="https://publications.waset.org/abstracts/search?q=forging" title=" forging"> forging</a>, <a href="https://publications.waset.org/abstracts/search?q=experimental" title=" experimental"> experimental</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical" title=" numerical"> numerical</a> </p> <a href="https://publications.waset.org/abstracts/76639/experimental-and-numerical-processes-of-open-die-forging-of-multimetallic-materials-with-the-usage-of-different-lubricants" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/76639.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">278</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6850</span> Lightweight Materials for Building Finishing</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sarka%20Keprdova">Sarka Keprdova</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikol%20Zizkova"> Nikol Zizkova</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper focuses on the presentation of results which were obtained as a part of the project FR-TI 3/742: “System of Lightweight Materials for Finishing of Buildings with Waste Raw Materials”. Attention was paid to the lightweighting of polymer-modified mortars applicable as adhesives, screeds and repair mortars. In terms of repair mortars, they were ones intended for the sanitation of aerated concrete. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additives" title="additives">additives</a>, <a href="https://publications.waset.org/abstracts/search?q=light%20aggregates" title=" light aggregates"> light aggregates</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20materials" title=" lightweight materials"> lightweight materials</a>, <a href="https://publications.waset.org/abstracts/search?q=lightweight%20mortars" title=" lightweight mortars"> lightweight mortars</a>, <a href="https://publications.waset.org/abstracts/search?q=polymer-modified%20mortars" title=" polymer-modified mortars"> polymer-modified mortars</a> </p> <a href="https://publications.waset.org/abstracts/18439/lightweight-materials-for-building-finishing" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18439.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">412</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6849</span> Optimization of Cutting Parameters during Machining of Fine Grained Cemented Carbides</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Josef%20Brychta">Josef Brychta</a>, <a href="https://publications.waset.org/abstracts/search?q=Jiri%20Kratochvil"> Jiri Kratochvil</a>, <a href="https://publications.waset.org/abstracts/search?q=Marek%20Pagac"> Marek Pagac</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The group of progressive cutting materials can include non-traditional, emerging and less-used materials that can be an efficient use of cutting their lead to a quantum leap in the field of machining. This is essentially a “superhard” materials (STM) based on polycrystalline diamond (PCD) and polycrystalline cubic boron nitride (PCBN) cutting performance ceramics and development is constantly "perfecting" fine coated cemented carbides. The latter cutting materials are broken down by two parameters, toughness and hardness. A variation of alloying elements is always possible to improve only one of each parameter. Reducing the size of the core on the other hand doing achieves "contradictory" properties, namely to increase both hardness and toughness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grained%20cutting%20materials%20difficult%20to%20machine%20materials" title="grained cutting materials difficult to machine materials">grained cutting materials difficult to machine materials</a>, <a href="https://publications.waset.org/abstracts/search?q=optimum%20utilization" title=" optimum utilization"> optimum utilization</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanic" title=" mechanic"> mechanic</a>, <a href="https://publications.waset.org/abstracts/search?q=manufacturing" title=" manufacturing"> manufacturing</a> </p> <a href="https://publications.waset.org/abstracts/6321/optimization-of-cutting-parameters-during-machining-of-fine-grained-cemented-carbides" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6321.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">299</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6848</span> Beliefs in Auspicious Materials of Shop Entrepreneurs in Maung Hat Yai, Thailand</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Punya%20Tepsing">Punya Tepsing</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This research aimed to study the beliefs in auspicious materials of entrepreneurs in Muang Hat Yai. The data were collected via documentary research and field work including interviews, observations shops in Hat Yai which used auspicious materials to bring lucks to the shops. The results were as follows. The beliefs in auspicious materials that the entrepreneurs had were of three areas: 1) The auspicious materials could correct the improperness of the shop location, for example, the shop situated opposite a branch road, a shrine, or a bank. The owner usually corrected it by putting Chinese auspicious materials in front of or in the shop, for example, a lion holding a sword in his mouth, or a mirror, etc. 2) The auspicious materials could bring in more income. The owner of the shop usually put the auspicious materials such as a cat beckoning and a bamboo fish trap believed to trap money in front of or inside the shop. 3) The auspicious materials like turtles, paired fish and a monster holding the moon in his mouth could solve life problems including health, family, and safety problems. The use of these auspicious materials showed the blending of the beliefs of the Chinese shop entrepreneurs with the Thai folk beliefs. What is interesting is that Hat Yai is located near the three southern border provinces which are the unrest area and this may cause the number of tourists to decline. This prompted them to build a mechanism in adjusting themselves both to save their lives and to increase the number of customers. Auspicious materials can make them feel more confident. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=belief" title="belief">belief</a>, <a href="https://publications.waset.org/abstracts/search?q=auspicious%20materials" title=" auspicious materials"> auspicious materials</a>, <a href="https://publications.waset.org/abstracts/search?q=shop" title=" shop"> shop</a>, <a href="https://publications.waset.org/abstracts/search?q=entrepreneur" title=" entrepreneur"> entrepreneur</a>, <a href="https://publications.waset.org/abstracts/search?q=Maung%20Hat%20Yai" title=" Maung Hat Yai"> Maung Hat Yai</a> </p> <a href="https://publications.waset.org/abstracts/3683/beliefs-in-auspicious-materials-of-shop-entrepreneurs-in-maung-hat-yai-thailand" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3683.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">240</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6847</span> A Review on the Use of Salt in Building Construction</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Vesna%20Pungercar">Vesna Pungercar</a>, <a href="https://publications.waset.org/abstracts/search?q=Florian%20Musso"> Florian Musso</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Identifying materials that can substitute rare or expensive natural resources is one of the key challenges for improving resource efficiency in the building sector. With a growing world population and rising living standards, more and more salt is produced as waste through seawater desalination and potash mining processes. Unfortunately, most of the salt is directly disposed of into nature, where it causes environmental pollution. On the other hand, salt is affordable, is used therapeutically in various respiratory treatments, and can store humidity and heat. It was, therefore, necessary to determine salt materials already in use in building construction and their hygrothermal properties. This research aims to identify salt materials from different scientific branches and historically, to investigate their properties and prioritize the most promising salt materials for indoor applications in a thermal envelope. This was realized through literature review and classification of salt materials into three groups (raw salt materials, composite salt materials, and processed salt materials). The outcome of this research shows that salt has already been used as a building material for centuries and has a potential for future applications due to its hygrothermal properties in a thermal envelope. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=salt" title="salt">salt</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20material" title=" building material"> building material</a>, <a href="https://publications.waset.org/abstracts/search?q=hygrothermal%20properties" title=" hygrothermal properties"> hygrothermal properties</a>, <a href="https://publications.waset.org/abstracts/search?q=environment" title=" environment"> environment</a> </p> <a href="https://publications.waset.org/abstracts/131197/a-review-on-the-use-of-salt-in-building-construction" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/131197.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6846</span> Termite Mound Floors: Ready-to-Use Ecological Materials</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Yann%C3%A9%20Etienne">Yanné Etienne</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The current climatic conditions necessarily impose the development and use of construction materials with low or no carbon footprint. The Far North Region of Cameroon has huge deposits of termite mounds. Various tests in this work have been carried out on these soils with the aim of using them as construction materials. They are mainly geotechnical tests, physical and mechanical tests. The different tests gave the following values: uniformity coefficient (4.95), curvature coefficient (1.80), plasticity index (12.85%), optimum moisture content (6.70%), maximum dry density (2.05 g.cm-³), friction angles (14.07°), and cohesion of 100.29 kN.m2. The results obtained show that termite mound soils, which are ecological materials, are plastic and water-stable can be used for the production of load-bearing elements in construction. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=termite%20mound%20soil" title="termite mound soil">termite mound soil</a>, <a href="https://publications.waset.org/abstracts/search?q=ecological%20materials" title=" ecological materials"> ecological materials</a>, <a href="https://publications.waset.org/abstracts/search?q=building%20materials" title=" building materials"> building materials</a>, <a href="https://publications.waset.org/abstracts/search?q=geotechnical%20tests" title=" geotechnical tests"> geotechnical tests</a>, <a href="https://publications.waset.org/abstracts/search?q=physical%20and%20mechanical%20tests" title=" physical and mechanical tests"> physical and mechanical tests</a> </p> <a href="https://publications.waset.org/abstracts/143494/termite-mound-floors-ready-to-use-ecological-materials" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/143494.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">184</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">‹</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=229">229</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=230">230</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=superabsorbent%20materials&page=2" rel="next">›</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">© 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">×</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>