CINXE.COM

ShuffleNet-V1 - Wolfram Neural Net Repository

<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8" /> <meta http-equiv="X-UA-Compatible" content="IE=edge" /> <meta name="viewport" content="width=device-width, initial-scale=1" /> <meta name="ssi-loaded" content="true" /> <link rel="stylesheet" href="https://www.wolframcdn.com/fonts/source-sans-pro/1.0/global.css"> <link rel="stylesheet" href="https://www.wolframcloud.com//obj/resourcesystem/webresources/global-wolfram-skinny-2/1.2.0/main.css"> <script src="https://www.wolframcdn.com/consent/cookie-consent.js"></script> <script> !function(){if(/.*(__cookie_consent=(1|2)).*/i.test(document.cookie)){var e=function(){switch(!1){case-1===location.hostname.indexOf("devel"):return"//wal.devel.wolfram.com";case-1===location.hostname.indexOf("test"):return"//wal.test.wolfram.com";default:return"//wal.wolfram.com"}}();a=window,t=document,l="script",o=e,n="3.0.0",c="wal",a.WolframAnalyticsObject=c,a[c]=a[c]||function(){(a[c].q=a[c].q||[]).push(arguments)},a[c].q=a[c].q||[],a[c].t=1*new Date,a[c].d=o,a[c].v=n,r=t.createElement(l),w=t.getElementsByTagName(l)[0],r.async=1,r.src=o+"/js/"+n+"/wal.js",w.parentNode.insertBefore(r,w),wal("queue",!0),wal("batch",!0),wal("log","pageload"),wal("log","usermeta"),wal("batch",!1),wal("queue",!1);wal("addListener","click",{key:"walgc",levels:5,is:{el:["a","area","button"],attr:["data-walid"]},not:{attr:["data-walgcexclude"]},prop:["href"],attr:["data-walid"]})}var a,t,l,o,n,c,r,w}(); </script> <link rel="apple-touch-icon" sizes="180x180" href="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/favicon/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/favicon/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/favicon/favicon-16x16.png"> <link rel="manifest" href="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/favicon/site.webmanifest"> <link rel="mask-icon" href="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/favicon/safari-pinned-tab.svg" color="#609125"> <link rel="shortcut icon" href="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/favicon/favicon.ico"> <meta name="msapplication-TileColor" content="#609125"> <meta name="msapplication-config" content="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/favicon/browserconfig.xml"> <meta name="theme-color" content="#609125"> <title>ShuffleNet-V1 - Wolfram Neural Net Repository</title> <meta name="description" content="Identify the main object in an image" /> <link rel="stylesheet" href="https://www.wolframcdn.com/css/normalize.css" /> <link rel="stylesheet" href="https://www.wolframcloud.com/obj/resourcesystem/webresources/resourcesystem/5.0.0/shingle.css" /> <link rel="stylesheet" href="https://www.wolframcloud.com/obj/resourcesystem/webresources/resourcesystem/5.0.0/header-and-results.css" /> <link rel="stylesheet" href="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/main.css" /> </head> <body id="shingle"> <header id="gws-header"> <nav class="wrap"> <ul> <li><a href="https://www.wolfram.com/" target="gws-header">Wolfram.com</a></li> <li><a href="https://www.wolframalpha.com/" target="gws-header">WolframAlpha.com</a></li> <li><a href="https://www.wolframcloud.com/" target="gws-header">WolframCloud.com</a></li> </ul> </nav> </header> <header id="pac-common-header" class="container" data-disable-auth="true" data-publisher-ids-url="https://resources.wolframcloud.com/user/publishers" > <div class="wrap"> <div class="header-top"> <a href="https://resources.wolframcloud.com/NeuralNetRepository/" ><div class="logo-frame"><svg class="logo" id="iconGroup" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 37 36" width="70" height="70" > <defs> <style> .iconAdditional2 { fill: none; stroke: #fff; stroke-miterlimit: 10; stroke-width: 0.25px; } .iconMain2 { fill: #ffffff; } .iconAdditional2, .iconAlternate2 { fill: #bebebe; } </style> </defs> <path id="white2" class="iconAdditional2" d="M19.58253,32.2817l13.25-9.4918m0-9.4918-13.25-9.4918m0,18.9836,13.25-9.4918m-13.25,0h13.25m-13.25,9.4918h13.25m-13.25,9.4918,13.25-18.9836m-13.25-9.4918,13.25,18.9836m-13.25-9.4918,13.25,9.4918m-29-14.2377,15.75-4.7459M3.83253,18.044l15.75-4.7459m-15.75,14.2377,15.75-4.7459m0-9.4918-15.75-4.7459m15.75,14.2377L3.83253,8.5522m15.75,23.7295L3.83253,8.5522m0,9.4918,15.75-14.2377m-15.75,23.7295,15.75-23.7295M3.83253,18.044l15.75,4.7459m0-9.4918-15.75,14.2377m0-9.4918,15.75,14.2377m-15.75-4.7459,15.75,4.7459" /> <path id="white1" class="iconMain2" d="M21.96587,3.38333A2.38333,2.38333,0,1,1,19.58253,1,2.38333,2.38333,0,0,1,21.96587,3.38333Zm-2.38333,7.55724a2.38333,2.38333,0,1,0,2.38333,2.38333A2.38333,2.38333,0,0,0,19.58253,10.94058Zm0,9.44018a2.38333,2.38333,0,1,0,2.38333,2.38333A2.38333,2.38333,0,0,0,19.58253,20.38076Zm0,9.44018a2.38333,2.38333,0,1,0,2.38333,2.38333A2.38333,2.38333,0,0,0,19.58253,29.82093Z" /> <path id="gray2" class="iconAlternate2" d="M35.66507,12.82351a2.38333,2.38333,0,1,1-2.38333-2.38333A2.38333,2.38333,0,0,1,35.66507,12.82351Zm-2.38333,8.05764a2.38333,2.38333,0,1,0,2.38333,2.38333A2.38333,2.38333,0,0,0,33.28173,20.88116Z" /> <path id="gray1" class="iconAlternate2" d="M5.76667,8.10342A2.38333,2.38333,0,1,1,3.38333,5.72009,2.38333,2.38333,0,0,1,5.76667,8.10342ZM3.38333,15.66067A2.38333,2.38333,0,1,0,5.76667,18.044,2.38333,2.38333,0,0,0,3.38333,15.66067Zm0,9.94058a2.38333,2.38333,0,1,0,2.38333,2.38333A2.38333,2.38333,0,0,0,3.38333,25.60125Z" /> </svg> </div > <div class="text"> <h1 class="site-title"> <span class="wordmark">Wolfram Neural Net Repository</span > </h1> <p class="tagline">Immediate Computable Access to <span class="nobr">Neural Net Models</span></p ></div ></a> </div> </div> <nav id="pac-common-navigation"> <h2 class="visuallyhidden">Primary Navigation</h2> <div class="wrap"> <div class="section search-wrapper"> <div id="react-autocomplete" data-action="https://resources.wolframcloud.com/NeuralNetRepository/search/" data-resources-base-url="https://resources.wolframcloud.com/NeuralNetRepository/resources/" data-autocomplete-json="https://resources.wolframcloud.com/NeuralNetRepository/autocomplete/allnames.json" > <form id="repo-header-search-form" role="search" action="https://resources.wolframcloud.com/NeuralNetRepository/search/" method="get" > <input type="search" name="i" required="required" placeholder="Search" /> </form> </div> </div ><div class="section sorting-properties"> <ul> <li> <button class="nav-button"> <span class="label">Input Domains</span ><svg class="arrow" width="14" height="14" viewBox="0 0 14 14" fill="none" stroke="#fff" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" > <path class="arrow-down" d="M4,4l4,4l4-4" /> <path class="arrow-right" d="M6,2l4,4l-4,4" /> </svg> </button> <div class="dropdown closed"> <ul class="grid"> <li><a href="https://resources.wolframcloud.com/NeuralNetRepository/inputdomain/Audio/">Audio</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/inputdomain/Image/">Image</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/inputdomain/Numeric/">Numeric</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/inputdomain/Text/">Text</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/inputdomain/Video/">Video</a></li > </ul> <div class="other-nav-pages"> <ul class="grid"> <li><a href="https://resources.wolframcloud.com/NeuralNetRepository/random"><span class="icon"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 70 70"><g><path d="M54 14v6H44c-3.08 0-5.41 2.19-7.55 4.8-1.54 1.86-3.01 4.1-4.46 6.4a63.36 63.36 0 0 0-4.45-6.4C25.4 22.18 23.08 20 20 20H7a1 2 0 0 0-1 2 1 2 0 0 0 1 2h13c.91 0 2.58 1.06 4.45 3.33A74.99 74.99 0 0 1 29.64 35a74.99 74.99 0 0 1-5.2 7.67C22.59 44.94 20.92 46 20 46H7a1 2 0 0 0-1 2 1 2 0 0 0 1 2h13c3.08 0 5.4-2.19 7.54-4.8 1.53-1.86 3-4.1 4.45-6.4a63.04 63.04 0 0 0 4.46 6.4C38.59 47.82 40.92 50 44 50h10v6l10-8-10-8v6H44c-.92 0-2.6-1.06-4.46-3.33a74.49 74.49 0 0 1-5.2-7.67 74.49 74.49 0 0 1 5.2-7.67C41.4 25.06 43.08 24 44 24h10v6l10-8-10-8z"></path></g></svg></span> Random Resource</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/all"><span class="icon"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 28 28"><g><path d="M5 9h3V6H5zm6 0h12V6H11zm-6 6h3v-3H5zm6 0h12v-3H11zm-6 6h3v-3H5zm6 0h12v-3H11z"></path></g></svg></span> Alphabetical List</a></li > </ul></div > </div></li ><li> <button class="nav-button"> <span class="label">Task Types</span ><svg class="arrow" width="14" height="14" viewBox="0 0 14 14" fill="none" stroke="#fff" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" > <path class="arrow-down" d="M4,4l4,4l4-4" /> <path class="arrow-right" d="M6,2l4,4l-4,4" /> </svg> </button> <div class="dropdown closed"> <ul class="grid"> <li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Audio-Analysis/">Audio Analysis</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Classification/">Classification</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Data-Generation/">Data Generation</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Denoising/">Denoising</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Feature-Extraction/">Feature Extraction</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Image-Captioning/">Image Captioning</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Image-Processing/">Image Processing</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Language-Modeling/">Language Modeling</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Object-Detection/">Object Detection</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Question-Answering/">Question Answering</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Regression/">Regression</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Semantic-Segmentation/">Semantic Segmentation</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Speech-Recognition/">Speech Recognition</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/tasktype/Translation/">Translation</a></li > </ul> <div class="other-nav-pages"> <ul class="grid"> <li><a href="https://resources.wolframcloud.com/NeuralNetRepository/random"><span class="icon"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 70 70"><g><path d="M54 14v6H44c-3.08 0-5.41 2.19-7.55 4.8-1.54 1.86-3.01 4.1-4.46 6.4a63.36 63.36 0 0 0-4.45-6.4C25.4 22.18 23.08 20 20 20H7a1 2 0 0 0-1 2 1 2 0 0 0 1 2h13c.91 0 2.58 1.06 4.45 3.33A74.99 74.99 0 0 1 29.64 35a74.99 74.99 0 0 1-5.2 7.67C22.59 44.94 20.92 46 20 46H7a1 2 0 0 0-1 2 1 2 0 0 0 1 2h13c3.08 0 5.4-2.19 7.54-4.8 1.53-1.86 3-4.1 4.45-6.4a63.04 63.04 0 0 0 4.46 6.4C38.59 47.82 40.92 50 44 50h10v6l10-8-10-8v6H44c-.92 0-2.6-1.06-4.46-3.33a74.49 74.49 0 0 1-5.2-7.67 74.49 74.49 0 0 1 5.2-7.67C41.4 25.06 43.08 24 44 24h10v6l10-8-10-8z"></path></g></svg></span> Random Resource</a></li ><li><a href="https://resources.wolframcloud.com/NeuralNetRepository/all"><span class="icon"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 28 28"><g><path d="M5 9h3V6H5zm6 0h12V6H11zm-6 6h3v-3H5zm6 0h12v-3H11zm-6 6h3v-3H5zm6 0h12v-3H11z"></path></g></svg></span> Alphabetical List</a></li > </ul></div > </div></li > </ul></div><div class="section learn-more-about-wl"> <ul> <li class="learn-more-about-wl-frame"> <a class="learn-more-about-wl-button" href="https://www.wolfram.com/language/" ><svg viewBox="0 0 124 31"> <path d="M15.5 1a14.5 14.5 0 1 1 0 29 14.5 14.5 0 0 1 0-29Zm0 2a12.5 12.5 0 1 0 0 25 12.5 12.5 0 0 0 0-25Zm1.8 5.4v4.3l-1.5-1.1-.3-1.5 1.8-1.7ZM5.6 20.3a11 11 0 1 1 15.7 4.5l-3.7-4.7 3 .4h2l2-2.5s-5-3-6.6-4.8a46 46 0 0 0-.2-6.6l-2.6 2.6-1.3-4a13.5 13.5 0 0 0-3.7 6c-2 2.3-3.4 6-4.6 9.1Zm13.8 5.5a11 11 0 0 1-12.6-3.6c.9-4 2-8.7 4-10.1.9-1.7 1.2-4.2 3-5.5.4 1.3 1 4 1.5 5.3 2 2.1 5.2 4.7 7.3 5.7.2.1.5 1 .5 1l-.9 1-9-.8-2.4.1c.4-1 1.4-2 1.4-2s-1-.5-1.6-.6l.8-1.1c-.2 0-2 .9-2.2 1.6l1.5.5s-1 1-1.2 2.6c0 0 3-.4 5-.1h1.3l3.6 6Zm-4-10.8c-.2.3-.3.5-.3.8.5 0 1 .1 1.6.5l1.2-.4c-.7-.5-1.5-1-2.6-.9Z" ></path> <text font-family="Source Sans Pro, system-ui, sans-serif" font-size="11" > <tspan x="36" y="11">Learn More about</tspan> <tspan x="36" y="26">Wolfram Language</tspan> </text> </svg></a > </li> </ul> </div> </div> </nav> </header> <main class="shingle-content"> <div class="wrap"> <div class="page-title"> <div class="zc_c2c" data-clipboard-text='NetModel["ShuffleNet-V1 Trained on ImageNet Competition Data"]' > <h1> ShuffleNet-V1 <span class="action">Trained on</span> <span class="data">ImageNet Competition Data</span> </h1> </div> </div> <p class="lead">Identify the main object in an image</p> <div class="details"> <p>Released in 2017, ShuffleNet is designed specially for mobile devices with very limited computing power. Its architecture utilizes two new operations: pointwise group convolutions and channel shuffling, greatly reducing computational cost while maintaining accuracy.</p> </div> <p class="netsize"> Number of layers: 203 | Parameter count: 1,420,152 | Trained size: 7 MB | </p> <h2 id="training-set-info">Training Set Information</h2> <ul> <li> <a href="http://www.image-net.org/challenges/LSVRC/2012/">ImageNet Large Scale Visual Recognition Challenge 2012</a> classification dataset, consisting of 1.2 million training images, with 1,000 classes of objects. </li> </ul> <h2 id="training-set-info">Performance</h2> <ul> <li><div class='example-notebook'><p class='example-text'>This model achieves a top-1 accuracy of 67.4% on the original ImageNet validation set.</p></div></li> </ul> <div class="col main"> <h2 id="Examples">Examples</h2> <div id="notebookButtons" class="example"> <p> <a href="https://www.wolframcloud.com/download/f068256e-6678-4c09-a245-12aaa0fc693e?extension=always&filename=ShuffleNet-V1-Trained-on-ImageNet-Competition-Data-1-0-0-examples" target="notebookButton" data-toggle="tooltip" data-placement="bottom" title="Download Example Notebook" > <svg xmlns="http://www.w3.org/2000/svg" class="notebook-download" width="26" height="32" viewBox="0 0 26 32" role="presentation" > <path class="fill" fill="#598527" d="M3.5 0C2.3 0 1.27.86 1.04 2H0v3h1v1H0v3h1v1H0v3h1v1H0v3h1v1H0v3h1v1H0v3h1v1H0v3h1v.5C1 30.9 2.12 32 3.5 32h20c1.4 0 2.5-1.1 2.5-2.5v-27C26 1.1 24.88 0 23.5 0h-20zm0 .98h20c.85 0 1.52.67 1.52 1.5v26.03c0 .85-.67 1.52-1.5 1.52H3.48c-.85 0-1.52-.67-1.52-1.5V2.48c0-.85.67-1.52 1.5-1.52zM19.54 15.15L22 12.4l-3.6-.77.36-3.64-3.4 1.46L13.5 6.3l-1.87 3.16L8.25 8l.37 3.63L5 12.4l2.46 2.75L5 17.88l3.6.78-.36 3.65 3.4-1.47L13.5 24l1.87-3.16 3.38 1.47-.37-3.64L22 17.9zm.65 1.77l-1.66-.56-1.12-1.45 1.44.55zm-5.3 3.38l-1.02 1.73v-1.8l1.06-1.53zm-2.42-8.95l-1.75-.6-1-1.36 1.83.8zm2.96-1.16l1.84-.8-1 1.34-1.76.6zm2.23 1.58l-.9 1.25.06-1.88 1.04-1.4zM13.5 19.5l-1.36-1.95 1.36-1.83 1.36 1.83zm-2.56-5.6l-.07-2.37 2.27.8v2.32zm2.94-1.57l2.26-.8-.06 2.38-2.2.75v-2.32zm-4.55-.55l-.2-2.02 1.04 1.4.05 1.87zm3.6 3.53l-1.36 1.84-2.3-.68 1.46-1.9zm-.85 3.4l1.06 1.53v1.8l-1.02-1.73zm2-3.4l2.2-.73 1.46 1.9-2.3.67zm6.6-2.46l-1.7 1.9-2.03-.74 1.2-1.7zM13.5 7.67l1.3 2.2-1.3 1.65-1.3-1.65zm-7.18 5.17l2.52-.55 1.2 1.7-2 .74zm1.82 2.6l1.44-.53-1.12 1.46-1.65.56zM6.96 17.6l1.7-.58 1.85.53-1.53.48zm2.36 1.05l2.05-.64.05 2.17-2.36 1.02zm6.26 1.52l.05-2.16 2.05.65.26 2.54zm2.44-2.14l-1.53-.48 1.82-.53 1.72.58z" /> </svg> <span class="text" ><span class="line">Download Example </span ><span class="line">Notebook</span></span > </a> </p> <p> <a href="https://www.wolframcloud.com/env/f068256e-6678-4c09-a245-12aaa0fc693e?src=CloudBasicCopiedContent#sidebar=basic-notebook-links" target="notebookButton" data-toggle="tooltip" data-placement="bottom" title="Open in Wolfram Cloud" > <svg xmlns="http://www.w3.org/2000/svg" class="cloud-open example" width="41" height="32" viewBox="0 0 64 50" role="presentation" > <path class="stroke" fill="none" stroke="#598527" stroke-width="2" stroke-linecap="round" d="M22 42h30c6.08 0 11-4.92 11-11 0-3.85-2.03-7.42-5.33-9.4.22-.7.33-1.4.33-2.1 0-3.87-3.13-7-7-7-.43 0-.86.04-1.3.12C48.35 5.86 42.4 1 35.5 1c-4.74 0-9.18 2.32-11.9 6.2-1.3-.45-2.7-.7-4.1-.7C12.6 6.5 7 12.1 7 19c0 .87.1 1.73.28 2.57C3.45 23.4 1 27.27 1 31.5c0 3.92 2.1 7.54 5.5 9.5" /> <path class="fill" fill="#598527" d="M22.5 19.1L45 20 28.3 35l1-5.5c-5.24 2.27-13.42 9.74-16.1 19.8l-.6-.1c0-12.6 7.6-20.76 14.5-26.3z" /> </svg> <span class="text" ><span class="line">Open in </span ><span class="line">Wolfram Cloud</span></span > </a> </p> </div> <!-- RS_SHINGLE_EXAMPLE_SECTION_START --><div class="example-notebook"><div class="subsection cell-group"><h3>Resource retrieval</h3><p class="example-text">Get the pre-trained net:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[1]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/3bbb0a17f456f005.png" alt="NetModel[&quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;]" width="421" height="19" style="width: 26.3125em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[1]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/50ef70600679c1a0.png" width="233" height="44" style="width: 14.5625em; height: 2.7500em;"/></div></td></tr></table></div></div><div class="subsection cell-group"><h3>Basic usage</h3><p class="example-text">Classify an image:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[2]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/35cba68d81b1a5a8.png" alt="pred = NetModel[ &quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;][\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[&quot; 1:eJwcu2V0XGe2rV22Y4oZZIEFFjMzl5hZqioxs1RiZmYGy7bMMsZMsRMndhIn DnZ30pA0pplun9N9xr197rnfn+dbtsfYlsoqbVjvWnM+c++yaVFdatlmhULR tEP+Si1sC2lsLOxI2y8vMrRNleXa0pIYbXNpeWmjT9EW+ccy2TSyvSGbvac+ qWojcos8iEiwxifUEGWCBRn5fvgGWBERbUtgrBXGTvsITbEmNcuD+bkGYmOd qWsOYXi4GFWGC1nZ5oSkGqOp8CcmzYXSihjWL01zfL2FC+fHqW7IxSXoEKkF HiTk+pBdEyz7deD5Zw+4+vAS5r6HCVFZoCrxxs33IP0zWVR3xDA8W8OdZ6dZ uzmCX6oF6bVK4ioDKGmJY2SqGDevvcTEH2N2pZzYNF8Sit8gOfEgpoZ7MTLc gZP9IfwC9pGQehhz881ExJuSkGNOaNphMip0mL+Qx+q9FmLKNrO8UcZ//vvn PPlkgareAMLydNC0HKNp2JnVMyVoOx3JrrUkQLWf8DxLQosPEFZmglfqXqnZ FuIy9tIzncjFu23UdbviF34Qe299bOz2U1rjj7YjgoQsK2LTHalpjcU32Jz0 bHlflClmrocJiDcnszCQvt5MyiqiKalxpqE+lur6KFJUJrgFHqJ3pJT0XD9a WvO4fHuVueVaHt4/S3NHBaFJ5pQ0BJPfoCQ4yRa/CE+++OlzLt0+g63vUWp7 MnDxNkCdH8z6nV5SKwJ4+tlD/vj3P3Px3jliCzzJawzFL86Egcl8SsrCCAw5 zKTU+eS5Zjz97YnJ30R61g6OGe/EwmIfNpYHsbXdg4f/m3KNsXJdiTj67CUs ew8dp4M48X43GZ02NE+Gcf2dXq69O0zzfCw+mt0UdFlR3u5E12gErb1Kcsqc CE45QmK9OUkNpsRXOJNcZUJEzg7qJoIYXNLQUBdJTNRO8ssNWD2nxT1EDyPH vUREWkntPFDnWktNIwlNsCX81RZnhabABztfI/wTzCiujGF8uk42LekaZ2ql Xkmp5mTlORIeY0ZVg6xRhjP1Wg0P3r7G7TuL3H5wkv6xesKSzChvikZVGoh7 mAF51Vn883/+i8fP7qKM92Xx7BgWDgeo6kxg451hJi7ncPvFCn//v/+iY2iA 4o5IkircSc12oLknhZCYY3JcD959Z4XmAQ3mNlvI1FqRVrqTyFAjkuMcsbTZ i7XNHlxcdqNtiidJ446FxyZS+7xpvKAhttOAzB5b7n64zMTpQhJrzbAJPUCI xpDYHEPSC2xJTLYhp9CWZHmd2yDHL7MnrsyapBozSrtM6Z1P4vIn4+T0eJNS cJTTGw3certbZswPc9nXUefdeAUcJSHTiZAoY0rrpDfro8kuDUAZaUNjRwbh qZ6Yuu2S+sVS15LC8EQZ+cW+0rv+tHZFkKqS9Uy2pLE7kYw8dyqrw7lyd5Lr b81x78lpqpuyCYm3kH2GkFsVTECcEeriRP74H39gYmGK8ORA5s/1EJ5my/ip ErKrImkZKOLjr+7y4It7FHVkU9AZQEiONS398n1VANHxhiwu5nP5QTcJRYGU 96gpHglEpT0gdXclIswaS7tt2DntJi3VhrCwgyijDpHeZEjJcXfS21zJbXGn ezqcnE5XlEUGOEcewSpAj9LWDC7eHqKoxpFyWdOoKHNySv3Q1Hmh0XqSXGxI as1Rhi/nsvF0lPJuF1LrD1C9EMjanVZytRY4ByrYYbsdfaeD2HgfITjDGlW+ NxHJ5uRWKimujSIs2oGe4XzSigMxsNmHKseXHKlr73AeDS0JjE7mMT5fJLV2 JipW+rMlkjTRWG1TLKev9vPhx1d5+eUjugZriVe7UCbr0zqYjk+EAUPT3fzv //knbcPN5NYkynyVE5Bow8KZERoHYzlxqYUvfvget17ekVlNQFXnSX5bJAun OwmI0Sczz563n8yi7U4gMNKWm083MHbdRuWo1KTbCZ/gQzg675RrMCExzZSo xEMk5cps11kT0ahDxagfXQuxNPX6k1hjgZtqN64hBvjGHGXlYjPjx7NILz0s PuBJjeh9dnkIqVUuRJaZUzWpZOCihsrpaMo6XBic8qe+24PUWmc8khWoyyxZ v6JFL2EzRzwOYex2AJuQQ9R3phKn8iSnPIzS2tjXelspGptSJP3raEBMkifa 1jiapKfbu3J4970zjM81ygxZkZBkJ3oVSW61UvpXw9W757h8bZ6vf/YZHf0N Ul9nqtviqWgIx9ZtP4trc/zj33+T88umczRHelpmQLR7daOHluE07j27yfd/ /Z6rT6V/25MJzTjG2Fo17aNZeEYe4PbTKX711x+hqk+S3+knvjiIgup4WlZD KR7fR1LBYUIjjMTTjPAK3oFX3B7xMSfRTDeKZ3zovVRMzXI6Vf1hsm8j3CM3 kVwgntKeJLMl8y89mlwuXt/iSLrWgYpOJWU9AZRNx1F8Mg31eBAZDTaUDsg6 ncghKMuA1HIH5k/myVZIRpktRYuuWHdu5VDALowdd1PUHEBalR/x2eKVpb6k 5DiRUxRCSV2IaKSNeJiJ6GYIM4stnLswx52HZ8THW6mqjSQy1ui1trya/5Ka bJ6/eI/T5+YYm+siv1ZNdkkgxY1RFGnDsXLR59Hze3zxi4/IFy2dPdWGd4oB s2eaGVtpZGq5i49/8oT/9a+/cue9m2RWhZAouju/3oa63o4Cmdvbj8eYvdT5 WjuefP6uaEQkk6eqiZL+im7eRnr1HvJqQ3ASDXT330Ok1h71gBJVlzelJ6JI W0wjfz0flbBCQqUpRXUOcm1eRKksCcowFH4wJbPek9Q6RzKaHKjvD2XsXCG9 1/IIGzAnsduGPtGyrAFforSm5IoXNvfH0NwaT0CCDo4h23EvruVYZjPubY4Y KHfil3SUonoX6QkvavrTKasMJa/Kn46xNFSiEVYeRykoTaS7t5I7D84wdbyD UxcnqamLISLWkKqmOMqbY6XHc3n+8XUm58tp6U0nMdebGvG21sEccppSxWP0 ufv+OdauDlJQmcTUxhC2sQacvjPD2Ikart2f56MfPuVP//oli1e1wl32opO5 9E6WoswzoHEohkuPhomrcOX84ylKurJZvDIquheAffB+gvL30DbuR67Mobnr LtyD9cjo8SdhMpCEWSWRF3MouS3+fl6J3fk4aq5FUzQXTni+Af7S5yGaowRl G5BQbUeKcFL1ZCRTF/IZupRD7JAZjkPOBG/EE7oYRfyEH4Xj7rROpRKRq4NH 9A4CU3XxiTmI4s0AFFvLMNd041K3H+e4w3QMJEovOKIdSqJzMIqEbDfyq4PJ LPPG0m838amBLC71cPvhcRp6s1g61cfoeKn4jRnVLbEMzRZJLVO5cmOKxeNa 7jxeF92LorUnh/ahUtHaGEJjzHn84ToDwrdTC3WU9iSTUu3J/Q8uk9am4cWP Nvjp717w5W8e0TCSSXSJI6s3m6SH7UmucWFsXcupO2Ok1wlj3Rmifb6CnpVq YWw9HHx1KO5KZHpVS1icJf4ReiQU2FE9EUz8qDN2F9Rkviwm50EnUfeaMb0R i81aOMWrvoSUG+OTehBflQ6+WXoE5BmTKN7StKSibDKa2LEQYqVnM1+Uc2C1 FEW9ir0ttgRNRBHXZkCo1Dcgw4CwVDmmypitRwpR7Ihgs+1ZLIekP0u2U9Pr LRxzjNC4Y+RrRbf7RMNrAtDke+IXb0VosivD05VMzFe+1uv1jVFWjreTJT1a og2jfyqL2qYMHr97ifef3eDh87tUdFVQ1ZZIm3BrjMpH9C2C937yJalNIwSO rnOsZRSTrFrs6k5zxEfF2sUJ/v7P76SHH5BUInliJISaiTAcvQ7TNJ7ByRtD ovVqps92snR5jKvPThIprOYcaPCaQXpP1lDYFEG0cE2R1o/kQmeK612pOV9C yFc1FFyqZXf6C3QTz1G5UETCiTCcZv2JGvfHOl8Xq6Q9OKTpEFbtRsPxAqIH QnBs9+DAYCD+X9SgulfAJu/77LRcxDgjimMVUtshyS1lx/CLEVYI3S1+dJh9 Mb28cWCNrdb3MG/x51jfG6RUHBVPDqS0WmZCtLNR9L6yKYS6ziTiVS6iT/bC W+n0iidNrtSxcfsEzz96SHKy+Kd4Y8dwCpq8GL779Uu+EW97+vIBBY0ZFJcH 0zVWhluIBVV9JQS0raOwaUMR2MPmnCEUeyPZ6iPrvd2a2cVFXv258ewOnpLr rr5cJ1vOzy/MjutPT3DxwTjtYzXcf3mTC/fWmThfhXP0fvxjLGgZzBSWUxIq mTKvNoymoVyCEkyoHEvB5Vw50T9vJHyimjeUX7D3aDkh6myWF5JwX4om+kwm +v0+GGkOYJp8AFfpXWWlC8oyB/xbvPDQOmE8FIr7hRAsYtVsM8jB3D2Mkiov DGtM0NUcwdJzGyl55kwIOx7uEEYsz8S+MB2TPkd2j0vmKzpMWbsXTT3xDI5X 0DdYQnljLN0T+WiEzVyVBuSUhLN+oZ+l9V5mL/RwX7S0si5Mcos3lQ2hxCX4 8cWXH/C73/9SGPal6Hcrrf1pDK6USAa3xK2onM2ZS2wPH2DbYQd2H3Ngy8Gj KA4b4hoRzEdfPeAf//NHYYFGCociWbrbL5powamNKe5/IvUUH5s6NcijT+/x yY/fpnYkWOqky+BsLS1jBcSqrQlONKN2rJA08dOi4QRKzxSwW7xt/0YkqrfT sE+cZtuRFezCK5ldSid2NZ/giyq2LYZgWmmFk+ooe8SjzIVVgpOP4RqjS3C6 Ge5pNuhJDgkQ3j0Y5YNBkCeJhfZSPz8UWjfeiDuCSdJB4V0LtqRsY1vnNnYs bUYxfZRtdWY4p+8lSTxY2xUqPOxCUWW4nHclw4tVNPZliEbvJbtdNOJCFR3n qqhZDGL+Shndk8niVf50DquJS/Xgh9/8kD//7Q988c2X9E73UN0VTeP5TA43 J7O5bpY34qfZYRHNZmML9huaoefpgat/KKevrfDbv3/F17//kgRh8LPvjJLZ LOcimeXLn34gvbtM/YBK6nyG47fbWb85glus5NYiPy7dO0mw2o3AFAsqh9LR 9MVRtKqi60E5ER0OWFeYsS3bmiNTXiSfTcC/qp7g9mwCR+w4KhnX9GIG22aD OaQyRC9qP04VTsS1RGDpsQd7n4PChQYEx+jgotTHIO0YBmG7RCd28mbsTnaU GKIQ9tuksUGh3IVusA6HXPfzpvcedga/yVbh7y2JBphE7sMz8QA5Na7CAkFo 26PonSmifTyPnMpgPMN3iY4fJlnmpe5sOaG1tqzeGWZ4vpDS5kCGlvNQl/vy 8Q9e8tu//YonL94STW6iuD2Y0nPpvFGVydaqZbYFV7N59yF0LIUbc5LIr8uk ebier3/6Of/877+Ixz0nW5vI1fdW8E22Zub0MD/87hPmzo0zttrDR/Lz+59e JCTPCO90U65/eB51Vbjk26PkjKZQdSoLzUCg5IgU4lq98Cs0xy7FUOoicxL5 Jm+WOOO+6IbNsgOKNgf2jTtg0euFQaI+llIb68ijmEYdFa4xlXl0JCDAGBun vdg7H+CY614cw/YKs5thmXAYY+Fks8wj6Pq8yT6rHew228Jeqz3oCPMe9dXl iKzDwSR9jiTtxyHhEN7S49EqXZr6YmkbyKB7KpuGwRRhNFfsvQ5hHbaD7C4f KhZSSWhwoWYgnaIGX7LqXBlZVpNW6PaaBe59cJ1LD04yOt8sjCAM2+PLkSg3 7NOK2WoRhbmzPSEpbpQ1akSDMlg9O8fnP37Bd394QZuw/+xGGa3zauKLgvjy u8/48tuXNE828INffs6v//Kt5JAqrPz2071STv+pOoJyHMmbTaLiRCp5o0pq JhMIybTAOlwHXZfdHLHeJT21m0PCGQe896IbegijXEMODTigJ5nPOVEXc7dd BCZY4x15jGPOb+IhuUeV6YGT/R5MbfZi6bBHssIW7JX7idKYkVxhhVvaEWwj ZE18DmPtcQTPUCvsPAxRFQZhZrsbR8mrul57sY46jGPSEbyTj+IXu4fGrjja BzKZPtlI/3yp5A47bP3l53EHSGq2J3VGmLHPFU2nt3CVOxlZfqLXWUTGW1Ml OjB1oonT99cYPDtMcV8KNoNBuHR7s/LoFDkjbcJa4cRkeVLZmkdLfxXHz5/i xWef8Ie//pWGyTouv7OMb6LMx9V5fvLbr7n55CpXH1zgZ7/9AVfuncBaWKy0 M5P1G3NEyJpqxoNpOpuNVrLDK/ZfvtVLrmiEgc8ejjrt44jxm+joS48dexNd tz04hR3ALGAnhim6eEitPERj00r9pD76hESbUin6FBFnQnDCMRz9dNAz3oyv 8rDUVThKbY5L6B6cpTe9E4R3E43wkH73jDIiNF3q5L2P+DgHlEFmBCrtsXLT wUBqrcyyxj3xKP6p+qjlWPPH2yhryGDmVDepBZ4EJEq+UethXnEAzx4nXFdd MVk6imralqzqQMYXakhTedDRl03fUikDJzqZmOsmZzILxaz4y2kv5j5ZZeC9 Wen9MOGvIMqaMukfrWP55DI//PoLfvenPzJ2fpT+401EqkJ4+dOP+fIXL5ld H+ezn3zE7//5CzSVMYQkO/PRz96lRJghqkGOea2QlhNqusWrNt6dpPtkGfFN ga/72j/RHjsfQ+yd9DCx2MdhEwUu/tJv0ldG7tuFm3dLnQzwitQhKtWCoal8 isr9CJQet/Dajlu4nnBqKOnZzq/f4xy+D0fRVRflPpQJws3Svx7hkhXl/U7K N3EK2U1hsTflco2RKQ4kFthiG7ifaI2tzJT4b46lHM+CSzfnmDsxxOzJYbIr QglPtsWj1IidNdvxkrnSPipHeVGJz2knwntc6ZnLIy3bg8aeLIbPthFbEIp2 ohyvEwmEHo+h7Uk1xz9YxP96PvqDfjSt1dHUX0xHVx4LC4O88/gdfvCzz7n8 8SnJ6tGsnlvg2z9/w9XHF8TbLvDhdx8wttGPR4Itt9/Z4Nz94yg73MhZjmbl 4QjaORUb74yz/miQrMFIAkslF7eFEZwl+hp0mMBEU5ylF51lfl08DDhmvQOv cBPhex98Q49QUOFHdJqZ9Kg53vG6UqcDkos01LSEoymyIyTGBNcQmfOQfThL bQOi9QmX7BkiX30jdfGX70NTRF9Fl0rbvIkTRogVNg9INCf5FX+F6RBZYI0y 05zAJHOKmiK5eHWJm/evUNqYSUiSFfYVRth0HqPnSjwXNuq49G4/YWeFL0ck 941nEZHtgqYkkpO35oloTKDqcj0OazGcfTbEN0/O8FRqN/rhLFtqrGh82EP/ dB29PbWMD1aycX6Fr756zvzFQeJqg3n+9VM+/f4Teo/38f4PP+TLX70ksS6c zpUaHn95j4TWEKKnArn40SSNixlSey0XH/fTdVJDxrA/ZcK2gXUueJfokFHl RGqpLRnl1tR1x+IRoidaa0dWfjDRsZZ0jmeKz7pJ/+qIxipQZljRNJrJkuSR CJWB9OhhotMt5OeWZEje8g3Tx8FzB+6Bu/BQHpQa7qesO1RmN5nW7nAySk2J zxQtEe0IEh1XxtngE21OWJYjgRmiA8mmxKS7cOXKGs8+eIfSllz800zwKDbG rsWUq2dy+dlbbXz30TCtlxPRy3Wkdr5Acp6tMEE4D9+/QfBQPFZzyVjOe/Jc avofX9/h+w+uSo8+JP5CO4XXWhi5Osb64hiDbbkcn+ni3rsXSKyIFG+r5wd/ /JRbz26xcHmVH3z/peTiRdQt6Tz/xSOaTpcT1O7I8LV8WlezaJ1L45Hw8dL9 HvJGgkits6VsIAj/Qh1SWo4Rma9D9aSLbErS6g2o7A2laTCNkgYfqnskJ/Z5 EFq8k4Dk/dQ2S3+c06KStQmSfvKT7JucbUVzVwSZxS4ERppg5bAPe983hSP2 iQ4EMzaXz8RqDi0jsaxuNOArHpaaZUmKbFllXkSlOJMgfuMm3hlT6IlSON1b +KR7oJIf/Oh9Wkcr8El2wihaD9PqN3n2Tg0LayOsnp7k9LMiLHOtSGkNwznS mOT8SD74/DmBbUnskWs0ndLlwaeLdCzOcfHKBT54usSgrEvKcgUjd6e4df0C s4NVPL3Yy5MnG+Q1V3Hu3Vt88d0LTl2Z5Pp761z5/BqNUzUs3V5g7e0J/IVp y+8m03VLRcOqmhNvtXD3+TrNp8pI6fWVOsbgknEYZYUefkW6pHY4UdglGbT0 EMWtofSOx1HZ5UfDbBi53Y74pu4iJM6IkaVa5q91yPuO4aPRJUTyQIvwzMqF CjoHQ0gu0sMrfjuBsUdJL3Yjt8aRwel8jp+tZ3KhlMm1YvLq7IjMNsDD9wD1 bZE0DySTKwyfWepNQJIlYdmuhOc5y/kZE57jxOhcNW1DWYRLb++SOTGv2MvM oyZ2GWjZalrKyNs9hMr1+giTe6ZZiIb7MH1xBrXk6qMt5jjOHKXq1gYKhZZ9 thWcuLlA13uNOHVHMC5a8P4Xz3ny6BpDbz3Ff+wHGPX9Gvul74k8/iO05+9x 4+OH3PrgJiMbY5x5f5nUVh+SFpVk3czCpMeB5afL4nWPpe7DxNQ7k9jljnel GbaSw5RlJjRKb6W3KvGTax66XE3fWQ29C3GcftBERoez8MMBSttjaBrXoBR9 NA7dgUOsHvVDOYwtVFBWH0xCvjWqEkdhFT3Sm22Z26jk/U/OMi/rWdcbRutY Ek0joSSoDgoTeKDOtiUuyQR1rj1ldcGyjxByigNJyvcSbXCVPs8lLNcZ0wR9 xufahJ/6Scr1Ry/yELuyt5G9nsmbjlMoTAfJXBmh4po/QS3uuIXJmmTZUzWc w+CZNixrPNBp3kHOtSHe8L2PImCZzmtrdD7X4twUytyVKckOH7N29x0UEbIG xd+i6P4PFMP/iaLr32wb+Scu899TcPdDLn10hcqTxbh1h5G5nk70XAQlc1mM C4uNnNGS2RnD+BUtsbX2uOcY4JZlRmpfMOU9UXgkGYnn1snxGhm4WEz7q3u5 DRZE10rNL2hZ2KglqNoc44TtOCXovO63s9emxYMiCEs3JqvcXXj3GAOnK7j9 4gILF8uEcbL42Z8+ZORkATGlB9H2B6HpcmTsch5RorFq0Xv/+EOEpB4TT/Kj siFWeDQBZZITpU0xaEp9MQ/bL6ySyJVbS8QVhOMq3vqG5Lyw2f2EtHWwPec9 8ZECiu6HoKz1Ib3Ah4Rsd45fmeDUjUnRrkg2yTnnXxI2mT6LzfAGC29XkvSs mpIrbVx9+ypf/eoZWSM3ca+7iVn+GeLOfYPDuT9LjX/PpqG/CNtJrTv+it3E MyIu9KN6b5Tku41krkr+udlE7bVqEir92Li3SsvxSlzzDAirFf+UPKnpDCW5 1ImuuULxqg7mLxUxcKkd/x53IudDJY+kM3BTPEz02jfrIFHlNqga/UiqcCW4 2ELO3xJNix9lXb6MLuWy9lYFXfMa2mfSKRjwI6/T93Xdq3rCuPxgkL7FFOqG A7ATVgtLPUJUtgneMXrSx0qq6uPpGcmnoDKBbOG9MuFzp1QDzJRHaZurlHXR 4l1kwcEAfXRzt5F1fD957W50bDgRcjJKNC7m9XOQlFwfnnx0j/4Lr+7TRmMd fADD1oOozrgxcCoazbMSnBY1dN/t58rTy5x6dA7vvFH++B//IrlkmbT2DS5+ 8mvqXv6draf+xKa1v7Gn9g8o6r/H58yPOf3RCZRyLarbWoqvFBG6EEvzuQZm 3xrAM9uG0GpnWs9lk9GuJEOY6/L7s1QMJfH+p2eEY6ZJnA3BZyka5zOh+E34 4tBkga9oZnK9D9GFHsK3RjhJ3gou0KegM4TG4QRhz1TGV/JoHpKaNrmQ3+GH usYada0pxy+Vs/RaJ+KEQRwITtmJSdB+7NIO4l9ljGX8PnTspSfjnBkaq6Cx rYjkgkDK5f2B2WYYSaZxjjajejiJsPpA7FP1OBi8i51527Ge2477LXcs24NJ 6gxGXW8vaxPOpz9+ytS5UfzFE50z9uHVYsW+BSe8nmvwuFxLjvR871u9nHq2 ineq7DerEvgnP/rJXzhsGcdO6zjyWoRxv/gzRzo+QJH4Drt7/8ibYz9j7sUT Oj6ao/jpELmLSWRLZjv98Qn8W1zI6RNuvtlHUpuSlGYld99bpHpCzfz1Tp59 c5/s2Vh8T6WS9KKMkoc5JF4tweF0AE7TkUQLs9pEHMJFGDexwI6cnnD61nKp Gojl/JNpVq7WktVgRtmgL6pWJwZO5tC2kox2NoWCLldii4xwTd6Ne/wBtgg/ bEnbzZZkqZ3wsGOkKY7hdowtihattQjvvrrnEESs9INbhGQ2Vx3yG6LJaInD I1MfczmPwwEH2J59GJdhH9TDUaJ/ftJ/pqRWOYr/dXLtgzW8Uu1xi91J3KAr cWfUqK/WkXm5gpK1Ek6+e5yNZ5d408KBqv4O/v7vP/DP//PfJMbl4Bzozq4D QZSUzvPrP/43Nkln2VH2kDeqH6JcucHqj9epud8l65TK6O0+HHLNUI1EsPp4 hNLRRCpmcrn/8jLN42lox5JlRqbI6UjCeSgGh88baXm/kAOqK2yLuEHmXDFO o67YNXjhnKZLYY2SmoEYSqYSmL3WzLlHA8IuyWR3uKJqNqdtOpb2E2nkLkSQ 0etOYLkZkTWvntsJyyUfllyvy87Cw2yvPcCO2s28qT7w+l6QZeABEiUDjolW tfSn0/bq8zrNUcSU2+OQpENsrhvNU0WkS+60jtLhWJohjqlHyWwPoUYYNG/I l9x6G6KLZa5mxXuWcogrDcQu7k00I35Sh1ZOvL9Ewbzo5mktlz86x4xo9KHA CDabeDMwd1x6+D9p1vZxaJ8tlnb27HJUsnb1HX777/+PbWmzmJbN49Y8RtN7 c3Tdb2Ph3T4KB1QkN0cwf3+AwkE1NbPZnPv4OAUTGtou1JM3qaJwRk3mYARW w4GY3kij+U4WWxMeo9DpIVpVRO+qsOVMLMET4fgIy7tE61A8EE/VYBJp5Y5k 1DtQPy/rNhFKrHCCUbctmzL3Yph+GIeMg3glHCRcZUF1Rzz5tUHsGLUgYsKN 9lkfopbNsOkQv83TwTVqLxV1IQxLBh8cL6WmK5nEGmdcVbqS1XeQWuJFeZtK sp4pFtK/lsm6VMyqGVgooXwwSrTXiugiKzKXYsk8lc3e0sMc9dyMZjKYlcez XH5xlsKpNMavdXP66QKty1p2uPmxyTwYx7hc/vx/f8O//v0XevsH2R0YztaU Ejabh/HRT39Fw+Jjisbv8Nm3f6D68nGWPpqlaSWLzJZ4Tj2cpXOulMV7Uwze 6yK8M5yBq60UDqtl1o5QMp5E5ZyG1LZgXBp9CFgUrZ2vYJv9afyz5fcmQwmW jKJcTEC31BH7SAOMvXbJ7OrQvZBF27xaekuDUbMT2zcSsH8Uj+GUHfqlMt8V ppQNRQhPx1LVHi98YIRiyYnTi8k8O1eOf+cAJuXD8tUa/1w9IpPsmJypZe5E F03D6WSUueMULLlNuVsyTyIff/4uWcVJWEt9nVKNia0LYOZSJ+3TKiLiDYip dMCq0wqTASsSbqRgU26HssGdhffnOP3OCmVTaiau9LP8aJC66VIUR4zYqq8v X/VJzC3mN79/R/r4ezpPnUdhG8Q2a3t2OKv45jf/xd1bXzMz+Q6f/fJ3TN2c JHcgipNPJqmfLablQgPt1yUbtAYwLLUtG8nELcWIuHI34ksDCFXb4xFrIYzv gF6SIaHjwhCyPhXreSQuBmOwFIeF+N7mImvMA4/gEWos3Ov52usjhFvtVVbY VUrOu16A9qNq3kw+wR6/YVzrkgh/9Yy62gGHoO04Bu1g06o9YyeSOXGumS3G ISh212GY007GojHZ7QGkp3hx/too7cN5lNSJRqhcCZAeDlYbs3F/jZVLI8KU uvhkGuKVaU77ipaB5TLiciUftztxqNqEsE577t/QMv/BAF6VgUy+vcz8w0Xy B5MZPtXOxpMzZM1oeNPUijcOHmbrUUMUuw6gY2NBXms9Nz75iOrxIRxjwglK KZTjfsC3v/gLmWkDNHUvcuHBDeZuDJM3EE21aNrAzVGCGjzpvlpP0XAqoSXe zN0epkX6NCrbFxtvXcycd+EaaIilz0EMY42xbzHCdNCKzYMu7F4IZocw17ZX tc/2JCJdcpbK7fW9UDt/fbyijQlRWxFZG4Jm5VWWbUCxpwnHiBBi2i3kel0k 9x4lXjxLUb4fo3kv6mTt9Dylh7Y3s1P436/vIKVL1uRUhFAuvLZ8YoTuCS3p Ne4EZO/HR31Y/FHqOVtAouTzwMKjuKfro9KGM3hWS5LWS/rXDt1MA0rEz6/O VLPxgfRUn4rZm+v0nhsnuzeF3o020o+30CqaYReRh2KfDjsO6LH1sC6Kg9LL BsLZwXGYZucLDwYQV1zMg7fv8vHz97h9823a+kd59tkXjB0fZfB8Oy1n6onv jaF+o5Ck/ggCRDPPPVvh+L1ZlBrhAqmpR6wZ9n46uCkNsfLWkfk7grLEHvsK YyzEN1za3XHIspLaH8Ez2AJD51csYUp0xqvPnAoDyPpEpZvhGWlCUIYB/sJF h/2VBGl8yJIc7dHqSmCZMJJoy9GcYygk3+wfM8Kssxx9zTrO6laMBi051HqI 1gHN6/t144vtdE1XUz0kuiJa4JF8AGfRl5qJDGLLnfFOOSzHMiK+0Jfy+QJ8 mlxxLXXGqkHYcDGAiJgJRt6qIfdkCuNXVymfaiZvIpuK6w0cnY6g/Vm3eGUS iqNmbDE3RXFoF1sP7WPHYX0279NDsfMgigO6bDmiI6wXxOD8EE/fv8vDu7d4 9vIz0eUf0Hiyg5SZZAZuV5Pc6olaMv/ll9PM3mkkpcmHyFefLxXeCilyIirP CRflq+doR/BNMMZN/D601JyAAqmf5Da/WAOs3fZyxHYXoWnuKBOtKdW++hyu N3bucg7B+gQE6uPpZyjabCTavg/bJOnVMlN2iDbvKbNjv3BCYKE1B6XmikIT ds3sx/KCOYYn9Nly0pzNtbqE5phJRk4hq1ayi2TzeuEJpcoGuxyZq6KDONTr E95kjV/xPnwqDhLf7cvYhV5cK50wy7TCVGuB/7ysaVYD2stdFN8qofZ0G1lj 5WQuFhC5kEnBiQzJFNdI15ahsAnjjcAY3nB3YpPRfrbo7ZM+3oeBtwOatlwa xD9z+zXM3BqjYSmDDmGqtjYtZ06tMXpWGOJMCtG9ruSMRvP2z29SuSAeLBk5 qt6J/MkoiqcTSWz1J687lMr+MMLUhgQlHMUzVld6w0Vm2hXfSMPX93zd443w SbB+/TnS5BwrkrIdCIm1xy/SjKAwG2IT7HD22ouj8z78Eg3wiTPjmDDvAeVB docasstjPwG5+lgU6rGvzgxF7lYUjTt5o24XB6qM0K22wUHWI7LAknytUlg4 hrqhFEIyxRfCd3FImGR/+i70i3TQq92JXqUO5lpHmpZrKBTd8MyRGqst0JmQ /C9ZaeBRCZE3a0hZqaJ8VUv5WhVek3GsvV3FP39zldX5GRSu6cLiDWzNK2dr jC+bnM3Y4+3J6K1Fbn/+Fo3rlYzcGGXkTi9pXSEyC23E14bS1pjH0w/PEyS8 nzUUJ7PSTEyTPyFVfkze6KV9vRDHsmOSz5zpPVPHwJUKEtptUEr2HTpRQ2lr Co7+uqLJwq0RxoQnWBCd9uregSdRKVZ4JlqRWhyKpiyIsoYoohOkzv56uLnv xtlt9+v7wq+eTcYmWmJluwdj073Y2OniKyxmkarD7uB9WIVbYuqli0OizEu1 Lbr5ehiWmOFWYEJJaxRLZ2Wme6NIrw3A0nM/BjF7OZy6iaBp6Y9L7uxoOMBO WQv/ligaJdtHvvosd0sS+0od2CMMk/CyhKDrfaSca6LgRiNpG0VErqfTeKNW MvU4c4vj7A3IQhHZyGbtINtLi9gUHo1heSOn3lljQTis4kQVmtlMDFXH6Lrb RvNV2Ud3GNN3e5i63iU+NsnDLzeIr/CXuodz9sN11p+MUSy5OFGyWepyEOVz 0USWe9CxmsP42QrKZhJQdQQIW9ijrnYludiB1pFkwoQ5vCIPkVrjTWSVF4mF niTluBIptQ+NPkpUohnJapmLCl9i0o2lv83Eb2PJL/UnQPTa0c0A22BDbIMM cBetd4nRp1Kyb2SBF0mNvgSV2RJU7YNxsSV2alMyhYdr+1OoaI/CJVj6PeoN bAePcOJsHNfP5aJcs2V/tS7H6t1FB7NIGcokd7Yan54gDjR7obigIvSheN+t OtR384iYD8K8+ihxU6K7IUOSQ07jV1COIqCWTZWTvCE13lzai6J6labzs2jP VFF2ogJH0c6s8WKUTdHil9H0P+wnayGdro1Grj+/RIqsad+ZLr772xeMrNZR LXXs2aiUbBFLSLkp2YP+rL07zdrDAZqXM0nt9SeuxZHSkRD6TuYSkC88kbyH 6Cp7IqW/o2WWfXJ0cQvbRXqxDc19sSyf0dI/mUVNq+hMk5Lq5iBhVSfihd2U YQYcM9/GgSObSGzzEG2SbBdnQmiGzECRPaU9UZL5Y8lujKNhspDI+nDMxE/1 4vSIqfGheiAJh3BrNqXrSuZ35u75XK4JB0xtJEousuRgmz0Fp4soPtOAT5VS ek3/tafarCbgfi8X+4eppD2KJX3VB+8uR6ofx6M5Mc/cF0tEj9Sg8NGypfIc m1pusHniPRT9X+E7NM2jH94hQ/JX8dl8eh60Y6Qxwa8jTnS1gO7LHaxJlquQ Nb3+wQbnn66jnSqk53Q1U1daKe0LJqc/hKELLSw+nab1VAnx/d4kzcbRcbGO EsnS2aLJWW3CgKK1PpnGeCcfkp41J7vBl4GTZSysa1k4W8eM7HP5QgWza/mU 1fgTrbbEN3w/Dh7bMLJR4BkknhhlQkFBIAWDoWR2+5Ek+h9VYUt0haxZljFL Z7rpW+yQrFBF0VgaMZ2Sq3LMsUo0olCYQdutFn00JG7JlVFhu/0+ySira0m5 HsC+TkeCZqOxrfNle/kebOoPkj4cSdCYM0eOO2Awa0XGkyB8H7lwYNmDAzeC aHieTsdP24X1O9jsmMuW/FkU2vtsnvkGxYm/YDl4lzHJJeOPJsm7WonneBRh i5lE96QzujHB3J1Rmk7X8s6PH3D9xRn617uZuTNG/lQ8qoYAyS85XP3kLENn i4ns8cayVpjyXBTuazH4LKeSvyI8J4wRUWyLf5aFZCVrCtu8GFzK4/Stbt7/ /CKPnp/hyafnmTtVR0aJ82s9iE7UxT1qP24xByhuCKRHclipNoyh0SyaWsPQ ivYUTMnajiqJEM8PzrWjtj6WwlJfKkcy6DnZRsGohsyRJHzK3TEI18fh1bPo 9jCOJDuzufqA1DicQ/6t7E9qIeNyDLtaXXhDGDlQslDqu0nYnHIlotcLzRkl OrPmxG048qPPxnj3B0N43pdMc8WTQy8kk7w7wNTzi+wK0LApdpxNZY9QLP4K xfW/sK33M3LfP03BJ5NEXm8l6/Yg8W+P0PZ4Wbj6Co9fPOTT33zO6p1lFq4v MXK/l/SJUIpFey68PE3XpUrRhWgK+5TEjCajeZTD4NMGyh93E3ApCsdJX/yr XPFUHyOj2ZOMbh9UXQFce3tK9jnImTtDnLvdx+zFCqo7Xt1f8WJKZqBP9j84 qSZV6lZa509+mQd2vjuw89mKY9h2fNKM6VsrY/lmB12SEdsWpZb1cdT0RaJp dKVzIo/KXg31MwVUymalkswQooN+gglWJT5szzDDZGofsWuRJNV5EXbeAYXM wc5Gc1rXk3n7Xh+xtyIpeZrJ559OcOlP4yQ8Smf93RFuvzzO6vcjeF3LI+Ru EzlyDemXtRxOj0eRsMCm6ucoJn/Fpsf/ZtPQ96guL7D600FufHuV2a9O0/z2 BHXvzpC6Xk/JVCsXn93gwcurwmmdpA+F03GjWjRjUTJcEqnNzq97eOnOAh1f TrLwVSkHSh6xJ/kxPReryF+PJX4uCacmL/yKnEmTLNy8Vs2lx4v0zGcLN0XR PBZNUasHjaNBTJ8oYPFsJcUt3ihTDAjLNsc3zQDfRD2SxPPUBf6kl3oTHWNH blMQi7dFP99qoetsNZXjhWQ2h8i8iF4LRwTl2JJS50fOvBpldzTHVLboBR3B L9uN0LZ0tuUf4tCSIboX7dm95iOvhad7bcm4kkqN5DaTkyak3Iuma17FvT8O onpUgPqShq6njbR+00n+nU5SbxdzZC4It+UM8cViFIG90r/vo+j8OVvu/BvF 2J9Qn7nJvV/d5+df3ePLLzaY+fQ0VY+nmH1+QryvhSqZ24nLQ6zcXuDUe8uU TmtIahfvmc9j+EoLk7dHSBSt87moZvppIvrF91DoTpDfUMjocRURF1IIXUnB uyOCOLUj0cXOdAuj331ynPPXe+mdET3KtyevypOKV8/WSiwpaJJMWeZAbKWz aIsdETnCFqkm2AUcwsp/F2c3hihsDidAckRubyjLb7UzfKGVtPZkjkUZYyOM bZN2DJOsYxh2eeE2EYlfvRum6cc4GrmbiHYnLAvc2Rqmz9YKS3ZWOXK0y5lt TQ7o9toRJYxwbMCGhEuprP+mi8z3Cgg76c6l74o5/bN+QoSJgy+nYyvvdRev qXmxSN75DsnEHSjyRB+qv0Jx9l8o5v7G9s6v2FL9AfG5y/zw01P0vFgm7+40 6x8uMXill65z3Vz65CJr75+h+UIjzZdqKJvLomGxiCzJRr7CHREtQTiX+RA0 5UXcSQ2HNefJ7aqlaSWciMtZqM8W4CzvSS0P5tTdcaauNtM+o6FmMJEMyVhR Ja6k1vvSMBYjjGeKf7YB4cIb/nFH8Eg8hE/SXhz8duMvebZMNHFqvYYxyURD y0Xk1ylp7EilZUqNZjAJ5wx3DvpL3lNKhirdgyJ/H3tSrHGq9cGpUfJz7h5M ay0xEy06kujAjmRzdok37q6RzC3zoldjxfKLbPJPu2B0PoG5j5qp/KAE75O+ 9D6tYvlHU2R9VczxT1W0vpVJ/LIa9cVaAjbKeCOxEUX8bRTl4m9n/xPFyf9B 0fYHduR/jVH0dZafzlP5cRcNb41QcjyPitUiVt9dYvbeJJnrpUw+XOb8B2dJ 7w/HNcmYhBI/6kfzCE5xIiDFnCMZ5tjWG5A27UDmUoDwuSfei4lo1ipwK3Mn UxvLwPF6inqTCBOmiqtxlaxrTniNnXCrsG7+MZKKrQmS/JfW4E5JS9jrezPp VRZUdvozJnlmbuPV/YRw0Wg1C8Icc+t1zK+0UtFTiK/wXGJ3FLsSjnCowxKb aSc8+3QxbNuKb8VRMgfi8BU/NM3aj4/w8Yhop47Ggd3Rb6KbqUuReFriJT+U Z0MJnolBczUUkwkfLv1mjpM/X6Hv62bu/mOGis8qGH+YwcXv5mj9rJof/2KV p78/g2/bIArfJbaUf4xi9R9s2vh/ohF/x6D7Kb13R5n4tA2PjWJyJKvM3pN8 dqVa6pRB7noxs+8fp+hsIcnD4eR3pVEwnkGk1p+ocj/ii7yJV9vjHW6IQ8wh TCv1ODJiicVgChmzaqJrfXGNt8ba8zDWgXqEpNsRmmZLRKYtMQW2pNa5El5t KfPtjXoyjJh2ZxJbPBhfrya/OZjsGmc0NQ5oR6Jom0qlcy5X/CuBRskr9eID C+ebufnsIoEtgZKdHcRrLNg7bc/seiRzJ1uwbWzCpskF9VKQ5KggrPKMcVfr ETzkhqLSku0DLsSecGfgujsx8zHYbWSiftnP0vtV0pfZJFxX0f7zQSKfail5 X7Ly18KSP66n+5sOCj7L4sHzJX7/s7uUHj+Nwn6YLZkPpb5/R3FOton/5o36 Lwm92o2TcI/TSgET78zQca2dhstl5J5NR3urlLoTeTQKbzWuFqIejZVsqKR8 RkVmVxSa+mBKZf7DCx3wTbYiqlo0o91friWalEYfApNMcAoyxtHHEOcQk9fP wWPULmgqRcf700ip9EUpbOY1ITpz2oOQWX1CanXI7gyhfiqT+t4YMmQdK3rT aehP5eytYTYeCM+sNFE3kEbVUATxzR545ThjFnKU3ZLFt3Tbsijcpe1tQ7FJ w+6EWo52HCJeOCW+7ZUWG7M98QC2Yz7Sq7EcejsdvS4/ou/l4zoRgM5cMI2f 9DH1xSxl93uo+OEIKc+aOfebC2g+72Xi216mf9WL9mUu2aJ5F360RvOVeanv CJvVosHTf0Rx6j/ZNP0PFFW/F65YJ2m9kfKLlWQty3rd7JOe7qbodB6pk5GU nxC9FM0cl8wxKhyXPZRCy3IpmrYYbEQr4spdpZYOBEgmDRVvSZRM5pq4n3jx s+RiTxoGMoXB1ORUR6LtSiQ20YqgYPm9NEfi851Q5vgReSaRwa9DCSzLwbez CpdJV+LGkokqPEZIhiUuCfspqvGgfVzDzFol5+4OcOpBr2RyNcmNtvimCuNG GWCqNEBR7I7duWgqhgvZZdfFUZ9O9naY4dTrSuVqBmb5jiiKzIWhQ8grErbS OmBdb4f5WBLTn3aQcTUegxtpWK6EUvWjSbqlzhkv2ul8MU7td2u0/7CNk9+L Vnwreesnnag+ziF0toZNDkNsyhCPH/4exbp43In/YlP379nZ9BU567NMvtVK 3fkKOi7XU3i8QDJxI5VL5Sw/mWdAmGTi6QD1J0rJmtKQ3h1DXJ0PrpL5TEN2 ElxkJDzp/ZqTUur9SKuS78s9SMqyEW11IbXUmTCNJbGv7hXkuJOsdsfLT5/E NBcycj1Irwxg6JZwe/hxFGZThHWGE9JoQ3ilJ5llfmSIh7aNqFm7OMDoSt3r +7iVcwm0nUiXWYonoUHmosAamzh9dEIPoqh3xnhDtPSkGuOVYOknJwzy3Rg8 If56rpet+cJsJ0PxK/HCqNEfF/HOQ9NxJL/MI+ZKEllX6sh/XIHXaiqzP16j 9vMx+j5foPHbc3T/ZJnJX50l7pNyYq8oKXpWietgP4qAJTYXisf1/VxqK717 4p9sHvwdirJf4jpylSrJq2rJjnXnKxk918z4/TFuf3WDWx9ckB4uJ2Y1neCl dKqvtlAuehFU4kBhfyz1IxoSSl04c2+UC3cHqe+OI1YY1CfVALc0fZldM7zS Dcmq9n/9f7pjC50JUVkSEmNBZIQjBZniK2nmJGhNCM2MQKFXS1ZFBAlt1tjK MSy8d2PltBNzt910Xyxi5GotjedKhGm0VIwVo2pOxi3DDo1ocEyNH1YZJryR a8LWdnN0V49ysM8Vq1Y/jERzXHOi6ZjvJrojRfzHD/1TlhxolbW+lo3ViBN2 48FkvZXHzE8WWP5lE9HPSyn8bJCSrwbIftJM6pczZHzUx8SvT9Ly9RT1X7dz 9q9DhExNir/NsSVb+rf9pyhW/oZi+X9JL/9BXv+WHV2fkDZUTdV0AYNXB7ny 4iwtS5W0XeuQnKBBvZJNhGSl2mctlD2uoeheE2lTKrLHVMxc7SW0wIXyV88O 2iLIbPEjptwJH5Wp1NWU6CIH0c8sWmbKqB6Pp2EmCXWDF8k5LvgFGBEX70iq yplQ1UHhkjfwzPGgQGYjotcXxy5X0aBj+ChNCAi3QTUVStlSKOkL4aRMRjF0 tY6G5UrS2pLI6U4jsyOe4Gof3kjTYUuMHm96GWIRZEWhZMys5UI8W1QcTXPG RvL8tnZf4Skztkq2OzYXi5FwS9S7FaTei8X9rQwqvmgg6N1Sct7pJ/1ZB5Vf DtLz61WGfjLJxb+eof3bFVRftDEq6+A5soIifJXNWXdQDPxMPO6vohH/lDz3 Fzb1i160/ILM1fMsvdUjOVF04kw99QulKPujsWgVTpdsP/pNu2TgQWreWabu cTGRa4WEj6TjXOmKvcqajPpQ8oYS6TldSftSJnWzGWTVh+OnMpfaZlE1KJmu yo7oCtvX/4cjJt2WaNHi6HR7IuQanYVz7f118E0/gkO5FcdaHTFt80BfZYSr 92EsnPZScTyFotV4KlbSaTyZQ9FEOFk9zpRNxVC6oMGr1JGYtjCi6iIJ1vjT PVTP4GwjCTVxGMd5sDfaDL1aI45U6bEr25RtM57sGgpmh8zV3gu57Bbd1zvt Tu7zbC7/qo/yp8K7P5lh5R8nUb9dj/ozycuPq8j8qIn8bxfJ/nqAiV+MYtA5 gSLzKptynqAY+SWKtb+gOC0aPPVXNk2I33X9Dv3hF7RdaqZ8UUVofww1J2pp XtFKfgjA6YKam183sa3iQw5GXxD+aSXzagHKU3not4TgJ/2r1gYR3x5M1UTq /1/UW0a3mafbnpKTgiQVqDCbmWW2ZZRRtmXLMtsyg8zMzMyxncRxyGHG4hSk uKuau+tUdx/u6QN33bvWzJm5n3/z2D6z5sO7JAtsab/Pf+/ftvRKFHWGkCt5 FJ1mj4vuhLCTDVElDmiKbdDX+FLapyO+VIWxWU1pYyh9sg4m5guJldv7yf4I NzqiEtY6kWiJVawNhgwVHsHHqFsxUCR+27Nezuj1eukxOVSOxZPfF4Gh25dY 8ZS4WhXNkhsDG11Unytj8q503N5CDiT5sb/ME+WKDW8OH+CwMLhFnQv7qryw OK9HWW/Fu0N56H5sJvxuFKX3S8i8Vkr6i3zi30uj5qMmhv90g4wvuqj7aYGS 7xeo/v0kK/++yJHWBhRhfSjzxB96/yCzK/57SXrG4v9CsfCfKGdknjv/Bf35 JbpuVRI7pcdtNI7YmTSC2yLY3xpG6zdpxMzIfvK6SXN/IwPCF6pbRs5MppHS FElOh4Yk8biw2gCKZrO498kS3WsNTNwdYObhICmtUeQP6OhcKGDqXjvhpc5E SyfOrvYlRzhDn+5EcMQR1BGHcZJTS593sbXdwymb3Vg6vo2t627JTh/a5g1U CVu3XaqgeTaP9vPFNC0YqZb871w2YBzwI7JRhbY3lNRxDSF1QZSMZ+NZGoqy yIqgxRj8F3zZO+LFMeHNAwOJvD1sIO5uNu8uJ2KzFE3xhwX0vB5k7LcT9H0/ QdOn9Yz9OESvZFvC9320/f4Cxd8t0fjzPHV/HcdivFN0qcMsT/yh4/cyv8K/ l0XbK//3Vs4p12Se2/8Vq4FX0oO7qFqtwHdIg0WlPR4mF8wzPDlZ5kD5uj9F l/Opvypa3zUSc7kYn6USahaKaJSO1bxSQGxjANGtwUxdaSRjIAFdTRCBObY4 Jr5LqNESTc4pbCJ24S3ZF5x7Bv/kE1uv0YVGmxOeaIFTkOjqug8nt0O4+h7C yWs3Z+z3YO90gJbFPDol2ypu5hC4GELJqPj6SCmVPZl0T5ZL1hbQdC6bnIFo MoY1JHb7EzMYQWSHPP4sXw5U+TIns++m6+NAuQ+7pTPtqo9j11AipzayiJhP RX23hNbft5JwXvqn9ICWz0a4/193KPu6gd6vh6j/aUn8uJ+mn9eo+uU0Of8w jNedDpTBnZJvD0VH8d/Jf0RxTfz3yv/871n+XyjH/40dTX9i9P5tfv2bL/no 65dMbAyR3LT5HjidZEcaHuk26MbsCFuNJ+piJsZrhVv93i5T1rN4hKEzRvqC GyFFrkSXexFodJDNjsBCB8KkF4emm5NQIx2tPRzfrFMEFdmSVB8gnOtCnNEZ nfyOwJgTeAWKB3sfxDvmjHi2BzkmP2Lz/DGNxFM0kkDkBQ1HR71xlv6VNxXP 1XtjzCx1MHG1m7Zz5fRcrqR2WebgQiGF6+kEDASwPzuYN9KDiHtsJKOtg0Pi 4/tHLDjYqBYfDmJHayhHbqRxZlm6xqVc+r+sZ/mPPVv/oyp82UDKR2VUvi6n 7esxGv+wRtY3U+T/dpmSv0xT8lK6RWgNyqy7KGp+RDH3zyju/W+ZY+GIq+IT N/83ZqsyzwP/E/eJJzz51VN++tMf+PyXj2kdy8c3UzSV/Z1oCsVaa0tAjYbG 1Wp0Mqdu2XbYpVjjZXQlstYf/0wnVElWeIp3JpnUaE2+olEAUdIlkqWLpTRH kFjniHeJI5EmYbVqJ+nbKmKK3UiUjpuU44h76EEcQg7gEX8cTfZZ8mulw1So SOsMIGDWS7rnCU6uuBK+7ovneRs8brgRO+dP/YBeWCWTprkyetaamLk7RI3k SflaCSfLhRekQ5p1RLPvg3iOnHNiX4sD7wx48qb0xN2TQSi63TgmXbbqqxJS Fw3UPRYff93O+b8+YOSPM3R/O8HYb+bo/vUsVX+/Su4vxyj44zzjv1/mUHQB iqQrKOu+RzH/L9uzuyr63haPWJf5vfz/SN79F8d6fkXVhVbSauPJ6U2iXtZg Uk0wSeKxWe3xFIuHhhd7klUZRnFjHMFGJzwli4KL3MnsixLGy6ZsKJWcJvHb pmjapwspb0+iY7yAss4kErsi8B2NwGHUj8ARO4KaLYkUVkrvjkab7yz7U9Z3 TRRO4cISeguqO6LoXhLOv2RCP5aImeSQw3V3er7Ix2fwAbtTPuetpgbhLWfC urVMXOmlYczE6Ho/g2t9pA4nUjFTSMlSBunD0aQOFZD5fg+WK7Hs7w9hX5eG PeLRuxb0JN9K4cANDScH/Rn4ppvurwrIelpA3PuFeK0HMSjaGp+3UPFqiELJ uKbfzlD221WG/7qCU7YJRcIllCPCv8M/bc/uLZnhm//XVl9WLIkPT/0nZlW/ Jmplmqz1SnneaYw86uPS+9PM3Oql7WIDDRcaMc0VU9AcQ/WwHk2JO0FZwgYF bpSN6DB0hJMhWZfeGIyhKoBkWdfxKe4UVsVgrIhAZQojTB5v12eOwtxeJM3r CR/yQz+aiKbIngjphLl1gWRI766T5940EEPpgJoJyTJLUwjvtLlTJfz01asp YkqF6xX9HAx9ytvStXwuGbjxwQWaZHavfLxK9z1hiCs59FwX5rwh+2cxFh9h 6/7lUjzk9jsLHNlbE8g7HWHsEd/RvMgk9Fo0KU8yKP6sgPCLUYz/MMLS7xYY +baD9MfNDP/lDp0/rZHzqkO6xxw1v79K57+vsDcjE7OYSyjGf4tiVDJuVWb4 3v+5rfOSdI2p/4Fy8j+2cu5Ixyqn5vPwak4gdVBH+61qkno0VAykkiYdIq0j TmYxGSfDafyzrfHUWxKQ5UpEnrtk10Fc4ixwjD6Jt1zuFio+G2lDvMETTYI9 mVXJlNxOZeRaIAr/jzkWe4ncWTVpQ/Hii7EYilQUCkv3jZeyfLGLxj4tCxer mJgr4li5H3t6ZT9+W8aTV10s31jiuOEltr0Pcf1QTfyccOW5AvLG9QxLvo7e 7mL0ZiPF8/m4j0WQM5JNivwNe+nzh+p8OdIcxKEGe940RvDOjDfmK5HkyrrQ Xk6l4IWJhm9MdH1nov5X0Ux/k0PLqzHRtYXk92spEo4o/Pky4d8N0PSfl/Br F4aIkI7c8Qvxmd+gmP6n7Wy7LBovCU/MyPlR4Yju/8He5m85PltKyGgafXfb KZWsSJhMxL/UnaLuRAq79JT0pqERFouu9cJeGHfTo0OybNGW+hCU6SwZbY6H wXLr2CeP8BN4+BwjLMKBlOQwgvNd6bnjwv7wSd5yk3Uo+aOv8xY/DsMt6jBB CVZbx1y5RR4hTrp2TLpsGY7YpJ1lR74dhxciyPxVKUu/aaPre+mu38aRdDmc 1qV6Jh/2sHirm+sv5nj26hpzD7u3/lcaOBAi2RKLdbMP3n1eOEuXfrf2LMcq PXkrUYVZowvWY674Sr7lfZxD199nk3Yri64vO6h/z428q4k8+o9zsnZKaPp6 kv6fLhL9sgK9MEX4rydwbG9EoZ1HWfuFsO6vUQz+aft/aZs9bjPb5mUbEhbu l1mu/kdODM6RdaOZCx/OcemDRYafDWASzqyfymfxzgh5g0bpes00rdZsddry mRKKhtKpl7nPES8tHBI2q1eLZp4kFvliyA4iINgafV4AQTFepNUdpnBMI3lX wFy/J+opF8JbQ7DRWGCuOoq9v3Bc8GFhCOnGKU6yOeArXGJvcuDNfAfMpj0x fxyJzdMA9py3I7QtnuGlVkzjWQytFUsXyaZCekvuuHTQvjB2LLhw+Ho4hxf9 ObVqx6liFceMx9iRtJ+3s315oyNSvMKCqBtZpHyaht9cNK0/NLL4tyqyblaz 9pcB6j9Np0707PldC10/tUs/nqTkuxWOftIj2mrY6TeIouixeMB30uN+Fq+Q GV6Qmb24+ZqRzPCQ9LlhOW3+J/Y3fIFnr4G0/hSqp6vJ7E+joC+BuMoQedyl JPXlCCsVYRozktaVjEYyMLYlBP8CW5Ib/ETjWDI7YuX2gZJzcWQWhBAW60x5 dSSFhRE4hpiT1GxNxbK19BjpBLPJGPpzCShwx8LvCA4+m+9dtcDGaz/H3d/i jPcuAlp8Ca6xx1069lmZt7caTrFj2o5drfbkjCXTt1pM7oDk6lQkFUtJlMia s67xQ1Hii83dSDLXFtkRPou59Keds37srLWXObPijUw39pT7c3TICbdlX6xW Ekn4sILEp0mkPkuj7qs8Wr8qRP+BgSaZVePzWLJfN6L5sJ28bweI/XmS3elq zJzLUBbelo4hHtEvPjz5r+K7/yYeLPouyNyOyjwP/g1F6z+xs/SX6GemaVir YfX5OkO3h+lYrKWiJRcXgwc28pgC8/0IqQ4moiqEqAo1mopQXIUnXUbCZN9Y ENxxhBDRXF0cRojwWnCULaFhrmi1KrzDLAiR3hLVGk3wcBSRwzoihLWjcz0J jHPA2f84hdVR6LICCM2RHKz0QlVljlv9cQLqhDlq7IhrdsGnxYXAVg/Kp3Ti vQZarhTTf7WB/o1GGm9KL64WnjNJP3yez7XbC9iFTxF9sZPdi36SlYEcvhnC wakIdjc5c/ZSHLb9Xug/0eJ0MYTQS9nSgXswPdJS8UOteHMSplcNjPy+kZpv GvF6UE/K6zqq/zqH/ZoJpZ0eRe4Gip5fyvz+negqnrAovjsumo5tHhMnGveL R/TJZcU/S39bx3RriInnM7z/1SP6b03zwe/fZ/35OXI7DOg7Ewko9kVTqt56 /Vstejm3RNLxUzGVVwOIHShEt6ojYDQW73o7vKLs0cSKX+j90WhdiUp3E8bw JUz82FVvx3FvYV7fY7h5HsHJ5QAhoeZye3v0RUEUNgaSLH0iYdiVsIazxLQ4 ou9Rk2GKZPB8LZeeDdFwvpCejWIWHnVgmkkXPgnldKtk2LB04ktZXPjFPPc+ O0/MJ6nik84kCOuaRoTJmn3ZsRTDofFA3G8nc3rDl6B5f+p+H0qInC96GEbO R5mk3w4l41Ypg39fR9YDdwyfTGH8x1Ui7uTguFrIWy4pKPXnUVS+Fo1/3v5f +6z4wfDftud2UeZ4/L9Ea9G57j8wK/2SnCcNGJ+UUrDSQFabltQOPWsPpinv NJDYHk12SyK9M5WU1CWSVhJGTFkUfbciSBkfRmH1moSGDJKWggmRnu+RdIrA KDvhNekLmX5b7632Fw1dfI5j7XIYN28LAtTSTbyO4uFxGHub3XiJT0QnOJOS ZUdylwcZ/X6UTmgoHouWPl7ExUejjF2qYlZ4snrMQM1EKvmip3EwSRi4k6bL 1aS/6GZvbwIeMo+hd3WcEf8KLA3DuyGYutv5HE2Q3JwJI+CyL1VfBEnntybp qRdhKx5o18IxrBUx+osKxr9LpehlPsW/HGfmzyYGf+rE/NMRsv9ygdiPR1C4 xqM0LKIo/1w89nfS10TfCeGzqU12EDab2cw5YeLZf0PZ9jfMav5GwMx52u5W EPMgB5/JFAJLAkgQH4gVTzsVeQBL7WkCU13QZvsQGmNPkqxnfZmb+LU3ezTD ZJliKJnxxH8wGOs8Ryx9DhIaZ01BubCwZJi7cIWH91HcVYeJ03ngqbZEnxuE Lt0X/2Bb8es0IqNdSBU/qpqPpnMxi97lXPIGgijpjKSoL5z0Bi8ypGfn9sZT PZpF62qe+EQjTQv5mNa0eF9QsaNLxRuSnYF5fpS0ZJLalI5LsvTmRiec+tRY dFkQOyl/+6o1Je8nkntH+ur1OPKexVH7STBTv/Gk+7k/cTfFG29VMvpHHfo7 Frg+7SPpH4awvJfDG4FpKJJXxI9kftv+IHn2jyj6ROMBYeGRf9ve5qRvDItX tPwLymrp0aH/hHfqNC2P8nCQzujUKLpkSTdoDie1OgyXlDOS+ftRJ9sSZxCf yw0jPs0Pb+m20eKP1cNupM8H4jmuln7gwzH/E4SLLwwtlWGsiiAi0RzfsCM4 q/Zht/mZPC678Al5F71BerPGnuy8ULTRKvQ6X7J7nIkyWZBYJWu72Y6MZhXG 3nBK+uNpmCqmY6mJ0qFs6s/lkjKvQydrvmA+hrhGS2EPC9zTrXBNOIG2wo/0 wTTK56sILUmh6kYT3uXWBM3aE3/ZmbT7KgzLNtz4cyB1T8Op/Ua663U76n8o pv1byeUPCyl9YiDhjoHyPy4S86n077sZ7E/PQhk/j6LgFYqqH0Vj6XG9ou+g 5NyoaDspvjAhfjEuc9z97+xo/ivKrL8SXrjE4koyPtcKOC3rPLkzB1NXIcXd qWhyPQjPdsE3+iz+EdYkGnyJjHfCP9qRKKM9YR2ehMp6VrUG4lPihVusNVGZ wbSPmsioDCa5VEVsjiteEacI18lzy1eRW+wh+triI5r7+h4hMsQBP9VJtOLh SS1uJFepyBkKovtaEeO3+qmbLKZB+p1pWjxL2EEnvTd7OYWOez1svFpANxa2 dexIcrkKP+maqjxPnIr8ME4Uc/HyOHn3mjndeJLmu6cw3HGTnudMy72jtH7q iWpW2PID6dU3ReNHufR/L93lu2TJpVgiP6rE+KqG2KfVBH53jjcSs1HGzKDI F33zvkTRIBnX8ffCw/8gsyz+O/If2z7cL6et/4pZl3iH6Sc0jTepuCH+cMWI i/hu3XIrD358yOCDEYbOS2+siSYo2Q6PiM3Pr3UnLtkddbQrMUY/soUBQvJ9 cUtxxj7sDM5hZ2XGNYwsNW69XyqjOYzwHJnLHLlfvjdDlxpZezbGxntzdEiH KyqLIDVFRUiQOem9IVTL3E1f7KB9VdhQ/KpmIoPKCQP5Q1rC6lVkjKfQfqVG 8jWL4ccDdG5UEjHkQUyTD8HVPjgIQxcuV6Fui6N+tYK86RqO3lFjuKolPs9G 5nYPUVfN0Z/zpOtbfyI3gmh+nIJWrh/7ZR1LX4fS/F0xNZ/HE3cjmdwPc7a6 sufdHvYVVaCIHBV9P5IZ/kZ6hHhEvWjc/Oet14gUHTLLvcJoHX9F0fQvW8fX K4x/Zq/pI2LX+zHv0xM+WEzqhF66fQMr96e5/+VtLr23SMng5jGJesKSVKQV BKFJFs7S2RKps8HJ9xAnHPZy0uEwRyz3EihcW9kbTfV4EjktGgYvlLN0p4Om 0QyMTeGUdsZT1qGjf7GM6uZErtwaoLQ8johlKxIvq0hYs8JuPoi45QSMw4nE jQQLp2vQt8fRe6WJlacDGIV/s2biiB4XBlwMxH5I9u/gMRw2jqC6m0TwUibR l3JQjVThcSWa+x+MklUrrDVzlNFnHgx/7EbKjTOUfeRF5RM3jB9E0vVbA50v nORxeKO/F03GzSCSH2cR/CiVgCe9HMgsQRnSizL/pWTct8Jgv0JRKlud+ETz X6R3iKYDm/Mr+vb9H1v/i1BWyeXp3xM0ukTmbC76vnyyVrJovtMi+VGFrklD 0Xg2Cw/HefntPe68WqdhMAtjdTiquDO4xh7HM+oUbgEncfQ8xlnn/QRozIlL MxcmPkuU+HaY7jTZ9f5UC4M1DkTy6PMhliVDantFsyyPrdfzNznN69Ypgu+G 4/cohuBPgznwUicdXkvJyubrGeWk9CTRIL4+cr2GguUk4nv8COt14cS6N4c2 jlL2ofD1rT4SHqpRf5KE5Wg6XfeukHOuiAdP6li/UEDzDQtmnwcz+aU3QRft 8Fx2IO+FO4UX9xHefYrGJ16k3ggj94UW26k4Am9XyPkcjq8k8JbRhCJiSrzh /W2PKPpe9JWuXClzXCVzXCPM1iaZ1yZ+0S3Z1vHPKOvk8vw/8WbuvGRLJNXd kgvnsqm72krvjSGyRvLQtggPSZa3y3odvlJP1Ugq09ebKBCei8v3wke82S9C mDXZFV2emli9SnjAmXDNGel01kTqHbANPYBrkPhtwhESS50w1LhKn0li+XY5 nUPxlJcH0fR5L+9K5u40/p7QhSYSv0kiZimepDbhjaZQCqdy6b1cQ9NKJjkz sUS1qQju9GDHOWHYj8Mpv3cHhdf7xEz0kPFdBqFjuUxc6hImEQbtT6XvYg09 Dy0Zuf02A+/70vTKhaxbXoRPCuMvu5N8x5vqDz3o+1xFx0tXMjciSLwTTf6F eA60JvNWTA2KmPPb2lZ+vT3DdcJpVTK/jeINjaJv3R/l9M/b5+t/FoaQnlf4 E/uKPyfIlE6BzJdfkyORPRE0nCugcSZfulMeTevNGDrTUEkuWcQeJaJERYUw Z4H0+prhJOnI6i1/iynyJlD6X01f+tZn6wfHmaPLdMFPd0r6hzBw5Cks/Pdy 2vdN0XwXYZmHxa/NKTUF8PD1KoeCJ1HseYT70D3SPgsgesSXhFo3ooRpc/sS 6VsvpXI+Dn1/kPSfGBzb3VDOq5j4spVnzxc5kTBF+Mwy9d/EkDiQypUr3dy9 vsrk2gaPP/ySNOnJvTdUlNw2Z/SzfZRc3UP9C2sCnvmQMveucKYDKZdDaP/M nYQbwnDPszjR1czbNRcxC+xEkXBd9BX+LftC/OEz0U58uPzvtrf6TZ8QXatE 80rZquWy6t+hLP6RHUkfEdTdxeIH02ReKORovSeere5kDUcT3xomMxxJ5Vwx nRdbSOvLwjHFipBUc1Tx5sSU+Agz+4nfGqgflIw3qgmItqS4Oh51rDPpOSHU 96STIt3YN+YIAYknCYk/iVfMQfykkyRmuBESY82XryfoW5jhkO4+hbcmpDfZ om52Q1vtiHe2HRWL6VRIvpWMhWLsCqJurpqI6SKUA860f9HEd7+Y4+n7F7nx TQOV9zVEl6m5dKODyev9DD96wNrGMwpNKcQvONH0SEnq+AEMTwPoeu8t8cdD kn3Sw586kr4h8zVtTcSSD7YLHaLRBm/mr6EMHUcRfxdFtvhDmfBDqWhbKB5R 9MO2F5f/dlvb2j9sZ1/JL+Syn8SvpU/Hf8L+gi7KVkp5+ItH5N5owXUoGP82 yeW6QKJq1YRVSA70xG2xQXxrEulNWlzCT2In85y1+f6I7mQiZa5bpQM0diRv fbZcUIw58fFutLRnUlQdS2y17Ldaf9yLnHGPOS5McoIQ7Vk8Q47w4Y/n+OqL FR5+Pc3wrw14z9rhm28t9/EgRH5val8ocU2ewhJ66cz1jNztwH84A7MJNU4z gVz/ZozXf1xi6RflJFYLx5miGLpcTN75fBruLzF17hIxw+KpA47kzx6RPnGI lg+PMvLBHrJuWqG7dZbIVSt8F6zwm3PgxFiC8NVNzKpFU10zis21FX9b9H0u HvyxaCsaF3237cMm0bZYdKwQP676jegqeheIhxT9EmWOXJ/wGfvyltB2iS+M p5O/Igy/mo5uJglNZxDBNUE45PkTUhlAZmMwnkY76bCFrL+8IMwah0on+RZz AI/kMxT060mri0YvnNE+nINWuDcywgZ9kjeFTWGk3c4l+qUzoe1HsNcexD/J El3OUW79fIG7Pwlz/a6YM7dssayxQFPiSt1qBpE1vkTXqUjp1DB/9wK/+PnX 1C8U4djlKvPrJp0pAKt58a/1XMKlVxf1xNMxZ6RzOp/Mc9LnhgrJ6Uol63Y8 HqWDGAbT6fvRTnLzbSofv0X9+++SPfk2SQsWRFyxxHPBgX0V1SgrrmFWcB2z iCEUYcMoUsXjc19sz3DuZ9sa5n0lnrHJEzLHJtG47IdtzbPFQ3Kk62XKqfY5 e7PuEDlbirpRha4vSBgyiISZHPqed5A7o5O58yK4OZToKh98smxQZThxfkM4 Y76IuWczaISTfVJP45lwGG2hqzBGCOmVoRR3JJGYG0BYjBvhWc7U3soS/vXB qyoNda/0t4YwKppzeXclmGN3ozn0UMsbi7bYNNiS2xlNwUwEKd2arc+uaZor 4Nb713ny/h0Gb7Wi7VWzu9ga5/lMTO8vYDdXRLYwRu5wLn2rlUxcHhAuiMG1 UEXgWBD1N2MpnJmgUp7n2ndH6Hj6Fj0fHSJ39Q3se4NJfGhNzupeUs/t5UBf u2j1GLO08yh9e1Bo5kSr+6Lly2190z4QbV9vd41CmeMS6XQlomu56Jv/1bbu mzOeJ/sh4Q5m4eu0XLtH3fk6AsR/rSRXbGt9pGvmcf/Hp6SN5uBS7E60dApt USiacm9Sq/zxNjiQUZsoWZchmgWgKVKhTjqDr/4EkYl25FSG0T1dSWltKuoo Z3QNDsw9jEbh8gDrnD5Sxt1Y3pjnxKA7NsPCBBdDCZz0IvdcMqWz8cS2eJHW pWXgfNvW96J0LjTz8z/+SfpyJ6pie2Jlpmc/nMG9R7rnlIncgTTyxnNoXajh wodX8eqIIlS0c2rxQzfrxcxkMq/u5VK5eEB8Y6/sg7fQrR0l7Y4LbmOnSX18 FtOD4xweE78tel/0nUXptfn6xTkUWQ+3j8XI+VC0Fo7I/f884rttLy4Tzy3d 1PZT6RYyt0Wb8y15mPJU9s8VDqQV0Sc8c/93H+A7msjB2s3PxwiiYrmGwfsd VJyrIKoqkoiCQDKa4inszSAkzxe76MPYaY5jl3Jq63sKhpYbSBrMEN+wEm89 THZFGIUloZiqhf2zrGi94YZNYhsRucW0LTuhqQojMNsKfZuHdDRh5cVk8hvD 0Ld6kdwSQMNMLleeTdA1b2Lj5SVuv7qPrzBLQKsPa8/7aXpej2o5jsjRVEpG 07Ze36i7VETb7XbSLuajn0/EvsCDQ0XWlK0ZWZtLIrzlOFnn3uTCy91UPDrL 7FMziub3o7lwGp/FcOm3om/pE8m1bhTeLaLvsmj6QDTdnF+Z3SzRMFfmN/eL 7Vnd3EpF7wLx5mzpeGmif6pclyW30T1Cqb6IMqUWM91ZUjsKuPftHeJms+R3 mmPTHUxEZyDNV6tZf32B7LYsvOO8ZO1nUDVQQJTsA5skJ7zibHGIP0PTVBbn n3aQ1BNLqbBnYKI1ySmuGITVvKRbG3s0lN1Sc/FKKJML4fgKp+il2+a0qqmU +WqcNZJXHysZGsm5+2P0LDRSLsw3uF7LReEwrax573pX6cdVtN2rI3YthcqH lURPxpO7IH+vzVe8R02heFf9rSY0UxF41Hmzu8CNqkedpPaHc7LqMEa5ffMD T1qevU3pg4PUPDhM/cYeYvstONArmZa9Lt4g2qrFHxJXRatHMpOinVE0TJUZ zvpse8v+bNsryjd1lstTn277R7KcN8gWu4HCc5a3KzrZu66RWRcuKA/j3JN5 ci5WcaTaDadWb0LFk8tXS5i4O0bTdIPMXyAlDal0nK8guC+Jw5V+wlfWuArn BuadRVMfyPy9fvHOSGIrAogyuBOZ5ktBfTpp0ntjZ4Mou5ZBYqcP2S2+lA1G UDoaQ9lIrGgdxNytNm5+tEpeRyrGoWSm7w6ha4vFt82e4pFEWq6byLuQT//d fnremyB1TEfWdDpeTcEULZSz+OACtcvNOHS6cbLRgh3VVnR+MIHLQDj7ag9v HS9x7fth6u7bEzh6lqIHR8h7fJrM9xw5PSN9LeM8Zt4NsrZHUSRdlK4r/muU +c0VjdNlSxWd0z7enuVNLygSfbNebN/OINyRLKepjzCLX5fuI3+3tZaWJxn4 rKWyozuQvcK5dZcbWfliCc+WEI5mW4o3B5I+lLR1rNzgxgBdQ+WkVqsxPaqj 5pfZBE7Y45BzCucMF07l2nAicj/qEm9GpXOPrrWRYAyVjhdGzWg9edJhtX1a vKWHlwxGUi5zldEZRl5LNNOSnc1TRtIaQ8lsi6b7Yj01U6X4G92J61ZTsiZd 82oe1bKm7r9+Qt5iIcbzBRjEf2MGw7n35XN+9Xf/TMFkM9Z1juyvOMPJfnfi V+LwmPHmZO8JtBe1XPp4ndyb4vnjB+m4t4ORW7uIvGTFO/PV4rMz7FCJvpvv fUi4JlrKHOY8ljUts5ki+mZ+uu0Pm3m2uRXKHOduXn9Drr8q2t5CoRfGi1xA 4d6Prama9tuzHEp+jyTpSgeGA1EWOJCznMvL3wpfdBl4N9UW+3xn1MKxm+95 ff+H67QM5KFujWPjqxRSBqoJGS4jqD0YnzoNtoYT7NGewS7Xnu7ZbK7cmEJX GInWGCynIfimq3DNVJHVGiq6hpEsXnztwQKrN8YlPwPIkm48er2Z6Ru9xBcK hxd6kDOVRJH4aPFF6TwPemi61E78QByNt2qJHjPg1KRi5cNr3HrvBSpjCE61 1pwyHcdCstVzKhibcRUW3WewmvVj5tNlLEwHCZmyY/Zjc+bf30H7p6c5ul6P Iq4XMy/hiHjRNfXhNj9kydpPl4wzbGq86QWbXrup9X/7boZ4SIrcXi/6psk+ iV9BGTImPtPJvnh5Hl/P4Ji6QnNPEwU3UlB0eKLoskMzlMjVL86TPpfL0Rx7 DiSYS09wIrLFh4Fr5cIXOuafpOBZ8AyF3zXxMS0mWbtRlcHsiju9dayqneEk mbn+rF/pYXiygOwSDdrMINyCrUXfcJnhGBqX8qgbzSbG5EtSZRBF7Xr6LjST WKEhMtebtF6NMIeWmqtNVC+3M/1kiYQhHXpZU13rHajrE+nYmKZ+tkt8Xodf qSfWxVYcLbTFqskN55lYrLv9t/jaotuHpY/XsGl1wmbwDIljJ5h57x1GX+7n 2GWdeG4XyqAJWecyh1mbmSbekCbrP1W2TNHSIJtOnq9eNsMTuV66R7roq9/Y zsPoKRQRgygC29ip7sfMU3L/bhaPfzfMjxtzXLjZyKGxQI72qdhhssW8U03v 405Kx7JxNPqwN+YMFgXOuBltCRMtMhfVDG/kE17Yz8btHEwbuWQuFRIpjGue Z49/rTcRm99nkiTeLFttl54O4T9jcRTlAwZuv5iifboA3eZxi0ORFAwnMrbp E+cKiJX7xtYEY5iIJnkigcJpyboXj+k8N4amK5L8mQIaLzUS2ZjAjQ8fiR/N E1jkQmh9EJ4dfli0ueI0GMRZYXvnJj+sG91xlP258sk1XDp8cGhTYtm8g4Lu k9z5bgeqq2rx3XbMYi+IhtLbUoR50zdnVjROeb6ts0EuM7zc1j1H5nrzPZZp ctvYFbmv8EekdJLN42uDmlComkTfYnbXJKB/0MTtj0ZY/nwI9/Pp2M9EsafJ izdMXpxs9aVc2Gfz8xMDhNH2JoivJZzEUzqss7Bu9r0Q3ntdwKvN4yceFOKz +dk9dT4E5DqSNyIdutYXH5MbATkOROY7CCdIZjaFcOHeJJ2T5aQ0qMiXfIut 8yVnIIHSSQOaShWhJhVpQ3HScSMoX65g+PISD199QnJPNhkDSZQtlFG+UEz6 cDIbwr2XXt4moMEb3UiM9OggzrS6c6ohHJ+RFGyrQnCQTuotLDf/YhbvETVp kz54Dpih7Twmf38/rm0hoous60TxUr3omSqekCH6posPJIu2yeKzqTKzmaJr hnBb5j3R/Yr4wZL4tcx8tGRijGgc2o/CRxjEowEzlYkjc3kopvQ4XTeie5zD oRENwc8LCRzJ5Y08T96s9OJUpbv00zQqZvPImSlnX8xZTmXa4VauQT1Vgv5K Bq0fFFH3uBRPYXuvhkAcNz8rQjpJk9wnpSmcgDxb7JKO4Wt0IEz6dut0DimN XtKJbXCNsaNmwETdUjHJXWoi6pzQdUh36Qgmbiieurl6Xnz7Ke1LY2jFPwrG MimfLCF9JFuYLJfz752jaLqQoB5/ssXPXMXjDknHzn5STM29CpJ7a7EpCcGx PoqWtWZCRgLImLSXx/oGAR0HsM6yxSxaWDVB1rnu1nY/MIiehqfbvrA5uxmb Oba5iS+ny20M4rdJMrexkyjCB1CGD4rvNovv1gqbSddW1clpLZH3esn+MZcz 636YzUi37/Mk/GIelc/a8B1MFlaTHlsdgIfwhJ/JlazNjF+swKLEh2Np1oR0 JpB8vozgFQNhC0kkXcojby6TYJM7dqmn0OZ5MTZXItyswybBhpOhp3DS2pLS 6im87IpP+uZ3Z1byiz9+S9VcOV6lDrgVmxNW44enyZM40XN4ZZyZjRUSGtJI atKROZBB2wXJuJ5UaoQnFx/NkjpuIHE+moj+WI6Xu9LyKpjll/5MvXBh5KNU 4vuK8SyO3fpOsPBuO6IGdhE3sgeP/n3sKRLu111DmS7zmSRzmSyeqpO1nyT5 liyXpYqu2Y+2tU0TbTMlx9KFMXSL4gmDW55gFtaJ0s+E0qMEpXsxOzzLULrl krTWyqefSX6vbh7jGc6hDke5vz/Bi/kYb9Vh0xLJ6bYYdgqrW1aFckBvQ4Ap gM4r1dKPfdgVcwyryhDO1oaStr75ekgqcbWexDb6EDUYjXeOC97CE5psR/QV oVv/owjVS4+eCBYukN4xnMe9jx4zfLGdFPlboa2ueFbYEFLlhapcRWJDOmu3 r1DSX0NCcwIp0kPyp4sxzdcQUKWh/VIHw+uDRHZqSV9IIXI5iZBZFzqeJeAy sk5ayyDnH0jPuO1JcqNBunckiaNuJE6fpPvcKdy7rFFsfp6R8aZ0BfFVg6z9 JNEzQbRMFq1197f9WLhLkXV/m8XS1uTnpW1vCO9D4VspGS/87F8j3bocM488 drjmonDMpnK8hV89GiJ76gluJc+plK65Z/O9XKKh9VAsAbNpeHZrOSRzbCbZ fEgY6miOG9ZGT2rOVaHp0fJ2hjlH9JbouoJoXk+leS4e+4wjRMjcz7+YoElm RpPhgHvMafJlX83daSeyyJPQMjdm7oxx8+Ob0jOMRJSqCDSdkW5rhbPsu4hW YeN2I9NXegnJDiemQUP6YCZFA4X4VYRLBkQyenka00oZ+tUUDBcSiT6fQN5N O0yvZ0Qn6QD+H2C8NMf043fJGQ8iozmWJOkfEW1WjG9+t6JkqqJsaPt4gIzn 2z6r39RXtEySywyia/LlbQZLkd6QKtoapNslzKOIGkERIH7gVyHc0Cn+3SKz a8TMWc9Ot3QU1kYSOo188bie6gHJTUULBQ291FxJ4MCm35e4sqfMF8+xCM4U B3CsNog3ZB6PlgdzMt+NvTpz4geTqJHZP5lhh22xK6oyKyLL7CkfS0eV5YZX oZc8tzbK+nUYO3R4ZlqiMXmgSnSjQNZ55UoBTWvl5HfFoRLmONTgj/VyGK69 YcS0aslsTCXZFEVUWaSwcCTGgXKqJloIq0hi7M4y1z64Sd65fLzHpaus5ZO0 kIN6w50HPzST3NrMMeM0Iy+XePGBZOWEK1HFEWT3+XNkKIaw8zpW5mI4a5LM z76PMkPmVS+6ponO8Zsa39pmr80cSxY/SBY/SBQGSxLP1QorBEmn9qlgR1ir zLF0am+ZYadUlA4JmDnFoziVhHWJH8tXMvnq7iy6oipqOlr49kYZYbNRHB/2 YU+9By5TksPD4ewWX9td7c+JRg37ZNZ2ZwdyQKPCp1RYbdqAdZEHJ0q9cCz2 wUf0D670xznXE0f9GfGMYDplzgzCuWqDLS2THfwonts4VyWemEN8gx/q3kPk fRNI+c/lxK1LN+szkN2qxz9FrjOpiS6NorCvkKrVFiIq4pm4PsfQ3RE0E1F4 9UZSttKCaqqIE90efPpVDV+/6ODzTxr55FoJL7+uIHtRckG8K2g2haCxWPyX DJSu26MdyBdveIzZJhNs5tvm/GrFJxLlvO76tr468QKdaBs9IJ4rsxoqPc+3 TDQtkRmu2vYIF5lZh0SUtjEoLMIwOxWNQu1B7JQTd+cK+OFeH6+fNvLtei1T qxrqrgZTPmdO4lI0zR/VUP5hAcYneqaeplPzXIvjeTWOYwmcKXTHZrMLSJYH DCfgXRtIeJ0/VmmW2G1+nn9XPGGb3yEi2qbLGo+VtXDhwSzrdxboXmpBNxqD 88RBqj93pu5hBt3PIqh9lULuZAbqTGesQh1Qye+Jr9BTIv3cxuhHSlcBY7dn yBRecO5xk9ktoGKxActWNWaNjoy+KOb163G+eNLJRx92s/qqjNABPenrUVTf DcR0yZW6226MXzpCyTlz8d+1bV7Qih+kiM6J4rlaybGkTV4Tf0iWzpuw2R/E b4MaZRM9ffIk0wpEY/FaT9HWPk48IQqlpWh7JgTlmQjeUEmfrTtM6WII98bT +WyliofymHsv+HPpdqpoX4VpMYWxB+E8eq+O766XUj2mo2C0mJGbwWSf85H5 8cKmyo09BgfZF9mSzVG4lktnylGxM8oKy1Q7kmV+3TJsOJNqSXRHDAMXO+mY rmbwRhNRSxH4PzhL4v0Zdlb+TfruXfo+DiZhVGY90w0/2XfaihQySjPFUwpx yvChc2mI2pUeoobTsBEfz1qrYOjWPPvSxLfabLCa8yXvagaDn1TS/EByfMaf imsqJj8JZXo5gNmJZJZXE1iZD6JvcS8etTLDcfdQaq9u+0KSzG3cRdFZtgTx hTjxBI3MbmibdDyZV2+jsEI6Sm/h202vdUpAaROBwlKzNbsKc8mrY368fXwP O5N3cbZrJ7mSqQNzarrnZd8ueTB3zcDbLc0czG6Un9N4sVbNbx8Oo+oSf7e/ S0pROb3jsbjXlxA+5IHl5ucxpDgJO2vQjSVzNNWKk6mOnNS6YJVshZXWgshS DUd1NtR0VzN6rY/soWTsh72JexFCxXNhoLPnJZN+oOW+CcOqDRFVajJ7MtHW xVM8WEqm8Ia2WsfasyvS0QuIljUfOhxH2dVG+jcm2JvmyLGMo3jPhHJ21Y1D 7dZ4TvnQ/8SdrrUzTI0m0yusdm02k9uDRpa7Mhgdk33ecBazeGGtGHlucZJF CfI44s/Jz5szK50hXDxBXY8yoByFV46wgeTipg84xKOUud3S1jxQHn8wyrPS BU97ozxkzZ7Te3kjbBdmOQrM+nagXj6N6bw1C+NhtIy5Unouiv1xBurGyvho Wcfz28VE14r3KNI5EVLDnQtayuuKCGsvIrPfg7czPThS5UGYaJw4FYe1nFfE OXIwT411mh8Hg09zXGdHQXMmFdJNAqQHHurwIOGFntdfDFHeP4xLxUMGnueR et2BgOYAQor8pHOEUzRRhm9ZLGn1+aR0CJN0iO+cSyF2Utb9TBHHG93YX3Ca w9KJcgezyF0zELTuTc3NQDoe2NO9Gid8scHOge8JPH+OO9KLbg8k0y19KDLP kh3aNGECmdOo8a3PpdzKLMkuZZBwl59wrZ/4gSqNnS7x7HSIRGkVgpmFP2bm PihPe0meqVCcEF1PeMnmws4Dh9l78k3ecHhT9tFbKJr2c2BoN97Tx6hccCat 1pyrC7Es30rl8w0D76/ouTypYXUuh9TaBIztobw3l8xAXxiJg4msryZK/w/B p9UD/bg3xRsaim5r0M6I3z1Kp+JBMtlLGjyM9lRKN46uCsc13YG3Kh0Jv6Xl s6/H+OH5Iq/f6+biNxmEn/fAt8eXIOGY6JZ4eq70Y64LYOb2NfEfHWEdcXiO R5M6n0fbpUFcepI4VufMoQp57PPxhAvnaiYdSF5youHecWaelXCsU7qYQnIp fpbRJ728v5pKe00gPtm2vJEQJDp0i65d0sXaZF6lgwWWi6bZwl0GlK4yp44a dtio2XHWB7PTnpgdFZY9bIPyqPSGY84ojrrJeReU71ryzr4DHDn6JodPvsW7 qn0cSTnEm7lvo2jdy4H5XTiMvkNTpz+3Z6L5/kouD6eiqBRPnJGZujWVyIPz cTydi2Wwx52VtTA+WM4SfgoncvA4xolDNF14V9jemzu3Ypkbd6S8y5+SSTUt i7HomvSEF6lxNriirHblQK8PG1/O8NEPa/zq1xcZ+1I67bQ7ttW22KS6EFEf R1J/GkF1CUzeXeKg3E/TF8XZfh8yN4+bvjCETWUE5jVuWDW5kiz7NHzGCs3Y CeLPnaTghjXXRN9W6SP7XNPxLu/m7qNW7i9kM93nhVO2FcroUJShkltq6bf+ m7mVicIjBaVLguRWOEprf1n37qKjk2yOmMn6VxywQLHPHIXoqTxkheKgPTve tcLsbdHw4B7OWO7H1mY3nnEnUBdZoc53FtY9yc7qgyg638Guax/DHc6sDwlf jpzEeuwNqk3SOUtDuN6tY6Etgu6uYK7PGXkyW0VpbwpZY8Jisxa0zBzhynwK v7oaR+VAMG/qHvKuYYnKGmGJ8ig8dba4RVsKF53mrSk1HhNa+p/30vKsGZu1 KPb2u2BX44y93l56l3BKli/5o3WYVoVXYw4S0B6O21AYWcK/udNleNYFYlMi PbPMSZjEgqxl2c9T9qSvHSV2xoXbNyr57cfdPHjWx6cPO/n2Wht3x9Jo73Lm dM4ZYSzJpMBC8YFMmVnR1CVSfDYUhZWvZJas/ZOi6xHr7e2gaHrgtGh7EsXe E9unB05htl98fPcRlDt2cubEPiysdhEadYrIcmvxODt09T7SSZ1wyz+GfeEh TjXu42yZkuOlSpSFOzBreAe3wX2E1BxCW3lIOudJEjvO0t8RxJz0EJv6AHJ6 DWzMayjptefSeCQ/XBP/6M9A8WaqbBVyn2SijWrcpdPZhJzgVKIllqPRWC7o sF+Q3GhzQDEsXbHHG4cKD9SFoZTOlrA7zpnB64u4NMVJz7HErzEI/54wQgdj 8GsPw67OiRPlFrj2u1Nyw4H6ixaETCVhf02LduUsHZeieL2exRcbxXxxpZZX ktfTQ4EElh1jZ8QxFHa+KKUXmHlIVjnKrFp6CmM5ozxpJx4geh4UPQ+Ijvvl tvuOonjnv7e9x7Y25b4jmO06wM433uatt3ZgeeZtvP2ObH3+ZlSVPF7TWaJq ncnp9CCj0oVQ6bjumUc5GLaPXf77MPN+A7O0d2SuFShGFOzoOcGOxl0cHnub 2NH95IzsFuYK48FCLh+IB1T22FI5aMFT6dxzF6KxjwjCPjiAgaEgYlO8CdLa 4xhmLfwVzKkiL4rXSrCclRkac5aO7ox1iwcOBS4yu+XkTDXjWqOleqmd3cXu 7Eo8gk+1O9HSw87WubO33JbAgSCKhM+LP4in6q4LFfetCZ/35F3h8ohzzhjn 9mOadWd6MIgLneJZfQFE1e0WfpLssTmB8rjwj0WAnHcTFhAflXk1OybaHjiD 2YETmL1zZOt7k5V7D4ie+0Xbw3J65P/fdgkrvPkWu97cwSHxhpg4B2qbtNS2 RgmfemJs9iezwZfyvkAKG9QUb343jfBOdK7kRIYTpzPexrphL0f1B6RLitYt hzHreBfF6lGUV63RTzjz0VwqLxaEfYaiCB06jlvjTqY61NwcT2S035eJ4UDW xrz4fwFwto65 &quot;], {{0, 102.}, {88., 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag[&quot;Byte&quot;, ColorSpace -> &quot;RGB&quot;, Interleaving -> True], Selectable->False], DefaultBaseStyle->&quot;ImageGraphics&quot;, ImageSizeRaw->{88., 102.}, PlotRange->{{0, 88.}, {0, 102.}}]\)]" width="573" height="116" style="width: 35.8125em; height: 7.2500em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[2]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/5a721810e8f5511f.png" width="69" height="25" style="width: 4.3125em; height: 1.5625em;"/></div></td></tr></table></div><p class="example-text">The prediction is an <span class="inline-formula"><a class="reflink" href="https://reference.wolfram.com/language/ref/Entity">Entity</a></span> object, which can be queried:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[3]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/5ef56d2b7ee46902.png" alt="pred[&quot;Definition&quot;]" width="114" height="19" style="width: 7.1250em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[3]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/794a19cc5679efbe.png" width="536" height="17" style="width: 33.5000em; height: 1.0625em;"/></div></td></tr></table></div><p class="example-text">Get a list of available properties of the predicted <span class="inline-formula"><a class="reflink" href="https://reference.wolfram.com/language/ref/Entity">Entity</a></span>:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[4]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/292bc988a48ac0b1.png" alt="pred[&quot;Properties&quot;]" width="118" height="19" style="width: 7.3750em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[4]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/33b73f61ecbacfc1.png" width="639" height="139" style="width: 39.9375em; height: 8.6875em;"/></div></td></tr></table></div><p class="example-text">Obtain the probabilities of the 10 most likely entities predicted by the net:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[5]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/1f94a4c1b81ca768.png" alt="NetModel[&quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;][\!\(\* GraphicsBox[ TagBox[RasterBox[CompressedData[&quot; 1:eJwcu2V0XGe2rV22Y4oZZIEFFjMzl5hZqioxs1RiZmYGy7bMMsZMsRMndhIn DnZ30pA0pplun9N9xr197rnfn+dbtsfYlsoqbVjvWnM+c++yaVFdatlmhULR tEP+Si1sC2lsLOxI2y8vMrRNleXa0pIYbXNpeWmjT9EW+ccy2TSyvSGbvac+ qWojcos8iEiwxifUEGWCBRn5fvgGWBERbUtgrBXGTvsITbEmNcuD+bkGYmOd qWsOYXi4GFWGC1nZ5oSkGqOp8CcmzYXSihjWL01zfL2FC+fHqW7IxSXoEKkF HiTk+pBdEyz7deD5Zw+4+vAS5r6HCVFZoCrxxs33IP0zWVR3xDA8W8OdZ6dZ uzmCX6oF6bVK4ioDKGmJY2SqGDevvcTEH2N2pZzYNF8Sit8gOfEgpoZ7MTLc gZP9IfwC9pGQehhz881ExJuSkGNOaNphMip0mL+Qx+q9FmLKNrO8UcZ//vvn PPlkgareAMLydNC0HKNp2JnVMyVoOx3JrrUkQLWf8DxLQosPEFZmglfqXqnZ FuIy9tIzncjFu23UdbviF34Qe299bOz2U1rjj7YjgoQsK2LTHalpjcU32Jz0 bHlflClmrocJiDcnszCQvt5MyiqiKalxpqE+lur6KFJUJrgFHqJ3pJT0XD9a WvO4fHuVueVaHt4/S3NHBaFJ5pQ0BJPfoCQ4yRa/CE+++OlzLt0+g63vUWp7 MnDxNkCdH8z6nV5SKwJ4+tlD/vj3P3Px3jliCzzJawzFL86Egcl8SsrCCAw5 zKTU+eS5Zjz97YnJ30R61g6OGe/EwmIfNpYHsbXdg4f/m3KNsXJdiTj67CUs ew8dp4M48X43GZ02NE+Gcf2dXq69O0zzfCw+mt0UdFlR3u5E12gErb1Kcsqc CE45QmK9OUkNpsRXOJNcZUJEzg7qJoIYXNLQUBdJTNRO8ssNWD2nxT1EDyPH vUREWkntPFDnWktNIwlNsCX81RZnhabABztfI/wTzCiujGF8uk42LekaZ2ql Xkmp5mTlORIeY0ZVg6xRhjP1Wg0P3r7G7TuL3H5wkv6xesKSzChvikZVGoh7 mAF51Vn883/+i8fP7qKM92Xx7BgWDgeo6kxg451hJi7ncPvFCn//v/+iY2iA 4o5IkircSc12oLknhZCYY3JcD959Z4XmAQ3mNlvI1FqRVrqTyFAjkuMcsbTZ i7XNHlxcdqNtiidJ446FxyZS+7xpvKAhttOAzB5b7n64zMTpQhJrzbAJPUCI xpDYHEPSC2xJTLYhp9CWZHmd2yDHL7MnrsyapBozSrtM6Z1P4vIn4+T0eJNS cJTTGw3certbZswPc9nXUefdeAUcJSHTiZAoY0rrpDfro8kuDUAZaUNjRwbh qZ6Yuu2S+sVS15LC8EQZ+cW+0rv+tHZFkKqS9Uy2pLE7kYw8dyqrw7lyd5Lr b81x78lpqpuyCYm3kH2GkFsVTECcEeriRP74H39gYmGK8ORA5s/1EJ5my/ip ErKrImkZKOLjr+7y4It7FHVkU9AZQEiONS398n1VANHxhiwu5nP5QTcJRYGU 96gpHglEpT0gdXclIswaS7tt2DntJi3VhrCwgyijDpHeZEjJcXfS21zJbXGn ezqcnE5XlEUGOEcewSpAj9LWDC7eHqKoxpFyWdOoKHNySv3Q1Hmh0XqSXGxI as1Rhi/nsvF0lPJuF1LrD1C9EMjanVZytRY4ByrYYbsdfaeD2HgfITjDGlW+ NxHJ5uRWKimujSIs2oGe4XzSigMxsNmHKseXHKlr73AeDS0JjE7mMT5fJLV2 JipW+rMlkjTRWG1TLKev9vPhx1d5+eUjugZriVe7UCbr0zqYjk+EAUPT3fzv //knbcPN5NYkynyVE5Bow8KZERoHYzlxqYUvfvget17ekVlNQFXnSX5bJAun OwmI0Sczz563n8yi7U4gMNKWm083MHbdRuWo1KTbCZ/gQzg675RrMCExzZSo xEMk5cps11kT0ahDxagfXQuxNPX6k1hjgZtqN64hBvjGHGXlYjPjx7NILz0s PuBJjeh9dnkIqVUuRJaZUzWpZOCihsrpaMo6XBic8qe+24PUWmc8khWoyyxZ v6JFL2EzRzwOYex2AJuQQ9R3phKn8iSnPIzS2tjXelspGptSJP3raEBMkifa 1jiapKfbu3J4970zjM81ygxZkZBkJ3oVSW61UvpXw9W757h8bZ6vf/YZHf0N Ul9nqtviqWgIx9ZtP4trc/zj33+T88umczRHelpmQLR7daOHluE07j27yfd/ /Z6rT6V/25MJzTjG2Fo17aNZeEYe4PbTKX711x+hqk+S3+knvjiIgup4WlZD KR7fR1LBYUIjjMTTjPAK3oFX3B7xMSfRTDeKZ3zovVRMzXI6Vf1hsm8j3CM3 kVwgntKeJLMl8y89mlwuXt/iSLrWgYpOJWU9AZRNx1F8Mg31eBAZDTaUDsg6 ncghKMuA1HIH5k/myVZIRpktRYuuWHdu5VDALowdd1PUHEBalR/x2eKVpb6k 5DiRUxRCSV2IaKSNeJiJ6GYIM4stnLswx52HZ8THW6mqjSQy1ui1trya/5Ka bJ6/eI/T5+YYm+siv1ZNdkkgxY1RFGnDsXLR59Hze3zxi4/IFy2dPdWGd4oB s2eaGVtpZGq5i49/8oT/9a+/cue9m2RWhZAouju/3oa63o4Cmdvbj8eYvdT5 WjuefP6uaEQkk6eqiZL+im7eRnr1HvJqQ3ASDXT330Ok1h71gBJVlzelJ6JI W0wjfz0flbBCQqUpRXUOcm1eRKksCcowFH4wJbPek9Q6RzKaHKjvD2XsXCG9 1/IIGzAnsduGPtGyrAFforSm5IoXNvfH0NwaT0CCDo4h23EvruVYZjPubY4Y KHfil3SUonoX6QkvavrTKasMJa/Kn46xNFSiEVYeRykoTaS7t5I7D84wdbyD UxcnqamLISLWkKqmOMqbY6XHc3n+8XUm58tp6U0nMdebGvG21sEccppSxWP0 ufv+OdauDlJQmcTUxhC2sQacvjPD2Ikart2f56MfPuVP//oli1e1wl32opO5 9E6WoswzoHEohkuPhomrcOX84ylKurJZvDIquheAffB+gvL30DbuR67Mobnr LtyD9cjo8SdhMpCEWSWRF3MouS3+fl6J3fk4aq5FUzQXTni+Af7S5yGaowRl G5BQbUeKcFL1ZCRTF/IZupRD7JAZjkPOBG/EE7oYRfyEH4Xj7rROpRKRq4NH 9A4CU3XxiTmI4s0AFFvLMNd041K3H+e4w3QMJEovOKIdSqJzMIqEbDfyq4PJ LPPG0m838amBLC71cPvhcRp6s1g61cfoeKn4jRnVLbEMzRZJLVO5cmOKxeNa 7jxeF92LorUnh/ahUtHaGEJjzHn84ToDwrdTC3WU9iSTUu3J/Q8uk9am4cWP Nvjp717w5W8e0TCSSXSJI6s3m6SH7UmucWFsXcupO2Ok1wlj3Rmifb6CnpVq YWw9HHx1KO5KZHpVS1icJf4ReiQU2FE9EUz8qDN2F9Rkviwm50EnUfeaMb0R i81aOMWrvoSUG+OTehBflQ6+WXoE5BmTKN7StKSibDKa2LEQYqVnM1+Uc2C1 FEW9ir0ttgRNRBHXZkCo1Dcgw4CwVDmmypitRwpR7Ihgs+1ZLIekP0u2U9Pr LRxzjNC4Y+RrRbf7RMNrAtDke+IXb0VosivD05VMzFe+1uv1jVFWjreTJT1a og2jfyqL2qYMHr97ifef3eDh87tUdFVQ1ZZIm3BrjMpH9C2C937yJalNIwSO rnOsZRSTrFrs6k5zxEfF2sUJ/v7P76SHH5BUInliJISaiTAcvQ7TNJ7ByRtD ovVqps92snR5jKvPThIprOYcaPCaQXpP1lDYFEG0cE2R1o/kQmeK612pOV9C yFc1FFyqZXf6C3QTz1G5UETCiTCcZv2JGvfHOl8Xq6Q9OKTpEFbtRsPxAqIH QnBs9+DAYCD+X9SgulfAJu/77LRcxDgjimMVUtshyS1lx/CLEVYI3S1+dJh9 Mb28cWCNrdb3MG/x51jfG6RUHBVPDqS0WmZCtLNR9L6yKYS6ziTiVS6iT/bC W+n0iidNrtSxcfsEzz96SHKy+Kd4Y8dwCpq8GL779Uu+EW97+vIBBY0ZFJcH 0zVWhluIBVV9JQS0raOwaUMR2MPmnCEUeyPZ6iPrvd2a2cVFXv258ewOnpLr rr5cJ1vOzy/MjutPT3DxwTjtYzXcf3mTC/fWmThfhXP0fvxjLGgZzBSWUxIq mTKvNoymoVyCEkyoHEvB5Vw50T9vJHyimjeUX7D3aDkh6myWF5JwX4om+kwm +v0+GGkOYJp8AFfpXWWlC8oyB/xbvPDQOmE8FIr7hRAsYtVsM8jB3D2Mkiov DGtM0NUcwdJzGyl55kwIOx7uEEYsz8S+MB2TPkd2j0vmKzpMWbsXTT3xDI5X 0DdYQnljLN0T+WiEzVyVBuSUhLN+oZ+l9V5mL/RwX7S0si5Mcos3lQ2hxCX4 8cWXH/C73/9SGPal6Hcrrf1pDK6USAa3xK2onM2ZS2wPH2DbYQd2H3Ngy8Gj KA4b4hoRzEdfPeAf//NHYYFGCociWbrbL5powamNKe5/IvUUH5s6NcijT+/x yY/fpnYkWOqky+BsLS1jBcSqrQlONKN2rJA08dOi4QRKzxSwW7xt/0YkqrfT sE+cZtuRFezCK5ldSid2NZ/giyq2LYZgWmmFk+ooe8SjzIVVgpOP4RqjS3C6 Ge5pNuhJDgkQ3j0Y5YNBkCeJhfZSPz8UWjfeiDuCSdJB4V0LtqRsY1vnNnYs bUYxfZRtdWY4p+8lSTxY2xUqPOxCUWW4nHclw4tVNPZliEbvJbtdNOJCFR3n qqhZDGL+Shndk8niVf50DquJS/Xgh9/8kD//7Q988c2X9E73UN0VTeP5TA43 J7O5bpY34qfZYRHNZmML9huaoefpgat/KKevrfDbv3/F17//kgRh8LPvjJLZ LOcimeXLn34gvbtM/YBK6nyG47fbWb85glus5NYiPy7dO0mw2o3AFAsqh9LR 9MVRtKqi60E5ER0OWFeYsS3bmiNTXiSfTcC/qp7g9mwCR+w4KhnX9GIG22aD OaQyRC9qP04VTsS1RGDpsQd7n4PChQYEx+jgotTHIO0YBmG7RCd28mbsTnaU GKIQ9tuksUGh3IVusA6HXPfzpvcedga/yVbh7y2JBphE7sMz8QA5Na7CAkFo 26PonSmifTyPnMpgPMN3iY4fJlnmpe5sOaG1tqzeGWZ4vpDS5kCGlvNQl/vy 8Q9e8tu//YonL94STW6iuD2Y0nPpvFGVydaqZbYFV7N59yF0LIUbc5LIr8uk ebier3/6Of/877+Ixz0nW5vI1fdW8E22Zub0MD/87hPmzo0zttrDR/Lz+59e JCTPCO90U65/eB51Vbjk26PkjKZQdSoLzUCg5IgU4lq98Cs0xy7FUOoicxL5 Jm+WOOO+6IbNsgOKNgf2jTtg0euFQaI+llIb68ijmEYdFa4xlXl0JCDAGBun vdg7H+CY614cw/YKs5thmXAYY+Fks8wj6Pq8yT6rHew228Jeqz3oCPMe9dXl iKzDwSR9jiTtxyHhEN7S49EqXZr6YmkbyKB7KpuGwRRhNFfsvQ5hHbaD7C4f KhZSSWhwoWYgnaIGX7LqXBlZVpNW6PaaBe59cJ1LD04yOt8sjCAM2+PLkSg3 7NOK2WoRhbmzPSEpbpQ1akSDMlg9O8fnP37Bd394QZuw/+xGGa3zauKLgvjy u8/48tuXNE828INffs6v//Kt5JAqrPz2071STv+pOoJyHMmbTaLiRCp5o0pq JhMIybTAOlwHXZfdHLHeJT21m0PCGQe896IbegijXEMODTigJ5nPOVEXc7dd BCZY4x15jGPOb+IhuUeV6YGT/R5MbfZi6bBHssIW7JX7idKYkVxhhVvaEWwj ZE18DmPtcQTPUCvsPAxRFQZhZrsbR8mrul57sY46jGPSEbyTj+IXu4fGrjja BzKZPtlI/3yp5A47bP3l53EHSGq2J3VGmLHPFU2nt3CVOxlZfqLXWUTGW1Ml OjB1oonT99cYPDtMcV8KNoNBuHR7s/LoFDkjbcJa4cRkeVLZmkdLfxXHz5/i xWef8Ie//pWGyTouv7OMb6LMx9V5fvLbr7n55CpXH1zgZ7/9AVfuncBaWKy0 M5P1G3NEyJpqxoNpOpuNVrLDK/ZfvtVLrmiEgc8ejjrt44jxm+joS48dexNd tz04hR3ALGAnhim6eEitPERj00r9pD76hESbUin6FBFnQnDCMRz9dNAz3oyv 8rDUVThKbY5L6B6cpTe9E4R3E43wkH73jDIiNF3q5L2P+DgHlEFmBCrtsXLT wUBqrcyyxj3xKP6p+qjlWPPH2yhryGDmVDepBZ4EJEq+UethXnEAzx4nXFdd MVk6imralqzqQMYXakhTedDRl03fUikDJzqZmOsmZzILxaz4y2kv5j5ZZeC9 Wen9MOGvIMqaMukfrWP55DI//PoLfvenPzJ2fpT+401EqkJ4+dOP+fIXL5ld H+ezn3zE7//5CzSVMYQkO/PRz96lRJghqkGOea2QlhNqusWrNt6dpPtkGfFN ga/72j/RHjsfQ+yd9DCx2MdhEwUu/tJv0ldG7tuFm3dLnQzwitQhKtWCoal8 isr9CJQet/Dajlu4nnBqKOnZzq/f4xy+D0fRVRflPpQJws3Svx7hkhXl/U7K N3EK2U1hsTflco2RKQ4kFthiG7ifaI2tzJT4b46lHM+CSzfnmDsxxOzJYbIr QglPtsWj1IidNdvxkrnSPipHeVGJz2knwntc6ZnLIy3bg8aeLIbPthFbEIp2 ohyvEwmEHo+h7Uk1xz9YxP96PvqDfjSt1dHUX0xHVx4LC4O88/gdfvCzz7n8 8SnJ6tGsnlvg2z9/w9XHF8TbLvDhdx8wttGPR4Itt9/Z4Nz94yg73MhZjmbl 4QjaORUb74yz/miQrMFIAkslF7eFEZwl+hp0mMBEU5ylF51lfl08DDhmvQOv cBPhex98Q49QUOFHdJqZ9Kg53vG6UqcDkos01LSEoymyIyTGBNcQmfOQfThL bQOi9QmX7BkiX30jdfGX70NTRF9Fl0rbvIkTRogVNg9INCf5FX+F6RBZYI0y 05zAJHOKmiK5eHWJm/evUNqYSUiSFfYVRth0HqPnSjwXNuq49G4/YWeFL0ck 941nEZHtgqYkkpO35oloTKDqcj0OazGcfTbEN0/O8FRqN/rhLFtqrGh82EP/ dB29PbWMD1aycX6Fr756zvzFQeJqg3n+9VM+/f4Teo/38f4PP+TLX70ksS6c zpUaHn95j4TWEKKnArn40SSNixlSey0XH/fTdVJDxrA/ZcK2gXUueJfokFHl RGqpLRnl1tR1x+IRoidaa0dWfjDRsZZ0jmeKz7pJ/+qIxipQZljRNJrJkuSR CJWB9OhhotMt5OeWZEje8g3Tx8FzB+6Bu/BQHpQa7qesO1RmN5nW7nAySk2J zxQtEe0IEh1XxtngE21OWJYjgRmiA8mmxKS7cOXKGs8+eIfSllz800zwKDbG rsWUq2dy+dlbbXz30TCtlxPRy3Wkdr5Acp6tMEE4D9+/QfBQPFZzyVjOe/Jc avofX9/h+w+uSo8+JP5CO4XXWhi5Osb64hiDbbkcn+ni3rsXSKyIFG+r5wd/ /JRbz26xcHmVH3z/peTiRdQt6Tz/xSOaTpcT1O7I8LV8WlezaJ1L45Hw8dL9 HvJGgkits6VsIAj/Qh1SWo4Rma9D9aSLbErS6g2o7A2laTCNkgYfqnskJ/Z5 EFq8k4Dk/dQ2S3+c06KStQmSfvKT7JucbUVzVwSZxS4ERppg5bAPe983hSP2 iQ4EMzaXz8RqDi0jsaxuNOArHpaaZUmKbFllXkSlOJMgfuMm3hlT6IlSON1b +KR7oJIf/Oh9Wkcr8El2wihaD9PqN3n2Tg0LayOsnp7k9LMiLHOtSGkNwznS mOT8SD74/DmBbUnskWs0ndLlwaeLdCzOcfHKBT54usSgrEvKcgUjd6e4df0C s4NVPL3Yy5MnG+Q1V3Hu3Vt88d0LTl2Z5Pp761z5/BqNUzUs3V5g7e0J/IVp y+8m03VLRcOqmhNvtXD3+TrNp8pI6fWVOsbgknEYZYUefkW6pHY4UdglGbT0 EMWtofSOx1HZ5UfDbBi53Y74pu4iJM6IkaVa5q91yPuO4aPRJUTyQIvwzMqF CjoHQ0gu0sMrfjuBsUdJL3Yjt8aRwel8jp+tZ3KhlMm1YvLq7IjMNsDD9wD1 bZE0DySTKwyfWepNQJIlYdmuhOc5y/kZE57jxOhcNW1DWYRLb++SOTGv2MvM oyZ2GWjZalrKyNs9hMr1+giTe6ZZiIb7MH1xBrXk6qMt5jjOHKXq1gYKhZZ9 thWcuLlA13uNOHVHMC5a8P4Xz3ny6BpDbz3Ff+wHGPX9Gvul74k8/iO05+9x 4+OH3PrgJiMbY5x5f5nUVh+SFpVk3czCpMeB5afL4nWPpe7DxNQ7k9jljnel GbaSw5RlJjRKb6W3KvGTax66XE3fWQ29C3GcftBERoez8MMBSttjaBrXoBR9 NA7dgUOsHvVDOYwtVFBWH0xCvjWqEkdhFT3Sm22Z26jk/U/OMi/rWdcbRutY Ek0joSSoDgoTeKDOtiUuyQR1rj1ldcGyjxByigNJyvcSbXCVPs8lLNcZ0wR9 xufahJ/6Scr1Ry/yELuyt5G9nsmbjlMoTAfJXBmh4po/QS3uuIXJmmTZUzWc w+CZNixrPNBp3kHOtSHe8L2PImCZzmtrdD7X4twUytyVKckOH7N29x0UEbIG xd+i6P4PFMP/iaLr32wb+Scu899TcPdDLn10hcqTxbh1h5G5nk70XAQlc1mM C4uNnNGS2RnD+BUtsbX2uOcY4JZlRmpfMOU9UXgkGYnn1snxGhm4WEz7q3u5 DRZE10rNL2hZ2KglqNoc44TtOCXovO63s9emxYMiCEs3JqvcXXj3GAOnK7j9 4gILF8uEcbL42Z8+ZORkATGlB9H2B6HpcmTsch5RorFq0Xv/+EOEpB4TT/Kj siFWeDQBZZITpU0xaEp9MQ/bL6ySyJVbS8QVhOMq3vqG5Lyw2f2EtHWwPec9 8ZECiu6HoKz1Ib3Ah4Rsd45fmeDUjUnRrkg2yTnnXxI2mT6LzfAGC29XkvSs mpIrbVx9+ypf/eoZWSM3ca+7iVn+GeLOfYPDuT9LjX/PpqG/CNtJrTv+it3E MyIu9KN6b5Tku41krkr+udlE7bVqEir92Li3SsvxSlzzDAirFf+UPKnpDCW5 1ImuuULxqg7mLxUxcKkd/x53IudDJY+kM3BTPEz02jfrIFHlNqga/UiqcCW4 2ELO3xJNix9lXb6MLuWy9lYFXfMa2mfSKRjwI6/T93Xdq3rCuPxgkL7FFOqG A7ATVgtLPUJUtgneMXrSx0qq6uPpGcmnoDKBbOG9MuFzp1QDzJRHaZurlHXR 4l1kwcEAfXRzt5F1fD957W50bDgRcjJKNC7m9XOQlFwfnnx0j/4Lr+7TRmMd fADD1oOozrgxcCoazbMSnBY1dN/t58rTy5x6dA7vvFH++B//IrlkmbT2DS5+ 8mvqXv6draf+xKa1v7Gn9g8o6r/H58yPOf3RCZRyLarbWoqvFBG6EEvzuQZm 3xrAM9uG0GpnWs9lk9GuJEOY6/L7s1QMJfH+p2eEY6ZJnA3BZyka5zOh+E34 4tBkga9oZnK9D9GFHsK3RjhJ3gou0KegM4TG4QRhz1TGV/JoHpKaNrmQ3+GH usYada0pxy+Vs/RaJ+KEQRwITtmJSdB+7NIO4l9ljGX8PnTspSfjnBkaq6Cx rYjkgkDK5f2B2WYYSaZxjjajejiJsPpA7FP1OBi8i51527Ge2477LXcs24NJ 6gxGXW8vaxPOpz9+ytS5UfzFE50z9uHVYsW+BSe8nmvwuFxLjvR871u9nHq2 ineq7DerEvgnP/rJXzhsGcdO6zjyWoRxv/gzRzo+QJH4Drt7/8ibYz9j7sUT Oj6ao/jpELmLSWRLZjv98Qn8W1zI6RNuvtlHUpuSlGYld99bpHpCzfz1Tp59 c5/s2Vh8T6WS9KKMkoc5JF4tweF0AE7TkUQLs9pEHMJFGDexwI6cnnD61nKp Gojl/JNpVq7WktVgRtmgL6pWJwZO5tC2kox2NoWCLldii4xwTd6Ne/wBtgg/ bEnbzZZkqZ3wsGOkKY7hdowtihattQjvvrrnEESs9INbhGQ2Vx3yG6LJaInD I1MfczmPwwEH2J59GJdhH9TDUaJ/ftJ/pqRWOYr/dXLtgzW8Uu1xi91J3KAr cWfUqK/WkXm5gpK1Ek6+e5yNZ5d408KBqv4O/v7vP/DP//PfJMbl4Bzozq4D QZSUzvPrP/43Nkln2VH2kDeqH6JcucHqj9epud8l65TK6O0+HHLNUI1EsPp4 hNLRRCpmcrn/8jLN42lox5JlRqbI6UjCeSgGh88baXm/kAOqK2yLuEHmXDFO o67YNXjhnKZLYY2SmoEYSqYSmL3WzLlHA8IuyWR3uKJqNqdtOpb2E2nkLkSQ 0etOYLkZkTWvntsJyyUfllyvy87Cw2yvPcCO2s28qT7w+l6QZeABEiUDjolW tfSn0/bq8zrNUcSU2+OQpENsrhvNU0WkS+60jtLhWJohjqlHyWwPoUYYNG/I l9x6G6KLZa5mxXuWcogrDcQu7k00I35Sh1ZOvL9Ewbzo5mktlz86x4xo9KHA CDabeDMwd1x6+D9p1vZxaJ8tlnb27HJUsnb1HX777/+PbWmzmJbN49Y8RtN7 c3Tdb2Ph3T4KB1QkN0cwf3+AwkE1NbPZnPv4OAUTGtou1JM3qaJwRk3mYARW w4GY3kij+U4WWxMeo9DpIVpVRO+qsOVMLMET4fgIy7tE61A8EE/VYBJp5Y5k 1DtQPy/rNhFKrHCCUbctmzL3Yph+GIeMg3glHCRcZUF1Rzz5tUHsGLUgYsKN 9lkfopbNsOkQv83TwTVqLxV1IQxLBh8cL6WmK5nEGmdcVbqS1XeQWuJFeZtK sp4pFtK/lsm6VMyqGVgooXwwSrTXiugiKzKXYsk8lc3e0sMc9dyMZjKYlcez XH5xlsKpNMavdXP66QKty1p2uPmxyTwYx7hc/vx/f8O//v0XevsH2R0YztaU Ejabh/HRT39Fw+Jjisbv8Nm3f6D68nGWPpqlaSWLzJZ4Tj2cpXOulMV7Uwze 6yK8M5yBq60UDqtl1o5QMp5E5ZyG1LZgXBp9CFgUrZ2vYJv9afyz5fcmQwmW jKJcTEC31BH7SAOMvXbJ7OrQvZBF27xaekuDUbMT2zcSsH8Uj+GUHfqlMt8V ppQNRQhPx1LVHi98YIRiyYnTi8k8O1eOf+cAJuXD8tUa/1w9IpPsmJypZe5E F03D6WSUueMULLlNuVsyTyIff/4uWcVJWEt9nVKNia0LYOZSJ+3TKiLiDYip dMCq0wqTASsSbqRgU26HssGdhffnOP3OCmVTaiau9LP8aJC66VIUR4zYqq8v X/VJzC3mN79/R/r4ezpPnUdhG8Q2a3t2OKv45jf/xd1bXzMz+Q6f/fJ3TN2c JHcgipNPJqmfLablQgPt1yUbtAYwLLUtG8nELcWIuHI34ksDCFXb4xFrIYzv gF6SIaHjwhCyPhXreSQuBmOwFIeF+N7mImvMA4/gEWos3Ov52usjhFvtVVbY VUrOu16A9qNq3kw+wR6/YVzrkgh/9Yy62gGHoO04Bu1g06o9YyeSOXGumS3G ISh212GY007GojHZ7QGkp3hx/too7cN5lNSJRqhcCZAeDlYbs3F/jZVLI8KU uvhkGuKVaU77ipaB5TLiciUftztxqNqEsE577t/QMv/BAF6VgUy+vcz8w0Xy B5MZPtXOxpMzZM1oeNPUijcOHmbrUUMUuw6gY2NBXms9Nz75iOrxIRxjwglK KZTjfsC3v/gLmWkDNHUvcuHBDeZuDJM3EE21aNrAzVGCGjzpvlpP0XAqoSXe zN0epkX6NCrbFxtvXcycd+EaaIilz0EMY42xbzHCdNCKzYMu7F4IZocw17ZX tc/2JCJdcpbK7fW9UDt/fbyijQlRWxFZG4Jm5VWWbUCxpwnHiBBi2i3kel0k 9x4lXjxLUb4fo3kv6mTt9Dylh7Y3s1P436/vIKVL1uRUhFAuvLZ8YoTuCS3p Ne4EZO/HR31Y/FHqOVtAouTzwMKjuKfro9KGM3hWS5LWS/rXDt1MA0rEz6/O VLPxgfRUn4rZm+v0nhsnuzeF3o020o+30CqaYReRh2KfDjsO6LH1sC6Kg9LL BsLZwXGYZucLDwYQV1zMg7fv8vHz97h9823a+kd59tkXjB0fZfB8Oy1n6onv jaF+o5Ck/ggCRDPPPVvh+L1ZlBrhAqmpR6wZ9n46uCkNsfLWkfk7grLEHvsK YyzEN1za3XHIspLaH8Ez2AJD51csYUp0xqvPnAoDyPpEpZvhGWlCUIYB/sJF h/2VBGl8yJIc7dHqSmCZMJJoy9GcYygk3+wfM8Kssxx9zTrO6laMBi051HqI 1gHN6/t144vtdE1XUz0kuiJa4JF8AGfRl5qJDGLLnfFOOSzHMiK+0Jfy+QJ8 mlxxLXXGqkHYcDGAiJgJRt6qIfdkCuNXVymfaiZvIpuK6w0cnY6g/Vm3eGUS iqNmbDE3RXFoF1sP7WPHYX0279NDsfMgigO6bDmiI6wXxOD8EE/fv8vDu7d4 9vIz0eUf0Hiyg5SZZAZuV5Pc6olaMv/ll9PM3mkkpcmHyFefLxXeCilyIirP CRflq+doR/BNMMZN/D601JyAAqmf5Da/WAOs3fZyxHYXoWnuKBOtKdW++hyu N3bucg7B+gQE6uPpZyjabCTavg/bJOnVMlN2iDbvKbNjv3BCYKE1B6XmikIT ds3sx/KCOYYn9Nly0pzNtbqE5phJRk4hq1ayi2TzeuEJpcoGuxyZq6KDONTr E95kjV/xPnwqDhLf7cvYhV5cK50wy7TCVGuB/7ysaVYD2stdFN8qofZ0G1lj 5WQuFhC5kEnBiQzJFNdI15ahsAnjjcAY3nB3YpPRfrbo7ZM+3oeBtwOatlwa xD9z+zXM3BqjYSmDDmGqtjYtZ06tMXpWGOJMCtG9ruSMRvP2z29SuSAeLBk5 qt6J/MkoiqcTSWz1J687lMr+MMLUhgQlHMUzVld6w0Vm2hXfSMPX93zd443w SbB+/TnS5BwrkrIdCIm1xy/SjKAwG2IT7HD22ouj8z78Eg3wiTPjmDDvAeVB docasstjPwG5+lgU6rGvzgxF7lYUjTt5o24XB6qM0K22wUHWI7LAknytUlg4 hrqhFEIyxRfCd3FImGR/+i70i3TQq92JXqUO5lpHmpZrKBTd8MyRGqst0JmQ /C9ZaeBRCZE3a0hZqaJ8VUv5WhVek3GsvV3FP39zldX5GRSu6cLiDWzNK2dr jC+bnM3Y4+3J6K1Fbn/+Fo3rlYzcGGXkTi9pXSEyC23E14bS1pjH0w/PEyS8 nzUUJ7PSTEyTPyFVfkze6KV9vRDHsmOSz5zpPVPHwJUKEtptUEr2HTpRQ2lr Co7+uqLJwq0RxoQnWBCd9uregSdRKVZ4JlqRWhyKpiyIsoYoohOkzv56uLnv xtlt9+v7wq+eTcYmWmJluwdj073Y2OniKyxmkarD7uB9WIVbYuqli0OizEu1 Lbr5ehiWmOFWYEJJaxRLZ2Wme6NIrw3A0nM/BjF7OZy6iaBp6Y9L7uxoOMBO WQv/ligaJdtHvvosd0sS+0od2CMMk/CyhKDrfaSca6LgRiNpG0VErqfTeKNW MvU4c4vj7A3IQhHZyGbtINtLi9gUHo1heSOn3lljQTis4kQVmtlMDFXH6Lrb RvNV2Ud3GNN3e5i63iU+NsnDLzeIr/CXuodz9sN11p+MUSy5OFGyWepyEOVz 0USWe9CxmsP42QrKZhJQdQQIW9ijrnYludiB1pFkwoQ5vCIPkVrjTWSVF4mF niTluBIptQ+NPkpUohnJapmLCl9i0o2lv83Eb2PJL/UnQPTa0c0A22BDbIMM cBetd4nRp1Kyb2SBF0mNvgSV2RJU7YNxsSV2alMyhYdr+1OoaI/CJVj6PeoN bAePcOJsHNfP5aJcs2V/tS7H6t1FB7NIGcokd7Yan54gDjR7obigIvSheN+t OtR384iYD8K8+ihxU6K7IUOSQ07jV1COIqCWTZWTvCE13lzai6J6labzs2jP VFF2ogJH0c6s8WKUTdHil9H0P+wnayGdro1Grj+/RIqsad+ZLr772xeMrNZR LXXs2aiUbBFLSLkp2YP+rL07zdrDAZqXM0nt9SeuxZHSkRD6TuYSkC88kbyH 6Cp7IqW/o2WWfXJ0cQvbRXqxDc19sSyf0dI/mUVNq+hMk5Lq5iBhVSfihd2U YQYcM9/GgSObSGzzEG2SbBdnQmiGzECRPaU9UZL5Y8lujKNhspDI+nDMxE/1 4vSIqfGheiAJh3BrNqXrSuZ35u75XK4JB0xtJEousuRgmz0Fp4soPtOAT5VS ek3/tafarCbgfi8X+4eppD2KJX3VB+8uR6ofx6M5Mc/cF0tEj9Sg8NGypfIc m1pusHniPRT9X+E7NM2jH94hQ/JX8dl8eh60Y6Qxwa8jTnS1gO7LHaxJlquQ Nb3+wQbnn66jnSqk53Q1U1daKe0LJqc/hKELLSw+nab1VAnx/d4kzcbRcbGO EsnS2aLJWW3CgKK1PpnGeCcfkp41J7vBl4GTZSysa1k4W8eM7HP5QgWza/mU 1fgTrbbEN3w/Dh7bMLJR4BkknhhlQkFBIAWDoWR2+5Ek+h9VYUt0haxZljFL Z7rpW+yQrFBF0VgaMZ2Sq3LMsUo0olCYQdutFn00JG7JlVFhu/0+ySira0m5 HsC+TkeCZqOxrfNle/kebOoPkj4cSdCYM0eOO2Awa0XGkyB8H7lwYNmDAzeC aHieTsdP24X1O9jsmMuW/FkU2vtsnvkGxYm/YDl4lzHJJeOPJsm7WonneBRh i5lE96QzujHB3J1Rmk7X8s6PH3D9xRn617uZuTNG/lQ8qoYAyS85XP3kLENn i4ns8cayVpjyXBTuazH4LKeSvyI8J4wRUWyLf5aFZCVrCtu8GFzK4/Stbt7/ /CKPnp/hyafnmTtVR0aJ82s9iE7UxT1qP24xByhuCKRHclipNoyh0SyaWsPQ ivYUTMnajiqJEM8PzrWjtj6WwlJfKkcy6DnZRsGohsyRJHzK3TEI18fh1bPo 9jCOJDuzufqA1DicQ/6t7E9qIeNyDLtaXXhDGDlQslDqu0nYnHIlotcLzRkl OrPmxG048qPPxnj3B0N43pdMc8WTQy8kk7w7wNTzi+wK0LApdpxNZY9QLP4K xfW/sK33M3LfP03BJ5NEXm8l6/Yg8W+P0PZ4Wbj6Co9fPOTT33zO6p1lFq4v MXK/l/SJUIpFey68PE3XpUrRhWgK+5TEjCajeZTD4NMGyh93E3ApCsdJX/yr XPFUHyOj2ZOMbh9UXQFce3tK9jnImTtDnLvdx+zFCqo7Xt1f8WJKZqBP9j84 qSZV6lZa509+mQd2vjuw89mKY9h2fNKM6VsrY/lmB12SEdsWpZb1cdT0RaJp dKVzIo/KXg31MwVUymalkswQooN+gglWJT5szzDDZGofsWuRJNV5EXbeAYXM wc5Gc1rXk3n7Xh+xtyIpeZrJ559OcOlP4yQ8Smf93RFuvzzO6vcjeF3LI+Ru EzlyDemXtRxOj0eRsMCm6ucoJn/Fpsf/ZtPQ96guL7D600FufHuV2a9O0/z2 BHXvzpC6Xk/JVCsXn93gwcurwmmdpA+F03GjWjRjUTJcEqnNzq97eOnOAh1f TrLwVSkHSh6xJ/kxPReryF+PJX4uCacmL/yKnEmTLNy8Vs2lx4v0zGcLN0XR PBZNUasHjaNBTJ8oYPFsJcUt3ihTDAjLNsc3zQDfRD2SxPPUBf6kl3oTHWNH blMQi7dFP99qoetsNZXjhWQ2h8i8iF4LRwTl2JJS50fOvBpldzTHVLboBR3B L9uN0LZ0tuUf4tCSIboX7dm95iOvhad7bcm4kkqN5DaTkyak3Iuma17FvT8O onpUgPqShq6njbR+00n+nU5SbxdzZC4It+UM8cViFIG90r/vo+j8OVvu/BvF 2J9Qn7nJvV/d5+df3ePLLzaY+fQ0VY+nmH1+QryvhSqZ24nLQ6zcXuDUe8uU TmtIahfvmc9j+EoLk7dHSBSt87moZvppIvrF91DoTpDfUMjocRURF1IIXUnB uyOCOLUj0cXOdAuj331ynPPXe+mdET3KtyevypOKV8/WSiwpaJJMWeZAbKWz aIsdETnCFqkm2AUcwsp/F2c3hihsDidAckRubyjLb7UzfKGVtPZkjkUZYyOM bZN2DJOsYxh2eeE2EYlfvRum6cc4GrmbiHYnLAvc2Rqmz9YKS3ZWOXK0y5lt TQ7o9toRJYxwbMCGhEuprP+mi8z3Cgg76c6l74o5/bN+QoSJgy+nYyvvdRev qXmxSN75DsnEHSjyRB+qv0Jx9l8o5v7G9s6v2FL9AfG5y/zw01P0vFgm7+40 6x8uMXill65z3Vz65CJr75+h+UIjzZdqKJvLomGxiCzJRr7CHREtQTiX+RA0 5UXcSQ2HNefJ7aqlaSWciMtZqM8W4CzvSS0P5tTdcaauNtM+o6FmMJEMyVhR Ja6k1vvSMBYjjGeKf7YB4cIb/nFH8Eg8hE/SXhz8duMvebZMNHFqvYYxyURD y0Xk1ylp7EilZUqNZjAJ5wx3DvpL3lNKhirdgyJ/H3tSrHGq9cGpUfJz7h5M ay0xEy06kujAjmRzdok37q6RzC3zoldjxfKLbPJPu2B0PoG5j5qp/KAE75O+ 9D6tYvlHU2R9VczxT1W0vpVJ/LIa9cVaAjbKeCOxEUX8bRTl4m9n/xPFyf9B 0fYHduR/jVH0dZafzlP5cRcNb41QcjyPitUiVt9dYvbeJJnrpUw+XOb8B2dJ 7w/HNcmYhBI/6kfzCE5xIiDFnCMZ5tjWG5A27UDmUoDwuSfei4lo1ipwK3Mn UxvLwPF6inqTCBOmiqtxlaxrTniNnXCrsG7+MZKKrQmS/JfW4E5JS9jrezPp VRZUdvozJnlmbuPV/YRw0Wg1C8Icc+t1zK+0UtFTiK/wXGJ3FLsSjnCowxKb aSc8+3QxbNuKb8VRMgfi8BU/NM3aj4/w8Yhop47Ggd3Rb6KbqUuReFriJT+U Z0MJnolBczUUkwkfLv1mjpM/X6Hv62bu/mOGis8qGH+YwcXv5mj9rJof/2KV p78/g2/bIArfJbaUf4xi9R9s2vh/ohF/x6D7Kb13R5n4tA2PjWJyJKvM3pN8 dqVa6pRB7noxs+8fp+hsIcnD4eR3pVEwnkGk1p+ocj/ii7yJV9vjHW6IQ8wh TCv1ODJiicVgChmzaqJrfXGNt8ba8zDWgXqEpNsRmmZLRKYtMQW2pNa5El5t KfPtjXoyjJh2ZxJbPBhfrya/OZjsGmc0NQ5oR6Jom0qlcy5X/CuBRskr9eID C+ebufnsIoEtgZKdHcRrLNg7bc/seiRzJ1uwbWzCpskF9VKQ5KggrPKMcVfr ETzkhqLSku0DLsSecGfgujsx8zHYbWSiftnP0vtV0pfZJFxX0f7zQSKfail5 X7Ly18KSP66n+5sOCj7L4sHzJX7/s7uUHj+Nwn6YLZkPpb5/R3FOton/5o36 Lwm92o2TcI/TSgET78zQca2dhstl5J5NR3urlLoTeTQKbzWuFqIejZVsqKR8 RkVmVxSa+mBKZf7DCx3wTbYiqlo0o91friWalEYfApNMcAoyxtHHEOcQk9fP wWPULmgqRcf700ip9EUpbOY1ITpz2oOQWX1CanXI7gyhfiqT+t4YMmQdK3rT aehP5eytYTYeCM+sNFE3kEbVUATxzR545ThjFnKU3ZLFt3Tbsijcpe1tQ7FJ w+6EWo52HCJeOCW+7ZUWG7M98QC2Yz7Sq7EcejsdvS4/ou/l4zoRgM5cMI2f 9DH1xSxl93uo+OEIKc+aOfebC2g+72Xi216mf9WL9mUu2aJ5F360RvOVeanv CJvVosHTf0Rx6j/ZNP0PFFW/F65YJ2m9kfKLlWQty3rd7JOe7qbodB6pk5GU nxC9FM0cl8wxKhyXPZRCy3IpmrYYbEQr4spdpZYOBEgmDRVvSZRM5pq4n3jx s+RiTxoGMoXB1ORUR6LtSiQ20YqgYPm9NEfi851Q5vgReSaRwa9DCSzLwbez CpdJV+LGkokqPEZIhiUuCfspqvGgfVzDzFol5+4OcOpBr2RyNcmNtvimCuNG GWCqNEBR7I7duWgqhgvZZdfFUZ9O9naY4dTrSuVqBmb5jiiKzIWhQ8grErbS OmBdb4f5WBLTn3aQcTUegxtpWK6EUvWjSbqlzhkv2ul8MU7td2u0/7CNk9+L Vnwreesnnag+ziF0toZNDkNsyhCPH/4exbp43In/YlP379nZ9BU567NMvtVK 3fkKOi7XU3i8QDJxI5VL5Sw/mWdAmGTi6QD1J0rJmtKQ3h1DXJ0PrpL5TEN2 ElxkJDzp/ZqTUur9SKuS78s9SMqyEW11IbXUmTCNJbGv7hXkuJOsdsfLT5/E NBcycj1Irwxg6JZwe/hxFGZThHWGE9JoQ3ilJ5llfmSIh7aNqFm7OMDoSt3r +7iVcwm0nUiXWYonoUHmosAamzh9dEIPoqh3xnhDtPSkGuOVYOknJwzy3Rg8 If56rpet+cJsJ0PxK/HCqNEfF/HOQ9NxJL/MI+ZKEllX6sh/XIHXaiqzP16j 9vMx+j5foPHbc3T/ZJnJX50l7pNyYq8oKXpWietgP4qAJTYXisf1/VxqK717 4p9sHvwdirJf4jpylSrJq2rJjnXnKxk918z4/TFuf3WDWx9ckB4uJ2Y1neCl dKqvtlAuehFU4kBhfyz1IxoSSl04c2+UC3cHqe+OI1YY1CfVALc0fZldM7zS Dcmq9n/9f7pjC50JUVkSEmNBZIQjBZniK2nmJGhNCM2MQKFXS1ZFBAlt1tjK MSy8d2PltBNzt910Xyxi5GotjedKhGm0VIwVo2pOxi3DDo1ocEyNH1YZJryR a8LWdnN0V49ysM8Vq1Y/jERzXHOi6ZjvJrojRfzHD/1TlhxolbW+lo3ViBN2 48FkvZXHzE8WWP5lE9HPSyn8bJCSrwbIftJM6pczZHzUx8SvT9Ly9RT1X7dz 9q9DhExNir/NsSVb+rf9pyhW/oZi+X9JL/9BXv+WHV2fkDZUTdV0AYNXB7ny 4iwtS5W0XeuQnKBBvZJNhGSl2mctlD2uoeheE2lTKrLHVMxc7SW0wIXyV88O 2iLIbPEjptwJH5Wp1NWU6CIH0c8sWmbKqB6Pp2EmCXWDF8k5LvgFGBEX70iq yplQ1UHhkjfwzPGgQGYjotcXxy5X0aBj+ChNCAi3QTUVStlSKOkL4aRMRjF0 tY6G5UrS2pLI6U4jsyOe4Gof3kjTYUuMHm96GWIRZEWhZMys5UI8W1QcTXPG RvL8tnZf4Skztkq2OzYXi5FwS9S7FaTei8X9rQwqvmgg6N1Sct7pJ/1ZB5Vf DtLz61WGfjLJxb+eof3bFVRftDEq6+A5soIifJXNWXdQDPxMPO6vohH/lDz3 Fzb1i160/ILM1fMsvdUjOVF04kw99QulKPujsWgVTpdsP/pNu2TgQWreWabu cTGRa4WEj6TjXOmKvcqajPpQ8oYS6TldSftSJnWzGWTVh+OnMpfaZlE1KJmu yo7oCtvX/4cjJt2WaNHi6HR7IuQanYVz7f118E0/gkO5FcdaHTFt80BfZYSr 92EsnPZScTyFotV4KlbSaTyZQ9FEOFk9zpRNxVC6oMGr1JGYtjCi6iIJ1vjT PVTP4GwjCTVxGMd5sDfaDL1aI45U6bEr25RtM57sGgpmh8zV3gu57Bbd1zvt Tu7zbC7/qo/yp8K7P5lh5R8nUb9dj/ozycuPq8j8qIn8bxfJ/nqAiV+MYtA5 gSLzKptynqAY+SWKtb+gOC0aPPVXNk2I33X9Dv3hF7RdaqZ8UUVofww1J2pp XtFKfgjA6YKam183sa3iQw5GXxD+aSXzagHKU3not4TgJ/2r1gYR3x5M1UTq /1/UW0a3mafbnpKTgiQVqDCbmWW2ZZRRtmXLMtsyg8zMzMyxncRxyGHG4hSk uKuau+tUdx/u6QN33bvWzJm5n3/z2D6z5sO7JAtsab/Pf+/ftvRKFHWGkCt5 FJ1mj4vuhLCTDVElDmiKbdDX+FLapyO+VIWxWU1pYyh9sg4m5guJldv7yf4I NzqiEtY6kWiJVawNhgwVHsHHqFsxUCR+27Nezuj1eukxOVSOxZPfF4Gh25dY 8ZS4WhXNkhsDG11Unytj8q503N5CDiT5sb/ME+WKDW8OH+CwMLhFnQv7qryw OK9HWW/Fu0N56H5sJvxuFKX3S8i8Vkr6i3zi30uj5qMmhv90g4wvuqj7aYGS 7xeo/v0kK/++yJHWBhRhfSjzxB96/yCzK/57SXrG4v9CsfCfKGdknjv/Bf35 JbpuVRI7pcdtNI7YmTSC2yLY3xpG6zdpxMzIfvK6SXN/IwPCF6pbRs5MppHS FElOh4Yk8biw2gCKZrO498kS3WsNTNwdYObhICmtUeQP6OhcKGDqXjvhpc5E SyfOrvYlRzhDn+5EcMQR1BGHcZJTS593sbXdwymb3Vg6vo2t627JTh/a5g1U CVu3XaqgeTaP9vPFNC0YqZb871w2YBzwI7JRhbY3lNRxDSF1QZSMZ+NZGoqy yIqgxRj8F3zZO+LFMeHNAwOJvD1sIO5uNu8uJ2KzFE3xhwX0vB5k7LcT9H0/ QdOn9Yz9OESvZFvC9320/f4Cxd8t0fjzPHV/HcdivFN0qcMsT/yh4/cyv8K/ l0XbK//3Vs4p12Se2/8Vq4FX0oO7qFqtwHdIg0WlPR4mF8wzPDlZ5kD5uj9F l/Opvypa3zUSc7kYn6USahaKaJSO1bxSQGxjANGtwUxdaSRjIAFdTRCBObY4 Jr5LqNESTc4pbCJ24S3ZF5x7Bv/kE1uv0YVGmxOeaIFTkOjqug8nt0O4+h7C yWs3Z+z3YO90gJbFPDol2ypu5hC4GELJqPj6SCmVPZl0T5ZL1hbQdC6bnIFo MoY1JHb7EzMYQWSHPP4sXw5U+TIns++m6+NAuQ+7pTPtqo9j11AipzayiJhP RX23hNbft5JwXvqn9ICWz0a4/193KPu6gd6vh6j/aUn8uJ+mn9eo+uU0Of8w jNedDpTBnZJvD0VH8d/Jf0RxTfz3yv/871n+XyjH/40dTX9i9P5tfv2bL/no 65dMbAyR3LT5HjidZEcaHuk26MbsCFuNJ+piJsZrhVv93i5T1rN4hKEzRvqC GyFFrkSXexFodJDNjsBCB8KkF4emm5NQIx2tPRzfrFMEFdmSVB8gnOtCnNEZ nfyOwJgTeAWKB3sfxDvmjHi2BzkmP2Lz/DGNxFM0kkDkBQ1HR71xlv6VNxXP 1XtjzCx1MHG1m7Zz5fRcrqR2WebgQiGF6+kEDASwPzuYN9KDiHtsJKOtg0Pi 4/tHLDjYqBYfDmJHayhHbqRxZlm6xqVc+r+sZ/mPPVv/oyp82UDKR2VUvi6n 7esxGv+wRtY3U+T/dpmSv0xT8lK6RWgNyqy7KGp+RDH3zyju/W+ZY+GIq+IT N/83ZqsyzwP/E/eJJzz51VN++tMf+PyXj2kdy8c3UzSV/Z1oCsVaa0tAjYbG 1Wp0Mqdu2XbYpVjjZXQlstYf/0wnVElWeIp3JpnUaE2+olEAUdIlkqWLpTRH kFjniHeJI5EmYbVqJ+nbKmKK3UiUjpuU44h76EEcQg7gEX8cTfZZ8mulw1So SOsMIGDWS7rnCU6uuBK+7ovneRs8brgRO+dP/YBeWCWTprkyetaamLk7RI3k SflaCSfLhRekQ5p1RLPvg3iOnHNiX4sD7wx48qb0xN2TQSi63TgmXbbqqxJS Fw3UPRYff93O+b8+YOSPM3R/O8HYb+bo/vUsVX+/Su4vxyj44zzjv1/mUHQB iqQrKOu+RzH/L9uzuyr63haPWJf5vfz/SN79F8d6fkXVhVbSauPJ6U2iXtZg Uk0wSeKxWe3xFIuHhhd7klUZRnFjHMFGJzwli4KL3MnsixLGy6ZsKJWcJvHb pmjapwspb0+iY7yAss4kErsi8B2NwGHUj8ARO4KaLYkUVkrvjkab7yz7U9Z3 TRRO4cISeguqO6LoXhLOv2RCP5aImeSQw3V3er7Ix2fwAbtTPuetpgbhLWfC urVMXOmlYczE6Ho/g2t9pA4nUjFTSMlSBunD0aQOFZD5fg+WK7Hs7w9hX5eG PeLRuxb0JN9K4cANDScH/Rn4ppvurwrIelpA3PuFeK0HMSjaGp+3UPFqiELJ uKbfzlD221WG/7qCU7YJRcIllCPCv8M/bc/uLZnhm//XVl9WLIkPT/0nZlW/ Jmplmqz1SnneaYw86uPS+9PM3Oql7WIDDRcaMc0VU9AcQ/WwHk2JO0FZwgYF bpSN6DB0hJMhWZfeGIyhKoBkWdfxKe4UVsVgrIhAZQojTB5v12eOwtxeJM3r CR/yQz+aiKbIngjphLl1gWRI766T5940EEPpgJoJyTJLUwjvtLlTJfz01asp YkqF6xX9HAx9ytvStXwuGbjxwQWaZHavfLxK9z1hiCs59FwX5rwh+2cxFh9h 6/7lUjzk9jsLHNlbE8g7HWHsEd/RvMgk9Fo0KU8yKP6sgPCLUYz/MMLS7xYY +baD9MfNDP/lDp0/rZHzqkO6xxw1v79K57+vsDcjE7OYSyjGf4tiVDJuVWb4 3v+5rfOSdI2p/4Fy8j+2cu5Ixyqn5vPwak4gdVBH+61qkno0VAykkiYdIq0j TmYxGSfDafyzrfHUWxKQ5UpEnrtk10Fc4ixwjD6Jt1zuFio+G2lDvMETTYI9 mVXJlNxOZeRaIAr/jzkWe4ncWTVpQ/Hii7EYilQUCkv3jZeyfLGLxj4tCxer mJgr4li5H3t6ZT9+W8aTV10s31jiuOEltr0Pcf1QTfyccOW5AvLG9QxLvo7e 7mL0ZiPF8/m4j0WQM5JNivwNe+nzh+p8OdIcxKEGe940RvDOjDfmK5HkyrrQ Xk6l4IWJhm9MdH1nov5X0Ux/k0PLqzHRtYXk92spEo4o/Pky4d8N0PSfl/Br F4aIkI7c8Qvxmd+gmP6n7Wy7LBovCU/MyPlR4Yju/8He5m85PltKyGgafXfb KZWsSJhMxL/UnaLuRAq79JT0pqERFouu9cJeGHfTo0OybNGW+hCU6SwZbY6H wXLr2CeP8BN4+BwjLMKBlOQwgvNd6bnjwv7wSd5yk3Uo+aOv8xY/DsMt6jBB CVZbx1y5RR4hTrp2TLpsGY7YpJ1lR74dhxciyPxVKUu/aaPre+mu38aRdDmc 1qV6Jh/2sHirm+sv5nj26hpzD7u3/lcaOBAi2RKLdbMP3n1eOEuXfrf2LMcq PXkrUYVZowvWY674Sr7lfZxD199nk3Yri64vO6h/z428q4k8+o9zsnZKaPp6 kv6fLhL9sgK9MEX4rydwbG9EoZ1HWfuFsO6vUQz+aft/aZs9bjPb5mUbEhbu l1mu/kdODM6RdaOZCx/OcemDRYafDWASzqyfymfxzgh5g0bpes00rdZsddry mRKKhtKpl7nPES8tHBI2q1eLZp4kFvliyA4iINgafV4AQTFepNUdpnBMI3lX wFy/J+opF8JbQ7DRWGCuOoq9v3Bc8GFhCOnGKU6yOeArXGJvcuDNfAfMpj0x fxyJzdMA9py3I7QtnuGlVkzjWQytFUsXyaZCekvuuHTQvjB2LLhw+Ho4hxf9 ObVqx6liFceMx9iRtJ+3s315oyNSvMKCqBtZpHyaht9cNK0/NLL4tyqyblaz 9pcB6j9Np0707PldC10/tUs/nqTkuxWOftIj2mrY6TeIouixeMB30uN+Fq+Q GV6Qmb24+ZqRzPCQ9LlhOW3+J/Y3fIFnr4G0/hSqp6vJ7E+joC+BuMoQedyl JPXlCCsVYRozktaVjEYyMLYlBP8CW5Ib/ETjWDI7YuX2gZJzcWQWhBAW60x5 dSSFhRE4hpiT1GxNxbK19BjpBLPJGPpzCShwx8LvCA4+m+9dtcDGaz/H3d/i jPcuAlp8Ca6xx1069lmZt7caTrFj2o5drfbkjCXTt1pM7oDk6lQkFUtJlMia s67xQ1Hii83dSDLXFtkRPou59Keds37srLWXObPijUw39pT7c3TICbdlX6xW Ekn4sILEp0mkPkuj7qs8Wr8qRP+BgSaZVePzWLJfN6L5sJ28bweI/XmS3elq zJzLUBbelo4hHtEvPjz5r+K7/yYeLPouyNyOyjwP/g1F6z+xs/SX6GemaVir YfX5OkO3h+lYrKWiJRcXgwc28pgC8/0IqQ4moiqEqAo1mopQXIUnXUbCZN9Y ENxxhBDRXF0cRojwWnCULaFhrmi1KrzDLAiR3hLVGk3wcBSRwzoihLWjcz0J jHPA2f84hdVR6LICCM2RHKz0QlVljlv9cQLqhDlq7IhrdsGnxYXAVg/Kp3Ti vQZarhTTf7WB/o1GGm9KL64WnjNJP3yez7XbC9iFTxF9sZPdi36SlYEcvhnC wakIdjc5c/ZSHLb9Xug/0eJ0MYTQS9nSgXswPdJS8UOteHMSplcNjPy+kZpv GvF6UE/K6zqq/zqH/ZoJpZ0eRe4Gip5fyvz+negqnrAovjsumo5tHhMnGveL R/TJZcU/S39bx3RriInnM7z/1SP6b03zwe/fZ/35OXI7DOg7Ewko9kVTqt56 /Vstejm3RNLxUzGVVwOIHShEt6ojYDQW73o7vKLs0cSKX+j90WhdiUp3E8bw JUz82FVvx3FvYV7fY7h5HsHJ5QAhoeZye3v0RUEUNgaSLH0iYdiVsIazxLQ4 ou9Rk2GKZPB8LZeeDdFwvpCejWIWHnVgmkkXPgnldKtk2LB04ktZXPjFPPc+ O0/MJ6nik84kCOuaRoTJmn3ZsRTDofFA3G8nc3rDl6B5f+p+H0qInC96GEbO R5mk3w4l41Ypg39fR9YDdwyfTGH8x1Ui7uTguFrIWy4pKPXnUVS+Fo1/3v5f +6z4wfDftud2UeZ4/L9Ea9G57j8wK/2SnCcNGJ+UUrDSQFabltQOPWsPpinv NJDYHk12SyK9M5WU1CWSVhJGTFkUfbciSBkfRmH1moSGDJKWggmRnu+RdIrA KDvhNekLmX5b7632Fw1dfI5j7XIYN28LAtTSTbyO4uFxGHub3XiJT0QnOJOS ZUdylwcZ/X6UTmgoHouWPl7ExUejjF2qYlZ4snrMQM1EKvmip3EwSRi4k6bL 1aS/6GZvbwIeMo+hd3WcEf8KLA3DuyGYutv5HE2Q3JwJI+CyL1VfBEnntybp qRdhKx5o18IxrBUx+osKxr9LpehlPsW/HGfmzyYGf+rE/NMRsv9ygdiPR1C4 xqM0LKIo/1w89nfS10TfCeGzqU12EDab2cw5YeLZf0PZ9jfMav5GwMx52u5W EPMgB5/JFAJLAkgQH4gVTzsVeQBL7WkCU13QZvsQGmNPkqxnfZmb+LU3ezTD ZJliKJnxxH8wGOs8Ryx9DhIaZ01BubCwZJi7cIWH91HcVYeJ03ngqbZEnxuE Lt0X/2Bb8es0IqNdSBU/qpqPpnMxi97lXPIGgijpjKSoL5z0Bi8ypGfn9sZT PZpF62qe+EQjTQv5mNa0eF9QsaNLxRuSnYF5fpS0ZJLalI5LsvTmRiec+tRY dFkQOyl/+6o1Je8nkntH+ur1OPKexVH7STBTv/Gk+7k/cTfFG29VMvpHHfo7 Frg+7SPpH4awvJfDG4FpKJJXxI9kftv+IHn2jyj6ROMBYeGRf9ve5qRvDItX tPwLymrp0aH/hHfqNC2P8nCQzujUKLpkSTdoDie1OgyXlDOS+ftRJ9sSZxCf yw0jPs0Pb+m20eKP1cNupM8H4jmuln7gwzH/E4SLLwwtlWGsiiAi0RzfsCM4 q/Zht/mZPC678Al5F71BerPGnuy8ULTRKvQ6X7J7nIkyWZBYJWu72Y6MZhXG 3nBK+uNpmCqmY6mJ0qFs6s/lkjKvQydrvmA+hrhGS2EPC9zTrXBNOIG2wo/0 wTTK56sILUmh6kYT3uXWBM3aE3/ZmbT7KgzLNtz4cyB1T8Op/Ua663U76n8o pv1byeUPCyl9YiDhjoHyPy4S86n077sZ7E/PQhk/j6LgFYqqH0Vj6XG9ou+g 5NyoaDspvjAhfjEuc9z97+xo/ivKrL8SXrjE4koyPtcKOC3rPLkzB1NXIcXd qWhyPQjPdsE3+iz+EdYkGnyJjHfCP9qRKKM9YR2ehMp6VrUG4lPihVusNVGZ wbSPmsioDCa5VEVsjiteEacI18lzy1eRW+wh+triI5r7+h4hMsQBP9VJtOLh SS1uJFepyBkKovtaEeO3+qmbLKZB+p1pWjxL2EEnvTd7OYWOez1svFpANxa2 dexIcrkKP+maqjxPnIr8ME4Uc/HyOHn3mjndeJLmu6cw3HGTnudMy72jtH7q iWpW2PID6dU3ReNHufR/L93lu2TJpVgiP6rE+KqG2KfVBH53jjcSs1HGzKDI F33zvkTRIBnX8ffCw/8gsyz+O/If2z7cL6et/4pZl3iH6Sc0jTepuCH+cMWI i/hu3XIrD358yOCDEYbOS2+siSYo2Q6PiM3Pr3UnLtkddbQrMUY/soUBQvJ9 cUtxxj7sDM5hZ2XGNYwsNW69XyqjOYzwHJnLHLlfvjdDlxpZezbGxntzdEiH KyqLIDVFRUiQOem9IVTL3E1f7KB9VdhQ/KpmIoPKCQP5Q1rC6lVkjKfQfqVG 8jWL4ccDdG5UEjHkQUyTD8HVPjgIQxcuV6Fui6N+tYK86RqO3lFjuKolPs9G 5nYPUVfN0Z/zpOtbfyI3gmh+nIJWrh/7ZR1LX4fS/F0xNZ/HE3cjmdwPc7a6 sufdHvYVVaCIHBV9P5IZ/kZ6hHhEvWjc/Oet14gUHTLLvcJoHX9F0fQvW8fX K4x/Zq/pI2LX+zHv0xM+WEzqhF66fQMr96e5/+VtLr23SMng5jGJesKSVKQV BKFJFs7S2RKps8HJ9xAnHPZy0uEwRyz3EihcW9kbTfV4EjktGgYvlLN0p4Om 0QyMTeGUdsZT1qGjf7GM6uZErtwaoLQ8johlKxIvq0hYs8JuPoi45QSMw4nE jQQLp2vQt8fRe6WJlacDGIV/s2biiB4XBlwMxH5I9u/gMRw2jqC6m0TwUibR l3JQjVThcSWa+x+MklUrrDVzlNFnHgx/7EbKjTOUfeRF5RM3jB9E0vVbA50v nORxeKO/F03GzSCSH2cR/CiVgCe9HMgsQRnSizL/pWTct8Jgv0JRKlud+ETz X6R3iKYDm/Mr+vb9H1v/i1BWyeXp3xM0ukTmbC76vnyyVrJovtMi+VGFrklD 0Xg2Cw/HefntPe68WqdhMAtjdTiquDO4xh7HM+oUbgEncfQ8xlnn/QRozIlL MxcmPkuU+HaY7jTZ9f5UC4M1DkTy6PMhliVDantFsyyPrdfzNznN69Ypgu+G 4/cohuBPgznwUicdXkvJyubrGeWk9CTRIL4+cr2GguUk4nv8COt14cS6N4c2 jlL2ofD1rT4SHqpRf5KE5Wg6XfeukHOuiAdP6li/UEDzDQtmnwcz+aU3QRft 8Fx2IO+FO4UX9xHefYrGJ16k3ggj94UW26k4Am9XyPkcjq8k8JbRhCJiSrzh /W2PKPpe9JWuXClzXCVzXCPM1iaZ1yZ+0S3Z1vHPKOvk8vw/8WbuvGRLJNXd kgvnsqm72krvjSGyRvLQtggPSZa3y3odvlJP1Ugq09ebKBCei8v3wke82S9C mDXZFV2emli9SnjAmXDNGel01kTqHbANPYBrkPhtwhESS50w1LhKn0li+XY5 nUPxlJcH0fR5L+9K5u40/p7QhSYSv0kiZimepDbhjaZQCqdy6b1cQ9NKJjkz sUS1qQju9GDHOWHYj8Mpv3cHhdf7xEz0kPFdBqFjuUxc6hImEQbtT6XvYg09 Dy0Zuf02A+/70vTKhaxbXoRPCuMvu5N8x5vqDz3o+1xFx0tXMjciSLwTTf6F eA60JvNWTA2KmPPb2lZ+vT3DdcJpVTK/jeINjaJv3R/l9M/b5+t/FoaQnlf4 E/uKPyfIlE6BzJdfkyORPRE0nCugcSZfulMeTevNGDrTUEkuWcQeJaJERYUw Z4H0+prhJOnI6i1/iynyJlD6X01f+tZn6wfHmaPLdMFPd0r6hzBw5Cks/Pdy 2vdN0XwXYZmHxa/NKTUF8PD1KoeCJ1HseYT70D3SPgsgesSXhFo3ooRpc/sS 6VsvpXI+Dn1/kPSfGBzb3VDOq5j4spVnzxc5kTBF+Mwy9d/EkDiQypUr3dy9 vsrk2gaPP/ySNOnJvTdUlNw2Z/SzfZRc3UP9C2sCnvmQMveucKYDKZdDaP/M nYQbwnDPszjR1czbNRcxC+xEkXBd9BX+LftC/OEz0U58uPzvtrf6TZ8QXatE 80rZquWy6t+hLP6RHUkfEdTdxeIH02ReKORovSeere5kDUcT3xomMxxJ5Vwx nRdbSOvLwjHFipBUc1Tx5sSU+Agz+4nfGqgflIw3qgmItqS4Oh51rDPpOSHU 96STIt3YN+YIAYknCYk/iVfMQfykkyRmuBESY82XryfoW5jhkO4+hbcmpDfZ om52Q1vtiHe2HRWL6VRIvpWMhWLsCqJurpqI6SKUA860f9HEd7+Y4+n7F7nx TQOV9zVEl6m5dKODyev9DD96wNrGMwpNKcQvONH0SEnq+AEMTwPoeu8t8cdD kn3Sw586kr4h8zVtTcSSD7YLHaLRBm/mr6EMHUcRfxdFtvhDmfBDqWhbKB5R 9MO2F5f/dlvb2j9sZ1/JL+Syn8SvpU/Hf8L+gi7KVkp5+ItH5N5owXUoGP82 yeW6QKJq1YRVSA70xG2xQXxrEulNWlzCT2In85y1+f6I7mQiZa5bpQM0diRv fbZcUIw58fFutLRnUlQdS2y17Ldaf9yLnHGPOS5McoIQ7Vk8Q47w4Y/n+OqL FR5+Pc3wrw14z9rhm28t9/EgRH5val8ocU2ewhJ66cz1jNztwH84A7MJNU4z gVz/ZozXf1xi6RflJFYLx5miGLpcTN75fBruLzF17hIxw+KpA47kzx6RPnGI lg+PMvLBHrJuWqG7dZbIVSt8F6zwm3PgxFiC8NVNzKpFU10zis21FX9b9H0u HvyxaCsaF3237cMm0bZYdKwQP676jegqeheIhxT9EmWOXJ/wGfvyltB2iS+M p5O/Igy/mo5uJglNZxDBNUE45PkTUhlAZmMwnkY76bCFrL+8IMwah0on+RZz AI/kMxT060mri0YvnNE+nINWuDcywgZ9kjeFTWGk3c4l+qUzoe1HsNcexD/J El3OUW79fIG7Pwlz/a6YM7dssayxQFPiSt1qBpE1vkTXqUjp1DB/9wK/+PnX 1C8U4djlKvPrJp0pAKt58a/1XMKlVxf1xNMxZ6RzOp/Mc9LnhgrJ6Uol63Y8 HqWDGAbT6fvRTnLzbSofv0X9+++SPfk2SQsWRFyxxHPBgX0V1SgrrmFWcB2z iCEUYcMoUsXjc19sz3DuZ9sa5n0lnrHJEzLHJtG47IdtzbPFQ3Kk62XKqfY5 e7PuEDlbirpRha4vSBgyiISZHPqed5A7o5O58yK4OZToKh98smxQZThxfkM4 Y76IuWczaISTfVJP45lwGG2hqzBGCOmVoRR3JJGYG0BYjBvhWc7U3soS/vXB qyoNda/0t4YwKppzeXclmGN3ozn0UMsbi7bYNNiS2xlNwUwEKd2arc+uaZor 4Nb713ny/h0Gb7Wi7VWzu9ga5/lMTO8vYDdXRLYwRu5wLn2rlUxcHhAuiMG1 UEXgWBD1N2MpnJmgUp7n2ndH6Hj6Fj0fHSJ39Q3se4NJfGhNzupeUs/t5UBf u2j1GLO08yh9e1Bo5kSr+6Lly2190z4QbV9vd41CmeMS6XQlomu56Jv/1bbu mzOeJ/sh4Q5m4eu0XLtH3fk6AsR/rSRXbGt9pGvmcf/Hp6SN5uBS7E60dApt USiacm9Sq/zxNjiQUZsoWZchmgWgKVKhTjqDr/4EkYl25FSG0T1dSWltKuoo Z3QNDsw9jEbh8gDrnD5Sxt1Y3pjnxKA7NsPCBBdDCZz0IvdcMqWz8cS2eJHW pWXgfNvW96J0LjTz8z/+SfpyJ6pie2Jlpmc/nMG9R7rnlIncgTTyxnNoXajh wodX8eqIIlS0c2rxQzfrxcxkMq/u5VK5eEB8Y6/sg7fQrR0l7Y4LbmOnSX18 FtOD4xweE78tel/0nUXptfn6xTkUWQ+3j8XI+VC0Fo7I/f884rttLy4Tzy3d 1PZT6RYyt0Wb8y15mPJU9s8VDqQV0Sc8c/93H+A7msjB2s3PxwiiYrmGwfsd VJyrIKoqkoiCQDKa4inszSAkzxe76MPYaY5jl3Jq63sKhpYbSBrMEN+wEm89 THZFGIUloZiqhf2zrGi94YZNYhsRucW0LTuhqQojMNsKfZuHdDRh5cVk8hvD 0Ld6kdwSQMNMLleeTdA1b2Lj5SVuv7qPrzBLQKsPa8/7aXpej2o5jsjRVEpG 07Ze36i7VETb7XbSLuajn0/EvsCDQ0XWlK0ZWZtLIrzlOFnn3uTCy91UPDrL 7FMziub3o7lwGp/FcOm3om/pE8m1bhTeLaLvsmj6QDTdnF+Z3SzRMFfmN/eL 7Vnd3EpF7wLx5mzpeGmif6pclyW30T1Cqb6IMqUWM91ZUjsKuPftHeJms+R3 mmPTHUxEZyDNV6tZf32B7LYsvOO8ZO1nUDVQQJTsA5skJ7zibHGIP0PTVBbn n3aQ1BNLqbBnYKI1ySmuGITVvKRbG3s0lN1Sc/FKKJML4fgKp+il2+a0qqmU +WqcNZJXHysZGsm5+2P0LDRSLsw3uF7LReEwrax573pX6cdVtN2rI3YthcqH lURPxpO7IH+vzVe8R02heFf9rSY0UxF41Hmzu8CNqkedpPaHc7LqMEa5ffMD T1qevU3pg4PUPDhM/cYeYvstONArmZa9Lt4g2qrFHxJXRatHMpOinVE0TJUZ zvpse8v+bNsryjd1lstTn277R7KcN8gWu4HCc5a3KzrZu66RWRcuKA/j3JN5 ci5WcaTaDadWb0LFk8tXS5i4O0bTdIPMXyAlDal0nK8guC+Jw5V+wlfWuArn BuadRVMfyPy9fvHOSGIrAogyuBOZ5ktBfTpp0ntjZ4Mou5ZBYqcP2S2+lA1G UDoaQ9lIrGgdxNytNm5+tEpeRyrGoWSm7w6ha4vFt82e4pFEWq6byLuQT//d fnremyB1TEfWdDpeTcEULZSz+OACtcvNOHS6cbLRgh3VVnR+MIHLQDj7ag9v HS9x7fth6u7bEzh6lqIHR8h7fJrM9xw5PSN9LeM8Zt4NsrZHUSRdlK4r/muU +c0VjdNlSxWd0z7enuVNLygSfbNebN/OINyRLKepjzCLX5fuI3+3tZaWJxn4 rKWyozuQvcK5dZcbWfliCc+WEI5mW4o3B5I+lLR1rNzgxgBdQ+WkVqsxPaqj 5pfZBE7Y45BzCucMF07l2nAicj/qEm9GpXOPrrWRYAyVjhdGzWg9edJhtX1a vKWHlwxGUi5zldEZRl5LNNOSnc1TRtIaQ8lsi6b7Yj01U6X4G92J61ZTsiZd 82oe1bKm7r9+Qt5iIcbzBRjEf2MGw7n35XN+9Xf/TMFkM9Z1juyvOMPJfnfi V+LwmPHmZO8JtBe1XPp4ndyb4vnjB+m4t4ORW7uIvGTFO/PV4rMz7FCJvpvv fUi4JlrKHOY8ljUts5ki+mZ+uu0Pm3m2uRXKHOduXn9Drr8q2t5CoRfGi1xA 4d6Prama9tuzHEp+jyTpSgeGA1EWOJCznMvL3wpfdBl4N9UW+3xn1MKxm+95 ff+H67QM5KFujWPjqxRSBqoJGS4jqD0YnzoNtoYT7NGewS7Xnu7ZbK7cmEJX GInWGCynIfimq3DNVJHVGiq6hpEsXnztwQKrN8YlPwPIkm48er2Z6Ru9xBcK hxd6kDOVRJH4aPFF6TwPemi61E78QByNt2qJHjPg1KRi5cNr3HrvBSpjCE61 1pwyHcdCstVzKhibcRUW3WewmvVj5tNlLEwHCZmyY/Zjc+bf30H7p6c5ul6P Iq4XMy/hiHjRNfXhNj9kydpPl4wzbGq86QWbXrup9X/7boZ4SIrcXi/6psk+ iV9BGTImPtPJvnh5Hl/P4Ji6QnNPEwU3UlB0eKLoskMzlMjVL86TPpfL0Rx7 DiSYS09wIrLFh4Fr5cIXOuafpOBZ8AyF3zXxMS0mWbtRlcHsiju9dayqneEk mbn+rF/pYXiygOwSDdrMINyCrUXfcJnhGBqX8qgbzSbG5EtSZRBF7Xr6LjST WKEhMtebtF6NMIeWmqtNVC+3M/1kiYQhHXpZU13rHajrE+nYmKZ+tkt8Xodf qSfWxVYcLbTFqskN55lYrLv9t/jaotuHpY/XsGl1wmbwDIljJ5h57x1GX+7n 2GWdeG4XyqAJWecyh1mbmSbekCbrP1W2TNHSIJtOnq9eNsMTuV66R7roq9/Y zsPoKRQRgygC29ip7sfMU3L/bhaPfzfMjxtzXLjZyKGxQI72qdhhssW8U03v 405Kx7JxNPqwN+YMFgXOuBltCRMtMhfVDG/kE17Yz8btHEwbuWQuFRIpjGue Z49/rTcRm99nkiTeLFttl54O4T9jcRTlAwZuv5iifboA3eZxi0ORFAwnMrbp E+cKiJX7xtYEY5iIJnkigcJpyboXj+k8N4amK5L8mQIaLzUS2ZjAjQ8fiR/N E1jkQmh9EJ4dfli0ueI0GMRZYXvnJj+sG91xlP258sk1XDp8cGhTYtm8g4Lu k9z5bgeqq2rx3XbMYi+IhtLbUoR50zdnVjROeb6ts0EuM7zc1j1H5nrzPZZp ctvYFbmv8EekdJLN42uDmlComkTfYnbXJKB/0MTtj0ZY/nwI9/Pp2M9EsafJ izdMXpxs9aVc2Gfz8xMDhNH2JoivJZzEUzqss7Bu9r0Q3ntdwKvN4yceFOKz +dk9dT4E5DqSNyIdutYXH5MbATkOROY7CCdIZjaFcOHeJJ2T5aQ0qMiXfIut 8yVnIIHSSQOaShWhJhVpQ3HScSMoX65g+PISD199QnJPNhkDSZQtlFG+UEz6 cDIbwr2XXt4moMEb3UiM9OggzrS6c6ohHJ+RFGyrQnCQTuotLDf/YhbvETVp kz54Dpih7Twmf38/rm0hoous60TxUr3omSqekCH6posPJIu2yeKzqTKzmaJr hnBb5j3R/Yr4wZL4tcx8tGRijGgc2o/CRxjEowEzlYkjc3kopvQ4XTeie5zD oRENwc8LCRzJ5Y08T96s9OJUpbv00zQqZvPImSlnX8xZTmXa4VauQT1Vgv5K Bq0fFFH3uBRPYXuvhkAcNz8rQjpJk9wnpSmcgDxb7JKO4Wt0IEz6dut0DimN XtKJbXCNsaNmwETdUjHJXWoi6pzQdUh36Qgmbiieurl6Xnz7Ke1LY2jFPwrG MimfLCF9JFuYLJfz752jaLqQoB5/ssXPXMXjDknHzn5STM29CpJ7a7EpCcGx PoqWtWZCRgLImLSXx/oGAR0HsM6yxSxaWDVB1rnu1nY/MIiehqfbvrA5uxmb Oba5iS+ny20M4rdJMrexkyjCB1CGD4rvNovv1gqbSddW1clpLZH3esn+MZcz 636YzUi37/Mk/GIelc/a8B1MFlaTHlsdgIfwhJ/JlazNjF+swKLEh2Np1oR0 JpB8vozgFQNhC0kkXcojby6TYJM7dqmn0OZ5MTZXItyswybBhpOhp3DS2pLS 6im87IpP+uZ3Z1byiz9+S9VcOV6lDrgVmxNW44enyZM40XN4ZZyZjRUSGtJI atKROZBB2wXJuJ5UaoQnFx/NkjpuIHE+moj+WI6Xu9LyKpjll/5MvXBh5KNU 4vuK8SyO3fpOsPBuO6IGdhE3sgeP/n3sKRLu111DmS7zmSRzmSyeqpO1nyT5 liyXpYqu2Y+2tU0TbTMlx9KFMXSL4gmDW55gFtaJ0s+E0qMEpXsxOzzLULrl krTWyqefSX6vbh7jGc6hDke5vz/Bi/kYb9Vh0xLJ6bYYdgqrW1aFckBvQ4Ap gM4r1dKPfdgVcwyryhDO1oaStr75ekgqcbWexDb6EDUYjXeOC97CE5psR/QV oVv/owjVS4+eCBYukN4xnMe9jx4zfLGdFPlboa2ueFbYEFLlhapcRWJDOmu3 r1DSX0NCcwIp0kPyp4sxzdcQUKWh/VIHw+uDRHZqSV9IIXI5iZBZFzqeJeAy sk5ayyDnH0jPuO1JcqNBunckiaNuJE6fpPvcKdy7rFFsfp6R8aZ0BfFVg6z9 JNEzQbRMFq1197f9WLhLkXV/m8XS1uTnpW1vCO9D4VspGS/87F8j3bocM488 drjmonDMpnK8hV89GiJ76gluJc+plK65Z/O9XKKh9VAsAbNpeHZrOSRzbCbZ fEgY6miOG9ZGT2rOVaHp0fJ2hjlH9JbouoJoXk+leS4e+4wjRMjcz7+YoElm RpPhgHvMafJlX83daSeyyJPQMjdm7oxx8+Ob0jOMRJSqCDSdkW5rhbPsu4hW YeN2I9NXegnJDiemQUP6YCZFA4X4VYRLBkQyenka00oZ+tUUDBcSiT6fQN5N O0yvZ0Qn6QD+H2C8NMf043fJGQ8iozmWJOkfEW1WjG9+t6JkqqJsaPt4gIzn 2z6r39RXtEySywyia/LlbQZLkd6QKtoapNslzKOIGkERIH7gVyHc0Cn+3SKz a8TMWc9Ot3QU1kYSOo188bie6gHJTUULBQ291FxJ4MCm35e4sqfMF8+xCM4U B3CsNog3ZB6PlgdzMt+NvTpz4geTqJHZP5lhh22xK6oyKyLL7CkfS0eV5YZX oZc8tzbK+nUYO3R4ZlqiMXmgSnSjQNZ55UoBTWvl5HfFoRLmONTgj/VyGK69 YcS0aslsTCXZFEVUWaSwcCTGgXKqJloIq0hi7M4y1z64Sd65fLzHpaus5ZO0 kIN6w50HPzST3NrMMeM0Iy+XePGBZOWEK1HFEWT3+XNkKIaw8zpW5mI4a5LM z76PMkPmVS+6ponO8Zsa39pmr80cSxY/SBY/SBQGSxLP1QorBEmn9qlgR1ir zLF0am+ZYadUlA4JmDnFoziVhHWJH8tXMvnq7iy6oipqOlr49kYZYbNRHB/2 YU+9By5TksPD4ewWX9td7c+JRg37ZNZ2ZwdyQKPCp1RYbdqAdZEHJ0q9cCz2 wUf0D670xznXE0f9GfGMYDplzgzCuWqDLS2THfwonts4VyWemEN8gx/q3kPk fRNI+c/lxK1LN+szkN2qxz9FrjOpiS6NorCvkKrVFiIq4pm4PsfQ3RE0E1F4 9UZSttKCaqqIE90efPpVDV+/6ODzTxr55FoJL7+uIHtRckG8K2g2haCxWPyX DJSu26MdyBdveIzZJhNs5tvm/GrFJxLlvO76tr468QKdaBs9IJ4rsxoqPc+3 TDQtkRmu2vYIF5lZh0SUtjEoLMIwOxWNQu1B7JQTd+cK+OFeH6+fNvLtei1T qxrqrgZTPmdO4lI0zR/VUP5hAcYneqaeplPzXIvjeTWOYwmcKXTHZrMLSJYH DCfgXRtIeJ0/VmmW2G1+nn9XPGGb3yEi2qbLGo+VtXDhwSzrdxboXmpBNxqD 88RBqj93pu5hBt3PIqh9lULuZAbqTGesQh1Qye+Jr9BTIv3cxuhHSlcBY7dn yBRecO5xk9ktoGKxActWNWaNjoy+KOb163G+eNLJRx92s/qqjNABPenrUVTf DcR0yZW6226MXzpCyTlz8d+1bV7Qih+kiM6J4rlaybGkTV4Tf0iWzpuw2R/E b4MaZRM9ffIk0wpEY/FaT9HWPk48IQqlpWh7JgTlmQjeUEmfrTtM6WII98bT +WyliofymHsv+HPpdqpoX4VpMYWxB+E8eq+O766XUj2mo2C0mJGbwWSf85H5 8cKmyo09BgfZF9mSzVG4lktnylGxM8oKy1Q7kmV+3TJsOJNqSXRHDAMXO+mY rmbwRhNRSxH4PzhL4v0Zdlb+TfruXfo+DiZhVGY90w0/2XfaihQySjPFUwpx yvChc2mI2pUeoobTsBEfz1qrYOjWPPvSxLfabLCa8yXvagaDn1TS/EByfMaf imsqJj8JZXo5gNmJZJZXE1iZD6JvcS8etTLDcfdQaq9u+0KSzG3cRdFZtgTx hTjxBI3MbmibdDyZV2+jsEI6Sm/h202vdUpAaROBwlKzNbsKc8mrY368fXwP O5N3cbZrJ7mSqQNzarrnZd8ueTB3zcDbLc0czG6Un9N4sVbNbx8Oo+oSf7e/ S0pROb3jsbjXlxA+5IHl5ucxpDgJO2vQjSVzNNWKk6mOnNS6YJVshZXWgshS DUd1NtR0VzN6rY/soWTsh72JexFCxXNhoLPnJZN+oOW+CcOqDRFVajJ7MtHW xVM8WEqm8Ia2WsfasyvS0QuIljUfOhxH2dVG+jcm2JvmyLGMo3jPhHJ21Y1D 7dZ4TvnQ/8SdrrUzTI0m0yusdm02k9uDRpa7Mhgdk33ecBazeGGtGHlucZJF CfI44s/Jz5szK50hXDxBXY8yoByFV46wgeTipg84xKOUud3S1jxQHn8wyrPS BU97ozxkzZ7Te3kjbBdmOQrM+nagXj6N6bw1C+NhtIy5Unouiv1xBurGyvho Wcfz28VE14r3KNI5EVLDnQtayuuKCGsvIrPfg7czPThS5UGYaJw4FYe1nFfE OXIwT411mh8Hg09zXGdHQXMmFdJNAqQHHurwIOGFntdfDFHeP4xLxUMGnueR et2BgOYAQor8pHOEUzRRhm9ZLGn1+aR0CJN0iO+cSyF2Utb9TBHHG93YX3Ca w9KJcgezyF0zELTuTc3NQDoe2NO9Gid8scHOge8JPH+OO9KLbg8k0y19KDLP kh3aNGECmdOo8a3PpdzKLMkuZZBwl59wrZ/4gSqNnS7x7HSIRGkVgpmFP2bm PihPe0meqVCcEF1PeMnmws4Dh9l78k3ecHhT9tFbKJr2c2BoN97Tx6hccCat 1pyrC7Es30rl8w0D76/ouTypYXUuh9TaBIztobw3l8xAXxiJg4msryZK/w/B p9UD/bg3xRsaim5r0M6I3z1Kp+JBMtlLGjyM9lRKN46uCsc13YG3Kh0Jv6Xl s6/H+OH5Iq/f6+biNxmEn/fAt8eXIOGY6JZ4eq70Y64LYOb2NfEfHWEdcXiO R5M6n0fbpUFcepI4VufMoQp57PPxhAvnaiYdSF5youHecWaelXCsU7qYQnIp fpbRJ728v5pKe00gPtm2vJEQJDp0i65d0sXaZF6lgwWWi6bZwl0GlK4yp44a dtio2XHWB7PTnpgdFZY9bIPyqPSGY84ojrrJeReU71ryzr4DHDn6JodPvsW7 qn0cSTnEm7lvo2jdy4H5XTiMvkNTpz+3Z6L5/kouD6eiqBRPnJGZujWVyIPz cTydi2Wwx52VtTA+WM4SfgoncvA4xolDNF14V9jemzu3Ypkbd6S8y5+SSTUt i7HomvSEF6lxNriirHblQK8PG1/O8NEPa/zq1xcZ+1I67bQ7ttW22KS6EFEf R1J/GkF1CUzeXeKg3E/TF8XZfh8yN4+bvjCETWUE5jVuWDW5kiz7NHzGCs3Y CeLPnaTghjXXRN9W6SP7XNPxLu/m7qNW7i9kM93nhVO2FcroUJShkltq6bf+ m7mVicIjBaVLguRWOEprf1n37qKjk2yOmMn6VxywQLHPHIXoqTxkheKgPTve tcLsbdHw4B7OWO7H1mY3nnEnUBdZoc53FtY9yc7qgyg638Guax/DHc6sDwlf jpzEeuwNqk3SOUtDuN6tY6Etgu6uYK7PGXkyW0VpbwpZY8Jisxa0zBzhynwK v7oaR+VAMG/qHvKuYYnKGmGJ8ig8dba4RVsKF53mrSk1HhNa+p/30vKsGZu1 KPb2u2BX44y93l56l3BKli/5o3WYVoVXYw4S0B6O21AYWcK/udNleNYFYlMi PbPMSZjEgqxl2c9T9qSvHSV2xoXbNyr57cfdPHjWx6cPO/n2Wht3x9Jo73Lm dM4ZYSzJpMBC8YFMmVnR1CVSfDYUhZWvZJas/ZOi6xHr7e2gaHrgtGh7EsXe E9unB05htl98fPcRlDt2cubEPiysdhEadYrIcmvxODt09T7SSZ1wyz+GfeEh TjXu42yZkuOlSpSFOzBreAe3wX2E1BxCW3lIOudJEjvO0t8RxJz0EJv6AHJ6 DWzMayjptefSeCQ/XBP/6M9A8WaqbBVyn2SijWrcpdPZhJzgVKIllqPRWC7o sF+Q3GhzQDEsXbHHG4cKD9SFoZTOlrA7zpnB64u4NMVJz7HErzEI/54wQgdj 8GsPw67OiRPlFrj2u1Nyw4H6ixaETCVhf02LduUsHZeieL2exRcbxXxxpZZX ktfTQ4EElh1jZ8QxFHa+KKUXmHlIVjnKrFp6CmM5ozxpJx4geh4UPQ+Ijvvl tvuOonjnv7e9x7Y25b4jmO06wM433uatt3ZgeeZtvP2ObH3+ZlSVPF7TWaJq ncnp9CCj0oVQ6bjumUc5GLaPXf77MPN+A7O0d2SuFShGFOzoOcGOxl0cHnub 2NH95IzsFuYK48FCLh+IB1T22FI5aMFT6dxzF6KxjwjCPjiAgaEgYlO8CdLa 4xhmLfwVzKkiL4rXSrCclRkac5aO7ox1iwcOBS4yu+XkTDXjWqOleqmd3cXu 7Eo8gk+1O9HSw87WubO33JbAgSCKhM+LP4in6q4LFfetCZ/35F3h8ohzzhjn 9mOadWd6MIgLneJZfQFE1e0WfpLssTmB8rjwj0WAnHcTFhAflXk1OybaHjiD 2YETmL1zZOt7k5V7D4ie+0Xbw3J65P/fdgkrvPkWu97cwSHxhpg4B2qbtNS2 RgmfemJs9iezwZfyvkAKG9QUb343jfBOdK7kRIYTpzPexrphL0f1B6RLitYt hzHreBfF6lGUV63RTzjz0VwqLxaEfYaiCB06jlvjTqY61NwcT2S035eJ4UDW xrz4fwFwto65 &quot;], {{0, 102.}, {88., 0}}, {0, 255}, ColorFunction->RGBColor], BoxForm`ImageTag[&quot;Byte&quot;, ColorSpace -> &quot;RGB&quot;, Interleaving -> True], Selectable->False], DefaultBaseStyle->&quot;ImageGraphics&quot;, ImageSizeRaw->{88., 102.}, PlotRange->{{0, 88.}, {0, 102.}}]\), {&quot;TopProbabilities&quot;, 10}]" width="529" height="158" style="width: 33.0625em; height: 9.8750em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[5]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/7ca527751ecd39ba.png" width="639" height="139" style="width: 39.9375em; height: 8.6875em;"/></div></td></tr></table></div><p class="example-text">An object outside the list of the ImageNet classes will be misidentified:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[6]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/0c5d28ffb533898d.png" alt="(* Evaluate this cell to get the example input *) CloudGet[&quot;https://www.wolframcloud.com/obj/b55821bc-1846-44b5-9ffe-fe7151218000&quot;] " width="615" height="123" style="width: 38.4375em; height: 7.6875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[6]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/072acf47b91f2d90.png" width="105" height="25" style="width: 6.5625em; height: 1.5625em;"/></div></td></tr></table></div><p class="example-text">Obtain the list of names of all available classes:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[7]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/624fa8cc8a542848.png" alt="EntityValue[ NetExtract[ NetModel[&quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;], &quot;Output&quot;][[&quot;Labels&quot;]], &quot;Name&quot;]" width="582" height="66" style="width: 36.3750em; height: 4.1250em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[7]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/5871c2765a06ddc9.png" width="639" height="155" style="width: 39.9375em; height: 9.6875em;"/></div></td></tr></table></div></div><div class="subsection cell-group"><h3>Feature extraction</h3><p class="example-text">Remove the last four layers of the trained net so that the net produces a vector representation of an image:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[8]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/191b15d3d5b132b6.png" alt="extractor = NetDrop[NetModel[ &quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;], -3]" width="578" height="19" style="width: 36.1250em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[8]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/75eb52bfa651c02f.png" width="293" height="44" style="width: 18.3125em; height: 2.7500em;"/></div></td></tr></table></div><p class="example-text">Get a set of images:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[9]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/23a13f2b5e3f79b9.png" alt="(* Evaluate this cell to get the example input *) CloudGet[&quot;https://www.wolframcloud.com/obj/7f6bc0e9-78ed-4888-be82-6f35a0f3cd2c&quot;] " width="525" height="355" style="width: 32.8125em; height: 22.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out"></td></tr></table></div><p class="example-text">Visualize the features of a set of images:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[10]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/30830bff0a6f9dac.png" alt="FeatureSpacePlot[imgs, FeatureExtractor -> extractor, LabelingSize -> 100, ImageSize -> 600]" width="581" height="19" style="width: 36.3125em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[10]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/58349c3cb8284d29.png" width="600" height="582" style="width: 37.5000em; height: 36.3750em;"/></div></td></tr></table></div></div><div class="subsection cell-group"><h3>Visualize convolutional weights</h3><p class="example-text">Extract the weights of the first convolutional layer in the trained net:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[11]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/56c74423152a233c.png" alt="weights = NetExtract[ NetModel[&quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;], {1, &quot;Weights&quot;}];" width="560" height="43" style="width: 35.0000em; height: 2.6875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out"></td></tr></table></div><p class="example-text">Show the dimensions of the weights:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[12]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/1ace273dfed90a85.png" alt="Dimensions[weights]" width="131" height="19" style="width: 8.1875em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[12]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/754049442bcb3d65.png" width="59" height="17" style="width: 3.6875em; height: 1.0625em;"/></div></td></tr></table></div><p class="example-text">Visualize the weights as a list of 24 images of size 3&Cross;3:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[13]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/716c5214f801d299.png" alt="ImageAdjust[Image[#, Interleaving -> False]] & /@ Normal[weights]" width="420" height="19" style="width: 26.2500em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[13]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/20a0338d5efe81d3.png" width="480" height="69" style="width: 30.0000em; height: 4.3125em;"/></div></td></tr></table></div></div><div class="subsection cell-group"><h3>Transfer learning</h3><p class="example-text">Use the pre-trained model to build a classifier for telling apart images of sunflowers and roses. Create a test set and a training set:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[14]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/14f72902db8b164d.png" alt="(* Evaluate this cell to get the example input *) CloudGet[&quot;https://www.wolframcloud.com/obj/12fdab7d-726e-4e6f-883a-2525491f4f86&quot;] " width="620" height="683" style="width: 38.7500em; height: 42.6875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out"></td></tr></table></div><div class="example-frame"><table class="example input"><tr><td class="in-out">In[15]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/00245fe3dbd6d075.png" alt="(* Evaluate this cell to get the example input *) CloudGet[&quot;https://www.wolframcloud.com/obj/8483869d-902e-4361-9bbd-27cd296211ac&quot;] " width="544" height="153" style="width: 34.0000em; height: 9.5625em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out"></td></tr></table></div><p class="example-text">Remove the last layers from the pre-trained net:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[16]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/08f6db71ca09acba.png" alt="tempNet = NetDrop[NetModel[ &quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;], -2]" width="575" height="19" style="width: 35.9375em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[16]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/57cf3a6b00cfda97.png" width="277" height="44" style="width: 17.3125em; height: 2.7500em;"/></div></td></tr></table></div><p class="example-text">Create a new net composed of the pre-trained net followed by a linear layer and a softmax layer:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[17]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/5d7fa8d36fa60070.png" alt="newNet = NetChain[<|&quot;pretrainedNet&quot; -> tempNet, &quot;linearNew&quot; -> LinearLayer[], &quot;softmax&quot; -> SoftmaxLayer[]|>, &quot;Output&quot; -> NetDecoder[{&quot;Class&quot;, {&quot;sunflower&quot;, &quot;rose&quot;}}]]" width="603" height="66" style="width: 37.6875em; height: 4.1250em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[17]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/52dc7933c0477a07.png" width="240" height="44" style="width: 15.0000em; height: 2.7500em;"/></div></td></tr></table></div><p class="example-text">Train on the dataset, freezing all the weights except for those in the "linearNew" layer (use <span class="inline-formula"><a class="reflink" href="https://reference.wolfram.com/language/ref/TargetDevice">TargetDevice</a></span> -> "GPU" for training on a GPU):</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[18]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/47421ed13eca4ccc.png" alt="trainedNet = NetTrain[newNet, trainSet, LearningRateMultipliers -> {&quot;linearNew&quot; -> 1, _ -> 0}]" width="582" height="19" style="width: 36.3750em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[18]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/48fe72b04ff707a8.png" width="233" height="44" style="width: 14.5625em; height: 2.7500em;"/></div></td></tr></table></div><p class="example-text">Accuracy obtained on the test set:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[19]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/168b14f7b47faf4a.png" alt="ClassifierMeasurements[trainedNet, testSet, &quot;Accuracy&quot;]" width="356" height="19" style="width: 22.2500em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[19]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/4775f17d364e915b.png" width="16" height="17" style="width: 1.0000em; height: 1.0625em;"/></div></td></tr></table></div></div><div class="subsection cell-group"><h3>Net information</h3><p class="example-text">Inspect the number of parameters of all arrays in the net:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[20]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/3da9bc447d905214.png" alt="Information[ NetModel[&quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;], &quot;ArraysElementCounts&quot;]" width="505" height="43" style="width: 31.5625em; height: 2.6875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[20]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/10c9b271ac03af86.png" width="639" height="155" style="width: 39.9375em; height: 9.6875em;"/></div></td></tr></table></div><p class="example-text">Obtain the total number of parameters:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[21]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/27b511841d9ab4cc.png" alt="Information[ NetModel[&quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;], &quot;ArraysTotalElementCount&quot;]" width="505" height="43" style="width: 31.5625em; height: 2.6875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[21]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/11cc4503e7423cca.png" width="49" height="17" style="width: 3.0625em; height: 1.0625em;"/></div></td></tr></table></div><p class="example-text">Obtain the layer type counts:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[22]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/0d86c33831725710.png" alt="Information[ NetModel[&quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;], &quot;LayerTypeCounts&quot;]" width="505" height="43" style="width: 31.5625em; height: 2.6875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[22]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/4a7a65c97f29a806.png" width="472" height="61" style="width: 29.5000em; height: 3.8125em;"/></div></td></tr></table></div><p class="example-text">Display the summary graphic:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[23]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/5c4d6d5bb2feaa24.png" alt="Information[ NetModel[&quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;], &quot;SummaryGraphic&quot;]" width="505" height="43" style="width: 31.5625em; height: 2.6875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[23]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/4733d317caa68ead.png" width="898" height="48" style="width: 56.1250em; height: 3.0000em;"/></div></td></tr></table></div></div><div class="subsection cell-group"><h3>Export to ONNX</h3><p class="example-text"><span class="inline-formula"><a class="reflink" href="https://reference.wolfram.com/language/ref/Export">Export</a></span> the net to the ONNX format:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[24]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/462e9a8f8217d026.png" alt="onnxFile = Export[FileNameJoin[{$TemporaryDirectory, &quot;net.onnx&quot;}], NetModel[&quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;]]" width="451" height="43" style="width: 28.1875em; height: 2.6875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[24]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/2792246d5e0fd2be.png" width="78" height="17" style="width: 4.8750em; height: 1.0625em;"/></div></td></tr></table></div><p class="example-text">Get the size of the ONNX file:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[25]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/32f15a31767c1af8.png" alt="FileByteCount[onnxFile]" width="151" height="19" style="width: 9.4375em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[25]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/44dce5a165011732.png" width="49" height="17" style="width: 3.0625em; height: 1.0625em;"/></div></td></tr></table></div><p class="example-text">The size is similar to the byte count of the resource object:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[26]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/24b1c767a4fd419a.png" alt="ResourceObject[ &quot;ShuffleNet-V1 Trained on ImageNet Competition Data&quot;][&quot;ByteCount&quot;]" width="548" height="19" style="width: 34.2500em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[26]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/5d2c0f8e669d2dcc.png" width="49" height="17" style="width: 3.0625em; height: 1.0625em;"/></div></td></tr></table></div><p class="example-text">Check some metadata of the ONNX model:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[27]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/73c8d714c305ed18.png" alt="{OpsetVersion, IRVersion} = {Import[onnxFile, &quot;OperatorSetVersion&quot;], Import[onnxFile, &quot;IRVersion&quot;]}" width="469" height="43" style="width: 29.3125em; height: 2.6875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[27]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/30f556ae943265c1.png" width="189" height="17" style="width: 11.8125em; height: 1.0625em;"/></div></td></tr></table></div><p class="example-text">Import the model back into the Wolfram Language. However, the <a href="https://reference.wolfram.com/language/ref/NetEncoder.html">NetEncoder</a> and <a href="https://reference.wolfram.com/language/ref/NetDecoder.html">NetDecoder</a> will be absent because they are not supported by ONNX:</p><div class="example-frame"><table class="example input"><tr><td class="in-out">In[28]:=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/10a49876ceb3830e.png" alt="Import[onnxFile]" width="106" height="19" style="width: 6.6250em; height: 1.1875em;"/></div></td></tr></table><table class="example output"><tr><td class="in-out">Out[28]=</td><td><div class="img-frame"><img src="https://www.wolframcloud.com/obj/resourcesystem/images/79c/79cab740-eca5-4921-b1a7-e79f82fb39d8/1ab7222f38331fbd.png" width="305" height="47" style="width: 19.0625em; height: 2.9375em;"/></div></td></tr></table></div></div></div><!-- RS_SHINGLE_EXAMPLE_SECTION_END --> <div id="notebookButtons" class="construction"> <h2 id="Construction-notebook">Construction Notebook</h2> <p> <a href="https://www.wolframcloud.com/download/c4e3e095-ab5d-480e-99f9-a6488f846461?extension=always&filename=ShuffleNet-V1-Trained-on-ImageNet-Competition-Data" target="notebookButton" data-toggle="tooltip" data-placement="bottom" title="Download Construction Notebook" > <svg id="iconGroup" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 28 34" class="notebook-download" width="26" height="32" role="presentation" > <path class="fill" fill="#598527" d="M16.67276,8.65568A1.26126,1.26126,0,1,1,15.4115,7.39442,1.26126,1.26126,0,0,1,16.67276,8.65568ZM15.4115,12.655a1.26126,1.26126,0,1,0,1.26126,1.26126A1.26126,1.26126,0,0,0,15.4115,12.655Zm0,4.99574A1.26126,1.26126,0,1,0,16.67276,18.912,1.26126,1.26126,0,0,0,15.4115,17.65072Zm0,4.99574a1.26126,1.26126,0,1,0,1.26126,1.26126A1.26126,1.26126,0,0,0,15.4115,22.64646Zm7.24962-10.2563a1.26126,1.26126,0,1,0,1.26126,1.26126A1.26126,1.26126,0,0,0,22.66112,12.39016Zm0,5.52537a1.26126,1.26126,0,1,0,1.26126,1.26126A1.26126,1.26126,0,0,0,22.66112,17.91553ZM6.83888,9.89229a1.26126,1.26126,0,1,0,1.26126,1.26126A1.26126,1.26126,0,0,0,6.83888,9.89229Zm0,5.26055a1.26126,1.26126,0,1,0,1.26126,1.26126A1.26126,1.26126,0,0,0,6.83888,15.15285Zm0,5.26055a1.26126,1.26126,0,1,0,1.26126,1.26126A1.26126,1.26126,0,0,0,6.83888,20.4134ZM24.5,1A2.48819,2.48819,0,0,1,27,3.5v27A2.47572,2.47572,0,0,1,24.5,33H4.5A2.48819,2.48819,0,0,1,2,30.5V30H1V27H2V26H1V23H2V22H1V19H2V18H1V15H2V14H1V11H2V10H1V7H2V6H1V3H2.04A2.51946,2.51946,0,0,1,4.5,1ZM4.46,1.96a1.50243,1.50243,0,0,0-1.5,1.52V29.53a1.50243,1.50243,0,0,0,1.52,1.5H24.52a1.50243,1.50243,0,0,0,1.5-1.52V3.48a1.50243,1.50243,0,0,0-1.52-1.5H4.5Z" /> <path class="stroke" fill="none" stroke="#598527" stroke-miterlimit="10" stroke-width="0.25px" d="M7.0766,11.391l8.3349-2.51153M7.0766,16.41411l8.3349-2.51153M7.0766,21.43717l8.3349-2.51153m0,5.02306,7.0119-5.02306M15.4115,8.87952l7.0119,5.02306M7.0766,11.391l8.3349,2.51153m0,5.02306L7.0766,11.391m0,0L15.4115,23.9487M7.0766,16.41411l8.3349-7.53459M7.0766,21.43717,15.4115,8.87952M7.0766,16.41411l8.3349,2.51153m0-5.02306L7.0766,21.43717m0-5.02306,8.3349,7.53459m0-5.02306,7.0119-5.02306m-7.0119,0h7.0119m-7.0119,5.02306h7.0119M15.4115,23.9487l7.0119-10.04612M15.4115,8.87952l7.0119,10.04612m-7.0119-5.02306,7.0119,5.02306M7.0766,21.43717l8.3349,2.51153" /> </svg> <span class="text" ><span class="line">Download Construction </span ><span class="line">Notebook</span></span > </a> </p> <p> <a href="https://www.wolframcloud.com/env/c4e3e095-ab5d-480e-99f9-a6488f846461?src=CloudBasicCopiedContent#sidebar=basic-notebook-links" target="notebookButton" data-toggle="tooltip" data-placement="bottom" title="Open in Wolfram Cloud" > <svg xmlns="http://www.w3.org/2000/svg" class="cloud-open construction" width="41" height="32" viewBox="0 0 64 50" role="presentation" > <path class="stroke" fill="none" stroke="#598527" stroke-width="2" stroke-linecap="round" d="M22 42h30c6.08 0 11-4.92 11-11 0-3.85-2.03-7.42-5.33-9.4.22-.7.33-1.4.33-2.1 0-3.87-3.13-7-7-7-.43 0-.86.04-1.3.12C48.35 5.86 42.4 1 35.5 1c-4.74 0-9.18 2.32-11.9 6.2-1.3-.45-2.7-.7-4.1-.7C12.6 6.5 7 12.1 7 19c0 .87.1 1.73.28 2.57C3.45 23.4 1 27.27 1 31.5c0 3.92 2.1 7.54 5.5 9.5" /> <path class="fill" fill="#598527" d="M22.5 19.1L45 20 28.3 35l1-5.5c-5.24 2.27-13.42 9.74-16.1 19.8l-.6-.1c0-12.6 7.6-20.76 14.5-26.3z" /> </svg> <span class="text" ><span class="line">Open in </span ><span class="line">Wolfram Cloud</span></span > </a> </p> </div> <h2 id="WLVersion">Requirements</h2> <p> <a href="https://reference.wolfram.com/language/guide/SummaryOfNewFeaturesIn123.html"> Wolfram Language 12.3 </a> (May 2021) or above </p> <h2 id="Resource-History">Resource History</h2> <ul class="source-metadata"> <li> Date Created: <span class="property">4 June 2021</span> </li> </ul> <h2 id="Reference">Reference</h2> <ul class="reference"> <li> <span> X. Zhang, X. Zhou, M. Lin, J. Sun, "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices," arXiv:1707.01083v2 (2017) </span> </li> </span></li> <li><span>Available from: <a href="https://github.com/onnx/models/tree/master/vision/classification/shufflenet" target="_blank">https://github.com/onnx/models/tree/master/vision/classification/shufflenet</a></span></li> <li> <span>Rights: <a href="https://opensource.org/licenses/BSD-3-Clause" target="_blank">BSD 3-Clause</a> </span> </li> </ul> <footer id="bottom"> <ul> <li> <a href="https://resources.wolframcloud.com/NeuralNetRepository/contact-us" class="contact"> <svg viewBox="0 0 44 32"> <path d="M19 .5A6.5 6.5 0 0 0 12.5 7v4.5H.46l12.04 8.75V25a6.5 6.5 0 0 0 6.5 6.5h18a6.5 6.5 0 0 0 6.5-6.5V7A6.5 6.5 0 0 0 37 .5zm0 1h18A5.5 5.5 0 0 1 42.5 7v18a5.5 5.5 0 0 1-5.5 5.5H19a5.5 5.5 0 0 1-5.5-5.5v-5.25L3.54 12.5h9.96V7A5.5 5.5 0 0 1 19 1.5z" /> <path d="M18 6h20v4H18zM18 14h20v4H18zM18 22h10v4H18z" /></svg ><span class="text">Give Feedback</span> </a> </li> <li> <a href="#top" class="top"> <svg viewBox="0 0 16 16"> <path d="M4 0C1.784 0 0 1.784 0 4v8c0 2.216 1.784 4 4 4h8c2.216 0 4-1.784 4-4V4c0-2.216-1.784-4-4-4H4zm4 3l4 4-1 1-3-3-3 3-1-1 4-4zm0 5l4 4-1 1-3-3-3 3-1-1 4-4z" /></svg ><span class="text">Top</span> </a> </li> </ul> </footer> </div> </div> </main> <footer id="gws-footer"> <div class="wrap"> <p> &copy; 2025 <a href="https://www.wolfram.com/" target="gws-footer">Wolfram</a>. All rights reserved. </p> <ul> <li> <a href="https://www.wolfram.com/legal/terms/wolfram-cloud.html" target="gws-footer" > Legal </a> &amp; <a href="https://www.wolfram.com/legal/privacy/wolfram-cloud.html" target="gws-footer" > Privacy Policy </a> </li> <li> <a href="https://resources.wolframcloud.com/forms/contact" target="gws-footer" > Contact Us </a> </li> <li> <a href="https://www.wolframalpha.com/" target="gws-footer"> WolframAlpha.com </a> </li> <li> <a href="https://www.wolframcloud.com/" target="gws-footer"> WolframCloud.com </a> </li> </ul> </div> </footer> <script src="https://www.wolframcdn.com/javascript/jquery-2.1.4.min.js"></script> <script src="https://www.wolframcloud.com/obj/resourcesystem/webresources/resourcesystem/5.0.0/shingle.js"></script> <script src="https://www.wolframcloud.com/obj/resourcesystem/webresources/resourcesystem/5.0.0/header-and-results.js"></script> <script src="https://www.wolframcloud.com/obj/resourcesystem/webresources/resourcesystem/5.0.0/react-autocomplete.js"></script> <script src="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/main.js"></script> <script src="https://www.wolframcloud.com/obj/resourcesystem/webresources/resourcesystem/5.0.0/results-libraries.js"></script> <script src="https://www.wolframcloud.com/obj/resourcesystem/webresources/NeuralNetRepository/5.0.0/results-list.js"></script> <script src="https://www.wolframcloud.com/obj/resourcesystem/webresources/resourcesystem/5.0.0/results-controller.js"></script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10