CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–50 of 130 results for author: <span class="mathjax">Petrov, A</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Petrov%2C+A">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Petrov, A"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Petrov%2C+A&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Petrov, A"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Petrov%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Petrov%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Petrov%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Petrov%2C+A&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.18817">arXiv:2410.18817</a> <span> [<a href="https://arxiv.org/pdf/2410.18817">pdf</a>, <a href="https://arxiv.org/format/2410.18817">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> Conceptual Design of the Muonium-to-Antimuonium Conversion Experiment (MACE) </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bai%2C+A">Ai-Yu Bai</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+H">Hanjie Cai</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C">Chang-Lin Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+S">Siyuan Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+X">Xurong Chen</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+Y">Yu Chen</a>, <a href="/search/physics?searchtype=author&query=Cheng%2C+W">Weibin Cheng</a>, <a href="/search/physics?searchtype=author&query=Dai%2C+L">Ling-Yun Dai</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+R">Rui-Rui Fan</a>, <a href="/search/physics?searchtype=author&query=Gong%2C+L">Li Gong</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+Z">Zihao Guo</a>, <a href="/search/physics?searchtype=author&query=He%2C+Y">Yuan He</a>, <a href="/search/physics?searchtype=author&query=Hou%2C+Z">Zhilong Hou</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+Y">Yinyuan Huang</a>, <a href="/search/physics?searchtype=author&query=Jia%2C+H">Huan Jia</a>, <a href="/search/physics?searchtype=author&query=Jiang%2C+H">Hao Jiang</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+H">Han-Tao Jing</a>, <a href="/search/physics?searchtype=author&query=Kang%2C+X">Xiaoshen Kang</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hai-Bo Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Jincheng Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+Y">Yang Li</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+S">Shulin Liu</a>, <a href="/search/physics?searchtype=author&query=Lu%2C+G">Guihao Lu</a>, <a href="/search/physics?searchtype=author&query=Miao%2C+H">Han Miao</a>, <a href="/search/physics?searchtype=author&query=Ning%2C+Y">Yunsong Ning</a> , et al. (25 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.18817v1-abstract-short" style="display: inline;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detecti… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'inline'; document.getElementById('2410.18817v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.18817v1-abstract-full" style="display: none;"> The spontaneous conversion of muonium to antimuonium is one of the interesting charged lepton flavor violation phenomena, offering a sensitive probe of potential new physics and serving as a tool to constrain the parameter space beyond the Standard Model. Utilizing a high-intensity muon beam, a Michel electron magnetic spectrometer and a positron transport solenoid together with a positron detection system, MACE aims to discover or constrain this rare process at the conversion probability beyond the level of $10^{-13}$. This report provides an overview of the theoretical framework and detailed experimental design in the search for the muonium-to-antimuonium conversion. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.18817v1-abstract-full').style.display = 'none'; document.getElementById('2410.18817v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">115 pages, 59 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2409.10529">arXiv:2409.10529</a> <span> [<a href="https://arxiv.org/pdf/2409.10529">pdf</a>, <a href="https://arxiv.org/ps/2409.10529">ps</a>, <a href="https://arxiv.org/format/2409.10529">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Physics">physics.gen-ph</span> </div> </div> <p class="title is-5 mathjax"> Mass and angular momentum for the Kerr black hole in TEGR and STEGR </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Emtsova%2C+E+D">E. D. Emtsova</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">A. N. Petrov</a>, <a href="/search/physics?searchtype=author&query=Toporensky%2C+A+V">A. V. Toporensky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2409.10529v1-abstract-short" style="display: inline;"> We study the energy-momentum characteristics of the rotating black hole - Kerr solution of general relativity in the Teleparallel Equivalent of General Relativity (TEGR) and the Symmetric Teleparallel Equivalent of General Relativity (STEGR). The previously constructed spacetime covariant and Lorentz invariant expressions for conserved Noether currents, superpotentials and charges are used. The No… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10529v1-abstract-full').style.display = 'inline'; document.getElementById('2409.10529v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2409.10529v1-abstract-full" style="display: none;"> We study the energy-momentum characteristics of the rotating black hole - Kerr solution of general relativity in the Teleparallel Equivalent of General Relativity (TEGR) and the Symmetric Teleparallel Equivalent of General Relativity (STEGR). The previously constructed spacetime covariant and Lorentz invariant expressions for conserved Noether currents, superpotentials and charges are used. The Noether charges describe total energy, momentum or angular momentum of gravitating system depending on a choice of the displacement vector $尉$. To define covariant and invariant conserved quantities both in TEGR and in STEGR on needs to use external fields which are flat teleparallel connections. To determine the non-dynamical connections in TEGR and STEGR we use the unified ``turning off'' gravity principle. Besides, to analyse the Noether conserved quantities in these theories, we use the concept of ``gauges''. The gauge changing can affect the Noether conserved quantities. We highlight two ways to turn off gravity - by $M \to 0$ and by $M \to 0 , ~ a \to 0$ which gives us different gauges in TEGR and STEGR. In both kind of gauges we get the expected values of black hole mass and angular momentum. Our attempts to find gauges which could lead to a correspondence to Einstein's equivalence principle for the Kerr solution where unsuccessful both in TEGR and STEGR. However, these exercises helped us to find a related gauge for the Schwarzschild solution in STEGR that is a novelty. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2409.10529v1-abstract-full').style.display = 'none'; document.getElementById('2409.10529v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2408.10244">arXiv:2408.10244</a> <span> [<a href="https://arxiv.org/pdf/2408.10244">pdf</a>, <a href="https://arxiv.org/format/2408.10244">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Electric field dependent g factors of YbOH molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2408.10244v1-abstract-short" style="display: inline;"> YbOH molecule is one of the most sensitive systems for the electron electric dipole moment ($e$EDM) searches. Zeeman splittings of the $e$EDM sensitive levels have significant implications to control and suppress important systematic effects due to stray magnetic field in experiments for $e$EDM searches. The electric-field-dependent g factors of the lowest rotational level of the first excited ben… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10244v1-abstract-full').style.display = 'inline'; document.getElementById('2408.10244v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2408.10244v1-abstract-full" style="display: none;"> YbOH molecule is one of the most sensitive systems for the electron electric dipole moment ($e$EDM) searches. Zeeman splittings of the $e$EDM sensitive levels have significant implications to control and suppress important systematic effects due to stray magnetic field in experiments for $e$EDM searches. The electric-field-dependent g factors of the lowest rotational level of the first excited bending vibrational mode of $^{174}$YbOH are calculated. l-doublet levels with small g factors difference are found and main contributions to the difference are determined. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2408.10244v1-abstract-full').style.display = 'none'; document.getElementById('2408.10244v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 August, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2406.01442">arXiv:2406.01442</a> <span> [<a href="https://arxiv.org/pdf/2406.01442">pdf</a>, <a href="https://arxiv.org/format/2406.01442">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Rotational and Near-IR Spectra of PbF: Characterization of the Coupled $X_1\,^2螤_{1/2}$ and $X_2\,^2螤_{3/2}$ States </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Jackson%2C+S">Sean Jackson</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+L">Luke Kim</a>, <a href="/search/physics?searchtype=author&query=Biekert%2C+A">Andreas Biekert</a>, <a href="/search/physics?searchtype=author&query=Nguyen%2C+A">Alex Nguyen</a>, <a href="/search/physics?searchtype=author&query=Mawhorter%2C+R+J">Richard J Mawhorter</a>, <a href="/search/physics?searchtype=author&query=Sears%2C+T+J">Trevor J. Sears</a>, <a href="/search/physics?searchtype=author&query=Skripnikov%2C+L+V">Leonid V. Skripnikov</a>, <a href="/search/physics?searchtype=author&query=Baturo%2C+V+V">Vera V. Baturo</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">Alexander N. Petrov</a>, <a href="/search/physics?searchtype=author&query=Grabow%2C+J">Jens-Uwe Grabow</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2406.01442v2-abstract-short" style="display: inline;"> Observations of the rotational spectrum of lead monofluoride, PbF, have been extended up to transitions in the \textit{v} = 7 level for $^{208}$PbF in the lowest $X_1\,^2螤_{1/2}$ state of the radical and \textit{v} = 5 for the $^{207}$Pb and $^{206}$Pb isotopologues. The data also include a few measurements for $^{204}$PbF in \textit{v} = 0. These new measurements have been combined with existing… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01442v2-abstract-full').style.display = 'inline'; document.getElementById('2406.01442v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2406.01442v2-abstract-full" style="display: none;"> Observations of the rotational spectrum of lead monofluoride, PbF, have been extended up to transitions in the \textit{v} = 7 level for $^{208}$PbF in the lowest $X_1\,^2螤_{1/2}$ state of the radical and \textit{v} = 5 for the $^{207}$Pb and $^{206}$Pb isotopologues. The data also include a few measurements for $^{204}$PbF in \textit{v} = 0. These new measurements have been combined with existing near-IR measurements of the $X_2 - X_1$ fine-structure transition and a simultaneous multi-isotope fit of the data to an effective isotope-independent ro-vibronic Hamiltonian has been carried out. The resulting parameters fully characterize the vibrational, rotational and hyperfine structure of the combined $X_1 \, / \, X_2$ state of the radical. A pair of opposite parity levels with total angular momentum quantum number, $F=1/2$, in the lowest rotational level, $J=1/2$ of \PbF \,are close in energy and their spacing decreases with vibrational excitation. The experimental results show the spacing decreases to less than 20 MHz at $v=7$ and 8. The experimental work is complemented by new \textit{ab initio} calculations which support the results and allow predictions outside the experimental data range. The calculated radiative lifetimes of the relevant vibrationally excited states are of the order of 50 ms. This work was motivated by interest in using \PbF\, as a vehicle for future probes of the standard model of physics such as placing limits on the electron's electric dipole moment (\eEDM), molecular charge-parity non-conservation and Born-Oppenheimer breakdown effects for example. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2406.01442v2-abstract-full').style.display = 'none'; document.getElementById('2406.01442v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 5 September, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 June, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">36 pages, 4 figures, 5 page Appendix. Accepted by Phys FRev A, 2024-09-04</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.06799">arXiv:2404.06799</a> <span> [<a href="https://arxiv.org/pdf/2404.06799">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1021/acs.jpcc.4c04586">10.1021/acs.jpcc.4c04586 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Chemical Interface Damping by Electrochemical Gold Oxidation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pfeiffer%2C+M">Maurice Pfeiffer</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xinyan Wu</a>, <a href="/search/physics?searchtype=author&query=Ebrahimi%2C+F">Fatemeh Ebrahimi</a>, <a href="/search/physics?searchtype=author&query=Mameka%2C+N">Nadiia Mameka</a>, <a href="/search/physics?searchtype=author&query=Eich%2C+M">Manfred Eich</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.06799v1-abstract-short" style="display: inline;"> Chemical interface damping is a change in the effective collision frequency of conduction band electrons in metal originating from a chemical change of the metal interface. In this work, we present in-situ ellipsometric measurements that reveal the chemical interface damping effect from electrochemical oxidation of single crystal and polycrystalline gold films. We observe an increase in collision… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06799v1-abstract-full').style.display = 'inline'; document.getElementById('2404.06799v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.06799v1-abstract-full" style="display: none;"> Chemical interface damping is a change in the effective collision frequency of conduction band electrons in metal originating from a chemical change of the metal interface. In this work, we present in-situ ellipsometric measurements that reveal the chemical interface damping effect from electrochemical oxidation of single crystal and polycrystalline gold films. We observe an increase in collision frequency of up to 21 meV for single-crystalline gold. To compare to results obtained with thiols and metal-oxides on gold nanoparticles, we normalize the collision frequency by the electron mean free path to the surface of the structure. We show that electrochemical gold oxidation provides a stronger effect on collision frequency than these coatings. Similar ellipsometric experiments have previously been conducted to investigate the optical properties of gold oxide, but without taking chemical interface damping into account. The change in reflection from oxidation of gold was solely attributed to the oxide coating. We also show that the chemical interface damping effect saturates at a larger effective oxide thickness, which is attributed to the stabilization of the gold-oxide interface. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.06799v1-abstract-full').style.display = 'none'; document.getElementById('2404.06799v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2404.03435">arXiv:2404.03435</a> <span> [<a href="https://arxiv.org/pdf/2404.03435">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> </div> </div> <p class="title is-5 mathjax"> Size dependent photoemission study by electrochemical coarsening of nanoporous gold </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Ebrahimi%2C+F">Fatemeh Ebrahimi</a>, <a href="/search/physics?searchtype=author&query=Wu%2C+X">Xinyan Wu</a>, <a href="/search/physics?searchtype=author&query=Pfeiffer%2C+M">Maurice Pfeiffer</a>, <a href="/search/physics?searchtype=author&query=Renner%2C+H">Hagen Renner</a>, <a href="/search/physics?searchtype=author&query=Mameka%2C+N">Nadiia Mameka</a>, <a href="/search/physics?searchtype=author&query=Eich%2C+M">Manfred Eich</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2404.03435v1-abstract-short" style="display: inline;"> The generation and utilization of hot charge carriers in plasmonic materials have emerged as a topic of significant importance, with profound implications across multiple disciplines, including optoelectronics, photovoltaics, photocatalysis, and sensing. In this study, we investigate the hot electron transfer from nanoporous gold (npAu) in dependence of the structure size, utilizing both the nanos… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03435v1-abstract-full').style.display = 'inline'; document.getElementById('2404.03435v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2404.03435v1-abstract-full" style="display: none;"> The generation and utilization of hot charge carriers in plasmonic materials have emerged as a topic of significant importance, with profound implications across multiple disciplines, including optoelectronics, photovoltaics, photocatalysis, and sensing. In this study, we investigate the hot electron transfer from nanoporous gold (npAu) in dependence of the structure size, utilizing both the nanoscale feature size and the interconnected nature of this material. We employ photoelectron injection from nanoporous gold into the electrolyte under UV illumination as a test electron transfer process. Nanoporous gold thin films with sub-10 nm initial ligament diameter are stepwise coarsened by potential cycles in a photoelectrochemical setup, thereby allowing us to precisely probe the influence of ligament diameter on the photocurrent response. The resulting ligament diameter variations are confirmed by scanning electron microscopy (SEM) analysis. As the ligament diameter increased from 8 to 16 nm, there was a corresponding decrease in quantum efficiency proportional to the inverse ligament diameter squared. Such dependency is expected for electrons excited by surface collisions. For the small ligament diameter of 10 nm we estimate an emission efficiency of excited 6sp electrons as 3.14%, reaching 23% for the surface excited electrons. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2404.03435v1-abstract-full').style.display = 'none'; document.getElementById('2404.03435v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 April, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages, 13 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2312.05097">arXiv:2312.05097</a> <span> [<a href="https://arxiv.org/pdf/2312.05097">pdf</a>, <a href="https://arxiv.org/format/2312.05097">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1134/S0021364023603895">10.1134/S0021364023603895 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Selective damping of plasmons in coupled two-dimensional systems by Coulomb drag </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Safonov%2C+I">Ilya Safonov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+S">Aleksandr S. Petrov</a>, <a href="/search/physics?searchtype=author&query=Svintsov%2C+D">Dmitry Svintsov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2312.05097v1-abstract-short" style="display: inline;"> The Coulomb drag is a many-body effect observed in proximized low-dimensional systems. It appears as emergence of voltage in one of them upon passage of bias current in another. The magnitude of drag voltage can be strongly affected by exchange of plasmonic excitations between the layers; however, the reverse effect of Coulomb drag on properties of plasmons has not been studied. Here, we study the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05097v1-abstract-full').style.display = 'inline'; document.getElementById('2312.05097v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2312.05097v1-abstract-full" style="display: none;"> The Coulomb drag is a many-body effect observed in proximized low-dimensional systems. It appears as emergence of voltage in one of them upon passage of bias current in another. The magnitude of drag voltage can be strongly affected by exchange of plasmonic excitations between the layers; however, the reverse effect of Coulomb drag on properties of plasmons has not been studied. Here, we study the plasmon spectra and damping in parallel two-dimensional systems in the presence of Coulomb drag. We find that Coulomb drag leads to selective damping of one of the two fundamental plasma modes of a coupled bilayer. For identical electron doping of both layers, the drag suppresses the acoustic plasma mode; while for symmetric electron-hole doping of the coupled pair, the drag suppresses the optical plasma mode. The selective damping can be observed both for propagating modes in extended bilayers and for localized plasmons in bilayers confined by source and drain contacts. The discussed effect may provide access to the strength of Coulomb interaction in 2d electron systems from various optical and microwave scattering experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2312.05097v1-abstract-full').style.display = 'none'; document.getElementById('2312.05097v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 December, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JETP Letters, vol. 119, p. 136-143 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.14269">arXiv:2310.14269</a> <span> [<a href="https://arxiv.org/pdf/2310.14269">pdf</a>, <a href="https://arxiv.org/format/2310.14269">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.053103">10.1103/PhysRevA.108.053103 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Progress toward the $\mathcal{P}$, $\mathcal{T}$-odd Faraday effect: Light absorption by atoms briefly interacting with a laser beam </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chubukov%2C+D+V">Dmitry V. Chubukov</a>, <a href="/search/physics?searchtype=author&query=Aleksandrov%2C+I+A">Ivan A. Aleksandrov</a>, <a href="/search/physics?searchtype=author&query=Skripnikov%2C+L+V">Leonid V. Skripnikov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">Alexander N. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.14269v1-abstract-short" style="display: inline;"> We investigate the process of photon absorption by atoms or molecules shortly interacting with a laser beam in the dipole approximation. Assuming that the interaction time $蟿$ is much smaller than the lifetime of the corresponding excited state, we examine the absorption probability as a function of $蟿$. Besides, we incorporate Doppler broadening due to nonzero temperature of the atoms (molecules)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14269v1-abstract-full').style.display = 'inline'; document.getElementById('2310.14269v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.14269v1-abstract-full" style="display: none;"> We investigate the process of photon absorption by atoms or molecules shortly interacting with a laser beam in the dipole approximation. Assuming that the interaction time $蟿$ is much smaller than the lifetime of the corresponding excited state, we examine the absorption probability as a function of $蟿$. Besides, we incorporate Doppler broadening due to nonzero temperature of the atoms (molecules). It is demonstrated that in the case of a zero detuning and without Doppler broadening, the absorption probability is quadratic in $蟿$. Once Doppler broadening is taken into account or the laser beam is off from the resonant frequency, the absorption probability becomes linear in $蟿$. Our findings are expected to be important for experimental studies in optical cells or cavities where atoms or molecules traverse continuous laser beams. The experimental prospects of searching for the electric dipole moment (EDM) of the electron are discussed in detail. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.14269v1-abstract-full').style.display = 'none'; document.getElementById('2310.14269v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 108, 053103 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2310.05681">arXiv:2310.05681</a> <span> [<a href="https://arxiv.org/pdf/2310.05681">pdf</a>, <a href="https://arxiv.org/format/2310.05681">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.109.012819">10.1103/PhysRevA.109.012819 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electronic matrix elements for parity doubling in YbOH molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2310.05681v1-abstract-short" style="display: inline;"> YbOH molecule is one of the most sensitive systems for the electron electric dipole moment ($e$EDM) searches. The $e$EDM-induced energy shift is proportional to polarization ($P$) of the molecule. In Ref. [A. Petrov and A. Zakharova, Phys. Rev. A 105, L050801 (2022)] was shown that the value of l-doubling and spin-rotation splitting directly influences the maximum value of $P$. Recently in Ref. [J… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05681v1-abstract-full').style.display = 'inline'; document.getElementById('2310.05681v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2310.05681v1-abstract-full" style="display: none;"> YbOH molecule is one of the most sensitive systems for the electron electric dipole moment ($e$EDM) searches. The $e$EDM-induced energy shift is proportional to polarization ($P$) of the molecule. In Ref. [A. Petrov and A. Zakharova, Phys. Rev. A 105, L050801 (2022)] was shown that the value of l-doubling and spin-rotation splitting directly influences the maximum value of $P$. Recently in Ref. [Jadbabaie, Y. Takahashi, N. H. Pilgram, C. J. Conn, Y. Zeng, C. Zhang, and N. R. Hutzler, New Journal of Physics 25, 073014 (2023)] the corresponding energy levels was determined experimentally. We introduced electronic matrix elements in Hund's case $c$ coupling scheme to reproduce experimental energy levels and calculated $P$ as function of external electric field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2310.05681v1-abstract-full').style.display = 'none'; document.getElementById('2310.05681v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 October, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRA 109, 012819 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.05933">arXiv:2309.05933</a> <span> [<a href="https://arxiv.org/pdf/2309.05933">pdf</a>, <a href="https://arxiv.org/format/2309.05933">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> </div> </div> <p class="title is-5 mathjax"> Workshop on a future muon program at FNAL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Corrodi%2C+S">S. Corrodi</a>, <a href="/search/physics?searchtype=author&query=Oksuzian%2C+Y">Y. Oksuzian</a>, <a href="/search/physics?searchtype=author&query=Edmonds%2C+A">A. Edmonds</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+J">J. Miller</a>, <a href="/search/physics?searchtype=author&query=Tran%2C+H+N">H. N. Tran</a>, <a href="/search/physics?searchtype=author&query=Bonventre%2C+R">R. Bonventre</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+D+N">D. N. Brown</a>, <a href="/search/physics?searchtype=author&query=Meot%2C+F">F. Meot</a>, <a href="/search/physics?searchtype=author&query=Singh%2C+V">V. Singh</a>, <a href="/search/physics?searchtype=author&query=Kolomensky%2C+Y">Y. Kolomensky</a>, <a href="/search/physics?searchtype=author&query=Tripathy%2C+S">S. Tripathy</a>, <a href="/search/physics?searchtype=author&query=Borrel%2C+L">L. Borrel</a>, <a href="/search/physics?searchtype=author&query=Bub%2C+M">M. Bub</a>, <a href="/search/physics?searchtype=author&query=Echenard%2C+B">B. Echenard</a>, <a href="/search/physics?searchtype=author&query=Hitlin%2C+D+G">D. G. Hitlin</a>, <a href="/search/physics?searchtype=author&query=Jafree%2C+H">H. Jafree</a>, <a href="/search/physics?searchtype=author&query=Middleton%2C+S">S. Middleton</a>, <a href="/search/physics?searchtype=author&query=Plestid%2C+R">R. Plestid</a>, <a href="/search/physics?searchtype=author&query=Porter%2C+F+C">F. C. Porter</a>, <a href="/search/physics?searchtype=author&query=Zhu%2C+R+Y">R. Y. Zhu</a>, <a href="/search/physics?searchtype=author&query=Bottura%2C+L">L. Bottura</a>, <a href="/search/physics?searchtype=author&query=Pinsard%2C+E">E. Pinsard</a>, <a href="/search/physics?searchtype=author&query=Teixeira%2C+A+M">A. M. Teixeira</a>, <a href="/search/physics?searchtype=author&query=Carelli%2C+C">C. Carelli</a>, <a href="/search/physics?searchtype=author&query=Ambrose%2C+D">D. Ambrose</a> , et al. (68 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.05933v1-abstract-short" style="display: inline;"> The Snowmass report on rare processes and precision measurements recommended Mu2e-II and a next generation muon facility at Fermilab (Advanced Muon Facility) as priorities for the frontier. The Workshop on a future muon program at FNAL was held in March 2023 to discuss design studies for Mu2e-II, organizing efforts for the next generation muon facility, and identify synergies with other efforts (e… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05933v1-abstract-full').style.display = 'inline'; document.getElementById('2309.05933v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.05933v1-abstract-full" style="display: none;"> The Snowmass report on rare processes and precision measurements recommended Mu2e-II and a next generation muon facility at Fermilab (Advanced Muon Facility) as priorities for the frontier. The Workshop on a future muon program at FNAL was held in March 2023 to discuss design studies for Mu2e-II, organizing efforts for the next generation muon facility, and identify synergies with other efforts (e.g., muon collider). Topics included high-power targetry, status of R&D for Mu2e-II, development of compressor rings, FFA and concepts for muon experiments (conversion, decays, muonium and other opportunities) at AMF. This document summarizes the workshop discussions with a focus on future R&D tasks needed to realize these concepts. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.05933v1-abstract-full').style.display = 'none'; document.getElementById('2309.05933v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">68 pages, 36 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-23-464-PPD, CALT-TH-2023-036 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2309.01680">arXiv:2309.01680</a> <span> [<a href="https://arxiv.org/pdf/2309.01680">pdf</a>, <a href="https://arxiv.org/format/2309.01680">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Magnetic quadrupole moment of $^{175}$Lu and parity-violating polarization degree of levels in $^{175}$LuOH$^+$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kurchavov%2C+I">Igor Kurchavov</a>, <a href="/search/physics?searchtype=author&query=Maison%2C+D">Daniel Maison</a>, <a href="/search/physics?searchtype=author&query=Skripnikov%2C+L">Leonid Skripnikov</a>, <a href="/search/physics?searchtype=author&query=Grau%2C+M">Matt Grau</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2309.01680v1-abstract-short" style="display: inline;"> The calculation of the parity-violating polarizations in the external electric field, which are associated with the electron electric dipole moment ($e$EDM) and magnetic quadrupole moment (MQM) of the $^{175}$Lu nucleus, as well as the determination of the rovibrational structure for the $^{175}$LuOH$^+$ cation, is performed. Beyond the bending of the molecule, the slight effect of the stretching… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01680v1-abstract-full').style.display = 'inline'; document.getElementById('2309.01680v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2309.01680v1-abstract-full" style="display: none;"> The calculation of the parity-violating polarizations in the external electric field, which are associated with the electron electric dipole moment ($e$EDM) and magnetic quadrupole moment (MQM) of the $^{175}$Lu nucleus, as well as the determination of the rovibrational structure for the $^{175}$LuOH$^+$ cation, is performed. Beyond the bending of the molecule, the slight effect of the stretching of the distance between Lu and OH is taken into account. This study is required for the preparation of the experiment and for the extraction of the $e$EDM and MQM values of $^{175}$Lu from future measurements. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2309.01680v1-abstract-full').style.display = 'none'; document.getElementById('2309.01680v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 September, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2211.02112</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2308.12832">arXiv:2308.12832</a> <span> [<a href="https://arxiv.org/pdf/2308.12832">pdf</a>, <a href="https://arxiv.org/format/2308.12832">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.108.062804">10.1103/PhysRevA.108.062804 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Accurate numerical evaluation of systematics in the experiment for electron electric dipole moment measurement in HfF$^+$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">Alexander N. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2308.12832v1-abstract-short" style="display: inline;"> Hyperfine structure of the ground rotational level of the metastable $^3螖_1$ electronic state of $^{180}$HfF$^+$ ion is calculated at presence of variable external electric and magnetic fields. Calculations are required for analysis of systematic effects in experiment for electron electric dipole moment ($e$EDM) search. Different perturbations in molecular spectra important for $e$EDM spectroscopy… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12832v1-abstract-full').style.display = 'inline'; document.getElementById('2308.12832v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2308.12832v1-abstract-full" style="display: none;"> Hyperfine structure of the ground rotational level of the metastable $^3螖_1$ electronic state of $^{180}$HfF$^+$ ion is calculated at presence of variable external electric and magnetic fields. Calculations are required for analysis of systematic effects in experiment for electron electric dipole moment ($e$EDM) search. Different perturbations in molecular spectra important for $e$EDM spectroscopy are taken into account. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2308.12832v1-abstract-full').style.display = 'none'; document.getElementById('2308.12832v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 24 August, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:2302.02856</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 108, 062804 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.07571">arXiv:2304.07571</a> <span> [<a href="https://arxiv.org/pdf/2304.07571">pdf</a>, <a href="https://arxiv.org/format/2304.07571">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Quantum Control of Atom-Ion Charge Exchange via Light-induced Conical Intersections </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a>, <a href="/search/physics?searchtype=author&query=Tiesinga%2C+E">Eite Tiesinga</a>, <a href="/search/physics?searchtype=author&query=Kotochigova%2C+S">Svetlana Kotochigova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.07571v2-abstract-short" style="display: inline;"> Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces in the multi-dimensional coordinate space of colliding atoms and molecules. Conical intersections and corresponding non-adiabatic coupling can greatly affect molecular dynamics and chemical properties. In this paper, we predict significant or measurable non-adiabatic effects in an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07571v2-abstract-full').style.display = 'inline'; document.getElementById('2304.07571v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.07571v2-abstract-full" style="display: none;"> Conical intersections are crossing points or lines between two or more adiabatic electronic potential energy surfaces in the multi-dimensional coordinate space of colliding atoms and molecules. Conical intersections and corresponding non-adiabatic coupling can greatly affect molecular dynamics and chemical properties. In this paper, we predict significant or measurable non-adiabatic effects in an ultracold atom-ion charge-exchange reaction in the presence of laser-induced conical intersections (LICIs). We investigate the fundamental physics of these LICIs on molecular reactivity under unique conditions: those of relatively low laser intensity of $10^8$ W/cm$^2$ and ultracold temperatures below 1 mK. We predict irregular interference effects in the charge-exchange rate coefficients between K and Ca$^+$ as functions of laser frequency. These irregularities occur in our system due to the presence of two LICIs. To further elucidate the role of the LICIs on the reaction dynamics, we compare these rate coefficients with those computed for a system where the CIs have been ``removed''. In the laser frequency window, where conical interactions are present, the difference in rate coefficients can be as large as $10^{-9}$ cm$^3$/s. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.07571v2-abstract-full').style.display = 'none'; document.getElementById('2304.07571v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 15 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 5 figures and supplementary information</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02856">arXiv:2302.02856</a> <span> [<a href="https://arxiv.org/pdf/2302.02856">pdf</a>, <a href="https://arxiv.org/format/2302.02856">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> </div> <p class="title is-5 mathjax"> Revisited $\mathcal{T}$, $\mathcal{P}$-odd spin-rotational Hamiltonian of HfF$^+$ for precise $e$EDM measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">Alexander N. Petrov</a>, <a href="/search/physics?searchtype=author&query=Skripnikov%2C+L+V">Leonid V. Skripnikov</a>, <a href="/search/physics?searchtype=author&query=Titov%2C+A+V">Anatoly V. Titov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02856v2-abstract-short" style="display: inline;"> The current constraint on the electron electric dipole moment ($e$EDM), $|d_e|<4.1\times 10^{-30}$ ${e {\cdotp} {\rm cm}}$ (90\% confidence), was recently established using the trapped $^{180}$Hf$^{19}$F$^+$ molecular ions in the $J=1$ rotational level of its $ ^3螖_1$ electronic state [T. S. Roussy, L. Caldwell, T. Wright, et al., arxiv:2212.11841]. The extensive experimental study of the HfF$^+$… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02856v2-abstract-full').style.display = 'inline'; document.getElementById('2302.02856v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02856v2-abstract-full" style="display: none;"> The current constraint on the electron electric dipole moment ($e$EDM), $|d_e|<4.1\times 10^{-30}$ ${e {\cdotp} {\rm cm}}$ (90\% confidence), was recently established using the trapped $^{180}$Hf$^{19}$F$^+$ molecular ions in the $J=1$ rotational level of its $ ^3螖_1$ electronic state [T. S. Roussy, L. Caldwell, T. Wright, et al., arxiv:2212.11841]. The extensive experimental study of the HfF$^+$ cation provides detailed spectroscopy of the $惟-$doublet levels in the external rotating electric and magnetic fields. We showed that previously developed theoretical approaches can fully reproduce the latest experimental data. Their justification from the first principles is very important for the examination of both modern molecular theory and possible systematic uncertainties in the interpretation of the experimental data obtained with high accuracy. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02856v2-abstract-full').style.display = 'none'; document.getElementById('2302.02856v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 May, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02764">arXiv:2302.02764</a> <span> [<a href="https://arxiv.org/pdf/2302.02764">pdf</a>, <a href="https://arxiv.org/format/2302.02764">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168449">10.1016/j.nima.2023.168449 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Machine Learning based tool for CMS RPC currents quality monitoring </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shumka%2C+E">E. Shumka</a>, <a href="/search/physics?searchtype=author&query=Samalan%2C+A">A. Samalan</a>, <a href="/search/physics?searchtype=author&query=Tytgat%2C+M">M. Tytgat</a>, <a href="/search/physics?searchtype=author&query=Sawy%2C+M+E">M. El Sawy</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+G+A">G. A. Alves</a>, <a href="/search/physics?searchtype=author&query=Marujo%2C+F">F. Marujo</a>, <a href="/search/physics?searchtype=author&query=Coelho%2C+E+A">E. A. Coelho</a>, <a href="/search/physics?searchtype=author&query=Da+Costa%2C+E+M">E. M. Da Costa</a>, <a href="/search/physics?searchtype=author&query=Nogima%2C+H">H. Nogima</a>, <a href="/search/physics?searchtype=author&query=Santoro%2C+A">A. Santoro</a>, <a href="/search/physics?searchtype=author&query=De+Souza%2C+S+F">S. Fonseca De Souza</a>, <a href="/search/physics?searchtype=author&query=Damiao%2C+D+D+J">D. De Jesus Damiao</a>, <a href="/search/physics?searchtype=author&query=Thiel%2C+M">M. Thiel</a>, <a href="/search/physics?searchtype=author&query=Amarilo%2C+K+M">K. Mota Amarilo</a>, <a href="/search/physics?searchtype=author&query=Filho%2C+M+B+F">M. Barroso Ferreira Filho</a>, <a href="/search/physics?searchtype=author&query=Aleksandrov%2C+A">A. Aleksandrov</a>, <a href="/search/physics?searchtype=author&query=Hadjiiska%2C+R">R. Hadjiiska</a>, <a href="/search/physics?searchtype=author&query=Iaydjiev%2C+P">P. Iaydjiev</a>, <a href="/search/physics?searchtype=author&query=Rodozov%2C+M">M. Rodozov</a>, <a href="/search/physics?searchtype=author&query=Shopova%2C+M">M. Shopova</a>, <a href="/search/physics?searchtype=author&query=Soultanov%2C+G">G. Soultanov</a>, <a href="/search/physics?searchtype=author&query=Dimitrov%2C+A">A. Dimitrov</a>, <a href="/search/physics?searchtype=author&query=Litov%2C+L">L. Litov</a>, <a href="/search/physics?searchtype=author&query=Pavlov%2C+B">B. Pavlov</a>, <a href="/search/physics?searchtype=author&query=Petkov%2C+P">P. Petkov</a> , et al. (83 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02764v1-abstract-short" style="display: inline;"> The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to $2\times 10^{34}$ $\text{cm}^{-2}\text{s}^{-1}$ are routinely achieved. The CMS RPC system performance is constantly m… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02764v1-abstract-full').style.display = 'inline'; document.getElementById('2302.02764v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02764v1-abstract-full" style="display: none;"> The muon system of the CERN Compact Muon Solenoid (CMS) experiment includes more than a thousand Resistive Plate Chambers (RPC). They are gaseous detectors operated in the hostile environment of the CMS underground cavern on the Large Hadron Collider where pp luminosities of up to $2\times 10^{34}$ $\text{cm}^{-2}\text{s}^{-1}$ are routinely achieved. The CMS RPC system performance is constantly monitored and the detector is regularly maintained to ensure stable operation. The main monitorable characteristics are dark current, efficiency for muon detection, noise rate etc. Herein we describe an automated tool for CMS RPC current monitoring which uses Machine Learning techniques. We further elaborate on the dedicated generalized linear model proposed already and add autoencoder models for self-consistent predictions as well as hybrid models to allow for RPC current predictions in a distant future. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02764v1-abstract-full').style.display = 'none'; document.getElementById('2302.02764v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2302.02165">arXiv:2302.02165</a> <span> [<a href="https://arxiv.org/pdf/2302.02165">pdf</a>, <a href="https://arxiv.org/format/2302.02165">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1361-6633/ad1e39">10.1088/1361-6633/ad1e39 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Opportunities for Fundamental Physics Research with Radioactive Molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Arrowsmith-Kron%2C+G">Gordon Arrowsmith-Kron</a>, <a href="/search/physics?searchtype=author&query=Athanasakis-Kaklamanakis%2C+M">Michail Athanasakis-Kaklamanakis</a>, <a href="/search/physics?searchtype=author&query=Au%2C+M">Mia Au</a>, <a href="/search/physics?searchtype=author&query=Ballof%2C+J">Jochen Ballof</a>, <a href="/search/physics?searchtype=author&query=Berger%2C+R">Robert Berger</a>, <a href="/search/physics?searchtype=author&query=Borschevsky%2C+A">Anastasia Borschevsky</a>, <a href="/search/physics?searchtype=author&query=Breier%2C+A+A">Alexander A. Breier</a>, <a href="/search/physics?searchtype=author&query=Buchinger%2C+F">Fritz Buchinger</a>, <a href="/search/physics?searchtype=author&query=Budker%2C+D">Dmitry Budker</a>, <a href="/search/physics?searchtype=author&query=Caldwell%2C+L">Luke Caldwell</a>, <a href="/search/physics?searchtype=author&query=Charles%2C+C">Christopher Charles</a>, <a href="/search/physics?searchtype=author&query=Dattani%2C+N">Nike Dattani</a>, <a href="/search/physics?searchtype=author&query=de+Groote%2C+R+P">Ruben P. de Groote</a>, <a href="/search/physics?searchtype=author&query=DeMille%2C+D">David DeMille</a>, <a href="/search/physics?searchtype=author&query=Dickel%2C+T">Timo Dickel</a>, <a href="/search/physics?searchtype=author&query=Dobaczewski%2C+J">Jacek Dobaczewski</a>, <a href="/search/physics?searchtype=author&query=D%C3%BCllmann%2C+C+E">Christoph E. D眉llmann</a>, <a href="/search/physics?searchtype=author&query=Eliav%2C+E">Ephraim Eliav</a>, <a href="/search/physics?searchtype=author&query=Engel%2C+J">Jon Engel</a>, <a href="/search/physics?searchtype=author&query=Fan%2C+M">Mingyu Fan</a>, <a href="/search/physics?searchtype=author&query=Flambaum%2C+V">Victor Flambaum</a>, <a href="/search/physics?searchtype=author&query=Flanagan%2C+K+T">Kieran T. Flanagan</a>, <a href="/search/physics?searchtype=author&query=Gaiser%2C+A">Alyssa Gaiser</a>, <a href="/search/physics?searchtype=author&query=Ruiz%2C+R+G">Ronald Garcia Ruiz</a>, <a href="/search/physics?searchtype=author&query=Gaul%2C+K">Konstantin Gaul</a> , et al. (37 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2302.02165v1-abstract-short" style="display: inline;"> Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at seve… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02165v1-abstract-full').style.display = 'inline'; document.getElementById('2302.02165v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2302.02165v1-abstract-full" style="display: none;"> Molecules containing short-lived, radioactive nuclei are uniquely positioned to enable a wide range of scientific discoveries in the areas of fundamental symmetries, astrophysics, nuclear structure, and chemistry. Recent advances in the ability to create, cool, and control complex molecules down to the quantum level, along with recent and upcoming advances in radioactive species production at several facilities around the world, create a compelling opportunity to coordinate and combine these efforts to bring precision measurement and control to molecules containing extreme nuclei. In this manuscript, we review the scientific case for studying radioactive molecules, discuss recent atomic, molecular, nuclear, astrophysical, and chemical advances which provide the foundation for their study, describe the facilities where these species are and will be produced, and provide an outlook for the future of this nascent field. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2302.02165v1-abstract-full').style.display = 'none'; document.getElementById('2302.02165v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 February, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2023. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Rep. Prog. Phys. 87 084301 (2024) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2212.10298">arXiv:2212.10298</a> <span> [<a href="https://arxiv.org/pdf/2212.10298">pdf</a>, <a href="https://arxiv.org/ps/2212.10298">ps</a>, <a href="https://arxiv.org/format/2212.10298">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.107.075414">10.1103/PhysRevB.107.075414 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Plasmons in a Square of Two-Dimensional Electrons </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zarezin%2C+A+M">A. M. Zarezin</a>, <a href="/search/physics?searchtype=author&query=Mylnikov%2C+D">D. Mylnikov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+S">A. S. Petrov</a>, <a href="/search/physics?searchtype=author&query=Svintsov%2C+D">D. Svintsov</a>, <a href="/search/physics?searchtype=author&query=Gusikhin%2C+P+A">P. A. Gusikhin</a>, <a href="/search/physics?searchtype=author&query=Kukushkin%2C+I+V">I. V. Kukushkin</a>, <a href="/search/physics?searchtype=author&query=Muravev%2C+V+M">V. M. Muravev</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2212.10298v1-abstract-short" style="display: inline;"> Microwave absorption spectra of a single square of two-dimensional electrons (2DES) have been investigated using an optical detection technique. Fundamental dipole and harmonic quadrupole plasmon modes have been identified and compared to those in the disk geometry. In the square-shaped 2DES, a strong interaction is discovered between the neighboring plasmon modes, whereas no such hybridization is… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10298v1-abstract-full').style.display = 'inline'; document.getElementById('2212.10298v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2212.10298v1-abstract-full" style="display: none;"> Microwave absorption spectra of a single square of two-dimensional electrons (2DES) have been investigated using an optical detection technique. Fundamental dipole and harmonic quadrupole plasmon modes have been identified and compared to those in the disk geometry. In the square-shaped 2DES, a strong interaction is discovered between the neighboring plasmon modes, whereas no such hybridization is observed in the disk-shaped geometry. We establish a rigid theoretical platform to analytically describe the magneto-optical response of confined two-dimensional systems. The developed theory provides a proper description of the obtained experimental results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2212.10298v1-abstract-full').style.display = 'none'; document.getElementById('2212.10298v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.16591">arXiv:2211.16591</a> <span> [<a href="https://arxiv.org/pdf/2211.16591">pdf</a>, <a href="https://arxiv.org/format/2211.16591">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168271">10.1016/j.nima.2023.168271 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> RPC based tracking system at CERN GIF++ facility </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Amarilo%2C+K+M">K. Mota Amarilo</a>, <a href="/search/physics?searchtype=author&query=Samalan%2C+A">A. Samalan</a>, <a href="/search/physics?searchtype=author&query=Tytgat%2C+M">M. Tytgat</a>, <a href="/search/physics?searchtype=author&query=Sawy%2C+M+E">M. El Sawy</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+G+A">G. A. Alves</a>, <a href="/search/physics?searchtype=author&query=Marujo%2C+F">F. Marujo</a>, <a href="/search/physics?searchtype=author&query=Coelho%2C+E+A">E. A. Coelho</a>, <a href="/search/physics?searchtype=author&query=Da+Costa%2C+E+M">E. M. Da Costa</a>, <a href="/search/physics?searchtype=author&query=Nogima%2C+H">H. Nogima</a>, <a href="/search/physics?searchtype=author&query=Santoro%2C+A">A. Santoro</a>, <a href="/search/physics?searchtype=author&query=De+Souza%2C+S+F">S. Fonseca De Souza</a>, <a href="/search/physics?searchtype=author&query=Damiao%2C+D+D+J">D. De Jesus Damiao</a>, <a href="/search/physics?searchtype=author&query=Thiel%2C+M">M. Thiel</a>, <a href="/search/physics?searchtype=author&query=Filho%2C+M+B+F">M. Barroso Ferreira Filho</a>, <a href="/search/physics?searchtype=author&query=Aleksandrov%2C+A">A. Aleksandrov</a>, <a href="/search/physics?searchtype=author&query=Hadjiiska%2C+R">R. Hadjiiska</a>, <a href="/search/physics?searchtype=author&query=Iaydjiev%2C+P">P. Iaydjiev</a>, <a href="/search/physics?searchtype=author&query=Rodozov%2C+M">M. Rodozov</a>, <a href="/search/physics?searchtype=author&query=Shopova%2C+M">M. Shopova</a>, <a href="/search/physics?searchtype=author&query=Soultanov%2C+G">G. Soultanov</a>, <a href="/search/physics?searchtype=author&query=Dimitrov%2C+A">A. Dimitrov</a>, <a href="/search/physics?searchtype=author&query=Litov%2C+L">L. Litov</a>, <a href="/search/physics?searchtype=author&query=Pavlov%2C+B">B. Pavlov</a>, <a href="/search/physics?searchtype=author&query=Petkov%2C+P">P. Petkov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">A. Petrov</a> , et al. (83 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.16591v1-abstract-short" style="display: inline;"> With the HL-LHC upgrade of the LHC machine, an increase of the instantaneous luminosity by a factor of five is expected and the current detection systems need to be validated for such working conditions to ensure stable data taking. At the CERN Gamma Irradiation Facility (GIF++) many muon detectors undergo such studies, but the high gamma background can pose a challenge to the muon trigger system… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16591v1-abstract-full').style.display = 'inline'; document.getElementById('2211.16591v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.16591v1-abstract-full" style="display: none;"> With the HL-LHC upgrade of the LHC machine, an increase of the instantaneous luminosity by a factor of five is expected and the current detection systems need to be validated for such working conditions to ensure stable data taking. At the CERN Gamma Irradiation Facility (GIF++) many muon detectors undergo such studies, but the high gamma background can pose a challenge to the muon trigger system which is exposed to many fake hits from the gamma background. A tracking system using RPCs is implemented to clean the fake hits, taking profit of the high muon efficiency of these chambers. This work will present the tracking system configuration, used detector analysis algorithm and results. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.16591v1-abstract-full').style.display = 'none'; document.getElementById('2211.16591v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 9 figures. Contribution to XVI Workshop on Resistive Plate Chambers and Related Detectors (RPC2022), September 26-30 2022. Submitted to Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2211.02112">arXiv:2211.02112</a> <span> [<a href="https://arxiv.org/pdf/2211.02112">pdf</a>, <a href="https://arxiv.org/format/2211.02112">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.062827">10.1103/PhysRevA.106.062827 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\mathcal{T,P}$-odd effects in the LuOH$^+$ cation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Maison%2C+D+E">Daniel E. Maison</a>, <a href="/search/physics?searchtype=author&query=Skripnikov%2C+L+V">Leonid V. Skripnikov</a>, <a href="/search/physics?searchtype=author&query=Penyazkov%2C+G">Gleb Penyazkov</a>, <a href="/search/physics?searchtype=author&query=Grau%2C+M">Matt Grau</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">Alexander N. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2211.02112v1-abstract-short" style="display: inline;"> The LuOH$^+$ cation is a promising system to search for manifestations of time reversal and spatial parity violation effects. Such effects in LuOH$^+$ induced by the electron electric dipole moment $e$EDM and the scalar-pseudoscalar interaction of the nucleus with electrons, characterized by $k_s$ constant, in LuOH$^+$ are studied. The enhancement factors, polarization in the external electric fie… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02112v1-abstract-full').style.display = 'inline'; document.getElementById('2211.02112v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2211.02112v1-abstract-full" style="display: none;"> The LuOH$^+$ cation is a promising system to search for manifestations of time reversal and spatial parity violation effects. Such effects in LuOH$^+$ induced by the electron electric dipole moment $e$EDM and the scalar-pseudoscalar interaction of the nucleus with electrons, characterized by $k_s$ constant, in LuOH$^+$ are studied. The enhancement factors, polarization in the external electric field, hyperfine interaction, rovibrational structure are calculated. The study is required for the experiment preparation and extraction of the eEDM and ks values from experimental data. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2211.02112v1-abstract-full').style.display = 'none'; document.getElementById('2211.02112v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 3 November, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.15463">arXiv:2209.15463</a> <span> [<a href="https://arxiv.org/pdf/2209.15463">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.477576">10.1364/JOSAB.477576 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> 10 dB emission suppression in a structured low index medium </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Saha%2C+S">Soumyadeep Saha</a>, <a href="/search/physics?searchtype=author&query=Mustafa%2C+M+E">Meraj E Mustafa</a>, <a href="/search/physics?searchtype=author&query=Eich%2C+M">Manfred Eich</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+Y">Alexander Yu. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.15463v1-abstract-short" style="display: inline;"> Significant suppression of radiation in 3D structured media with small refractive index 1.4-1.6, such as of glass or polymers, is a desirable feature yet to be obtained. For periodical structures this is realised at frequencies of the complete photonic band gap (CPBG), which up to now was demonstrated to open for materials with refractive index of at least 1.9. We present here a quasiperiodic 3D s… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15463v1-abstract-full').style.display = 'inline'; document.getElementById('2209.15463v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.15463v1-abstract-full" style="display: none;"> Significant suppression of radiation in 3D structured media with small refractive index 1.4-1.6, such as of glass or polymers, is a desirable feature yet to be obtained. For periodical structures this is realised at frequencies of the complete photonic band gap (CPBG), which up to now was demonstrated to open for materials with refractive index of at least 1.9. We present here a quasiperiodic 3D structure consisting of multiple overlapping gratings with a homogeneous distribution of Bragg peaks on a sphere in reciprocal space, which allows efficient suppression of emission. Recently we have presented the theoretical model, considering interaction with the neighbouring gratings only, that estimates a finite CPBG for arbitrarily small refractive indices and thus complete emission suppression in infinite structures. However, numerical simulations demonstrate a finite leakage of power from emitter not predicted by the model. Still the simulations show -10 dB suppression in 3D structures with optimised number of gratings. Astonishingly, as we show here, this limit is almost independent of the refractive index contrast. Also, the structures with a defined number of gratings show maximal suppression at certain refractive indices, losing the suppression even at higher refractive indices. The -10 dB suppression is demonstrated for refractive index contrast as low as 1.30. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.15463v1-abstract-full').style.display = 'none'; document.getElementById('2209.15463v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.13881">arXiv:2208.13881</a> <span> [<a href="https://arxiv.org/pdf/2208.13881">pdf</a>, <a href="https://arxiv.org/format/2208.13881">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.106.062806">10.1103/PhysRevA.106.062806 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\mathcal{P}$,$\mathcal{T}$-odd energy shifts of the $^{173}$YbOH </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Kurchavov%2C+I">Igor Kurchavov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.13881v2-abstract-short" style="display: inline;"> The energy shift in molecular spectra due to interaction of nuclear magnetic quadrupole moment ($M$) with electrons is equal to $未E_M = MW_M P_{ M}$, where $W_M$ is a constant determined by the electronic structure of the molecule and $P_{ M}$ is a dimensionless constant. We extended the method for calculation of parity nonconservation effects in triatomic molecules developed in Ref. [A. Petrov an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13881v2-abstract-full').style.display = 'inline'; document.getElementById('2208.13881v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.13881v2-abstract-full" style="display: none;"> The energy shift in molecular spectra due to interaction of nuclear magnetic quadrupole moment ($M$) with electrons is equal to $未E_M = MW_M P_{ M}$, where $W_M$ is a constant determined by the electronic structure of the molecule and $P_{ M}$ is a dimensionless constant. We extended the method for calculation of parity nonconservation effects in triatomic molecules developed in Ref. [A. Petrov and A. Zakharova, Phys. Rev. A ${\bf 105}$, L050801 (2022)] to the case of $P_{ M}$ constant and applied it to $^{173}$YbOH in the first excited $v=1$ bending mode. Results of our calculations are required for the extraction of the $M$ value from the YbOH experiment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.13881v2-abstract-full').style.display = 'none'; document.getElementById('2208.13881v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 December, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A (Vol. 106, No. 6, p. 062806, year 2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.07058">arXiv:2208.07058</a> <span> [<a href="https://arxiv.org/pdf/2208.07058">pdf</a>, <a href="https://arxiv.org/format/2208.07058">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0121110">10.1063/5.0121110 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Impact of the ligand deformation on the $\mathcal{P}$,$\mathcal{T}$-violation effects in the YbOH molecule </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zakharova%2C+A">Anna Zakharova</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.07058v1-abstract-short" style="display: inline;"> The ytterbium monohydroxide is a promising molecule for a new physics searches. It is well known that levels of the opposite parity, separated by the energy split, so-called $l$-doublets, define the experimental electric field strength required for the molecule polarization. In addition, in our previous paper [Phys.Rev. A 105, L050801 (2022)] we have shown that the value of $l$-doubling directly i… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07058v1-abstract-full').style.display = 'inline'; document.getElementById('2208.07058v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.07058v1-abstract-full" style="display: none;"> The ytterbium monohydroxide is a promising molecule for a new physics searches. It is well known that levels of the opposite parity, separated by the energy split, so-called $l$-doublets, define the experimental electric field strength required for the molecule polarization. In addition, in our previous paper [Phys.Rev. A 105, L050801 (2022)] we have shown that the value of $l$-doubling directly influences the sensitivity of linear triatomic molecules to the $\mathcal{P}$,$\mathcal{T}$-odd effects. In our work [The JCP 155, 164301 (2021)] we have calculated the value of $l$-doubling for the YbOH molecule with approximation of fixed O-H bond length. Accounting the importance of this property, in the present study we consider the additional degree of freedom corresponding to the ligand (OH) deformation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.07058v1-abstract-full').style.display = 'none'; document.getElementById('2208.07058v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 3 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.06982">arXiv:2208.06982</a> <span> [<a href="https://arxiv.org/pdf/2208.06982">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/JOSAB.473298">10.1364/JOSAB.473298 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Statistical parameters of femtosecond laser pulse post-filament propagation on 65m air path with localized optical turbulence </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Apeksimov%2C+D+V">Dmitry V. Apeksimov</a>, <a href="/search/physics?searchtype=author&query=Bulygin%2C+A+V">Andrey V. Bulygin</a>, <a href="/search/physics?searchtype=author&query=Geints%2C+Y+E">Yury E. Geints</a>, <a href="/search/physics?searchtype=author&query=Kabanov%2C+A+M">Andrey M. Kabanov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+V">Aleksey V. Petrov</a>, <a href="/search/physics?searchtype=author&query=Khoroshaeva%2C+E+E">Elena E. Khoroshaeva</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.06982v1-abstract-short" style="display: inline;"> High-power femtosecond laser radiation propagates nonlinearly in air exhibiting pulse self-focusing and strong multiphoton medium ionization, which leads to the spatial fragmentation of laser pulse into highly-localized light channels usually called the filaments. The filaments are characterized by high optical intensity, reduced (even zero) angular spreading and can contain laser plasma or be pla… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06982v1-abstract-full').style.display = 'inline'; document.getElementById('2208.06982v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.06982v1-abstract-full" style="display: none;"> High-power femtosecond laser radiation propagates nonlinearly in air exhibiting pulse self-focusing and strong multiphoton medium ionization, which leads to the spatial fragmentation of laser pulse into highly-localized light channels usually called the filaments. The filaments are characterized by high optical intensity, reduced (even zero) angular spreading and can contain laser plasma or be plasmaless (postfilaments). The presence of optical turbulence on the propagation path dramatically changes pulse filamentation dynamics and in some cases causes pulse fragmentation enhancement and collapse arrest. For the first time to our knowledge, we experimentally and theoretically investigate the transverse profile of Ti:sapphire femtosecond laser radiation nonlinearly propagating a 65 m air path to the region of postfilament evolution after passing through an artificial localized air turbulence. We show that when a turbulent layer is placed before the filamentation region, the average number of high-intensive local fluence maxima ("hot points") in pulse profile as well as their sizes grow as the turbulence strength increases, and then saturates at some levels. On the contrary, the deposition of a turbulent screen within the filamentation region has almost no effect on both the number and the average diameter of the postfilaments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.06982v1-abstract-full').style.display = 'none'; document.getElementById('2208.06982v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2202.08970">arXiv:2202.08970</a> <span> [<a href="https://arxiv.org/pdf/2202.08970">pdf</a>, <a href="https://arxiv.org/format/2202.08970">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1140/epja/s10050-022-00750-6">10.1140/epja/s10050-022-00750-6 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Status and initial physics performance studies of the MPD experiment at NICA </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=MPD+Collaboration"> MPD Collaboration</a>, <a href="/search/physics?searchtype=author&query=Abgaryan%2C+V">V. Abgaryan</a>, <a href="/search/physics?searchtype=author&query=Kado%2C+R+A">R. Acevedo Kado</a>, <a href="/search/physics?searchtype=author&query=Afanasyev%2C+S+V">S. V. Afanasyev</a>, <a href="/search/physics?searchtype=author&query=Agakishiev%2C+G+N">G. N. Agakishiev</a>, <a href="/search/physics?searchtype=author&query=Alpatov%2C+E">E. Alpatov</a>, <a href="/search/physics?searchtype=author&query=Altsybeev%2C+G">G. Altsybeev</a>, <a href="/search/physics?searchtype=author&query=Hern%C3%A1ndez%2C+M+A">M. Alvarado Hern谩ndez</a>, <a href="/search/physics?searchtype=author&query=Andreeva%2C+S+V">S. V. Andreeva</a>, <a href="/search/physics?searchtype=author&query=Andreeva%2C+T+V">T. V. Andreeva</a>, <a href="/search/physics?searchtype=author&query=Andronov%2C+E+V">E. V. Andronov</a>, <a href="/search/physics?searchtype=author&query=Anfimov%2C+N+V">N. V. Anfimov</a>, <a href="/search/physics?searchtype=author&query=Aparin%2C+A+A">A. A. Aparin</a>, <a href="/search/physics?searchtype=author&query=Astakhov%2C+V+I">V. I. Astakhov</a>, <a href="/search/physics?searchtype=author&query=Atkin%2C+E">E. Atkin</a>, <a href="/search/physics?searchtype=author&query=Aushev%2C+T">T. Aushev</a>, <a href="/search/physics?searchtype=author&query=Averichev%2C+G+S">G. S. Averichev</a>, <a href="/search/physics?searchtype=author&query=Averyanov%2C+A+V">A. V. Averyanov</a>, <a href="/search/physics?searchtype=author&query=Ayala%2C+A">A. Ayala</a>, <a href="/search/physics?searchtype=author&query=Babkin%2C+V+A">V. A. Babkin</a>, <a href="/search/physics?searchtype=author&query=Babutsidze%2C+T">T. Babutsidze</a>, <a href="/search/physics?searchtype=author&query=Balashov%2C+I+A">I. A. Balashov</a>, <a href="/search/physics?searchtype=author&query=Bancer%2C+A">A. Bancer</a>, <a href="/search/physics?searchtype=author&query=Barabanov%2C+M+Y">M. Yu. Barabanov</a>, <a href="/search/physics?searchtype=author&query=Baranov%2C+D+A">D. A. Baranov</a> , et al. (454 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2202.08970v1-abstract-short" style="display: inline;"> The Nuclotron-base Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document pro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08970v1-abstract-full').style.display = 'inline'; document.getElementById('2202.08970v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2202.08970v1-abstract-full" style="display: none;"> The Nuclotron-base Ion Collider fAcility (NICA) is under construction at the Joint Institute for Nuclear Research (JINR), with commissioning of the facility expected in late 2022. The Multi-Purpose Detector (MPD) has been designed to operate at NICA and its components are currently in production. The detector is expected to be ready for data taking with the first beams from NICA. This document provides an overview of the landscape of the investigation of the QCD phase diagram in the region of maximum baryonic density, where NICA and MPD will be able to provide significant and unique input. It also provides a detailed description of the MPD set-up, including its various subsystems as well as its support and computing infrastructures. Selected performance studies for particular physics measurements at MPD are presented and discussed in the context of existing data and theoretical expectations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2202.08970v1-abstract-full').style.display = 'none'; document.getElementById('2202.08970v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 February, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">53 pages, 68 figures, submitted as a Review article to EPJA</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. Phys. J. A 58, 140 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2111.02772">arXiv:2111.02772</a> <span> [<a href="https://arxiv.org/pdf/2111.02772">pdf</a>, <a href="https://arxiv.org/format/2111.02772">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.105.L050801">10.1103/PhysRevA.105.L050801 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sensitivity of the YbOH molecule to $\mathcal{P}$,$\mathcal{T}$-odd effects in the external electric field </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a>, <a href="/search/physics?searchtype=author&query=Zakharova%2C+A">Anna Zakharova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2111.02772v4-abstract-short" style="display: inline;"> Electron electric dipole moment (eEDM) search using lasercoolable triatomics like YbOH is one of the most sensitive probes for physics beyond the Standard Model. The eEDM-induced energy shift is proportional to polarization ($P$) of the molecule. Similarly to diatomics with $惟-$doubling structure it was assumed that for triatomics with $l-$doubling structure, related to the vibrational angular mom… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02772v4-abstract-full').style.display = 'inline'; document.getElementById('2111.02772v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2111.02772v4-abstract-full" style="display: none;"> Electron electric dipole moment (eEDM) search using lasercoolable triatomics like YbOH is one of the most sensitive probes for physics beyond the Standard Model. The eEDM-induced energy shift is proportional to polarization ($P$) of the molecule. Similarly to diatomics with $惟-$doubling structure it was assumed that for triatomics with $l-$doubling structure, related to the vibrational angular momentum, $P$ can easily be saturated to almost 100\% value with moderate external electric field. We developed the method for calculation of properties of triatomic molecules and applied it to calculation of $P$ of $^{174}$YbOH in the first excited $v=1$ bending mode. Calculations showed that the most of the levels reach less than 50\% efficiency. We showed that this fact is related to the Hund's case $b$ coupling scheme of YbOH. As coupling scheme (for $惟=1/2$ molecules) approaches $a$ (or $c$) case polarization increases up to 100\% value. Results of our calculations should be used for correct extracting of eEDM value from YbOH experiment and similar calculations are required for other molecules. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2111.02772v4-abstract-full').style.display = 'none'; document.getElementById('2111.02772v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> PRA 105, L050801 (2022) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.14331">arXiv:2109.14331</a> <span> [<a href="https://arxiv.org/pdf/2109.14331">pdf</a>, <a href="https://arxiv.org/format/2109.14331">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/17/01/C01011">10.1088/1748-0221/17/01/C01011 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Upgrade of the CMS Resistive Plate Chambers for the High Luminosity LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Samalan%2C+A">A. Samalan</a>, <a href="/search/physics?searchtype=author&query=Tytgat%2C+M">M. Tytgat</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+G+A">G. A. Alves</a>, <a href="/search/physics?searchtype=author&query=Marujo%2C+F">F. Marujo</a>, <a href="/search/physics?searchtype=author&query=De+Araujo%2C+F+T+D+S">F. Torres Da Silva De Araujo</a>, <a href="/search/physics?searchtype=author&query=DaCosta%2C+E+M">E. M. DaCosta</a>, <a href="/search/physics?searchtype=author&query=Damiao%2C+D+D+J">D. De Jesus Damiao</a>, <a href="/search/physics?searchtype=author&query=Nogima%2C+H">H. Nogima</a>, <a href="/search/physics?searchtype=author&query=Santoro%2C+A">A. Santoro</a>, <a href="/search/physics?searchtype=author&query=De+Souza%2C+S+F">S. Fonseca De Souza</a>, <a href="/search/physics?searchtype=author&query=Aleksandrov%2C+A">A. Aleksandrov</a>, <a href="/search/physics?searchtype=author&query=Hadjiiska%2C+R">R. Hadjiiska</a>, <a href="/search/physics?searchtype=author&query=Iaydjiev%2C+P">P. Iaydjiev</a>, <a href="/search/physics?searchtype=author&query=Rodozov%2C+M">M. Rodozov</a>, <a href="/search/physics?searchtype=author&query=Shopova%2C+M">M. Shopova</a>, <a href="/search/physics?searchtype=author&query=Soultanov%2C+G">G. Soultanov</a>, <a href="/search/physics?searchtype=author&query=Bonchev%2C+M">M. Bonchev</a>, <a href="/search/physics?searchtype=author&query=Dimitrov%2C+A">A. Dimitrov</a>, <a href="/search/physics?searchtype=author&query=Litov%2C+L">L. Litov</a>, <a href="/search/physics?searchtype=author&query=Pavlov%2C+B">B. Pavlov</a>, <a href="/search/physics?searchtype=author&query=Petkov%2C+P">P. Petkov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">A. Petrov</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+S+J">S. J. Qian</a>, <a href="/search/physics?searchtype=author&query=Bernal%2C+C">C. Bernal</a>, <a href="/search/physics?searchtype=author&query=Cabrera%2C+A">A. Cabrera</a> , et al. (86 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.14331v2-abstract-short" style="display: inline;"> During the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb$^{-1}$. The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experiments at the LHC, including the Compact Muon Solen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14331v2-abstract-full').style.display = 'inline'; document.getElementById('2109.14331v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.14331v2-abstract-full" style="display: none;"> During the upcoming High Luminosity phase of the Large Hadron Collider (HL-LHC), the integrated luminosity of the accelerator will increase to 3000 fb$^{-1}$. The expected experimental conditions in that period in terms of background rates, event pileup, and the probable aging of the current detectors present a challenge for all the existing experiments at the LHC, including the Compact Muon Solenoid (CMS) experiment. To ensure a highly performing muon system for this period, several upgrades of the Resistive Plate Chamber (RPC) system of the CMS are currently being implemented. These include the replacement of the readout system for the present system, and the installation of two new RPC stations with improved chamber and front-end electronics designs. The current overall status of this CMS RPC upgrade project is presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.14331v2-abstract-full').style.display = 'none'; document.getElementById('2109.14331v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 November, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2108.11459">arXiv:2108.11459</a> <span> [<a href="https://arxiv.org/pdf/2108.11459">pdf</a>, <a href="https://arxiv.org/format/2108.11459">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0069281">10.1063/5.0069281 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Rovibrational structure of the Ytterbium monohydroxide molecule and the $\mathcal{P}$,$\mathcal{T}$-violation searches </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zakharova%2C+A">Anna Zakharova</a>, <a href="/search/physics?searchtype=author&query=Kurchavov%2C+I">Igor Kurchavov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2108.11459v2-abstract-short" style="display: inline;"> The spectrum of triatomic molecules with close rovibrational opposite parity levels is sensitive to the $\mathcal{P}$,$\mathcal{T}$-odd effects. This makes them a convenient platform for the experimental search of a new physics. Among the promising candidates one may distinguish the YbOH as a non-radioactive compound with a heavy atom. The energy gap between levels of opposite parity, $l$-doubling… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11459v2-abstract-full').style.display = 'inline'; document.getElementById('2108.11459v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2108.11459v2-abstract-full" style="display: none;"> The spectrum of triatomic molecules with close rovibrational opposite parity levels is sensitive to the $\mathcal{P}$,$\mathcal{T}$-odd effects. This makes them a convenient platform for the experimental search of a new physics. Among the promising candidates one may distinguish the YbOH as a non-radioactive compound with a heavy atom. The energy gap between levels of opposite parity, $l$-doubling, is of a great interest as it determines the electric field strength required for the full polarization of the molecule. Likewise, the influence of the bending and stretching modes on the sensitivities to the $\mathcal{P}$,$\mathcal{T}$-violation requires a thorough investigation since the measurement would be performed on the excited vibrational states. This motivates us to obtain the rovibrational nuclear wavefunctions, taking into account the anharmonicity of the potential. As a result, we get the values of the $E_{\rm eff}$ and $E_s$ for the lowest excited vibrational state and determine the $l$-doubling <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2108.11459v2-abstract-full').style.display = 'none'; document.getElementById('2108.11459v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 August, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, updated the finite field results, improved the averaging procedure</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2106.14017">arXiv:2106.14017</a> <span> [<a href="https://arxiv.org/pdf/2106.14017">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> </div> <p class="title is-5 mathjax"> Laminar flow of viscous fluid around elliptical contours under angle of attack </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A+G">Alexander G. Petrov</a>, <a href="/search/physics?searchtype=author&query=Sukhov%2C+A+D">Artem D. Sukhov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2106.14017v1-abstract-short" style="display: inline;"> The planar problem of a viscous laminar flow around elliptical cylinders under angle of attack is considered. From the solution of the laminar boundary layer equations using the Loytsyansky local similarity method, the shear stress at the ellipse boundary and the separation point is found. From the separation points velocities equality, the circulation is found. A complete solution to the problem… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14017v1-abstract-full').style.display = 'inline'; document.getElementById('2106.14017v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2106.14017v1-abstract-full" style="display: none;"> The planar problem of a viscous laminar flow around elliptical cylinders under angle of attack is considered. From the solution of the laminar boundary layer equations using the Loytsyansky local similarity method, the shear stress at the ellipse boundary and the separation point is found. From the separation points velocities equality, the circulation is found. A complete solution to the problem of the velocity and pressure field outside the boundary layer is also constructed. The coefficients of lift and resistance are found depending on the angle of attack and the ellipse axes ratio. The theoretical results are compared with the available experimental data and direct numerical solutions of the Navier-Stokes equations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2106.14017v1-abstract-full').style.display = 'none'; document.getElementById('2106.14017v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2104.01147">arXiv:2104.01147</a> <span> [<a href="https://arxiv.org/pdf/2104.01147">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1116/1.5122175">10.1116/1.5122175 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Transparent Conductive Oxides-based Architectures for the Electrical Modulation of the Optical Response: A Spectroscopic Ellipsometry Study </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Sygletou%2C+M">Maria Sygletou</a>, <a href="/search/physics?searchtype=author&query=Bisio%2C+F">Francesco Bisio</a>, <a href="/search/physics?searchtype=author&query=Benedetti%2C+S">Stefania Benedetti</a>, <a href="/search/physics?searchtype=author&query=Torelli%2C+P">Piero Torelli</a>, <a href="/search/physics?searchtype=author&query=di+Bona%2C+A">Alessandro di Bona</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Aleksandr Petrov</a>, <a href="/search/physics?searchtype=author&query=Canepa%2C+M">Maurizio Canepa</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2104.01147v1-abstract-short" style="display: inline;"> Transparent Conductive Oxides (TCOs) are a class of materials that combine high optical transparency with high electrical conductivity. This property makes them uniquely appealing as transparent-conductive electrodes in solar cells and interesting for optoelectronics and infrared-plasmonics applications. One of the new challenges that researchers and engineers are facing is merging optical and ele… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01147v1-abstract-full').style.display = 'inline'; document.getElementById('2104.01147v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2104.01147v1-abstract-full" style="display: none;"> Transparent Conductive Oxides (TCOs) are a class of materials that combine high optical transparency with high electrical conductivity. This property makes them uniquely appealing as transparent-conductive electrodes in solar cells and interesting for optoelectronics and infrared-plasmonics applications. One of the new challenges that researchers and engineers are facing is merging optical and electrical control in a single device for developing next-generation photovoltaic, opto-electronic devices and energyefficient solid-state lighting. In this work, we investigated the possible variations in the dielectric properties of aluminum-doped ZnO (AZO) upon gating, by means of Spectroscopic Ellipsometry (SE). We investigated the electrical-bias-dependent optical response of thin AZO films fabricated by magnetron sputtering, within a parallel-plane capacitor configuration. We address the possibility to control their optical and electric performances by applying bias, monitoring the effect of charge injection/depletion in the AZO layer by means of in-operando SE vs applied gate voltage. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2104.01147v1-abstract-full').style.display = 'none'; document.getElementById('2104.01147v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 April, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Journal of Vacuum Science & Technology B 37, 061209 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.01680">arXiv:2103.01680</a> <span> [<a href="https://arxiv.org/pdf/2103.01680">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/5.0050770">10.1063/5.0050770 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fourier optics with linearly tapered waveguides: light trapping and focusing </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gaafar%2C+M+A">Mahmoud A. Gaafar</a>, <a href="/search/physics?searchtype=author&query=Renner%2C+H">Hagen Renner</a>, <a href="/search/physics?searchtype=author&query=Eich%2C+M">Manfred Eich</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+Y">Alexander Yu. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.01680v1-abstract-short" style="display: inline;"> An optical pulse asymptotically reaching zero group velocity in tapered waveguides can ultimately stop at a certain position in the taper accompanied by a strong spatial compression. This phenomenon can be also observed in spatio-temporal systems where the pulse velocity asymptotically reaches the velocity of a tapered front. The first system is well known from tapered plasmonic waveguides where a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01680v1-abstract-full').style.display = 'inline'; document.getElementById('2103.01680v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.01680v1-abstract-full" style="display: none;"> An optical pulse asymptotically reaching zero group velocity in tapered waveguides can ultimately stop at a certain position in the taper accompanied by a strong spatial compression. This phenomenon can be also observed in spatio-temporal systems where the pulse velocity asymptotically reaches the velocity of a tapered front. The first system is well known from tapered plasmonic waveguides where adiabatic nano-focusing of light is observed. Its counterpart in the spatio-temporal system is the optical push broom effect where a nonlinear front collects and compresses the signal. Here, we use the slowly-varying envelope approximation to describe such systems. We demonstrate an analytical solution for the linear taper and the piecewise linear dispersion and show that the solution in this case resembles that of an optical lens in paraxial approximation. In particular, the spatial distribution of the focused light represents the Fourier transform of the signal at the input. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.01680v1-abstract-full').style.display = 'none'; document.getElementById('2103.01680v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.12874">arXiv:2102.12874</a> <span> [<a href="https://arxiv.org/pdf/2102.12874">pdf</a>, <a href="https://arxiv.org/format/2102.12874">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.104.012811">10.1103/PhysRevA.104.012811 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Electric-field-dependent $g$ factor for the ground state of lead monofluoride, PbF </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Baturo%2C+V+V">V. V. Baturo</a>, <a href="/search/physics?searchtype=author&query=Rupasinghe%2C+P+M">P. M. Rupasinghe</a>, <a href="/search/physics?searchtype=author&query=Sears%2C+T+J">T. J. Sears</a>, <a href="/search/physics?searchtype=author&query=Mawhorter%2C+R+J">R. J. Mawhorter</a>, <a href="/search/physics?searchtype=author&query=Grabow%2C+J+-">J. -U. Grabow</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">A. N. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.12874v2-abstract-short" style="display: inline;"> The electric-field-dependent $g$ factor and the electron electric dipole moment (eEDM)-induced Stark splittings for the lowest rotational levels of $^{207,208}$PbF are calculated. Observed and calculated Zeeman shifts for $^{207}$PbF are found to be in very good agreement. It is shown that the $^{207}$PbF hyperfine sublevels provide a promising system for the eEDM search and related experiments. </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.12874v2-abstract-full" style="display: none;"> The electric-field-dependent $g$ factor and the electron electric dipole moment (eEDM)-induced Stark splittings for the lowest rotational levels of $^{207,208}$PbF are calculated. Observed and calculated Zeeman shifts for $^{207}$PbF are found to be in very good agreement. It is shown that the $^{207}$PbF hyperfine sublevels provide a promising system for the eEDM search and related experiments. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.12874v2-abstract-full').style.display = 'none'; document.getElementById('2102.12874v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 28 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 5 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 104, 012811 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2102.05157">arXiv:2102.05157</a> <span> [<a href="https://arxiv.org/pdf/2102.05157">pdf</a>, <a href="https://arxiv.org/format/2102.05157">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.042802">10.1103/PhysRevA.103.042802 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\mathcal{P}$, $\mathcal{T}$-odd Faraday rotation in intracavity absorption spectroscopy with molecular beam as a possible way to improve the sensitivity of the search for the time reflection noninvariant effects in nature </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chubukov%2C+D+V">D. V. Chubukov</a>, <a href="/search/physics?searchtype=author&query=Skripnikov%2C+L+V">L. V. Skripnikov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">A. N. Petrov</a>, <a href="/search/physics?searchtype=author&query=Kutuzov%2C+V+N">V. N. Kutuzov</a>, <a href="/search/physics?searchtype=author&query=Labzowsky%2C+L+N">L. N. Labzowsky</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2102.05157v1-abstract-short" style="display: inline;"> The present constraint on the space parity ($\mathcal{P}$) and time reflection invariance ($\mathcal{T}$) violating electron electric dipole moment ($e$EDM) is based on the observation of the electron spin precession in an external electric field using the ThO molecule. We propose an alternative approach: observation of the $\mathcal{P}$,~$\mathcal{T}$-odd Faraday effect in an external electric fi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.05157v1-abstract-full').style.display = 'inline'; document.getElementById('2102.05157v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2102.05157v1-abstract-full" style="display: none;"> The present constraint on the space parity ($\mathcal{P}$) and time reflection invariance ($\mathcal{T}$) violating electron electric dipole moment ($e$EDM) is based on the observation of the electron spin precession in an external electric field using the ThO molecule. We propose an alternative approach: observation of the $\mathcal{P}$,~$\mathcal{T}$-odd Faraday effect in an external electric field using the cavity-enhanced polarimetric scheme in combination with a molecular beam crossing the cavity. Our theoretical simulation of the proposed experiment with the PbF and ThO molecular beams shows that the present constraint on the $e$EDM in principle can be improved by a few orders of magnitude. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2102.05157v1-abstract-full').style.display = 'none'; document.getElementById('2102.05157v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 February, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: text overlap with arXiv:1907.11761</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 042802 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2012.08427">arXiv:2012.08427</a> <span> [<a href="https://arxiv.org/pdf/2012.08427">pdf</a>, <a href="https://arxiv.org/format/2012.08427">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.103.032819">10.1103/PhysRevA.103.032819 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited vibrational state </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Zakharova%2C+A">Anna Zakharova</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2012.08427v1-abstract-short" style="display: inline;"> Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets. This makes it a promising candidate for experimental study of the $\mathcal{P}$,$\mathcal{T}$-violation. Previous studies concentrated on the calculations for different geometries without the averaging over the rovibrational wave function and stressed the possibility that the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08427v1-abstract-full').style.display = 'inline'; document.getElementById('2012.08427v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2012.08427v1-abstract-full" style="display: none;"> Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets. This makes it a promising candidate for experimental study of the $\mathcal{P}$,$\mathcal{T}$-violation. Previous studies concentrated on the calculations for different geometries without the averaging over the rovibrational wave function and stressed the possibility that the dependence of the $\mathcal{P}$, $\mathcal{T}$ parameters on the bond angle may significantly alter the observed value. We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian. The potential surface is constructed based on the two-component relativistic CCSD(T) computation employing the generalized relativistic effective core potential (GRECP) for the Radium atom. The averaged values of the parameters $E_{\rm eff}$ and $E_s$ describing the sensitivity of the system to the electron electric dipole moment and the scalar-pseudoscalar nucleon-electron interaction are calculated and the value of $l$-doubling is obtained. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2012.08427v1-abstract-full').style.display = 'none'; document.getElementById('2012.08427v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages, 6 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 103, 032819 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.12424">arXiv:2010.12424</a> <span> [<a href="https://arxiv.org/pdf/2010.12424">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> Optical Push Broom On a Chip </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gaafar%2C+M+A">Mahmoud A. Gaafar</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">He Li</a>, <a href="/search/physics?searchtype=author&query=Cai%2C+X">Xinlun Cai</a>, <a href="/search/physics?searchtype=author&query=Li%2C+J">Juntao Li</a>, <a href="/search/physics?searchtype=author&query=Eich%2C+M">Manfred Eich</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+Y">Alexander Yu. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.12424v1-abstract-short" style="display: inline;"> Here we report the first experimental demonstration of light trapping by a refractive index front in a silicon waveguide, the optical push broom effect. The front generated by a fast pump pulse collects and traps the energy of a CW signal with smaller group velocity and tuned near to the band gap of the Bragg grating introduced in the waveguide. This situation represents an optical analogue of lig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12424v1-abstract-full').style.display = 'inline'; document.getElementById('2010.12424v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.12424v1-abstract-full" style="display: none;"> Here we report the first experimental demonstration of light trapping by a refractive index front in a silicon waveguide, the optical push broom effect. The front generated by a fast pump pulse collects and traps the energy of a CW signal with smaller group velocity and tuned near to the band gap of the Bragg grating introduced in the waveguide. This situation represents an optical analogue of light trapping in a tapered plasmonic waveguide where light is stopped without reflection. The energy of the CW signal is accumulated inside the front and distributed in frequency. In this experiment a 2 ps free carrier front was generated via two photon absorption of the pump in silicon waveguide. It collects approximately a 30 ps long packet of the CW signal. The presented effect can be utilized to compress signals in time and space. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.12424v1-abstract-full').style.display = 'none'; document.getElementById('2010.12424v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2006.15240">arXiv:2006.15240</a> <span> [<a href="https://arxiv.org/pdf/2006.15240">pdf</a>, <a href="https://arxiv.org/format/2006.15240">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s41598-020-71068-w">10.1038/s41598-020-71068-w <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Effects of Conical Intersections on Hyperfine Quenching of Hydroxyl OH in collision with an ultracold Sr atom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&query=Klos%2C+J">Jacek Klos</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a>, <a href="/search/physics?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/physics?searchtype=author&query=Kotochigova%2C+S">Svetlana Kotochigova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2006.15240v1-abstract-short" style="display: inline;"> The effect of conical intersections (CIs) on electronic relaxation, transitions from excited states to ground states, is well studied, but their influence on hyperfine quenching in a reactant molecule is not known. Here, we report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states. Our quantum-mechanical calculations of this pr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15240v1-abstract-full').style.display = 'inline'; document.getElementById('2006.15240v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2006.15240v1-abstract-full" style="display: none;"> The effect of conical intersections (CIs) on electronic relaxation, transitions from excited states to ground states, is well studied, but their influence on hyperfine quenching in a reactant molecule is not known. Here, we report on ultracold collision dynamics of the hydroxyl free-radical OH with Sr atoms leading to quenching of OH hyperfine states. Our quantum-mechanical calculations of this process reveal that quenching is efficient due to anomalous molecular dynamics in the vicinity of the conical intersection at collinear geometry. We observe wide scattering resonance features in both elastic and inelastic rate coefficients at collision energies below k x 10 mK. They are identified as either p- or d-wave shape resonances. We also describe the electronic potentials relevant for these non-reactive collisions, their diabatization procedure, as well as the non-adiabatic coupling between the diabatic potentials near the CIs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2006.15240v1-abstract-full').style.display = 'none'; document.getElementById('2006.15240v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 June, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2020. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.12769">arXiv:2005.12769</a> <span> [<a href="https://arxiv.org/pdf/2005.12769">pdf</a>, <a href="https://arxiv.org/format/2005.12769">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> CMS RPC Background -- Studies and Measurements </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hadjiiska%2C+R">R. Hadjiiska</a>, <a href="/search/physics?searchtype=author&query=Samalan%2C+A">A. Samalan</a>, <a href="/search/physics?searchtype=author&query=Tytgat%2C+M">M. Tytgat</a>, <a href="/search/physics?searchtype=author&query=Zaganidis%2C+N">N. Zaganidis</a>, <a href="/search/physics?searchtype=author&query=Alves%2C+G+A">G. A. Alves</a>, <a href="/search/physics?searchtype=author&query=Marujo%2C+F">F. Marujo</a>, <a href="/search/physics?searchtype=author&query=De+Araujo%2C+F+T+D+S">F. Torres Da Silva De Araujo</a>, <a href="/search/physics?searchtype=author&query=Da+Costa%2C+E+M">E. M. Da Costa</a>, <a href="/search/physics?searchtype=author&query=Damiao%2C+D+D+J">D. De Jesus Damiao</a>, <a href="/search/physics?searchtype=author&query=Nogima%2C+H">H. Nogima</a>, <a href="/search/physics?searchtype=author&query=Santoro%2C+A">A. Santoro</a>, <a href="/search/physics?searchtype=author&query=De+Souza%2C+S+F">S. Fonseca De Souza</a>, <a href="/search/physics?searchtype=author&query=Aleksandrov%2C+A">A. Aleksandrov</a>, <a href="/search/physics?searchtype=author&query=Iaydjiev%2C+P">P. Iaydjiev</a>, <a href="/search/physics?searchtype=author&query=Rodozov%2C+M">M. Rodozov</a>, <a href="/search/physics?searchtype=author&query=Shopova%2C+M">M. Shopova</a>, <a href="/search/physics?searchtype=author&query=Sultanov%2C+G">G. Sultanov</a>, <a href="/search/physics?searchtype=author&query=Bonchev%2C+M">M. Bonchev</a>, <a href="/search/physics?searchtype=author&query=Dimitrov%2C+A">A. Dimitrov</a>, <a href="/search/physics?searchtype=author&query=Litov%2C+L">L. Litov</a>, <a href="/search/physics?searchtype=author&query=Pavlov%2C+B">B. Pavlov</a>, <a href="/search/physics?searchtype=author&query=Petkov%2C+P">P. Petkov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">A. Petrov</a>, <a href="/search/physics?searchtype=author&query=Qian%2C+S+J">S. J. Qian</a>, <a href="/search/physics?searchtype=author&query=Bernal%2C+C">C. Bernal</a> , et al. (84 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.12769v2-abstract-short" style="display: inline;"> The expected radiation background in the CMS RPC system has been studied using the MC prediction with the CMS FLUKA simulation of the detector and the cavern. The MC geometry used in the analysis describes very accurately the present RPC system but still does not include the complete description of the RPC upgrade region with pseudorapidity $1.9 < \lvert 畏\rvert < 2.4$. Present results will be upd… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12769v2-abstract-full').style.display = 'inline'; document.getElementById('2005.12769v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.12769v2-abstract-full" style="display: none;"> The expected radiation background in the CMS RPC system has been studied using the MC prediction with the CMS FLUKA simulation of the detector and the cavern. The MC geometry used in the analysis describes very accurately the present RPC system but still does not include the complete description of the RPC upgrade region with pseudorapidity $1.9 < \lvert 畏\rvert < 2.4$. Present results will be updated with the final geometry description, once it is available. The radiation background has been studied in terms of expected particle rates, absorbed dose and fluence. Two High Luminosity LHC (HL-LHC) scenarios have been investigated - after collecting $3000$ and $4000$ fb$^{-1}$. Estimations with safety factor of 3 have been considered, as well. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.12769v2-abstract-full').style.display = 'none'; document.getElementById('2005.12769v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 December, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, Conference proceeding for the 2020 Resistive Plate Chambers and Related Detectors. Minor revision of the report, the results remain unchanged. Three new plots are added and some details were explained better</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2005.04071">arXiv:2005.04071</a> <span> [<a href="https://arxiv.org/pdf/2005.04071">pdf</a>, <a href="https://arxiv.org/format/2005.04071">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Plasma Physics">physics.plasm-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevB.102.121402">10.1103/PhysRevB.102.121402 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Thresholdless excitation of edge plasmons by transverse current </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A+S">Aleksandr S. Petrov</a>, <a href="/search/physics?searchtype=author&query=Svintsov%2C+D">Dmitry Svintsov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2005.04071v1-abstract-short" style="display: inline;"> We theoretically demonstrate that dc electron flow across the junction of two-dimensional electron systems leads to excitation of edge magnetoplasmons. The threshold current for such plasmon excitation does not depend on contact effects and approaches zero for ballistic electron systems, which makes a strong distinction from the well-known Dyakonov-Shur and Cerenkov-type instabilities. We estimate… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04071v1-abstract-full').style.display = 'inline'; document.getElementById('2005.04071v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2005.04071v1-abstract-full" style="display: none;"> We theoretically demonstrate that dc electron flow across the junction of two-dimensional electron systems leads to excitation of edge magnetoplasmons. The threshold current for such plasmon excitation does not depend on contact effects and approaches zero for ballistic electron systems, which makes a strong distinction from the well-known Dyakonov-Shur and Cerenkov-type instabilities. We estimate the competing plasmon energy gain from dc current and loss due to electron scattering. We show that plasmon self excitation is feasible in GaAs-based heterostructures at $T\lesssim 200$ K and magnetic fields $B \lesssim 10$ T. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2005.04071v1-abstract-full').style.display = 'none'; document.getElementById('2005.04071v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 May, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 3 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. B 102, 121402 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2004.10525">arXiv:2004.10525</a> <span> [<a href="https://arxiv.org/pdf/2004.10525">pdf</a>, <a href="https://arxiv.org/ps/2004.10525">ps</a>, <a href="https://arxiv.org/format/2004.10525">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Theory">hep-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> </div> </div> <p class="title is-5 mathjax"> The Field-Theoretic Approach in General Relativity and Other Metric Theories. A Review </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">A. N. Petrov</a>, <a href="/search/physics?searchtype=author&query=Pitts%2C+J+B">J. Brian Pitts</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2004.10525v1-abstract-short" style="display: inline;"> GR and other metric theories of gravity are formulated with an arbitrary auxiliary curved background in a Lagrangian formalism. A new sketch of how to include spinor fields is included. Conserved quantities are obtained using Noether's theorem and expressed as divergences of antisymmetric densities, connecting local perturbations with quasi-local conserved quantities. The background's arbitrarines… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10525v1-abstract-full').style.display = 'inline'; document.getElementById('2004.10525v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2004.10525v1-abstract-full" style="display: none;"> GR and other metric theories of gravity are formulated with an arbitrary auxiliary curved background in a Lagrangian formalism. A new sketch of how to include spinor fields is included. Conserved quantities are obtained using Noether's theorem and expressed as divergences of antisymmetric densities, connecting local perturbations with quasi-local conserved quantities. The background's arbitrariness matches the so-called non-localizability of gravitational energy (infinity of localizations). The formalism has two partly overlapping uses: practical applications of pure GR (with fictitious background) and foundational considerations in which background causality facilitates quantization. The Schwarzschild solution is a primary application. Various possibilities for calculating the mass using surface integration are given. A field-theoretic curved spacetime is given from spatial infinity to the horizon and even to the true singularity. Trajectories of test particles in the Schwarzschild geometry are gauge-dependent in that even breakdowns at the horizon can be suppressed (or generated) by naive gauge transformations. This fact illustrates the auxiliary nature of the background metric and the need for some notion of maximal extension---much as with coordinate transformations in geometric GR. A continuous collapse to a point mass in the field-theoretic framework is given. The field-theoretic method is generalized to arbitrary metric theories in $D$ dimensions. The results are developed in the framework of Lovelock gravity and applied to calculate masses of Schwarzschild-like black holes. The bimetric formalism makes it natural to consider a graviton mass. Babak and Grishchuk's numerical and hence nonperturbative work sheds light on questions of a (dis)continuous massless limit for massive pure spin-2 and the classical (in)stability of spin-2/spin-0 theory. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2004.10525v1-abstract-full').style.display = 'none'; document.getElementById('2004.10525v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">59 pages; published version at http://www.stfi.ru/en/issues/2019/04/STFI_2019_04_Petrov.html</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Space, Time and Fundamental Interactions 2019 no. 4 pp. 66-124 (English with Russian abstract) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2003.03430">arXiv:2003.03430</a> <span> [<a href="https://arxiv.org/pdf/2003.03430">pdf</a>, <a href="https://arxiv.org/format/2003.03430">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1039/D0CP01131B">10.1039/D0CP01131B <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Photon-mediated charge-exchange reactions between 39K atoms and 40Ca+ ions in a hybrid trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+H">Hui Li</a>, <a href="/search/physics?searchtype=author&query=Jyothi%2C+S">S. Jyothi</a>, <a href="/search/physics?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&query=Klos%2C+J">Jacek Klos</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a>, <a href="/search/physics?searchtype=author&query=Brown%2C+K+R">Kenneth R Brown</a>, <a href="/search/physics?searchtype=author&query=Kotochigova%2C+S">Svetlana Kotochigova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2003.03430v3-abstract-short" style="display: inline;"> We present experimental evidence of charge exchange between laser-cooled potassium $^{39}$K atoms and calcium $^{40}$Ca$^+$ ions in a hybrid atom-ion trap and give quantitative theoretical explanations for the observations. The $^{39}$K atoms and $^{40}$Ca$^+$ ions are held in a magneto-optical (MOT) and a linear Paul trap, respectively. Fluorescence detection and high resolution time of flight ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03430v3-abstract-full').style.display = 'inline'; document.getElementById('2003.03430v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2003.03430v3-abstract-full" style="display: none;"> We present experimental evidence of charge exchange between laser-cooled potassium $^{39}$K atoms and calcium $^{40}$Ca$^+$ ions in a hybrid atom-ion trap and give quantitative theoretical explanations for the observations. The $^{39}$K atoms and $^{40}$Ca$^+$ ions are held in a magneto-optical (MOT) and a linear Paul trap, respectively. Fluorescence detection and high resolution time of flight mass spectra for both species are used to determine the remaining number of $^{40}$Ca$^+$ ions, the increasing number of $^{39}$K$^+$ ions, and $^{39}$K number density as functions of time. Simultaneous trap operation is guaranteed by alternating periods of MOT and $^{40}$Ca$^+$ cooling lights, thus avoiding direct ionization of $^{39}$K by the $^{40}$Ca$^+$ cooling light. We show that the K-Ca$^+$ charge-exchange rate coefficient increases linearly from zero with $^{39}$K number density and, surprisingly, the fraction of $^{40}$Ca$^+$ ions in the 4p\,$^2$P$_{1/2}$ electronically-excited state. Combined with our theoretical analysis, we conclude that these data can only be explained by a process that starts with a potassium atom in its electronic ground state and a calcium ion in its excited 4p\,$^2$P$_{1/2}$ state producing ground-state $^{39}$K$^+$ ions and metastable, neutral Ca\,(3d4p$^3$P$_1$) atoms, releasing only 150 cm$^{-1}$ equivalent relative kinetic energy. Charge-exchange between either ground- or excited-state $^{39}$K and ground-state $^{40}$Ca$^+$ is negligibly small as no energetically-favorable product states are available. Our experimental and theoretical rate coefficients of $9\times10^{-10}$ cm$^3$/s are in agreement given the uncertainty budgets. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2003.03430v3-abstract-full').style.display = 'none'; document.getElementById('2003.03430v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 April, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 March, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Chem. Chem. Phys., 2020,22, 10870-10881 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2002.08722">arXiv:2002.08722</a> <span> [<a href="https://arxiv.org/pdf/2002.08722">pdf</a>, <a href="https://arxiv.org/format/2002.08722">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> SND@LHC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=SHiP+Collaboration"> SHiP Collaboration</a>, <a href="/search/physics?searchtype=author&query=Ahdida%2C+C">C. Ahdida</a>, <a href="/search/physics?searchtype=author&query=Akmete%2C+A">A. Akmete</a>, <a href="/search/physics?searchtype=author&query=Albanese%2C+R">R. Albanese</a>, <a href="/search/physics?searchtype=author&query=Alexandrov%2C+A">A. Alexandrov</a>, <a href="/search/physics?searchtype=author&query=Andreini%2C+M">M. Andreini</a>, <a href="/search/physics?searchtype=author&query=Anokhina%2C+A">A. Anokhina</a>, <a href="/search/physics?searchtype=author&query=Aoki%2C+S">S. Aoki</a>, <a href="/search/physics?searchtype=author&query=Arduini%2C+G">G. Arduini</a>, <a href="/search/physics?searchtype=author&query=Atkin%2C+E">E. Atkin</a>, <a href="/search/physics?searchtype=author&query=Azorskiy%2C+N">N. Azorskiy</a>, <a href="/search/physics?searchtype=author&query=Back%2C+J+J">J. J. Back</a>, <a href="/search/physics?searchtype=author&query=Bagulya%2C+A">A. Bagulya</a>, <a href="/search/physics?searchtype=author&query=Santos%2C+F+B+D">F. Baaltasar Dos Santos</a>, <a href="/search/physics?searchtype=author&query=Baranov%2C+A">A. Baranov</a>, <a href="/search/physics?searchtype=author&query=Bardou%2C+F">F. Bardou</a>, <a href="/search/physics?searchtype=author&query=Barker%2C+G+J">G. J. Barker</a>, <a href="/search/physics?searchtype=author&query=Battistin%2C+M">M. Battistin</a>, <a href="/search/physics?searchtype=author&query=Bauche%2C+J">J. Bauche</a>, <a href="/search/physics?searchtype=author&query=Bay%2C+A">A. Bay</a>, <a href="/search/physics?searchtype=author&query=Bayliss%2C+V">V. Bayliss</a>, <a href="/search/physics?searchtype=author&query=Bencivenni%2C+G">G. Bencivenni</a>, <a href="/search/physics?searchtype=author&query=Berdnikov%2C+A+Y">A. Y. Berdnikov</a>, <a href="/search/physics?searchtype=author&query=Berdnikov%2C+Y+A">Y. A. Berdnikov</a>, <a href="/search/physics?searchtype=author&query=Bertani%2C+M">M. Bertani</a> , et al. (319 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2002.08722v1-abstract-short" style="display: inline;"> We propose to build and operate a detector that, for the first time, will measure the process $pp\to谓X$ at the LHC and search for feebly interacting particles (FIPs) in an unexplored domain. The TI18 tunnel has been identified as a suitable site to perform these measurements due to very low machine-induced background. The detector will be off-axis with respect to the ATLAS interaction point (IP1)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08722v1-abstract-full').style.display = 'inline'; document.getElementById('2002.08722v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2002.08722v1-abstract-full" style="display: none;"> We propose to build and operate a detector that, for the first time, will measure the process $pp\to谓X$ at the LHC and search for feebly interacting particles (FIPs) in an unexplored domain. The TI18 tunnel has been identified as a suitable site to perform these measurements due to very low machine-induced background. The detector will be off-axis with respect to the ATLAS interaction point (IP1) and, given the pseudo-rapidity range accessible, the corresponding neutrinos will mostly come from charm decays: the proposed experiment will thus make the first test of the heavy flavour production in a pseudo-rapidity range that is not accessible by the current LHC detectors. In order to efficiently reconstruct neutrino interactions and identify their flavour, the detector will combine in the target region nuclear emulsion technology with scintillating fibre tracking layers and it will adopt a muon identification system based on scintillating bars that will also play the role of a hadronic calorimeter. The time of flight measurement will be achieved thanks to a dedicated timing detector. The detector will be a small-scale prototype of the scattering and neutrino detector (SND) of the SHiP experiment: the operation of this detector will provide an important test of the neutrino reconstruction in a high occupancy environment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2002.08722v1-abstract-full').style.display = 'none'; document.getElementById('2002.08722v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 February, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Letter of Intent</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> CERN-LHCC-2020-002, LHCC-I-035 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2001.04843">arXiv:2001.04843</a> <span> [<a href="https://arxiv.org/pdf/2001.04843">pdf</a>, <a href="https://arxiv.org/ps/2001.04843">ps</a>, <a href="https://arxiv.org/format/2001.04843">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> </div> </div> <p class="title is-5 mathjax"> The idea of quarks: towards restoring of historical justice </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+V+A">Vladimir A. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2001.04843v2-abstract-short" style="display: inline;"> Quite a long time ago several authors (see,e.g., \cite{Der}, \cite{Pe} ) mentioned that among pioneers of the quark idea we should take into consideration one more (in addition to M. Gell-Mann and G. Zweig) author, Andr茅 Petermann (1922 - 2011). Below we place the English translation of his little known work, originally published in French. We draw attention of the readers to the closesness of the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04843v2-abstract-full').style.display = 'inline'; document.getElementById('2001.04843v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2001.04843v2-abstract-full" style="display: none;"> Quite a long time ago several authors (see,e.g., \cite{Der}, \cite{Pe} ) mentioned that among pioneers of the quark idea we should take into consideration one more (in addition to M. Gell-Mann and G. Zweig) author, Andr茅 Petermann (1922 - 2011). Below we place the English translation of his little known work, originally published in French. We draw attention of the readers to the closesness of the dates: M. Gell-Mann's paper in Phys.Letters was received 4 January 1964, the CERN preprint by G. Zweig is dated by 17 January 1964 while Petermann's paper in Nucl.Phys. was received 30 December 1963. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2001.04843v2-abstract-full').style.display = 'none'; document.getElementById('2001.04843v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 14 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">5 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1909.09521">arXiv:1909.09521</a> <span> [<a href="https://arxiv.org/pdf/1909.09521">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> </div> <p class="title is-5 mathjax"> The limits for complete photonic bandgaps in low-contrast media </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Maiwald%2C+L">Lukas Maiwald</a>, <a href="/search/physics?searchtype=author&query=Sommer%2C+T">Timo Sommer</a>, <a href="/search/physics?searchtype=author&query=Schulz%2C+M">Marvin Schulz</a>, <a href="/search/physics?searchtype=author&query=Eich%2C+M">Manfred Eich</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+Y">Alexander Yu. Petrov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1909.09521v1-abstract-short" style="display: inline;"> The minimal refractive index contrast to obtain a complete photonic bandgap (CPBG) in structured media was not identified so far. We address this problem by considering distributed quasicrystals in with arbitrary number and positions of Bragg peaks in reciprocal space. For these structures an analytical estimation is derived which predicts that there is an optimal number of Bragg peaks for any ref… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09521v1-abstract-full').style.display = 'inline'; document.getElementById('1909.09521v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1909.09521v1-abstract-full" style="display: none;"> The minimal refractive index contrast to obtain a complete photonic bandgap (CPBG) in structured media was not identified so far. We address this problem by considering distributed quasicrystals in with arbitrary number and positions of Bragg peaks in reciprocal space. For these structures an analytical estimation is derived which predicts that there is an optimal number of Bragg peaks for any refractive index contrast and finite CPBGs for an arbitrarily small refractive index contrast in 2D and 3D. Results of numerical simulations of dipole emission in 2D structures support our estimation. In 3D an emission suppression of almost 10 dB was demonstrated with a refractive index contrast of 1.6. The reason for residual leakage in 3D structures has to be further investigated. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1909.09521v1-abstract-full').style.display = 'none'; document.getElementById('1909.09521v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 September, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1904.11579">arXiv:1904.11579</a> <span> [<a href="https://arxiv.org/pdf/1904.11579">pdf</a>, <a href="https://arxiv.org/format/1904.11579">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/s42005-019-0245-2">10.1038/s42005-019-0245-2 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Emulating optical cycling centers in polyatomic molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&query=K%C5%82os%2C+J">Jacek K艂os</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a>, <a href="/search/physics?searchtype=author&query=Kotochigova%2C+S">Svetlana Kotochigova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1904.11579v2-abstract-short" style="display: inline;"> An optical cycling center (OCC) is a recently coined term to indicate two electronic states within a complex quantum object that can repeatedly experience optical laser excitation and spontaneous decay, while being well isolated from its environment. Here we present a quantitative understanding of electronic, vibrational, and rotational excitations of the polyatomic SrOH molecule, which possesses… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11579v2-abstract-full').style.display = 'inline'; document.getElementById('1904.11579v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1904.11579v2-abstract-full" style="display: none;"> An optical cycling center (OCC) is a recently coined term to indicate two electronic states within a complex quantum object that can repeatedly experience optical laser excitation and spontaneous decay, while being well isolated from its environment. Here we present a quantitative understanding of electronic, vibrational, and rotational excitations of the polyatomic SrOH molecule, which possesses a localized OCC near its Sr atom. In particular, we describe the vibrationally-dependent trends in the Franck-Condon factors of the bending and stretching modes of the molecular electronic states coupled in the optical transition. These simulations required us to perform electronic structure calculations of the multi-dimensional potential energy surfaces of both ground and excited states, the determination of vibrational and bending modes, and corresponding Franck-Condon factors. We also discuss the extent to which the optical cycling center has diagonal Franck-Condon factors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1904.11579v2-abstract-full').style.display = 'none'; document.getElementById('1904.11579v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 December, 2019; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 25 April, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">28 pages, 10 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Commun. Phys. 2, 148 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.09061">arXiv:1901.09061</a> <span> [<a href="https://arxiv.org/pdf/1901.09061">pdf</a>, <a href="https://arxiv.org/format/1901.09061">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.062706">10.1103/PhysRevA.99.062706 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Excitation-assisted nonadiabatic charge-transfer reaction in a mixed atom-ion system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+M">Ming Li</a>, <a href="/search/physics?searchtype=author&query=Mills%2C+M">Michael Mills</a>, <a href="/search/physics?searchtype=author&query=Puri%2C+P">Prateek Puri</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a>, <a href="/search/physics?searchtype=author&query=Hudson%2C+E+R">Eric R. Hudson</a>, <a href="/search/physics?searchtype=author&query=Kotochigova%2C+S">Svetlana Kotochigova</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.09061v1-abstract-short" style="display: inline;"> An important physical process unique to neutral-ion systems is the charge-transfer (CT) reaction. Here, we present measurements of and models for CT processes between co-trapped ultracold Ca atoms and Yb ions under well-controlled conditions. The theoretical analysis reveals the existence of three reaction mechanisms when lasers from a magneto-optical trap (MOT) and an additional catalyst laser ar… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09061v1-abstract-full').style.display = 'inline'; document.getElementById('1901.09061v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.09061v1-abstract-full" style="display: none;"> An important physical process unique to neutral-ion systems is the charge-transfer (CT) reaction. Here, we present measurements of and models for CT processes between co-trapped ultracold Ca atoms and Yb ions under well-controlled conditions. The theoretical analysis reveals the existence of three reaction mechanisms when lasers from a magneto-optical trap (MOT) and an additional catalyst laser are present. Besides the direct CT involving existent excited Ca population in the MOT, the second pathway is controlled by MOT-induced CT, whereas the third one mostly involves the additional red-detuned laser. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.09061v1-abstract-full').style.display = 'none'; document.getElementById('1901.09061v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1901.02191">arXiv:1901.02191</a> <span> [<a href="https://arxiv.org/pdf/1901.02191">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.27.021273">10.1364/OE.27.021273 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Linear Schr枚dinger equation with temporal evolution for front induced transitions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gaafar%2C+M+A">Mahmoud A. Gaafar</a>, <a href="/search/physics?searchtype=author&query=Renner%2C+H">Hagen Renner</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+Y">Alexander Y. Petrov</a>, <a href="/search/physics?searchtype=author&query=Eich%2C+M">Manfred Eich</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1901.02191v1-abstract-short" style="display: inline;"> The nonlinear Schr枚dinger equation based on slowly varying approximation is usually applied to describe the pulse propagation in nonlinear waveguides. However, for the case of the front induced transitions (FITs), the pump effect is well described by the dielectric constant perturbation in space and time. Thus, a linear Schr枚dinger equation can be used. Also, in waveguides with weak dispersion the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02191v1-abstract-full').style.display = 'inline'; document.getElementById('1901.02191v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1901.02191v1-abstract-full" style="display: none;"> The nonlinear Schr枚dinger equation based on slowly varying approximation is usually applied to describe the pulse propagation in nonlinear waveguides. However, for the case of the front induced transitions (FITs), the pump effect is well described by the dielectric constant perturbation in space and time. Thus, a linear Schr枚dinger equation can be used. Also, in waveguides with weak dispersion the spatial evolution of the pulse temporal profile is usually tracked. Such a formulation becomes impossible for optical systems for which the group index or higher dispersion terms diverge as is the case near the band edge of photonic crystals. For the description of FITs in such systems a linear Schr枚dinger equation can be used where temporal evolution of the pulse spatial profile is tracked instead of tracking the spatial evolution. This representation provides the same descriptive power and can easily deal with zero group velocities. Furthermore, the Schr枚dinger equation with temporal evolution can describe signal pulse reflection from both static and counter-propagating fronts, in contrast to the Schr枚dinger equation with spatial evolution which is bound to forward propagation. Here, we discuss the two approaches and demonstrate the applicability of the spatial evolution for the system close to the band edge where the group velocity vanishes by simulating intraband indirect photonic transitions. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1901.02191v1-abstract-full').style.display = 'none'; document.getElementById('1901.02191v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 January, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1812.05897">arXiv:1812.05897</a> <span> [<a href="https://arxiv.org/pdf/1812.05897">pdf</a>, <a href="https://arxiv.org/format/1812.05897">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1364/OE.27.008639">10.1364/OE.27.008639 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Ptychographic characterization of polymer compound refractive lenses manufactured by additive technology </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Lyubomirskiy%2C+M">Mikhail Lyubomirskiy</a>, <a href="/search/physics?searchtype=author&query=Koch%2C+F">Frieder Koch</a>, <a href="/search/physics?searchtype=author&query=Abrashitova%2C+K">Ksenia Abrashitova</a>, <a href="/search/physics?searchtype=author&query=Bessonov%2C+V">Vladimir Bessonov</a>, <a href="/search/physics?searchtype=author&query=Kokareva%2C+N">Natalia Kokareva</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A">Alexander Petrov</a>, <a href="/search/physics?searchtype=author&query=Seiboth%2C+F">Frank Seiboth</a>, <a href="/search/physics?searchtype=author&query=Wittwer%2C+F">Felix Wittwer</a>, <a href="/search/physics?searchtype=author&query=Kahnt%2C+M">Maik Kahnt</a>, <a href="/search/physics?searchtype=author&query=Fedyanin%2C+M+S+A">Martin Seyrich Andrey Fedyanin</a>, <a href="/search/physics?searchtype=author&query=David%2C+C">Christian David</a>, <a href="/search/physics?searchtype=author&query=Schroer%2C+C">Christian Schroer</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1812.05897v1-abstract-short" style="display: inline;"> The recent success in the development of high precision printing techniques allows one to manufacture free-standing polymer structures of high quality. Two-photon polymerization lithography is a mask-less technique with down to 100 渭m resolution that provides full geometric freedom. It has recently been applied to the nanofabrication of X-ray compound refractive lenses (CRLs). In this article we r… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05897v1-abstract-full').style.display = 'inline'; document.getElementById('1812.05897v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1812.05897v1-abstract-full" style="display: none;"> The recent success in the development of high precision printing techniques allows one to manufacture free-standing polymer structures of high quality. Two-photon polymerization lithography is a mask-less technique with down to 100 渭m resolution that provides full geometric freedom. It has recently been applied to the nanofabrication of X-ray compound refractive lenses (CRLs). In this article we report on the characterization of two sets of CRLs of different design produced by two-photon polymerization induced lithography. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1812.05897v1-abstract-full').style.display = 'none'; document.getElementById('1812.05897v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 14 December, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2018. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.10479">arXiv:1811.10479</a> <span> [<a href="https://arxiv.org/pdf/1811.10479">pdf</a>, <a href="https://arxiv.org/ps/1811.10479">ps</a>, <a href="https://arxiv.org/format/1811.10479">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> </div> <p class="title is-5 mathjax"> Interference between $E1$ and $M1$ transition amplitudes on the $H$ to $C$ transition in ThO </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">A. N. Petrov</a>, <a href="/search/physics?searchtype=author&query=Skripnikov%2C+L+V">L. V. Skripnikov</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.10479v1-abstract-short" style="display: inline;"> Calculations of Stark interference between $E1$ and $M1$ transition amplitudes on the $H^3螖_1$ to $C^1螤$ transition in ThO is performed. Calculations are required for estimations of systematic errors in the experiment for electron electric dipole (eEDM) moment search due to imperfections in laser beams used to prepare the molecule and read out the (eEDM) signal. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.10479v1-abstract-full" style="display: none;"> Calculations of Stark interference between $E1$ and $M1$ transition amplitudes on the $H^3螖_1$ to $C^1螤$ transition in ThO is performed. Calculations are required for estimations of systematic errors in the experiment for electron electric dipole (eEDM) moment search due to imperfections in laser beams used to prepare the molecule and read out the (eEDM) signal. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.10479v1-abstract-full').style.display = 'none'; document.getElementById('1811.10479v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">arXiv admin note: substantial text overlap with arXiv:1704.02670</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1811.08855">arXiv:1811.08855</a> <span> [<a href="https://arxiv.org/pdf/1811.08855">pdf</a>, <a href="https://arxiv.org/ps/1811.08855">ps</a>, <a href="https://arxiv.org/format/1811.08855">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Chemical Physics">physics.chem-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.99.012517">10.1103/PhysRevA.99.012517 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> HfF$^+$ as a candidate to search for the nuclear weak quadruple moment </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Skripnikov%2C+L+V">L. V. Skripnikov</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">A. N. Petrov</a>, <a href="/search/physics?searchtype=author&query=Titov%2C+A+V">A. V. Titov</a>, <a href="/search/physics?searchtype=author&query=Flambaum%2C+V+V">V. V. Flambaum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1811.08855v1-abstract-short" style="display: inline;"> Nuclei with a quadrupole deformation such as $^{177}$Hf have enhanced weak quadrupole moment which induces the tensor weak electron-nucleus interaction in atoms and molecules. Corresponding parity non-conserving (PNC) effect is strongly enhanced in the $^3螖_1$ electronic state of the $^{177}$HfF$^+$ cation which has very close opposite parity levels mixed by this tensor interaction. In the present… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08855v1-abstract-full').style.display = 'inline'; document.getElementById('1811.08855v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1811.08855v1-abstract-full" style="display: none;"> Nuclei with a quadrupole deformation such as $^{177}$Hf have enhanced weak quadrupole moment which induces the tensor weak electron-nucleus interaction in atoms and molecules. Corresponding parity non-conserving (PNC) effect is strongly enhanced in the $^3螖_1$ electronic state of the $^{177}$HfF$^+$ cation which has very close opposite parity levels mixed by this tensor interaction. In the present paper we perform relativistic many-body calculations of this PNC effect. It is shown that the tensor weak interaction induced by the weak quadrupole moment gives the dominating contribution to the PNC effects in $^{177}$HfF$^+$ which significantly exceeds contributions of the vector anapole moment and the scalar weak charge. The anapole and the weak charge can contribute due to the nonadiabatic mechanism proposed here. Therefore, corresponding experiment will allow one to separate the tensor weak PNC effect from the other PNC effects and to measure the quadrupole moment of the neutron distribution which gives the dominating contribution to the weak quadrupole moment. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1811.08855v1-abstract-full').style.display = 'none'; document.getElementById('1811.08855v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 November, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 99, 012517 (2019) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1809.06701">arXiv:1809.06701</a> <span> [<a href="https://arxiv.org/pdf/1809.06701">pdf</a>, <a href="https://arxiv.org/ps/1809.06701">ps</a>, <a href="https://arxiv.org/format/1809.06701">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.042502">10.1103/PhysRevA.98.042502 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Evaluation of CP-violation in HfF$^+$ </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Petrov%2C+A+N">A. N. Petrov</a>, <a href="/search/physics?searchtype=author&query=Skripnikov%2C+L+V">L. V. Skripnikov</a>, <a href="/search/physics?searchtype=author&query=Titov%2C+A+V">A. V. Titov</a>, <a href="/search/physics?searchtype=author&query=Flambaum%2C+V+V">V. V. Flambaum</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1809.06701v1-abstract-short" style="display: inline;"> CP violation effects produced by the nuclear magnetic quadrupole moment (MQM), electron electric dipole moment (EDM) and scalar$-$pseudoscalar nucleus$-$electron neutral current (SP) interaction in $^{177}$Hf$^{19}$F$^+$ and $^{179}$Hf$^{19}$F$^+$ are calculated. The role of the hyperfine interaction is investigated. It is shown that the MQM shift can be distinguished from the electron EDM and SP… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06701v1-abstract-full').style.display = 'inline'; document.getElementById('1809.06701v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1809.06701v1-abstract-full" style="display: none;"> CP violation effects produced by the nuclear magnetic quadrupole moment (MQM), electron electric dipole moment (EDM) and scalar$-$pseudoscalar nucleus$-$electron neutral current (SP) interaction in $^{177}$Hf$^{19}$F$^+$ and $^{179}$Hf$^{19}$F$^+$ are calculated. The role of the hyperfine interaction is investigated. It is shown that the MQM shift can be distinguished from the electron EDM and SP ones due to the implicit dependence of MQM shift on the hyperfine sublevel. The MQM effect is expressed in terms of the proton (EDM), QCD vacuum angle $胃$ and quark chromo-EDMs. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1809.06701v1-abstract-full').style.display = 'none'; document.getElementById('1809.06701v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 September, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 042502 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1808.05521">arXiv:1808.05521</a> <span> [<a href="https://arxiv.org/pdf/1808.05521">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Medical Physics">physics.med-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.colsurfb.2018.07.049">10.1016/j.colsurfb.2018.07.049 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Mixed cationic liposomes for brain delivery of drugs by the intranasal route: the acetylcholinesterase reactivator 2-PAM as encapsulated drug model </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Pashirova%2C+T+N">Tatiana N. Pashirova</a>, <a href="/search/physics?searchtype=author&query=Zueva%2C+I+V">Irina V. Zueva</a>, <a href="/search/physics?searchtype=author&query=Petrov%2C+K+A">Konstantin A. Petrov</a>, <a href="/search/physics?searchtype=author&query=Lukashenko%2C+S+S">Svetlana S. Lukashenko</a>, <a href="/search/physics?searchtype=author&query=Nizameev%2C+I+R">Irek R. Nizameev</a>, <a href="/search/physics?searchtype=author&query=Kulik%2C+N+V">Natalya V. Kulik</a>, <a href="/search/physics?searchtype=author&query=Voloshina%2C+A+D">Aleksandra D. Voloshina</a>, <a href="/search/physics?searchtype=author&query=Almasy%2C+L">Laszlo Almasy</a>, <a href="/search/physics?searchtype=author&query=Kadirov%2C+M+K">Marsil K. Kadirov</a>, <a href="/search/physics?searchtype=author&query=Masson%2C+P">Patrick Masson</a>, <a href="/search/physics?searchtype=author&query=Souto%2C+E+B">Eliana B. Souto</a>, <a href="/search/physics?searchtype=author&query=Zakharova%2C+L+Y">Lucia Ya. Zakharova</a>, <a href="/search/physics?searchtype=author&query=Sinyashin%2C+O+G">Oleg G. Sinyashin</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1808.05521v1-abstract-short" style="display: inline;"> New mixed cationic liposomes based on L-伪-phosphatidylcholine and dihexadecylmethylhydroxyethylammonium bromide (DHDHAB) were designed to overcome the BBB crossing by using the intranasal route. Synthesis and self-assembly of DHDHAB were performed. A low critical association concentration (0.01 mM), good solubilization properties toward hydrophobic dye Orange OT and antimicrobial activity against… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05521v1-abstract-full').style.display = 'inline'; document.getElementById('1808.05521v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1808.05521v1-abstract-full" style="display: none;"> New mixed cationic liposomes based on L-伪-phosphatidylcholine and dihexadecylmethylhydroxyethylammonium bromide (DHDHAB) were designed to overcome the BBB crossing by using the intranasal route. Synthesis and self-assembly of DHDHAB were performed. A low critical association concentration (0.01 mM), good solubilization properties toward hydrophobic dye Orange OT and antimicrobial activity against gram-positive bacteria Staphylococcus aureus (MIC=7.8 渭g.mL-1) and Bacillus cereus (MIC=7.8 渭g.mL-1), low hemolytic activities against human red blood cells (less than 10%) were achieved. Conditions for preparation of cationic vesicle and mixed liposomes with excellent colloidal stability at room temperature were determined. The intranasal administration of rhodamine B-loaded cationic liposomes was shown to increase bioavailability into the brain in comparison to the intravenous injection. The cholinesterase reactivator, 2-PAM, was used as model drug for the loading in cationic liposomes. 2-PAM-loaded cationic liposomes displayed high encapsulation efficiency (~ 90 %) and hydrodynamic diameter close to 100 nm. Intranasally administered 2-PAM-loaded cationic liposomes were effective against paraoxon-induced acetylcholinesterase inhibition in the brain. 2-PAM-loaded liposomes reactivated 12 +/- 1% of brain acetylcholinesterase. This promising result opens the possibility to use marketed positively charged oximes in medical countermeasures against organophosphorus poisoning for reactivation of central acetylcholinesterase by implementing a non-invasive approach, via the "nose-brain" pathway. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1808.05521v1-abstract-full').style.display = 'none'; document.getElementById('1808.05521v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 August, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Colloids and Surfaces B: Biointerfaces, 171, 358-367 (2018) </p> </li> </ol> <nav class="pagination is-small is-centered breathe-horizontal" role="navigation" aria-label="pagination"> <a href="" class="pagination-previous is-invisible">Previous </a> <a href="/search/?searchtype=author&query=Petrov%2C+A&start=50" class="pagination-next" >Next </a> <ul class="pagination-list"> <li> <a href="/search/?searchtype=author&query=Petrov%2C+A&start=0" class="pagination-link is-current" aria-label="Goto page 1">1 </a> </li> <li> <a href="/search/?searchtype=author&query=Petrov%2C+A&start=50" class="pagination-link " aria-label="Page 2" aria-current="page">2 </a> </li> <li> <a href="/search/?searchtype=author&query=Petrov%2C+A&start=100" class="pagination-link " aria-label="Page 3" aria-current="page">3 </a> </li> </ul> </nav> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>