CINXE.COM
Pronic number - Wikipedia
<!DOCTYPE html> <html class="client-nojs vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available" lang="en" dir="ltr"> <head> <meta charset="UTF-8"> <title>Pronic number - Wikipedia</title> <script>(function(){var className="client-js vector-feature-language-in-header-enabled vector-feature-language-in-main-page-header-disabled vector-feature-sticky-header-disabled vector-feature-page-tools-pinned-disabled vector-feature-toc-pinned-clientpref-1 vector-feature-main-menu-pinned-disabled vector-feature-limited-width-clientpref-1 vector-feature-limited-width-content-enabled vector-feature-custom-font-size-clientpref-1 vector-feature-appearance-pinned-clientpref-1 vector-feature-night-mode-enabled skin-theme-clientpref-day vector-toc-available";var cookie=document.cookie.match(/(?:^|; )enwikimwclientpreferences=([^;]+)/);if(cookie){cookie[1].split('%2C').forEach(function(pref){className=className.replace(new RegExp('(^| )'+pref.replace(/-clientpref-\w+$|[^\w-]+/g,'')+'-clientpref-\\w+( |$)'),'$1'+pref+'$2');});}document.documentElement.className=className;}());RLCONF={"wgBreakFrames":false,"wgSeparatorTransformTable":["",""],"wgDigitTransformTable":["",""],"wgDefaultDateFormat":"dmy", "wgMonthNames":["","January","February","March","April","May","June","July","August","September","October","November","December"],"wgRequestId":"414f0f9a-ac5b-40e7-b74e-835dec6bfa90","wgCanonicalNamespace":"","wgCanonicalSpecialPageName":false,"wgNamespaceNumber":0,"wgPageName":"Pronic_number","wgTitle":"Pronic number","wgCurRevisionId":1255114004,"wgRevisionId":1255114004,"wgArticleId":652733,"wgIsArticle":true,"wgIsRedirect":false,"wgAction":"view","wgUserName":null,"wgUserGroups":["*"],"wgCategories":["Articles with short description","Short description is different from Wikidata","Integer sequences","Figurate numbers"],"wgPageViewLanguage":"en","wgPageContentLanguage":"en","wgPageContentModel":"wikitext","wgRelevantPageName":"Pronic_number","wgRelevantArticleId":652733,"wgIsProbablyEditable":true,"wgRelevantPageIsProbablyEditable":true,"wgRestrictionEdit":[],"wgRestrictionMove":[],"wgNoticeProject":"wikipedia","wgCiteReferencePreviewsActive":false,"wgFlaggedRevsParams":{"tags":{ "status":{"levels":1}}},"wgMediaViewerOnClick":true,"wgMediaViewerEnabledByDefault":true,"wgPopupsFlags":0,"wgVisualEditor":{"pageLanguageCode":"en","pageLanguageDir":"ltr","pageVariantFallbacks":"en"},"wgMFDisplayWikibaseDescriptions":{"search":true,"watchlist":true,"tagline":false,"nearby":true},"wgWMESchemaEditAttemptStepOversample":false,"wgWMEPageLength":10000,"wgRelatedArticlesCompat":[],"wgCentralAuthMobileDomain":false,"wgEditSubmitButtonLabelPublish":true,"wgULSPosition":"interlanguage","wgULSisCompactLinksEnabled":false,"wgVector2022LanguageInHeader":true,"wgULSisLanguageSelectorEmpty":false,"wgWikibaseItemId":"Q1486643","wgCheckUserClientHintsHeadersJsApi":["brands","architecture","bitness","fullVersionList","mobile","model","platform","platformVersion"],"GEHomepageSuggestedEditsEnableTopics":true,"wgGETopicsMatchModeEnabled":false,"wgGEStructuredTaskRejectionReasonTextInputEnabled":false,"wgGELevelingUpEnabledForUser":false};RLSTATE={"ext.globalCssJs.user.styles":"ready", "site.styles":"ready","user.styles":"ready","ext.globalCssJs.user":"ready","user":"ready","user.options":"loading","ext.math.styles":"ready","ext.cite.styles":"ready","skins.vector.search.codex.styles":"ready","skins.vector.styles":"ready","skins.vector.icons":"ready","jquery.makeCollapsible.styles":"ready","ext.wikimediamessages.styles":"ready","ext.visualEditor.desktopArticleTarget.noscript":"ready","ext.uls.interlanguage":"ready","wikibase.client.init":"ready","ext.wikimediaBadges":"ready"};RLPAGEMODULES=["ext.cite.ux-enhancements","mediawiki.page.media","site","mediawiki.page.ready","jquery.makeCollapsible","mediawiki.toc","skins.vector.js","ext.centralNotice.geoIP","ext.centralNotice.startUp","ext.gadget.ReferenceTooltips","ext.gadget.switcher","ext.urlShortener.toolbar","ext.centralauth.centralautologin","mmv.bootstrap","ext.popups","ext.visualEditor.desktopArticleTarget.init","ext.visualEditor.targetLoader","ext.echo.centralauth","ext.eventLogging","ext.wikimediaEvents", "ext.navigationTiming","ext.uls.interface","ext.cx.eventlogging.campaigns","ext.cx.uls.quick.actions","wikibase.client.vector-2022","ext.checkUser.clientHints","ext.growthExperiments.SuggestedEditSession","wikibase.sidebar.tracking"];</script> <script>(RLQ=window.RLQ||[]).push(function(){mw.loader.impl(function(){return["user.options@12s5i",function($,jQuery,require,module){mw.user.tokens.set({"patrolToken":"+\\","watchToken":"+\\","csrfToken":"+\\"}); }];});});</script> <link rel="stylesheet" href="/w/load.php?lang=en&modules=ext.cite.styles%7Cext.math.styles%7Cext.uls.interlanguage%7Cext.visualEditor.desktopArticleTarget.noscript%7Cext.wikimediaBadges%7Cext.wikimediamessages.styles%7Cjquery.makeCollapsible.styles%7Cskins.vector.icons%2Cstyles%7Cskins.vector.search.codex.styles%7Cwikibase.client.init&only=styles&skin=vector-2022"> <script async="" src="/w/load.php?lang=en&modules=startup&only=scripts&raw=1&skin=vector-2022"></script> <meta name="ResourceLoaderDynamicStyles" content=""> <link rel="stylesheet" href="/w/load.php?lang=en&modules=site.styles&only=styles&skin=vector-2022"> <meta name="generator" content="MediaWiki 1.44.0-wmf.4"> <meta name="referrer" content="origin"> <meta name="referrer" content="origin-when-cross-origin"> <meta name="robots" content="max-image-preview:standard"> <meta name="format-detection" content="telephone=no"> <meta name="viewport" content="width=1120"> <meta property="og:title" content="Pronic number - Wikipedia"> <meta property="og:type" content="website"> <link rel="preconnect" href="//upload.wikimedia.org"> <link rel="alternate" media="only screen and (max-width: 640px)" href="//en.m.wikipedia.org/wiki/Pronic_number"> <link rel="alternate" type="application/x-wiki" title="Edit this page" href="/w/index.php?title=Pronic_number&action=edit"> <link rel="apple-touch-icon" href="/static/apple-touch/wikipedia.png"> <link rel="icon" href="/static/favicon/wikipedia.ico"> <link rel="search" type="application/opensearchdescription+xml" href="/w/rest.php/v1/search" title="Wikipedia (en)"> <link rel="EditURI" type="application/rsd+xml" href="//en.wikipedia.org/w/api.php?action=rsd"> <link rel="canonical" href="https://en.wikipedia.org/wiki/Pronic_number"> <link rel="license" href="https://creativecommons.org/licenses/by-sa/4.0/deed.en"> <link rel="alternate" type="application/atom+xml" title="Wikipedia Atom feed" href="/w/index.php?title=Special:RecentChanges&feed=atom"> <link rel="dns-prefetch" href="//meta.wikimedia.org" /> <link rel="dns-prefetch" href="//login.wikimedia.org"> </head> <body class="skin--responsive skin-vector skin-vector-search-vue mediawiki ltr sitedir-ltr mw-hide-empty-elt ns-0 ns-subject mw-editable page-Pronic_number rootpage-Pronic_number skin-vector-2022 action-view"><a class="mw-jump-link" href="#bodyContent">Jump to content</a> <div class="vector-header-container"> <header class="vector-header mw-header"> <div class="vector-header-start"> <nav class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-dropdown" class="vector-dropdown vector-main-menu-dropdown vector-button-flush-left vector-button-flush-right" > <input type="checkbox" id="vector-main-menu-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-main-menu-dropdown" class="vector-dropdown-checkbox " aria-label="Main menu" > <label id="vector-main-menu-dropdown-label" for="vector-main-menu-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-menu mw-ui-icon-wikimedia-menu"></span> <span class="vector-dropdown-label-text">Main menu</span> </label> <div class="vector-dropdown-content"> <div id="vector-main-menu-unpinned-container" class="vector-unpinned-container"> <div id="vector-main-menu" class="vector-main-menu vector-pinnable-element"> <div class="vector-pinnable-header vector-main-menu-pinnable-header vector-pinnable-header-unpinned" data-feature-name="main-menu-pinned" data-pinnable-element-id="vector-main-menu" data-pinned-container-id="vector-main-menu-pinned-container" data-unpinned-container-id="vector-main-menu-unpinned-container" > <div class="vector-pinnable-header-label">Main menu</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-main-menu.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-main-menu.unpin">hide</button> </div> <div id="p-navigation" class="vector-menu mw-portlet mw-portlet-navigation" > <div class="vector-menu-heading"> Navigation </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-mainpage-description" class="mw-list-item"><a href="/wiki/Main_Page" title="Visit the main page [z]" accesskey="z"><span>Main page</span></a></li><li id="n-contents" class="mw-list-item"><a href="/wiki/Wikipedia:Contents" title="Guides to browsing Wikipedia"><span>Contents</span></a></li><li id="n-currentevents" class="mw-list-item"><a href="/wiki/Portal:Current_events" title="Articles related to current events"><span>Current events</span></a></li><li id="n-randompage" class="mw-list-item"><a href="/wiki/Special:Random" title="Visit a randomly selected article [x]" accesskey="x"><span>Random article</span></a></li><li id="n-aboutsite" class="mw-list-item"><a href="/wiki/Wikipedia:About" title="Learn about Wikipedia and how it works"><span>About Wikipedia</span></a></li><li id="n-contactpage" class="mw-list-item"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us" title="How to contact Wikipedia"><span>Contact us</span></a></li> </ul> </div> </div> <div id="p-interaction" class="vector-menu mw-portlet mw-portlet-interaction" > <div class="vector-menu-heading"> Contribute </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="n-help" class="mw-list-item"><a href="/wiki/Help:Contents" title="Guidance on how to use and edit Wikipedia"><span>Help</span></a></li><li id="n-introduction" class="mw-list-item"><a href="/wiki/Help:Introduction" title="Learn how to edit Wikipedia"><span>Learn to edit</span></a></li><li id="n-portal" class="mw-list-item"><a href="/wiki/Wikipedia:Community_portal" title="The hub for editors"><span>Community portal</span></a></li><li id="n-recentchanges" class="mw-list-item"><a href="/wiki/Special:RecentChanges" title="A list of recent changes to Wikipedia [r]" accesskey="r"><span>Recent changes</span></a></li><li id="n-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_upload_wizard" title="Add images or other media for use on Wikipedia"><span>Upload file</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> <a href="/wiki/Main_Page" class="mw-logo"> <img class="mw-logo-icon" src="/static/images/icons/wikipedia.png" alt="" aria-hidden="true" height="50" width="50"> <span class="mw-logo-container skin-invert"> <img class="mw-logo-wordmark" alt="Wikipedia" src="/static/images/mobile/copyright/wikipedia-wordmark-en.svg" style="width: 7.5em; height: 1.125em;"> <img class="mw-logo-tagline" alt="The Free Encyclopedia" src="/static/images/mobile/copyright/wikipedia-tagline-en.svg" width="117" height="13" style="width: 7.3125em; height: 0.8125em;"> </span> </a> </div> <div class="vector-header-end"> <div id="p-search" role="search" class="vector-search-box-vue vector-search-box-collapses vector-search-box-show-thumbnail vector-search-box-auto-expand-width vector-search-box"> <a href="/wiki/Special:Search" class="cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only search-toggle" title="Search Wikipedia [f]" accesskey="f"><span class="vector-icon mw-ui-icon-search mw-ui-icon-wikimedia-search"></span> <span>Search</span> </a> <div class="vector-typeahead-search-container"> <div class="cdx-typeahead-search cdx-typeahead-search--show-thumbnail cdx-typeahead-search--auto-expand-width"> <form action="/w/index.php" id="searchform" class="cdx-search-input cdx-search-input--has-end-button"> <div id="simpleSearch" class="cdx-search-input__input-wrapper" data-search-loc="header-moved"> <div class="cdx-text-input cdx-text-input--has-start-icon"> <input class="cdx-text-input__input" type="search" name="search" placeholder="Search Wikipedia" aria-label="Search Wikipedia" autocapitalize="sentences" title="Search Wikipedia [f]" accesskey="f" id="searchInput" > <span class="cdx-text-input__icon cdx-text-input__start-icon"></span> </div> <input type="hidden" name="title" value="Special:Search"> </div> <button class="cdx-button cdx-search-input__end-button">Search</button> </form> </div> </div> </div> <nav class="vector-user-links vector-user-links-wide" aria-label="Personal tools"> <div class="vector-user-links-main"> <div id="p-vector-user-menu-preferences" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-userpage" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-dropdown" class="vector-dropdown " title="Change the appearance of the page's font size, width, and color" > <input type="checkbox" id="vector-appearance-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-appearance-dropdown" class="vector-dropdown-checkbox " aria-label="Appearance" > <label id="vector-appearance-dropdown-label" for="vector-appearance-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-appearance mw-ui-icon-wikimedia-appearance"></span> <span class="vector-dropdown-label-text">Appearance</span> </label> <div class="vector-dropdown-content"> <div id="vector-appearance-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <div id="p-vector-user-menu-notifications" class="vector-menu mw-portlet emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> <div id="p-vector-user-menu-overflow" class="vector-menu mw-portlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en" class=""><span>Donate</span></a> </li> <li id="pt-createaccount-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:CreateAccount&returnto=Pronic+number" title="You are encouraged to create an account and log in; however, it is not mandatory" class=""><span>Create account</span></a> </li> <li id="pt-login-2" class="user-links-collapsible-item mw-list-item user-links-collapsible-item"><a data-mw="interface" href="/w/index.php?title=Special:UserLogin&returnto=Pronic+number" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o" class=""><span>Log in</span></a> </li> </ul> </div> </div> </div> <div id="vector-user-links-dropdown" class="vector-dropdown vector-user-menu vector-button-flush-right vector-user-menu-logged-out" title="Log in and more options" > <input type="checkbox" id="vector-user-links-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-user-links-dropdown" class="vector-dropdown-checkbox " aria-label="Personal tools" > <label id="vector-user-links-dropdown-label" for="vector-user-links-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-ellipsis mw-ui-icon-wikimedia-ellipsis"></span> <span class="vector-dropdown-label-text">Personal tools</span> </label> <div class="vector-dropdown-content"> <div id="p-personal" class="vector-menu mw-portlet mw-portlet-personal user-links-collapsible-item" title="User menu" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-sitesupport" class="user-links-collapsible-item mw-list-item"><a href="https://donate.wikimedia.org/wiki/Special:FundraiserRedirector?utm_source=donate&utm_medium=sidebar&utm_campaign=C13_en.wikipedia.org&uselang=en"><span>Donate</span></a></li><li id="pt-createaccount" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:CreateAccount&returnto=Pronic+number" title="You are encouraged to create an account and log in; however, it is not mandatory"><span class="vector-icon mw-ui-icon-userAdd mw-ui-icon-wikimedia-userAdd"></span> <span>Create account</span></a></li><li id="pt-login" class="user-links-collapsible-item mw-list-item"><a href="/w/index.php?title=Special:UserLogin&returnto=Pronic+number" title="You're encouraged to log in; however, it's not mandatory. [o]" accesskey="o"><span class="vector-icon mw-ui-icon-logIn mw-ui-icon-wikimedia-logIn"></span> <span>Log in</span></a></li> </ul> </div> </div> <div id="p-user-menu-anon-editor" class="vector-menu mw-portlet mw-portlet-user-menu-anon-editor" > <div class="vector-menu-heading"> Pages for logged out editors <a href="/wiki/Help:Introduction" aria-label="Learn more about editing"><span>learn more</span></a> </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="pt-anoncontribs" class="mw-list-item"><a href="/wiki/Special:MyContributions" title="A list of edits made from this IP address [y]" accesskey="y"><span>Contributions</span></a></li><li id="pt-anontalk" class="mw-list-item"><a href="/wiki/Special:MyTalk" title="Discussion about edits from this IP address [n]" accesskey="n"><span>Talk</span></a></li> </ul> </div> </div> </div> </div> </nav> </div> </header> </div> <div class="mw-page-container"> <div class="mw-page-container-inner"> <div class="vector-sitenotice-container"> <div id="siteNotice"><!-- CentralNotice --></div> </div> <div class="vector-column-start"> <div class="vector-main-menu-container"> <div id="mw-navigation"> <nav id="mw-panel" class="vector-main-menu-landmark" aria-label="Site"> <div id="vector-main-menu-pinned-container" class="vector-pinned-container"> </div> </nav> </div> </div> <div class="vector-sticky-pinned-container"> <nav id="mw-panel-toc" aria-label="Contents" data-event-name="ui.sidebar-toc" class="mw-table-of-contents-container vector-toc-landmark"> <div id="vector-toc-pinned-container" class="vector-pinned-container"> <div id="vector-toc" class="vector-toc vector-pinnable-element"> <div class="vector-pinnable-header vector-toc-pinnable-header vector-pinnable-header-pinned" data-feature-name="toc-pinned" data-pinnable-element-id="vector-toc" > <h2 class="vector-pinnable-header-label">Contents</h2> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-toc.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-toc.unpin">hide</button> </div> <ul class="vector-toc-contents" id="mw-panel-toc-list"> <li id="toc-mw-content-text" class="vector-toc-list-item vector-toc-level-1"> <a href="#" class="vector-toc-link"> <div class="vector-toc-text">(Top)</div> </a> </li> <li id="toc-As_figurate_numbers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#As_figurate_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">1</span> <span>As figurate numbers</span> </div> </a> <ul id="toc-As_figurate_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Sum_of_pronic_numbers" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Sum_of_pronic_numbers"> <div class="vector-toc-text"> <span class="vector-toc-numb">2</span> <span>Sum of pronic numbers</span> </div> </a> <ul id="toc-Sum_of_pronic_numbers-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-Additional_properties" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#Additional_properties"> <div class="vector-toc-text"> <span class="vector-toc-numb">3</span> <span>Additional properties</span> </div> </a> <ul id="toc-Additional_properties-sublist" class="vector-toc-list"> </ul> </li> <li id="toc-References" class="vector-toc-list-item vector-toc-level-1 vector-toc-list-item-expanded"> <a class="vector-toc-link" href="#References"> <div class="vector-toc-text"> <span class="vector-toc-numb">4</span> <span>References</span> </div> </a> <ul id="toc-References-sublist" class="vector-toc-list"> </ul> </li> </ul> </div> </div> </nav> </div> </div> <div class="mw-content-container"> <main id="content" class="mw-body"> <header class="mw-body-header vector-page-titlebar"> <nav aria-label="Contents" class="vector-toc-landmark"> <div id="vector-page-titlebar-toc" class="vector-dropdown vector-page-titlebar-toc vector-button-flush-left" > <input type="checkbox" id="vector-page-titlebar-toc-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-titlebar-toc" class="vector-dropdown-checkbox " aria-label="Toggle the table of contents" > <label id="vector-page-titlebar-toc-label" for="vector-page-titlebar-toc-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--icon-only " aria-hidden="true" ><span class="vector-icon mw-ui-icon-listBullet mw-ui-icon-wikimedia-listBullet"></span> <span class="vector-dropdown-label-text">Toggle the table of contents</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-titlebar-toc-unpinned-container" class="vector-unpinned-container"> </div> </div> </div> </nav> <h1 id="firstHeading" class="firstHeading mw-first-heading"><span class="mw-page-title-main">Pronic number</span></h1> <div id="p-lang-btn" class="vector-dropdown mw-portlet mw-portlet-lang" > <input type="checkbox" id="p-lang-btn-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-p-lang-btn" class="vector-dropdown-checkbox mw-interlanguage-selector" aria-label="Go to an article in another language. Available in 19 languages" > <label id="p-lang-btn-label" for="p-lang-btn-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet cdx-button--action-progressive mw-portlet-lang-heading-19" aria-hidden="true" ><span class="vector-icon mw-ui-icon-language-progressive mw-ui-icon-wikimedia-language-progressive"></span> <span class="vector-dropdown-label-text">19 languages</span> </label> <div class="vector-dropdown-content"> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li class="interlanguage-link interwiki-ar mw-list-item"><a href="https://ar.wikipedia.org/wiki/%D8%B9%D8%AF%D8%AF_%D8%A8%D8%B1%D9%88%D9%86%D9%8A" title="عدد بروني – Arabic" lang="ar" hreflang="ar" data-title="عدد بروني" data-language-autonym="العربية" data-language-local-name="Arabic" class="interlanguage-link-target"><span>العربية</span></a></li><li class="interlanguage-link interwiki-bg mw-list-item"><a href="https://bg.wikipedia.org/wiki/%D0%9F%D1%80%D0%B0%D0%B2%D0%BE%D1%8A%D0%B3%D1%8A%D0%BB%D0%BD%D0%BE_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Правоъгълно число – Bulgarian" lang="bg" hreflang="bg" data-title="Правоъгълно число" data-language-autonym="Български" data-language-local-name="Bulgarian" class="interlanguage-link-target"><span>Български</span></a></li><li class="interlanguage-link interwiki-ca mw-list-item"><a href="https://ca.wikipedia.org/wiki/Nombre_rectangular" title="Nombre rectangular – Catalan" lang="ca" hreflang="ca" data-title="Nombre rectangular" data-language-autonym="Català" data-language-local-name="Catalan" class="interlanguage-link-target"><span>Català</span></a></li><li class="interlanguage-link interwiki-de mw-list-item"><a href="https://de.wikipedia.org/wiki/Rechteckzahl" title="Rechteckzahl – German" lang="de" hreflang="de" data-title="Rechteckzahl" data-language-autonym="Deutsch" data-language-local-name="German" class="interlanguage-link-target"><span>Deutsch</span></a></li><li class="interlanguage-link interwiki-eml mw-list-item"><a href="https://eml.wikipedia.org/wiki/N%C3%B9mer_obl%C3%B9ng" title="Nùmer oblùng – Emiliano-Romagnolo" lang="egl" hreflang="egl" data-title="Nùmer oblùng" data-language-autonym="Emiliàn e rumagnòl" data-language-local-name="Emiliano-Romagnolo" class="interlanguage-link-target"><span>Emiliàn e rumagnòl</span></a></li><li class="interlanguage-link interwiki-es mw-list-item"><a href="https://es.wikipedia.org/wiki/N%C3%BAmero_oblongo" title="Número oblongo – Spanish" lang="es" hreflang="es" data-title="Número oblongo" data-language-autonym="Español" data-language-local-name="Spanish" class="interlanguage-link-target"><span>Español</span></a></li><li class="interlanguage-link interwiki-fr mw-list-item"><a href="https://fr.wikipedia.org/wiki/Nombre_oblong" title="Nombre oblong – French" lang="fr" hreflang="fr" data-title="Nombre oblong" data-language-autonym="Français" data-language-local-name="French" class="interlanguage-link-target"><span>Français</span></a></li><li class="interlanguage-link interwiki-it mw-list-item"><a href="https://it.wikipedia.org/wiki/Numero_oblungo" title="Numero oblungo – Italian" lang="it" hreflang="it" data-title="Numero oblungo" data-language-autonym="Italiano" data-language-local-name="Italian" class="interlanguage-link-target"><span>Italiano</span></a></li><li class="interlanguage-link interwiki-hu mw-list-item"><a href="https://hu.wikipedia.org/wiki/T%C3%A9glalapsz%C3%A1mok" title="Téglalapszámok – Hungarian" lang="hu" hreflang="hu" data-title="Téglalapszámok" data-language-autonym="Magyar" data-language-local-name="Hungarian" class="interlanguage-link-target"><span>Magyar</span></a></li><li class="interlanguage-link interwiki-ja mw-list-item"><a href="https://ja.wikipedia.org/wiki/%E7%9F%A9%E5%BD%A2%E6%95%B0" title="矩形数 – Japanese" lang="ja" hreflang="ja" data-title="矩形数" data-language-autonym="日本語" data-language-local-name="Japanese" class="interlanguage-link-target"><span>日本語</span></a></li><li class="interlanguage-link interwiki-pt mw-list-item"><a href="https://pt.wikipedia.org/wiki/N%C3%BAmero_oblongo" title="Número oblongo – Portuguese" lang="pt" hreflang="pt" data-title="Número oblongo" data-language-autonym="Português" data-language-local-name="Portuguese" class="interlanguage-link-target"><span>Português</span></a></li><li class="interlanguage-link interwiki-ro mw-list-item"><a href="https://ro.wikipedia.org/wiki/Num%C4%83r_rectangular" title="Număr rectangular – Romanian" lang="ro" hreflang="ro" data-title="Număr rectangular" data-language-autonym="Română" data-language-local-name="Romanian" class="interlanguage-link-target"><span>Română</span></a></li><li class="interlanguage-link interwiki-ru mw-list-item"><a href="https://ru.wikipedia.org/wiki/%D0%9F%D1%80%D1%8F%D0%BC%D0%BE%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%BE%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Прямоугольное число – Russian" lang="ru" hreflang="ru" data-title="Прямоугольное число" data-language-autonym="Русский" data-language-local-name="Russian" class="interlanguage-link-target"><span>Русский</span></a></li><li class="interlanguage-link interwiki-sl mw-list-item"><a href="https://sl.wikipedia.org/wiki/Podol%C5%BEno_%C5%A1tevilo" title="Podolžno število – Slovenian" lang="sl" hreflang="sl" data-title="Podolžno število" data-language-autonym="Slovenščina" data-language-local-name="Slovenian" class="interlanguage-link-target"><span>Slovenščina</span></a></li><li class="interlanguage-link interwiki-sv mw-list-item"><a href="https://sv.wikipedia.org/wiki/Rektangeltal" title="Rektangeltal – Swedish" lang="sv" hreflang="sv" data-title="Rektangeltal" data-language-autonym="Svenska" data-language-local-name="Swedish" class="interlanguage-link-target"><span>Svenska</span></a></li><li class="interlanguage-link interwiki-ta mw-list-item"><a href="https://ta.wikipedia.org/wiki/%E0%AE%9A%E0%AF%86%E0%AE%B5%E0%AF%8D%E0%AE%B5%E0%AE%95_%E0%AE%8E%E0%AE%A3%E0%AF%8D" title="செவ்வக எண் – Tamil" lang="ta" hreflang="ta" data-title="செவ்வக எண்" data-language-autonym="தமிழ்" data-language-local-name="Tamil" class="interlanguage-link-target"><span>தமிழ்</span></a></li><li class="interlanguage-link interwiki-uk mw-list-item"><a href="https://uk.wikipedia.org/wiki/%D0%9F%D1%80%D1%8F%D0%BC%D0%BE%D0%BA%D1%83%D1%82%D0%BD%D0%B5_%D1%87%D0%B8%D1%81%D0%BB%D0%BE" title="Прямокутне число – Ukrainian" lang="uk" hreflang="uk" data-title="Прямокутне число" data-language-autonym="Українська" data-language-local-name="Ukrainian" class="interlanguage-link-target"><span>Українська</span></a></li><li class="interlanguage-link interwiki-wuu mw-list-item"><a href="https://wuu.wikipedia.org/wiki/%E6%99%AE%E6%B4%9B%E5%B0%BC%E5%85%8B%E6%95%B0" title="普洛尼克数 – Wu" lang="wuu" hreflang="wuu" data-title="普洛尼克数" data-language-autonym="吴语" data-language-local-name="Wu" class="interlanguage-link-target"><span>吴语</span></a></li><li class="interlanguage-link interwiki-zh mw-list-item"><a href="https://zh.wikipedia.org/wiki/%E6%99%AE%E6%B4%9B%E5%B0%BC%E5%85%8B%E6%95%B0" title="普洛尼克数 – Chinese" lang="zh" hreflang="zh" data-title="普洛尼克数" data-language-autonym="中文" data-language-local-name="Chinese" class="interlanguage-link-target"><span>中文</span></a></li> </ul> <div class="after-portlet after-portlet-lang"><span class="wb-langlinks-edit wb-langlinks-link"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1486643#sitelinks-wikipedia" title="Edit interlanguage links" class="wbc-editpage">Edit links</a></span></div> </div> </div> </div> </header> <div class="vector-page-toolbar"> <div class="vector-page-toolbar-container"> <div id="left-navigation"> <nav aria-label="Namespaces"> <div id="p-associated-pages" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-associated-pages" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-nstab-main" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Pronic_number" title="View the content page [c]" accesskey="c"><span>Article</span></a></li><li id="ca-talk" class="vector-tab-noicon mw-list-item"><a href="/wiki/Talk:Pronic_number" rel="discussion" title="Discuss improvements to the content page [t]" accesskey="t"><span>Talk</span></a></li> </ul> </div> </div> <div id="vector-variants-dropdown" class="vector-dropdown emptyPortlet" > <input type="checkbox" id="vector-variants-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-variants-dropdown" class="vector-dropdown-checkbox " aria-label="Change language variant" > <label id="vector-variants-dropdown-label" for="vector-variants-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">English</span> </label> <div class="vector-dropdown-content"> <div id="p-variants" class="vector-menu mw-portlet mw-portlet-variants emptyPortlet" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> </ul> </div> </div> </div> </div> </nav> </div> <div id="right-navigation" class="vector-collapsible"> <nav aria-label="Views"> <div id="p-views" class="vector-menu vector-menu-tabs mw-portlet mw-portlet-views" > <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-view" class="selected vector-tab-noicon mw-list-item"><a href="/wiki/Pronic_number"><span>Read</span></a></li><li id="ca-edit" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Pronic_number&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-history" class="vector-tab-noicon mw-list-item"><a href="/w/index.php?title=Pronic_number&action=history" title="Past revisions of this page [h]" accesskey="h"><span>View history</span></a></li> </ul> </div> </div> </nav> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-dropdown" class="vector-dropdown vector-page-tools-dropdown" > <input type="checkbox" id="vector-page-tools-dropdown-checkbox" role="button" aria-haspopup="true" data-event-name="ui.dropdown-vector-page-tools-dropdown" class="vector-dropdown-checkbox " aria-label="Tools" > <label id="vector-page-tools-dropdown-label" for="vector-page-tools-dropdown-checkbox" class="vector-dropdown-label cdx-button cdx-button--fake-button cdx-button--fake-button--enabled cdx-button--weight-quiet" aria-hidden="true" ><span class="vector-dropdown-label-text">Tools</span> </label> <div class="vector-dropdown-content"> <div id="vector-page-tools-unpinned-container" class="vector-unpinned-container"> <div id="vector-page-tools" class="vector-page-tools vector-pinnable-element"> <div class="vector-pinnable-header vector-page-tools-pinnable-header vector-pinnable-header-unpinned" data-feature-name="page-tools-pinned" data-pinnable-element-id="vector-page-tools" data-pinned-container-id="vector-page-tools-pinned-container" data-unpinned-container-id="vector-page-tools-unpinned-container" > <div class="vector-pinnable-header-label">Tools</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-page-tools.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-page-tools.unpin">hide</button> </div> <div id="p-cactions" class="vector-menu mw-portlet mw-portlet-cactions emptyPortlet vector-has-collapsible-items" title="More options" > <div class="vector-menu-heading"> Actions </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="ca-more-view" class="selected vector-more-collapsible-item mw-list-item"><a href="/wiki/Pronic_number"><span>Read</span></a></li><li id="ca-more-edit" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Pronic_number&action=edit" title="Edit this page [e]" accesskey="e"><span>Edit</span></a></li><li id="ca-more-history" class="vector-more-collapsible-item mw-list-item"><a href="/w/index.php?title=Pronic_number&action=history"><span>View history</span></a></li> </ul> </div> </div> <div id="p-tb" class="vector-menu mw-portlet mw-portlet-tb" > <div class="vector-menu-heading"> General </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-whatlinkshere" class="mw-list-item"><a href="/wiki/Special:WhatLinksHere/Pronic_number" title="List of all English Wikipedia pages containing links to this page [j]" accesskey="j"><span>What links here</span></a></li><li id="t-recentchangeslinked" class="mw-list-item"><a href="/wiki/Special:RecentChangesLinked/Pronic_number" rel="nofollow" title="Recent changes in pages linked from this page [k]" accesskey="k"><span>Related changes</span></a></li><li id="t-upload" class="mw-list-item"><a href="/wiki/Wikipedia:File_Upload_Wizard" title="Upload files [u]" accesskey="u"><span>Upload file</span></a></li><li id="t-specialpages" class="mw-list-item"><a href="/wiki/Special:SpecialPages" title="A list of all special pages [q]" accesskey="q"><span>Special pages</span></a></li><li id="t-permalink" class="mw-list-item"><a href="/w/index.php?title=Pronic_number&oldid=1255114004" title="Permanent link to this revision of this page"><span>Permanent link</span></a></li><li id="t-info" class="mw-list-item"><a href="/w/index.php?title=Pronic_number&action=info" title="More information about this page"><span>Page information</span></a></li><li id="t-cite" class="mw-list-item"><a href="/w/index.php?title=Special:CiteThisPage&page=Pronic_number&id=1255114004&wpFormIdentifier=titleform" title="Information on how to cite this page"><span>Cite this page</span></a></li><li id="t-urlshortener" class="mw-list-item"><a href="/w/index.php?title=Special:UrlShortener&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPronic_number"><span>Get shortened URL</span></a></li><li id="t-urlshortener-qrcode" class="mw-list-item"><a href="/w/index.php?title=Special:QrCode&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FPronic_number"><span>Download QR code</span></a></li> </ul> </div> </div> <div id="p-coll-print_export" class="vector-menu mw-portlet mw-portlet-coll-print_export" > <div class="vector-menu-heading"> Print/export </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="coll-download-as-rl" class="mw-list-item"><a href="/w/index.php?title=Special:DownloadAsPdf&page=Pronic_number&action=show-download-screen" title="Download this page as a PDF file"><span>Download as PDF</span></a></li><li id="t-print" class="mw-list-item"><a href="/w/index.php?title=Pronic_number&printable=yes" title="Printable version of this page [p]" accesskey="p"><span>Printable version</span></a></li> </ul> </div> </div> <div id="p-wikibase-otherprojects" class="vector-menu mw-portlet mw-portlet-wikibase-otherprojects" > <div class="vector-menu-heading"> In other projects </div> <div class="vector-menu-content"> <ul class="vector-menu-content-list"> <li id="t-wikibase" class="wb-otherproject-link wb-otherproject-wikibase-dataitem mw-list-item"><a href="https://www.wikidata.org/wiki/Special:EntityPage/Q1486643" title="Structured data on this page hosted by Wikidata [g]" accesskey="g"><span>Wikidata item</span></a></li> </ul> </div> </div> </div> </div> </div> </div> </nav> </div> </div> </div> <div class="vector-column-end"> <div class="vector-sticky-pinned-container"> <nav class="vector-page-tools-landmark" aria-label="Page tools"> <div id="vector-page-tools-pinned-container" class="vector-pinned-container"> </div> </nav> <nav class="vector-appearance-landmark" aria-label="Appearance"> <div id="vector-appearance-pinned-container" class="vector-pinned-container"> <div id="vector-appearance" class="vector-appearance vector-pinnable-element"> <div class="vector-pinnable-header vector-appearance-pinnable-header vector-pinnable-header-pinned" data-feature-name="appearance-pinned" data-pinnable-element-id="vector-appearance" data-pinned-container-id="vector-appearance-pinned-container" data-unpinned-container-id="vector-appearance-unpinned-container" > <div class="vector-pinnable-header-label">Appearance</div> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-pin-button" data-event-name="pinnable-header.vector-appearance.pin">move to sidebar</button> <button class="vector-pinnable-header-toggle-button vector-pinnable-header-unpin-button" data-event-name="pinnable-header.vector-appearance.unpin">hide</button> </div> </div> </div> </nav> </div> </div> <div id="bodyContent" class="vector-body" aria-labelledby="firstHeading" data-mw-ve-target-container> <div class="vector-body-before-content"> <div class="mw-indicators"> </div> <div id="siteSub" class="noprint">From Wikipedia, the free encyclopedia</div> </div> <div id="contentSub"><div id="mw-content-subtitle"></div></div> <div id="mw-content-text" class="mw-body-content"><div class="mw-content-ltr mw-parser-output" lang="en" dir="ltr"><div class="shortdescription nomobile noexcerpt noprint searchaux" style="display:none">Number, product of consecutive integers</div> <p>A <b>pronic number</b> is a number that is the product of two consecutive <a href="/wiki/Integer" title="Integer">integers</a>, that is, a number of the form <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c10677b9ae2003260e0b597a32cfd7ff4791e012" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.602ex; height:2.843ex;" alt="{\displaystyle n(n+1)}"></span>.<sup id="cite_ref-bon_1-0" class="reference"><a href="#cite_note-bon-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> The study of these numbers dates back to <a href="/wiki/Aristotle" title="Aristotle">Aristotle</a>. They are also called <b>oblong numbers</b>, <b>heteromecic numbers</b>,<sup id="cite_ref-knorr_2-0" class="reference"><a href="#cite_note-knorr-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> or <b>rectangular numbers</b>;<sup id="cite_ref-hist_3-0" class="reference"><a href="#cite_note-hist-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> however, the term "rectangular number" has also been applied to the <a href="/wiki/Composite_number" title="Composite number">composite numbers</a>.<sup id="cite_ref-4" class="reference"><a href="#cite_note-4"><span class="cite-bracket">[</span>4<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-5" class="reference"><a href="#cite_note-5"><span class="cite-bracket">[</span>5<span class="cite-bracket">]</span></a></sup> </p><p>The first few pronic numbers are: </p> <dl><dd><a href="/wiki/0_(number)" class="mw-redirect" title="0 (number)">0</a>, <a href="/wiki/2_(number)" class="mw-redirect" title="2 (number)">2</a>, <a href="/wiki/6_(number)" class="mw-redirect" title="6 (number)">6</a>, <a href="/wiki/12_(number)" title="12 (number)">12</a>, <a href="/wiki/20_(number)" title="20 (number)">20</a>, <a href="/wiki/30_(number)" title="30 (number)">30</a>, <a href="/wiki/42_(number)" title="42 (number)">42</a>, <a href="/wiki/56_(number)" title="56 (number)">56</a>, <a href="/wiki/72_(number)" title="72 (number)">72</a>, <a href="/wiki/90_(number)" title="90 (number)">90</a>, <a href="/wiki/110_(number)" title="110 (number)">110</a>, <a href="/wiki/132_(number)" title="132 (number)">132</a>, 156, 182, 210, 240, 272, 306, 342, 380, <a href="/wiki/420_(number)" title="420 (number)">420</a>, 462 … (sequence <span class="nowrap external"><a href="//oeis.org/A002378" class="extiw" title="oeis:A002378">A002378</a></span> in the <a href="/wiki/On-Line_Encyclopedia_of_Integer_Sequences" title="On-Line Encyclopedia of Integer Sequences">OEIS</a>).</dd></dl> <p>Letting <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5949c8b1de44005a1af3a11188361f2a830842d1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:2.711ex; height:2.509ex;" alt="{\displaystyle P_{n}}"></span> denote the pronic number <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n(n+1)}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n(n+1)}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c10677b9ae2003260e0b597a32cfd7ff4791e012" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:8.602ex; height:2.843ex;" alt="{\displaystyle n(n+1)}"></span>, we have <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle P_{{-}n}=P_{n{-}1}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mi>n</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>P</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mo>−<!-- − --></mo> </mrow> <mn>1</mn> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle P_{{-}n}=P_{n{-}1}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5ef7f6c025b0b6e5b5d855e4597dc09e45834de1" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.671ex; width:11.899ex; height:2.509ex;" alt="{\displaystyle P_{{-}n}=P_{n{-}1}}"></span>. Therefore, in discussing pronic numbers, we may assume that <span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n\geq 0}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mi>n</mi> <mo>≥<!-- ≥ --></mo> <mn>0</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n\geq 0}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/ce8a1b7b3bc3c790054d93629fc3b08cd1da1fd0" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.505ex; width:5.656ex; height:2.343ex;" alt="{\displaystyle n\geq 0}"></span> <a href="/wiki/Without_loss_of_generality" title="Without loss of generality">without loss of generality</a>, a convention that is adopted in the following sections. </p> <meta property="mw:PageProp/toc" /> <div class="mw-heading mw-heading2"><h2 id="As_figurate_numbers">As figurate numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Pronic_number&action=edit&section=1" title="Edit section: As figurate numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Illustration_of_Triangular_Number_T_4_Leading_to_a_Rectangle.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/0/0e/Illustration_of_Triangular_Number_T_4_Leading_to_a_Rectangle.png" decoding="async" width="125" height="100" class="mw-file-element" data-file-width="125" data-file-height="100" /></a><figcaption>Twice a triangular number is a pronic number</figcaption></figure> <figure class="mw-default-size" typeof="mw:File/Thumb"><a href="/wiki/File:Illustration_that_pronic_number_is_n%5E2%2Bn.png" class="mw-file-description"><img src="//upload.wikimedia.org/wikipedia/commons/c/cd/Illustration_that_pronic_number_is_n%5E2%2Bn.png" decoding="async" width="125" height="100" class="mw-file-element" data-file-width="125" data-file-height="100" /></a><figcaption>The <span class="texhtml mvar" style="font-style:italic;">n</span>th pronic number is <span class="texhtml mvar" style="font-style:italic;">n</span> more than the <span class="texhtml mvar" style="font-style:italic;">n</span>th <a href="/wiki/Square_number" title="Square number">square number</a></figcaption></figure> <p>The pronic numbers were studied as <a href="/wiki/Figurate_number" title="Figurate number">figurate numbers</a> alongside the <a href="/wiki/Triangular_number" title="Triangular number">triangular numbers</a> and <a href="/wiki/Square_number" title="Square number">square numbers</a> in <a href="/wiki/Aristotle" title="Aristotle">Aristotle</a>'s <i><a href="/wiki/Metaphysics_(Aristotle)" title="Metaphysics (Aristotle)">Metaphysics</a></i>,<sup id="cite_ref-knorr_2-1" class="reference"><a href="#cite_note-knorr-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> and their discovery has been attributed much earlier to the <a href="/wiki/Pythagoreans" class="mw-redirect" title="Pythagoreans">Pythagoreans</a>.<sup id="cite_ref-hist_3-1" class="reference"><a href="#cite_note-hist-3"><span class="cite-bracket">[</span>3<span class="cite-bracket">]</span></a></sup> As a kind of figurate number, the pronic numbers are sometimes called <i>oblong</i><sup id="cite_ref-knorr_2-2" class="reference"><a href="#cite_note-knorr-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> because they are analogous to <a href="/wiki/Polygonal_number" title="Polygonal number">polygonal numbers</a> in this way:<sup id="cite_ref-bon_1-1" class="reference"><a href="#cite_note-bon-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><table style="text-align: center"> <tbody><tr valign="bottom"> <td style="padding: 0 1em"><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> </td> <td style="padding: 0 1em"><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> </td> <td style="padding: 0 1em"><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> </td> <td style="padding: 0 1em"><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span><br /><span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> <span typeof="mw:File"><a href="/wiki/File:GrayDot.svg" class="mw-file-description" title="*"><img alt="*" src="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/16px-GrayDot.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/24px-GrayDot.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/f/fe/GrayDot.svg/32px-GrayDot.svg.png 2x" data-file-width="20" data-file-height="20" /></a></span> </td></tr> <tr> <td>1 × 2</td> <td>2 × 3</td> <td>3 × 4</td> <td>4 × 5 </td></tr></tbody></table></dd></dl> <p>The <span class="texhtml mvar" style="font-style:italic;">n</span>th pronic number is the sum of the first <span class="texhtml mvar" style="font-style:italic;">n</span> <a href="/wiki/Even_and_odd_numbers" class="mw-redirect" title="Even and odd numbers">even</a> integers, and as such is twice the <span class="texhtml mvar" style="font-style:italic;">n</span>th triangular number<sup id="cite_ref-bon_1-2" class="reference"><a href="#cite_note-bon-1"><span class="cite-bracket">[</span>1<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-knorr_2-3" class="reference"><a href="#cite_note-knorr-2"><span class="cite-bracket">[</span>2<span class="cite-bracket">]</span></a></sup> and <span class="texhtml mvar" style="font-style:italic;">n</span> more than the <span class="texhtml mvar" style="font-style:italic;">n</span>th <a href="/wiki/Square_number" title="Square number">square number</a>, as given by the alternative formula <span class="texhtml"><i>n</i><sup>2</sup> + <i>n</i></span> for pronic numbers. Hence the <span class="texhtml mvar" style="font-style:italic;">n</span>th pronic number and the <span class="texhtml mvar" style="font-style:italic;">n</span>th square number (the sum of the <a href="/wiki/Square_number#Properties" title="Square number">first <span class="texhtml mvar" style="font-style:italic;">n</span> odd integers</a>) form a <a href="/wiki/Superparticular_ratio" title="Superparticular ratio">superparticular ratio</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n(n+1)}{n^{2}}}={\frac {n+1}{n}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>n</mi> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n(n+1)}{n^{2}}}={\frac {n+1}{n}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/5bebf2406e579fcff2c440f8a55e02e2bf4386b3" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -2.171ex; width:18.77ex; height:6.009ex;" alt="{\displaystyle {\frac {n(n+1)}{n^{2}}}={\frac {n+1}{n}}}"></span></dd></dl> <p>Due to this ratio, the <span class="texhtml mvar" style="font-style:italic;">n</span>th pronic number is at a <a class="mw-selflink-fragment" href="#Additional_properties">radius</a> of <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml mvar" style="font-style:italic;">n</span> + 1 from a perfect square, and the <span class="texhtml mvar" style="font-style:italic;">n</span>th perfect square is at a radius of <span class="texhtml mvar" style="font-style:italic;">n</span> from a pronic number. The <span class="texhtml mvar" style="font-style:italic;">n</span>th pronic number is also the difference between the <a href="/wiki/Even_and_odd_numbers" class="mw-redirect" title="Even and odd numbers">odd square</a> <span class="texhtml">(2<i>n</i> + 1)<sup>2</sup></span> and the <span class="texhtml">(<i>n</i>+1)</span>st <a href="/wiki/Centered_hexagonal_number" title="Centered hexagonal number">centered hexagonal number</a>. </p><p>Since the number of off-diagonal entries in a <a href="/wiki/Square_matrix" title="Square matrix">square matrix</a> is twice a triangular number, it is a pronic number.<sup id="cite_ref-6" class="reference"><a href="#cite_note-6"><span class="cite-bracket">[</span>6<span class="cite-bracket">]</span></a></sup> </p> <div class="mw-heading mw-heading2"><h2 id="Sum_of_pronic_numbers">Sum of pronic numbers</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Pronic_number&action=edit&section=2" title="Edit section: Sum of pronic numbers"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>The partial sum of the first <span class="texhtml mvar" style="font-style:italic;">n</span> positive pronic numbers is twice the value of the <span class="texhtml mvar" style="font-style:italic;">n</span>th <a href="/wiki/Tetrahedral_number" title="Tetrahedral number">tetrahedral number</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{k=1}^{n}k(k+1)={\frac {n(n+1)(n+2)}{3}}=2T_{n}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mi>k</mi> <mo stretchy="false">(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mn>3</mn> </mfrac> </mrow> <mo>=</mo> <mn>2</mn> <msub> <mi>T</mi> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </msub> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{k=1}^{n}k(k+1)={\frac {n(n+1)(n+2)}{3}}=2T_{n}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/a9fe5261ebfb7fb8fcb8e8d6a9fd18249736d87d" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:38.557ex; height:6.843ex;" alt="{\displaystyle \sum _{k=1}^{n}k(k+1)={\frac {n(n+1)(n+2)}{3}}=2T_{n}}"></span>.</dd></dl> <p>The sum of the reciprocals of the positive pronic numbers (excluding 0) is a <a href="/wiki/Telescoping_series" title="Telescoping series">telescoping series</a> that sums to 1:<sup id="cite_ref-telescope_7-0" class="reference"><a href="#cite_note-telescope-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{\infty }{\frac {1}{i(i+1)}}={\frac {1}{2}}+{\frac {1}{6}}+{\frac {1}{12}}+{\frac {1}{20}}\cdots =1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>i</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>20</mn> </mfrac> </mrow> <mo>⋯<!-- ⋯ --></mo> <mo>=</mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{\infty }{\frac {1}{i(i+1)}}={\frac {1}{2}}+{\frac {1}{6}}+{\frac {1}{12}}+{\frac {1}{20}}\cdots =1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/295fb960f92d9795198dc7e0e5f47a9756408b08" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:41.305ex; height:6.843ex;" alt="{\displaystyle \sum _{i=1}^{\infty }{\frac {1}{i(i+1)}}={\frac {1}{2}}+{\frac {1}{6}}+{\frac {1}{12}}+{\frac {1}{20}}\cdots =1}"></span>.</dd></dl> <p>The <a href="/wiki/Partial_sum" class="mw-redirect" title="Partial sum">partial sum</a> of the first <span class="texhtml mvar" style="font-style:italic;">n</span> terms in this series is<sup id="cite_ref-telescope_7-1" class="reference"><a href="#cite_note-telescope-7"><span class="cite-bracket">[</span>7<span class="cite-bracket">]</span></a></sup> </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{n}{\frac {1}{i(i+1)}}={\frac {n}{n+1}}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi>n</mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mrow> <mi>i</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mi>n</mi> <mrow> <mi>n</mi> <mo>+</mo> <mn>1</mn> </mrow> </mfrac> </mrow> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{n}{\frac {1}{i(i+1)}}={\frac {n}{n+1}}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/042dca4ef3ad4cb2ef047f7fa22ab63f42d70d96" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:21.327ex; height:6.843ex;" alt="{\displaystyle \sum _{i=1}^{n}{\frac {1}{i(i+1)}}={\frac {n}{n+1}}}"></span>.</dd></dl> <p>The alternating sum of the reciprocals of the positive pronic numbers (excluding 0) is a <a href="/wiki/Convergent_series" title="Convergent series">convergent series</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \sum _{i=1}^{\infty }{\frac {(-1)^{i+1}}{i(i+1)}}={\frac {1}{2}}-{\frac {1}{6}}+{\frac {1}{12}}-{\frac {1}{20}}\cdots =\log(4)-1}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <munderover> <mo>∑<!-- ∑ --></mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow class="MJX-TeXAtom-ORD"> <mi mathvariant="normal">∞<!-- ∞ --></mi> </mrow> </munderover> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mo stretchy="false">(</mo> <mo>−<!-- − --></mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mi>i</mi> <mo>+</mo> <mn>1</mn> </mrow> </msup> </mrow> <mrow> <mi>i</mi> <mo stretchy="false">(</mo> <mi>i</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </mfrac> </mrow> <mo>=</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>6</mn> </mfrac> </mrow> <mo>+</mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>12</mn> </mfrac> </mrow> <mo>−<!-- − --></mo> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mn>1</mn> <mn>20</mn> </mfrac> </mrow> <mo>⋯<!-- ⋯ --></mo> <mo>=</mo> <mi>log</mi> <mo>⁡<!-- --></mo> <mo stretchy="false">(</mo> <mn>4</mn> <mo stretchy="false">)</mo> <mo>−<!-- − --></mo> <mn>1</mn> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \sum _{i=1}^{\infty }{\frac {(-1)^{i+1}}{i(i+1)}}={\frac {1}{2}}-{\frac {1}{6}}+{\frac {1}{12}}-{\frac {1}{20}}\cdots =\log(4)-1}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/f530eda43fd24c0457a2dd2c31764773b1f3872c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -3.005ex; width:50.352ex; height:7.009ex;" alt="{\displaystyle \sum _{i=1}^{\infty }{\frac {(-1)^{i+1}}{i(i+1)}}={\frac {1}{2}}-{\frac {1}{6}}+{\frac {1}{12}}-{\frac {1}{20}}\cdots =\log(4)-1}"></span>.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="Additional_properties">Additional properties</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Pronic_number&action=edit&section=3" title="Edit section: Additional properties"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <p>Pronic numbers are even, and 2 is the only <a href="/wiki/Prime_number" title="Prime number">prime</a> pronic number. It is also the only pronic number in the <a href="/wiki/Fibonacci_number" class="mw-redirect" title="Fibonacci number">Fibonacci sequence</a> and the only pronic <a href="/wiki/Lucas_number" title="Lucas number">Lucas number</a>.<sup id="cite_ref-8" class="reference"><a href="#cite_note-8"><span class="cite-bracket">[</span>8<span class="cite-bracket">]</span></a></sup><sup id="cite_ref-9" class="reference"><a href="#cite_note-9"><span class="cite-bracket">[</span>9<span class="cite-bracket">]</span></a></sup> </p><p>The <a href="/wiki/Arithmetic_mean" title="Arithmetic mean">arithmetic mean</a> of two consecutive pronic numbers is a <a href="/wiki/Square_number" title="Square number">square number</a>: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle {\frac {n(n+1)+(n+1)(n+2)}{2}}=(n+1)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mrow class="MJX-TeXAtom-ORD"> <mfrac> <mrow> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> </mrow> <mn>2</mn> </mfrac> </mrow> <mo>=</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle {\frac {n(n+1)+(n+1)(n+2)}{2}}=(n+1)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/83717ef05699e7b153400a60060cdf1eddc1896c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.838ex; width:38.051ex; height:5.676ex;" alt="{\displaystyle {\frac {n(n+1)+(n+1)(n+2)}{2}}=(n+1)^{2}}"></span></dd></dl> <p>So there is a square between any two consecutive pronic numbers. It is unique, since </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle n^{2}\leq n(n+1)<(n+1)^{2}<(n+1)(n+2)<(n+2)^{2}.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>≤<!-- ≤ --></mo> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo><</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo><</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <mo stretchy="false">)</mo> <mo><</mo> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>2</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle n^{2}\leq n(n+1)<(n+1)^{2}<(n+1)(n+2)<(n+2)^{2}.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/c84d89dba9bf92a977fdcc1e890db764ca57c361" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:55.027ex; height:3.176ex;" alt="{\displaystyle n^{2}\leq n(n+1)<(n+1)^{2}<(n+1)(n+2)<(n+2)^{2}.}"></span></dd></dl> <p>Another consequence of this chain of inequalities is the following property. If <span class="texhtml mvar" style="font-style:italic;">m</span> is a pronic number, then the following holds: </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle \lfloor {\sqrt {m}}\rfloor \cdot \lceil {\sqrt {m}}\rceil =m.}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mo fence="false" stretchy="false">⌊<!-- ⌊ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>m</mi> </msqrt> </mrow> <mo fence="false" stretchy="false">⌋<!-- ⌋ --></mo> <mo>⋅<!-- ⋅ --></mo> <mo fence="false" stretchy="false">⌈<!-- ⌈ --></mo> <mrow class="MJX-TeXAtom-ORD"> <msqrt> <mi>m</mi> </msqrt> </mrow> <mo fence="false" stretchy="false">⌉<!-- ⌉ --></mo> <mo>=</mo> <mi>m</mi> <mo>.</mo> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle \lfloor {\sqrt {m}}\rfloor \cdot \lceil {\sqrt {m}}\rceil =m.}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/0db418c4a25c30e946b378fd07dbb487ff94eb74" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -1.005ex; width:19.547ex; height:3.009ex;" alt="{\displaystyle \lfloor {\sqrt {m}}\rfloor \cdot \lceil {\sqrt {m}}\rceil =m.}"></span></dd></dl> <p>The fact that consecutive integers are <a href="/wiki/Coprime" class="mw-redirect" title="Coprime">coprime</a> and that a pronic number is the product of two consecutive integers leads to a number of properties. Each distinct prime factor of a pronic number is present in only one of the factors <span class="texhtml mvar" style="font-style:italic;">n</span> or <span class="texhtml"><i>n</i> + 1</span>. Thus a pronic number is <a href="/wiki/Square-free_integer" title="Square-free integer">squarefree</a> if and only if <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml"><i>n</i> + 1</span> are also squarefree. The number of distinct prime factors of a pronic number is the sum of the number of distinct prime factors of <span class="texhtml mvar" style="font-style:italic;">n</span> and <span class="texhtml"><i>n</i> + 1</span>. </p><p>If 25 is appended to the <a href="/wiki/Decimal_representation" title="Decimal representation">decimal representation</a> of any pronic number, the result is a square number, the square of a number ending on 5; for example, 625 = 25<sup>2</sup> and 1225 = 35<sup>2</sup>. This is so because </p> <dl><dd><span class="mwe-math-element"><span class="mwe-math-mathml-inline mwe-math-mathml-a11y" style="display: none;"><math xmlns="http://www.w3.org/1998/Math/MathML" alttext="{\displaystyle 100n(n+1)+25=100n^{2}+100n+25=(10n+5)^{2}}"> <semantics> <mrow class="MJX-TeXAtom-ORD"> <mstyle displaystyle="true" scriptlevel="0"> <mn>100</mn> <mi>n</mi> <mo stretchy="false">(</mo> <mi>n</mi> <mo>+</mo> <mn>1</mn> <mo stretchy="false">)</mo> <mo>+</mo> <mn>25</mn> <mo>=</mo> <mn>100</mn> <msup> <mi>n</mi> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> <mo>+</mo> <mn>100</mn> <mi>n</mi> <mo>+</mo> <mn>25</mn> <mo>=</mo> <mo stretchy="false">(</mo> <mn>10</mn> <mi>n</mi> <mo>+</mo> <mn>5</mn> <msup> <mo stretchy="false">)</mo> <mrow class="MJX-TeXAtom-ORD"> <mn>2</mn> </mrow> </msup> </mstyle> </mrow> <annotation encoding="application/x-tex">{\displaystyle 100n(n+1)+25=100n^{2}+100n+25=(10n+5)^{2}}</annotation> </semantics> </math></span><img src="https://wikimedia.org/api/rest_v1/media/math/render/svg/b150b5ec84072def017422eb746148f1fc5c500c" class="mwe-math-fallback-image-inline mw-invert skin-invert" aria-hidden="true" style="vertical-align: -0.838ex; width:52.861ex; height:3.176ex;" alt="{\displaystyle 100n(n+1)+25=100n^{2}+100n+25=(10n+5)^{2}}"></span>.</dd></dl> <div class="mw-heading mw-heading2"><h2 id="References">References</h2><span class="mw-editsection"><span class="mw-editsection-bracket">[</span><a href="/w/index.php?title=Pronic_number&action=edit&section=4" title="Edit section: References"><span>edit</span></a><span class="mw-editsection-bracket">]</span></span></div> <style data-mw-deduplicate="TemplateStyles:r1239543626">.mw-parser-output .reflist{margin-bottom:0.5em;list-style-type:decimal}@media screen{.mw-parser-output .reflist{font-size:90%}}.mw-parser-output .reflist .references{font-size:100%;margin-bottom:0;list-style-type:inherit}.mw-parser-output .reflist-columns-2{column-width:30em}.mw-parser-output .reflist-columns-3{column-width:25em}.mw-parser-output .reflist-columns{margin-top:0.3em}.mw-parser-output .reflist-columns ol{margin-top:0}.mw-parser-output .reflist-columns li{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .reflist-upper-alpha{list-style-type:upper-alpha}.mw-parser-output .reflist-upper-roman{list-style-type:upper-roman}.mw-parser-output .reflist-lower-alpha{list-style-type:lower-alpha}.mw-parser-output .reflist-lower-greek{list-style-type:lower-greek}.mw-parser-output .reflist-lower-roman{list-style-type:lower-roman}</style><div class="reflist reflist-columns references-column-width" style="column-width: 30em;"> <ol class="references"> <li id="cite_note-bon-1"><span class="mw-cite-backlink">^ <a href="#cite_ref-bon_1-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-bon_1-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-bon_1-2"><sup><i><b>c</b></i></sup></a></span> <span class="reference-text"><style data-mw-deduplicate="TemplateStyles:r1238218222">.mw-parser-output cite.citation{font-style:inherit;word-wrap:break-word}.mw-parser-output .citation q{quotes:"\"""\"""'""'"}.mw-parser-output .citation:target{background-color:rgba(0,127,255,0.133)}.mw-parser-output .id-lock-free.id-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/6/65/Lock-green.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-limited.id-lock-limited a,.mw-parser-output .id-lock-registration.id-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/d/d6/Lock-gray-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .id-lock-subscription.id-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/a/aa/Lock-red-alt-2.svg")right 0.1em center/9px no-repeat}.mw-parser-output .cs1-ws-icon a{background:url("//upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg")right 0.1em center/12px no-repeat}body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-free a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-limited a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-registration a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .id-lock-subscription a,body:not(.skin-timeless):not(.skin-minerva) .mw-parser-output .cs1-ws-icon a{background-size:contain;padding:0 1em 0 0}.mw-parser-output .cs1-code{color:inherit;background:inherit;border:none;padding:inherit}.mw-parser-output .cs1-hidden-error{display:none;color:var(--color-error,#d33)}.mw-parser-output .cs1-visible-error{color:var(--color-error,#d33)}.mw-parser-output .cs1-maint{display:none;color:#085;margin-left:0.3em}.mw-parser-output .cs1-kern-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right{padding-right:0.2em}.mw-parser-output .citation .mw-selflink{font-weight:inherit}@media screen{.mw-parser-output .cs1-format{font-size:95%}html.skin-theme-clientpref-night .mw-parser-output .cs1-maint{color:#18911f}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .cs1-maint{color:#18911f}}</style><cite id="CITEREFConwayGuy1996" class="citation cs2"><a href="/wiki/John_H._Conway" class="mw-redirect" title="John H. Conway">Conway, J. H.</a>; <a href="/wiki/Richard_K._Guy" title="Richard K. Guy">Guy, R. K.</a> (1996), <i>The Book of Numbers</i>, New York: Copernicus, Figure 2.15, p. 34</cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+Book+of+Numbers&rft.place=New+York&rft.pages=Figure+2.15%2C+p.-34&rft.pub=Copernicus&rft.date=1996&rft.aulast=Conway&rft.aufirst=J.+H.&rft.au=Guy%2C+R.+K.&rfr_id=info%3Asid%2Fen.wikipedia.org%3APronic+number" class="Z3988"></span>.</span> </li> <li id="cite_note-knorr-2"><span class="mw-cite-backlink">^ <a href="#cite_ref-knorr_2-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-knorr_2-1"><sup><i><b>b</b></i></sup></a> <a href="#cite_ref-knorr_2-2"><sup><i><b>c</b></i></sup></a> <a href="#cite_ref-knorr_2-3"><sup><i><b>d</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFKnorr1975" class="citation cs2"><a href="/wiki/Wilbur_Knorr" title="Wilbur Knorr">Knorr, Wilbur Richard</a> (1975), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=_1H6BwAAQBAJ&pg=PA144"><i>The evolution of the Euclidean elements</i></a>, Dordrecht-Boston, Mass.: D. Reidel Publishing Co., pp. 144–150, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/90-277-0509-7" title="Special:BookSources/90-277-0509-7"><bdi>90-277-0509-7</bdi></a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=0472300">0472300</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=The+evolution+of+the+Euclidean+elements&rft.place=Dordrecht-Boston%2C+Mass.&rft.pages=144-150&rft.pub=D.+Reidel+Publishing+Co.&rft.date=1975&rft.isbn=90-277-0509-7&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D0472300%23id-name%3DMR&rft.aulast=Knorr&rft.aufirst=Wilbur+Richard&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D_1H6BwAAQBAJ%26pg%3DPA144&rfr_id=info%3Asid%2Fen.wikipedia.org%3APronic+number" class="Z3988"></span>.</span> </li> <li id="cite_note-hist-3"><span class="mw-cite-backlink">^ <a href="#cite_ref-hist_3-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-hist_3-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFBen-Menahem2009" class="citation cs2">Ben-Menahem, Ari (2009), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=9tUrarQYhKMC&pg=PA161"><i>Historical Encyclopedia of Natural and Mathematical Sciences, Volume 1</i></a>, Springer reference, Springer-Verlag, p. 161, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9783540688310" title="Special:BookSources/9783540688310"><bdi>9783540688310</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Historical+Encyclopedia+of+Natural+and+Mathematical+Sciences%2C+Volume+1&rft.series=Springer+reference&rft.pages=161&rft.pub=Springer-Verlag&rft.date=2009&rft.isbn=9783540688310&rft.aulast=Ben-Menahem&rft.aufirst=Ari&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3D9tUrarQYhKMC%26pg%3DPA161&rfr_id=info%3Asid%2Fen.wikipedia.org%3APronic+number" class="Z3988"></span>.</span> </li> <li id="cite_note-4"><span class="mw-cite-backlink"><b><a href="#cite_ref-4">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite class="citation cs2"><a rel="nofollow" class="external text" href="https://www.perseus.tufts.edu/hopper/text?doc=Perseus:text:2008.01.0238:section=42">"Plutarch, De Iside et Osiride, section 42"</a>, <i>www.perseus.tufts.edu</i><span class="reference-accessdate">, retrieved <span class="nowrap">16 April</span> 2018</span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=www.perseus.tufts.edu&rft.atitle=Plutarch%2C+De+Iside+et+Osiride%2C+section+42&rft_id=https%3A%2F%2Fwww.perseus.tufts.edu%2Fhopper%2Ftext%3Fdoc%3DPerseus%3Atext%3A2008.01.0238%3Asection%3D42&rfr_id=info%3Asid%2Fen.wikipedia.org%3APronic+number" class="Z3988"></span></span> </li> <li id="cite_note-5"><span class="mw-cite-backlink"><b><a href="#cite_ref-5">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFHiggins2008" class="citation cs2">Higgins, Peter Michael (2008), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=HcIwkWXy3CwC&pg=PA9"><i>Number Story: From Counting to Cryptography</i></a>, Copernicus Books, p. 9, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9781848000018" title="Special:BookSources/9781848000018"><bdi>9781848000018</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Number+Story%3A+From+Counting+to+Cryptography&rft.pages=9&rft.pub=Copernicus+Books&rft.date=2008&rft.isbn=9781848000018&rft.aulast=Higgins&rft.aufirst=Peter+Michael&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DHcIwkWXy3CwC%26pg%3DPA9&rfr_id=info%3Asid%2Fen.wikipedia.org%3APronic+number" class="Z3988"></span>.</span> </li> <li id="cite_note-6"><span class="mw-cite-backlink"><b><a href="#cite_ref-6">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFRummel1988" class="citation cs2">Rummel, Rudolf J. (1988), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=g_eNa_XzyEIC&pg=PA319"><i>Applied Factor Analysis</i></a>, Northwestern University Press, p. 319, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780810108240" title="Special:BookSources/9780810108240"><bdi>9780810108240</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=book&rft.btitle=Applied+Factor+Analysis&rft.pages=319&rft.pub=Northwestern+University+Press&rft.date=1988&rft.isbn=9780810108240&rft.aulast=Rummel&rft.aufirst=Rudolf+J.&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3Dg_eNa_XzyEIC%26pg%3DPA319&rfr_id=info%3Asid%2Fen.wikipedia.org%3APronic+number" class="Z3988"></span>.</span> </li> <li id="cite_note-telescope-7"><span class="mw-cite-backlink">^ <a href="#cite_ref-telescope_7-0"><sup><i><b>a</b></i></sup></a> <a href="#cite_ref-telescope_7-1"><sup><i><b>b</b></i></sup></a></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFFrantz2010" class="citation cs2">Frantz, Marc (2010), <a rel="nofollow" class="external text" href="https://books.google.com/books?id=SHJ39945R1kC&pg=PA467">"The telescoping series in perspective"</a>, in <a href="/wiki/Caren_Diefenderfer" title="Caren Diefenderfer">Diefenderfer, Caren L.</a>; Nelsen, Roger B. (eds.), <i>The Calculus Collection: A Resource for AP and Beyond</i>, Classroom Resource Materials, Mathematical Association of America, pp. 467–468, <a href="/wiki/ISBN_(identifier)" class="mw-redirect" title="ISBN (identifier)">ISBN</a> <a href="/wiki/Special:BookSources/9780883857618" title="Special:BookSources/9780883857618"><bdi>9780883857618</bdi></a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.atitle=The+telescoping+series+in+perspective&rft.btitle=The+Calculus+Collection%3A+A+Resource+for+AP+and+Beyond&rft.series=Classroom+Resource+Materials&rft.pages=467-468&rft.pub=Mathematical+Association+of+America&rft.date=2010&rft.isbn=9780883857618&rft.aulast=Frantz&rft.aufirst=Marc&rft_id=https%3A%2F%2Fbooks.google.com%2Fbooks%3Fid%3DSHJ39945R1kC%26pg%3DPA467&rfr_id=info%3Asid%2Fen.wikipedia.org%3APronic+number" class="Z3988"></span>.</span> </li> <li id="cite_note-8"><span class="mw-cite-backlink"><b><a href="#cite_ref-8">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcDaniel1998" class="citation cs2">McDaniel, Wayne L. (1998), <a rel="nofollow" class="external text" href="https://web.archive.org/web/20170705130526/http://www.mathstat.dal.ca/FQ/Scanned/36-1/mcdaniel2.pdf">"Pronic Lucas numbers"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Fibonacci_Quarterly" title="Fibonacci Quarterly">Fibonacci Quarterly</a></i>, <b>36</b> (1): 60–62, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00150517.1998.12428962">10.1080/00150517.1998.12428962</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1605345">1605345</a>, archived from <a rel="nofollow" class="external text" href="http://www.mathstat.dal.ca/FQ/Scanned/36-1/mcdaniel2.pdf">the original</a> <span class="cs1-format">(PDF)</span> on 2017-07-05<span class="reference-accessdate">, retrieved <span class="nowrap">2011-05-21</span></span></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fibonacci+Quarterly&rft.atitle=Pronic+Lucas+numbers&rft.volume=36&rft.issue=1&rft.pages=60-62&rft.date=1998&rft_id=info%3Adoi%2F10.1080%2F00150517.1998.12428962&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1605345%23id-name%3DMR&rft.aulast=McDaniel&rft.aufirst=Wayne+L.&rft_id=http%3A%2F%2Fwww.mathstat.dal.ca%2FFQ%2FScanned%2F36-1%2Fmcdaniel2.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APronic+number" class="Z3988"></span>.</span> </li> <li id="cite_note-9"><span class="mw-cite-backlink"><b><a href="#cite_ref-9">^</a></b></span> <span class="reference-text"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1238218222"><cite id="CITEREFMcDaniel1998" class="citation cs2">McDaniel, Wayne L. (1998), <a rel="nofollow" class="external text" href="http://www.fq.math.ca/Scanned/36-1/mcdaniel1.pdf">"Pronic Fibonacci numbers"</a> <span class="cs1-format">(PDF)</span>, <i><a href="/wiki/Fibonacci_Quarterly" title="Fibonacci Quarterly">Fibonacci Quarterly</a></i>, <b>36</b> (1): 56–59, <a href="/wiki/Doi_(identifier)" class="mw-redirect" title="Doi (identifier)">doi</a>:<a rel="nofollow" class="external text" href="https://doi.org/10.1080%2F00150517.1998.12428961">10.1080/00150517.1998.12428961</a>, <a href="/wiki/MR_(identifier)" class="mw-redirect" title="MR (identifier)">MR</a> <a rel="nofollow" class="external text" href="https://mathscinet.ams.org/mathscinet-getitem?mr=1605341">1605341</a></cite><span title="ctx_ver=Z39.88-2004&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.jtitle=Fibonacci+Quarterly&rft.atitle=Pronic+Fibonacci+numbers&rft.volume=36&rft.issue=1&rft.pages=56-59&rft.date=1998&rft_id=info%3Adoi%2F10.1080%2F00150517.1998.12428961&rft_id=https%3A%2F%2Fmathscinet.ams.org%2Fmathscinet-getitem%3Fmr%3D1605341%23id-name%3DMR&rft.aulast=McDaniel&rft.aufirst=Wayne+L.&rft_id=http%3A%2F%2Fwww.fq.math.ca%2FScanned%2F36-1%2Fmcdaniel1.pdf&rfr_id=info%3Asid%2Fen.wikipedia.org%3APronic+number" class="Z3988"></span>.</span> </li> </ol></div> <div class="navbox-styles"><style data-mw-deduplicate="TemplateStyles:r1129693374">.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}</style><style data-mw-deduplicate="TemplateStyles:r1236075235">.mw-parser-output .navbox{box-sizing:border-box;border:1px solid #a2a9b1;width:100%;clear:both;font-size:88%;text-align:center;padding:1px;margin:1em auto 0}.mw-parser-output .navbox .navbox{margin-top:0}.mw-parser-output .navbox+.navbox,.mw-parser-output .navbox+.navbox-styles+.navbox{margin-top:-1px}.mw-parser-output .navbox-inner,.mw-parser-output .navbox-subgroup{width:100%}.mw-parser-output .navbox-group,.mw-parser-output .navbox-title,.mw-parser-output .navbox-abovebelow{padding:0.25em 1em;line-height:1.5em;text-align:center}.mw-parser-output .navbox-group{white-space:nowrap;text-align:right}.mw-parser-output .navbox,.mw-parser-output .navbox-subgroup{background-color:#fdfdfd}.mw-parser-output .navbox-list{line-height:1.5em;border-color:#fdfdfd}.mw-parser-output .navbox-list-with-group{text-align:left;border-left-width:2px;border-left-style:solid}.mw-parser-output tr+tr>.navbox-abovebelow,.mw-parser-output tr+tr>.navbox-group,.mw-parser-output tr+tr>.navbox-image,.mw-parser-output tr+tr>.navbox-list{border-top:2px solid #fdfdfd}.mw-parser-output .navbox-title{background-color:#ccf}.mw-parser-output .navbox-abovebelow,.mw-parser-output .navbox-group,.mw-parser-output .navbox-subgroup .navbox-title{background-color:#ddf}.mw-parser-output .navbox-subgroup .navbox-group,.mw-parser-output .navbox-subgroup .navbox-abovebelow{background-color:#e6e6ff}.mw-parser-output .navbox-even{background-color:#f7f7f7}.mw-parser-output .navbox-odd{background-color:transparent}.mw-parser-output .navbox .hlist td dl,.mw-parser-output .navbox .hlist td ol,.mw-parser-output .navbox .hlist td ul,.mw-parser-output .navbox td.hlist dl,.mw-parser-output .navbox td.hlist ol,.mw-parser-output .navbox td.hlist ul{padding:0.125em 0}.mw-parser-output .navbox .navbar{display:block;font-size:100%}.mw-parser-output .navbox-title .navbar{float:left;text-align:left;margin-right:0.5em}body.skin--responsive .mw-parser-output .navbox-image img{max-width:none!important}@media print{body.ns-0 .mw-parser-output .navbox{display:none!important}}</style></div><div role="navigation" class="navbox" aria-labelledby="Divisibility-based_sets_of_integers" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="3"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><style data-mw-deduplicate="TemplateStyles:r1239400231">.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em}html.skin-theme-clientpref-night .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}@media(prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output .navbar li a abbr{color:var(--color-base)!important}}@media print{.mw-parser-output .navbar{display:none!important}}</style><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Divisor_classes" title="Template:Divisor classes"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Divisor_classes" title="Template talk:Divisor classes"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Divisor_classes" title="Special:EditPage/Template:Divisor classes"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Divisibility-based_sets_of_integers" style="font-size:114%;margin:0 4em">Divisibility-based sets of integers</div></th></tr><tr><th scope="row" class="navbox-group" style="width:1%">Overview</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Integer_factorization" title="Integer factorization">Integer factorization</a></li> <li><a href="/wiki/Divisor" title="Divisor">Divisor</a></li> <li><a href="/wiki/Unitary_divisor" title="Unitary divisor">Unitary divisor</a></li> <li><a href="/wiki/Divisor_function" title="Divisor function">Divisor function</a></li> <li><a href="/wiki/Prime_factor" class="mw-redirect" title="Prime factor">Prime factor</a></li> <li><a href="/wiki/Fundamental_theorem_of_arithmetic" title="Fundamental theorem of arithmetic">Fundamental theorem of arithmetic</a></li></ul> </div></td><td class="noviewer navbox-image" rowspan="7" style="width:1px;padding:0 0 0 2px"><div><span typeof="mw:File"><a href="/wiki/File:Lattice_of_the_divisibility_of_60.svg" class="mw-file-description" title="Divisibility of 60"><img alt="Divisibility of 60" src="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Lattice_of_the_divisibility_of_60.svg/175px-Lattice_of_the_divisibility_of_60.svg.png" decoding="async" width="175" height="140" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/commons/thumb/5/51/Lattice_of_the_divisibility_of_60.svg/263px-Lattice_of_the_divisibility_of_60.svg.png 1.5x, //upload.wikimedia.org/wikipedia/commons/thumb/5/51/Lattice_of_the_divisibility_of_60.svg/350px-Lattice_of_the_divisibility_of_60.svg.png 2x" data-file-width="313" data-file-height="250" /></a></span></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Factorization forms</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Prime_number" title="Prime number">Prime</a></li> <li><a href="/wiki/Composite_number" title="Composite number">Composite</a></li> <li><a href="/wiki/Semiprime" title="Semiprime">Semiprime</a></li> <li><a class="mw-selflink selflink">Pronic</a></li> <li><a href="/wiki/Sphenic_number" title="Sphenic number">Sphenic</a></li> <li><a href="/wiki/Square-free_integer" title="Square-free integer">Square-free</a></li> <li><a href="/wiki/Powerful_number" title="Powerful number">Powerful</a></li> <li><a href="/wiki/Perfect_power" title="Perfect power">Perfect power</a></li> <li><a href="/wiki/Achilles_number" title="Achilles number">Achilles</a></li> <li><a href="/wiki/Smooth_number" title="Smooth number">Smooth</a></li> <li><a href="/wiki/Regular_number" title="Regular number">Regular</a></li> <li><a href="/wiki/Rough_number" title="Rough number">Rough</a></li> <li><a href="/wiki/Unusual_number" title="Unusual number">Unusual</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Constrained divisor sums</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Perfect_number" title="Perfect number">Perfect</a></li> <li><a href="/wiki/Almost_perfect_number" title="Almost perfect number">Almost perfect</a></li> <li><a href="/wiki/Quasiperfect_number" title="Quasiperfect number">Quasiperfect</a></li> <li><a href="/wiki/Multiply_perfect_number" title="Multiply perfect number">Multiply perfect</a></li> <li><a href="/wiki/Hemiperfect_number" title="Hemiperfect number">Hemiperfect</a></li> <li><a href="/wiki/Hyperperfect_number" title="Hyperperfect number">Hyperperfect</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect</a></li> <li><a href="/wiki/Unitary_perfect_number" title="Unitary perfect number">Unitary perfect</a></li> <li><a href="/wiki/Semiperfect_number" title="Semiperfect number">Semiperfect</a></li> <li><a href="/wiki/Practical_number" title="Practical number">Practical</a></li> <li><a href="/wiki/Descartes_number" title="Descartes number">Descartes</a></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Nicolas_number" title="Erdős–Nicolas number">Erdős–Nicolas</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">With many divisors</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abundant_number" title="Abundant number">Abundant</a></li> <li><a href="/wiki/Primitive_abundant_number" title="Primitive abundant number">Primitive abundant</a></li> <li><a href="/wiki/Highly_abundant_number" title="Highly abundant number">Highly abundant</a></li> <li><a href="/wiki/Superabundant_number" title="Superabundant number">Superabundant</a></li> <li><a href="/wiki/Colossally_abundant_number" title="Colossally abundant number">Colossally abundant</a></li> <li><a href="/wiki/Highly_composite_number" title="Highly composite number">Highly composite</a></li> <li><a href="/wiki/Superior_highly_composite_number" title="Superior highly composite number">Superior highly composite</a></li> <li><a href="/wiki/Weird_number" title="Weird number">Weird</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aliquot_sequence" title="Aliquot sequence">Aliquot sequence</a>-related</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Untouchable_number" title="Untouchable number">Untouchable</a></li> <li><a href="/wiki/Amicable_numbers" title="Amicable numbers">Amicable</a> (<a href="/wiki/Amicable_triple" title="Amicable triple">Triple</a>)</li> <li><a href="/wiki/Sociable_number" title="Sociable number">Sociable</a></li> <li><a href="/wiki/Betrothed_numbers" title="Betrothed numbers">Betrothed</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Radix" title="Radix">Base</a>-dependent</th><td class="navbox-list-with-group navbox-list navbox-even hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equidigital_number" title="Equidigital number">Equidigital</a></li> <li><a href="/wiki/Extravagant_number" title="Extravagant number">Extravagant</a></li> <li><a href="/wiki/Frugal_number" title="Frugal number">Frugal</a></li> <li><a href="/wiki/Harshad_number" title="Harshad number">Harshad</a></li> <li><a href="/wiki/Polydivisible_number" title="Polydivisible number">Polydivisible</a></li> <li><a href="/wiki/Smith_number" title="Smith number">Smith</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other sets</th><td class="navbox-list-with-group navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Arithmetic_number" title="Arithmetic number">Arithmetic</a></li> <li><a href="/wiki/Deficient_number" title="Deficient number">Deficient</a></li> <li><a href="/wiki/Friendly_number" title="Friendly number">Friendly</a></li> <li><a href="/wiki/Friendly_number#Solitary_numbers" title="Friendly number">Solitary</a></li> <li><a href="/wiki/Sublime_number" title="Sublime number">Sublime</a></li> <li><a href="/wiki/Harmonic_divisor_number" title="Harmonic divisor number">Harmonic divisor</a></li> <li><a href="/wiki/Refactorable_number" title="Refactorable number">Refactorable</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect</a></li></ul> </div></td></tr></tbody></table></div> <div class="navbox-styles"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1236075235"></div><div role="navigation" class="navbox" aria-labelledby="Classes_of_natural_numbers" style="padding:3px"><table class="nowraplinks mw-collapsible mw-collapsed navbox-inner" style="border-spacing:0;background:transparent;color:inherit"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1129693374"><link rel="mw-deduplicated-inline-style" href="mw-data:TemplateStyles:r1239400231"><div class="navbar plainlinks hlist navbar-mini"><ul><li class="nv-view"><a href="/wiki/Template:Classes_of_natural_numbers" title="Template:Classes of natural numbers"><abbr title="View this template">v</abbr></a></li><li class="nv-talk"><a href="/wiki/Template_talk:Classes_of_natural_numbers" title="Template talk:Classes of natural numbers"><abbr title="Discuss this template">t</abbr></a></li><li class="nv-edit"><a href="/wiki/Special:EditPage/Template:Classes_of_natural_numbers" title="Special:EditPage/Template:Classes of natural numbers"><abbr title="Edit this template">e</abbr></a></li></ul></div><div id="Classes_of_natural_numbers" style="font-size:114%;margin:0 4em">Classes of <a href="/wiki/Natural_number" title="Natural number">natural numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Powers_and_related_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Exponentiation" title="Exponentiation">Powers</a> and related numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Achilles_number" title="Achilles number">Achilles</a></li> <li><a href="/wiki/Power_of_two" title="Power of two">Power of 2</a></li> <li><a href="/wiki/Power_of_three" title="Power of three">Power of 3</a></li> <li><a href="/wiki/Power_of_10" title="Power of 10">Power of 10</a></li> <li><a href="/wiki/Square_number" title="Square number">Square</a></li> <li><a href="/wiki/Cube_(algebra)" title="Cube (algebra)">Cube</a></li> <li><a href="/wiki/Fourth_power" title="Fourth power">Fourth power</a></li> <li><a href="/wiki/Fifth_power_(algebra)" title="Fifth power (algebra)">Fifth power</a></li> <li><a href="/wiki/Sixth_power" title="Sixth power">Sixth power</a></li> <li><a href="/wiki/Seventh_power" title="Seventh power">Seventh power</a></li> <li><a href="/wiki/Eighth_power" title="Eighth power">Eighth power</a></li> <li><a href="/wiki/Perfect_power" title="Perfect power">Perfect power</a></li> <li><a href="/wiki/Powerful_number" title="Powerful number">Powerful</a></li> <li><a href="/wiki/Prime_power" title="Prime power">Prime power</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Of_the_form_a_×_2b_±_1" style="font-size:114%;margin:0 4em">Of the form <i>a</i> × 2<sup><i>b</i></sup> ± 1</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cullen_number" title="Cullen number">Cullen</a></li> <li><a href="/wiki/Double_Mersenne_number" title="Double Mersenne number">Double Mersenne</a></li> <li><a href="/wiki/Fermat_number" title="Fermat number">Fermat</a></li> <li><a href="/wiki/Mersenne_prime" title="Mersenne prime">Mersenne</a></li> <li><a href="/wiki/Proth_number" class="mw-redirect" title="Proth number">Proth</a></li> <li><a href="/wiki/Thabit_number" title="Thabit number">Thabit</a></li> <li><a href="/wiki/Woodall_number" title="Woodall number">Woodall</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Other_polynomial_numbers" style="font-size:114%;margin:0 4em">Other polynomial numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Hilbert_number" title="Hilbert number">Hilbert</a></li> <li><a href="/wiki/Idoneal_number" title="Idoneal number">Idoneal</a></li> <li><a href="/wiki/Leyland_number" title="Leyland number">Leyland</a></li> <li><a href="/wiki/Loeschian_number" class="mw-redirect" title="Loeschian number">Loeschian</a></li> <li><a href="/wiki/Lucky_numbers_of_Euler" title="Lucky numbers of Euler">Lucky numbers of Euler</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Recursively_defined_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Recursion" title="Recursion">Recursively</a> defined numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Fibonacci_sequence" title="Fibonacci sequence">Fibonacci</a></li> <li><a href="/wiki/Jacobsthal_number" title="Jacobsthal number">Jacobsthal</a></li> <li><a href="/wiki/Leonardo_number" title="Leonardo number">Leonardo</a></li> <li><a href="/wiki/Lucas_number" title="Lucas number">Lucas</a></li> <li><a href="/wiki/Supergolden_ratio#Narayana_sequence" title="Supergolden ratio">Narayana</a></li> <li><a href="/wiki/Padovan_sequence" title="Padovan sequence">Padovan</a></li> <li><a href="/wiki/Pell_number" title="Pell number">Pell</a></li> <li><a href="/wiki/Perrin_number" title="Perrin number">Perrin</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Possessing_a_specific_set_of_other_numbers" style="font-size:114%;margin:0 4em">Possessing a specific set of other numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amenable_number" title="Amenable number">Amenable</a></li> <li><a href="/wiki/Congruent_number" title="Congruent number">Congruent</a></li> <li><a href="/wiki/Kn%C3%B6del_number" title="Knödel number">Knödel</a></li> <li><a href="/wiki/Riesel_number" title="Riesel number">Riesel</a></li> <li><a href="/wiki/Sierpi%C5%84ski_number" title="Sierpiński number">Sierpiński</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Expressible_via_specific_sums" style="font-size:114%;margin:0 4em">Expressible via specific sums</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Nonhypotenuse_number" title="Nonhypotenuse number">Nonhypotenuse</a></li> <li><a href="/wiki/Polite_number" title="Polite number">Polite</a></li> <li><a href="/wiki/Practical_number" title="Practical number">Practical</a></li> <li><a href="/wiki/Primary_pseudoperfect_number" title="Primary pseudoperfect number">Primary pseudoperfect</a></li> <li><a href="/wiki/Ulam_number" title="Ulam number">Ulam</a></li> <li><a href="/wiki/Wolstenholme_number" title="Wolstenholme number">Wolstenholme</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Figurate_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Figurate_number" title="Figurate number">Figurate numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Plane_(mathematics)" title="Plane (mathematics)">2-dimensional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Centered_polygonal_number" title="Centered polygonal number">centered</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centered_triangular_number" title="Centered triangular number">Centered triangular</a></li> <li><a href="/wiki/Centered_square_number" title="Centered square number">Centered square</a></li> <li><a href="/wiki/Centered_pentagonal_number" title="Centered pentagonal number">Centered pentagonal</a></li> <li><a href="/wiki/Centered_hexagonal_number" title="Centered hexagonal number">Centered hexagonal</a></li> <li><a href="/wiki/Centered_heptagonal_number" title="Centered heptagonal number">Centered heptagonal</a></li> <li><a href="/wiki/Centered_octagonal_number" title="Centered octagonal number">Centered octagonal</a></li> <li><a href="/wiki/Centered_nonagonal_number" title="Centered nonagonal number">Centered nonagonal</a></li> <li><a href="/wiki/Centered_decagonal_number" title="Centered decagonal number">Centered decagonal</a></li> <li><a href="/wiki/Star_number" title="Star number">Star</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Polygonal_number" title="Polygonal number">non-centered</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Triangular_number" title="Triangular number">Triangular</a></li> <li><a href="/wiki/Square_number" title="Square number">Square</a></li> <li><a href="/wiki/Square_triangular_number" title="Square triangular number">Square triangular</a></li> <li><a href="/wiki/Pentagonal_number" title="Pentagonal number">Pentagonal</a></li> <li><a href="/wiki/Hexagonal_number" title="Hexagonal number">Hexagonal</a></li> <li><a href="/wiki/Heptagonal_number" title="Heptagonal number">Heptagonal</a></li> <li><a href="/wiki/Octagonal_number" title="Octagonal number">Octagonal</a></li> <li><a href="/wiki/Nonagonal_number" title="Nonagonal number">Nonagonal</a></li> <li><a href="/wiki/Decagonal_number" title="Decagonal number">Decagonal</a></li> <li><a href="/wiki/Dodecagonal_number" title="Dodecagonal number">Dodecagonal</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Three-dimensional_space" title="Three-dimensional space">3-dimensional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Centered_polyhedral_number" title="Centered polyhedral number">centered</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Centered_tetrahedral_number" title="Centered tetrahedral number">Centered tetrahedral</a></li> <li><a href="/wiki/Centered_cube_number" title="Centered cube number">Centered cube</a></li> <li><a href="/wiki/Centered_octahedral_number" title="Centered octahedral number">Centered octahedral</a></li> <li><a href="/wiki/Centered_dodecahedral_number" title="Centered dodecahedral number">Centered dodecahedral</a></li> <li><a href="/wiki/Centered_icosahedral_number" title="Centered icosahedral number">Centered icosahedral</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Polyhedral_number" class="mw-redirect" title="Polyhedral number">non-centered</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Tetrahedral_number" title="Tetrahedral number">Tetrahedral</a></li> <li><a href="/wiki/Cube_(algebra)" title="Cube (algebra)">Cubic</a></li> <li><a href="/wiki/Octahedral_number" title="Octahedral number">Octahedral</a></li> <li><a href="/wiki/Dodecahedral_number" title="Dodecahedral number">Dodecahedral</a></li> <li><a href="/wiki/Icosahedral_number" title="Icosahedral number">Icosahedral</a></li> <li><a href="/wiki/Stella_octangula_number" title="Stella octangula number">Stella octangula</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Pyramidal_number" title="Pyramidal number">pyramidal</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Square_pyramidal_number" title="Square pyramidal number">Square pyramidal</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Four-dimensional_space" title="Four-dimensional space">4-dimensional</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%">non-centered</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pentatope_number" title="Pentatope number">Pentatope</a></li> <li><a href="/wiki/Squared_triangular_number" title="Squared triangular number">Squared triangular</a></li> <li><a href="/wiki/Fourth_power" title="Fourth power">Tesseractic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Combinatorial_numbers" style="font-size:114%;margin:0 4em">Combinatorial numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Bell_number" title="Bell number">Bell</a></li> <li><a href="/wiki/Cake_number" title="Cake number">Cake</a></li> <li><a href="/wiki/Catalan_number" title="Catalan number">Catalan</a></li> <li><a href="/wiki/Dedekind_number" title="Dedekind number">Dedekind</a></li> <li><a href="/wiki/Delannoy_number" title="Delannoy number">Delannoy</a></li> <li><a href="/wiki/Euler_number" class="mw-redirect" title="Euler number">Euler</a></li> <li><a href="/wiki/Eulerian_number" title="Eulerian number">Eulerian</a></li> <li><a href="/wiki/Fuss%E2%80%93Catalan_number" title="Fuss–Catalan number">Fuss–Catalan</a></li> <li><a href="/wiki/Lah_number" title="Lah number">Lah</a></li> <li><a href="/wiki/Lazy_caterer%27s_sequence" title="Lazy caterer's sequence">Lazy caterer's sequence</a></li> <li><a href="/wiki/Lobb_number" title="Lobb number">Lobb</a></li> <li><a href="/wiki/Motzkin_number" title="Motzkin number">Motzkin</a></li> <li><a href="/wiki/Narayana_number" title="Narayana number">Narayana</a></li> <li><a href="/wiki/Ordered_Bell_number" title="Ordered Bell number">Ordered Bell</a></li> <li><a href="/wiki/Schr%C3%B6der_number" title="Schröder number">Schröder</a></li> <li><a href="/wiki/Schr%C3%B6der%E2%80%93Hipparchus_number" title="Schröder–Hipparchus number">Schröder–Hipparchus</a></li> <li><a href="/wiki/Stirling_numbers_of_the_first_kind" title="Stirling numbers of the first kind">Stirling first</a></li> <li><a href="/wiki/Stirling_numbers_of_the_second_kind" title="Stirling numbers of the second kind">Stirling second</a></li> <li><a href="/wiki/Telephone_number_(mathematics)" title="Telephone number (mathematics)">Telephone number</a></li> <li><a href="/wiki/Wedderburn%E2%80%93Etherington_number" title="Wedderburn–Etherington number">Wedderburn–Etherington</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Primes" style="font-size:114%;margin:0 4em"><a href="/wiki/Prime_number" title="Prime number">Primes</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Wieferich_prime#Wieferich_numbers" title="Wieferich prime">Wieferich</a></li> <li><a href="/wiki/Wall%E2%80%93Sun%E2%80%93Sun_prime" title="Wall–Sun–Sun prime">Wall–Sun–Sun</a></li> <li><a href="/wiki/Wolstenholme_prime" title="Wolstenholme prime">Wolstenholme prime</a></li> <li><a href="/wiki/Wilson_prime#Wilson_numbers" title="Wilson prime">Wilson</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Pseudoprimes" style="font-size:114%;margin:0 4em"><a href="/wiki/Pseudoprime" title="Pseudoprime">Pseudoprimes</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Carmichael_number" title="Carmichael number">Carmichael number</a></li> <li><a href="/wiki/Catalan_pseudoprime" title="Catalan pseudoprime">Catalan pseudoprime</a></li> <li><a href="/wiki/Elliptic_pseudoprime" title="Elliptic pseudoprime">Elliptic pseudoprime</a></li> <li><a href="/wiki/Euler_pseudoprime" title="Euler pseudoprime">Euler pseudoprime</a></li> <li><a href="/wiki/Euler%E2%80%93Jacobi_pseudoprime" title="Euler–Jacobi pseudoprime">Euler–Jacobi pseudoprime</a></li> <li><a href="/wiki/Fermat_pseudoprime" title="Fermat pseudoprime">Fermat pseudoprime</a></li> <li><a href="/wiki/Frobenius_pseudoprime" title="Frobenius pseudoprime">Frobenius pseudoprime</a></li> <li><a href="/wiki/Lucas_pseudoprime" title="Lucas pseudoprime">Lucas pseudoprime</a></li> <li><a href="/wiki/Lucas%E2%80%93Carmichael_number" title="Lucas–Carmichael number">Lucas–Carmichael number</a></li> <li><a href="/wiki/Perrin_number#Perrin_primality_test" title="Perrin number">Perrin pseudoprime</a></li> <li><a href="/wiki/Somer%E2%80%93Lucas_pseudoprime" title="Somer–Lucas pseudoprime">Somer–Lucas pseudoprime</a></li> <li><a href="/wiki/Strong_pseudoprime" title="Strong pseudoprime">Strong pseudoprime</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Arithmetic_functions_and_dynamics" style="font-size:114%;margin:0 4em"><a href="/wiki/Arithmetic_function" title="Arithmetic function">Arithmetic functions</a> and <a href="/wiki/Arithmetic_dynamics" title="Arithmetic dynamics">dynamics</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Divisor_function" title="Divisor function">Divisor functions</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Abundant_number" title="Abundant number">Abundant</a></li> <li><a href="/wiki/Almost_perfect_number" title="Almost perfect number">Almost perfect</a></li> <li><a href="/wiki/Arithmetic_number" title="Arithmetic number">Arithmetic</a></li> <li><a href="/wiki/Betrothed_numbers" title="Betrothed numbers">Betrothed</a></li> <li><a href="/wiki/Colossally_abundant_number" title="Colossally abundant number">Colossally abundant</a></li> <li><a href="/wiki/Deficient_number" title="Deficient number">Deficient</a></li> <li><a href="/wiki/Descartes_number" title="Descartes number">Descartes</a></li> <li><a href="/wiki/Hemiperfect_number" title="Hemiperfect number">Hemiperfect</a></li> <li><a href="/wiki/Highly_abundant_number" title="Highly abundant number">Highly abundant</a></li> <li><a href="/wiki/Highly_composite_number" title="Highly composite number">Highly composite</a></li> <li><a href="/wiki/Hyperperfect_number" title="Hyperperfect number">Hyperperfect</a></li> <li><a href="/wiki/Multiply_perfect_number" title="Multiply perfect number">Multiply perfect</a></li> <li><a href="/wiki/Perfect_number" title="Perfect number">Perfect</a></li> <li><a href="/wiki/Practical_number" title="Practical number">Practical</a></li> <li><a href="/wiki/Primitive_abundant_number" title="Primitive abundant number">Primitive abundant</a></li> <li><a href="/wiki/Quasiperfect_number" title="Quasiperfect number">Quasiperfect</a></li> <li><a href="/wiki/Refactorable_number" title="Refactorable number">Refactorable</a></li> <li><a href="/wiki/Semiperfect_number" title="Semiperfect number">Semiperfect</a></li> <li><a href="/wiki/Sublime_number" title="Sublime number">Sublime</a></li> <li><a href="/wiki/Superabundant_number" title="Superabundant number">Superabundant</a></li> <li><a href="/wiki/Superior_highly_composite_number" title="Superior highly composite number">Superior highly composite</a></li> <li><a href="/wiki/Superperfect_number" title="Superperfect number">Superperfect</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Prime_omega_function" title="Prime omega function">Prime omega functions</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Almost_prime" title="Almost prime">Almost prime</a></li> <li><a href="/wiki/Semiprime" title="Semiprime">Semiprime</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Euler%27s_totient_function" title="Euler's totient function">Euler's totient function</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Highly_cototient_number" title="Highly cototient number">Highly cototient</a></li> <li><a href="/wiki/Highly_totient_number" title="Highly totient number">Highly totient</a></li> <li><a href="/wiki/Noncototient" title="Noncototient">Noncototient</a></li> <li><a href="/wiki/Nontotient" title="Nontotient">Nontotient</a></li> <li><a href="/wiki/Perfect_totient_number" title="Perfect totient number">Perfect totient</a></li> <li><a href="/wiki/Sparsely_totient_number" title="Sparsely totient number">Sparsely totient</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Aliquot_sequence" title="Aliquot sequence">Aliquot sequences</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Amicable_numbers" title="Amicable numbers">Amicable</a></li> <li><a href="/wiki/Perfect_number" title="Perfect number">Perfect</a></li> <li><a href="/wiki/Sociable_numbers" class="mw-redirect" title="Sociable numbers">Sociable</a></li> <li><a href="/wiki/Untouchable_number" title="Untouchable number">Untouchable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Primorial" title="Primorial">Primorial</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Euclid_number" title="Euclid number">Euclid</a></li> <li><a href="/wiki/Fortunate_number" title="Fortunate number">Fortunate</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Other_prime_factor_or_divisor_related_numbers" style="font-size:114%;margin:0 4em">Other <a href="/wiki/Prime_factor" class="mw-redirect" title="Prime factor">prime factor</a> or <a href="/wiki/Divisor" title="Divisor">divisor</a> related numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Blum_integer" title="Blum integer">Blum</a></li> <li><a href="/wiki/Cyclic_number_(group_theory)" title="Cyclic number (group theory)">Cyclic</a></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Nicolas_number" title="Erdős–Nicolas number">Erdős–Nicolas</a></li> <li><a href="/wiki/Erd%C5%91s%E2%80%93Woods_number" title="Erdős–Woods number">Erdős–Woods</a></li> <li><a href="/wiki/Friendly_number" title="Friendly number">Friendly</a></li> <li><a href="/wiki/Giuga_number" title="Giuga number">Giuga</a></li> <li><a href="/wiki/Harmonic_divisor_number" title="Harmonic divisor number">Harmonic divisor</a></li> <li><a href="/wiki/Jordan%E2%80%93P%C3%B3lya_number" title="Jordan–Pólya number">Jordan–Pólya</a></li> <li><a href="/wiki/Lucas%E2%80%93Carmichael_number" title="Lucas–Carmichael number">Lucas–Carmichael</a></li> <li><a class="mw-selflink selflink">Pronic</a></li> <li><a href="/wiki/Regular_number" title="Regular number">Regular</a></li> <li><a href="/wiki/Rough_number" title="Rough number">Rough</a></li> <li><a href="/wiki/Smooth_number" title="Smooth number">Smooth</a></li> <li><a href="/wiki/Sphenic_number" title="Sphenic number">Sphenic</a></li> <li><a href="/wiki/St%C3%B8rmer_number" title="Størmer number">Størmer</a></li> <li><a href="/wiki/Super-Poulet_number" title="Super-Poulet number">Super-Poulet</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Numeral_system-dependent_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Numeral_system" title="Numeral system">Numeral system</a>-dependent numbers</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Arithmetic_function" title="Arithmetic function">Arithmetic functions</a> <br />and <a href="/wiki/Arithmetic_dynamics" title="Arithmetic dynamics">dynamics</a></th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Persistence_of_a_number" title="Persistence of a number">Persistence</a> <ul><li><a href="/wiki/Additive_persistence" class="mw-redirect" title="Additive persistence">Additive</a></li> <li><a href="/wiki/Multiplicative_persistence" class="mw-redirect" title="Multiplicative persistence">Multiplicative</a></li></ul></li></ul> </div><table class="nowraplinks navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Digit_sum" title="Digit sum">Digit sum</a></th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Digit_sum" title="Digit sum">Digit sum</a></li> <li><a href="/wiki/Digital_root" title="Digital root">Digital root</a></li> <li><a href="/wiki/Self_number" title="Self number">Self</a></li> <li><a href="/wiki/Sum-product_number" title="Sum-product number">Sum-product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Digit product</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Multiplicative_digital_root" title="Multiplicative digital root">Multiplicative digital root</a></li> <li><a href="/wiki/Sum-product_number" title="Sum-product number">Sum-product</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Coding-related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Meertens_number" title="Meertens number">Meertens</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Dudeney_number" title="Dudeney number">Dudeney</a></li> <li><a href="/wiki/Factorion" title="Factorion">Factorion</a></li> <li><a href="/wiki/Kaprekar_number" title="Kaprekar number">Kaprekar</a></li> <li><a href="/wiki/Kaprekar%27s_routine" title="Kaprekar's routine">Kaprekar's constant</a></li> <li><a href="/wiki/Keith_number" title="Keith number">Keith</a></li> <li><a href="/wiki/Lychrel_number" title="Lychrel number">Lychrel</a></li> <li><a href="/wiki/Narcissistic_number" title="Narcissistic number">Narcissistic</a></li> <li><a href="/wiki/Perfect_digit-to-digit_invariant" title="Perfect digit-to-digit invariant">Perfect digit-to-digit invariant</a></li> <li><a href="/wiki/Perfect_digital_invariant" title="Perfect digital invariant">Perfect digital invariant</a> <ul><li><a href="/wiki/Happy_number" title="Happy number">Happy</a></li></ul></li></ul> </div></td></tr></tbody></table><div> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/P-adic_numbers" class="mw-redirect" title="P-adic numbers">P-adic numbers</a>-related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Automorphic_number" title="Automorphic number">Automorphic</a> <ul><li><a href="/wiki/Trimorphic_number" class="mw-redirect" title="Trimorphic number">Trimorphic</a></li></ul></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%"><a href="/wiki/Numerical_digit" title="Numerical digit">Digit</a>-composition related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Palindromic_number" title="Palindromic number">Palindromic</a></li> <li><a href="/wiki/Pandigital_number" title="Pandigital number">Pandigital</a></li> <li><a href="/wiki/Repdigit" title="Repdigit">Repdigit</a></li> <li><a href="/wiki/Repunit" title="Repunit">Repunit</a></li> <li><a href="/wiki/Self-descriptive_number" title="Self-descriptive number">Self-descriptive</a></li> <li><a href="/wiki/Smarandache%E2%80%93Wellin_number" title="Smarandache–Wellin number">Smarandache–Wellin</a></li> <li><a href="/wiki/Undulating_number" title="Undulating number">Undulating</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Digit-<a href="/wiki/Permutation" title="Permutation">permutation</a> related</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Cyclic_number" title="Cyclic number">Cyclic</a></li> <li><a href="/wiki/Digit-reassembly_number" title="Digit-reassembly number">Digit-reassembly</a></li> <li><a href="/wiki/Parasitic_number" title="Parasitic number">Parasitic</a></li> <li><a href="/wiki/Primeval_number" title="Primeval number">Primeval</a></li> <li><a href="/wiki/Transposable_integer" title="Transposable integer">Transposable</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Divisor-related</th><td class="navbox-list-with-group navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Equidigital_number" title="Equidigital number">Equidigital</a></li> <li><a href="/wiki/Extravagant_number" title="Extravagant number">Extravagant</a></li> <li><a href="/wiki/Frugal_number" title="Frugal number">Frugal</a></li> <li><a href="/wiki/Harshad_number" title="Harshad number">Harshad</a></li> <li><a href="/wiki/Polydivisible_number" title="Polydivisible number">Polydivisible</a></li> <li><a href="/wiki/Smith_number" title="Smith number">Smith</a></li> <li><a href="/wiki/Vampire_number" title="Vampire number">Vampire</a></li></ul> </div></td></tr><tr><th scope="row" class="navbox-group" style="width:1%">Other</th><td class="navbox-list-with-group navbox-list navbox-even" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Friedman_number" title="Friedman number">Friedman</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Binary_numbers" style="font-size:114%;margin:0 4em"><a href="/wiki/Binary_number" title="Binary number">Binary numbers</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Evil_number" title="Evil number">Evil</a></li> <li><a href="/wiki/Odious_number" title="Odious number">Odious</a></li> <li><a href="/wiki/Pernicious_number" title="Pernicious number">Pernicious</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Generated_via_a_sieve" style="font-size:114%;margin:0 4em">Generated via a <a href="/wiki/Sieve_theory" title="Sieve theory">sieve</a></div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Lucky_number" title="Lucky number">Lucky</a></li> <li><a href="/wiki/Generation_of_primes" title="Generation of primes">Prime</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Sorting_related" style="font-size:114%;margin:0 4em"><a href="/wiki/Sorting_algorithm" title="Sorting algorithm">Sorting</a> related</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Pancake_sorting" title="Pancake sorting">Pancake number</a></li> <li><a href="/wiki/Sorting_number" title="Sorting number">Sorting number</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Natural_language_related" style="font-size:114%;margin:0 4em"><a href="/wiki/Natural_language" title="Natural language">Natural language</a> related</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Aronson%27s_sequence" title="Aronson's sequence">Aronson's sequence</a></li> <li><a href="/wiki/Ban_number" title="Ban number">Ban</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td colspan="2" class="navbox-list navbox-odd hlist" style="width:100%;padding:0"><div style="padding:0 0.25em"></div><table class="nowraplinks mw-collapsible mw-collapsed navbox-subgroup" style="border-spacing:0"><tbody><tr><th scope="col" class="navbox-title" colspan="2"><div id="Graphemics_related" style="font-size:114%;margin:0 4em"><a href="/wiki/Graphemics" title="Graphemics">Graphemics</a> related</div></th></tr><tr><td colspan="2" class="navbox-list navbox-odd" style="width:100%;padding:0"><div style="padding:0 0.25em"> <ul><li><a href="/wiki/Strobogrammatic_number" title="Strobogrammatic number">Strobogrammatic</a></li></ul> </div></td></tr></tbody></table><div></div></td></tr><tr><td class="navbox-abovebelow hlist" colspan="2" style="font-weight:bold;"><div> <ul><li><span class="noviewer" typeof="mw:File"><a href="/wiki/File:Symbol_portal_class.svg" class="mw-file-description" title="Portal"><img alt="" src="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/16px-Symbol_portal_class.svg.png" decoding="async" width="16" height="16" class="mw-file-element" srcset="//upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/23px-Symbol_portal_class.svg.png 1.5x, //upload.wikimedia.org/wikipedia/en/thumb/e/e2/Symbol_portal_class.svg/31px-Symbol_portal_class.svg.png 2x" data-file-width="180" data-file-height="185" /></a></span> <a href="/wiki/Portal:Mathematics" title="Portal:Mathematics">Mathematics portal</a></li></ul> </div></td></tr></tbody></table></div> <!-- NewPP limit report Parsed by mw‐web.codfw.main‐f69cdc8f6‐6fgbm Cached time: 20241122142310 Cache expiry: 2592000 Reduced expiry: false Complications: [vary‐revision‐sha1, show‐toc] CPU time usage: 0.422 seconds Real time usage: 0.605 seconds Preprocessor visited node count: 1858/1000000 Post‐expand include size: 139423/2097152 bytes Template argument size: 1051/2097152 bytes Highest expansion depth: 8/100 Expensive parser function count: 1/500 Unstrip recursion depth: 1/20 Unstrip post‐expand size: 51717/5000000 bytes Lua time usage: 0.217/10.000 seconds Lua memory usage: 5060547/52428800 bytes Number of Wikibase entities loaded: 0/400 --> <!-- Transclusion expansion time report (%,ms,calls,template) 100.00% 390.714 1 -total 34.96% 136.582 1 Template:Reflist 30.88% 120.660 8 Template:Navbox 29.20% 114.099 9 Template:Citation 27.52% 107.528 1 Template:Divisor_classes 18.90% 73.832 1 Template:Short_description 13.04% 50.962 1 Template:Classes_of_natural_numbers 12.36% 48.275 1 Template:Navbox_with_collapsible_groups 11.61% 45.380 2 Template:Pagetype 4.24% 16.578 9 Template:Main_other --> <!-- Saved in parser cache with key enwiki:pcache:idhash:652733-0!canonical and timestamp 20241122142310 and revision id 1255114004. Rendering was triggered because: page-view --> </div><!--esi <esi:include src="/esitest-fa8a495983347898/content" /> --><noscript><img src="https://login.wikimedia.org/wiki/Special:CentralAutoLogin/start?type=1x1" alt="" width="1" height="1" style="border: none; position: absolute;"></noscript> <div class="printfooter" data-nosnippet="">Retrieved from "<a dir="ltr" href="https://en.wikipedia.org/w/index.php?title=Pronic_number&oldid=1255114004">https://en.wikipedia.org/w/index.php?title=Pronic_number&oldid=1255114004</a>"</div></div> <div id="catlinks" class="catlinks" data-mw="interface"><div id="mw-normal-catlinks" class="mw-normal-catlinks"><a href="/wiki/Help:Category" title="Help:Category">Categories</a>: <ul><li><a href="/wiki/Category:Integer_sequences" title="Category:Integer sequences">Integer sequences</a></li><li><a href="/wiki/Category:Figurate_numbers" title="Category:Figurate numbers">Figurate numbers</a></li></ul></div><div id="mw-hidden-catlinks" class="mw-hidden-catlinks mw-hidden-cats-hidden">Hidden categories: <ul><li><a href="/wiki/Category:Articles_with_short_description" title="Category:Articles with short description">Articles with short description</a></li><li><a href="/wiki/Category:Short_description_is_different_from_Wikidata" title="Category:Short description is different from Wikidata">Short description is different from Wikidata</a></li></ul></div></div> </div> </main> </div> <div class="mw-footer-container"> <footer id="footer" class="mw-footer" > <ul id="footer-info"> <li id="footer-info-lastmod"> This page was last edited on 3 November 2024, at 06:08<span class="anonymous-show"> (UTC)</span>.</li> <li id="footer-info-copyright">Text is available under the <a href="/wiki/Wikipedia:Text_of_the_Creative_Commons_Attribution-ShareAlike_4.0_International_License" title="Wikipedia:Text of the Creative Commons Attribution-ShareAlike 4.0 International License">Creative Commons Attribution-ShareAlike 4.0 License</a>; additional terms may apply. By using this site, you agree to the <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Terms_of_Use" class="extiw" title="foundation:Special:MyLanguage/Policy:Terms of Use">Terms of Use</a> and <a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy" class="extiw" title="foundation:Special:MyLanguage/Policy:Privacy policy">Privacy Policy</a>. Wikipedia® is a registered trademark of the <a rel="nofollow" class="external text" href="https://wikimediafoundation.org/">Wikimedia Foundation, Inc.</a>, a non-profit organization.</li> </ul> <ul id="footer-places"> <li id="footer-places-privacy"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Privacy_policy">Privacy policy</a></li> <li id="footer-places-about"><a href="/wiki/Wikipedia:About">About Wikipedia</a></li> <li id="footer-places-disclaimers"><a href="/wiki/Wikipedia:General_disclaimer">Disclaimers</a></li> <li id="footer-places-contact"><a href="//en.wikipedia.org/wiki/Wikipedia:Contact_us">Contact Wikipedia</a></li> <li id="footer-places-wm-codeofconduct"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Universal_Code_of_Conduct">Code of Conduct</a></li> <li id="footer-places-developers"><a href="https://developer.wikimedia.org">Developers</a></li> <li id="footer-places-statslink"><a href="https://stats.wikimedia.org/#/en.wikipedia.org">Statistics</a></li> <li id="footer-places-cookiestatement"><a href="https://foundation.wikimedia.org/wiki/Special:MyLanguage/Policy:Cookie_statement">Cookie statement</a></li> <li id="footer-places-mobileview"><a href="//en.m.wikipedia.org/w/index.php?title=Pronic_number&mobileaction=toggle_view_mobile" class="noprint stopMobileRedirectToggle">Mobile view</a></li> </ul> <ul id="footer-icons" class="noprint"> <li id="footer-copyrightico"><a href="https://wikimediafoundation.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/static/images/footer/wikimedia-button.svg" width="84" height="29" alt="Wikimedia Foundation" loading="lazy"></a></li> <li id="footer-poweredbyico"><a href="https://www.mediawiki.org/" class="cdx-button cdx-button--fake-button cdx-button--size-large cdx-button--fake-button--enabled"><img src="/w/resources/assets/poweredby_mediawiki.svg" alt="Powered by MediaWiki" width="88" height="31" loading="lazy"></a></li> </ul> </footer> </div> </div> </div> <div class="vector-settings" id="p-dock-bottom"> <ul></ul> </div><script>(RLQ=window.RLQ||[]).push(function(){mw.config.set({"wgHostname":"mw-web.codfw.main-f69cdc8f6-pqfbt","wgBackendResponseTime":163,"wgPageParseReport":{"limitreport":{"cputime":"0.422","walltime":"0.605","ppvisitednodes":{"value":1858,"limit":1000000},"postexpandincludesize":{"value":139423,"limit":2097152},"templateargumentsize":{"value":1051,"limit":2097152},"expansiondepth":{"value":8,"limit":100},"expensivefunctioncount":{"value":1,"limit":500},"unstrip-depth":{"value":1,"limit":20},"unstrip-size":{"value":51717,"limit":5000000},"entityaccesscount":{"value":0,"limit":400},"timingprofile":["100.00% 390.714 1 -total"," 34.96% 136.582 1 Template:Reflist"," 30.88% 120.660 8 Template:Navbox"," 29.20% 114.099 9 Template:Citation"," 27.52% 107.528 1 Template:Divisor_classes"," 18.90% 73.832 1 Template:Short_description"," 13.04% 50.962 1 Template:Classes_of_natural_numbers"," 12.36% 48.275 1 Template:Navbox_with_collapsible_groups"," 11.61% 45.380 2 Template:Pagetype"," 4.24% 16.578 9 Template:Main_other"]},"scribunto":{"limitreport-timeusage":{"value":"0.217","limit":"10.000"},"limitreport-memusage":{"value":5060547,"limit":52428800}},"cachereport":{"origin":"mw-web.codfw.main-f69cdc8f6-6fgbm","timestamp":"20241122142310","ttl":2592000,"transientcontent":false}}});});</script> <script type="application/ld+json">{"@context":"https:\/\/schema.org","@type":"Article","name":"Pronic number","url":"https:\/\/en.wikipedia.org\/wiki\/Pronic_number","sameAs":"http:\/\/www.wikidata.org\/entity\/Q1486643","mainEntity":"http:\/\/www.wikidata.org\/entity\/Q1486643","author":{"@type":"Organization","name":"Contributors to Wikimedia projects"},"publisher":{"@type":"Organization","name":"Wikimedia Foundation, Inc.","logo":{"@type":"ImageObject","url":"https:\/\/www.wikimedia.org\/static\/images\/wmf-hor-googpub.png"}},"datePublished":"2004-05-13T22:34:02Z","dateModified":"2024-11-03T06:08:19Z","headline":"figurate number"}</script> </body> </html>