CINXE.COM

Search results for: fuzzy regression approach

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: fuzzy regression approach</title> <meta name="description" content="Search results for: fuzzy regression approach"> <meta name="keywords" content="fuzzy regression approach"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="fuzzy regression approach" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="fuzzy regression approach"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 17078</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: fuzzy regression approach</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17078</span> Behind Fuzzy Regression Approach: An Exploration Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lavinia%20B.%20Dulla">Lavinia B. Dulla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The exploration study of the fuzzy regression approach attempts to present that fuzzy regression can be used as a possible alternative to classical regression. It likewise seeks to assess the differences and characteristics of simple linear regression and fuzzy regression using the width of prediction interval, mean absolute deviation, and variance of residuals. Based on the simple linear regression model, the fuzzy regression approach is worth considering as an alternative to simple linear regression when the sample size is between 10 and 20. As the sample size increases, the fuzzy regression approach is not applicable to use since the assumption regarding large sample size is already operating within the framework of simple linear regression. Nonetheless, it can be suggested for a practical alternative when decisions often have to be made on the basis of small data. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach" title="fuzzy regression approach">fuzzy regression approach</a>, <a href="https://publications.waset.org/abstracts/search?q=minimum%20fuzziness%20criterion" title=" minimum fuzziness criterion"> minimum fuzziness criterion</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20regression" title=" interval regression"> interval regression</a>, <a href="https://publications.waset.org/abstracts/search?q=prediction%20interval" title=" prediction interval"> prediction interval</a> </p> <a href="https://publications.waset.org/abstracts/139364/behind-fuzzy-regression-approach-an-exploration-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139364.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">298</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17077</span> A Monte Carlo Fuzzy Logistic Regression Framework against Imbalance and Separation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Georgios%20Charizanos">Georgios Charizanos</a>, <a href="https://publications.waset.org/abstracts/search?q=Haydar%20Demirhan"> Haydar Demirhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Duygu%20Icen"> Duygu Icen</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Two of the most impactful issues in classical logistic regression are class imbalance and complete separation. These can result in model predictions heavily leaning towards the imbalanced class on the binary response variable or over-fitting issues. Fuzzy methodology offers key solutions for handling these problems. However, most studies propose the transformation of the binary responses into a continuous format limited within [0,1]. This is called the possibilistic approach within fuzzy logistic regression. Following this approach is more aligned with straightforward regression since a logit-link function is not utilized, and fuzzy probabilities are not generated. In contrast, we propose a method of fuzzifying binary response variables that allows for the use of the logit-link function; hence, a probabilistic fuzzy logistic regression model with the Monte Carlo method. The fuzzy probabilities are then classified by selecting a fuzzy threshold. Different combinations of fuzzy and crisp input, output, and coefficients are explored, aiming to understand which of these perform better under different conditions of imbalance and separation. We conduct numerical experiments using both synthetic and real datasets to demonstrate the performance of the fuzzy logistic regression framework against seven crisp machine learning methods. The proposed framework shows better performance irrespective of the degree of imbalance and presence of separation in the data, while the considered machine learning methods are significantly impacted. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logistic%20regression" title="fuzzy logistic regression">fuzzy logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic" title=" logistic"> logistic</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a> </p> <a href="https://publications.waset.org/abstracts/175302/a-monte-carlo-fuzzy-logistic-regression-framework-against-imbalance-and-separation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/175302.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">74</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17076</span> A Fuzzy Nonlinear Regression Model for Interval Type-2 Fuzzy Sets</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=O.%20Poleshchuk">O. Poleshchuk</a>, <a href="https://publications.waset.org/abstracts/search?q=E.%20Komarov"> E. Komarov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a regression model for interval type-2 fuzzy sets based on the least squares estimation technique. Unknown coefficients are assumed to be triangular fuzzy numbers. The basic idea is to determine aggregation intervals for type-1 fuzzy sets, membership functions of whose are low membership function and upper membership function of interval type-2 fuzzy set. These aggregation intervals were called weighted intervals. Low and upper membership functions of input and output interval type-2 fuzzy sets for developed regression models are considered as piecewise linear functions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=interval%20type-2%20fuzzy%20sets" title="interval type-2 fuzzy sets">interval type-2 fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression" title=" fuzzy regression"> fuzzy regression</a>, <a href="https://publications.waset.org/abstracts/search?q=weighted%20interval" title=" weighted interval"> weighted interval</a> </p> <a href="https://publications.waset.org/abstracts/6138/a-fuzzy-nonlinear-regression-model-for-interval-type-2-fuzzy-sets" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/6138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">373</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17075</span> A Fuzzy Linear Regression Model Based on Dissemblance Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Pin%20Chen">Shih-Pin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Syuan%20You"> Shih-Syuan You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy regression models are useful for investigating the relationship between explanatory variables and responses in fuzzy environments. To overcome the deficiencies of previous models and increase the explanatory power of fuzzy data, the graded mean integration (GMI) representation is applied to determine representative crisp regression coefficients. A fuzzy regression model is constructed based on the modified dissemblance index (MDI), which can precisely measure the actual total error. Compared with previous studies based on the proposed MDI and distance criterion, the results from commonly used test examples show that the proposed fuzzy linear regression model has higher explanatory power and forecasting accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissemblance%20index" title="dissemblance index">dissemblance index</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20linear%20regression" title=" fuzzy linear regression"> fuzzy linear regression</a>, <a href="https://publications.waset.org/abstracts/search?q=graded%20mean%20integration" title=" graded mean integration"> graded mean integration</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20programming" title=" mathematical programming"> mathematical programming</a> </p> <a href="https://publications.waset.org/abstracts/9968/a-fuzzy-linear-regression-model-based-on-dissemblance-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9968.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17074</span> Approach to Formulate Intuitionistic Fuzzy Regression Models</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Liang-Hsuan%20Chen">Liang-Hsuan Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Sheng-Shing%20Nien"> Sheng-Shing Nien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study aims to develop approaches to formulate intuitionistic fuzzy regression (IFR) models for many decision-making applications in the fuzzy environments using intuitionistic fuzzy observations. Intuitionistic fuzzy numbers (IFNs) are used to characterize the fuzzy input and output variables in the IFR formulation processes. A mathematical programming problem (MPP) is built up to optimally determine the IFR parameters. Each parameter in the MPP is defined as a couple of alternative numerical variables with opposite signs, and an intuitionistic fuzzy error term is added to the MPP to characterize the uncertainty of the model. The IFR model is formulated based on the distance measure to minimize the total distance errors between estimated and observed intuitionistic fuzzy responses in the MPP resolution processes. The proposed approaches are simple/efficient in the formulation/resolution processes, in which the sign of parameters can be determined so that the problem to predetermine the sign of parameters is avoided. Furthermore, the proposed approach has the advantage that the spread of the predicted IFN response will not be over-increased, since the parameters in the established IFR model are crisp. The performance of the obtained models is evaluated and compared with the existing approaches. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title="fuzzy sets">fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20number" title=" intuitionistic fuzzy number"> intuitionistic fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20regression" title=" intuitionistic fuzzy regression"> intuitionistic fuzzy regression</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20programming%20method" title=" mathematical programming method"> mathematical programming method</a> </p> <a href="https://publications.waset.org/abstracts/123234/approach-to-formulate-intuitionistic-fuzzy-regression-models" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123234.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">138</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17073</span> Formulating a Flexible-Spread Fuzzy Regression Model Based on Dissemblance Index</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shih-Pin%20Chen">Shih-Pin Chen</a>, <a href="https://publications.waset.org/abstracts/search?q=Shih-Syuan%20You"> Shih-Syuan You</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This study proposes a regression model with flexible spreads for fuzzy input-output data to cope with the situation that the existing measures cannot reflect the actual estimation error. The main idea is that a dissemblance index (DI) is carefully identified and defined for precisely measuring the actual estimation error. Moreover, the graded mean integration (GMI) representation is adopted for determining more representative numeric regression coefficients. Notably, to comprehensively compare the performance of the proposed model with other ones, three different criteria are adopted. The results from commonly used test numerical examples and an application to Taiwan's business monitoring indicator illustrate that the proposed dissemblance index method not only produces valid fuzzy regression models for fuzzy input-output data, but also has satisfactory and stable performance in terms of the total estimation error based on these three criteria. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dissemblance%20index" title="dissemblance index">dissemblance index</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title=" fuzzy sets"> fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20regression" title=" linear regression"> linear regression</a> </p> <a href="https://publications.waset.org/abstracts/59191/formulating-a-flexible-spread-fuzzy-regression-model-based-on-dissemblance-index" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59191.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">360</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17072</span> An Epsilon Hierarchical Fuzzy Twin Support Vector Regression </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Arindam%20Chaudhuri">Arindam Chaudhuri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The research presents epsilon- hierarchical fuzzy twin support vector regression (epsilon-HFTSVR) based on epsilon-fuzzy twin support vector regression (epsilon-FTSVR) and epsilon-twin support vector regression (epsilon-TSVR). Epsilon-FTSVR is achieved by incorporating trapezoidal fuzzy numbers to epsilon-TSVR which takes care of uncertainty existing in forecasting problems. Epsilon-FTSVR determines a pair of epsilon-insensitive proximal functions by solving two related quadratic programming problems. The structural risk minimization principle is implemented by introducing regularization term in primal problems of epsilon-FTSVR. This yields dual stable positive definite problems which improves regression performance. Epsilon-FTSVR is then reformulated as epsilon-HFTSVR consisting of a set of hierarchical layers each containing epsilon-FTSVR. Experimental results on both synthetic and real datasets reveal that epsilon-HFTSVR has remarkable generalization performance with minimum training time. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=regression" title="regression">regression</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon-TSVR" title=" epsilon-TSVR"> epsilon-TSVR</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon-FTSVR" title=" epsilon-FTSVR"> epsilon-FTSVR</a>, <a href="https://publications.waset.org/abstracts/search?q=epsilon-HFTSVR" title=" epsilon-HFTSVR"> epsilon-HFTSVR</a> </p> <a href="https://publications.waset.org/abstracts/20236/an-epsilon-hierarchical-fuzzy-twin-support-vector-regression" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20236.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">375</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17071</span> Electrical Load Estimation Using Estimated Fuzzy Linear Parameters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Bader%20Alkandari">Bader Alkandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Jamal%20Y.%20Madouh"> Jamal Y. Madouh</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmad%20M.%20Alkandari"> Ahmad M. Alkandari</a>, <a href="https://publications.waset.org/abstracts/search?q=Anwar%20A.%20Alnaqi"> Anwar A. Alnaqi </a> </p> <p class="card-text"><strong>Abstract:</strong></p> A new formulation of fuzzy linear estimation problem is presented. It is formulated as a linear programming problem. The objective is to minimize the spread of the data points, taking into consideration the type of the membership function of the fuzzy parameters to satisfy the constraints on each measurement point and to insure that the original membership is included in the estimated membership. Different models are developed for a fuzzy triangular membership. The proposed models are applied to different examples from the area of fuzzy linear regression and finally to different examples for estimating the electrical load on a busbar. It had been found that the proposed technique is more suited for electrical load estimation, since the nature of the load is characterized by the uncertainty and vagueness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression" title="fuzzy regression">fuzzy regression</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20estimation" title=" load estimation"> load estimation</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20linear%20parameters" title=" fuzzy linear parameters"> fuzzy linear parameters</a>, <a href="https://publications.waset.org/abstracts/search?q=electrical%20load%20estimation" title=" electrical load estimation"> electrical load estimation</a> </p> <a href="https://publications.waset.org/abstracts/18341/electrical-load-estimation-using-estimated-fuzzy-linear-parameters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/18341.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">540</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17070</span> A Hybrid Fuzzy Clustering Approach for Fertile and Unfertile Analysis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Shima%20Soltanzadeh">Shima Soltanzadeh</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammad%20Hosain%20Fazel%20Zarandi"> Mohammad Hosain Fazel Zarandi</a>, <a href="https://publications.waset.org/abstracts/search?q=Mojtaba%20Barzegar%20Astanjin"> Mojtaba Barzegar Astanjin</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Diagnosis of male infertility by the laboratory tests is expensive and, sometimes it is intolerable for patients. Filling out the questionnaire and then using classification method can be the first step in decision-making process, so only in the cases with a high probability of infertility we can use the laboratory tests. In this paper, we evaluated the performance of four classification methods including naive Bayesian, neural network, logistic regression and fuzzy c-means clustering as a classification, in the diagnosis of male infertility due to environmental factors. Since the data are unbalanced, the ROC curves are most suitable method for the comparison. In this paper, we also have selected the more important features using a filtering method and examined the impact of this feature reduction on the performance of each methods; generally, most of the methods had better performance after applying the filter. We have showed that using fuzzy c-means clustering as a classification has a good performance according to the ROC curves and its performance is comparable to other classification methods like logistic regression. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=classification" title="classification">classification</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20c-means" title=" fuzzy c-means"> fuzzy c-means</a>, <a href="https://publications.waset.org/abstracts/search?q=logistic%20regression" title=" logistic regression"> logistic regression</a>, <a href="https://publications.waset.org/abstracts/search?q=Naive%20Bayesian" title=" Naive Bayesian"> Naive Bayesian</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=ROC%20curve" title=" ROC curve"> ROC curve</a> </p> <a href="https://publications.waset.org/abstracts/50838/a-hybrid-fuzzy-clustering-approach-for-fertile-and-unfertile-analysis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/50838.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">337</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17069</span> Fuzzy Multi-Component DEA with Shared and Undesirable Fuzzy Resources</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jolly%20Puri">Jolly Puri</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Prasad%20Yadav"> Shiv Prasad Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multi-component data envelopment analysis (MC-DEA) is a popular technique for measuring aggregate performance of the decision making units (DMUs) along with their components. However, the conventional MC-DEA is limited to crisp input and output data which may not always be available in exact form. In real life problems, data may be imprecise or fuzzy. Therefore, in this paper, we propose (i) a fuzzy MC-DEA (FMC-DEA) model in which shared and undesirable fuzzy resources are incorporated, (ii) the proposed FMC-DEA model is transformed into a pair of crisp models using cut approach, (iii) fuzzy aggregate performance of a DMU and fuzzy efficiencies of components are defined to be fuzzy numbers, and (iv) a numerical example is illustrated to validate the proposed approach. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=multi-component%20DEA" title="multi-component DEA">multi-component DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20multi-component%20DEA" title=" fuzzy multi-component DEA"> fuzzy multi-component DEA</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20resources" title=" fuzzy resources"> fuzzy resources</a>, <a href="https://publications.waset.org/abstracts/search?q=decision%20making%20units%20%28DMUs%29" title=" decision making units (DMUs)"> decision making units (DMUs)</a> </p> <a href="https://publications.waset.org/abstracts/9809/fuzzy-multi-component-dea-with-shared-and-undesirable-fuzzy-resources" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9809.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">407</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17068</span> Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20M.%20Alsager">K. M. Alsager</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20O.%20Alshehri"> N. O. Alshehri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=single%20valued%20neutrosophic%20fuzzy%20set" title="single valued neutrosophic fuzzy set">single valued neutrosophic fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20valued%20neutrosophic%20fuzzy%20hesitant%20set" title=" single valued neutrosophic fuzzy hesitant set"> single valued neutrosophic fuzzy hesitant set</a>, <a href="https://publications.waset.org/abstracts/search?q=rough%20set" title=" rough set"> rough set</a>, <a href="https://publications.waset.org/abstracts/search?q=single%20valued%20neutrosophic%20hesitant%20fuzzy%20rough%20set" title=" single valued neutrosophic hesitant fuzzy rough set"> single valued neutrosophic hesitant fuzzy rough set</a> </p> <a href="https://publications.waset.org/abstracts/104161/single-valued-neutrosophic-hesitant-fuzzy-rough-set-and-its-application" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/104161.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">272</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17067</span> New Approach for Load Modeling</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Slim%20Chokri">Slim Chokri</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Load forecasting is one of the central functions in power systems operations. Electricity cannot be stored, which means that for electric utility, the estimate of the future demand is necessary in managing the production and purchasing in an economically reasonable way. A majority of the recently reported approaches are based on neural network. The attraction of the methods lies in the assumption that neural networks are able to learn properties of the load. However, the development of the methods is not finished, and the lack of comparative results on different model variations is a problem. This paper presents a new approach in order to predict the Tunisia daily peak load. The proposed method employs a computational intelligence scheme based on the Fuzzy neural network (FNN) and support vector regression (SVR). Experimental results obtained indicate that our proposed FNN-SVR technique gives significantly good prediction accuracy compared to some classical techniques. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title="neural network">neural network</a>, <a href="https://publications.waset.org/abstracts/search?q=load%20forecasting" title=" load forecasting"> load forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20inference" title=" fuzzy inference"> fuzzy inference</a>, <a href="https://publications.waset.org/abstracts/search?q=machine%20learning" title=" machine learning"> machine learning</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20modeling%20and%20rule%20extraction" title=" fuzzy modeling and rule extraction"> fuzzy modeling and rule extraction</a>, <a href="https://publications.waset.org/abstracts/search?q=support%20vector%20regression" title=" support vector regression"> support vector regression</a> </p> <a href="https://publications.waset.org/abstracts/21065/new-approach-for-load-modeling" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/21065.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17066</span> Application of Interval Valued Picture Fuzzy Set in Medical Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Palash%20Dutta">Palash Dutta</a> </p> <p class="card-text"><strong>Abstract:</strong></p> More frequently uncertainties are encountered in medical diagnosis and therefore it is the most important and interesting area of applications of fuzzy set theory. In this present study, an attempt has been made to extend Sanchez’s approach for medical diagnosis via interval valued picture fuzzy sets and exhibit the technique with suitable case studies. In this article, it is observed that a refusal can be expressed in the databases concerning the examined objects. The technique is performing diagnosis on the basis of distance measures and as a result, this approach makes it possible to introduce weights of all symptoms and consequently patient can be diagnosed directly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=medical%20diagnosis" title="medical diagnosis">medical diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty" title=" uncertainty"> uncertainty</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20set" title=" fuzzy set"> fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=picture%20fuzzy%20set" title=" picture fuzzy set"> picture fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=interval%20valued%20picture%20fuzzy%20set" title=" interval valued picture fuzzy set"> interval valued picture fuzzy set</a> </p> <a href="https://publications.waset.org/abstracts/54935/application-of-interval-valued-picture-fuzzy-set-in-medical-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/54935.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">378</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17065</span> Fuzzy Ideal Topological Spaces</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ali%20Koam">Ali Koam</a>, <a href="https://publications.waset.org/abstracts/search?q=Ismail%20Ibedou"> Ismail Ibedou</a>, <a href="https://publications.waset.org/abstracts/search?q=S.%20E.%20Abbas"> S. E. Abbas</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, it is introduced the notion of r-fuzzy ideal separation axioms Tᵢi = 0; 1; 2 based on a fuzzy ideal I on a fuzzy topological space (X; τ). An r-fuzzy ideal connectedness related to the fuzzy ideal I is introduced which has relations with a previous r-fuzzy fuzzy connectedness. An r-fuzzy ideal compactness related to Ι is introduced which has also relations with many other types of fuzzy compactness. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20ideal" title="fuzzy ideal">fuzzy ideal</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20separation%20axioms" title=" fuzzy separation axioms"> fuzzy separation axioms</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20compactness" title=" fuzzy compactness"> fuzzy compactness</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20connectedness" title=" fuzzy connectedness"> fuzzy connectedness</a> </p> <a href="https://publications.waset.org/abstracts/101746/fuzzy-ideal-topological-spaces" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/101746.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">266</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17064</span> Assessment the Quality of Telecommunication Services by Fuzzy Inferences System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Oktay%20Nusratov">Oktay Nusratov</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramin%20Rzaev"> Ramin Rzaev</a>, <a href="https://publications.waset.org/abstracts/search?q=Aydin%20Goyushov"> Aydin Goyushov</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy inference method based approach to the forming of modular intellectual system of assessment the quality of communication services is proposed. Developed under this approach the basic fuzzy estimation model takes into account the recommendations of the International Telecommunication Union in respect of the operation of packet switching networks based on IP-protocol. To implement the main features and functions of the fuzzy control system of quality telecommunication services it is used multilayer feedforward neural network. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=quality%20of%20communication" title="quality of communication">quality of communication</a>, <a href="https://publications.waset.org/abstracts/search?q=IP-telephony" title=" IP-telephony"> IP-telephony</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20set" title=" fuzzy set"> fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20implication" title=" fuzzy implication"> fuzzy implication</a>, <a href="https://publications.waset.org/abstracts/search?q=neural%20network" title=" neural network"> neural network</a> </p> <a href="https://publications.waset.org/abstracts/15543/assessment-the-quality-of-telecommunication-services-by-fuzzy-inferences-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15543.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">468</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17063</span> Robust H∞ State Feedback Control for Discrete Time T-S Fuzzy Systems Based on Fuzzy Lyapunov Function Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Walied%20Hanora">Walied Hanora</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents the problem of robust state feedback H∞ for discrete time nonlinear system represented by Takagi-Sugeno fuzzy systems. Based on fuzzy lyapunov function, the condition ,which is represented in the form of Liner Matrix Inequalities (LMI), guarantees the H∞ performance of the T-S fuzzy system with uncertainties. By comparison with recent literature, this approach will be more relaxed condition. Finally, an example is given to illustrate the proposed result. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20lyapunov%20function" title="fuzzy lyapunov function">fuzzy lyapunov function</a>, <a href="https://publications.waset.org/abstracts/search?q=H%E2%88%9E%20control" title=" H∞ control "> H∞ control </a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20matrix%20inequalities" title=" linear matrix inequalities"> linear matrix inequalities</a>, <a href="https://publications.waset.org/abstracts/search?q=state%20feedback" title=" state feedback"> state feedback</a>, <a href="https://publications.waset.org/abstracts/search?q=T-S%20fuzzy%20systems" title=" T-S fuzzy systems"> T-S fuzzy systems</a> </p> <a href="https://publications.waset.org/abstracts/58045/robust-h-state-feedback-control-for-discrete-time-t-s-fuzzy-systems-based-on-fuzzy-lyapunov-function-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/58045.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">288</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17062</span> Fuzzy Gauge Capability (Cg and Cgk) through Buckley Approach</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Seyed%20Habib%20A.%20Rahmati">Seyed Habib A. Rahmati</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohsen%20Sadegh%20Amalnick"> Mohsen Sadegh Amalnick </a> </p> <p class="card-text"><strong>Abstract:</strong></p> Different terms of the statistical process control (SPC) has sketch in the fuzzy environment. However, measurement system analysis (MSA), as a main branch of the SPC, is rarely investigated in fuzzy area. This procedure assesses the suitability of the data to be used in later stages or decisions of the SPC. Therefore, this research focuses on some important measures of MSA and through a new method introduces the measures in fuzzy environment. In this method, which works based on Buckley approach, imprecision and vagueness nature of the real world measurement are considered simultaneously. To do so, fuzzy version of the gauge capability (Cg and Cgk) are introduced. The method is also explained through example clearly. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=measurement" title="measurement">measurement</a>, <a href="https://publications.waset.org/abstracts/search?q=SPC" title=" SPC"> SPC</a>, <a href="https://publications.waset.org/abstracts/search?q=MSA" title=" MSA"> MSA</a>, <a href="https://publications.waset.org/abstracts/search?q=gauge%20capability%20%28Cg%20and%20Cgk%29" title=" gauge capability (Cg and Cgk)"> gauge capability (Cg and Cgk)</a> </p> <a href="https://publications.waset.org/abstracts/33559/fuzzy-gauge-capability-cg-and-cgk-through-buckley-approach" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/33559.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">650</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17061</span> A Fuzzy Programming Approach for Solving Intuitionistic Fuzzy Linear Fractional Programming Problem</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sujeet%20Kumar%20Singh">Sujeet Kumar Singh</a>, <a href="https://publications.waset.org/abstracts/search?q=Shiv%20Prasad%20Yadav"> Shiv Prasad Yadav</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper develops an approach for solving intuitionistic fuzzy linear fractional programming (IFLFP) problem where the cost of the objective function, the resources, and the technological coefficients are triangular intuitionistic fuzzy numbers. Here, the IFLFP problem is transformed into an equivalent crisp multi-objective linear fractional programming (MOLFP) problem. By using fuzzy mathematical programming approach the transformed MOLFP problem is reduced into a single objective linear programming (LP) problem. The proposed procedure is illustrated through a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=triangular%20intuitionistic%20fuzzy%20number" title="triangular intuitionistic fuzzy number">triangular intuitionistic fuzzy number</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming%20problem" title=" linear programming problem"> linear programming problem</a>, <a href="https://publications.waset.org/abstracts/search?q=multi%20objective%20linear%20programming%20problem" title=" multi objective linear programming problem"> multi objective linear programming problem</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20mathematical%20programming" title=" fuzzy mathematical programming"> fuzzy mathematical programming</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20function" title=" membership function"> membership function</a> </p> <a href="https://publications.waset.org/abstracts/16411/a-fuzzy-programming-approach-for-solving-intuitionistic-fuzzy-linear-fractional-programming-problem" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16411.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">566</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17060</span> Fuzzy Linear Programming Approach for Determining the Production Amounts in Food Industry</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=B.%20G%C3%BCney">B. Güney</a>, <a href="https://publications.waset.org/abstracts/search?q=%C3%87.%20Teke"> Ç. Teke</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In recent years, rapid and correct decision making is crucial for both people and enterprises. However, uncertainty makes decision-making difficult. Fuzzy logic is used for coping with this situation. Thus, fuzzy linear programming models are developed in order to handle uncertainty in objective function and the constraints. In this study, a problem of a factory in food industry is investigated, required data is obtained and the problem is figured out as a fuzzy linear programming model. The model is solved using Zimmerman approach which is one of the approaches for fuzzy linear programming. As a result, the solution gives the amount of production for each product type in order to gain maximum profit. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=food%20industry" title="food industry">food industry</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20linear%20programming" title=" fuzzy linear programming"> fuzzy linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic" title=" fuzzy logic"> fuzzy logic</a>, <a href="https://publications.waset.org/abstracts/search?q=linear%20programming" title=" linear programming "> linear programming </a> </p> <a href="https://publications.waset.org/abstracts/27880/fuzzy-linear-programming-approach-for-determining-the-production-amounts-in-food-industry" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27880.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">650</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17059</span> Design of a Fuzzy Luenberger Observer for Fault Nonlinear System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mounir%20Bekaik">Mounir Bekaik</a>, <a href="https://publications.waset.org/abstracts/search?q=Messaoud%20Ramdani"> Messaoud Ramdani</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We present in this work a new technique of stabilization for fault nonlinear systems. The approach we adopt focus on a fuzzy Luenverger observer. The T-S approximation of the nonlinear observer is based on fuzzy C-Means clustering algorithm to find local linear subsystems. The MOESP identification approach was applied to design an empirical model describing the subsystems state variables. The gain of the observer is given by the minimization of the estimation error through Lyapunov-krasovskii functional and LMI approach. We consider a three tank hydraulic system for an illustrative example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20system" title="nonlinear system">nonlinear system</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy" title=" fuzzy"> fuzzy</a>, <a href="https://publications.waset.org/abstracts/search?q=faults" title=" faults"> faults</a>, <a href="https://publications.waset.org/abstracts/search?q=TS" title=" TS"> TS</a>, <a href="https://publications.waset.org/abstracts/search?q=Lyapunov-Krasovskii" title=" Lyapunov-Krasovskii"> Lyapunov-Krasovskii</a>, <a href="https://publications.waset.org/abstracts/search?q=observer" title=" observer"> observer</a> </p> <a href="https://publications.waset.org/abstracts/47230/design-of-a-fuzzy-luenberger-observer-for-fault-nonlinear-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47230.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">332</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17058</span> Fuzzy Control and Pertinence Functions</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Luiz%20F.%20J.%20Maia">Luiz F. J. Maia</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents an approach to fuzzy control, with the use of new pertinence functions, applied in the case of an inverted pendulum. Appropriate definitions of pertinence functions to fuzzy sets make possible the implementation of the controller with only one control rule, resulting in a smooth control surface. The fuzzy control system can be implemented with analog devices, affording a true real-time performance. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=control%20surface" title="control surface">control surface</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20control" title=" fuzzy control"> fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=Inverted%20pendulum" title=" Inverted pendulum"> Inverted pendulum</a>, <a href="https://publications.waset.org/abstracts/search?q=pertinence%20functions" title=" pertinence functions"> pertinence functions</a> </p> <a href="https://publications.waset.org/abstracts/2467/fuzzy-control-and-pertinence-functions" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2467.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">449</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17057</span> Application of Fuzzy Approach to the Vibration Fault Diagnosis </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jalel%20Khelil">Jalel Khelil</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to improve reliability of Gas Turbine machine especially its generator equipment, a fault diagnosis system based on fuzzy approach is proposed. Three various methods namely K-NN (K-nearest neighbors), F-KNN (Fuzzy K-nearest neighbors) and FNM (Fuzzy nearest mean) are adopted to provide the measurement of relative strength of vibration defaults. Both applications consist of two major steps: Feature extraction and default classification. 09 statistical features are extracted from vibration signals. 03 different classes are used in this study which describes vibrations condition: Normal, unbalance defect, and misalignment defect. The use of the fuzzy approaches and the classification results are discussed. Results show that these approaches yield high successful rates of vibration default classification. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20diagnosis" title="fault diagnosis">fault diagnosis</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20classification%20k-nearest%20neighbor" title=" fuzzy classification k-nearest neighbor"> fuzzy classification k-nearest neighbor</a>, <a href="https://publications.waset.org/abstracts/search?q=vibration" title=" vibration "> vibration </a> </p> <a href="https://publications.waset.org/abstracts/3115/application-of-fuzzy-approach-to-the-vibration-fault-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/3115.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17056</span> Operational Matrix Method for Fuzzy Fractional Reaction Diffusion Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Kumar">Sachin Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy fractional diffusion equation is widely useful to depict different physical processes arising in physics, biology, and hydrology. The motive of this article is to deal with the fuzzy fractional diffusion equation. We study a mathematical model of fuzzy space-time fractional diffusion equation in which unknown function, coefficients, and initial-boundary conditions are fuzzy numbers. First, we find out a fuzzy operational matrix of Legendre polynomial of Caputo type fuzzy fractional derivative having a non-singular Mittag-Leffler kernel. The main advantages of this method are that it reduces the fuzzy fractional partial differential equation (FFPDE) to a system of fuzzy algebraic equations from which we can find the solution of the problem. The feasibility of our approach is shown by some numerical examples. Hence, our method is suitable to deal with FFPDE and has good accuracy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20PDE" title="fractional PDE">fractional PDE</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20valued%20function" title=" fuzzy valued function"> fuzzy valued function</a>, <a href="https://publications.waset.org/abstracts/search?q=diffusion%20equation" title=" diffusion equation"> diffusion equation</a>, <a href="https://publications.waset.org/abstracts/search?q=Legendre%20polynomial" title=" Legendre polynomial"> Legendre polynomial</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20method" title=" spectral method"> spectral method</a> </p> <a href="https://publications.waset.org/abstracts/125273/operational-matrix-method-for-fuzzy-fractional-reaction-diffusion-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/125273.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">201</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17055</span> H∞ Takagi-Sugeno Fuzzy State-Derivative Feedback Control Design for Nonlinear Dynamic Systems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Kaewpraek">N. Kaewpraek</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Assawinchaichote"> W. Assawinchaichote </a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper considers an <em>H</em><sub>&infin;</sub> TS fuzzy state-derivative feedback controller for a class of nonlinear dynamical systems. A Takagi-Sugeno (TS) fuzzy model is used to approximate a class of nonlinear dynamical systems. Then, based on a linear matrix inequality (LMI) approach, we design an <em>H</em><sub>&infin; </sub>TS fuzzy state-derivative feedback control law which guarantees <em>L</em><sub>2</sub>-gain of the mapping from the exogenous input noise to the regulated output to be less or equal to a prescribed value. We derive a sufficient condition such that the system with the fuzzy controller is asymptotically stable and <em>H</em><sub>&infin;</sub> performance is satisfied. Finally, we provide and simulate a numerical example is provided to illustrate the stability and the effectiveness of the proposed controller. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=h-infinity%20fuzzy%20control" title="h-infinity fuzzy control">h-infinity fuzzy control</a>, <a href="https://publications.waset.org/abstracts/search?q=an%20LMI%20approach" title=" an LMI approach"> an LMI approach</a>, <a href="https://publications.waset.org/abstracts/search?q=Takagi-Sugano%20%28TS%29%20fuzzy%20system" title=" Takagi-Sugano (TS) fuzzy system"> Takagi-Sugano (TS) fuzzy system</a>, <a href="https://publications.waset.org/abstracts/search?q=the%20photovoltaic%20systems" title=" the photovoltaic systems"> the photovoltaic systems</a> </p> <a href="https://publications.waset.org/abstracts/37998/h-takagi-sugeno-fuzzy-state-derivative-feedback-control-design-for-nonlinear-dynamic-systems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/37998.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">384</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17054</span> Sensitivity Analysis in Fuzzy Linear Programming Problems</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20H.%20Nasseri">S. H. Nasseri</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Ebrahimnejad"> A. Ebrahimnejad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Fuzzy set theory has been applied to many fields, such as operations research, control theory, and management sciences. In this paper, we consider two classes of fuzzy linear programming (FLP) problems: Fuzzy number linear programming and linear programming with trapezoidal fuzzy variables problems. We state our recently established results and develop fuzzy primal simplex algorithms for solving these problems. Finally, we give illustrative examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20linear%20programming" title="fuzzy linear programming">fuzzy linear programming</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20numbers" title=" fuzzy numbers"> fuzzy numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=duality" title=" duality"> duality</a>, <a href="https://publications.waset.org/abstracts/search?q=sensitivity%20analysis" title=" sensitivity analysis"> sensitivity analysis</a> </p> <a href="https://publications.waset.org/abstracts/16916/sensitivity-analysis-in-fuzzy-linear-programming-problems" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17053</span> Fuzzy Logic Classification Approach for Exponential Data Set in Health Care System for Predication of Future Data</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manish%20Pandey">Manish Pandey</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurinderjit%20Kaur"> Gurinderjit Kaur</a>, <a href="https://publications.waset.org/abstracts/search?q=Meenu%20Talwar"> Meenu Talwar</a>, <a href="https://publications.waset.org/abstracts/search?q=Sachin%20Chauhan"> Sachin Chauhan</a>, <a href="https://publications.waset.org/abstracts/search?q=Jagbir%20Gill"> Jagbir Gill</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Health-care management systems are a unit of nice connection as a result of the supply a straightforward and fast management of all aspects relating to a patient, not essentially medical. What is more, there are unit additional and additional cases of pathologies during which diagnosing and treatment may be solely allotted by victimization medical imaging techniques. With associate ever-increasing prevalence, medical pictures area unit directly acquired in or regenerate into digital type, for his or her storage additionally as sequent retrieval and process. Data Mining is the process of extracting information from large data sets through using algorithms and Techniques drawn from the field of Statistics, Machine Learning and Data Base Management Systems. Forecasting may be a prediction of what's going to occur within the future, associated it's an unsure method. Owing to the uncertainty, the accuracy of a forecast is as vital because the outcome foretold by foretelling the freelance variables. A forecast management should be wont to establish if the accuracy of the forecast is within satisfactory limits. Fuzzy regression strategies have normally been wont to develop shopper preferences models that correlate the engineering characteristics with shopper preferences relating to a replacement product; the patron preference models offer a platform, wherever by product developers will decide the engineering characteristics so as to satisfy shopper preferences before developing the merchandise. Recent analysis shows that these fuzzy regression strategies area units normally will not to model client preferences. We tend to propose a Testing the strength of Exponential Regression Model over regression toward the mean Model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=health-care%20management%20systems" title="health-care management systems">health-care management systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression" title=" fuzzy regression"> fuzzy regression</a>, <a href="https://publications.waset.org/abstracts/search?q=data%20mining" title=" data mining"> data mining</a>, <a href="https://publications.waset.org/abstracts/search?q=forecasting" title=" forecasting"> forecasting</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20membership%20function" title=" fuzzy membership function"> fuzzy membership function</a> </p> <a href="https://publications.waset.org/abstracts/46811/fuzzy-logic-classification-approach-for-exponential-data-set-in-health-care-system-for-predication-of-future-data" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/46811.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">279</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17052</span> Some New Hesitant Fuzzy Sets Operator</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=G.%20S.%20Thakur">G. S. Thakur </a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, four new operators (O1, O2, O3, O4) are proposed, defined and considered to study the new properties and identities on hesitant fuzzy sets. These operators are useful for different operation on hesitant fuzzy sets. The various theorems are proved using the new operators. The study of the proposed new operators has opened a new area of research and applications. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=vague%20sets" title="vague sets">vague sets</a>, <a href="https://publications.waset.org/abstracts/search?q=hesitant%20fuzzy%20sets" title=" hesitant fuzzy sets"> hesitant fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=intuitionistic%20fuzzy%20set" title=" intuitionistic fuzzy set"> intuitionistic fuzzy set</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20sets" title=" fuzzy sets"> fuzzy sets</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20multisets" title=" fuzzy multisets "> fuzzy multisets </a> </p> <a href="https://publications.waset.org/abstracts/5174/some-new-hesitant-fuzzy-sets-operator" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5174.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">285</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17051</span> Optimal Tuning of a Fuzzy Immune PID Parameters to Control a Delayed System</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Gherbi">S. Gherbi</a>, <a href="https://publications.waset.org/abstracts/search?q=F.%20Bouchareb"> F. Bouchareb</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the novel intelligent bio-inspired control strategies, it presents a novel approach based on an optimal fuzzy immune PID parameters tuning, it is a combination of a PID controller, inspired by the human immune mechanism with fuzzy logic. Such controller offers more possibilities to deal with the delayed systems control difficulties due to the delay term. Indeed, we use an optimization approach to tune the four parameters of the controller in addition to the fuzzy function; the obtained controller is implemented in a modified Smith predictor structure, which is well known that it is the most efficient to the control of delayed systems. The application of the presented approach to control a three tank delay system shows good performances and proves the efficiency of the method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=delayed%20systems" title="delayed systems">delayed systems</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20immune%20PID" title=" fuzzy immune PID"> fuzzy immune PID</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=Smith%20predictor" title=" Smith predictor"> Smith predictor</a> </p> <a href="https://publications.waset.org/abstracts/10235/optimal-tuning-of-a-fuzzy-immune-pid-parameters-to-control-a-delayed-system" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/10235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">433</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17050</span> A Different Approach to Optimize Fuzzy Membership Functions with Extended FIR Filter</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jun-Ho%20Chung">Jun-Ho Chung</a>, <a href="https://publications.waset.org/abstracts/search?q=Sung-Hyun%20Yoo"> Sung-Hyun Yoo</a>, <a href="https://publications.waset.org/abstracts/search?q=In-Hwan%20Choi"> In-Hwan Choi</a>, <a href="https://publications.waset.org/abstracts/search?q=Hyun-Kook%20Lee"> Hyun-Kook Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Moon-Kyu%20Song"> Moon-Kyu Song</a>, <a href="https://publications.waset.org/abstracts/search?q=Choon-Ki%20Ahn"> Choon-Ki Ahn</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The extended finite impulse response (EFIR) filter is addressed to optimize membership functions (MFs) of the fuzzy model that has strong nonlinearity. MFs are important parts of the fuzzy logic system (FLS) and, thus optimizing MFs of FLS is one of approaches to improve the performance of output. We employ the EFIR as an alternative optimization option to nonlinear fuzzy model. The performance of EFIR is demonstrated on a fuzzy cruise control via a numerical example. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20logic%20system" title="fuzzy logic system">fuzzy logic system</a>, <a href="https://publications.waset.org/abstracts/search?q=optimization" title=" optimization"> optimization</a>, <a href="https://publications.waset.org/abstracts/search?q=membership%20function" title=" membership function"> membership function</a>, <a href="https://publications.waset.org/abstracts/search?q=extended%20FIR%20filter" title=" extended FIR filter"> extended FIR filter</a> </p> <a href="https://publications.waset.org/abstracts/42104/a-different-approach-to-optimize-fuzzy-membership-functions-with-extended-fir-filter" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/42104.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">723</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">17049</span> Fuzzy Approach for Fault Tree Analysis of Water Tube Boiler</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Syed%20Ahzam%20Tariq">Syed Ahzam Tariq</a>, <a href="https://publications.waset.org/abstracts/search?q=Atharva%20Modi"> Atharva Modi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a probabilistic analysis of the safety of water tube boilers using fault tree analysis (FTA). A fault tree has been constructed by considering all possible areas where a malfunction could lead to a boiler accident. Boiler accidents are relatively rare, causing a scarcity of data. The fuzzy approach is employed to perform a quantitative analysis, wherein theories of fuzzy logic are employed in conjunction with expert elicitation to calculate failure probabilities. The Fuzzy Fault Tree Analysis (FFTA) provides a scientific and contingent method to forecast and prevent accidents. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fault%20tree%20analysis%20water%20tube%20boiler" title="fault tree analysis water tube boiler">fault tree analysis water tube boiler</a>, <a href="https://publications.waset.org/abstracts/search?q=fuzzy%20probability%20score" title=" fuzzy probability score"> fuzzy probability score</a>, <a href="https://publications.waset.org/abstracts/search?q=failure%20probability" title=" failure probability"> failure probability</a> </p> <a href="https://publications.waset.org/abstracts/140431/fuzzy-approach-for-fault-tree-analysis-of-water-tube-boiler" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/140431.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">127</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=569">569</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=570">570</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=fuzzy%20regression%20approach&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10