CINXE.COM

Search results for: Biplab Singha

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: Biplab Singha</title> <meta name="description" content="Search results for: Biplab Singha"> <meta name="keywords" content="Biplab Singha"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="Biplab Singha" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="Biplab Singha"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 14</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: Biplab Singha</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">14</span> The Various Forms of a Soft Set and Its Extension in Medical Diagnosis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Biplab%20Singha">Biplab Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Mausumi%20Sen"> Mausumi Sen</a>, <a href="https://publications.waset.org/abstracts/search?q=Nidul%20Sinha"> Nidul Sinha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In order to deal with the impreciseness and uncertainty of a system, D. Molodtsov has introduced the concept of ‘Soft Set’ in the year 1999. Since then, a number of related definitions have been conceptualized. This paper includes a study on various forms of Soft Sets with examples. The paper contains the concepts of domain and co-domain of a soft set, conversion to one-one and onto function, matrix representation of a soft set and its relation with one-one function, upper and lower triangular matrix, transpose and Kernel of a soft set. This paper also gives the idea of the extension of soft sets in medical diagnosis. Here, two soft sets related to disease and symptoms are considered and using AND operation and OR operation, diagnosis of the disease is calculated through appropriate examples. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=kernel%20of%20a%20soft%20set" title="kernel of a soft set">kernel of a soft set</a>, <a href="https://publications.waset.org/abstracts/search?q=soft%20set" title=" soft set"> soft set</a>, <a href="https://publications.waset.org/abstracts/search?q=transpose%20of%20a%20soft%20set" title=" transpose of a soft set"> transpose of a soft set</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20and%20lower%20triangular%20matrix%20of%20a%20soft%20set" title=" upper and lower triangular matrix of a soft set"> upper and lower triangular matrix of a soft set</a> </p> <a href="https://publications.waset.org/abstracts/59585/the-various-forms-of-a-soft-set-and-its-extension-in-medical-diagnosis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/59585.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">344</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">13</span> Magnetic Braking System of an Elevator in the Event of Sudden Breakage of the Hoisting Cable</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Amita%20Singha">Amita Singha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The project describes the scope of magnetic braking. The potential applications of the braking system can be a de-accelerating system to increase the safety of an elevator or any guided rail transportation system. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=boost%20and%20buck%20converter" title="boost and buck converter">boost and buck converter</a>, <a href="https://publications.waset.org/abstracts/search?q=electromagnet" title=" electromagnet"> electromagnet</a>, <a href="https://publications.waset.org/abstracts/search?q=elevator" title=" elevator"> elevator</a>, <a href="https://publications.waset.org/abstracts/search?q=ferromagnetic%20material" title=" ferromagnetic material"> ferromagnetic material</a>, <a href="https://publications.waset.org/abstracts/search?q=sensor" title=" sensor"> sensor</a>, <a href="https://publications.waset.org/abstracts/search?q=solenoid" title=" solenoid"> solenoid</a>, <a href="https://publications.waset.org/abstracts/search?q=timer" title=" timer"> timer</a> </p> <a href="https://publications.waset.org/abstracts/2037/magnetic-braking-system-of-an-elevator-in-the-event-of-sudden-breakage-of-the-hoisting-cable" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/2037.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">439</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">12</span> Performance Improvement of UWB Corrugated Antipodal Vivaldi Antenna Using Spiral Shape Negative Index Metamaterial</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rahul%20Singha">Rahul Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=D.%20Vakula"> D. Vakula</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a corrugated antipodal vivaldi antenna with improved performance by using negative index metamaterial (NIM) of the Archimedean spiral design. A single layer NIM piece is placed perpendicular middle of the two arm of the proposed antenna. The antenna size is 30×60×0.787 mm3 operating at 8GHz. The simulated results of NIM corrugated antipodal vivaldi antenna show that the gain and directivity has increased up to 1.2dB and 1dB respectively. The HPBW is increased by 90 with the reflection coefficient less than ‒10 dB from 4.7 GHz to 11 GHz for UWB application. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Negative%20Index%20Metamaterial%20%28NIM%29" title="Negative Index Metamaterial (NIM)">Negative Index Metamaterial (NIM)</a>, <a href="https://publications.waset.org/abstracts/search?q=Ultra%20Wide%20Band%20%28UWB%29" title=" Ultra Wide Band (UWB)"> Ultra Wide Band (UWB)</a>, <a href="https://publications.waset.org/abstracts/search?q=Half%20Power%20Beam%20Width%20%28HPBW%29" title=" Half Power Beam Width (HPBW)"> Half Power Beam Width (HPBW)</a>, <a href="https://publications.waset.org/abstracts/search?q=vivaldi%20antenna" title=" vivaldi antenna"> vivaldi antenna</a> </p> <a href="https://publications.waset.org/abstracts/15963/performance-improvement-of-uwb-corrugated-antipodal-vivaldi-antenna-using-spiral-shape-negative-index-metamaterial" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/15963.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">622</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">11</span> Dynamical Analysis of the Fractional-Order Mathematical Model of Hashimoto’s Thyroiditis</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Neelam%20Singha">Neelam Singha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The present work intends to analyze the system dynamics of Hashimoto’s thyroiditis with the assistance of fractional calculus. Hashimoto’s thyroiditis or chronic lymphocytic thyroiditis is an autoimmune disorder in which the immune system attacks the thyroid gland, which gradually results in interrupting the normal thyroid operation. Consequently, the feedback control of the system gets disrupted due to thyroid follicle cell lysis. And, the patient perceives life-threatening clinical conditions like goiter, hyperactivity, euthyroidism, hyperthyroidism, etc. In this work, we aim to obtain the approximate solution to the posed fractional-order problem describing Hashimoto’s thyroiditis. We employ the Adomian decomposition method to solve the system of fractional-order differential equations, and the solutions obtained shall be useful to provide information about the effect of medical care. The numerical technique is executed in an organized manner to furnish the associated details of the progression of the disease and to visualize it graphically with suitable plots. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=adomian%20decomposition%20method" title="adomian decomposition method">adomian decomposition method</a>, <a href="https://publications.waset.org/abstracts/search?q=fractional%20derivatives" title=" fractional derivatives"> fractional derivatives</a>, <a href="https://publications.waset.org/abstracts/search?q=Hashimoto%27s%20thyroiditis" title=" Hashimoto&#039;s thyroiditis"> Hashimoto&#039;s thyroiditis</a>, <a href="https://publications.waset.org/abstracts/search?q=mathematical%20modeling" title=" mathematical modeling"> mathematical modeling</a> </p> <a href="https://publications.waset.org/abstracts/139240/dynamical-analysis-of-the-fractional-order-mathematical-model-of-hashimotos-thyroiditis" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/139240.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">211</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">10</span> Simulation Study of the Microwave Heating of the Hematite and Coal Mixture</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasenjit%20Singha">Prasenjit Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sunil%20Yadav"> Sunil Yadav</a>, <a href="https://publications.waset.org/abstracts/search?q=Soumya%20Ranjan%20Mohantry"> Soumya Ranjan Mohantry</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Shukla"> Ajay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Temperature distribution in the hematite ore mixed with 7.5% coal was predicted by solving a 1-D heat conduction equation using an implicit finite difference approach. In this work, it was considered a square slab of 20 cm x 20 cm, which assumed the coal to be uniformly mixed with hematite ore. It was solved the equations with the use of MATLAB 2018a software. Heat transfer effects in this 1D dimensional slab convective and the radiative boundary conditions are also considered. Temperature distribution obtained inside hematite slab by considering microwave heating time, thermal conductivity, heat capacity, carbon percentage, sample dimensions, and many other factors such as penetration depth, permittivity, and permeability of coal and hematite ore mixtures. The resulting temperature profile can be used as a guiding tool for optimizing the microwave-assisted carbothermal reduction process of hematite slab was extended to other dimensions as well, viz., 1 cm x 1 cm, 5 cm x 5 cm, 10 cm x 10 cm, 20 cm x 20 cm. The model predictions are in good agreement with experimental results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hematite%20ore" title="hematite ore">hematite ore</a>, <a href="https://publications.waset.org/abstracts/search?q=coal" title=" coal"> coal</a>, <a href="https://publications.waset.org/abstracts/search?q=microwave%20processing" title=" microwave processing"> microwave processing</a>, <a href="https://publications.waset.org/abstracts/search?q=heat%20transfer" title=" heat transfer"> heat transfer</a>, <a href="https://publications.waset.org/abstracts/search?q=implicit%20method" title=" implicit method"> implicit method</a>, <a href="https://publications.waset.org/abstracts/search?q=temperature%20distribution" title=" temperature distribution"> temperature distribution</a> </p> <a href="https://publications.waset.org/abstracts/148879/simulation-study-of-the-microwave-heating-of-the-hematite-and-coal-mixture" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/148879.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">9</span> Development of a Thermodynamic Model for Ladle Metallurgy Steel Making Processes Using Factsage and Its Macro Facility</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Prasenjit%20Singha">Prasenjit Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Ajay%20Kumar%20Shukla"> Ajay Kumar Shukla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> To produce high-quality steel in larger volumes, dynamic control of composition and temperature throughout the process is essential. In this paper, we developed a mass transfer model based on thermodynamics to simulate the ladle metallurgy steel-making process using FactSage and its macro facility. The overall heat and mass transfer processes consist of one equilibrium chamber, two non-equilibrium chambers, and one adiabatic reactor. The flow of material, as well as heat transfer, occurs across four interconnected unit chambers and a reactor. We used the macro programming facility of FactSage™ software to understand the thermochemical model of the secondary steel making process. In our model, we varied the oxygen content during the process and studied their effect on the composition of the final hot metal and slag. The model has been validated with respect to the plant data for the steel composition, which is similar to the ladle metallurgy steel-making process in the industry. The resulting composition profile serves as a guiding tool to optimize the process of ladle metallurgy in steel-making industries. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=desulphurization" title="desulphurization">desulphurization</a>, <a href="https://publications.waset.org/abstracts/search?q=degassing" title=" degassing"> degassing</a>, <a href="https://publications.waset.org/abstracts/search?q=factsage" title=" factsage"> factsage</a>, <a href="https://publications.waset.org/abstracts/search?q=reactor" title=" reactor"> reactor</a> </p> <a href="https://publications.waset.org/abstracts/137291/development-of-a-thermodynamic-model-for-ladle-metallurgy-steel-making-processes-using-factsage-and-its-macro-facility" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/137291.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">217</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">8</span> Building a Dynamic News Category Network for News Sources Recommendations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Swati%20Gupta">Swati Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Shagun%20Sodhani"> Shagun Sodhani</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhaval%20Patel"> Dhaval Patel</a>, <a href="https://publications.waset.org/abstracts/search?q=Biplab%20Banerjee"> Biplab Banerjee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> It is generic that news sources publish news in different broad categories. These categories can either be generic such as Business, Sports, etc. or time-specific such as World Cup 2015 and Nepal Earthquake or both. It is up to the news agencies to build the categories. Extracting news categories automatically from numerous online news sources is expected to be helpful in many applications including news source recommendations and time specific news category extraction. To address this issue, existing systems like DMOZ directory and Yahoo directory are mostly considered though they are mostly human annotated and do not consider the time dynamism of categories of news websites. As a remedy, we propose an approach to automatically extract news category URLs from news websites in this paper. News category URL is a link which points to a category in news websites. We use the news category URL as a prior knowledge to develop a news source recommendation system which contains news sources listed in various categories in order of ranking. In addition, we also propose an approach to rank numerous news sources in different categories using various parameters like Traffic Based Website Importance, Social media Analysis and Category Wise Article Freshness. Experimental results on category URLs captured from GDELT project during April 2016 to December 2016 show the adequacy of the proposed method. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=news%20category" title="news category">news category</a>, <a href="https://publications.waset.org/abstracts/search?q=category%20network" title=" category network"> category network</a>, <a href="https://publications.waset.org/abstracts/search?q=news%20sources" title=" news sources"> news sources</a>, <a href="https://publications.waset.org/abstracts/search?q=ranking" title=" ranking"> ranking</a> </p> <a href="https://publications.waset.org/abstracts/74473/building-a-dynamic-news-category-network-for-news-sources-recommendations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/74473.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">386</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">7</span> Evaluation of High Temperature Wear Performance of as Cladded and Tig Re-Melting Stellite 6 Cladded Overlay on Aisi-304L Using SMAW Process</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Manjit%20Singha">Manjit Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Sandeep%20Singh%20Sandhu"> Sandeep Singh Sandhu</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20S.%20Shahi"> A. S. Shahi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Stellite 6 is cobalt based superalloy used for protective coatings. It is used to improve the wear performance of stainless steel engineering components subjected to harsh environmental conditions. This paper reports the high temperature wear analysis of satellite 6 cladded on AISI 304 L substrate using SMAW process. Bead on plate experiment was carried out by varying current and electrode manipulation techniques to optimize the dilution and hardness. 80 Amp current and weaving technique was found to be the optimum set of parameters for overlaying which were further used for multipass multilayer cladding on two plates of AISI 304 L substrate. On the first plate, seven layers seven passes of stellite 6 was overlaid which was used in as cladded form and the second plate was overlaid with five layers five passes of satellite 6 with further TIG remelting. The wear performance was examined for normal temperature environmental condition and harsh temperature environmental condition. The satellite 6 coating with TIG remelting was found to be better in both the conditions even with lesser metal deposition due to its finer grain structure. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=surfacing" title="surfacing">surfacing</a>, <a href="https://publications.waset.org/abstracts/search?q=stellite%206" title=" stellite 6"> stellite 6</a>, <a href="https://publications.waset.org/abstracts/search?q=dilution" title=" dilution"> dilution</a>, <a href="https://publications.waset.org/abstracts/search?q=overlay" title=" overlay"> overlay</a>, <a href="https://publications.waset.org/abstracts/search?q=SMAW" title=" SMAW"> SMAW</a>, <a href="https://publications.waset.org/abstracts/search?q=high-temperature%20frictional%20wear" title=" high-temperature frictional wear"> high-temperature frictional wear</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-structure" title=" micro-structure"> micro-structure</a>, <a href="https://publications.waset.org/abstracts/search?q=micro-hardness" title=" micro-hardness"> micro-hardness</a> </p> <a href="https://publications.waset.org/abstracts/20712/evaluation-of-high-temperature-wear-performance-of-as-cladded-and-tig-re-melting-stellite-6-cladded-overlay-on-aisi-304l-using-smaw-process" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20712.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">293</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">6</span> Development of Cost-Effective Protocol for Preparation of Dehydrated Paneer (Indian Cottage Cheese) Using Freeze Drying</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Sadhana%20Sharma">Sadhana Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20K.%20Nema"> P. K. Nema</a>, <a href="https://publications.waset.org/abstracts/search?q=Siddhartha%20Singha"> Siddhartha Singha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Paneer or Indian cottage cheese is an acid and heat coagulated milk product, highly perishable because of high moisture (58-60 %). Typically paneer is marble to light creamy white in appearance. A good paneer should have cohesive body with slight sponginess or springiness. The texture must be smooth and velvety with close-knit compactness. It should have pleasing mild acidic, slightly sweet and nutty flavour. Consumers today demand simple to prepare, convenient, healthy and natural foods. Dehydrated paneer finds numerous ways to be used. It can be used in curry preparation similar to paneer-in-curry, a delicacy in Indian cuisine. It may be added to granola/ trail mix yielding a high energy snack. If grounded to a powder, it may be used as a cheesy spice mix or used as popcorn seasoning. Dried paneer powder may be added to pizza dough or to a white sauce to turn it into a paneer sauce. Drying of such food hydrogels by conventional methods is associated with several undesirable characteristics including case hardening, longer drying time, poor rehydration ability and fat loss during drying. The present study focuses on developing cost-effective protocol for freeze-drying of paneer. The dehydrated product would be shelf-stable and can be rehydrated to its original state having flavor and texture comparable to the fresh form. Moreover, the final product after rehydration would be more fresh and softer than its frozen counterparts. The developed product would be shelf-stable at room temperature without any addition of preservatives. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=color" title="color">color</a>, <a href="https://publications.waset.org/abstracts/search?q=freeze-drying" title=" freeze-drying"> freeze-drying</a>, <a href="https://publications.waset.org/abstracts/search?q=paneer" title=" paneer"> paneer</a>, <a href="https://publications.waset.org/abstracts/search?q=texture" title=" texture"> texture</a> </p> <a href="https://publications.waset.org/abstracts/81565/development-of-cost-effective-protocol-for-preparation-of-dehydrated-paneer-indian-cottage-cheese-using-freeze-drying" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81565.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">159</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5</span> Reduplication in Dhiyan: An Indo-Aryan Language of Assam</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=S.%20Sulochana%20Singha">S. Sulochana Singha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Dhiyan or Dehan is the name of the community and language spoken by the Koch-Rajbangshi people of Barak Valley of Assam. Ethnically, they are Mongoloids, and their language belongs to the Indo-Aryan language family. However, Dhiyan is absent in any classification of Indo-Aryan languages. So the classification of Dhiyan language under the Indo-Aryan language family is completely based on the shared typological features of the other Indo-Aryan languages. Typologically, Dhiyan is an agglutinating language, and it shares many features of Indo-Aryan languages like presence of aspirated voiced stops, non-tonal, verb-person agreement, adjectives as different word class, prominent tense and subject object verb word order. Reduplication is a productive word-formation process in Dhiyan. Besides it also expresses plurality, intensification, and distributive. Generally, reduplication in Dhiyan can be at the morphological or lexical level. Morphological reduplication in Dhiyan involves expressives which includes onomatopoeias, sound symbolism, idiophones, and imitatives. Lexical reduplication in the language can be formed by echo formations and word reduplication. Echo formation in Dhiyan is formed by partial repetition from the base word which can be either consonant alternation or vowel alternation. The consonant alternation is basically found in onset position while the alternation of vowel is basically found in open syllable particularly in final syllable. Word reduplication involves reduplication of nouns, interrogatives, adjectives, and numerals which further can be class changing or class maintaining reduplication. The process of reduplication can be partial or complete whether it is lexical or morphological. The present paper is an attempt to describe some aspects of the formation, function, and usage of reduplications in Dhiyan which is mainly spoken in ten villages in the Eastern part of Barak River in the Cachar District of Assam. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Barak-Valley" title="Barak-Valley">Barak-Valley</a>, <a href="https://publications.waset.org/abstracts/search?q=Dhiyan" title=" Dhiyan"> Dhiyan</a>, <a href="https://publications.waset.org/abstracts/search?q=Indo-Aryan" title=" Indo-Aryan"> Indo-Aryan</a>, <a href="https://publications.waset.org/abstracts/search?q=reduplication" title=" reduplication"> reduplication</a> </p> <a href="https://publications.waset.org/abstracts/80714/reduplication-in-dhiyan-an-indo-aryan-language-of-assam" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80714.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">216</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">4</span> Dual Thermoresponsive Polyzwitterionic Core-Shell Microgels and Study of Their Anti-Fouling Effect</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Saha">P. Saha</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Ganguly"> R. Ganguly</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20K%20.Singha"> N. K .Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20Pich"> A. Pich</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Microgel, a smart class of material, has drawn attention in the past few years due to its response to external stimuli like temperature, pH, and ionic strength of the solution. Among them, one type of polymer becomes soluble, and the other becomes insoluble in water upon heating displaying upper critical solution temperature (UCST) (e.g., polysulfobetaine, PSB) and lower critical solution temperature (LCST) (e.g., poly(N-vinylcaprolactam, PVCL)) respectively. Polyzwitterions, electrically neutral polymers are biocompatible, biodegradable, and non-cytotoxic in nature, and presence of zwitterionic pendant group in the main backbone makes them stable against temperature and pH variations and strong hydration capability in salt solution promotes them to be used as interfacial bio-adhesion resistance material. Majority of zwitterionic microgels have been synthesized in mini- emulsion technique using free radical polymerization approach. Here, a new route to synthesize dual thermo-responsive PVCL microgels decorated with appreciable amount of zwitterionic PSB chains was developed by a purely water-based surfactant-free reversible addition–fragmentation chain transfer (RAFT) precipitation polymerization. PSB macro-RAFTs having different molecular weights were synthesized and utilized for surface-grafting with PVCL microgels varying the macro-RAFT concentration using N,N′-methylenebis(acrylamide) (BIS) as cross-linker. Increasing the PSB concentration in the PVCL microgels resulted in a linear increase in UCST but decrease in hydrodynamic radius due to strong intrachain coulombic attraction forces acting between the opposite charges present in the zwitterionic groups. Anti- fouling effect was observed on addition of BSA protein solution on the microgel-coated membrane surfaces as studied by fluorescence spectrophotoscopy. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=microgels" title="microgels">microgels</a>, <a href="https://publications.waset.org/abstracts/search?q=polyzwitterions" title=" polyzwitterions"> polyzwitterions</a>, <a href="https://publications.waset.org/abstracts/search?q=upper%20critical%20solution%20temperature-lower%20critical%20solution%20temperature" title=" upper critical solution temperature-lower critical solution temperature"> upper critical solution temperature-lower critical solution temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=UCST-LCST" title=" UCST-LCST"> UCST-LCST</a>, <a href="https://publications.waset.org/abstracts/search?q=ionic%20crosslinking" title=" ionic crosslinking"> ionic crosslinking</a> </p> <a href="https://publications.waset.org/abstracts/120454/dual-thermoresponsive-polyzwitterionic-core-shell-microgels-and-study-of-their-anti-fouling-effect" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/120454.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">116</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">3</span> Systematic Study of Structure Property Relationship in Highly Crosslinked Elastomers</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Natarajan%20Ramasamy">Natarajan Ramasamy</a>, <a href="https://publications.waset.org/abstracts/search?q=Gurulingamurthy%20Haralur"> Gurulingamurthy Haralur</a>, <a href="https://publications.waset.org/abstracts/search?q=Ramesh%20Nivarthu"> Ramesh Nivarthu</a>, <a href="https://publications.waset.org/abstracts/search?q=Nikhil%20Kumar%20Singha"> Nikhil Kumar Singha</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Elastomers are polymeric materials with varied backbone architectures ranging from linear to dendrimeric structures and wide varieties of monomeric repeat units. These elastomers show strongly viscous and weakly elastic when it is not cross-linked. But when crosslinked, based on the extent the properties of these elastomers can range from highly flexible to highly stiff nature. Lightly cross-linked systems are well studied and reported. Understanding the nature of highly cross-linked rubber based upon chemical structure and architecture is critical for varieties of applications. One of the critical parameters is cross-link density. In the current work, we have studied the highly cross-linked state of linear, lightly branched to star-shaped branched elastomers and determined the cross-linked density by using different models. Change in hardness, shift in Tg, change in modulus and swelling behavior were measured experimentally as a function of the extent of curing. These properties were analyzed using varied models to determine cross-link density. We used hardness measurements to examine cure time. Hardness to the extent of curing relationship is determined. It is well known that micromechanical transitions like Tg and storage modulus are related to the extent of crosslinking. The Tg of the elastomer in different crosslinked state was determined by DMA, and based on plateau modulus the crosslink density is estimated by using Nielsen’s model. Usually for lightly crosslinked systems, based on equilibrium swelling ratio in solvent the cross link density is estimated by using Flory–Rhener model. When it comes to highly crosslinked system, Flory-Rhener model is not valid because of smaller chain length. So models based on the assumption of polymer as a Non-Gaussian chain like 1) Helmis–Heinrich–Straube (HHS) model, 2) Gloria M.gusler and Yoram Cohen Model, 3) Barbara D. Barr-Howell and Nikolaos A. Peppas model is used for estimating crosslink density. In this work, correction factors are determined to the existing models and based upon it structure-property relationship of highly crosslinked elastomers was studied. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=dynamic%20mechanical%20analysis" title="dynamic mechanical analysis">dynamic mechanical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=glass%20transition%20temperature" title=" glass transition temperature"> glass transition temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=parts%20per%20hundred%20grams%20of%20rubber" title=" parts per hundred grams of rubber"> parts per hundred grams of rubber</a>, <a href="https://publications.waset.org/abstracts/search?q=crosslink%20density" title=" crosslink density"> crosslink density</a>, <a href="https://publications.waset.org/abstracts/search?q=number%20of%20networks%20per%20unit%20volume%20of%20elastomer" title=" number of networks per unit volume of elastomer"> number of networks per unit volume of elastomer</a> </p> <a href="https://publications.waset.org/abstracts/87235/systematic-study-of-structure-property-relationship-in-highly-crosslinked-elastomers" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/87235.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">165</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">2</span> The First Complete Mitochondrial Genome of Melon Thrips, Thrips palmi (Thripinae: Thysanoptera): Vector for Tospoviruses</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kaomud%20Tyagi">Kaomud Tyagi</a>, <a href="https://publications.waset.org/abstracts/search?q=Rajasree%20Chakraborty"> Rajasree Chakraborty</a>, <a href="https://publications.waset.org/abstracts/search?q=Shantanu%20Kundu"> Shantanu Kundu</a>, <a href="https://publications.waset.org/abstracts/search?q=Devkant%20Singha"> Devkant Singha</a>, <a href="https://publications.waset.org/abstracts/search?q=Kailash%20Chandra"> Kailash Chandra</a>, <a href="https://publications.waset.org/abstracts/search?q=Vikas%20Kumar"> Vikas Kumar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The melon thrips, Thrips palmi is a serious pest of a wide range of agriculture crops and also act as vectors for plant viruses (genus Tospovirus, family Bunyaviridae). More molecular data on this species is required to understand the cryptic speciation and evolutionary affiliations. Mitochondrial genomes have been widely used in phylogenetic and evolutionary studies in insect. So far, mitogenomes of five thrips species (Anaphothrips obscurus, Frankliniella intonsa, Frankliniella occidentalis, Scirtothrips dorsalis and Thrips imaginis) is available in the GenBank database. In this study, we sequenced the first complete mitogenome T. palmi and compared it with available thrips mitogenomes. We assembled the mitogenome from the whole genome sequencing data generated using Illumina Hiseq2500. Annotation was performed using MITOS web-server to estimate the location of protein coding genes (PCGs), transfer RNA (tRNAs), ribosomal RNAs (rRNAs) and their secondary structures. The boundaries of PCGs and rRNAs was confirmed manually in NCBI. Phylogenetic analyses were performed using the 13 PCGs data using maximum likelihood (ML) in PAUP, and Bayesian inference (BI) in MrBayes 3.2. The complete mitogenome of T. palmi was 15,333 base pairs (bp), which was greater than the genomes of A. obscurus (14,890bp), F. intonsa (15,215 bp), F. occidentalis (14,889 bp) and S. dorsalis South Asia strain (SA1) (14,283 bp), but smaller than the genomes of T. imaginis (15,407 bp) and S. dorsalis East Asia strain (EA1) (15,343bp). Like in other thrips species, the mitochondrial genome of T. palmi was represented by 37 genes, including 13 PCGs, large and small ribosomal RNA (rrnL and rrnS) genes, 22 transfer RNA (tRNAs) genes (with one extra gene for trn-Serine) and two A+T-rich control regions (CR1 and CR2). Thirty one genes were observed on heavy (H) strand and six genes on the light (L) strand. The six tRNA genes (trnG,trnK, trnY, trnW, trnF, and trnH) were found to be conserved in all thrips species mitogenomes in their locations relative to a protein-coding or rRNA gene upstream or downstream. The gene arrangements of T. palmi is very close to T. imaginis except the rearrangements in tRNAs genes: trnR (arginine), and trnE (glutamic acid) were found to be located between cox3 and CR2 in T. imaginis which were translocated between atp6 and CR1 in T. palmi; trnL1 (Leucine) and trnS1(Serine) were located between atp6 and CR1 in T. imaginis which were translocated between cox3 and CR2 in T. palmi. The location of CR1 upstream of nad5 gene was suggested to be ancestral condition of the thrips species in subfamily Thripinae, was also observed in T. palmi. Both the Maximum likelihood (ML) and Bayesian Inference (BI) phylogenetic trees generated resulted in similar topologies. The T. palmi was clustered with T. imaginis. We concluded that more molecular data on the diverse thrips species from different hierarchical level is needed, to understand the phylogenetic and evolutionary relationships among them. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=thrips" title="thrips">thrips</a>, <a href="https://publications.waset.org/abstracts/search?q=comparative%20mitogenomics" title=" comparative mitogenomics"> comparative mitogenomics</a>, <a href="https://publications.waset.org/abstracts/search?q=gene%20rearrangements" title=" gene rearrangements"> gene rearrangements</a>, <a href="https://publications.waset.org/abstracts/search?q=phylogenetic%20analysis" title=" phylogenetic analysis"> phylogenetic analysis</a> </p> <a href="https://publications.waset.org/abstracts/93146/the-first-complete-mitochondrial-genome-of-melon-thrips-thrips-palmi-thripinae-thysanoptera-vector-for-tospoviruses" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/93146.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">168</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">1</span> Adequate Nutritional Support and Monitoring in Post-Traumatic High Output Duodenal Fistula</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Richa%20Jaiswal">Richa Jaiswal</a>, <a href="https://publications.waset.org/abstracts/search?q=Vidisha%20Sharma"> Vidisha Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Amulya%20Rattan"> Amulya Rattan</a>, <a href="https://publications.waset.org/abstracts/search?q=Sushma%20Sagar"> Sushma Sagar</a>, <a href="https://publications.waset.org/abstracts/search?q=Subodh%20Kumar"> Subodh Kumar</a>, <a href="https://publications.waset.org/abstracts/search?q=Amit%20Gupta"> Amit Gupta</a>, <a href="https://publications.waset.org/abstracts/search?q=Biplab%20Mishra"> Biplab Mishra</a>, <a href="https://publications.waset.org/abstracts/search?q=Maneesh%20Singhal"> Maneesh Singhal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Background: Adequate nutritional support and daily patient monitoring have an independent therapeutic role in the successful management of high output fistulae and early recovery after abdominal trauma. Case presentation: An 18-year-old girl was brought to AIIMS emergency with alleged history of fall of a heavy weight (electric motor) over abdomen. She was evaluated as per Advanced Trauma Life Support(ATLS) protocols and diagnosed to have significant abdominal trauma. After stabilization, she was referred to Trauma center. Abdomen was guarded and focused assessment with sonography for trauma(FAST) was found positive. Complete duodenojejunal(DJ) junction transection was found at laparotomy, and end-to-end repair was done. However, patient was re-explored in view of biliary peritonitis on post-operative day3, and anastomotic leak was found with sloughing of duodenal end. Resection of non-viable segments was done followed by side-to-side anastomosis. Unfortunately, the anastomosis leaked again, this time due to a post-anastomotic kink, diagnosed on dye study. Due to hostile abdomen, the patient was planned for supportive care, with plan of build-up and delayed definitive surgery. Percutaneous transheptic biliary drainage (PTBD) and STSG were required in the course as well. Nutrition: In intensive care unit (ICU), major goals of nutritional therapy were to improve wound healing, optimize nutrition, minimize enteral feed associated complications, reduce biliary fistula output, and prepare the patient for definitive surgeries. Feeding jejunostomy (FJ) was started from day 4 at the rate of 30ml/h along with total parenteral nutrition (TPN) and intra-venous (IV) micronutrients support. Due to high bile output, bile refeed started from day 13.After 23 days of ICU stay, patient was transferred to general ward with body mass index (BMI)<11kg/m2 and serum albumin –1.5gm%. Patient was received in the ward in catabolic phase with high risk of refeeding syndrome. Patient was kept on FJ bolus feed at the rate of 30–50 ml/h. After 3–4 days, while maintaining patient diet book log it was observed that patient use to refuse feed at night and started becoming less responsive with every passing day. After few minutes of conversation with the patient for a couple of days, she complained about enteral feed discharge in urine, mild pain and sign of dumping syndrome. Dye study was done, which ruled out any enterovesical fistula and conservative management were planned. At this time, decision was taken for continuous slow rate feeding through commercial feeding pump at the rate of 2–3ml/min. Drastic improvement was observed from the second day in gastro-intestinal symptoms and general condition of the patient. Nutritional composition of feed, TPN and diet ranged between 800 and 2100 kcal and 50–95 g protein. After STSG, TPN was stopped. Periodic diet counselling was given to improve oral intake. At the time of discharge, serum albumin level was 2.1g%, weight – 38.6, BMI – 15.19 kg/m2. Patient got discharge on an oral diet. Conclusion: Successful management of post-traumatic proximal high output fistulae is a challenging task, due to impaired nutrient absorption and enteral feed associated complications. Strategic- and goal-based nutrition support can salvage such critically ill patients, as demonstrated in the present case. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=nutritional%20monitoring" title="nutritional monitoring">nutritional monitoring</a>, <a href="https://publications.waset.org/abstracts/search?q=nutritional%20support" title=" nutritional support"> nutritional support</a>, <a href="https://publications.waset.org/abstracts/search?q=duodenal%20fistula" title=" duodenal fistula"> duodenal fistula</a>, <a href="https://publications.waset.org/abstracts/search?q=abdominal%20trauma" title=" abdominal trauma"> abdominal trauma</a> </p> <a href="https://publications.waset.org/abstracts/65601/adequate-nutritional-support-and-monitoring-in-post-traumatic-high-output-duodenal-fistula" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/65601.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">261</span> </span> </div> </div> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10