CINXE.COM
Search | arXiv e-print repository
<!DOCTYPE html> <html lang="en"> <head> <meta charset="utf-8"/> <meta name="viewport" content="width=device-width, initial-scale=1"/> <!-- new favicon config and versions by realfavicongenerator.net --> <link rel="apple-touch-icon" sizes="180x180" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/apple-touch-icon.png"> <link rel="icon" type="image/png" sizes="32x32" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-32x32.png"> <link rel="icon" type="image/png" sizes="16x16" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon-16x16.png"> <link rel="manifest" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/site.webmanifest"> <link rel="mask-icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/safari-pinned-tab.svg" color="#b31b1b"> <link rel="shortcut icon" href="https://static.arxiv.org/static/base/1.0.0a5/images/icons/favicon.ico"> <meta name="msapplication-TileColor" content="#b31b1b"> <meta name="msapplication-config" content="images/icons/browserconfig.xml"> <meta name="theme-color" content="#b31b1b"> <!-- end favicon config --> <title>Search | arXiv e-print repository</title> <script defer src="https://static.arxiv.org/static/base/1.0.0a5/fontawesome-free-5.11.2-web/js/all.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/base/1.0.0a5/css/arxivstyle.css" /> <script type="text/x-mathjax-config"> MathJax.Hub.Config({ messageStyle: "none", extensions: ["tex2jax.js"], jax: ["input/TeX", "output/HTML-CSS"], tex2jax: { inlineMath: [ ['$','$'], ["\\(","\\)"] ], displayMath: [ ['$$','$$'], ["\\[","\\]"] ], processEscapes: true, ignoreClass: '.*', processClass: 'mathjax.*' }, TeX: { extensions: ["AMSmath.js", "AMSsymbols.js", "noErrors.js"], noErrors: { inlineDelimiters: ["$","$"], multiLine: false, style: { "font-size": "normal", "border": "" } } }, "HTML-CSS": { availableFonts: ["TeX"] } }); </script> <script src='//static.arxiv.org/MathJax-2.7.3/MathJax.js'></script> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/notification.js"></script> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/bulma-tooltip.min.css" /> <link rel="stylesheet" href="https://static.arxiv.org/static/search/0.5.6/css/search.css" /> <script src="https://code.jquery.com/jquery-3.2.1.slim.min.js" integrity="sha256-k2WSCIexGzOj3Euiig+TlR8gA0EmPjuc79OEeY5L45g=" crossorigin="anonymous"></script> <script src="https://static.arxiv.org/static/search/0.5.6/js/fieldset.js"></script> <style> radio#cf-customfield_11400 { display: none; } </style> </head> <body> <header><a href="#main-container" class="is-sr-only">Skip to main content</a> <!-- contains Cornell logo and sponsor statement --> <div class="attribution level is-marginless" role="banner"> <div class="level-left"> <a class="level-item" href="https://cornell.edu/"><img src="https://static.arxiv.org/static/base/1.0.0a5/images/cornell-reduced-white-SMALL.svg" alt="Cornell University" width="200" aria-label="logo" /></a> </div> <div class="level-right is-marginless"><p class="sponsors level-item is-marginless"><span id="support-ack-url">We gratefully acknowledge support from<br /> the Simons Foundation, <a href="https://info.arxiv.org/about/ourmembers.html">member institutions</a>, and all contributors. <a href="https://info.arxiv.org/about/donate.html">Donate</a></span></p></div> </div> <!-- contains arXiv identity and search bar --> <div class="identity level is-marginless"> <div class="level-left"> <div class="level-item"> <a class="arxiv" href="https://arxiv.org/" aria-label="arxiv-logo"> <img src="https://static.arxiv.org/static/base/1.0.0a5/images/arxiv-logo-one-color-white.svg" aria-label="logo" alt="arxiv logo" width="85" style="width:85px;"/> </a> </div> </div> <div class="search-block level-right"> <form class="level-item mini-search" method="GET" action="https://arxiv.org/search"> <div class="field has-addons"> <div class="control"> <input class="input is-small" type="text" name="query" placeholder="Search..." aria-label="Search term or terms" /> <p class="help"><a href="https://info.arxiv.org/help">Help</a> | <a href="https://arxiv.org/search/advanced">Advanced Search</a></p> </div> <div class="control"> <div class="select is-small"> <select name="searchtype" aria-label="Field to search"> <option value="all" selected="selected">All fields</option> <option value="title">Title</option> <option value="author">Author</option> <option value="abstract">Abstract</option> <option value="comments">Comments</option> <option value="journal_ref">Journal reference</option> <option value="acm_class">ACM classification</option> <option value="msc_class">MSC classification</option> <option value="report_num">Report number</option> <option value="paper_id">arXiv identifier</option> <option value="doi">DOI</option> <option value="orcid">ORCID</option> <option value="author_id">arXiv author ID</option> <option value="help">Help pages</option> <option value="full_text">Full text</option> </select> </div> </div> <input type="hidden" name="source" value="header"> <button class="button is-small is-cul-darker">Search</button> </div> </form> </div> </div> <!-- closes identity --> <div class="container"> <div class="user-tools is-size-7 has-text-right has-text-weight-bold" role="navigation" aria-label="User menu"> <a href="https://arxiv.org/login">Login</a> </div> </div> </header> <main class="container" id="main-container"> <div class="level is-marginless"> <div class="level-left"> <h1 class="title is-clearfix"> Showing 1–39 of 39 results for author: <span class="mathjax">Baker, M</span> </h1> </div> <div class="level-right is-hidden-mobile"> <!-- feedback for mobile is moved to footer --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> <div class="content"> <form method="GET" action="/search/physics" aria-role="search"> Searching in archive <strong>physics</strong>. <a href="/search/?searchtype=author&query=Baker%2C+M">Search in all archives.</a> <div class="field has-addons-tablet"> <div class="control is-expanded"> <label for="query" class="hidden-label">Search term or terms</label> <input class="input is-medium" id="query" name="query" placeholder="Search term..." type="text" value="Baker, M"> </div> <div class="select control is-medium"> <label class="is-hidden" for="searchtype">Field</label> <select class="is-medium" id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> </div> <div class="control"> <button class="button is-link is-medium">Search</button> </div> </div> <div class="field"> <div class="control is-size-7"> <label class="radio"> <input checked id="abstracts-0" name="abstracts" type="radio" value="show"> Show abstracts </label> <label class="radio"> <input id="abstracts-1" name="abstracts" type="radio" value="hide"> Hide abstracts </label> </div> </div> <div class="is-clearfix" style="height: 2.5em"> <div class="is-pulled-right"> <a href="/search/advanced?terms-0-term=Baker%2C+M&terms-0-field=author&size=50&order=-announced_date_first">Advanced Search</a> </div> </div> <input type="hidden" name="order" value="-announced_date_first"> <input type="hidden" name="size" value="50"> </form> <div class="level breathe-horizontal"> <div class="level-left"> <form method="GET" action="/search/"> <div style="display: none;"> <select id="searchtype" name="searchtype"><option value="all">All fields</option><option value="title">Title</option><option selected value="author">Author(s)</option><option value="abstract">Abstract</option><option value="comments">Comments</option><option value="journal_ref">Journal reference</option><option value="acm_class">ACM classification</option><option value="msc_class">MSC classification</option><option value="report_num">Report number</option><option value="paper_id">arXiv identifier</option><option value="doi">DOI</option><option value="orcid">ORCID</option><option value="license">License (URI)</option><option value="author_id">arXiv author ID</option><option value="help">Help pages</option><option value="full_text">Full text</option></select> <input id="query" name="query" type="text" value="Baker, M"> <ul id="abstracts"><li><input checked id="abstracts-0" name="abstracts" type="radio" value="show"> <label for="abstracts-0">Show abstracts</label></li><li><input id="abstracts-1" name="abstracts" type="radio" value="hide"> <label for="abstracts-1">Hide abstracts</label></li></ul> </div> <div class="box field is-grouped is-grouped-multiline level-item"> <div class="control"> <span class="select is-small"> <select id="size" name="size"><option value="25">25</option><option selected value="50">50</option><option value="100">100</option><option value="200">200</option></select> </span> <label for="size">results per page</label>. </div> <div class="control"> <label for="order">Sort results by</label> <span class="select is-small"> <select id="order" name="order"><option selected value="-announced_date_first">Announcement date (newest first)</option><option value="announced_date_first">Announcement date (oldest first)</option><option value="-submitted_date">Submission date (newest first)</option><option value="submitted_date">Submission date (oldest first)</option><option value="">Relevance</option></select> </span> </div> <div class="control"> <button class="button is-small is-link">Go</button> </div> </div> </form> </div> </div> <ol class="breathe-horizontal" start="1"> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2410.01274">arXiv:2410.01274</a> <span> [<a href="https://arxiv.org/pdf/2410.01274">pdf</a>, <a href="https://arxiv.org/format/2410.01274">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> </div> <p class="title is-5 mathjax"> Measuring Blackbody Noise in Silica Optical Fibres for Quantum and Classical Communication </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hencz%2C+M">Michael Hencz</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">Mark Baker</a>, <a href="/search/physics?searchtype=author&query=Streed%2C+E+W">Erik W. Streed</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2410.01274v1-abstract-short" style="display: inline;"> Deployment of practical quantum networks, which operate at or near single photon levels, requires carefully quantifying noise processes. We investigate noise due to blackbody radiation emitted into the guided mode of silica single mode optical fibres near room temperature, which to date is under-explored in the literature. We utilise a single photon avalanche detector and lock in detection to meas… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01274v1-abstract-full').style.display = 'inline'; document.getElementById('2410.01274v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2410.01274v1-abstract-full" style="display: none;"> Deployment of practical quantum networks, which operate at or near single photon levels, requires carefully quantifying noise processes. We investigate noise due to blackbody radiation emitted into the guided mode of silica single mode optical fibres near room temperature, which to date is under-explored in the literature. We utilise a single photon avalanche detector and lock in detection to measure $\approx$0.1 photons/s/THz ($\approx$-170dBm/THz) at 40掳C near the optically thick limit of 20km in silica fibre. We also measure a coarse spectrum to validate the blackbody behaviour, and observe a prominent anomaly around the 1430nm CWDM channel, likely due to -OH impurities. Though the magnitude of this noise is small, it is additive noise which imposes a fundamental limit in raw fidelity in quantum communication, and a fundamental noise floor in classical communication over optical fibres. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2410.01274v1-abstract-full').style.display = 'none'; document.getElementById('2410.01274v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 2 October, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Submitted to Journal of Lightwave Technology in March 2024</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2403.08637">arXiv:2403.08637</a> <span> [<a href="https://arxiv.org/pdf/2403.08637">pdf</a>, <a href="https://arxiv.org/ps/2403.08637">ps</a>, <a href="https://arxiv.org/format/2403.08637">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1017/psa.2023.56">10.1017/psa.2023.56 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> GR as a classical spin-2 theory? </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Linnemann%2C+N">Niels Linnemann</a>, <a href="/search/physics?searchtype=author&query=Smeenk%2C+C">Chris Smeenk</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+R">Mark Robert Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2403.08637v1-abstract-short" style="display: inline;"> The self-interaction spin-2 approach to general relativity (GR) has been extremely influential in the particle physics community. Leaving no doubt regarding its heuristic value, we argue that a view of the metric field of GR as nothing but a stand-in for a self-coupling field in flat spacetime runs into a dilemma: either the view is physically incomplete in so far as it requires recourse to GR aft… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08637v1-abstract-full').style.display = 'inline'; document.getElementById('2403.08637v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2403.08637v1-abstract-full" style="display: none;"> The self-interaction spin-2 approach to general relativity (GR) has been extremely influential in the particle physics community. Leaving no doubt regarding its heuristic value, we argue that a view of the metric field of GR as nothing but a stand-in for a self-coupling field in flat spacetime runs into a dilemma: either the view is physically incomplete in so far as it requires recourse to GR after all, or it leads to an absurd multiplication of alternative viewpoints on GR rendering any understanding of the metric field as nothing but a spin-2 field in flat spacetime unjustified. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2403.08637v1-abstract-full').style.display = 'none'; document.getElementById('2403.08637v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 March, 2024; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2024. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Philosophy of Science, Volume 90, Issue 5, December 2023, pp. 1363-1373 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2304.04123">arXiv:2304.04123</a> <span> [<a href="https://arxiv.org/pdf/2304.04123">pdf</a>, <a href="https://arxiv.org/ps/2304.04123">ps</a>, <a href="https://arxiv.org/format/2304.04123">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> </div> <p class="title is-5 mathjax"> Nuclear Arms Control Verification and Lessons for AI Treaties </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Baker%2C+M">Mauricio Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2304.04123v1-abstract-short" style="display: inline;"> Security risks from AI have motivated calls for international agreements that guardrail the technology. However, even if states could agree on what rules to set on AI, the problem of verifying compliance might make these agreements infeasible. To help clarify the difficulty of verifying agreements on AI$\unicode{x2013}$and identify actions that might reduce this difficulty$\unicode{x2013}$this rep… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04123v1-abstract-full').style.display = 'inline'; document.getElementById('2304.04123v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2304.04123v1-abstract-full" style="display: none;"> Security risks from AI have motivated calls for international agreements that guardrail the technology. However, even if states could agree on what rules to set on AI, the problem of verifying compliance might make these agreements infeasible. To help clarify the difficulty of verifying agreements on AI$\unicode{x2013}$and identify actions that might reduce this difficulty$\unicode{x2013}$this report examines the case study of verification in nuclear arms control. We review the implementation, track records, and politics of verification across three types of nuclear arms control agreements. Then, we consider implications for the case of AI, especially AI development that relies on thousands of highly specialized chips. In this context, the case study suggests that, with certain preparations, the foreseeable challenges of verification would be reduced to levels that were successfully managed in nuclear arms control. To avoid even worse challenges, substantial preparations are needed: (1) developing privacy-preserving, secure, and acceptably priced methods for verifying the compliance of hardware, given inspection access; and (2) building an initial, incomplete verification system, with authorities and precedents that allow its gaps to be quickly closed if and when the political will arises. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2304.04123v1-abstract-full').style.display = 'none'; document.getElementById('2304.04123v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 8 April, 2023; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2023. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.02580">arXiv:2209.02580</a> <span> [<a href="https://arxiv.org/pdf/2209.02580">pdf</a>, <a href="https://arxiv.org/format/2209.02580">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> </div> </div> <p class="title is-5 mathjax"> Design of the ECCE Detector for the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&query=Brash%2C+E">E. Brash</a>, <a href="/search/physics?searchtype=author&query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+M">M. Brooks</a>, <a href="/search/physics?searchtype=author&query=Bueltmann%2C+S">S. Bueltmann</a>, <a href="/search/physics?searchtype=author&query=Bukhari%2C+M+H+S">M. H. S. Bukhari</a>, <a href="/search/physics?searchtype=author&query=Bylinkin%2C+A">A. Bylinkin</a>, <a href="/search/physics?searchtype=author&query=Capobianco%2C+R">R. Capobianco</a> , et al. (259 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.02580v3-abstract-short" style="display: inline;"> The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark-gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent track… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02580v3-abstract-full').style.display = 'inline'; document.getElementById('2209.02580v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.02580v3-abstract-full" style="display: none;"> The EIC Comprehensive Chromodynamics Experiment (ECCE) detector has been designed to address the full scope of the proposed Electron Ion Collider (EIC) physics program as presented by the National Academy of Science and provide a deeper understanding of the quark-gluon structure of matter. To accomplish this, the ECCE detector offers nearly acceptance and energy coverage along with excellent tracking and particle identification. The ECCE detector was designed to be built within the budget envelope set out by the EIC project while simultaneously managing cost and schedule risks. This detector concept has been selected to be the basis for the EIC project detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.02580v3-abstract-full').style.display = 'none'; document.getElementById('2209.02580v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 20 July, 2024; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 6 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">34 pages, 30 figures, 9 tables</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-PHY-24-4124 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2209.00496">arXiv:2209.00496</a> <span> [<a href="https://arxiv.org/pdf/2209.00496">pdf</a>, <a href="https://arxiv.org/format/2209.00496">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> CORE -- a COmpact detectoR for the EIC </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=CORE+Collaboration"> CORE Collaboration</a>, <a href="/search/physics?searchtype=author&query=Alarcon%2C+R">R. Alarcon</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">M. Baker</a>, <a href="/search/physics?searchtype=author&query=Baturin%2C+V">V. Baturin</a>, <a href="/search/physics?searchtype=author&query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&query=Bueltmann%2C+S">S. Bueltmann</a>, <a href="/search/physics?searchtype=author&query=Bukhari%2C+M">M. Bukhari</a>, <a href="/search/physics?searchtype=author&query=Capobianco%2C+R">R. Capobianco</a>, <a href="/search/physics?searchtype=author&query=Christy%2C+E">E. Christy</a>, <a href="/search/physics?searchtype=author&query=Diehl%2C+S">S. Diehl</a>, <a href="/search/physics?searchtype=author&query=Dugger%2C+M">M. Dugger</a>, <a href="/search/physics?searchtype=author&query=Dupr%C3%A9%2C+R">R. Dupr茅</a>, <a href="/search/physics?searchtype=author&query=Dzhygadlo%2C+R">R. Dzhygadlo</a>, <a href="/search/physics?searchtype=author&query=Flood%2C+K">K. Flood</a>, <a href="/search/physics?searchtype=author&query=Gnanvo%2C+K">K. Gnanvo</a>, <a href="/search/physics?searchtype=author&query=Guo%2C+L">L. Guo</a>, <a href="/search/physics?searchtype=author&query=Hayward%2C+T">T. Hayward</a>, <a href="/search/physics?searchtype=author&query=Hattawy%2C+M">M. Hattawy</a>, <a href="/search/physics?searchtype=author&query=Hoballah%2C+M">M. Hoballah</a>, <a href="/search/physics?searchtype=author&query=Hohlmann%2C+M">M. Hohlmann</a>, <a href="/search/physics?searchtype=author&query=Hyde%2C+C+E">C. E. Hyde</a>, <a href="/search/physics?searchtype=author&query=Ilieva%2C+Y">Y. Ilieva</a>, <a href="/search/physics?searchtype=author&query=Jacobs%2C+W+W">W. W. Jacobs</a>, <a href="/search/physics?searchtype=author&query=Joo%2C+K">K. Joo</a>, <a href="/search/physics?searchtype=author&query=Kalicy%2C+G">G. Kalicy</a> , et al. (34 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2209.00496v1-abstract-short" style="display: inline;"> The COmpact detectoR for the Eic (CORE) Proposal was submitted to the EIC "Call for Collaboration Proposals for Detectors". CORE comprehensively covers the physics scope of the EIC Community White Paper and the National Academies of Science 2018 report. The design exploits advances in detector precision and granularity to minimize size. The central detector includes a 3Tesla, 2.5m solenoid. Tracki… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00496v1-abstract-full').style.display = 'inline'; document.getElementById('2209.00496v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2209.00496v1-abstract-full" style="display: none;"> The COmpact detectoR for the Eic (CORE) Proposal was submitted to the EIC "Call for Collaboration Proposals for Detectors". CORE comprehensively covers the physics scope of the EIC Community White Paper and the National Academies of Science 2018 report. The design exploits advances in detector precision and granularity to minimize size. The central detector includes a 3Tesla, 2.5m solenoid. Tracking is primarily silicon. Electromagnetic calorimetry is based on the high performance crystals. Ring-imaging Cherenkov detectors provide hadronic particle identification. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2209.00496v1-abstract-full').style.display = 'none'; document.getElementById('2209.00496v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Contact authors: C.E. Hyde, chyde@odu.edu and P. Nadel-Turonski, turonski@jlab.org</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2208.14575">arXiv:2208.14575</a> <span> [<a href="https://arxiv.org/pdf/2208.14575">pdf</a>, <a href="https://arxiv.org/format/2208.14575">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168238">10.1016/j.nima.2023.168238 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Detector Requirements and Simulation Results for the EIC Exclusive, Diffractive and Tagging Physics Program using the ECCE Detector Concept </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bylinkin%2C+A">A. Bylinkin</a>, <a href="/search/physics?searchtype=author&query=Dean%2C+C+T">C. T. Dean</a>, <a href="/search/physics?searchtype=author&query=Fegan%2C+S">S. Fegan</a>, <a href="/search/physics?searchtype=author&query=Gangadharan%2C+D">D. Gangadharan</a>, <a href="/search/physics?searchtype=author&query=Gates%2C+K">K. Gates</a>, <a href="/search/physics?searchtype=author&query=Kay%2C+S+J+D">S. J. D. Kay</a>, <a href="/search/physics?searchtype=author&query=Korover%2C+I">I. Korover</a>, <a href="/search/physics?searchtype=author&query=Li%2C+W+B">W. B. Li</a>, <a href="/search/physics?searchtype=author&query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&query=Montgomery%2C+R">R. Montgomery</a>, <a href="/search/physics?searchtype=author&query=Nguyen%2C+D">D. Nguyen</a>, <a href="/search/physics?searchtype=author&query=Penman%2C+G">G. Penman</a>, <a href="/search/physics?searchtype=author&query=Pybus%2C+J+R">J. R. Pybus</a>, <a href="/search/physics?searchtype=author&query=Santiesteban%2C+N">N. Santiesteban</a>, <a href="/search/physics?searchtype=author&query=Trotta%2C+R">R. Trotta</a>, <a href="/search/physics?searchtype=author&query=Usman%2C+A">A. Usman</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Frantz%2C+J">J. Frantz</a>, <a href="/search/physics?searchtype=author&query=Glazier%2C+D+I">D. I. Glazier</a>, <a href="/search/physics?searchtype=author&query=Higinbotham%2C+D+W">D. W. Higinbotham</a>, <a href="/search/physics?searchtype=author&query=Horn%2C+T">T. Horn</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">J. Huang</a>, <a href="/search/physics?searchtype=author&query=Huber%2C+G">G. Huber</a>, <a href="/search/physics?searchtype=author&query=Reed%2C+R">R. Reed</a>, <a href="/search/physics?searchtype=author&query=Roche%2C+J">J. Roche</a> , et al. (258 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2208.14575v2-abstract-short" style="display: inline;"> This article presents a collection of simulation studies using the ECCE detector concept in the context of the EIC's exclusive, diffractive, and tagging physics program, which aims to further explore the rich quark-gluon structure of nucleons and nuclei. To successfully execute the program, ECCE proposed to utilize the detecter system close to the beamline to ensure exclusivity and tag ion beam/fr… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14575v2-abstract-full').style.display = 'inline'; document.getElementById('2208.14575v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2208.14575v2-abstract-full" style="display: none;"> This article presents a collection of simulation studies using the ECCE detector concept in the context of the EIC's exclusive, diffractive, and tagging physics program, which aims to further explore the rich quark-gluon structure of nucleons and nuclei. To successfully execute the program, ECCE proposed to utilize the detecter system close to the beamline to ensure exclusivity and tag ion beam/fragments for a particular reaction of interest. Preliminary studies confirmed the proposed technology and design satisfy the requirements. The projected physics impact results are based on the projected detector performance from the simulation at 10 or 100 fb^-1 of integrated luminosity. Additionally, a few insights on the potential 2nd Interaction Region can (IR) were also documented which could serve as a guidepost for the future development of a second EIC detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2208.14575v2-abstract-full').style.display = 'none'; document.getElementById('2208.14575v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 March, 2023; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 30 August, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2022. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.12400">arXiv:2207.12400</a> <span> [<a href="https://arxiv.org/pdf/2207.12400">pdf</a>, <a href="https://arxiv.org/format/2207.12400">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Snowmass 2021 Scintillating Bubble Chambers: Liquid-noble Bubble Chambers for Dark Matter and CE$谓$NS Detection </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Alfonso-Pita%2C+E">E. Alfonso-Pita</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">M. Baker</a>, <a href="/search/physics?searchtype=author&query=Behnke%2C+E">E. Behnke</a>, <a href="/search/physics?searchtype=author&query=Brandon%2C+A">A. Brandon</a>, <a href="/search/physics?searchtype=author&query=Bressler%2C+M">M. Bressler</a>, <a href="/search/physics?searchtype=author&query=Broerman%2C+B">B. Broerman</a>, <a href="/search/physics?searchtype=author&query=Clark%2C+K">K. Clark</a>, <a href="/search/physics?searchtype=author&query=Coppejans%2C+R">R. Coppejans</a>, <a href="/search/physics?searchtype=author&query=Corbett%2C+J">J. Corbett</a>, <a href="/search/physics?searchtype=author&query=Cripe%2C+C">C. Cripe</a>, <a href="/search/physics?searchtype=author&query=Crisler%2C+M">M. Crisler</a>, <a href="/search/physics?searchtype=author&query=Dahl%2C+C+E">C. E. Dahl</a>, <a href="/search/physics?searchtype=author&query=Dering%2C+K">K. Dering</a>, <a href="/search/physics?searchtype=author&query=Croix%2C+A+d+S">A. de St. Croix</a>, <a href="/search/physics?searchtype=author&query=Durnford%2C+D">D. Durnford</a>, <a href="/search/physics?searchtype=author&query=Foy%2C+K">K. Foy</a>, <a href="/search/physics?searchtype=author&query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&query=Gresl%2C+J">J. Gresl</a>, <a href="/search/physics?searchtype=author&query=Hall%2C+J">J. Hall</a>, <a href="/search/physics?searchtype=author&query=Harris%2C+O">O. Harris</a>, <a href="/search/physics?searchtype=author&query=Hawley-Herrera%2C+H">H. Hawley-Herrera</a>, <a href="/search/physics?searchtype=author&query=Jackson%2C+C+M">C. M. Jackson</a>, <a href="/search/physics?searchtype=author&query=Khatri%2C+M">M. Khatri</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y">Y. Ko</a>, <a href="/search/physics?searchtype=author&query=Lamb%2C+N">N. Lamb</a> , et al. (20 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.12400v2-abstract-short" style="display: inline;"> The Scintillating Bubble Chamber (SBC) Collaboration is developing liquid-noble bubble chambers for the quasi-background-free detection of low-mass (GeV-scale) dark matter and coherent scattering of low-energy (MeV-scale) neutrinos (CE$谓$NS). The first physics-scale demonstrator of this technique, a 10-kg liquid argon bubble chamber dubbed SBC-LAr10, is now being commissioned at Fermilab. This dev… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12400v2-abstract-full').style.display = 'inline'; document.getElementById('2207.12400v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.12400v2-abstract-full" style="display: none;"> The Scintillating Bubble Chamber (SBC) Collaboration is developing liquid-noble bubble chambers for the quasi-background-free detection of low-mass (GeV-scale) dark matter and coherent scattering of low-energy (MeV-scale) neutrinos (CE$谓$NS). The first physics-scale demonstrator of this technique, a 10-kg liquid argon bubble chamber dubbed SBC-LAr10, is now being commissioned at Fermilab. This device will calibrate the background discrimination power and sensitivity of superheated argon to nuclear recoils at energies down to 100 eV. A second functionally-identical detector with a focus on radiopure construction is being built for SBC's first dark matter search at SNOLAB. The projected spin-independent sensitivity of this search is approximately $10^{-43}$ cm$^2$ at 1 GeV$/c^2$ dark matter particle mass. The scalability and background discrimination power of the liquid-noble bubble chamber make this technique a compelling candidate for future dark matter searches to the solar neutrino fog at 1 GeV$/c^2$ particle mass (requiring a $\sim$ton-year exposure with non-neutrino backgrounds sub-dominant to the solar CE$谓$NS signal) and for high-statistics CE$谓$NS studies at nuclear reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.12400v2-abstract-full').style.display = 'none'; document.getElementById('2207.12400v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 29 September, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">35 pages, 12 figures, contributed white paper to Snowmass 2021 (final version for Snowmass proceedings)</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> FERMILAB-CONF-22-535-LDRD-PPD </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10632">arXiv:2207.10632</a> <span> [<a href="https://arxiv.org/pdf/2207.10632">pdf</a>, <a href="https://arxiv.org/format/2207.10632">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> </div> <p class="title is-5 mathjax"> Open Heavy Flavor Studies for the ECCE Detector at the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&query=Brash%2C+E">E. Brash</a>, <a href="/search/physics?searchtype=author&query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+M">M. Brooks</a>, <a href="/search/physics?searchtype=author&query=Bueltmann%2C+S">S. Bueltmann</a>, <a href="/search/physics?searchtype=author&query=Bukhari%2C+M+H+S">M. H. S. Bukhari</a>, <a href="/search/physics?searchtype=author&query=Bylinkin%2C+A">A. Bylinkin</a> , et al. (262 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10632v2-abstract-short" style="display: inline;"> The ECCE detector has been recommended as the selected reference detector for the future Electron-Ion Collider (EIC). A series of simulation studies have been carried out to validate the physics feasibility of the ECCE detector. In this paper, detailed studies of heavy flavor hadron and jet reconstruction and physics projections with the ECCE detector performance and different magnet options will… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10632v2-abstract-full').style.display = 'inline'; document.getElementById('2207.10632v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10632v2-abstract-full" style="display: none;"> The ECCE detector has been recommended as the selected reference detector for the future Electron-Ion Collider (EIC). A series of simulation studies have been carried out to validate the physics feasibility of the ECCE detector. In this paper, detailed studies of heavy flavor hadron and jet reconstruction and physics projections with the ECCE detector performance and different magnet options will be presented. The ECCE detector has enabled precise EIC heavy flavor hadron and jet measurements with a broad kinematic coverage. These proposed heavy flavor measurements will help systematically study the hadronization process in vacuum and nuclear medium especially in the underexplored kinematic region. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10632v2-abstract-full').style.display = 'none'; document.getElementById('2207.10632v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Open heavy flavor studies with the EIC reference detector design by the ECCE consortium. 11 pages, 11 figures, to be submitted to the Nuclear Instruments and Methods A</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> LANL report number: LA-UR-22-27181 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.10356">arXiv:2207.10356</a> <span> [<a href="https://arxiv.org/pdf/2207.10356">pdf</a>, <a href="https://arxiv.org/format/2207.10356">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167956">10.1016/j.nima.2022.167956 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Exclusive J/$蠄$ Detection and Physics with ECCE </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Li%2C+X">X. Li</a>, <a href="/search/physics?searchtype=author&query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&query=Brash%2C+E">E. Brash</a>, <a href="/search/physics?searchtype=author&query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+M">M. Brooks</a>, <a href="/search/physics?searchtype=author&query=Bueltmann%2C+S">S. Bueltmann</a>, <a href="/search/physics?searchtype=author&query=Bukhari%2C+M+H+S">M. H. S. Bukhari</a>, <a href="/search/physics?searchtype=author&query=Bylinkin%2C+A">A. Bylinkin</a> , et al. (262 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.10356v1-abstract-short" style="display: inline;"> Exclusive heavy quarkonium photoproduction is one of the most popular processes in EIC, which has a large cross section and a simple final state. Due to the gluonic nature of the exchange Pomeron, this process can be related to the gluon distributions in the nucleus. The momentum transfer dependence of this process is sensitive to the interaction sites, which provides a powerful tool to probe the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10356v1-abstract-full').style.display = 'inline'; document.getElementById('2207.10356v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.10356v1-abstract-full" style="display: none;"> Exclusive heavy quarkonium photoproduction is one of the most popular processes in EIC, which has a large cross section and a simple final state. Due to the gluonic nature of the exchange Pomeron, this process can be related to the gluon distributions in the nucleus. The momentum transfer dependence of this process is sensitive to the interaction sites, which provides a powerful tool to probe the spatial distribution of gluons in the nucleus. Recently the problem of the origin of hadron mass has received lots of attention in determining the anomaly contribution $M_{a}$. The trace anomaly is sensitive to the gluon condensate, and exclusive production of quarkonia such as J/$蠄$ and $违$ can serve as a sensitive probe to constrain it. In this paper, we present the performance of the ECCE detector for exclusive J/$蠄$ detection and the capability of this process to investigate the above physics opportunities with ECCE. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.10356v1-abstract-full').style.display = 'none'; document.getElementById('2207.10356v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">11 pages, 14 figures, 1 table</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2207.09437">arXiv:2207.09437</a> <span> [<a href="https://arxiv.org/pdf/2207.09437">pdf</a>, <a href="https://arxiv.org/format/2207.09437">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2023.168464">10.1016/j.nima.2023.168464 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Design and Simulated Performance of Calorimetry Systems for the ECCE Detector at the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+N">N. Schmidt</a>, <a href="/search/physics?searchtype=author&query=Wang%2C+P+K">P. K. Wang</a>, <a href="/search/physics?searchtype=author&query=Santiesteban%2C+N">N. Santiesteban</a>, <a href="/search/physics?searchtype=author&query=Horn%2C+T">T. Horn</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">J. Huang</a>, <a href="/search/physics?searchtype=author&query=Lajoie%2C+J">J. Lajoie</a>, <a href="/search/physics?searchtype=author&query=Camacho%2C+C+M">C. Munoz Camacho</a>, <a href="/search/physics?searchtype=author&query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&query=Brash%2C+E">E. Brash</a> , et al. (263 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2207.09437v1-abstract-short" style="display: inline;"> We describe the design and performance the calorimeter systems used in the ECCE detector design to achieve the overall performance specifications cost-effectively with careful consideration of appropriate technical and schedule risks. The calorimeter systems consist of three electromagnetic calorimeters, covering the combined pseudorapdity range from -3.7 to 3.8 and two hadronic calorimeters. Key… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09437v1-abstract-full').style.display = 'inline'; document.getElementById('2207.09437v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2207.09437v1-abstract-full" style="display: none;"> We describe the design and performance the calorimeter systems used in the ECCE detector design to achieve the overall performance specifications cost-effectively with careful consideration of appropriate technical and schedule risks. The calorimeter systems consist of three electromagnetic calorimeters, covering the combined pseudorapdity range from -3.7 to 3.8 and two hadronic calorimeters. Key calorimeter performances which include energy and position resolutions, reconstruction efficiency, and particle identification will be presented. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2207.09437v1-abstract-full').style.display = 'none'; document.getElementById('2207.09437v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 July, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 22 figures, 5 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.09185">arXiv:2205.09185</a> <span> [<a href="https://arxiv.org/pdf/2205.09185">pdf</a>, <a href="https://arxiv.org/format/2205.09185">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Machine Learning">cs.LG</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167748">10.1016/j.nima.2022.167748 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> AI-assisted Optimization of the ECCE Tracking System at the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Fanelli%2C+C">C. Fanelli</a>, <a href="/search/physics?searchtype=author&query=Papandreou%2C+Z">Z. Papandreou</a>, <a href="/search/physics?searchtype=author&query=Suresh%2C+K">K. Suresh</a>, <a href="/search/physics?searchtype=author&query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&query=Brash%2C+E">E. Brash</a>, <a href="/search/physics?searchtype=author&query=Brindza%2C+P">P. Brindza</a>, <a href="/search/physics?searchtype=author&query=Briscoe%2C+W+J">W. J. Briscoe</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+M">M. Brooks</a>, <a href="/search/physics?searchtype=author&query=Bueltmann%2C+S">S. Bueltmann</a> , et al. (258 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.09185v2-abstract-short" style="display: inline;"> The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09185v2-abstract-full').style.display = 'inline'; document.getElementById('2205.09185v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.09185v2-abstract-full" style="display: none;"> The Electron-Ion Collider (EIC) is a cutting-edge accelerator facility that will study the nature of the "glue" that binds the building blocks of the visible matter in the universe. The proposed experiment will be realized at Brookhaven National Laboratory in approximately 10 years from now, with detector design and R&D currently ongoing. Notably, EIC is one of the first large-scale facilities to leverage Artificial Intelligence (AI) already starting from the design and R&D phases. The EIC Comprehensive Chromodynamics Experiment (ECCE) is a consortium that proposed a detector design based on a 1.5T solenoid. The EIC detector proposal review concluded that the ECCE design will serve as the reference design for an EIC detector. Herein we describe a comprehensive optimization of the ECCE tracker using AI. The work required a complex parametrization of the simulated detector system. Our approach dealt with an optimization problem in a multidimensional design space driven by multiple objectives that encode the detector performance, while satisfying several mechanical constraints. We describe our strategy and show results obtained for the ECCE tracking system. The AI-assisted design is agnostic to the simulation framework and can be extended to other sub-detectors or to a system of sub-detectors to further optimize the performance of the EIC detector. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.09185v2-abstract-full').style.display = 'none'; document.getElementById('2205.09185v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 19 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">16 pages, 18 figures, 2 appendices, 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2205.08607">arXiv:2205.08607</a> <span> [<a href="https://arxiv.org/pdf/2205.08607">pdf</a>, <a href="https://arxiv.org/format/2205.08607">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2022.167859">10.1016/j.nima.2022.167859 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Scientific Computing Plan for the ECCE Detector at the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bernauer%2C+J+C">J. C. Bernauer</a>, <a href="/search/physics?searchtype=author&query=Dean%2C+C+T">C. T. Dean</a>, <a href="/search/physics?searchtype=author&query=Fanelli%2C+C">C. Fanelli</a>, <a href="/search/physics?searchtype=author&query=Huang%2C+J">J. Huang</a>, <a href="/search/physics?searchtype=author&query=Kauder%2C+K">K. Kauder</a>, <a href="/search/physics?searchtype=author&query=Lawrence%2C+D">D. Lawrence</a>, <a href="/search/physics?searchtype=author&query=Osborn%2C+J+D">J. D. Osborn</a>, <a href="/search/physics?searchtype=author&query=Paus%2C+C">C. Paus</a>, <a href="/search/physics?searchtype=author&query=Adkins%2C+J+K">J. K. Adkins</a>, <a href="/search/physics?searchtype=author&query=Akiba%2C+Y">Y. Akiba</a>, <a href="/search/physics?searchtype=author&query=Albataineh%2C+A">A. Albataineh</a>, <a href="/search/physics?searchtype=author&query=Amaryan%2C+M">M. Amaryan</a>, <a href="/search/physics?searchtype=author&query=Arsene%2C+I+C">I. C. Arsene</a>, <a href="/search/physics?searchtype=author&query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&query=Bae%2C+J">J. Bae</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Bashkanov%2C+M">M. Bashkanov</a>, <a href="/search/physics?searchtype=author&query=Bellwied%2C+R">R. Bellwied</a>, <a href="/search/physics?searchtype=author&query=Benmokhtar%2C+F">F. Benmokhtar</a>, <a href="/search/physics?searchtype=author&query=Berdnikov%2C+V">V. Berdnikov</a>, <a href="/search/physics?searchtype=author&query=Bock%2C+F">F. Bock</a>, <a href="/search/physics?searchtype=author&query=Boeglin%2C+W">W. Boeglin</a>, <a href="/search/physics?searchtype=author&query=Borysova%2C+M">M. Borysova</a>, <a href="/search/physics?searchtype=author&query=Brash%2C+E">E. Brash</a> , et al. (256 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2205.08607v1-abstract-short" style="display: inline;"> The Electron Ion Collider (EIC) is the next generation of precision QCD facility to be built at Brookhaven National Laboratory in conjunction with Thomas Jefferson National Laboratory. There are a significant number of software and computing challenges that need to be overcome at the EIC. During the EIC detector proposal development period, the ECCE consortium began identifying and addressing thes… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08607v1-abstract-full').style.display = 'inline'; document.getElementById('2205.08607v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2205.08607v1-abstract-full" style="display: none;"> The Electron Ion Collider (EIC) is the next generation of precision QCD facility to be built at Brookhaven National Laboratory in conjunction with Thomas Jefferson National Laboratory. There are a significant number of software and computing challenges that need to be overcome at the EIC. During the EIC detector proposal development period, the ECCE consortium began identifying and addressing these challenges in the process of producing a complete detector proposal based upon detailed detector and physics simulations. In this document, the software and computing efforts to produce this proposal are discussed; furthermore, the computing and software model and resources required for the future of ECCE are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2205.08607v1-abstract-full').style.display = 'none'; document.getElementById('2205.08607v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 17 May, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> May 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NIMA 1047, 167859 (2023) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2204.11998">arXiv:2204.11998</a> <span> [<a href="https://arxiv.org/pdf/2204.11998">pdf</a>, <a href="https://arxiv.org/format/2204.11998">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computational Physics">physics.comp-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.106.012007">10.1103/PhysRevD.106.012007 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> BeAGLE: Benchmark $e$A Generator for LEptoproduction in high energy lepton-nucleus collisions </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Chang%2C+W">Wan Chang</a>, <a href="/search/physics?searchtype=author&query=Aschenauer%2C+E">Elke-Caroline Aschenauer</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">Mark D. Baker</a>, <a href="/search/physics?searchtype=author&query=Jentsch%2C+A">Alexander Jentsch</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+J">Jeong-Hun Lee</a>, <a href="/search/physics?searchtype=author&query=Tu%2C+Z">Zhoudunming Tu</a>, <a href="/search/physics?searchtype=author&query=Yin%2C+Z">Zhongbao Yin</a>, <a href="/search/physics?searchtype=author&query=Zheng%2C+L">Liang Zheng</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2204.11998v1-abstract-short" style="display: inline;"> The upcoming Electron-Ion Collider (EIC) will address several outstanding puzzles in modern nuclear physics. Topics such as the partonic structure of nucleons and nuclei, the origin of their mass and spin, among others, can be understood via the study of high energy electron-proton ($ep$) and electron-nucleus ($e$A) collisions. Achieving the scientific goals of the EIC will require a novel electro… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11998v1-abstract-full').style.display = 'inline'; document.getElementById('2204.11998v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2204.11998v1-abstract-full" style="display: none;"> The upcoming Electron-Ion Collider (EIC) will address several outstanding puzzles in modern nuclear physics. Topics such as the partonic structure of nucleons and nuclei, the origin of their mass and spin, among others, can be understood via the study of high energy electron-proton ($ep$) and electron-nucleus ($e$A) collisions. Achieving the scientific goals of the EIC will require a novel electron-hadron collider and detectors capable to perform high-precision measurements, but also dedicated tools to model and interpret the data. To aid in the latter, we present a general-purpose $e$A Monte Carlo (MC) generator - BeAGLE. In this paper, we provide a general description of the models integrated into BeAGLE, applications of BeAGLE in $e$A physics, implications for detector requirements at the EIC, and the tuning of the parameters in BeAGLE based on available experimental data. Specifically, we focus on a selection of model and data comparisons in particle production in both $ep$ and $e$A collisions, where baseline particle distributions provide essential information to characterize the event. In addition, we investigate the collision geometry determination in $e$A collisions, which could be used as an experimental tool for varying the nuclear density. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2204.11998v1-abstract-full').style.display = 'none'; document.getElementById('2204.11998v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 13 April, 2022; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> April 2022. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Manuscript with 20 pages, 16 figures, and 3 tables</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2109.09509">arXiv:2109.09509</a> <span> [<a href="https://arxiv.org/pdf/2109.09509">pdf</a>, <a href="https://arxiv.org/format/2109.09509">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevC.105.034001">10.1103/PhysRevC.105.034001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measuring Recoiling Nucleons from the Nucleus with the Electron Ion Collider </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hauenstein%2C+F">F. Hauenstein</a>, <a href="/search/physics?searchtype=author&query=Jentsch%2C+A">A. Jentsch</a>, <a href="/search/physics?searchtype=author&query=Pybus%2C+J+R">J. R. Pybus</a>, <a href="/search/physics?searchtype=author&query=Kiral%2C+A">A. Kiral</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Furletova%2C+Y">Y. Furletova</a>, <a href="/search/physics?searchtype=author&query=Hen%2C+O">O. Hen</a>, <a href="/search/physics?searchtype=author&query=Higinbotham%2C+D+W">D. W. Higinbotham</a>, <a href="/search/physics?searchtype=author&query=Hyde%2C+C">C. Hyde</a>, <a href="/search/physics?searchtype=author&query=Morozov%2C+V">V. Morozov</a>, <a href="/search/physics?searchtype=author&query=Romanov%2C+D">D. Romanov</a>, <a href="/search/physics?searchtype=author&query=Weinstein%2C+L+B">L. B. Weinstein</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2109.09509v1-abstract-short" style="display: inline;"> Short range correlated nucleon-nucleon ($NN$) pairs are an important part of the nuclear ground state. They are typically studied by scattering an electron from one nucleon in the pair and detecting its spectator correlated partner ("spectator-nucleon tagging"). The Electron Ion Collider (EIC) should be able to detect these nucleons, since they are boosted to high momentum in the lab frame by the… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09509v1-abstract-full').style.display = 'inline'; document.getElementById('2109.09509v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2109.09509v1-abstract-full" style="display: none;"> Short range correlated nucleon-nucleon ($NN$) pairs are an important part of the nuclear ground state. They are typically studied by scattering an electron from one nucleon in the pair and detecting its spectator correlated partner ("spectator-nucleon tagging"). The Electron Ion Collider (EIC) should be able to detect these nucleons, since they are boosted to high momentum in the lab frame by the momentum of the ion beam. To determine the feasibility of these studies with the planned EIC detector configuration, we have simulated quasi-elastic scattering for two electron and ion beam energy configurations: 5 GeV $e^{-}$ and 41 GeV/A ions, and 10 GeV $e^{-}$ and 110 GeV/A ions. We show that the knocked-out and recoiling nucleons can be detected over a wide range of initial nucleon momenta. We also show that these measurements can achieve much larger momentum transfers than current fixed target experiments. By detecting both low and high initial-momentum nucleons, the EIC will provide the data that should allow scientists to definitively show if the EMC effect and short-range correlation are connected, and to improve our understanding of color transparency. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2109.09509v1-abstract-full').style.display = 'none'; document.getElementById('2109.09509v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 September, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">7 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> JLAB-PHY-21-3496 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. C 105 (2022) 034001 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2107.10329">arXiv:2107.10329</a> <span> [<a href="https://arxiv.org/pdf/2107.10329">pdf</a>, <a href="https://arxiv.org/ps/2107.10329">ps</a>, <a href="https://arxiv.org/format/2107.10329">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="History and Philosophy of Physics">physics.hist-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="General Relativity and Quantum Cosmology">gr-qc</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Mathematical Physics">math-ph</span> </div> </div> <p class="title is-5 mathjax"> Noether's first theorem and the energy-momentum tensor ambiguity problem </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Baker%2C+M+R">Mark Robert Baker</a>, <a href="/search/physics?searchtype=author&query=Linnemann%2C+N">Niels Linnemann</a>, <a href="/search/physics?searchtype=author&query=Smeenk%2C+C">Chris Smeenk</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2107.10329v1-abstract-short" style="display: inline;"> Noether's theorems are widely praised as some of the most beautiful and useful results in physics. However, if one reads the majority of standard texts and literature on the application of Noether's first theorem to field theory, one immediately finds that the ``canonical Noether energy-momentum tensor" derived from the 4-parameter translation of the Poincar茅 group does not correspond to what's wi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10329v1-abstract-full').style.display = 'inline'; document.getElementById('2107.10329v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2107.10329v1-abstract-full" style="display: none;"> Noether's theorems are widely praised as some of the most beautiful and useful results in physics. However, if one reads the majority of standard texts and literature on the application of Noether's first theorem to field theory, one immediately finds that the ``canonical Noether energy-momentum tensor" derived from the 4-parameter translation of the Poincar茅 group does not correspond to what's widely accepted as the ``physical'' energy-momentum tensor for central theories such as electrodynamics. This gives the impression that Noether's first theorem is in some sense not working. In recognition of this issue, common practice is to ``improve" the canonical Noether energy-momentum tensor by adding suitable ad-hoc ``improvement" terms that will convert the canonical expression into the desired result. On the other hand, a less common but distinct method developed by Bessel-Hagen considers gauge symmetries as well as coordinate symmetries when applying Noether's first theorem; this allows one to uniquely derive the accepted physical energy-momentum tensor without the need for any ad-hoc improvement terms in theories with exactly gauge invariant actions. $\dots$ Using the converse of Noether's first theorem, we show that the Bessel-Hagen type transformations are uniquely selected in the case of electrodynamics, which powerfully dissolves the methodological ambiguity at hand. We then go on to consider how this line of argument applies to a variety of other cases, including in particular the challenge of defining an energy-momentum tensor for the gravitational field in linearized gravity. Finally, we put the search for proper Noether energy-momentum tensors into context with recent claims that Noether's theorem and its converse make statements on equivalence classes of symmetries and conservation laws$\dots$ <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2107.10329v1-abstract-full').style.display = 'none'; document.getElementById('2107.10329v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 July, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">30 pages</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> The Physics and Philosophy of Noether's Theorems; James Read, Bryan Roberts and Nicholas Teh (Eds.); Cambridge University Press, 2021 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.10020">arXiv:2103.10020</a> <span> [<a href="https://arxiv.org/pdf/2103.10020">pdf</a>, <a href="https://arxiv.org/format/2103.10020">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/bs.aamop.2021.04.001">10.1016/bs.aamop.2021.04.001 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Dynamic high-resolution optical trapping of ultracold atoms </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gauthier%2C+G">Guillaume Gauthier</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+T+A">Thomas A. Bell</a>, <a href="/search/physics?searchtype=author&query=Stilgoe%2C+A+B">Alexander B. Stilgoe</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">Mark Baker</a>, <a href="/search/physics?searchtype=author&query=Rubinsztein-Dunlop%2C+H">Halina Rubinsztein-Dunlop</a>, <a href="/search/physics?searchtype=author&query=Neely%2C+T+W">Tyler W. Neely</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.10020v1-abstract-short" style="display: inline;"> All light has structure, but only recently it has become possible to construct highly controllable and precise potentials so that most laboratories can harness light for their specific applications. In this chapter, we review the emerging techniques for high-resolution and configurable optical trapping of ultracold atoms. We focus on optical deflectors and spatial light modulators in the Fourier a… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.10020v1-abstract-full').style.display = 'inline'; document.getElementById('2103.10020v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.10020v1-abstract-full" style="display: none;"> All light has structure, but only recently it has become possible to construct highly controllable and precise potentials so that most laboratories can harness light for their specific applications. In this chapter, we review the emerging techniques for high-resolution and configurable optical trapping of ultracold atoms. We focus on optical deflectors and spatial light modulators in the Fourier and direct imaging configurations. These optical techniques have enabled significant progress in studies of superfluid dynamics, single-atom trapping, and underlie the emerging field of atomtronics. The chapter is intended as a complete guide to the experimentalist for understanding, selecting, and implementing the most appropriate optical trapping technology for a given application. After introducing the basic theory of optical trapping and image formation, we describe each of the above technologies in detail, providing a guide to the fundamental operation of optical deflectors, digital micromirror devices, and liquid crystal spatial light modulators. We also describe the capabilities of these technologies for manipulation of trapped ultracold atoms, where the potential is dynamically modified to enable experiments, and where time-averaged potentials can realise more complex traps. The key considerations when implementing time-averaged traps are described. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.10020v1-abstract-full').style.display = 'none'; document.getElementById('2103.10020v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">48 pages, 20 Figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2103.05419">arXiv:2103.05419</a> <span> [<a href="https://arxiv.org/pdf/2103.05419">pdf</a>, <a href="https://arxiv.org/format/2103.05419">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Theory">nucl-th</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nuclphysa.2022.122447">10.1016/j.nuclphysa.2022.122447 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Science Requirements and Detector Concepts for the Electron-Ion Collider: EIC Yellow Report </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Khalek%2C+R+A">R. Abdul Khalek</a>, <a href="/search/physics?searchtype=author&query=Accardi%2C+A">A. Accardi</a>, <a href="/search/physics?searchtype=author&query=Adam%2C+J">J. Adam</a>, <a href="/search/physics?searchtype=author&query=Adamiak%2C+D">D. Adamiak</a>, <a href="/search/physics?searchtype=author&query=Akers%2C+W">W. Akers</a>, <a href="/search/physics?searchtype=author&query=Albaladejo%2C+M">M. Albaladejo</a>, <a href="/search/physics?searchtype=author&query=Al-bataineh%2C+A">A. Al-bataineh</a>, <a href="/search/physics?searchtype=author&query=Alexeev%2C+M+G">M. G. Alexeev</a>, <a href="/search/physics?searchtype=author&query=Ameli%2C+F">F. Ameli</a>, <a href="/search/physics?searchtype=author&query=Antonioli%2C+P">P. Antonioli</a>, <a href="/search/physics?searchtype=author&query=Armesto%2C+N">N. Armesto</a>, <a href="/search/physics?searchtype=author&query=Armstrong%2C+W+R">W. R. Armstrong</a>, <a href="/search/physics?searchtype=author&query=Arratia%2C+M">M. Arratia</a>, <a href="/search/physics?searchtype=author&query=Arrington%2C+J">J. Arrington</a>, <a href="/search/physics?searchtype=author&query=Asaturyan%2C+A">A. Asaturyan</a>, <a href="/search/physics?searchtype=author&query=Asai%2C+M">M. Asai</a>, <a href="/search/physics?searchtype=author&query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/physics?searchtype=author&query=Aune%2C+S">S. Aune</a>, <a href="/search/physics?searchtype=author&query=Avagyan%2C+H">H. Avagyan</a>, <a href="/search/physics?searchtype=author&query=Gayoso%2C+C+A">C. Ayerbe Gayoso</a>, <a href="/search/physics?searchtype=author&query=Azmoun%2C+B">B. Azmoun</a>, <a href="/search/physics?searchtype=author&query=Bacchetta%2C+A">A. Bacchetta</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Barbosa%2C+F">F. Barbosa</a>, <a href="/search/physics?searchtype=author&query=Barion%2C+L">L. Barion</a> , et al. (390 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2103.05419v3-abstract-short" style="display: inline;"> This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05419v3-abstract-full').style.display = 'inline'; document.getElementById('2103.05419v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2103.05419v3-abstract-full" style="display: none;"> This report describes the physics case, the resulting detector requirements, and the evolving detector concepts for the experimental program at the Electron-Ion Collider (EIC). The EIC will be a powerful new high-luminosity facility in the United States with the capability to collide high-energy electron beams with high-energy proton and ion beams, providing access to those regions in the nucleon and nuclei where their structure is dominated by gluons. Moreover, polarized beams in the EIC will give unprecedented access to the spatial and spin structure of the proton, neutron, and light ions. The studies leading to this document were commissioned and organized by the EIC User Group with the objective of advancing the state and detail of the physics program and developing detector concepts that meet the emerging requirements in preparation for the realization of the EIC. The effort aims to provide the basis for further development of concepts for experimental equipment best suited for the science needs, including the importance of two complementary detectors and interaction regions. This report consists of three volumes. Volume I is an executive summary of our findings and developed concepts. In Volume II we describe studies of a wide range of physics measurements and the emerging requirements on detector acceptance and performance. Volume III discusses general-purpose detector concepts and the underlying technologies to meet the physics requirements. These considerations will form the basis for a world-class experimental program that aims to increase our understanding of the fundamental structure of all visible matter <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2103.05419v3-abstract-full').style.display = 'none'; document.getElementById('2103.05419v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 8 March, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">902 pages, 415 authors, 151 institutions</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Report number:</span> BNL-220990-2021-FORE, JLAB-PHY-21-3198, LA-UR-21-20953 </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Nucl. Phys. A 1026 (2022) 122447 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2101.08785">arXiv:2101.08785</a> <span> [<a href="https://arxiv.org/pdf/2101.08785">pdf</a>, <a href="https://arxiv.org/format/2101.08785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevD.103.L091301">10.1103/PhysRevD.103.L091301 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Physics reach of a low threshold scintillating argon bubble chamber in coherent elastic neutrino-nucleus scattering reactor experiments </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Flores%2C+L+J">L. J. Flores</a>, <a href="/search/physics?searchtype=author&query=Peinado%2C+E">Eduardo Peinado</a>, <a href="/search/physics?searchtype=author&query=Alfonso-Pita%2C+E">E. Alfonso-Pita</a>, <a href="/search/physics?searchtype=author&query=Allen%2C+K">K. Allen</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">M. Baker</a>, <a href="/search/physics?searchtype=author&query=Behnke%2C+E">E. Behnke</a>, <a href="/search/physics?searchtype=author&query=Bressler%2C+M">M. Bressler</a>, <a href="/search/physics?searchtype=author&query=Clark%2C+K">K. Clark</a>, <a href="/search/physics?searchtype=author&query=Coppejans%2C+R">R. Coppejans</a>, <a href="/search/physics?searchtype=author&query=Cripe%2C+C">C. Cripe</a>, <a href="/search/physics?searchtype=author&query=Crisler%2C+M">M. Crisler</a>, <a href="/search/physics?searchtype=author&query=Dahl%2C+C+E">C. E. Dahl</a>, <a href="/search/physics?searchtype=author&query=Croix%2C+A+d+S">A. de St. Croix</a>, <a href="/search/physics?searchtype=author&query=Durnford%2C+D">D. Durnford</a>, <a href="/search/physics?searchtype=author&query=Giampa%2C+P">P. Giampa</a>, <a href="/search/physics?searchtype=author&query=Harris%2C+O">O. Harris</a>, <a href="/search/physics?searchtype=author&query=Hatch%2C+P">P. Hatch</a>, <a href="/search/physics?searchtype=author&query=Hawley%2C+H">H. Hawley</a>, <a href="/search/physics?searchtype=author&query=Jackson%2C+C+M">C. M. Jackson</a>, <a href="/search/physics?searchtype=author&query=Ko%2C+Y">Y. Ko</a>, <a href="/search/physics?searchtype=author&query=Krauss%2C+C">C. Krauss</a>, <a href="/search/physics?searchtype=author&query=Lamb%2C+N">N. Lamb</a>, <a href="/search/physics?searchtype=author&query=Laurin%2C+M">M. Laurin</a>, <a href="/search/physics?searchtype=author&query=Levine%2C+I">I. Levine</a>, <a href="/search/physics?searchtype=author&query=Lippincott%2C+W+H">W. H. Lippincott</a> , et al. (9 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2101.08785v2-abstract-short" style="display: inline;"> The physics reach of a low threshold (100 eV) scintillating argon bubble chamber sensitive to Coherent Elastic neutrino-Nucleus Scattering (CE$谓$NS) from reactor neutrinos is studied. The sensitivity to the weak mixing angle, neutrino magnetic moment, and a light $Z'$ gauge boson mediator are analyzed. A Monte Carlo simulation of the backgrounds is performed to assess their contribution to the sig… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08785v2-abstract-full').style.display = 'inline'; document.getElementById('2101.08785v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2101.08785v2-abstract-full" style="display: none;"> The physics reach of a low threshold (100 eV) scintillating argon bubble chamber sensitive to Coherent Elastic neutrino-Nucleus Scattering (CE$谓$NS) from reactor neutrinos is studied. The sensitivity to the weak mixing angle, neutrino magnetic moment, and a light $Z'$ gauge boson mediator are analyzed. A Monte Carlo simulation of the backgrounds is performed to assess their contribution to the signal. The analysis shows that world-leading sensitivities are achieved with a one-year exposure for a 10 kg chamber at 3 m from a 1 MW$_{th}$ research reactor or a 100 kg chamber at 30 m from a 2000 MW$_{th}$ power reactor. Such a detector has the potential to become the leading technology to study CE$谓$NS using nuclear reactors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2101.08785v2-abstract-full').style.display = 'none'; document.getElementById('2101.08785v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 26 May, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2021; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2021. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">9 pages, 5 figures. v2: figures added, minor changes. Matches published version</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. D 103, 091301 (2021) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2010.10049">arXiv:2010.10049</a> <span> [<a href="https://arxiv.org/pdf/2010.10049">pdf</a>, <a href="https://arxiv.org/format/2010.10049">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevX.12.011031">10.1103/PhysRevX.12.011031 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Turbulent relaxation to equilibrium in a two-dimensional quantum vortex gas </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Reeves%2C+M+T">Matthew T. Reeves</a>, <a href="/search/physics?searchtype=author&query=Goddard-Lee%2C+K">Kwan Goddard-Lee</a>, <a href="/search/physics?searchtype=author&query=Gauthier%2C+G">Guillaume Gauthier</a>, <a href="/search/physics?searchtype=author&query=Stockdale%2C+O+R">Oliver R. Stockdale</a>, <a href="/search/physics?searchtype=author&query=Salman%2C+H">Hayder Salman</a>, <a href="/search/physics?searchtype=author&query=Edmonds%2C+T">Timothy Edmonds</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+X">Xiaoquan Yu</a>, <a href="/search/physics?searchtype=author&query=Bradley%2C+A+S">Ashton S. Bradley</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">Mark Baker</a>, <a href="/search/physics?searchtype=author&query=Rubinsztein-Dunlop%2C+H">Halina Rubinsztein-Dunlop</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+M+J">Matthew J. Davis</a>, <a href="/search/physics?searchtype=author&query=Neely%2C+T+W">Tyler W. Neely</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2010.10049v3-abstract-short" style="display: inline;"> We experimentally study emergence of microcanonical equilibrium states in the turbulent relaxation dynamics of a two-dimensional chiral vortex gas. Same-sign vortices are injected into a quasi-two-dimensional disk-shaped atomic Bose-Einstein condensate using a range of mechanical stirring protocols. The resulting long-time vortex distributions are found to be in excellent agreement with the meanfi… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10049v3-abstract-full').style.display = 'inline'; document.getElementById('2010.10049v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2010.10049v3-abstract-full" style="display: none;"> We experimentally study emergence of microcanonical equilibrium states in the turbulent relaxation dynamics of a two-dimensional chiral vortex gas. Same-sign vortices are injected into a quasi-two-dimensional disk-shaped atomic Bose-Einstein condensate using a range of mechanical stirring protocols. The resulting long-time vortex distributions are found to be in excellent agreement with the meanfield Poisson-Boltzmann equation for the system describing the microcanonical ensemble at fixed energy $\cal{H}$ and angular momentum $\cal{M}$. The equilibrium states are characterized by the corresponding thermodynamic variables of inverse temperature $\hat尾$ and rotation frequency $\hat蠅$. We are able to realize equilibria spanning the full phase diagram of the vortex gas, including on-axis states near zero-temperature, infinite temperature, and negative absolute temperatures. At sufficiently high energies the system exhibits a symmetry-breaking transition, resulting in an off-axis equilibrium phase at negative absolute temperature that no longer shares the symmetry of the container. We introduce a point-vortex model with phenomenological damping and noise that is able to quantitatively reproduce the equilibration dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2010.10049v3-abstract-full').style.display = 'none'; document.getElementById('2010.10049v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 January, 2022; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 20 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">V1: 16 pages, 7 figures, 6 in main text</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.13261">arXiv:2007.13261</a> <span> [<a href="https://arxiv.org/pdf/2007.13261">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Computers and Society">cs.CY</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Physics and Society">physics.soc-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.3389/fevo.2022.792749">10.3389/fevo.2022.792749 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> From climate change to pandemics: decision science can help scientists have impact </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Baker%2C+C+M">Christopher M. Baker</a>, <a href="/search/physics?searchtype=author&query=Campbell%2C+P+T">Patricia T. Campbell</a>, <a href="/search/physics?searchtype=author&query=Chades%2C+I">Iadine Chades</a>, <a href="/search/physics?searchtype=author&query=Dean%2C+A+J">Angela J. Dean</a>, <a href="/search/physics?searchtype=author&query=Hester%2C+S+M">Susan M. Hester</a>, <a href="/search/physics?searchtype=author&query=Holden%2C+M+H">Matthew H. Holden</a>, <a href="/search/physics?searchtype=author&query=McCaw%2C+J+M">James M. McCaw</a>, <a href="/search/physics?searchtype=author&query=McVernon%2C+J">Jodie McVernon</a>, <a href="/search/physics?searchtype=author&query=Moss%2C+R">Robert Moss</a>, <a href="/search/physics?searchtype=author&query=Shearer%2C+F+M">Freya M. Shearer</a>, <a href="/search/physics?searchtype=author&query=Possingham%2C+H+P">Hugh P. Possingham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.13261v2-abstract-short" style="display: inline;"> Scientific knowledge and advances are a cornerstone of modern society. They improve our understanding of the world we live in and help us navigate global challenges including emerging infectious diseases, climate change and the biodiversity crisis. For any scientist, whether they work primarily in fundamental knowledge generation or in the applied sciences, it is important to understand how scienc… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13261v2-abstract-full').style.display = 'inline'; document.getElementById('2007.13261v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.13261v2-abstract-full" style="display: none;"> Scientific knowledge and advances are a cornerstone of modern society. They improve our understanding of the world we live in and help us navigate global challenges including emerging infectious diseases, climate change and the biodiversity crisis. For any scientist, whether they work primarily in fundamental knowledge generation or in the applied sciences, it is important to understand how science fits into a decision-making framework. Decision science is a field that aims to pinpoint evidence-based management strategies. It provides a framework for scientists to directly impact decisions or to understand how their work will fit into a decision process. Decision science is more than undertaking targeted and relevant scientific research or providing tools to assist policy makers; it is an approach to problem formulation, bringing together mathematical modelling, stakeholder values and logistical constraints to support decision making. In this paper we describe decision science, its use in different contexts, and highlight current gaps in methodology and application. The COVID-19 pandemic has thrust mathematical models into the public spotlight, but it is one of innumerable examples in which modelling informs decision making. Other examples include models of storm systems (eg. cyclones, hurricanes) and climate change. Although the decision timescale in these examples differs enormously (from hours to decades), the underlying decision science approach is common across all problems. Bridging communication gaps between different groups is one of the greatest challenges for scientists. However, by better understanding and engaging with the decision-making processes, scientists will have greater impact and make stronger contributions to important societal problems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.13261v2-abstract-full').style.display = 'none'; document.getElementById('2007.13261v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 21 October, 2021; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 26 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">MSC Class:</span> 00A69 (Primary); 92B05 (Secondary) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/2007.09422">arXiv:2007.09422</a> <span> [<a href="https://arxiv.org/pdf/2007.09422">pdf</a>, <a href="https://arxiv.org/format/2007.09422">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.102.053101">10.1103/PhysRevA.102.053101 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Sub-ms, nondestructive, time-resolved quantum-state readout of a single, trapped neutral atom </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Shea%2C+M+E">Margaret E. Shea</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+P+M">Paul M. Baker</a>, <a href="/search/physics?searchtype=author&query=Joseph%2C+J+A">James A. Joseph</a>, <a href="/search/physics?searchtype=author&query=Kim%2C+J">Jungsang Kim</a>, <a href="/search/physics?searchtype=author&query=Gauthier%2C+D+J">Daniel J. Gauthier</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="2007.09422v2-abstract-short" style="display: inline;"> We achieve fast, nondestructive quantum-state readout via fluorescence detection of a single $^{87}$Rb atom in the 5$S_{1/2}$ ($F=2$) ground state held in an optical dipole trap. The atom is driven by linearly-polarized readout laser beams, making the scheme insensitive to the distribution of atomic population in the magnetic sub-levels. We demonstrate a readout fidelity of $97.6\pm0.2\%$ in a rea… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09422v2-abstract-full').style.display = 'inline'; document.getElementById('2007.09422v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="2007.09422v2-abstract-full" style="display: none;"> We achieve fast, nondestructive quantum-state readout via fluorescence detection of a single $^{87}$Rb atom in the 5$S_{1/2}$ ($F=2$) ground state held in an optical dipole trap. The atom is driven by linearly-polarized readout laser beams, making the scheme insensitive to the distribution of atomic population in the magnetic sub-levels. We demonstrate a readout fidelity of $97.6\pm0.2\%$ in a readout time of $160\pm20$ $渭$s with the atom retained in $>97\%$ of the trials, representing an advancement over other magnetic-state-insensitive techniques. We demonstrate that the $F=2$ state is partially protected from optical pumping by the distribution of the dipole matrix elements for the various transitions and the AC-Stark shifts from the optical trap. Our results are likely to find application in neutral-atom quantum computing and simulation. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('2007.09422v2-abstract-full').style.display = 'none'; document.getElementById('2007.09422v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 11 October, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 18 July, 2020; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2020. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">6 pages, 4 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 102, 053101 (2020) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1907.11135">arXiv:1907.11135</a> <span> [<a href="https://arxiv.org/pdf/1907.11135">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Applied Physics">physics.app-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5114655">10.1063/1.5114655 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Fast electro-optic switching for coherent laser ranging and velocimetry </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Haylock%2C+B">B. Haylock</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+A">M. A. Baker</a>, <a href="/search/physics?searchtype=author&query=Stace%2C+T+M">T. M. Stace</a>, <a href="/search/physics?searchtype=author&query=Lobino%2C+M">M. Lobino</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1907.11135v1-abstract-short" style="display: inline;"> The growth of 3D imaging across a range of sectors has driven a demand for high performance beam steering techniques. Fields as diverse as autonomous vehicles and medical imaging can benefit from a high speed, adaptable method of beam steering. We present a monolithic, sub-microsecond electro-optic switch as a solution satisfying the need for reliability, speed, dynamic addressability and compactn… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11135v1-abstract-full').style.display = 'inline'; document.getElementById('1907.11135v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1907.11135v1-abstract-full" style="display: none;"> The growth of 3D imaging across a range of sectors has driven a demand for high performance beam steering techniques. Fields as diverse as autonomous vehicles and medical imaging can benefit from a high speed, adaptable method of beam steering. We present a monolithic, sub-microsecond electro-optic switch as a solution satisfying the need for reliability, speed, dynamic addressability and compactness. Here we demonstrate a laboratory-scale, solid-state lidar pointing system, using the electro-optic switch to launch modulated coherent light into free space, and then to collect the reflected signal. We use coherent detection of the reflected light to simultaneously extract the range and axial velocity of targets at each of several electronically addressable output ports. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1907.11135v1-abstract-full').style.display = 'none'; document.getElementById('1907.11135v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 4 June, 2019; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2019. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1802.05488">arXiv:1802.05488</a> <span> [<a href="https://arxiv.org/pdf/1802.05488">pdf</a>, <a href="https://arxiv.org/format/1802.05488">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.98.013604">10.1103/PhysRevA.98.013604 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Phase and micromotion of Bose-Einstein condensates in a time-averaged ring trap </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bell%2C+T+A">Thomas A. Bell</a>, <a href="/search/physics?searchtype=author&query=Gauthier%2C+G">Guillaume Gauthier</a>, <a href="/search/physics?searchtype=author&query=Neely%2C+T+W">Tyler W. Neely</a>, <a href="/search/physics?searchtype=author&query=Rubinsztein-Dunlop%2C+H">Halina Rubinsztein-Dunlop</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+M+J">Matthew J. Davis</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+A">Mark A. Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1802.05488v1-abstract-short" style="display: inline;"> Rapidly scanning magnetic and optical dipole traps have been widely utilised to form time-averaged potentials for ultracold quantum gas experiments. Here we theoretically and experimentally characterise the dynamic properties of Bose-Einstein condensates in ring-shaped potentials that are formed by scanning an optical dipole beam in a circular trajectory. We find that unidirectional scanning leads… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05488v1-abstract-full').style.display = 'inline'; document.getElementById('1802.05488v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1802.05488v1-abstract-full" style="display: none;"> Rapidly scanning magnetic and optical dipole traps have been widely utilised to form time-averaged potentials for ultracold quantum gas experiments. Here we theoretically and experimentally characterise the dynamic properties of Bose-Einstein condensates in ring-shaped potentials that are formed by scanning an optical dipole beam in a circular trajectory. We find that unidirectional scanning leads to a non-trivial phase profile of the condensate that can be approximated analytically using the concept of phase imprinting. While the phase profile is not accessible through in-trap imaging, time-of-flight expansion manifests clear density signatures of an in-trap phase step in the condensate, coincident with the instantaneous position of the scanning beam. The phase step remains significant even when scanning the beam at frequencies two orders of magnitude larger than the characteristic frequency of the trap. We map out the phase and density properties of the condensate in the scanning trap, both experimentally and using numerical simulations, and find excellent agreement. Furthermore, we demonstrate that bidirectional scanning eliminated the phase gradient, rendering the system more suitable for coherent matter wave interferometry. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1802.05488v1-abstract-full').style.display = 'none'; document.getElementById('1802.05488v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 15 February, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> February 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">10 pages, 7 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Phys. Rev. A 98, 013604 (2018) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1801.06951">arXiv:1801.06951</a> <span> [<a href="https://arxiv.org/pdf/1801.06951">pdf</a>, <a href="https://arxiv.org/format/1801.06951">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Fluid Dynamics">physics.flu-dyn</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1126/science.aat5718">10.1126/science.aat5718 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Giant Vortex Clusters in a Two-Dimensional Quantum Fluid </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Gauthier%2C+G">Guillaume Gauthier</a>, <a href="/search/physics?searchtype=author&query=Reeves%2C+M+T">Matthew T. Reeves</a>, <a href="/search/physics?searchtype=author&query=Yu%2C+X">Xiaoquan Yu</a>, <a href="/search/physics?searchtype=author&query=Bradley%2C+A+S">Ashton S. Bradley</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">Mark Baker</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+T+A">Thomas A. Bell</a>, <a href="/search/physics?searchtype=author&query=Rubinsztein-Dunlop%2C+H">Halina Rubinsztein-Dunlop</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+M+J">Matthew J. Davis</a>, <a href="/search/physics?searchtype=author&query=Neely%2C+T+W">Tyler W. Neely</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1801.06951v3-abstract-short" style="display: inline;"> Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters. Here we realize experimentally these vortex clusters in a planar superfluid: a $^{87}$Rb Bose-Einstein condensate confined to an elliptical geometry. We demonstra… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06951v3-abstract-full').style.display = 'inline'; document.getElementById('1801.06951v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1801.06951v3-abstract-full" style="display: none;"> Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters. Here we realize experimentally these vortex clusters in a planar superfluid: a $^{87}$Rb Bose-Einstein condensate confined to an elliptical geometry. We demonstrate that the clusters persist for long times, maintaining the superfluid system in a high energy state far from global equilibrium. Our experiments explore a regime of vortex matter at negative absolute temperatures, and have relevance to the dynamics of topological defects, two-dimensional turbulence, and systems such as helium films, nonlinear optical materials, fermion superfluids, and quark-gluon plasmas. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1801.06951v3-abstract-full').style.display = 'none'; document.getElementById('1801.06951v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 16 January, 2020; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 21 January, 2018; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2018. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">14 pages, 4 Figures, 9 Supplemental Figures. The definitive version of this article was published in Science Vol. 364, Issue 6447, pp. 1264-1267, 28 Jun 2019. doi:10.1126/science.aat5718</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Science Vol. 364, Issue 6447, pp. 1264-1267, 28 Jun 2019 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1706.09878">arXiv:1706.09878</a> <span> [<a href="https://arxiv.org/pdf/1706.09878">pdf</a>, <a href="https://arxiv.org/ps/1706.09878">ps</a>, <a href="https://arxiv.org/format/1706.09878">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.5000755">10.1063/1.5000755 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> L-Edge Spectroscopy of Dilute, Radiation-Sensitive Systems Using a Transition-Edge-Sensor Array </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Titus%2C+C+J">Charles J. Titus</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+L">Michael L. Baker</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+S+J">Sang Jun Lee</a>, <a href="/search/physics?searchtype=author&query=Cho%2C+H">Hsiao-mei Cho</a>, <a href="/search/physics?searchtype=author&query=Doriese%2C+W+B">William B. Doriese</a>, <a href="/search/physics?searchtype=author&query=Fowler%2C+J+W">Joseph W. Fowler</a>, <a href="/search/physics?searchtype=author&query=Gaffney%2C+K">Kelly Gaffney</a>, <a href="/search/physics?searchtype=author&query=Gard%2C+J+D">Johnathon D. Gard</a>, <a href="/search/physics?searchtype=author&query=Hilton%2C+G+C">Gene C. Hilton</a>, <a href="/search/physics?searchtype=author&query=Kenney%2C+C">Chris Kenney</a>, <a href="/search/physics?searchtype=author&query=Knight%2C+J">Jason Knight</a>, <a href="/search/physics?searchtype=author&query=Li%2C+D">Dale Li</a>, <a href="/search/physics?searchtype=author&query=Marks%2C+R">Ron Marks</a>, <a href="/search/physics?searchtype=author&query=Minitti%2C+M+P">Michael P. Minitti</a>, <a href="/search/physics?searchtype=author&query=Morgan%2C+K+M">Kelsey M. Morgan</a>, <a href="/search/physics?searchtype=author&query=O%27Neil%2C+G+C">Galen C. O'Neil</a>, <a href="/search/physics?searchtype=author&query=Reintsema%2C+C+D">Carl D. Reintsema</a>, <a href="/search/physics?searchtype=author&query=Schmidt%2C+D+R">Daniel R. Schmidt</a>, <a href="/search/physics?searchtype=author&query=Sokaras%2C+D">Dimosthenis Sokaras</a>, <a href="/search/physics?searchtype=author&query=Swetz%2C+D+S">Daniel S. Swetz</a>, <a href="/search/physics?searchtype=author&query=Ullom%2C+J+N">Joel N. Ullom</a>, <a href="/search/physics?searchtype=author&query=Weng%2C+T">Tsu-Chien Weng</a>, <a href="/search/physics?searchtype=author&query=Williams%2C+C">Christopher Williams</a>, <a href="/search/physics?searchtype=author&query=Young%2C+B+A">Betty A. Young</a>, <a href="/search/physics?searchtype=author&query=Irwin%2C+K+D">Kent D. Irwin</a> , et al. (2 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1706.09878v2-abstract-short" style="display: inline;"> We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in ag… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.09878v2-abstract-full').style.display = 'inline'; document.getElementById('1706.09878v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1706.09878v2-abstract-full" style="display: none;"> We present X-ray absorption spectroscopy and resonant inelastic X-ray scattering (RIXS) measurements on the iron L-edge of 0.5 mM aqueous ferricyanide. These measurements demonstrate the ability of high-throughput transition-edge-sensor (TES) spectrometers to access the rich soft X-ray (100-2000eV) spectroscopy regime for dilute and radiation-sensitive samples. Our low-concentration data are in agreement with high-concentration measurements recorded by conventional grating-based spectrometers. These results show that soft X-ray RIXS spectroscopy acquired by high-throughput TES spectrometers can be used to study the local electronic structure of dilute metal-centered complexes relevant to biology, chemistry and catalysis. In particular, TES spectrometers have a unique ability to characterize frozen solutions of radiation- and temperature-sensitive samples. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1706.09878v2-abstract-full').style.display = 'none'; document.getElementById('1706.09878v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 August, 2017; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 29 June, 2017; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> June 2017. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages, 4 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1607.00406">arXiv:1607.00406</a> <span> [<a href="https://arxiv.org/pdf/1607.00406">pdf</a>, <a href="https://arxiv.org/ps/1607.00406">ps</a>, <a href="https://arxiv.org/format/1607.00406">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Classical Physics">physics.class-ph</span> </div> </div> <p class="title is-5 mathjax"> On the analytical formulation of classical electromagnetic fields </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Baker%2C+M+R">Mark Robert Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1607.00406v4-abstract-short" style="display: inline;"> Three objections to the canonical analytical treatment of covariant electromagnetic theory are presented: (i) only half of Maxwell's equations are present upon variation of the fundamental Lagrangian; (ii) the trace of the canonical energy-momentum tensor is not equivalent to the trace of the observed energy-momentum tensor; (iii) the Belinfante symmetrization procedure exists separate from the an… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00406v4-abstract-full').style.display = 'inline'; document.getElementById('1607.00406v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1607.00406v4-abstract-full" style="display: none;"> Three objections to the canonical analytical treatment of covariant electromagnetic theory are presented: (i) only half of Maxwell's equations are present upon variation of the fundamental Lagrangian; (ii) the trace of the canonical energy-momentum tensor is not equivalent to the trace of the observed energy-momentum tensor; (iii) the Belinfante symmetrization procedure exists separate from the analytical approach in order to obtain the known observed result. It is shown that the analytical construction from Noether's theorem is based on manipulations that were developed to obtain the compact forms of the theory presented by Minkowski and Einstein; presentations which were developed before the existence of Noether's theorem. By reformulating the fundamental Lagrangian, all of the objections are simultaneously relieved. Variation of the proposed Lagrangian yields the complete set of Maxwell's equations in the Euler-Lagrange equation of motion, and the observed energy-momentum tensor directly follows from Noether's theorem. Previously unavailable symmetries and identities that follow naturally from this procedure are also discussed. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1607.00406v4-abstract-full').style.display = 'none'; document.getElementById('1607.00406v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 25 August, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 1 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2016. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">19 pages</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1512.05079">arXiv:1512.05079</a> <span> [<a href="https://arxiv.org/pdf/1512.05079">pdf</a>, <a href="https://arxiv.org/format/1512.05079">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Quantum Gases">cond-mat.quant-gas</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Quantum Physics">quant-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1367-2630/18/3/035003">10.1088/1367-2630/18/3/035003 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Bose-Einstein condensation in large time-averaged optical ring potentials </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Bell%2C+T+A">Thomas A. Bell</a>, <a href="/search/physics?searchtype=author&query=Glidden%2C+J+A+P">Jake A. P. Glidden</a>, <a href="/search/physics?searchtype=author&query=Humbert%2C+L">Leif Humbert</a>, <a href="/search/physics?searchtype=author&query=Bromley%2C+M+W+J">Michael W. J. Bromley</a>, <a href="/search/physics?searchtype=author&query=Haine%2C+S+A">Simon A. Haine</a>, <a href="/search/physics?searchtype=author&query=Davis%2C+M+J">Matthew J. Davis</a>, <a href="/search/physics?searchtype=author&query=Neely%2C+T+W">Tyler W. Neely</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+A">Mark A. Baker</a>, <a href="/search/physics?searchtype=author&query=Rubinsztein-Dunlop%2C+H">Halina Rubinsztein-Dunlop</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1512.05079v4-abstract-short" style="display: inline;"> Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realization of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose-Einstein condensates usin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05079v4-abstract-full').style.display = 'inline'; document.getElementById('1512.05079v4-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1512.05079v4-abstract-full" style="display: none;"> Interferometric measurements with matter waves are established techniques for sensitive gravimetry, rotation sensing, and measurement of surface interactions, but compact interferometers will require techniques based on trapped geometries. In a step towards the realization of matter wave interferometers in toroidal geometries, we produce a large, smooth ring trap for Bose-Einstein condensates using rapidly scanned time-averaged dipole potentials. The trap potential is smoothed by using the atom distribution as input to an optical intensity correction algorithm. Smooth rings with a diameter up to 300 $渭$m are demonstrated. We experimentally observe and simulate the dispersion of condensed atoms in the resulting potential, with good agreement serving as an indication of trap smoothness. Under time of flight expansion we observe low energy excitations in the ring, which serves to constrain the lower frequency limit of the scanned potential technique. The resulting ring potential will have applications as a waveguide for atom interferometry and studies of superfluidity. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1512.05079v4-abstract-full').style.display = 'none'; document.getElementById('1512.05079v4-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 6 July, 2016; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 December, 2015; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2015. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> New J. Phys. 18, 035003 (2016) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1412.8744">arXiv:1412.8744</a> <span> [<a href="https://arxiv.org/pdf/1412.8744">pdf</a>, <a href="https://arxiv.org/ps/1412.8744">ps</a>, <a href="https://arxiv.org/format/1412.8744">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Optics">physics.optics</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.91.013845">10.1103/PhysRevA.91.013845 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Structure and Symmetry in Coherent Perfect Polarization Rotation </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Crescimanno%2C+M">Michael Crescimanno</a>, <a href="/search/physics?searchtype=author&query=Zhou%2C+C">Chuanhong Zhou</a>, <a href="/search/physics?searchtype=author&query=Andrews%2C+J+H">James H. Andrews</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+A">Michael A. Baker</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1412.8744v1-abstract-short" style="display: inline;"> Theoretical investigations of different routes to coherent perfect polarization rotation illustrate its phenomenological connection with coherent perfect absorption. Studying systems with broken parity, layering, combined Faraday rotation and optical activity, or a rotator-loaded optical cavity highlights their similarity and suggests new approaches to improving and miniaturizing optical devices. </span> <span class="abstract-full has-text-grey-dark mathjax" id="1412.8744v1-abstract-full" style="display: none;"> Theoretical investigations of different routes to coherent perfect polarization rotation illustrate its phenomenological connection with coherent perfect absorption. Studying systems with broken parity, layering, combined Faraday rotation and optical activity, or a rotator-loaded optical cavity highlights their similarity and suggests new approaches to improving and miniaturizing optical devices. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1412.8744v1-abstract-full').style.display = 'none'; document.getElementById('1412.8744v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 30 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> December 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Physical Review A 91, 013845 (2015) </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.6216">arXiv:1409.6216</a> <span> [<a href="https://arxiv.org/pdf/1409.6216">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Cell Behavior">q-bio.CB</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Soft Condensed Matter">cond-mat.soft</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Biological Physics">physics.bio-ph</span> </div> </div> <p class="title is-5 mathjax"> Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Nair%2C+A">Abhilash Nair</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+B+M">Brendon M. Baker</a>, <a href="/search/physics?searchtype=author&query=Trappmann%2C+B">Britta Trappmann</a>, <a href="/search/physics?searchtype=author&query=Chen%2C+C+S">Christopher S. Chen</a>, <a href="/search/physics?searchtype=author&query=Shenoy%2C+V+B">Vivek B. Shenoy</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.6216v1-abstract-short" style="display: inline;"> Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.6216v1-abstract-full').style.display = 'inline'; document.getElementById('1409.6216v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.6216v1-abstract-full" style="display: none;"> Contractile forces exerted on the surrounding extracellular matrix (ECM) lead to the alignment and stretching of constituent fibers within the vicinity of cells. As a consequence, the matrix reorganizes to form thick bundles of aligned fibers that enable force transmission over distances larger than the size of the cells. Contractile force-mediated remodeling of ECM fibers has bearing on a number of physiologic and pathophysiologic phenomena. In this work, we present a computational model to capture cell-mediated remodeling within fibrous matrices using finite element based discrete fiber network simulations. The model is shown to accurately capture collagen alignment, heterogeneous deformations, and long-range force transmission observed experimentally. The zone of mechanical influence surrounding a single contractile cell and the interaction between two cells are predicted from the strain-induced alignment of fibers. Through parametric studies, the effect of cell contractility and cell shape anisotropy on matrix remodeling and force transmission are quantified and summarized in a phase diagram. For highly contractile and elongated cells, we find a sensing distance that is ten times the cell size, in agreement with experimental observations. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.6216v1-abstract-full').style.display = 'none'; document.getElementById('1409.6216v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">Accepted for publication in the Biophysical Journal</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1409.1633">arXiv:1409.1633</a> <span> [<a href="https://arxiv.org/pdf/1409.1633">pdf</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Accelerator Physics">physics.acc-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Nuclear Experiment">nucl-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> </div> <p class="title is-5 mathjax"> eRHIC Design Study: An Electron-Ion Collider at BNL </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Aschenauer%2C+E+C">E. C. Aschenauer</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+D">M. D. Baker</a>, <a href="/search/physics?searchtype=author&query=Bazilevsky%2C+A">A. Bazilevsky</a>, <a href="/search/physics?searchtype=author&query=Boyle%2C+K">K. Boyle</a>, <a href="/search/physics?searchtype=author&query=Belomestnykh%2C+S">S. Belomestnykh</a>, <a href="/search/physics?searchtype=author&query=Ben-Zvi%2C+I">I. Ben-Zvi</a>, <a href="/search/physics?searchtype=author&query=Brooks%2C+S">S. Brooks</a>, <a href="/search/physics?searchtype=author&query=Brutus%2C+C">C. Brutus</a>, <a href="/search/physics?searchtype=author&query=Burton%2C+T">T. Burton</a>, <a href="/search/physics?searchtype=author&query=Fazio%2C+S">S. Fazio</a>, <a href="/search/physics?searchtype=author&query=Fedotov%2C+A">A. Fedotov</a>, <a href="/search/physics?searchtype=author&query=Gassner%2C+D">D. Gassner</a>, <a href="/search/physics?searchtype=author&query=Hao%2C+Y">Y. Hao</a>, <a href="/search/physics?searchtype=author&query=Jing%2C+Y">Y. Jing</a>, <a href="/search/physics?searchtype=author&query=Kayran%2C+D">D. Kayran</a>, <a href="/search/physics?searchtype=author&query=Kiselev%2C+A">A. Kiselev</a>, <a href="/search/physics?searchtype=author&query=Lamont%2C+M+A+C">M. A. C. Lamont</a>, <a href="/search/physics?searchtype=author&query=Lee%2C+J+-">J. -H. Lee</a>, <a href="/search/physics?searchtype=author&query=Litvinenko%2C+V+N">V. N. Litvinenko</a>, <a href="/search/physics?searchtype=author&query=Liu%2C+C">C. Liu</a>, <a href="/search/physics?searchtype=author&query=Ludlam%2C+T">T. Ludlam</a>, <a href="/search/physics?searchtype=author&query=Mahler%2C+G">G. Mahler</a>, <a href="/search/physics?searchtype=author&query=McIntyre%2C+G">G. McIntyre</a>, <a href="/search/physics?searchtype=author&query=Meng%2C+W">W. Meng</a>, <a href="/search/physics?searchtype=author&query=Meot%2C+F">F. Meot</a> , et al. (22 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1409.1633v2-abstract-short" style="display: inline;"> This document presents BNL's plan for an electron-ion collider, eRHIC, a major new research tool that builds on the existing RHIC facility to advance the long-term vision for Nuclear Physics to discover and understand the emergent phenomena of Quantum Chromodynamics (QCD), the fundamental theory of the strong interaction that binds the atomic nucleus. We describe the scientific requirements for su… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1633v2-abstract-full').style.display = 'inline'; document.getElementById('1409.1633v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1409.1633v2-abstract-full" style="display: none;"> This document presents BNL's plan for an electron-ion collider, eRHIC, a major new research tool that builds on the existing RHIC facility to advance the long-term vision for Nuclear Physics to discover and understand the emergent phenomena of Quantum Chromodynamics (QCD), the fundamental theory of the strong interaction that binds the atomic nucleus. We describe the scientific requirements for such a facility, following up on the community-wide 2012 white paper, 'Electron-Ion Collider: the Next QCD Frontier', and present a design concept that incorporates new, innovative accelerator techniques to provide a cost-effective upgrade of RHIC with polarized electron beams colliding with the full array of RHIC hadron beams. The new facility will deliver electron-nucleon luminosity of 10^33-10^34 cm-1sec-1 for collisions of 15.9 GeV polarized electrons on either 250 GeV polarized protons or 100 GeV/u heavy ion beams. The facility will also be capable of providing an electron beam energy of 21.2 GeV, at reduced luminosity. We discuss the on-going R&D effort to realize the project, and present key detector requirements and design ideas for an experimental program capable of making the 'golden measurements' called for in the EIC White Paper. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1409.1633v2-abstract-full').style.display = 'none'; document.getElementById('1409.1633v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 18 December, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 4 September, 2014; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> September 2014. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1311.4767">arXiv:1311.4767</a> <span> [<a href="https://arxiv.org/pdf/1311.4767">pdf</a>, <a href="https://arxiv.org/format/1311.4767">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1748-0221/9/03/P03009">10.1088/1748-0221/9/03/P03009 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Energy Reconstruction Methods in the IceCube Neutrino Telescope </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=IceCube+Collaboration"> IceCube Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aartsen%2C+M+G">M. G. Aartsen</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+R">R. Abbasi</a>, <a href="/search/physics?searchtype=author&query=Ackermann%2C+M">M. Ackermann</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+J">J. Adams</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J+A">J. A. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahlers%2C+M">M. Ahlers</a>, <a href="/search/physics?searchtype=author&query=Altmann%2C+D">D. Altmann</a>, <a href="/search/physics?searchtype=author&query=Arguelles%2C+C">C. Arguelles</a>, <a href="/search/physics?searchtype=author&query=Auffenberg%2C+J">J. Auffenberg</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">M. Baker</a>, <a href="/search/physics?searchtype=author&query=Barwick%2C+S+W">S. W. Barwick</a>, <a href="/search/physics?searchtype=author&query=Baum%2C+V">V. Baum</a>, <a href="/search/physics?searchtype=author&query=Bay%2C+R">R. Bay</a>, <a href="/search/physics?searchtype=author&query=Beatty%2C+J+J">J. J. Beatty</a>, <a href="/search/physics?searchtype=author&query=Tjus%2C+J+B">J. Becker Tjus</a>, <a href="/search/physics?searchtype=author&query=Becker%2C+K+-">K. -H. Becker</a>, <a href="/search/physics?searchtype=author&query=BenZvi%2C+S">S. BenZvi</a>, <a href="/search/physics?searchtype=author&query=Berghaus%2C+P">P. Berghaus</a>, <a href="/search/physics?searchtype=author&query=Berley%2C+D">D. Berley</a>, <a href="/search/physics?searchtype=author&query=Bernardini%2C+E">E. Bernardini</a>, <a href="/search/physics?searchtype=author&query=Bernhard%2C+A">A. Bernhard</a>, <a href="/search/physics?searchtype=author&query=Besson%2C+D+Z">D. Z. Besson</a>, <a href="/search/physics?searchtype=author&query=Binder%2C+G">G. Binder</a> , et al. (263 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1311.4767v3-abstract-short" style="display: inline;"> Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrin… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4767v3-abstract-full').style.display = 'inline'; document.getElementById('1311.4767v3-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1311.4767v3-abstract-full" style="display: none;"> Accurate measurement of neutrino energies is essential to many of the scientific goals of large-volume neutrino telescopes. The fundamental observable in such detectors is the Cherenkov light produced by the transit through a medium of charged particles created in neutrino interactions. The amount of light emitted is proportional to the deposited energy, which is approximately equal to the neutrino energy for $谓_e$ and $谓_渭$ charged-current interactions and can be used to set a lower bound on neutrino energies and to measure neutrino spectra statistically in other channels. Here we describe methods and performance of reconstructing charged-particle energies and topologies from the observed Cherenkov light yield, including techniques to measure the energies of uncontained muon tracks, achieving average uncertainties in electromagnetic-equivalent deposited energy of $\sim 15\%$ above 10 TeV. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1311.4767v3-abstract-full').style.display = 'none'; document.getElementById('1311.4767v3-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 10 February, 2014; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 19 November, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">21 pages, 23 figures. New version reflects referee comments. Accepted by J. Instrumentation</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JINST 9 (2014), P03009 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1301.5361">arXiv:1301.5361</a> <span> [<a href="https://arxiv.org/pdf/1301.5361">pdf</a>, <a href="https://arxiv.org/ps/1301.5361">ps</a>, <a href="https://arxiv.org/format/1301.5361">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2013.01.054">10.1016/j.nima.2013.01.054 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Measurement of South Pole ice transparency with the IceCube LED calibration system </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=IceCube+Collaboration"> IceCube Collaboration</a>, <a href="/search/physics?searchtype=author&query=Aartsen%2C+M+G">M. G. Aartsen</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+R">R. Abbasi</a>, <a href="/search/physics?searchtype=author&query=Abdou%2C+Y">Y. Abdou</a>, <a href="/search/physics?searchtype=author&query=Ackermann%2C+M">M. Ackermann</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+J">J. Adams</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J+A">J. A. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahlers%2C+M">M. Ahlers</a>, <a href="/search/physics?searchtype=author&query=Altmann%2C+D">D. Altmann</a>, <a href="/search/physics?searchtype=author&query=Auffenberg%2C+J">J. Auffenberg</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">M. Baker</a>, <a href="/search/physics?searchtype=author&query=Barwick%2C+S+W">S. W. Barwick</a>, <a href="/search/physics?searchtype=author&query=Baum%2C+V">V. Baum</a>, <a href="/search/physics?searchtype=author&query=Bay%2C+R">R. Bay</a>, <a href="/search/physics?searchtype=author&query=Beatty%2C+J+J">J. J. Beatty</a>, <a href="/search/physics?searchtype=author&query=Bechet%2C+S">S. Bechet</a>, <a href="/search/physics?searchtype=author&query=Tjus%2C+J+B">J. Becker Tjus</a>, <a href="/search/physics?searchtype=author&query=Becker%2C+K+-">K. -H. Becker</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+M">M. Bell</a>, <a href="/search/physics?searchtype=author&query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&query=BenZvi%2C+S">S. BenZvi</a>, <a href="/search/physics?searchtype=author&query=Berdermann%2C+J">J. Berdermann</a>, <a href="/search/physics?searchtype=author&query=Berghaus%2C+P">P. Berghaus</a>, <a href="/search/physics?searchtype=author&query=Berley%2C+D">D. Berley</a> , et al. (250 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1301.5361v1-abstract-short" style="display: inline;"> The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report present… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.5361v1-abstract-full').style.display = 'inline'; document.getElementById('1301.5361v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1301.5361v1-abstract-full" style="display: none;"> The IceCube Neutrino Observatory, approximately 1 km^3 in size, is now complete with 86 strings deployed in the Antarctic ice. IceCube detects the Cherenkov radiation emitted by charged particles passing through or created in the ice. To realize the full potential of the detector, the properties of light propagation in the ice in and around the detector must be well understood. This report presents a new method of fitting the model of light propagation in the ice to a data set of in-situ light source events collected with IceCube. The resulting set of derived parameters, namely the measured values of scattering and absorption coefficients vs. depth, is presented and a comparison of IceCube data with simulations based on the new model is shown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1301.5361v1-abstract-full').style.display = 'none'; document.getElementById('1301.5361v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 22 January, 2013; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> January 2013. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NIM A711:73,2013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1211.2109">arXiv:1211.2109</a> <span> [<a href="https://arxiv.org/pdf/1211.2109">pdf</a>, <a href="https://arxiv.org/ps/1211.2109">ps</a>, <a href="https://arxiv.org/format/1211.2109">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Strongly Correlated Electrons">cond-mat.str-el</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/0143-0807/34/1/111">10.1088/0143-0807/34/1/111 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> The Spectral Decomposition of the Helium atom two-electron configuration in terms of Hydrogenic orbitals </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Hutchinson%2C+J">J. Hutchinson</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">M. Baker</a>, <a href="/search/physics?searchtype=author&query=Marsiglio%2C+F">F. Marsiglio</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1211.2109v1-abstract-short" style="display: inline;"> The two electron configuration in the Helium atom is known to very high precision. Yet, we tend to refer to this configuration as a $1s\uparrow 1s\downarrow$ singlet, where the designations refer to Hydrogen orbitals. The high precision calculations utilize basis sets that are suited for high accuracy and ease of calculation, but do not really aid in our understanding of the electron configuration… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.2109v1-abstract-full').style.display = 'inline'; document.getElementById('1211.2109v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1211.2109v1-abstract-full" style="display: none;"> The two electron configuration in the Helium atom is known to very high precision. Yet, we tend to refer to this configuration as a $1s\uparrow 1s\downarrow$ singlet, where the designations refer to Hydrogen orbitals. The high precision calculations utilize basis sets that are suited for high accuracy and ease of calculation, but do not really aid in our understanding of the electron configuration in terms of product states of Hydrogen orbitals. Since undergraduate students are generally taught to think of Helium, and indeed, the rest of the periodic table, in terms of Hydrogenic orbitals, we present in this paper a detailed spectral decomposition of the two electron ground state for Helium in terms of these basis states. The $1s\uparrow 1s\downarrow$ singlet contributes less than 93% to the ground state configuration, with other contributions coming from both bound and continuum Hydrogenic states. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1211.2109v1-abstract-full').style.display = 'none'; document.getElementById('1211.2109v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> November 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 1 figure; suitable for and undergraduate and/or graduate course in quantum mechanics + some implications for electron-electron interactions in strongly correlated materials</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> Eur. J. Phys. 34, 111-128, 2013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.4785">arXiv:1208.4785</a> <span> [<a href="https://arxiv.org/pdf/1208.4785">pdf</a>, <a href="https://arxiv.org/ps/1208.4785">ps</a>, <a href="https://arxiv.org/format/1208.4785">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Mesoscale and Nanoscale Physics">cond-mat.mes-hall</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic and Molecular Clusters">physics.atm-clus</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1038/nphys2431">10.1038/nphys2431 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Spin dynamics of molecular nanomagnets fully unraveled by four-dimensional inelastic neutron scattering </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Baker%2C+M+L">M. L. Baker</a>, <a href="/search/physics?searchtype=author&query=Guidi%2C+T">T. Guidi</a>, <a href="/search/physics?searchtype=author&query=Carretta%2C+S">S. Carretta</a>, <a href="/search/physics?searchtype=author&query=Ollivier%2C+J">J. Ollivier</a>, <a href="/search/physics?searchtype=author&query=Mutka%2C+H">H. Mutka</a>, <a href="/search/physics?searchtype=author&query=G%C3%BCdel%2C+H+U">H. U. G眉del</a>, <a href="/search/physics?searchtype=author&query=Timco%2C+G+A">G. A. Timco</a>, <a href="/search/physics?searchtype=author&query=McInnes%2C+E+J+L">E. J. L. McInnes</a>, <a href="/search/physics?searchtype=author&query=Amoretti%2C+G">G. Amoretti</a>, <a href="/search/physics?searchtype=author&query=Winpenny%2C+R+E+P">R. E. P. Winpenny</a>, <a href="/search/physics?searchtype=author&query=Santini%2C+P">P. Santini</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.4785v1-abstract-short" style="display: inline;"> Molecular nanomagnets are among the first examples of spin systems of finite size and have been test-beds for addressing a range of elusive but important phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolve coherently according to the an appropriate cluster spin-Hamiltonian, whose structure can be tailored at the synthetic level to meet specific require… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4785v1-abstract-full').style.display = 'inline'; document.getElementById('1208.4785v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.4785v1-abstract-full" style="display: none;"> Molecular nanomagnets are among the first examples of spin systems of finite size and have been test-beds for addressing a range of elusive but important phenomena in quantum dynamics. In fact, for short-enough timescales the spin wavefunctions evolve coherently according to the an appropriate cluster spin-Hamiltonian, whose structure can be tailored at the synthetic level to meet specific requirements. Unfortunately, to this point it has been impossible to determine the spin dynamics directly. If the molecule is sufficiently simple, the spin motion can be indirectly assessed by an approximate model Hamiltonian fitted to experimental measurements of various types. Here we show that recently-developed instrumentation yields the four-dimensional inelastic-neutron scattering function S(Q,E) in vast portions of reciprocal space and enables the spin dynamics to be determined with no need of any model Hamiltonian. We exploit the Cr8 antiferromagnetic ring as a benchmark to demonstrate the potential of this new approach. For the first time we extract a model-free picture of the quantum dynamics of a molecular nanomagnet. This allows us, for example, to examine how a quantum fluctuation propagates along the ring and to directly test the degree of validity of the N茅el-vector-tunneling description of the spin dynamics. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.4785v1-abstract-full').style.display = 'none'; document.getElementById('1208.4785v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1208.3430">arXiv:1208.3430</a> <span> [<a href="https://arxiv.org/pdf/1208.3430">pdf</a>, <a href="https://arxiv.org/ps/1208.3430">ps</a>, <a href="https://arxiv.org/format/1208.3430">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Astrophysical Phenomena">astro-ph.HE</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Instrumentation and Methods for Astrophysics">astro-ph.IM</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1016/j.nima.2012.11.081">10.1016/j.nima.2012.11.081 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> An improved method for measuring muon energy using the truncated mean of dE/dx </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=IceCube+collaboration"> IceCube collaboration</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+R">R. Abbasi</a>, <a href="/search/physics?searchtype=author&query=Abdou%2C+Y">Y. Abdou</a>, <a href="/search/physics?searchtype=author&query=Ackermann%2C+M">M. Ackermann</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+J">J. Adams</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J+A">J. A. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahlers%2C+M">M. Ahlers</a>, <a href="/search/physics?searchtype=author&query=Altmann%2C+D">D. Altmann</a>, <a href="/search/physics?searchtype=author&query=Andeen%2C+K">K. Andeen</a>, <a href="/search/physics?searchtype=author&query=Auffenberg%2C+J">J. Auffenberg</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">M. Baker</a>, <a href="/search/physics?searchtype=author&query=Barwick%2C+S+W">S. W. Barwick</a>, <a href="/search/physics?searchtype=author&query=Baum%2C+V">V. Baum</a>, <a href="/search/physics?searchtype=author&query=Bay%2C+R">R. Bay</a>, <a href="/search/physics?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/physics?searchtype=author&query=Beatty%2C+J+J">J. J. Beatty</a>, <a href="/search/physics?searchtype=author&query=Bechet%2C+S">S. Bechet</a>, <a href="/search/physics?searchtype=author&query=Tjus%2C+J+B">J. Becker Tjus</a>, <a href="/search/physics?searchtype=author&query=Becker%2C+K+-">K. -H. Becker</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+M">M. Bell</a>, <a href="/search/physics?searchtype=author&query=Benabderrahmane%2C+M+L">M. L. Benabderrahmane</a>, <a href="/search/physics?searchtype=author&query=BenZvi%2C+S">S. BenZvi</a>, <a href="/search/physics?searchtype=author&query=Berdermann%2C+J">J. Berdermann</a>, <a href="/search/physics?searchtype=author&query=Berghaus%2C+P">P. Berghaus</a> , et al. (255 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1208.3430v2-abstract-short" style="display: inline;"> The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV)… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.3430v2-abstract-full').style.display = 'inline'; document.getElementById('1208.3430v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1208.3430v2-abstract-full" style="display: none;"> The measurement of muon energy is critical for many analyses in large Cherenkov detectors, particularly those that involve separating extraterrestrial neutrinos from the atmospheric neutrino background. Muon energy has traditionally been determined by measuring the specific energy loss (dE/dx) along the muon's path and relating the dE/dx to the muon energy. Because high-energy muons (E_mu > 1 TeV) lose energy randomly, the spread in dE/dx values is quite large, leading to a typical energy resolution of 0.29 in log10(E_mu) for a muon observed over a 1 km path length in the IceCube detector. In this paper, we present an improved method that uses a truncated mean and other techniques to determine the muon energy. The muon track is divided into separate segments with individual dE/dx values. The elimination of segments with the highest dE/dx results in an overall dE/dx that is more closely correlated to the muon energy. This method results in an energy resolution of 0.22 in log10(E_mu), which gives a 26% improvement. This technique is applicable to any large water or ice detector and potentially to large scintillator or liquid argon detectors. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1208.3430v2-abstract-full').style.display = 'none'; document.getElementById('1208.3430v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 16 August, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> August 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">12 pages, 16 figures</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> NIM A703:190,2013 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1207.0810">arXiv:1207.0810</a> <span> [<a href="https://arxiv.org/pdf/1207.0810">pdf</a>, <a href="https://arxiv.org/format/1207.0810">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="High Energy Physics - Phenomenology">hep-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Cosmology and Nongalactic Astrophysics">astro-ph.CO</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="High Energy Physics - Experiment">hep-ex</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Data Analysis, Statistics and Probability">physics.data-an</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1088/1475-7516/2012/11/057">10.1088/1475-7516/2012/11/057 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Use of event-level neutrino telescope data in global fits for theories of new physics </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Scott%2C+P">P. Scott</a>, <a href="/search/physics?searchtype=author&query=Savage%2C+C">C. Savage</a>, <a href="/search/physics?searchtype=author&query=Edsj%C3%B6%2C+J">J. Edsj枚</a>, <a href="/search/physics?searchtype=author&query=Collaboration%2C+t+I">the IceCube Collaboration</a>, <a href="/search/physics?searchtype=author&query=%3A"> :</a>, <a href="/search/physics?searchtype=author&query=Abbasi%2C+R">R. Abbasi</a>, <a href="/search/physics?searchtype=author&query=Abdou%2C+Y">Y. Abdou</a>, <a href="/search/physics?searchtype=author&query=Ackermann%2C+M">M. Ackermann</a>, <a href="/search/physics?searchtype=author&query=Adams%2C+J">J. Adams</a>, <a href="/search/physics?searchtype=author&query=Aguilar%2C+J+A">J. A. Aguilar</a>, <a href="/search/physics?searchtype=author&query=Ahlers%2C+M">M. Ahlers</a>, <a href="/search/physics?searchtype=author&query=Altmann%2C+D">D. Altmann</a>, <a href="/search/physics?searchtype=author&query=Andeen%2C+K">K. Andeen</a>, <a href="/search/physics?searchtype=author&query=Auffenberg%2C+J">J. Auffenberg</a>, <a href="/search/physics?searchtype=author&query=Bai%2C+X">X. Bai</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M">M. Baker</a>, <a href="/search/physics?searchtype=author&query=Barwick%2C+S+W">S. W. Barwick</a>, <a href="/search/physics?searchtype=author&query=Baum%2C+V">V. Baum</a>, <a href="/search/physics?searchtype=author&query=Bay%2C+R">R. Bay</a>, <a href="/search/physics?searchtype=author&query=Beattie%2C+K">K. Beattie</a>, <a href="/search/physics?searchtype=author&query=Beatty%2C+J+J">J. J. Beatty</a>, <a href="/search/physics?searchtype=author&query=Bechet%2C+S">S. Bechet</a>, <a href="/search/physics?searchtype=author&query=Tjus%2C+J+B">J. Becker Tjus</a>, <a href="/search/physics?searchtype=author&query=Becker%2C+K+-">K. -H. Becker</a>, <a href="/search/physics?searchtype=author&query=Bell%2C+M">M. Bell</a> , et al. (253 additional authors not shown) </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1207.0810v2-abstract-short" style="display: inline;"> We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be u… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.0810v2-abstract-full').style.display = 'inline'; document.getElementById('1207.0810v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1207.0810v2-abstract-full" style="display: none;"> We present a fast likelihood method for including event-level neutrino telescope data in parameter explorations of theories for new physics, and announce its public release as part of DarkSUSY 5.0.6. Our construction includes both angular and spectral information about neutrino events, as well as their total number. We also present a corresponding measure for simple model exclusion, which can be used for single models without reference to the rest of a parameter space. We perform a number of supersymmetric parameter scans with IceCube data to illustrate the utility of the method: example global fits and a signal recovery in the constrained minimal supersymmetric standard model (CMSSM), and a model exclusion exercise in a 7-parameter phenomenological version of the MSSM. The final IceCube detector configuration will probe almost the entire focus-point region of the CMSSM, as well as a number of MSSM-7 models that will not otherwise be accessible to e.g. direct detection. Our method accurately recovers the mock signal, and provides tight constraints on model parameters and derived quantities. We show that the inclusion of spectral information significantly improves the accuracy of the recovery, providing motivation for its use in future IceCube analyses. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1207.0810v2-abstract-full').style.display = 'none'; document.getElementById('1207.0810v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 1 October, 2012; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 3 July, 2012; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2012. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">29 pages, 6 figures. v2 adds additional explanation in p-value derivation, matches version accepted for publication in JCAP</span> </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Journal ref:</span> JCAP 11(2012)057 </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/1007.4851">arXiv:1007.4851</a> <span> [<a href="https://arxiv.org/pdf/1007.4851">pdf</a>, <a href="https://arxiv.org/ps/1007.4851">ps</a>, <a href="https://arxiv.org/format/1007.4851">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Instrumentation and Detectors">physics.ins-det</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Materials Science">cond-mat.mtrl-sci</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1063/1.3529434">10.1063/1.3529434 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Atom chips on direct bonded copper substrates </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Squires%2C+M+B">Matthew B. Squires</a>, <a href="/search/physics?searchtype=author&query=Stickney%2C+J+A">James A. Stickney</a>, <a href="/search/physics?searchtype=author&query=Carlson%2C+E+J">Evan J. Carlson</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+P+M">Paul M. Baker</a>, <a href="/search/physics?searchtype=author&query=Buchwald%2C+W+R">Walter R. Buchwald</a>, <a href="/search/physics?searchtype=author&query=Wentzell%2C+S">Sandra Wentzell</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+S+M">Steven M. Miller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="1007.4851v1-abstract-short" style="display: inline;"> We present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (> 100 microns) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (< 8 hr) fabrication, and three dimensional atom chip structures. Two ma… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.4851v1-abstract-full').style.display = 'inline'; document.getElementById('1007.4851v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="1007.4851v1-abstract-full" style="display: none;"> We present the use of direct bonded copper (DBC) for the straightforward fabrication of high power atom chips. Atom chips using DBC have several benefits: excellent copper/substrate adhesion, high purity, thick (> 100 microns) copper layers, high substrate thermal conductivity, high aspect ratio wires, the potential for rapid (< 8 hr) fabrication, and three dimensional atom chip structures. Two mask options for DBC atom chip fabrication are presented, as well as two methods for etching wire patterns into the copper layer. The wire aspect ratio that optimizes the magnetic field gradient as a function of power dissipation is determined to be 0.84:1 (height:width). The optimal wire thickness as a function of magnetic trapping height is also determined. A test chip, able to support 100 A of current for 2 s without failing, is used to determine the thermal impedance of the DBC. An assembly using two DBC atom chips to provide magnetic confinement is also shown. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('1007.4851v1-abstract-full').style.display = 'none'; document.getElementById('1007.4851v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 27 July, 2010; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> July 2010. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">8 pages, 5 figures</span> </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/0910.0564">arXiv:0910.0564</a> <span> [<a href="https://arxiv.org/pdf/0910.0564">pdf</a>, <a href="https://arxiv.org/ps/0910.0564">ps</a>, <a href="https://arxiv.org/format/0910.0564">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atomic Physics">physics.atom-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1103/PhysRevA.80.063615">10.1103/PhysRevA.80.063615 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> Adjustable microchip ring trap for cold atoms and molecules </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Baker%2C+P+M">Paul M. Baker</a>, <a href="/search/physics?searchtype=author&query=Stickney%2C+J+A">James A. Stickney</a>, <a href="/search/physics?searchtype=author&query=Squires%2C+M+B">Matthew B. Squires</a>, <a href="/search/physics?searchtype=author&query=Scoville%2C+J+A">James A. Scoville</a>, <a href="/search/physics?searchtype=author&query=Carlson%2C+E+J">Evan J. Carlson</a>, <a href="/search/physics?searchtype=author&query=Buchwald%2C+W+R">Walter R. Buchwald</a>, <a href="/search/physics?searchtype=author&query=Miller%2C+S+M">Steven M. Miller</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="0910.0564v2-abstract-short" style="display: inline;"> We describe the design and function of a circular magnetic waveguide produced from wires on a microchip for atom interferometry using deBroglie waves. The guide is a two-dimensional magnetic minimum for trapping weak-field seeking states of atoms or molecules with a magnetic dipole moment. The design consists of seven circular wires sharing a common radius. We describe the design, the time-depen… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.0564v2-abstract-full').style.display = 'inline'; document.getElementById('0910.0564v2-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="0910.0564v2-abstract-full" style="display: none;"> We describe the design and function of a circular magnetic waveguide produced from wires on a microchip for atom interferometry using deBroglie waves. The guide is a two-dimensional magnetic minimum for trapping weak-field seeking states of atoms or molecules with a magnetic dipole moment. The design consists of seven circular wires sharing a common radius. We describe the design, the time-dependent currents of the wires and show that it is possible to form a circular waveguide with adjustable height and gradient while minimizing perturbation resulting from leads or wire crossings. This maximal area geometry is suited for rotation sensing with atom interferometry via the Sagnac effect using either cold atoms, molecules and Bose-condensed systems. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('0910.0564v2-abstract-full').style.display = 'none'; document.getElementById('0910.0564v2-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 9 November, 2009; <span class="has-text-black-bis has-text-weight-semibold">v1</span> submitted 5 October, 2009; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> October 2009. </p> </li> <li class="arxiv-result"> <div class="is-marginless"> <p class="list-title is-inline-block"><a href="https://arxiv.org/abs/physics/9803031">arXiv:physics/9803031</a> <span> [<a href="https://arxiv.org/pdf/physics/9803031">pdf</a>, <a href="https://arxiv.org/ps/physics/9803031">ps</a>, <a href="https://arxiv.org/format/physics/9803031">other</a>] </span> </p> <div class="tags is-inline-block"> <span class="tag is-small is-link tooltip is-tooltip-top" data-tooltip="Atmospheric and Oceanic Physics">physics.ao-ph</span> <span class="tag is-small is-grey tooltip is-tooltip-top" data-tooltip="Geophysics">physics.geo-ph</span> </div> <div class="is-inline-block" style="margin-left: 0.5rem"> <div class="tags has-addons"> <span class="tag is-dark is-size-7">doi</span> <span class="tag is-light is-size-7"><a class="" href="https://doi.org/10.1002/qj.49712555710">10.1002/qj.49712555710 <i class="fa fa-external-link" aria-hidden="true"></i></a></span> </div> </div> </div> <p class="title is-5 mathjax"> A model study of corona emission from hydrometeors </p> <p class="authors"> <span class="search-hit">Authors:</span> <a href="/search/physics?searchtype=author&query=Schroeder%2C+V">Vicki Schroeder</a>, <a href="/search/physics?searchtype=author&query=Baker%2C+M+B">M. B. Baker</a>, <a href="/search/physics?searchtype=author&query=Latham%2C+J">John Latham</a> </p> <p class="abstract mathjax"> <span class="has-text-black-bis has-text-weight-semibold">Abstract</span>: <span class="abstract-short has-text-grey-dark mathjax" id="physics/9803031v1-abstract-short" style="display: inline;"> The maximum measured electric fields in thunderclouds are an order of magnitude less than the fields required for electric breakdown of the air. One explanation for lightning initiation in these low fields is that electric breakdown first occurs at the surfaces of raindrops where the ambient field is enhanced very locally due to the drop geometry. Laboratory experiments [Crabb & Latham, 1974] in… <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/9803031v1-abstract-full').style.display = 'inline'; document.getElementById('physics/9803031v1-abstract-short').style.display = 'none';">▽ More</a> </span> <span class="abstract-full has-text-grey-dark mathjax" id="physics/9803031v1-abstract-full" style="display: none;"> The maximum measured electric fields in thunderclouds are an order of magnitude less than the fields required for electric breakdown of the air. One explanation for lightning initiation in these low fields is that electric breakdown first occurs at the surfaces of raindrops where the ambient field is enhanced very locally due to the drop geometry. Laboratory experiments [Crabb & Latham, 1974] indicate that colliding raindrops which coalesce to form elongated water filaments can produce positive corona in ambient fields close to those measured in thunderclouds. We calculate the E-field distribution around a simulated coalesced drop pair and use a numerical model to study the positive corona mechanisms in detail. Our results give good agreement with the laboratory observations. At the altitudes (and thus low pressures) at which lightning initiation is observed, our results show that positive corona can occur at observed in-cloud E-fields. <a class="is-size-7" style="white-space: nowrap;" onclick="document.getElementById('physics/9803031v1-abstract-full').style.display = 'none'; document.getElementById('physics/9803031v1-abstract-short').style.display = 'inline';">△ Less</a> </span> </p> <p class="is-size-7"><span class="has-text-black-bis has-text-weight-semibold">Submitted</span> 23 March, 1998; <span class="has-text-black-bis has-text-weight-semibold">originally announced</span> March 1998. </p> <p class="comments is-size-7"> <span class="has-text-black-bis has-text-weight-semibold">Comments:</span> <span class="has-text-grey-dark mathjax">13 pages, 9 figures, http://www.geophys.washington.edu/Surface/Atmospheric/ Submitted to: Quarterly Journal of the Royal Meteorological Society</span> </p> </li> </ol> <div class="is-hidden-tablet"> <!-- feedback for mobile only --> <span class="help" style="display: inline-block;"><a href="https://github.com/arXiv/arxiv-search/releases">Search v0.5.6 released 2020-02-24</a> </span> </div> </div> </main> <footer> <div class="columns is-desktop" role="navigation" aria-label="Secondary"> <!-- MetaColumn 1 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/about">About</a></li> <li><a href="https://info.arxiv.org/help">Help</a></li> </ul> </div> <div class="column"> <ul class="nav-spaced"> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>contact arXiv</title><desc>Click here to contact arXiv</desc><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg> <a href="https://info.arxiv.org/help/contact.html"> Contact</a> </li> <li> <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><title>subscribe to arXiv mailings</title><desc>Click here to subscribe</desc><path d="M476 3.2L12.5 270.6c-18.1 10.4-15.8 35.6 2.2 43.2L121 358.4l287.3-253.2c5.5-4.9 13.3 2.6 8.6 8.3L176 407v80.5c0 23.6 28.5 32.9 42.5 15.8L282 426l124.6 52.2c14.2 6 30.4-2.9 33-18.2l72-432C515 7.8 493.3-6.8 476 3.2z"/></svg> <a href="https://info.arxiv.org/help/subscribe"> Subscribe</a> </li> </ul> </div> </div> </div> <!-- end MetaColumn 1 --> <!-- MetaColumn 2 --> <div class="column"> <div class="columns"> <div class="column"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/license/index.html">Copyright</a></li> <li><a href="https://info.arxiv.org/help/policies/privacy_policy.html">Privacy Policy</a></li> </ul> </div> <div class="column sorry-app-links"> <ul class="nav-spaced"> <li><a href="https://info.arxiv.org/help/web_accessibility.html">Web Accessibility Assistance</a></li> <li> <p class="help"> <a class="a11y-main-link" href="https://status.arxiv.org" target="_blank">arXiv Operational Status <svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 256 512" class="icon filter-dark_grey" role="presentation"><path d="M224.3 273l-136 136c-9.4 9.4-24.6 9.4-33.9 0l-22.6-22.6c-9.4-9.4-9.4-24.6 0-33.9l96.4-96.4-96.4-96.4c-9.4-9.4-9.4-24.6 0-33.9L54.3 103c9.4-9.4 24.6-9.4 33.9 0l136 136c9.5 9.4 9.5 24.6.1 34z"/></svg></a><br> Get status notifications via <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/email/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 512 512" class="icon filter-black" role="presentation"><path d="M502.3 190.8c3.9-3.1 9.7-.2 9.7 4.7V400c0 26.5-21.5 48-48 48H48c-26.5 0-48-21.5-48-48V195.6c0-5 5.7-7.8 9.7-4.7 22.4 17.4 52.1 39.5 154.1 113.6 21.1 15.4 56.7 47.8 92.2 47.6 35.7.3 72-32.8 92.3-47.6 102-74.1 131.6-96.3 154-113.7zM256 320c23.2.4 56.6-29.2 73.4-41.4 132.7-96.3 142.8-104.7 173.4-128.7 5.8-4.5 9.2-11.5 9.2-18.9v-19c0-26.5-21.5-48-48-48H48C21.5 64 0 85.5 0 112v19c0 7.4 3.4 14.3 9.2 18.9 30.6 23.9 40.7 32.4 173.4 128.7 16.8 12.2 50.2 41.8 73.4 41.4z"/></svg>email</a> or <a class="is-link" href="https://subscribe.sorryapp.com/24846f03/slack/new" target="_blank"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 448 512" class="icon filter-black" role="presentation"><path d="M94.12 315.1c0 25.9-21.16 47.06-47.06 47.06S0 341 0 315.1c0-25.9 21.16-47.06 47.06-47.06h47.06v47.06zm23.72 0c0-25.9 21.16-47.06 47.06-47.06s47.06 21.16 47.06 47.06v117.84c0 25.9-21.16 47.06-47.06 47.06s-47.06-21.16-47.06-47.06V315.1zm47.06-188.98c-25.9 0-47.06-21.16-47.06-47.06S139 32 164.9 32s47.06 21.16 47.06 47.06v47.06H164.9zm0 23.72c25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06H47.06C21.16 243.96 0 222.8 0 196.9s21.16-47.06 47.06-47.06H164.9zm188.98 47.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06s-21.16 47.06-47.06 47.06h-47.06V196.9zm-23.72 0c0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06V79.06c0-25.9 21.16-47.06 47.06-47.06 25.9 0 47.06 21.16 47.06 47.06V196.9zM283.1 385.88c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06-25.9 0-47.06-21.16-47.06-47.06v-47.06h47.06zm0-23.72c-25.9 0-47.06-21.16-47.06-47.06 0-25.9 21.16-47.06 47.06-47.06h117.84c25.9 0 47.06 21.16 47.06 47.06 0 25.9-21.16 47.06-47.06 47.06H283.1z"/></svg>slack</a> </p> </li> </ul> </div> </div> </div> <!-- end MetaColumn 2 --> </div> </footer> <script src="https://static.arxiv.org/static/base/1.0.0a5/js/member_acknowledgement.js"></script> </body> </html>