CINXE.COM

How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? | HackerNoon

<!DOCTYPE html><html lang="en"><head><meta charSet="utf-8"/><meta name="viewport" content="width=device-width"/><title>How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? | HackerNoon</title><meta name="description" content="In my previous article, I talked about the biggest difference that Machine Learning (ML) brings: ML enables a move away from having to program the machine to true autonomy (self-learned). Machines make predictions and improve insights based on patterns they identify in data without humans explicitly telling them what to do. That’s why ML is particularly useful for challenging problems that are difficult for people to explain to machines. It also means that ML can make your products more personalized, more automated, and more precise. Advanced algorithms, massive data, and cheap hardware are enabling ML to become the main driver of GDP."/><meta property="og:title" content="How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? | HackerNoon"/><meta property="og:description" content="In my previous article, I talked about the biggest difference that Machine Learning (ML) brings: ML enables a move away from having to program the machine to true autonomy (self-learned). Machines make predictions and improve insights based on patterns they identify in data without humans explicitly telling them what to do. That’s why ML is particularly useful for challenging problems that are difficult for people to explain to machines. It also means that ML can make your products more personalized, more automated, and more precise. Advanced algorithms, massive data, and cheap hardware are enabling ML to become the main driver of GDP."/><meta name="image" property="og:image" content="https://hackernoon.imgix.net/drafts/sas327i.png"/><meta property="twitter:title" content="How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? | HackerNoon"/><meta property="twitter:description" content="In my previous article, I talked about the biggest difference that Machine Learning (ML) brings: ML enables a move away from having to program the machine to true autonomy (self-learned). Machines make predictions and improve insights based on patterns they identify in data without humans explicitly telling them what to do. That’s why ML is particularly useful for challenging problems that are difficult for people to explain to machines. It also means that ML can make your products more personalized, more automated, and more precise. Advanced algorithms, massive data, and cheap hardware are enabling ML to become the main driver of GDP."/><meta property="twitter:image" content="https://hackernoon.imgix.net/drafts/sas327i.png"/><meta name="twitter:card" content="summary_large_image"/><meta name="twitter:site" content="@hackernoon"/><link rel="canonical" href="https://hackernoon.com/how-to-manage-machine-learning-products-part-i-why-is-managing-machine-learning-products-so-hard-a-i91i32qd"/><script type="application/ld+json">{"@context":"http://schema.org","@type":"Article","name":"How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? ","headline":"How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? ","author":{"@type":"Person","name":"Bastiane"},"datePublished":"2019-10-31","image":"https://hackernoon.imgix.net/drafts/sas327i.png","articleSection":"product","articleBody":"In my , I talked about the biggest difference that Machine Learning (ML) brings: . Machines make predictions and improve insights based on patterns they identify in data without humans explicitly telling them what to do. That’s why ML is particularly useful for challenging problems that are difficult for people to explain to machines. It also means that ML can make your products more personalized, more automated, and more precise. Advanced algorithms, massive data, and cheap hardware are enabling ML to become the main driver of GDP. previous article ML enables a move away from having to program the machine to true autonomy (self-learned) The adoption of ML has been rapidly advancing across various business sectors. Nearly half of the companies have incorporated one or more artificial intelligence capabilities in their process and another 30% are piloting AI projects, according to ’s recent survey. Mckinsey It’s not hard to see why ML is expected to be even more transformative than mobile technology. However, the transition to ML could also be more than 10 times harder than the transition to mobile. Before we talk about why that’s the case, let’s go through the basics. Machine Learning Basics: What are AI and ML? There’s no universally agreed definition of AI and the definition changes all the time. Once a certain task is performed by a machine, the task is no longer in the scope of AI. ML is a subset of AI. CMU professor Tom M. Mitchell defined Machine Learning to be a study of computer algorithms that allow computer programs to automatically improve through experience. Types of ML There are three main types of machine learning: 1. Supervised learning The most common one and widely used type of learning. The algorithms learn from labeled data, i.e. training data sets that are tagged with the outcome the model is trying to predict. In short, it’s about predicting outcomes. 2. Unsupervised learning On the other hand, unsupervised learning algorithms learn to identify patterns in the data without labeled data. It can be used in clustering, association, and anomaly detection problems. There’s also semi-supervised learning which is essentially a hybrid between supervised and unsupervised learning. 3. Reinforcement learning The algorithms learn as they get feedback on corresponding predictions over time. RL is used in control domains such as robotics or self-driving cars. Types of Machine Learning Products Depending on the types of products and where the core values come from, you will require different skill sets in your team and need to focus on different parts of the products. Enterprise vs. Consumer Consumer ML products such as smart speakers have a stronger social component than their counterparts in enterprise segments. Therefore, user experience (UX) plays a more critical part in designing consumer ML products and ML tends to become an enabler for better UX. For example, NLP (natural language processing) is used to improve the interaction between Alexa and its users. On the other hand, the core value of enterprise, especially industrial ML products, such as predictive maintenance software, tends to come from the functional performance (e.g. accuracy) of their predictions. This is not to say that UX is not important for enterprise ML products. However, this is something to consider when you only have limited resources and need to focus on optimizing parts of your products. Are you building an ML product or applying ML to your product? If the core value of your product comes from ML models, then you are likely building an ML product. On the other hand, if ML is only used to enhance the experience or performance of your product, then you are most likely applying ML to your product. In this case, it’s essential to understand the input and output of the models but not the technical details like architecture or whether the ML models are based on CNN (Convolutional Neural Network) or R-CNN. For example, the model takes demographic data of users to predict their monthly spending on the platform. Many companies or teams will also leverage existing solutions so they don’t reinvent the wheel. On the other hand, building ML products often requires PMs to be more technical to help the team navigate key decisions and trade-offs. The organization structures also vary. For companies building ML products or large corporations with heavy investments in ML, like Facebook and Google, it’s common to hire ML researchers/scientists and pair them with ML engineers. On the other hand, for companies applying ML to their products or smaller companies with resource constraints, it’s probably better to hire multi-disciplinary ML engineers or train your software engineers to learn ML instead of hiring ML researchers/scientists. Building ML products is often interdisciplinary Even if you are building an ML product, it’s rarely the case that it will only involve ML. It’s often interdisciplinary and involves not only ML models but also software engineering, back-end infrastructure, data analytics, UX/UI design, and sometimes hardware. PMs need to be able to manage cross-functional teams and deal with interdependencies and potential clashes among teams. ML is fundamentally different from other disciplines as we will explain more in the following paragraph. It becomes even more complex if you are building ML products for the physical world like robotics or self-driving cars. PMs need to know what can and cannot be done with ML and when we should and should not use ML. Other key ML concepts to understand : is a type of error that happens when models are too closely fit a specific set of data points. Robust ML models will perform well not only on “training datasets” but also on “validation datasets”. However, in the case of overfitting, the performance on the training data increases but the performance on unseen (validation) data becomes worse. Overfitting : primarily used for image classification. DL uses a deep neural network and takes labeled images as input. Each layer of the neural network will transform the input into a slightly more abstract and composite representation. Eventually, the model learns to recognize objects in the images. Deep Learning (DL) : a field of computer science for machines to understand human languages. It doesn’t necessarily involve ML. NLP is used for chatbots, voice assistants, or preprocessing data. Natural Language Processing (NLP) Challenges in Managing ML Products 1. Experimentation is a crucial part of ML Just because ML involves code and data doesn’t make it similar to software engineering. In fact, the two disciplines couldn’t be more different. Unlike software engineering, developing machine learning products takes a lot more experiments and therefore involves more uncertainties and variabilities. Software engineering is a deterministic process of writing rules for machines to follow while machine learning is more probabilistic as it automates the task of writing the rules. For example, if you want to teach a machine to recognize a cat. With software engineering, you may come up with rules like “a cat has 4 legs and 2 pointy ears.” But how is that different from a dog? If you use deep learning, instead of explicit rules, you will feed the machine with a bunch of cat photos (labeled images) and let the machine learn by itself. By doing so, you let machines write the rules by themselves. What you and your team do is to define the problem, prepare data, build a set of models, test, and iterate until you have a model that delivers desired results. That’s why teams generally need to take more risks when developing ML products. It’s important for PMs to help set the right expectations to avoid potential clashes among teams. For instance, software engineers may feel that ML team is not giving them clear enough requirements without appreciating the nature of ML products. It’s also crucial to have engineers work closely with researchers/scientists so they can balance each other. More importantly, it’s better to have end-to-end systems working sooner to make sure that the algorithms that ML teams have been working on actually aligned with business goals. 2. Developing ML is a highly iterative process. As mentioned before, ML is well suited for solving problems that are too complicated for humans to program explicitly. Models need to be trained, tested, and tuned. Often times scientists have to test a few approaches before choosing a satisfying one. That’s why it’s often more difficult to define milestones and estimate the timeline for ML products. Due to the nature of ML products, it’s critical for product managers to clearly define requirements and metrics and ensure that the team frequently test models against desired metrics. 3. There are more structural challenges beyond technical ones. Because ML is so different from software engineering, it requires some fundamental organizational changes: experimental culture, data analytics-driven mindset, and more openness towards uncertainties, to name a few. Incumbents could face “innovator’s dilemma” if they treat ML as a purely technical problem and overlook the associated organizational changes. It is particularly challenging for companies such as robot makers who used to pursue high precision to develop ML products internally. In addition, ML products need large datasets for training. Companies need to build their own data pipeline and infrastructure to support the scaling of ML products. 4. ML is still a new field and it will keep evolving. The term “software engineering” first appeared in 1965, 15 years after programming languages started to appear. Almost 20 years later, the Software Engineering Institute was established to manage the software engineering process. And today we have generally accepted best practices for software engineering. Machine learning, on the other hand, only started to flourish as a separate field in the 1990s. Deep learning, a subset of ML that has set new records in accuracy for many problems including image recognition and NLP, wasn’t widely discussed until the rise of AlexNet in 2012. Compared to software engineering, ML is still in its infancy and therefore lacks industry standards, metrics, infrastructure, and tools. Companies are still exploring best practices and kill applications. 5. Explainability and interpretability issues with ML products Many ML algorithms lack transparency, acting like a black box that takes input (e.g. images) and outputs predictions (e.g. what/who the objects/people in the images are). This makes it difficult for product managers to explain how ML models work and get buy-ins from users and stakeholders. Especially in critical domains like healthcare, accountability and transparency are extremely important. It’s challenging to ensure alignment between ML work and customer problems without a clear understanding of how an algorithm actually works. With all these challenges, how should we go about managing ML products? Where do good PM instincts go bad for ML products? In Part II, I will talk more about my learnings and best practices. Bastiane Huang is a Product Manager at Osaro, a San Francisco based startup that builds machine learning software for robotic vision and control. She has worked for Amazon in its Alexa group and with Harvard Business Review and the university’s Future of Work Initiative. (Image Source: https://ssir.org/articles/entry/demystifying_machine_learning_for_global_development )"}</script><meta name="next-head-count" content="14"/><meta name="google-site-verification" content="xSsN5mRM5xbHVI00M8uekCnuJ47Da0ER2mYuGhaPM9o"/><link rel="preload" href="/fonts/HackerNoonFont/font-hackernoon.css"/><meta name="slack-app-id" content="A017MMBC29Z"/><script async="" src="https://www.googletagmanager.com/gtag/js?id=G-ECJJ2Q2SJQ"></script><script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-ECJJ2Q2SJQ'); </script><link rel="preload" href="/_next/static/css/df05ebb20b5f1597.css" as="style"/><link rel="stylesheet" href="/_next/static/css/df05ebb20b5f1597.css" data-n-g=""/><link rel="preload" href="/_next/static/css/d072011159298b64.css" as="style"/><link rel="stylesheet" href="/_next/static/css/d072011159298b64.css" data-n-p=""/><noscript data-n-css=""></noscript><script defer="" nomodule="" src="/_next/static/chunks/polyfills-c67a75d1b6f99dc8.js"></script><script src="https://accounts.google.com/gsi/client" defer="" data-nscript="beforeInteractive"></script><script src="/noflash.js" defer="" data-nscript="beforeInteractive"></script><script defer="" src="/_next/static/chunks/2876.ccc6b4101344acd3.js"></script><script defer="" src="/_next/static/chunks/ee759108-51af8ccea7c8c9cb.js"></script><script defer="" src="/_next/static/chunks/834.1e7c7d5fb534989d.js"></script><script defer="" src="/_next/static/chunks/5459-17af4b1e2650ddc3.js"></script><script defer="" src="/_next/static/chunks/8554.5fd0b3b20b52c3c9.js"></script><script src="/_next/static/chunks/webpack-925f5e65e6e71b17.js" defer=""></script><script src="/_next/static/chunks/framework-79bce4a3a540b080.js" defer=""></script><script src="/_next/static/chunks/main-d795fc49073f04a3.js" defer=""></script><script src="/_next/static/chunks/pages/_app-af895191cab536b8.js" defer=""></script><script src="/_next/static/chunks/29107295-4a69275373f23f88.js" defer=""></script><script src="/_next/static/chunks/75fc9c18-55217e80064ded2b.js" defer=""></script><script src="/_next/static/chunks/e4405247-b92cad2245dc32a9.js" defer=""></script><script src="/_next/static/chunks/ad7f724d-c783309ff8720dc6.js" defer=""></script><script src="/_next/static/chunks/8783-f3b27c5ae7196adb.js" defer=""></script><script src="/_next/static/chunks/6130-446e8f5ea6b9cf33.js" defer=""></script><script src="/_next/static/chunks/8764-593a836a579a1569.js" defer=""></script><script src="/_next/static/chunks/8847-3c59f9ab8a154115.js" defer=""></script><script src="/_next/static/chunks/9669-8c5935587f85d094.js" defer=""></script><script src="/_next/static/chunks/7553-106c3af9acfd5cd0.js" defer=""></script><script src="/_next/static/chunks/4804-0be234a5b629b212.js" defer=""></script><script src="/_next/static/chunks/2456-5afe200ce6aa3025.js" defer=""></script><script src="/_next/static/chunks/3253-1974b95a38599811.js" defer=""></script><script src="/_next/static/chunks/823-835d31f246f83bac.js" defer=""></script><script src="/_next/static/chunks/5935-02990bcc2cb4308e.js" defer=""></script><script src="/_next/static/chunks/4298-d54043aad13ba5d2.js" defer=""></script><script src="/_next/static/chunks/1348-7c5e254d02eaa11f.js" defer=""></script><script src="/_next/static/chunks/5518-7b061f7a77a116d1.js" defer=""></script><script src="/_next/static/chunks/9769-902d2ef3b92da4ca.js" defer=""></script><script src="/_next/static/chunks/1432-ac91a2dd2983de6a.js" defer=""></script><script src="/_next/static/chunks/2374-c64b667ba63aef2b.js" defer=""></script><script src="/_next/static/chunks/9566-229056345f690efa.js" defer=""></script><script src="/_next/static/chunks/7777-b730049dfcbd4583.js" defer=""></script><script src="/_next/static/chunks/pages/%5Bslug%5D-a405dfc060f0334c.js" defer=""></script><script src="/_next/static/xXlSxcnUdbwy3ckXHYhzq/_buildManifest.js" defer=""></script><script src="/_next/static/xXlSxcnUdbwy3ckXHYhzq/_ssgManifest.js" defer=""></script><style data-styled="" data-styled-version="5.3.11">.jECpNX{background-color:transparent;color:#212428;border:2px solid #212428;border-radius:2px;font-size:1.6rem;font-weight:600;padding:0.6rem 1.2rem;display:inline-block;cursor:pointer;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;position:relative;outline:none;line-height:1.3;}/*!sc*/ .jECpNX svg,.jECpNX i{font-size:1.6rem;}/*!sc*/ .jECpNX svg + span,.jECpNX i + span{margin-left:5px;margin-top:0;}/*!sc*/ .jECpNX:hover{background-color:#62ff86;}/*!sc*/ .jECpNX:active{background-color:#0f0;border-color:#212428;color:#212428;}/*!sc*/ .jECpNX:active,.jECpNX:focus{outline:none;}/*!sc*/ .jECpNX[disabled]{opacity:0.75;cursor:not-allowed;background-color:transparent;}/*!sc*/ .jECpNX[disabled]:hover{box-shadow:none;}/*!sc*/ .jECpNX.email-preview-button{border-radius:0;color:#0f0;min-width:151px;cursor:pointer;border:4px solid #d5d5d5;}/*!sc*/ .jECpNX.newsletter-form-button{color:#0f0;background-color:#212428;margin-bottom:0;margin-top:10px;border:4px solid #d5d5d5;cursor:pointer;min-width:151px;height:38px;font-size:16px;line-height:21px;font-weight:normal;border-radius:0;margin:0 2.5px;}/*!sc*/ @media (min-width:576px){.jECpNX.newsletter-form-button{margin-top:0;}}/*!sc*/ .jECpNX.newsletter-form-button:hover{background-color:#3c3c3b;}/*!sc*/ data-styled.g5[id="sc-b3d23cc4-0"]{content:"jECpNX,"}/*!sc*/ html{line-height:1.15;-webkit-text-size-adjust:100%;}/*!sc*/ body{margin:0;}/*!sc*/ main{display:block;}/*!sc*/ h1{font-size:2em;margin:0.67em 0;}/*!sc*/ hr{box-sizing:content-box;height:0;overflow:visible;}/*!sc*/ pre{font-family:monospace,monospace;font-size:1em;}/*!sc*/ a{background-color:transparent;}/*!sc*/ abbr[title]{border-bottom:none;-webkit-text-decoration:underline;text-decoration:underline;-webkit-text-decoration:underline dotted;text-decoration:underline dotted;}/*!sc*/ b,strong{font-weight:bolder;}/*!sc*/ code,kbd,samp{font-family:monospace,monospace;font-size:1em;}/*!sc*/ small{font-size:80%;}/*!sc*/ sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline;}/*!sc*/ sub{bottom:-0.25em;}/*!sc*/ sup{top:-0.5em;}/*!sc*/ img{border-style:none;}/*!sc*/ button,input,optgroup,select,textarea{font-family:inherit;font-size:100%;line-height:1.15;margin:0;}/*!sc*/ button,input{overflow:visible;}/*!sc*/ button,select{text-transform:none;}/*!sc*/ button,[type="button"],[type="reset"],[type="submit"]{-webkit-appearance:button;}/*!sc*/ button::-moz-focus-inner,[type="button"]::-moz-focus-inner,[type="reset"]::-moz-focus-inner,[type="submit"]::-moz-focus-inner{border-style:none;padding:0;}/*!sc*/ button:-moz-focusring,[type="button"]:-moz-focusring,[type="reset"]:-moz-focusring,[type="submit"]:-moz-focusring{outline:1px dotted ButtonText;}/*!sc*/ fieldset{padding:0.35em 0.75em 0.625em;}/*!sc*/ legend{box-sizing:border-box;color:inherit;display:table;max-width:100%;padding:0;white-space:normal;}/*!sc*/ progress{vertical-align:baseline;}/*!sc*/ textarea{overflow:auto;}/*!sc*/ [type="checkbox"],[type="radio"]{box-sizing:border-box;padding:0;}/*!sc*/ [type="number"]::-webkit-inner-spin-button,[type="number"]::-webkit-outer-spin-button{height:auto;}/*!sc*/ [type="search"]{-webkit-appearance:textfield;outline-offset:-2px;}/*!sc*/ [type="search"]::-webkit-search-decoration{-webkit-appearance:none;}/*!sc*/ ::-webkit-file-upload-button{-webkit-appearance:button;font:inherit;}/*!sc*/ details{display:block;}/*!sc*/ summary{display:list-item;}/*!sc*/ template{display:none;}/*!sc*/ [hidden]{display:none;}/*!sc*/ data-styled.g15[id="sc-global-ecVvVt1"]{content:"sc-global-ecVvVt1,"}/*!sc*/ .kTjQvw{height:-webkit-max-content;height:-moz-max-content;height:max-content;padding-bottom:auto;}/*!sc*/ .kTjQvw li{display:grid;grid-template-columns:1fr;}/*!sc*/ .kTjQvw li.trendingSection{max-width:600px;}/*!sc*/ .kTjQvw li > button{color:#0f0;padding:0 22px;font-size:2rem;background-color:transparent;border:0;}/*!sc*/ data-styled.g18[id="sc-b69cf9f6-0"]{content:"kTjQvw,"}/*!sc*/ .lkKurX{height:44px;background-color:#003b00;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;font-family:'IBM Plex Mono',monospace;font-weight:bold;font-size:1.4rem;display:none;position:relative;}/*!sc*/ @media screen and (max-width:1040px){.lkKurX{font-size:1.2vw;height:auto;}}/*!sc*/ @media screen and (min-width:870px){.lkKurX{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}}/*!sc*/ .lkKurX ul{list-style:none;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;padding:0;margin:0;}/*!sc*/ .lkKurX ul li{padding:10px 15px;}/*!sc*/ .lkKurX ul li.sponsor a{color:#f6f7f9;}/*!sc*/ .lkKurX ul li a{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;}/*!sc*/ .lkKurX ul li:hover > .dropdownNav,.lkKurX ul li > .dropdownNav:hover{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ .lkKurX a{color:#0f0;}/*!sc*/ .lkKurX a:focus{text-shadow:2px 2px 0 #0b0;}/*!sc*/ data-styled.g19[id="sc-72f8e89d-0"]{content:"lkKurX,"}/*!sc*/ .iocYRY{position:relative;height:46px;background:#f5ec43;font-family:'IBM Plex Mono',monospace;font-weight:bold;font-size:1.2rem;z-index:100;padding-left:10px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;}/*!sc*/ .iocYRY .daLink{width:100%;}/*!sc*/ @media screen and (min-width:870px){.iocYRY{font-size:1.6rem;}}/*!sc*/ .iocYRY a:not(.icon){color:#666105;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;}/*!sc*/ .iocYRY img{margin-right:10px;width:100px;object-fit:contain;border-radius:2px;}/*!sc*/ .iocYRY a.daLink > span{margin-right:10px !important;}/*!sc*/ .iocYRY a.daLink > span > img{border-radius:2px;}/*!sc*/ .iocYRY .icon{position:absolute;top:10px;left:6px;-webkit-transition:opacity 0.3s ease-out;transition:opacity 0.3s ease-out;opacity:0;pointer-events:none;}/*!sc*/ .iocYRY .logo img{width:180px;position:absolute;top:10px;left:6px;-webkit-transition:opacity 0.3s ease-out;transition:opacity 0.3s ease-out;opacity:0;pointer-events:none;}/*!sc*/ .iocYRY .colorPickerIcon{position:absolute;right:0;-webkit-filter:brightness(20%);filter:brightness(20%);font-size:3rem;-webkit-transition:filter 0.3s;transition:filter 0.3s;margin-right:15px;}/*!sc*/ @media screen and (max-width:1000px){.iocYRY .colorPickerIcon{display:none;}}/*!sc*/ .iocYRY .colorPickerIcon:hover{cursor:pointer;}/*!sc*/ data-styled.g21[id="sc-507e8eeb-0"]{content:"iocYRY,"}/*!sc*/ .byYhvg{height:45px;background-color:#fff;display:none;z-index:99;box-shadow:0 0 15px rgba(0,0,0,0.15);font-family:"IBM Plex Mono",monospace;-webkit-transform:translateY(-100%);-ms-transform:translateY(-100%);transform:translateY(-100%);-webkit-transition:all 200ms ease-in-out;transition:all 200ms ease-in-out;opacity:0;pointer-events:none;}/*!sc*/ .byYhvg .copyToClipboard{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;padding:10px;margin:0 auto;}/*!sc*/ .byYhvg .copyToClipboard:hover{cursor:pointer;}/*!sc*/ .byYhvg.hide{-webkit-transform:translateY(0);-ms-transform:translateY(0);transform:translateY(0);opacity:1;pointer-events:initial;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;}/*!sc*/ .byYhvg .icon{height:24px;margin-right:10px;}/*!sc*/ .byYhvg a.profile{padding:0;background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), rgba(0,255,0,0.35) calc(50% - 9px), rgba(0,255,0,0.35) 100% );-webkit-transition:background-position 120ms ease-in-out,padding 120ms ease-in-out;transition:background-position 120ms ease-in-out,padding 120ms ease-in-out;background-size:100% 200%;background-position:0 0;word-break:break-word;margin-left:10px;margin-right:1rem;}/*!sc*/ .byYhvg .profile-img{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ .byYhvg .profile-img img{border-radius:50%;cursor:pointer;}/*!sc*/ @media screen and (min-width:640px){.byYhvg .profile-img{display:none;}}/*!sc*/ .byYhvg a.profile:hover{background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), rgba(0,255,0,1) calc(50% - 9px), rgba(0,255,0,1) 100% );background-position:0 100%;}/*!sc*/ .byYhvg .icon img{height:24px;}/*!sc*/ .byYhvg .title{padding-left:10px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;white-space:nowrap;overflow:hidden;font-size:16px;font-weight:bold;}/*!sc*/ .byYhvg .title,.byYhvg .title a{white-space:nowrap;overflow:hidden;text-overflow:ellipsis;}/*!sc*/ .byYhvg .st-last{display:inline-block !important;}/*!sc*/ .byYhvg a.next{font-size:16px;border:2px solid #ccc;padding:1px 10px;}/*!sc*/ .byYhvg .sharing{position:relative;padding-right:20px;white-space:nowrap;overflow:hidden;height:45px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .byYhvg .sharing .audio-btn{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;min-width:35px;min-height:35px;background:#000;border-radius:50%;border:none;outline:none;color:#10ff00;border:2px solid;cursor:pointer;font-size:15px;padding:0px;}/*!sc*/ .byYhvg .sharing .audio-btn svg{height:18px;width:18px;}/*!sc*/ .byYhvg .sharing .audio-btn:hover{background:#0c3c00;}/*!sc*/ .byYhvg .sharing .st-inline-share-buttons{display:-webkit-box !important;display:-webkit-flex !important;display:-ms-flexbox !important;display:flex !important;height:45px;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .byYhvg .sharing .st-btn{background-color:transparent !important;background-size:contain;background-repeat:no-repeat;background-position:center;height:20px !important;width:20px;margin:0 0 0 4px;padding:0 !important;border-radius:0 !important;}/*!sc*/ .byYhvg .sharing .st-total{margin-right:7px;}/*!sc*/ .byYhvg .sharing .st-btn[data-network="twitter"]{background-image:url(https://hackernoon.imgix.net/social-icons/twitter-new.png) !important;-webkit-transform:translateX(2px);-ms-transform:translateX(2px);transform:translateX(2px);}/*!sc*/ .byYhvg .sharing .st-btn[data-network="facebook"]{display:none !important;}/*!sc*/ @media screen and (min-width:640px){.byYhvg .sharing .st-btn[data-network="facebook"]{background-image:url(https://hackernoon.imgix.net/social-icons/facebook-new.png) !important;display:block !important;}}/*!sc*/ .byYhvg .sharing .st-btn[data-network="linkedin"]{background-image:url(https://hackernoon.imgix.net/social-icons/linkedin-new.png) !important;}/*!sc*/ .byYhvg .sharing .st-btn[data-network="email"]{background-image:url(https://hackernoon.imgix.net/social-icons/email-new.png) !important;-webkit-transform:translateY(3px);-ms-transform:translateY(3px);transform:translateY(3px);}/*!sc*/ .byYhvg .sharing .st-btn img{display:none !important;}/*!sc*/ .byYhvg .st-btn:hover{opacity:1 !important;top:0 !important;}/*!sc*/ @media screen and (max-width:640px){.byYhvg .title,.byYhvg .sharing{-webkit-flex:1 1 auto;-ms-flex:1 1 auto;flex:1 1 auto;}.byYhvg .profile{white-space:nowrap;overflow:hidden;text-overflow:ellipsis;}.byYhvg .sharing{padding-right:10px;-webkit-box-pack:end;-webkit-justify-content:flex-end;-ms-flex-pack:end;justify-content:flex-end;}.byYhvg .story-title{display:none;}}/*!sc*/ data-styled.g22[id="sc-9de06f04-0"]{content:"byYhvg,"}/*!sc*/ .bfEqpI{display:none;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-transform:translateX(100%);-ms-transform:translateX(100%);transform:translateX(100%);height:100vh;position:absolute;top:0;right:0;-webkit-transition:-webkit-transform 0.2s ease-in-out;-webkit-transition:transform 0.2s ease-in-out;transition:transform 0.2s ease-in-out;width:100vw;font-family:'IBM Plex Mono',monospace;}/*!sc*/ @media (max-width:869px){.bfEqpI{width:100%;}}/*!sc*/ .bfEqpI .mobile-header-left{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;}/*!sc*/ .bfEqpI .hackernoon-logo{background:#0f0;padding:3px;border-radius:5px;width:30px;height:30px;margin:0 1rem;}/*!sc*/ .bfEqpI .close-nav-img{background:#0f0;padding:2px;border-radius:50%;width:30px;height:30px;margin-left:2rem;}/*!sc*/ .bfEqpI .mobile-header{background:black;color:white;padding:1rem;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .bfEqpI .mobile-header a{color:#0f0;}/*!sc*/ .bfEqpI .mobile-header .mobile-auth{border:1px solid white;padding:2px 5px;color:white;font-size:1.4rem;border-radius:3px;}/*!sc*/ data-styled.g25[id="sc-16ad823d-0"]{content:"bfEqpI,"}/*!sc*/ .kcgCcU{font-weight:bold;font-size:1.4rem;touch-action:auto;overflow-y:scroll;}/*!sc*/ .kcgCcU button{cursor:pointer;}/*!sc*/ .kcgCcU .tab-close-img{margin-top:0.5rem;background:gold;padding:2px;border-radius:50%;width:15px;height:15px;margin-left:1rem;-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg);}/*!sc*/ .kcgCcU .tab-open-img{margin-top:1rem;background:rgba(255,255,255,0.2);padding:2px;border-radius:50%;width:15px;height:15px;margin-left:1rem;-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg);}/*!sc*/ .kcgCcU .external-link-img{background:rgba(255,255,255,0.9);padding:2px;border-radius:5px;width:15px;height:15px;margin-left:1rem;}/*!sc*/ .kcgCcU button{border:0;background:transparent;color:white;font-weight:bold;}/*!sc*/ .kcgCcU .mobile-main{background:rgba(0,0,0,1);padding:1rem;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;max-height:80vh;overflow:scroll;-webkit-scrollbar-width:none;-moz-scrollbar-width:none;-ms-scrollbar-width:none;scrollbar-width:none;}/*!sc*/ .kcgCcU .mobile-main::-webkit-scrollbar{display:none;}/*!sc*/ .kcgCcU .main-wrapper{background:#212428;padding:1rem;border-radius:1rem;}/*!sc*/ .kcgCcU .main-wrapper .main-link{color:#0f0;-webkit-text-decoration:none;text-decoration:none;font-size:1.7rem;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .kcgCcU .sub-wrapper{margin-left:1rem;color:white;}/*!sc*/ .kcgCcU .sub-wrapper .sub-title-wrapper{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;}/*!sc*/ .kcgCcU .sub-wrapper .sub-title-active{color:gold;}/*!sc*/ .kcgCcU .sub-wrapper .sub-open-button{color:#0b0;}/*!sc*/ .kcgCcU .sub-wrapper .sub-link{padding-top:1rem;cursor:pointer;}/*!sc*/ .kcgCcU .sub-wrapper .sub-link a,.kcgCcU .sub-wrapper .sub-link span{color:#FFFFFF;-webkit-text-decoration:none;text-decoration:none;font-size:1.7rem;}/*!sc*/ .kcgCcU .sub-wrapper .sub-link-active{margin-top:1rem;}/*!sc*/ .kcgCcU .sub-wrapper .sub-link-active a,.kcgCcU .sub-wrapper .sub-link-active span{color:gold;-webkit-text-decoration:none;text-decoration:none;font-size:1.7rem;}/*!sc*/ .kcgCcU .link-wrapper{color:white;max-height:200px;overflow:scroll;border-radius:0.5rem;margin:1rem 0;background:rgba(0,0,0,0.2);-webkit-scrollbar-width:none;-moz-scrollbar-width:none;-ms-scrollbar-width:none;scrollbar-width:none;}/*!sc*/ .kcgCcU .link-wrapper::-webkit-scrollbar{display:none;}/*!sc*/ .kcgCcU .link-wrapper ul{list-style:none;padding:0px;margin:0px;}/*!sc*/ .kcgCcU .link-wrapper ul span{min-width:200px;margin-top:0.5rem;}/*!sc*/ .kcgCcU .link-wrapper .subsub-link{color:rgba(255,255,255,0.7);display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;min-width:100px;padding:0.5rem 0.5rem 0.2rem 1rem;border-bottom:1px solid rgba(255,255,255,0.1);}/*!sc*/ .kcgCcU .link-wrapper .subsub-link:hover{color:white;}/*!sc*/ @media screen and (min-width:870px){.kcgCcU{display:none;}}/*!sc*/ data-styled.g26[id="sc-16ad823d-1"]{content:"kcgCcU,"}/*!sc*/ .ihbTZc{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;width:60px;height:60px;background:transparent;border:none;cursor:pointer;padding:0;z-index:10;font-size:3rem;}/*!sc*/ .ihbTZc i{color:#003b00;z-index:1;}/*!sc*/ data-styled.g27[id="sc-14b24a79-0"]{content:"ihbTZc,"}/*!sc*/ .jSiCMG{z-index:101;}/*!sc*/ @media screen and (min-width:870px){.jSiCMG{display:none;}}/*!sc*/ data-styled.g28[id="sc-dd1bca92-0"]{content:"jSiCMG,"}/*!sc*/ .hslCzy{margin-right:0;width:40px;height:40px;background:rgba(0,128,0,0.2);padding:0.5rem;border-radius:50%;cursor:pointer;}/*!sc*/ .hslCzy:hover{opacity:0.8;}/*!sc*/ data-styled.g30[id="sc-4d156c87-0"]{content:"hslCzy,"}/*!sc*/ .izlxCY{position:fixed;border:3px solid;top:105px;max-height:500px;right:0;width:100vw;background-color:#212428;-webkit-transition:1s;transition:1s;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;opacity:0;visibility:hidden;}/*!sc*/ .izlxCY .content{overflow:auto;height:100%;}/*!sc*/ .izlxCY .header{color:#fff;margin:0.5em 1em;padding:0 1em;border-left:4px solid orange;}/*!sc*/ .izlxCY .more{background-color:#f5ec43;padding:0,75em;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:left;-webkit-justify-content:left;-ms-flex-pack:left;justify-content:left;padding-left:1em;width:calc(100% - 60px);cursor:pointer;}/*!sc*/ .izlxCY .more :hover{background:#c9c9c9;-webkit-transition:0.5s all;transition:0.5s all;}/*!sc*/ data-styled.g31[id="sc-4d156c87-1"]{content:"izlxCY,"}/*!sc*/ .eTNptX{position:-webkit-sticky;position:sticky;top:0;z-index:5;-webkit-transition:-webkit-transform 200ms ease-in-out;-webkit-transition:transform 200ms ease-in-out;transition:transform 200ms ease-in-out;-webkit-transform:translateY(0);-ms-transform:translateY(0);transform:translateY(0);}/*!sc*/ @media screen and (min-width:870px){.eTNptX{-webkit-transform:translateY(0);-ms-transform:translateY(0);transform:translateY(0);}}/*!sc*/ .eTNptX .algolia{max-height:50px;padding:15px;float:right;}/*!sc*/ .eTNptX .mainNav{background-color:#0f0;-webkit-transition:background-color 200ms ease;transition:background-color 200ms ease;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;}/*!sc*/ .eTNptX .mainNav .logo{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin:10px;z-index:1;margin-left:2rem;}/*!sc*/ .eTNptX .mainNav .logo img{image-rendering:pixelated;}/*!sc*/ .eTNptX .mainNav .ukraineHeader{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ @media screen and (max-width:870px){.eTNptX .mainNav .ukraineHeader{display:none;}}/*!sc*/ .eTNptX .mainNav .ukraineHeader h2{font-size:24px;color:black;font-weight:normal;font-family:"HackerNoon";margin:0;padding:0;}/*!sc*/ .eTNptX .mainNav .ukraineHeader img{width:40px;height:40px;}/*!sc*/ .eTNptX .mainNav . .logo + form + div,.eTNptX .mainNav > .profile,.eTNptX .mainNav > .cta-button{display:none;margin-right:1rem;}/*!sc*/ @media screen and (min-width:870px){.eTNptX .mainNav . .logo + form + div,.eTNptX .mainNav > .profile,.eTNptX .mainNav > .cta-button{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}}/*!sc*/ .eTNptX .mainNav .left-portion{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;margin-left:1rem;}/*!sc*/ @media screen and (min-width:1024px){.eTNptX .mainNav .left-portion{min-width:335px;}}/*!sc*/ .eTNptX .mainNav .right-portion{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ @media screen and (min-width:1024px){.eTNptX .mainNav .right-portion{min-width:335px;}}/*!sc*/ .eTNptX .mainNav .search-container{color:black;position:relative;margin-right:1rem;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;}/*!sc*/ .eTNptX .mainNav .search-container .search-stories{background:black;color:#c1cad4;border-radius:1rem;}/*!sc*/ .eTNptX .mainNav .search-container .search-tags{background:black;color:#c1cad4;border-radius:1rem;margin-top:2rem;}/*!sc*/ .eTNptX .mainNav .search-container .search-tags .search-tags-wrapper{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;padding:0 1rem 2rem 1rem;font-family:"IBM Plex Mono",monospace;}/*!sc*/ .eTNptX .mainNav .search-container .search-tags .search-tags-wrapper div{padding:0.3rem 0.8rem;margin:1rem 1rem 0 0;border:1px solid #c1cad4;border-radius:0.5rem;cursor:pointer;-webkit-transition:-webkit-transform 0.3s ease;-webkit-transition:transform 0.3s ease;transition:transform 0.3s ease;}/*!sc*/ .eTNptX .mainNav .search-container .search-tags .search-tags-wrapper div a{color:#c1cad4;font-size:1.5rem;}/*!sc*/ .eTNptX .mainNav .search-container .search-tags .search-tags-wrapper div:hover{-webkit-transform:scale(1.01);-ms-transform:scale(1.01);transform:scale(1.01);color:white;border:1px solid white;}/*!sc*/ .eTNptX .mainNav .search-container .search-tags .search-tags-wrapper div:hover a{color:white;}/*!sc*/ .eTNptX .mainNav .search-container .search-people{background:black;color:#c1cad4;border-radius:1rem;margin-top:2rem;}/*!sc*/ .eTNptX .mainNav .search-container .search-people .people-wrapper{padding-bottom:2rem;font-family:"IBM Plex Mono",monospace;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:space-around;-webkit-justify-content:space-around;-ms-flex-pack:space-around;justify-content:space-around;margin-left:2rem;}/*!sc*/ .eTNptX .mainNav .search-container .search-people .people-card{color:#c1cad4;-webkit-transition:-webkit-transform 0.3s ease;-webkit-transition:transform 0.3s ease;transition:transform 0.3s ease;}/*!sc*/ .eTNptX .mainNav .search-container .search-people .people-card strong{word-break:break-all;-webkit-hyphens:auto;-moz-hyphens:auto;-ms-hyphens:auto;hyphens:auto;}/*!sc*/ .eTNptX .mainNav .search-container .search-people .people-card:hover{-webkit-transform:scale(1.05);-ms-transform:scale(1.05);transform:scale(1.05);color:white;}/*!sc*/ .eTNptX .mainNav .search-container .search-people .people-card img{min-width:60px;min-height:60px;border-radius:1rem;}/*!sc*/ .eTNptX .mainNav .search-companies{background:black;color:#c1cad4;border-radius:1rem;margin-top:2rem;}/*!sc*/ .eTNptX .mainNav .search-companies .companies-wrapper{padding-bottom:2rem;font-family:"IBM Plex Mono",monospace;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:space-around;-webkit-justify-content:space-around;-ms-flex-pack:space-around;justify-content:space-around;margin-left:2rem;}/*!sc*/ .eTNptX .mainNav .search-companies .company-card{color:#c1cad4;-webkit-transition:-webkit-transform 0.3s ease;-webkit-transition:transform 0.3s ease;transition:transform 0.3s ease;}/*!sc*/ .eTNptX .mainNav .search-companies .company-card strong{word-break:break-all;-webkit-hyphens:auto;-moz-hyphens:auto;-ms-hyphens:auto;hyphens:auto;margin-top:auto;}/*!sc*/ .eTNptX .mainNav .search-companies .company-card:hover{-webkit-transform:scale(1.05);-ms-transform:scale(1.05);transform:scale(1.05);color:white;}/*!sc*/ .eTNptX .mainNav .search-companies .company-card img{min-width:60px;min-height:60px;border:1px solid white;border-radius:50%;}/*!sc*/ .eTNptX .search-coins{background:black;color:#c1cad4;border-radius:1rem;margin-top:2rem;}/*!sc*/ .eTNptX .search-coins .coins-wrapper{padding-bottom:2rem;font-family:"IBM Plex Mono",monospace;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:space-around;-webkit-jusitfy-content:space-around;-ms-flex-pack:space-around;jusitfy-content:space-around;margin-left:2rem;}/*!sc*/ .eTNptX .search-coins .coin-card{color:#c1cad4;-webkit-transition:-webkit-transform 0.3s ease;-webkit-transition:transform 0.3s ease;transition:transform 0.3s ease;min-width:75px;}/*!sc*/ .eTNptX .search-coins .coin-card strong{max-width:75px;word-break:break-all;-webkit-hyphens:auto;-moz-hyphens:auto;-ms-hyphens:auto;hyphens:auto;margin-top:1rem;font-size:1.3rem;font-weight:bold;}/*!sc*/ .eTNptX .search-coins .coin-card:hover{-webkit-transform:scale(1.05);-ms-transform:scale(1.05);transform:scale(1.05);color:white;}/*!sc*/ .eTNptX .search-coins .coin-card img{min-width:60px;min-height:60px;border:1px solid white;border-radius:50%;}/*!sc*/ .eTNptX .input-holder{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;outline:none;}/*!sc*/ .eTNptX .ais-SearchBox-input{background:#212428;border:none;padding:10px 20px 10px 10px;border-radius:2px;font-size:1.6rem;font-weight:bold;-webkit-transition:all 120ms ease-in-out;transition:all 120ms ease-in-out;color:white;outline:none;}/*!sc*/ @media screen and (max-width:400px){.eTNptX .ais-SearchBox-input{max-width:50vw;}}/*!sc*/ @media screen and (max-width:350px){.eTNptX .ais-SearchBox-input{max-width:40vw;}}/*!sc*/ .eTNptX .ais-SearchBox-input::placeholder{color:lightGray;}/*!sc*/ @media screen and (max-width:400px){.eTNptX .ais-SearchBox-input::-webkit-input-placeholder{font-size:4vw;}.eTNptX .ais-SearchBox-input::-moz-placeholder{font-size:4vw;}.eTNptX .ais-SearchBox-input:-ms-input-placeholder{font-size:4vw;}.eTNptX .ais-SearchBox-input::placeholder{font-size:4vw;}}/*!sc*/ .eTNptX .ais-SearchBox-form button{display:none;}/*!sc*/ .eTNptX.active input{width:100%;}/*!sc*/ @media screen and (min-width:870px){.eTNptX.active input{max-width:100px;}}/*!sc*/ .eTNptX img.search{position:absolute;top:50%;right:20px;width:19px;-webkit-transform:translate(0,-50%);-ms-transform:translate(0,-50%);transform:translate(0,-50%);cursor:pointer;-webkit-filter:grayscale(1);filter:grayscale(1);}/*!sc*/ .eTNptX img.result{object-fit:cover;background-color:transparent !important;width:10px;height:10px;cursor:pointer;}/*!sc*/ .eTNptX .avatar{width:50px;height:50px;padding:0px;}/*!sc*/ .eTNptX > a:not(.logo):not(.cta-button):not(.profile){padding:0 10px;color:#003b00;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ .eTNptX .profile .profileImage{max-height:40px;display:block;box-shadow:0 0.15em , 0 -0.15em , 0.15em 0 , -0.15em 0;}/*!sc*/ .eTNptX .profile .profileImage:hover,.eTNptX .profile .profileImage:focus{box-shadow:0 0.15em , 0 -0.15em , 0.15em 0 , -0.15em 0;}/*!sc*/ .eTNptX .profile .profileImage:span{overflow:visible !important;}/*!sc*/ .eTNptX .profile .profileImage:span img{border-radius:var(--m);box-shadow:0 4px 16px 0 rgba(0,0,0,0.15);}/*!sc*/ .eTNptX > a > img{max-height:40px;}/*!sc*/ .eTNptX .desktop{display:none;max-height:40px;}/*!sc*/ .eTNptX .mobile{max-height:40px;}/*!sc*/ @media screen and (min-width:870px){.eTNptX .desktop{display:block;}.eTNptX .mobile{display:none;}}/*!sc*/ .eTNptX .react-loading-skeleton{position:relative;top:-7px;}/*!sc*/ data-styled.g33[id="sc-eeb22f6c-0"]{content:"eTNptX,"}/*!sc*/ .cOdmIY{margin-left:auto;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .cOdmIY .auth-button{font-family:'IBM Plex Mono',monospace;color:#212428 !important;background:#0f0 !important;border-color:#003b00 !important;}/*!sc*/ .cOdmIY .auth-button:hover{background:#003b00 !important;color:#e1fbcf !important;}/*!sc*/ @media screen and (max-width:700px){.cOdmIY{display:none;}}/*!sc*/ .cOdmIY > *{margin-left:10px;}/*!sc*/ data-styled.g34[id="sc-eeb22f6c-1"]{content:"cOdmIY,"}/*!sc*/ html{box-sizing:border-box;font-size:10px;line-height:1.666;}/*!sc*/ *,*:before,*:after{box-sizing:inherit;}/*!sc*/ .spin{-webkit-transform-origin:center center;-ms-transform-origin:center center;transform-origin:center center;-webkit-animation-name:spin;animation-name:spin;-webkit-animation-duration:5000ms;animation-duration:5000ms;-webkit-animation-iteration-count:infinite;animation-iteration-count:infinite;-webkit-animation-timing-function:linear;animation-timing-function:linear;}/*!sc*/ @-webkit-keyframes spin{from{-webkit-transform:rotate(0deg);-ms-transform:rotate(0deg);transform:rotate(0deg);}to{-webkit-transform:rotate(360deg);-ms-transform:rotate(360deg);transform:rotate(360deg);}}/*!sc*/ @keyframes spin{from{-webkit-transform:rotate(0deg);-ms-transform:rotate(0deg);transform:rotate(0deg);}to{-webkit-transform:rotate(360deg);-ms-transform:rotate(360deg);transform:rotate(360deg);}}/*!sc*/ body{padding:0;margin:0;font-size:1.75rem;font-family:'IBM Plex Sans',sans-serif;color:#3c3c3b;-webkit-transition:background-color 200ms ease;transition:background-color 200ms ease;-webkit-transition:color 200ms ease;transition:color 200ms ease;overflow-x:hidden;background:#FFFFFF;}/*!sc*/ body span.highlight{background:#9cffa3;}/*!sc*/ h1,h2,h3{-webkit-letter-spacing:0px;-moz-letter-spacing:0px;-ms-letter-spacing:0px;letter-spacing:0px;font-family:'IBM Plex Mono',monospace;line-height:1.4;margin-bottom:3rem;}/*!sc*/ h1{font-size:1.75em;}/*!sc*/ h2{font-size:1.5rem;}/*!sc*/ a,button{outline:none;}/*!sc*/ a{color:#3c3c3b;-webkit-transition:color 200ms ease;transition:color 200ms ease;-webkit-text-decoration:none;text-decoration:none;}/*!sc*/ a[disabled]{opacity:0.75;cursor:not-allowed;}/*!sc*/ input::-webkit-input-placeholder{font-style:italic;opacity:1;}/*!sc*/ input::-moz-placeholder{font-style:italic;opacity:1;}/*!sc*/ input:-ms-input-placeholder{font-style:italic;opacity:1;}/*!sc*/ input::placeholder{font-style:italic;opacity:1;}/*!sc*/ p code{background:#f5f2f0;}/*!sc*/ textarea{background:#ffffff;color:#000000;}/*!sc*/ svg path{fill:#000000;}/*!sc*/ body.dark-mode{background-color:#212428;color:#f6f7f9;}/*!sc*/ body.dark-mode input{background:#212428;color:#f6f7f9;}/*!sc*/ body.dark-mode .badgeColors{background:#212428;}/*!sc*/ body.dark-mode .search{border:0px solid #0b0;}/*!sc*/ body.dark-mode .quote-header{background:black;}/*!sc*/ body.dark-mode .paragraph a,body.dark-mode .slogging a,body.dark-mode blockquote a,body.dark-mode p a,body.dark-mode .h2 a,body.dark-mode .h3 a,body.dark-mode .h4 a,body.dark-mode ul li a,body.dark-mode ol li a,body.dark-mode h1 a,body.dark-mode h2 a,body.dark-mode h3 a{color:#f6f7f9;}/*!sc*/ body.dark-mode .highlight{background:#0b0;color:#f6f7f9;}/*!sc*/ body.dark-mode .bg-white{background-color:#212428;}/*!sc*/ body.dark-mode .text-black{color:#f6f7f9;}/*!sc*/ body.dark-mode a{color:#f6f7f9;}/*!sc*/ body.dark-mode .coin-description a{color:#f6f7f9;}/*!sc*/ body.dark-mode mark a{color:#3c3c3b;}/*!sc*/ body.dark-mode li h2 a{color:#f6f7f9;}/*!sc*/ body.dark-mode a.edit-link{color:#8595ad;}/*!sc*/ body.dark-mode .paragraph code,body.dark-mode main > div > ul code{color:#c2cad6;background:black;}/*!sc*/ body.dark-mode pre{background:black;}/*!sc*/ body.dark-mode:not(pre)>code[class*=language-],body.dark-mode pre[class*=language-]{background:black;}/*!sc*/ body.dark-mode code{color:#c2cad6;background:black;}/*!sc*/ body.dark-mode .tags a,body.dark-mode .tag a{color:#c1cad4;}/*!sc*/ body.dark-mode .paragraph a:hover,body.dark-mode h1 a:hover,body.dark-mode h3 a:hover,body.dark-mode .paragraph a:focus,body.dark-mode h1 a:focus,body.dark-mode h3 a:focus{background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), rgba(0,255,0,1) calc(50% - 9px), rgba(0,255,0,1) 100% );color:#212428;}/*!sc*/ body.dark-mode .tooltip-title{color:white;}/*!sc*/ body.dark-mode .authorBio-section{background:rgba(0,0,0,0.2);}/*!sc*/ body.dark-mode .poll_comments{background:rgba(0,0,0,0.2);}/*!sc*/ body.dark-mode .ProseMirror{background:#212428 !important;color:white;}/*!sc*/ body.dark-mode .comment-block{background:#212428;color:white;}/*!sc*/ body.dark-mode .comment-block a{color:white;}/*!sc*/ body.dark-mode .comment-block p{color:white;}/*!sc*/ body.dark-mode .bio-cta{background:rgba(0,0,0,0.2) !important;color:lightGray !important;}/*!sc*/ body.dark-mode .fs-hn-cta{background:#138A36;}/*!sc*/ body.dark-mode .story-rank{background:#3c3c3b;color:#f6f7f9;}/*!sc*/ body.dark-mode .story-stat{background:#3c3c3b !important;color:#f6f7f9 !important;}/*!sc*/ body.dark-mode .lang{background-color:black;}/*!sc*/ body.dark-mode .story-stat svg{fill:#f6f7f9;}/*!sc*/ body.dark-mode header.tagged-header{background:black;}/*!sc*/ body.dark-mode header .lang-button,body.dark-mode header .purr-cat-button{background:black;border:2px solid white;}/*!sc*/ body.dark-mode header .lang-button:hover,body.dark-mode header .purr-cat-button:hover{background:darkGreen;color:white;}/*!sc*/ body.dark-mode header .lang-button:hover img,body.dark-mode header .purr-cat-button:hover img{background:lightGreen;}/*!sc*/ body.dark-mode header .lang-button img,body.dark-mode header .purr-cat-button img{margin-right:1rem;background:lightgreen;}/*!sc*/ body.dark-mode .mainNav{background-color:#0b0;}/*!sc*/ body.dark-mode .mainNav .tippy-box li a,body.dark-mode .mainNav .tippy-box button{background-color:#0b0;color:#f6f7f9;}/*!sc*/ body.dark-mode .mainNav .tippy-box li a:hover,body.dark-mode .mainNav .tippy-box button:hover{background-color:#62ff86;}/*!sc*/ body.dark-mode button.subscribe{color:#f6f7f9;border:2px solid #f6f7f9;}/*!sc*/ body.dark-mode .footer a{color:inherit;}/*!sc*/ body.dark-mode .story-nav{background:#3c3c3b;}/*!sc*/ body.dark-mode i.fa-bookmark{color:#c1cad4;}/*!sc*/ body.dark-mode .verified img{-webkit-filter:brightness(0.5) saturate(0.8);filter:brightness(0.5) saturate(0.8);}/*!sc*/ body.dark-mode .download-button{background:#020;}/*!sc*/ body.dark-mode .mint{background:#212428;border:2px solid #8595ad;box-shadow:#52627a 0.2em 0.2em;}/*!sc*/ body.dark-mode .mint:hover{background-color:#52627a;}/*!sc*/ body.dark-mode .chart{background:#212428;}/*!sc*/ body.dark-mode .chart .tooltip{background:#212428;}/*!sc*/ body.dark-mode .chart .chart-misc .date-pickers button{color:#8595ad;border:2px solid #8595ad;}/*!sc*/ body.dark-mode .powered img{-webkit-filter:invert(1);filter:invert(1);}/*!sc*/ body.dark-mode .OTDwrapper{background:#212428;}/*!sc*/ body.dark-mode .sectionTitle{background:#212428;}/*!sc*/ body.dark-mode .yearBtn{color:#52627a;}/*!sc*/ body.dark-mode .onthisdayLayout{background:#212428;}/*!sc*/ body.dark-mode .OnThisDay{background:black;}/*!sc*/ body.dark-mode .cloudyBottom{margin:auto;}/*!sc*/ body.dark-mode .cloudyBottom span{background:black !important;}/*!sc*/ body.dark-mode .rec-arrow{color:white !important;}/*!sc*/ body.dark-mode .rec-arrow:hover{background:#3c3c3b !important;}/*!sc*/ body.dark-mode button.rec-arrow:active,body.dark-mode button.rec-arrow:focus{background-color:black !important;color:white !important;}/*!sc*/ body.dark-mode small.date{color:whitesmoke;}/*!sc*/ body.dark-mode .rec-dot{box-shadow:0 0 1px 3px #3c3c3b;}/*!sc*/ body.dark-mode button.rec-dot_active{box-shadow:0 0 1px 3px #c2cad6;background:#c2cad6;}/*!sc*/ body.dark-mode .rec-carousel-wrapper{background:#212428;}/*!sc*/ body.dark-mode .page-header{background:#3c3c3b;border-bottom:1rem solid #0b0;}/*!sc*/ body.dark-mode .page-header span{background:#0b0;}/*!sc*/ body.dark-mode .storiesTitle{background:#0b0;}/*!sc*/ body.dark-mode .storiesTitle span{background:#0b0;color:#FFFFFF;}/*!sc*/ body.dark-mode .year-header{background:#3c3c3b;color:#62ff86;}/*!sc*/ body.dark-mode .addEventWrapper{background:rgba(0,187,0,0.6);}/*!sc*/ body.dark-mode .addEventWrapper .addEventBtn{color:#62ff86;}/*!sc*/ body.dark-mode .eventsContainer{background:rgba(0,187,0,.4);}/*!sc*/ body.dark-mode .eventCard{border:1px solid #003b00;background:rgba(0,187,0,0.6);}/*!sc*/ body.dark-mode .onthisdayModal{background:rgba(98,255,134,0.5);}/*!sc*/ body.dark-mode .onthisdayModal form .editCard{background:rgba(255,255,255,0.5);}/*!sc*/ body.dark-mode .onthisdayModal form .learnmoreBtn{color:#212428;}/*!sc*/ body.dark-mode .carousel-card{border:2px solid #3c3c3b;background:transparent;}/*!sc*/ body.dark-mode .profile_info_top,body.dark-mode .profile_info_bottom,body.dark-mode .author-stats,body.dark-mode .BadgesContainer,body.dark-mode .sub-btn{background:rgba(0,0,0,0.3) !important;}/*!sc*/ body.dark-mode .story-card{border:2px solid #3c3c3b;}/*!sc*/ @media screen and (max-width:768px){body.dark-mode .story-card{background:black;}}/*!sc*/ body.dark-mode .card-reactions .emojis{background:#3c3c3b;color:white;}/*!sc*/ body.dark-mode .card-reactions .emojis svg{fill:white;}/*!sc*/ body.dark-mode .story-card-alt{background:black;}/*!sc*/ body.dark-mode .ad-tag{color:black;border:1px solid black;}/*!sc*/ body.dark-mode .votingButton{background:#3c3c3b;color:#f6f7f9;}/*!sc*/ body.dark-mode .votingButton:hover{background:rgb(144,238,144);color:#3c3c3b;}/*!sc*/ body.dark-mode .story-card h2 a{font-size:2rem;}/*!sc*/ body.dark-mode .classicFooterColor a{color:#00ff00 !important;}/*!sc*/ body.dark-mode .react-tabs ul li:last-child{border-right:3px solid transparent;}/*!sc*/ body.dark-mode .react-tabs ul .inactive:hover{background:#52627a;}/*!sc*/ body.dark-mode .react-tabs ul::before,body.dark-mode .react-tabs ul::after{border-bottom:3px solid #8595ad;}/*!sc*/ body.dark-mode .quoteBox{border:1px solid #52627a;}/*!sc*/ body.dark-mode .storyCards{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin:0 auto;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-animation:fadein 1s;-moz-animation:fadein 1s;-ms-animation:fadein 1s;-o-animation:fadein 1s;-webkit-animation:fadein 1s;animation:fadein 1s;}/*!sc*/ @-webkit-keyframes fadein{0%{opacity:0;}100%{opacity:1;}}/*!sc*/ @keyframes fadein{0%{opacity:0;}100%{opacity:1;}}/*!sc*/ @media screen and (max-width:768px){body.dark-mode .storyCards{-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;width:100%;height:auto;}}/*!sc*/ body.dark-mode .card-wrapper{border:2px solid grey;}/*!sc*/ @media screen and (max-width:1000px) and (min-width:768px){body.dark-mode .timeNotFeatured div{background:#3c3c3b;}body.dark-mode .OTDwrapper{background:#212428;}body.dark-mode .sectionTitle{background:#212428;}body.dark-mode .yearBtn{color:#52627a;}@media screen and (max-width:1000px) and (min-width:768px){body.dark-mode .timeNotFeatured div{background:#3c3c3b;}}}/*!sc*/ body.dark-mode .ais-SearchBox-input{color:#212428;}/*!sc*/ body.dark-mode .search-container{border:none;margin-left:0px;}/*!sc*/ body.dark-mode .ais-SearchBox-form input{background:black !important;color:white !important;}/*!sc*/ body.dark-mode .ais-SearchBox-form input::-webkit-input-place-holder{margin-left:2rem;color:gray;}/*!sc*/ body.dark-mode .ais-SearchBox-form input::-moz-place-holder{margin-left:2rem;color:gray;}/*!sc*/ body.dark-mode .ais-SearchBox-form input:-ms-input-place-holder{margin-left:2rem;color:gray;}/*!sc*/ body.dark-mode .ais-SearchBox-form input::place-holder{margin-left:2rem;color:gray;}/*!sc*/ body.dark-mode .trending-tittle-wrapper{background:black;color:#c2cad6;margin-bottom:0.5rem;}/*!sc*/ body.dark-mode .trending-tittle-wrapper .trending-title a{background:none;color:#c2cad6;}/*!sc*/ body.dark-mode .trending-tittle-wrapper img{background:#c2cad6;width:25px;height:25px;border-radius:50%;padding:5px;}/*!sc*/ body.dark-mode .tag-title-link{color:#c2cad6;}/*!sc*/ body.dark-mode .trending-story-card{background:black;color:#c2cad6;}/*!sc*/ body.dark-mode .translation-tittle-wrapper img{background:#c2cad6;border-radius:50%;}/*!sc*/ body.dark-mode .tag-title{background:none;color:#c2cad6;}/*!sc*/ body.dark-mode .tag-title:hover{color:#0b0;}/*!sc*/ body.dark-mode .trending-company-card,body.dark-mode .trending-coin-card,body.dark-mode .trending-tag-card,body.dark-mode .translation-card{background:black;padding-left:2rem;color:#c2cad6;}/*!sc*/ body.dark-mode .col-right-tabs .trending-tab-btn{background:#212428;color:gray;border:1px solid black;margin-top:0.5rem;}/*!sc*/ body.dark-mode .col-right-tabs .trending-tab-btn:first-child{border-radius:0.5rem 0 0 0;border-top:1px solid #212428 !important;border-left:1px solid #212428 !important;}/*!sc*/ body.dark-mode .col-right-tabs .trending-tab-btn:last-child{border-radius:0 0.5rem 0 0;border-top:1px solid #212428 !important;border-right:1px solid #212428 !important;}/*!sc*/ body.dark-mode .col-right-tabs .trending-tab-active{color:#c2cad6;background:black;font-weight:bold;}/*!sc*/ body.dark-mode .tag-tittle-wrapper,body.dark-mode .translation-tittle-wrapper{background:black;padding-left:2rem;color:#c2cad6;margin-bottom:0.5rem;}/*!sc*/ body.dark-mode .search-tab-button{background:black;color:gray;}/*!sc*/ body.dark-mode .search-tab-button:hover{color:lightgray;}/*!sc*/ body.dark-mode .search-tab-button-active{color:#0b0;}/*!sc*/ body.dark-mode .search-story-card,body.dark-mode .search-tag-card,body.dark-mode .search-people-card,body.dark-mode .search-company-wrapper,body.dark-mode .search-coin-card{background:black;margin-bottom:0.5rem;border:none;}/*!sc*/ body.dark-mode .search-story-card h2,body.dark-mode .search-tag-card h2,body.dark-mode .search-people-card h2,body.dark-mode .search-company-wrapper h2,body.dark-mode .search-coin-card h2,body.dark-mode .search-story-card .display-name,body.dark-mode .search-tag-card .display-name,body.dark-mode .search-people-card .display-name,body.dark-mode .search-company-wrapper .display-name,body.dark-mode .search-coin-card .display-name,body.dark-mode .search-story-card .handle,body.dark-mode .search-tag-card .handle,body.dark-mode .search-people-card .handle,body.dark-mode .search-company-wrapper .handle,body.dark-mode .search-coin-card .handle,body.dark-mode .search-story-card .search-company-name,body.dark-mode .search-tag-card .search-company-name,body.dark-mode .search-people-card .search-company-name,body.dark-mode .search-company-wrapper .search-company-name,body.dark-mode .search-coin-card .search-company-name{color:#c2cad6;}/*!sc*/ body.dark-mode .story-hits-layout,body.dark-mode .tag-hits-layout,body.dark-mode .coin-hits-layout{background:transparent;padding:0px;}/*!sc*/ body.dark-mode .company-hits-layout,body.dark-mode .peoples-hits-layout{padding-top:0px;margin-top:0.5rem;background:transparent;}/*!sc*/ body.dark-mode .search-parcat-card{background:black;border:1px solid gray;}/*!sc*/ body.dark-mode .search-parcat small{background:black;color:gray;}/*!sc*/ body.dark-mode .search-parcat small:hover{background:green;color:white;}/*!sc*/ body.dark-mode .search-parcat .lazy-load-image-background.opacity{opacity:0;}/*!sc*/ body.dark-mode .search-parcat .lazy-load-image-background.opacity.lazy-load-image-loaded{opacity:1;-webkit-transition:opacity .3s;transition:opacity .3s;}/*!sc*/ body.dark-mode .search-parcat .ReactModal__Overlay{z-index:5;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ body.dark-mode .search-parcat .ReactModal__Content{position:static !important;border:2px solid #3c3c3b !important;border-radius:2px !important;box-shadow:2px 2px 0px #cdcdcd,-2px -2px 0px #ffffff;}/*!sc*/ body.dark-mode .search-parcat .nft{-webkit-clip-path:polygon(25% 5%,75% 5%,100% 50%,75% 95%,25% 95%,0% 50%);-webkit-clip-path:polygon(25% 5%,75% 5%,100% 50%,75% 95%,25% 95%,0% 50%);clip-path:polygon(25% 5%,75% 5%,100% 50%,75% 95%,25% 95%,0% 50%);}/*!sc*/ body.dark-mode .search-parcat .nft:after{--borderWidth:6px;content:'';position:absolute;top:calc(-1 * var(--borderWidth));left:calc(-1 * var(--borderWidth));height:calc(100% + var(--borderWidth) * 2);width:calc(100% + var(--borderWidth) * 2);background:#c2cad6;border-radius:calc(2 * var(--borderWidth));z-index:-1;background-size:300% 300%;}/*!sc*/ body.dark-mode .search-parcat .rainbow{--borderWidth:3px;position:relative;border-radius:var(--borderWidth);}/*!sc*/ body.dark-mode .search-parcat .rainbow:after{--borderWidth:3px;content:'';position:absolute;top:calc(-1 * var(--borderWidth));left:calc(-1 * var(--borderWidth));height:calc(100% + var(--borderWidth) * 2);width:calc(100% + var(--borderWidth) * 2);background:linear-gradient(60deg,#f79533,#f37055,#ef4e7b,#a166ab,#5073b8,#1098ad,#07b39b,#6fba82);border-radius:calc(2 * var(--borderWidth));z-index:-1;-webkit-animation:animatedgradient 3s ease alternate infinite;animation:animatedgradient 3s ease alternate infinite;background-size:300% 300%;}/*!sc*/ @-webkit-keyframes animatedgradient{0%{background-position:0% 50%;}50%{background-position:100% 50%;}100%{background-position:0% 50%;}}/*!sc*/ @keyframes animatedgradient{0%{background-position:0% 50%;}50%{background-position:100% 50%;}100%{background-position:0% 50%;}}/*!sc*/ body.dark-mode .search-parcat [data-rmiz-modal-overlay="hidden"]{background-color:transparent;}/*!sc*/ body.dark-mode .search-parcat [data-rmiz-modal-overlay="visible"]{background-color:transparent;}/*!sc*/ data-styled.g55[id="sc-global-gNyTYt1"]{content:"sc-global-gNyTYt1,"}/*!sc*/ .bRkRGv{min-height:100vh;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;width:100%;}/*!sc*/ data-styled.g56[id="sc-9d336bae-0"]{content:"bRkRGv,"}/*!sc*/ .ghWRJY{position:relative;}/*!sc*/ @media (max-width:480px){.ghWRJY{padding:1rem 1rem;}}/*!sc*/ .ghWRJY .badgeColors{background:#f6f7f9;}/*!sc*/ .ghWRJY .badgeColors:hover{background:!important;color:!important;box-shadow:0 0.2em ,0 -0.2em , 0.2em 0 ,-0.2em 0;-webkit-transition:all 120ms ease-in-out;transition:all 120ms ease-in-out;}/*!sc*/ .ghWRJY .selectedLang{box-shadow:0 0.2em #0b0,0 -0.2em #0b0,0.2em 0 #0b0,-0.2em 0 #0b0;}/*!sc*/ .ghWRJY .fa-headphones{color:!important;}/*!sc*/ .ghWRJY .styled_anchor{color:!important;}/*!sc*/ .ghWRJY .styled_anchor:hover{color:white !important;background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), calc(50% - 9px), 100% );}/*!sc*/ .ghWRJY .profile-container,.ghWRJY > a > .profileImage{box-shadow:0 0.2em ,0 -0.2em , 0.2em 0 ,-0.2em 0 !important;}/*!sc*/ .ghWRJY .styled_anchorReg{padding:0 1rem;background-image:linear-gradient( transparent 0%, transparent calc(20% - 9px), transparent calc(50% - 9px), 100% );}/*!sc*/ .ghWRJY .styled_anchorReg:hover{color:!important;background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), calc(50% - 9px), 100% );}/*!sc*/ .ghWRJY .customColorLink{background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), calc(50% - 9px), 100% ) !important;}/*!sc*/ .ghWRJY .customColorLink:hover{background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), calc(50% - 9px), 100% );}/*!sc*/ .ghWRJY .votingButton{background:whitesmoke;color:black;}/*!sc*/ .ghWRJY .votingButton:hover{background:black !important;color:white !important;}/*!sc*/ .ghWRJY .title-short{background:transparent;}/*!sc*/ .ghWRJY .rankBox p{background:!important;color:!important;border:3px solid !important;}/*!sc*/ .ghWRJY .story-title-anchor:hover,.ghWRJY .company-anchor:hover{background:!important;}/*!sc*/ .ghWRJY .company-details,.ghWRJY .story-details{border:1px solid !important;}/*!sc*/ .ghWRJY .yearBtnActive{color:!important;border-bottom:2px solid !important;}/*!sc*/ .ghWRJY .yearBtn:hover{color:!important;background: !important;}/*!sc*/ .ghWRJY .card-wrapper{background:transparent !important;-webkit-animation:2s linear alternate fade;animation:2s linear alternate fade;}/*!sc*/ @-webkit-keyframes fade{0%{opacity:0.1;}25%{opacity:1;}}/*!sc*/ @keyframes fade{0%{opacity:0.1;}25%{opacity:1;}}/*!sc*/ .ghWRJY #about{background:transparent !important;}/*!sc*/ .ghWRJY #about a{border:2px solid !important;color:!important;}/*!sc*/ .ghWRJY #about a:hover{background:!important;border:2px solid !important;color:!important;}/*!sc*/ .ghWRJY #about .react-tabs__tab--selected{color:!important;background:!important;}/*!sc*/ .ghWRJY #about .react-tabs__tab--selected a{color:!important;background:!important;}/*!sc*/ .ghWRJY #about .react-tabs__tab:hover{color:!important;}/*!sc*/ .ghWRJY #about .react-tabs__tab-panel{background:!important;}/*!sc*/ data-styled.g57[id="sc-9d336bae-1"]{content:"ghWRJY,"}/*!sc*/ .SWeJa a{background:#0f0;padding-bottom:3rem;width:100%;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;text-align:center;}/*!sc*/ .SWeJa .cta-top{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;font-size:4.8vw;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;color:#212428;font-weight:bold;max-width:400px;width:90%;margin:4rem auto 1rem auto;padding:0em 0em 0em 0.5em;-webkit-transition:font-size 0.3s ease;transition:font-size 0.3s ease;}/*!sc*/ @media screen and (min-width:425px){.SWeJa .cta-top{font-size:4rem;}}/*!sc*/ @media screen and (min-width:768px){.SWeJa .cta-top{-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;font-size:3rem;max-width:none;width:initial;margin-top:2rem;}}/*!sc*/ @media screen and (min-width:768px){.SWeJa .cta-top:hover{font-size:3.5rem;}}/*!sc*/ .SWeJa strong{color:#212428;}/*!sc*/ .SWeJa .fs-cta{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ data-styled.g65[id="sc-92a1b621-1"]{content:"SWeJa,"}/*!sc*/ .gANdmI{display:grid;max-width:1200px;width:100%;margin:1.5rem auto 4.5rem;grid-gap:3rem 2.5rem;grid-template-columns:minmax(0,1fr);padding:0 1rem;word-break:break-word;margin-bottom:0px;}/*!sc*/ .gANdmI > h1{margin-bottom:0;margin-top:0;grid-column:1 / -1;}/*!sc*/ @media screen and (min-width:768px){.gANdmI > h1{text-align:center;}}/*!sc*/ .gANdmI section > h2,.gANdmI section > h3,.gANdmI section > h4{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;text-align:center;grid-column:1 / -1;font-weight:900;font-size:24px;text-transform:uppercase;}/*!sc*/ .gANdmI section > h2:before,.gANdmI section > h3:before,.gANdmI section > h4:before,.gANdmI section > h2:after,.gANdmI section > h3:after,.gANdmI section > h4:after{content:"";-webkit-flex:1;-ms-flex:1;flex:1;border-bottom:3px solid #3c3c3b;}/*!sc*/ .gANdmI section > h2:before,.gANdmI section > h3:before,.gANdmI section > h4:before{margin-right:30px;}/*!sc*/ .gANdmI section > h2:after,.gANdmI section > h3:after,.gANdmI section > h4:after{margin-left:30px;}/*!sc*/ .gANdmI .image-credit span,.gANdmI .image-credit a{font-size:1.2rem;}/*!sc*/ .gANdmI .image-credit a{font-weight:bold;color:gray;}/*!sc*/ .gANdmI .image-credit a:hover{color:#138A36;}/*!sc*/ @media screen and (max-width:320px){.gANdmI{margin:0;}}/*!sc*/ @media screen and (max-width:767px){.gANdmI .markdown-editor{max-width:95vw;}}/*!sc*/ @media screen and (min-width:950px){.gANdmI{grid-template-columns:1fr 8fr 1fr;grid-gap:2.5rem 25px;margin-top:25px;}.gANdmI .markdown-editor{max-width:800px;}.gANdmI > *{grid-column:2 / -2;}}/*!sc*/ .gANdmI > pre{overflow-x:scroll;max-width:100%;overflow:hidden;}/*!sc*/ .gANdmI .annot{background-color:#FFFF00;color:#212428;-webkit-transition:background-color .3s;transition:background-color .3s;}/*!sc*/ .gANdmI .annot:hover{background-color:#FFFF99;cursor:pointer;}/*!sc*/ .gANdmI pre code,.gANdmI .ql-syntax{white-space:pre;overflow-x:scroll;width:904px;display:block;}/*!sc*/ @media screen and (max-width:1000px){.gANdmI pre code,.gANdmI .ql-syntax{max-width:95vw;}}/*!sc*/ .gANdmI .previewWarning,.gANdmI .previewWarning > a{color:#a09a00;text-align:center;margin-bottom:10px;}/*!sc*/ .gANdmI ul,.gANdmI ol{padding-left:20px;margin:0;word-break:break-word;}/*!sc*/ .gANdmI ol ol{list-style:lower-alpha;}/*!sc*/ .gANdmI ol ol ol{list-style:lower-roman;}/*!sc*/ .gANdmI .edit-story{text-align:center;margin:-40px 0 0 0;}/*!sc*/ .gANdmI > figure{margin:0 auto;}/*!sc*/ .gANdmI > figure > figcaption{font-size:1rem;}/*!sc*/ .gANdmI figure,.gANdmI .image-container{position:relative;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;justify-self:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;text-align:center;max-width:90vw;}/*!sc*/ .gANdmI figure img,.gANdmI .image-container img{cursor:pointer;max-width:90vw;}/*!sc*/ .gANdmI figure span,.gANdmI .image-container span{position:initial !important;}/*!sc*/ .gANdmI figure.feat,.gANdmI .image-container.feat{grid-column:1 / -1;min-width:100%;border-radius:5px;background-color:rgb(59 69 178 / 70%);}/*!sc*/ @media screen and (min-width:768px){.gANdmI figure.feat .react-loading-skeleton,.gANdmI .image-container.feat .react-loading-skeleton{height:450px !important;}}/*!sc*/ .gANdmI .left-50,.gANdmI .right-50{width:50%;margin-bottom:1em;clear:initial;}/*!sc*/ .gANdmI .left-50{float:left;margin-right:2em;}/*!sc*/ .gANdmI .right-50{float:right;margin-left:2em;}/*!sc*/ .gANdmI .image-caption{line-height:0;display:block;margin:0;border:0px;display:block;font-size:13px;font-style:italic;font-weight:normal;color:rgb(78,92,110);padding:2px 0px;line-height:16px;text-align:center;min-height:1em;outline:none;background:none;resize:none;-webkit-user-select:text;-moz-user-select:text;-ms-user-select:text;user-select:text;cursor:text;}/*!sc*/ .gANdmI .youtube-container{position:relative;padding-bottom:56.25%;padding-top:25px;height:0;}/*!sc*/ .gANdmI .youtube-container iframe{position:absolute;top:0;left:0;width:100%;height:100%;}/*!sc*/ .gANdmI .embed-hn-story{box-shadow:#b9ffb9 0px 0.2em,#b9ffb9 0px -0.2em,#b9ffb9 0.2em 0px,#b9ffb9 -0.2em 0px,#0f0 0.2em 0.4em,#0f0 0.4em 0.2em,#005e00 0.4em 0.6em,#005e00 0.6em 0.4em;cursor:pointer;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin:0 auto;max-width:450px;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;}/*!sc*/ .gANdmI .embed-hn-story .card-image-container img{height:100%;width:100%;object-fit:contain;}/*!sc*/ .gANdmI .embed-hn-story .card-info h4{margin:0 5px;}/*!sc*/ .gANdmI .embed-hn-story .card-info span{display:-webkit-box;font-size:13px;margin:5px;height:2.6em;max-height:2.6em;margin-top:0.32333em;line-height:1.3em;-webkit-letter-spacing:normal;-moz-letter-spacing:normal;-ms-letter-spacing:normal;letter-spacing:normal;word-wrap:break-word;overflow:hidden;-webkit-line-clamp:2;-webkit-box-orient:vertical;text-overflow:ellipsis;}/*!sc*/ .gANdmI .codepen-container,.gANdmI .codesandbox-container{grid-column:1 / -1;}/*!sc*/ .gANdmI .codepen-container iframe,.gANdmI .codesandbox-container iframe{border:none;border-radius:5px;box-shadow:0 0 10px rgba(0,0,0,0.1);width:100%;height:500px;}/*!sc*/ .gANdmI > blockquote{font-size:2rem;word-break:break-word;font-style:italic;margin-left:0;margin-right:0;padding:2rem 0;text-align:left;}/*!sc*/ @media screen and (min-width:768px){.gANdmI > blockquote{font-size:2.5rem;}}/*!sc*/ .gANdmI .paragraph{min-width:0;margin:0 0 25px 0;word-wrap:break-word;}/*!sc*/ .gANdmI .line-space{margin:0 !important;}/*!sc*/ .gANdmI h2{font-size:1.5em;}/*!sc*/ .gANdmI .reactions{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;gap:6px;}/*!sc*/ .gANdmI .paragraph a,.gANdmI .slogging a,.gANdmI blockquote a,.gANdmI p a,.gANdmI .h2 a,.gANdmI .h3 a,.gANdmI .h4 a,.gANdmI ul li a,.gANdmI ol li a,.gANdmI h1 a,.gANdmI h2 a,.gANdmI h3 a{color:black;padding:2px 0 1px 0;background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), rgba(0,255,0,0.35) calc(50% - 9px), rgba(0,255,0,0.35) 100% );-webkit-transition:background-position 120ms ease-in-out,padding 120ms ease-in-out;transition:background-position 120ms ease-in-out,padding 120ms ease-in-out;background-size:100% 200%;background-position:0 0;word-break:break-word;}/*!sc*/ .gANdmI .paragraph a:hover,.gANdmI .slogging a:hover,.gANdmI blockquote a:hover,.gANdmI p a:hover,.gANdmI .h2 a:hover,.gANdmI .h3 a:hover,.gANdmI .h4 a:hover,.gANdmI ul li a:hover,.gANdmI ol li a:hover,.gANdmI h1 a:hover,.gANdmI h2 a:hover,.gANdmI h3 a:hover{background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), rgba(0,255,0,1) calc(50% - 9px), rgba(0,255,0,1) 100% );background-position:0 100%;}/*!sc*/ .gANdmI .paragraph a:focus,.gANdmI .slogging a:focus,.gANdmI blockquote a:focus,.gANdmI p a:focus,.gANdmI .h2 a:focus,.gANdmI .h3 a:focus,.gANdmI .h4 a:focus,.gANdmI ul li a:focus,.gANdmI ol li a:focus,.gANdmI h1 a:focus,.gANdmI h2 a:focus,.gANdmI h3 a:focus{text-shadow:1px 1px 0 #0b0;}/*!sc*/ .gANdmI tr,.gANdmI th,.gANdmI td{border:1px solid;border-collapse:collapse;}/*!sc*/ .gANdmI th{width:300px;}/*!sc*/ .gANdmI table{border-spacing:0;}/*!sc*/ .gANdmI .tags{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;}/*!sc*/ .gANdmI .skeleton.meta{grid-column:1 / -1;display:grid;grid-template-columns:auto 1fr;}/*!sc*/ .gANdmI .skeleton.meta > div{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .gANdmI .skeleton.meta > div:first-child{justify-self:start;}/*!sc*/ .gANdmI .skeleton.meta > div:last-child{justify-self:end;}/*!sc*/ .gANdmI footer .share{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:end;-webkit-justify-content:flex-end;-ms-flex-pack:end;justify-content:flex-end;margin-bottom:20px;font-size:1.6rem;}/*!sc*/ .gANdmI footer ~ section h4{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;text-align:center;font-size:3rem;}/*!sc*/ .gANdmI footer ~ section h4:before,.gANdmI footer ~ section h4:after{content:"";-webkit-flex:1;-ms-flex:1;flex:1;border-bottom:2px solid #c2cad6;}/*!sc*/ .gANdmI footer ~ section h4:before{margin-right:0.5em;}/*!sc*/ .gANdmI footer ~ section h4:after{margin-left:0.5em;}/*!sc*/ .gANdmI .twitter-tweet{margin:0 auto;}/*!sc*/ .gANdmI .slack .mr-3 img{border-radius:6px;}/*!sc*/ .gANdmI .notice{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-align-items:flex-start;-webkit-box-align:flex-start;-ms-flex-align:flex-start;align-items:flex-start;background:#F5BE31;color:#212428;border-radius:4px;padding:8px 16px;margin:8px 0;}/*!sc*/ .gANdmI .notice a{color:#212428;}/*!sc*/ .gANdmI .notice a:not(.heading-name){-webkit-text-decoration:underline;text-decoration:underline;}/*!sc*/ .gANdmI .notice .content{-webkit-box-flex:1;-webkit-flex-grow:1;-ms-flex-positive:1;flex-grow:1;min-width:0;}/*!sc*/ .gANdmI .notice .icon{width:24px;height:24px;-webkit-align-self:flex-start;-ms-flex-item-align:start;align-self:flex-start;margin-right:4px;position:relative;top:1px;}/*!sc*/ .gANdmI .notice-warning{background:#FF5C80;color:white;}/*!sc*/ .gANdmI .notice-warning a{color:white;}/*!sc*/ .gANdmI .notice-tip{background:#62ff86;color:black !important;}/*!sc*/ .gANdmI .notice-tip a{color:black !important;}/*!sc*/ .gANdmI blockquote{margin:0;padding-left:1.5em;font-style:italic;overflow:hidden;position:relative;color:#aaa;}/*!sc*/ .gANdmI blockquote:before{content:"";display:inline-block;width:10px;border-radius:1px;position:absolute;margin-left:-1.5em;top:0;bottom:0;background:#0f0;}/*!sc*/ .gANdmI p{margin:0 0 0 0;}/*!sc*/ data-styled.g82[id="sc-d7dc08c8-0"]{content:"gANdmI,"}/*!sc*/ .eROqxA{font-size:1.4rem;-webkit-transition:color 200ms ease;transition:color 200ms ease;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;grid-column:1 / -1 !important;}/*!sc*/ .eROqxA .story-topLine{display:-webkit-box;display:-webkit-felx;display:-ms-felxbox;display:felx;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .eROqxA .story-topLine .story-stats,.eROqxA .story-topLine .story-admin{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ .eROqxA .story-topLine .story-admin a{margin-right:1rem;}/*!sc*/ .eROqxA .story-topLine span{display:block;}/*!sc*/ .eROqxA .story-title{font-size:2.5em;margin:1rem 0;}/*!sc*/ @media screen and (max-width:640px){.eROqxA .story-title{font-size:2.5rem;}}/*!sc*/ .eROqxA .title-bottom{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:justify;-webkit-jusitfy-content:space-between;-ms-flex-pack:justify;jusitfy-content:space-between;}/*!sc*/ @media screen and (max-width:640px){.eROqxA .title-bottom{-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;}}/*!sc*/ .eROqxA .title-bottom div{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;}/*!sc*/ @media screen and (max-width:640px){.eROqxA .title-bottom div{-webkit-box-pack:start;-webkit-justify-content:flex-start;-ms-flex-pack:start;justify-content:flex-start;}}/*!sc*/ .eROqxA .title-bottom .title-bottom-left{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;}/*!sc*/ .eROqxA .title-bottom .title-bottom-right{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin-left:auto;}/*!sc*/ .eROqxA .title-bottom .title-bottom-right span{margin-right:1rem;}/*!sc*/ @media screen and (max-width:640px){.eROqxA .title-bottom .title-bottom-right{display:none;}}/*!sc*/ .eROqxA .header-handle{padding:4px 0;font-size:1.8rem;cursor:pointer;color:gray;}/*!sc*/ .eROqxA .header-handle a{font-weight:bold;}/*!sc*/ @media screen and (max-width:640px){.eROqxA .header-handle{font-size:1.2rem;}}/*!sc*/ .eROqxA .profile-tooltip{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;padding:1rem 0px;}/*!sc*/ .eROqxA .profile-tooltip .__react_component_tooltip{pointer-events:auto !important;cursor:pointer;}/*!sc*/ .eROqxA .profile-tooltip .profile-tooltip-image{width:50px;height:50px;position:relative;box-shadow:0 0.2em #c2cad6,0 -0.2em #c2cad6, 0.2em 0 #c2cad6,-0.2em 0 #c2cad6;}/*!sc*/ .eROqxA .profile-tooltip .profile-tooltip-top{margin-right:auto;}/*!sc*/ .eROqxA .profile-tooltip .profile-tooltip-details{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;margin-left:1rem;}/*!sc*/ .eROqxA .profile-tooltip .profile-tooltip-details h2{margin:0;font-size:1.8rem;width:100%;color:#0f0;}/*!sc*/ .eROqxA .profile-tooltip .profile-tooltip-details h3{margin:0;font-size:1.2rem;width:100%;color:#0f0;}/*!sc*/ .eROqxA .profile-tooltip p{margin-top:5px;max-width:200px;}/*!sc*/ .eROqxA .divider-bullet{height:4px;width:4px;border-radius:50%;background:gray;margin:0 1.5rem;}/*!sc*/ @media screen and (max-width:640px){.eROqxA .divider-bullet{height:2px;width:2px;}}/*!sc*/ .eROqxA .divider-line{border-top:1px solid rgba(0,0,0,0.1);margin:1rem 0 2rem 0;}/*!sc*/ .eROqxA .reading-time,.eROqxA .published-date{font-size:1.8rem;color:gray;}/*!sc*/ @media screen and (max-width:640px){.eROqxA .reading-time,.eROqxA .published-date{font-size:1.2rem;}}/*!sc*/ .eROqxA .tldr-langs{display:-webkit-box;display:-webkit-felx;display:-ms-felxbox;display:felx;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;text-align:center;}/*!sc*/ .eROqxA .tldr-content h2{margin:1rem 0 0 0;}/*!sc*/ .eROqxA .tldr-no-show{height:0;width:0;overflow:hidden;}/*!sc*/ .eROqxA .mentions-container{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}/*!sc*/ .eROqxA .mentions-container .mentions-box{background:whitesmoke;padding:1rem;border-radius:1rem;margin-top:1rem;margin-right:1rem;}/*!sc*/ .eROqxA .mentions-container h3{font-size:1.5rem;margin:0px;color:gray;font-weight:500;}/*!sc*/ .eROqxA .mentions-container .mentions-img-wrapper{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin-top:1rem;}/*!sc*/ .eROqxA .metaContainer{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;row-gap:10px;}/*!sc*/ .eROqxA .metaContainer:first-child a{border-radius:5px;-webkit-align-self:baseline;-ms-flex-item-align:baseline;align-self:baseline;}/*!sc*/ .eROqxA .metaContainer:last-child{gap:15px;}/*!sc*/ .eROqxA .viewMoreBtn{border:0;padding:10px;background-color:#073b00;color:#fff;border-radius:5px;cursor:pointer;}/*!sc*/ .eROqxA .viewMoreBtn .arrowIcon{margin-left:30px;-webkit-transition:1s;transition:1s;}/*!sc*/ .eROqxA .viewMoreBtn:hover .arrowIcon{-webkit-transform:rotate(365deg);-ms-transform:rotate(365deg);transform:rotate(365deg);}/*!sc*/ .eROqxA .actionBtnContainer{position:absolute;border:1px solid #474747 !important;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;border:2px solid;-webkit-transform:translate(0px,10px);-ms-transform:translate(0px,10px);transform:translate(0px,10px);background-color:#073b00;z-index:1;}/*!sc*/ .eROqxA .actionBtnContainer span{padding:5px 10px;color:#fff;cursor:pointer;}/*!sc*/ .eROqxA .actionBtnContainer span:hover{background-color:#03b044;-webkit-transition:0.5s;transition:0.5s;}/*!sc*/ .eROqxA .story-rank{background:#f6f7f9;color:#3c3c3b;text-align:center;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:center;-webkit-jusitfy-content:center;-ms-flex-pack:center;jusitfy-content:center;border-radius:0.5rem;padding:0.5rem 0.5rem;}/*!sc*/ .eROqxA .story-rank:hover{cursor:pointer;}/*!sc*/ .eROqxA .booster-btn{padding:4px 15px;margin-right:1rem;max-height:33.3px;border-radius:0.5rem;border:0px;background:#1e5500;color:#05ff00;font-weight:600;font-size:16px;cursor:pointer;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;gap:10px;}/*!sc*/ .eROqxA .story-stat{background:#f6f7f9;color:#3c3c3b;padding:4px;margin-right:1rem;max-height:33.3px;border-radius:0.5rem;}/*!sc*/ .eROqxA .story-stat svg{fill:#3c3c3b;}/*!sc*/ @media only screen and (max-width:640px){.eROqxA .story-stat{margin:0;}}/*!sc*/ @media only screen and (max-width:375px){.eROqxA .bookmark{margin-left:0;}}/*!sc*/ .eROqxA small{margin-right:10px;}/*!sc*/ @media only screen and (max-width:500px){.eROqxA small{margin-right:0;}}/*!sc*/ .eROqxA .vertical{width:0px;height:15px;border:1px solid #7e7e7e;}/*!sc*/ @media only screen and (min-width:640px){.eROqxA .desktop-no-show{display:none !important;}}/*!sc*/ @media only screen and (max-width:640px){.eROqxA .mobile-no-show{display:none !important;}}/*!sc*/ .eROqxA .first-place,.eROqxA .second-place,.eROqxA .third-place{-webkit-animation:zoomInRotate 2s ease-in-out;animation:zoomInRotate 2s ease-in-out;}/*!sc*/ data-styled.g92[id="sc-93e186d7-0"]{content:"eROqxA,"}/*!sc*/ .eiYCFa{width:95px;height:31px;background-color:#00ff00;position:relative;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;gap:10px;border:1px solid;padding:10px;font-weight:bold;cursor:pointer;background-color:#003a00;border-radius:10px;}/*!sc*/ .eiYCFa .tldr-arrow-animation{-webkit-transition:0.5s all;transition:0.5s all;-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg);}/*!sc*/ .eiYCFa:hover{-webkit-transform:scale(1.1,1.1);-ms-transform:scale(1.1,1.1);transform:scale(1.1,1.1);}/*!sc*/ data-styled.g93[id="sc-93e186d7-1"]{content:"eiYCFa,"}/*!sc*/ .bhpHZN{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-pack:end;-webkit-justify-content:flex-end;-ms-flex-pack:end;justify-content:flex-end;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .bhpHZN .trendingStory{font-size:20px;color:#666105;}/*!sc*/ .bhpHZN .service-tooltip{width:800px;opacity:1 !important;}/*!sc*/ data-styled.g95[id="sc-93e186d7-3"]{content:"bhpHZN,"}/*!sc*/ .ehdhzV{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;margin-right:15px;gap:10px;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;}/*!sc*/ @media screen and (max-width:610px){.ehdhzV{gap:5px;}}/*!sc*/ @media only screen and (max-width:375px){.ehdhzV{margin-right:0px;}}/*!sc*/ data-styled.g96[id="sc-93e186d7-4"]{content:"ehdhzV,"}/*!sc*/ .fEpdfH{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ @media screen and (max-width:666px){.fEpdfH{-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;}}/*!sc*/ data-styled.g97[id="sc-93e186d7-5"]{content:"fEpdfH,"}/*!sc*/ .dPrQoP .img{margin-right:1rem;border-radius:5px;width:-webkit-fit-content;width:-moz-fit-content;width:fit-content;}/*!sc*/ .dPrQoP .img:hover{-webkit-transform:scale(1.1,1.1);-ms-transform:scale(1.1,1.1);transform:scale(1.1,1.1);}/*!sc*/ data-styled.g98[id="sc-93e186d7-6"]{content:"dPrQoP,"}/*!sc*/ .fEEqoW{padding:10px;border:2px solid;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;background:#212428;color:lightgray;min-width:140px;border:0;border-radius:0 5px 5px 0;font-size:1.5rem;cursor:pointer;font-weight:800;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .fEEqoW i{margin-left:0.5rem;}/*!sc*/ @-webkit-keyframes spin{0%{-webkit-transform:rotate(0deg);-ms-transform:rotate(0deg);transform:rotate(0deg);}100%{-webkit-transform:rotate(360deg);-ms-transform:rotate(360deg);transform:rotate(360deg);}}/*!sc*/ @keyframes spin{0%{-webkit-transform:rotate(0deg);-ms-transform:rotate(0deg);transform:rotate(0deg);}100%{-webkit-transform:rotate(360deg);-ms-transform:rotate(360deg);transform:rotate(360deg);}}/*!sc*/ .fEEqoW:hover{background:#138a36;color:white;}/*!sc*/ data-styled.g103[id="sc-9d94a5e5-2"]{content:"fEEqoW,"}/*!sc*/ .jtwMgp{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;width:100%;}/*!sc*/ .jtwMgp .author-email-form{margin:0 auto;margin-right:auto;}/*!sc*/ .jtwMgp .subscribe-btn{font-size:15px;}/*!sc*/ .jtwMgp .subscribe-btn-tooltip{max-width:100px;}/*!sc*/ .jtwMgp .emailContainer{-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;width:100%;}/*!sc*/ .jtwMgp .emailContainer input{width:100%;}/*!sc*/ @media screen and (max-width:400px){.jtwMgp{-webkit-align-items:flex-start;-webkit-box-align:flex-start;-ms-flex-align:flex-start;align-items:flex-start;}.jtwMgp .emailContainer{-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;}.jtwMgp .emailContainer input,.jtwMgp .emailContainer button{border-radius:0px !important;}}/*!sc*/ .jtwMgp .subscribe-btn{width:100%;font-family:"IBM Plex Mono",monospace;font-weight:bold;color:white;background-color:#009900;border:1px solid #62ff86;cursor:pointer;border-radius:5px;padding:1rem 0.5rem;}/*!sc*/ .jtwMgp .subscribe-btn .icon{fill:#62ff86;}/*!sc*/ .jtwMgp .subscribe-btn:hover{color:#212428;background-color:#0f0;border:1px solid #212428;-webkit-transform:scale(1.02);-ms-transform:scale(1.02);transform:scale(1.02);-webkit-transition:all 100ms ease-in-out;transition:all 100ms ease-in-out;}/*!sc*/ .jtwMgp .subscribe-btn:hover .icon{fill:#212428;}/*!sc*/ @media screen and (max-width:1085px){.jtwMgp .subscribe-btn{width:100%;margin-top:1.5rem;}}/*!sc*/ .jtwMgp .subscribe_auth{margin:0 auto;width:100%;}/*!sc*/ @media screen and (max-width:1085px){.jtwMgp .subscribe_auth{-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;width:100%;}}/*!sc*/ .jtwMgp .subscribe-tooltip{position:relative;display:inline-block;}/*!sc*/ .jtwMgp .subscribe-tooltip .tooltiptext{width:100%;visibility:hidden;background-color:white;text-align:center;padding:5px 5px;border-radius:6px;position:absolute;z-index:1;left:0;min-width:200px;bottom:4rem;font-family:"IBM Plex Mono",monospace;font-size:1.2rem;color:gray;font-weight:600;text-align:center;}/*!sc*/ .jtwMgp .tooltip .tooltipbadge{visibility:hidden;background-color:white;border:2px solid black;text-align:center;padding:5px 5px;border-radius:6px;position:absolute;bottom:6.5rem;left:-200px;z-index:1;width:500px;font-family:"IBM Plex Mono",monospace;font-size:1.2rem;color:gray;font-weight:600;text-align:center;}/*!sc*/ @media screen and (max-width:1085px){.jtwMgp .tooltip .tooltipbadge{width:200px;left:-50px;}}/*!sc*/ @media screen and (max-width:720px){.jtwMgp .tooltip .tooltipbadge{width:auto;left:-10px;font-size:12px;}}/*!sc*/ .jtwMgp .subscribe-tooltip:hover .tooltiptext{visibility:visible !important;}/*!sc*/ .jtwMgp .tooltip:hover .tooltipbadge{visibility:visible;}/*!sc*/ .jtwMgp .author-email-form{width:100%;margin:0 auto;}/*!sc*/ .jtwMgp .author-email-form .emailContainer{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin-bottom:10px;}/*!sc*/ .jtwMgp .author-email-form .emailContainer > input{width:190px;padding:10px;border:0;color:black;background-color:rgba(255,255,255,1);border-radius:5px 0px 0px 5px;border:1px solid rgba(0,0,0,0.5);}/*!sc*/ @media screen and (max-width:400px){.jtwMgp .author-email-form .emailContainer > input{width:100%;margin-bottom:10px;}}/*!sc*/ .jtwMgp .author-email-form .emailContainer > input:focus-visible{border:2px solid red;}/*!sc*/ @media screen and (max-width:500px){.jtwMgp .author-email-form{padding-left:0;}.jtwMgp .author-email-form .emailContainer{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}.jtwMgp .author-email-form .emailContainer > input{padding:10px 10px 10px 20px;font-size:1.5rem;border:0;background-color:lightgrey;border-radius:5px;}.jtwMgp .author-email-form .emailContainer > input:focus-visible{border:2px solid red;}}/*!sc*/ data-styled.g105[id="sc-9d94a5e5-4"]{content:"jtwMgp,"}/*!sc*/ .dGrQDi{background:whitesmoke;border-radius:1rem;padding:2rem;max-width:850px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;font-size:1.5rem;font-weight:lighter;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;margin:1rem auto 4rem auto;}/*!sc*/ @media screen and (max-width:850px){.dGrQDi{margin:5rem;wdith:100%;}}/*!sc*/ @media screen and (max-width:640px){.dGrQDi{margin:0rem 1rem;margin-bottom:3rem;wdith:100%;}}/*!sc*/ @media screen and (max-width:480px){.dGrQDi{margin:0rem 0rem;margin-bottom:3rem;wdith:100%;}}/*!sc*/ .dGrQDi h3{margin-top:0px;font-size:3rem;}/*!sc*/ @media only screen and (max-width:400px){.dGrQDi h3{font-size:2rem;}}/*!sc*/ .dGrQDi .row{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ @media screen and (max-width:640px){.dGrQDi .row{-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;}}/*!sc*/ .dGrQDi .row .avatar{margin-right:2rem;margin-bottom:auto;box-shadow:0 0.2em #c2cad6,0 -0.2em #c2cad6, 0.2em 0 #c2cad6,-0.2em 0 #c2cad6;position:relative;min-height:130px;min-width:130px;}/*!sc*/ @media screen and (max-width:640px){.dGrQDi .row .avatar{min-height:75px;min-width:75px;margin-right:auto;margin-bottom:1rem;}}/*!sc*/ .dGrQDi .row .brand{box-shadow:0 0.2em #f5ec43,0 -0.2em #f5ec43, 0.2em 0 #f5ec43,-0.2em 0 #f5ec43;}/*!sc*/ .dGrQDi .row .author-info{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-flow:column;-ms-flex-flow:column;flex-flow:column;-webkit-align-items:flex-start;-webkit-box-align:flex-start;-ms-flex-align:flex-start;align-items:flex-start;-webkit-flex-wrap:no-wrap;-ms-flex-wrap:no-wrap;flex-wrap:no-wrap;-webkit-transition:all 0.3s ease-in;transition:all 0.3s ease-in;width:100%;}/*!sc*/ .dGrQDi .row .author-name-handle{margin-right:3rem;}/*!sc*/ .dGrQDi .row .author-info-top{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:start;-webkit-justify-content:start;-ms-flex-pack:start;justify-content:start;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .dGrQDi .row .author-info-top .subscribe-circle{margin-bottom:1rem;}/*!sc*/ .dGrQDi .row strong{font-weight:bold;margin-right:1rem;}/*!sc*/ .dGrQDi .row .handle a{color:gray;}/*!sc*/ .dGrQDi .row .bio{color:#82858a;font-style:italic;margin-top:1rem;max-width:100vw;overflow-wrap:anywhere;}/*!sc*/ .dGrQDi .row .author-cta-wrapper{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;}/*!sc*/ @media screen and (max-width:480px){.dGrQDi .row .author-cta-wrapper{-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;margin:0rem;width:100%;}}/*!sc*/ .dGrQDi .row .bio-cta{margin:1rem 1rem 1rem 0;justify-self:flex-end;background-color:white;display:block;text-align:center;padding:0.5rem 1rem;text-transform:capitalize;border-radius:5px;border:2px solid transparent;font-weight:bold;color:gray;}/*!sc*/ .dGrQDi .row .bio-cta i{margin-right:0.5rem;}/*!sc*/ .dGrQDi .row .bio-cta:hover{background:#138A36;color:white;}/*!sc*/ @media screen and (max-width:480px){.dGrQDi .row .bio-cta{width:100%;}}/*!sc*/ data-styled.g106[id="sc-104e382f-0"]{content:"dGrQDi,"}/*!sc*/ .ghXAMP{padding:0.5rem 1.5rem;margin:0 1.5rem 1.5rem 0;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;background:transparent;color:black;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;border-radius:0.5rem;font-weight:bold;box-shadow:0 0 3px 0 lightgray;}/*!sc*/ .ghXAMP:hover{background:#138A36;color:white;}/*!sc*/ @media screen and (max-width:640px){.ghXAMP{font-size:1.2rem;padding:0.5rem 1rem;}}/*!sc*/ data-styled.g107[id="sc-bc42364f-0"]{content:"ghXAMP,"}/*!sc*/ .cdoWeI{-webkit-align-content:center;-ms-flex-line-pack:center;align-content:center;background:#138a36;font-weight:bold;font-size:1.5rem;padding:0.5rem 1rem;margin:0 1rem 1rem 0;border-radius:0.5rem;height:35px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;box-shadow:0 0 3px 0 lightgray;}/*!sc*/ .cdoWeI img{margin-right:1rem;-webkit-filter:brightness(0) invert(1) grayscale(100%);filter:brightness(0) invert(1) grayscale(100%);}/*!sc*/ @media screen and (max-width:640px){.cdoWeI{font-size:1.2rem;padding:0.2rem 0.6rem;color:white;}}/*!sc*/ data-styled.g108[id="sc-29806bfb-0"]{content:"cdoWeI,"}/*!sc*/ .buhXYs{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;justify-items:start;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;grid-column:1 / span 1 !important;grid-row:span 5;}/*!sc*/ @media screen and (max-width:1000px){.buhXYs{display:none;}}/*!sc*/ .buhXYs .nft{cursor:pointer;}/*!sc*/ @media screen and (max-width:768px){.buhXYs{grid-gap:10px;}}/*!sc*/ .buhXYs + *{margin-top:0;}/*!sc*/ .buhXYs + blockquote,.buhXYs + .code-container{grid-column:2 / -2 !important;}/*!sc*/ .buhXYs > a{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:flex-start;-webkit-box-align:flex-start;-ms-flex-align:flex-start;align-items:flex-start;background-color:white;}/*!sc*/ .buhXYs .profileImageContainer{width:50px;height:50px;position:relative;cursor:pointer;border-radius:50%;box-shadow:0 0.2em #c2cad6,0 -0.2em #c2cad6, 0.2em 0 #c2cad6,-0.2em 0 #c2cad6;}/*!sc*/ .buhXYs .profileImageContainer img{border-radius:50%;}/*!sc*/ @media only screen and (max-width:600px){.buhXYs .profileImageContainer{margin:0 auto;}}/*!sc*/ .buhXYs > a > .profileImage{max-width:50px;object-fit:cover;border-radius:50px;box-shadow:0 0.2em #c2cad6,0 -0.2em #c2cad6, 0.2em 0 #c2cad6,-0.2em 0 #c2cad6;}/*!sc*/ .buhXYs .brand{box-shadow:0 0.2em #f5ec43,0 -0.2em #f5ec43, 0.2em 0 #f5ec43,-0.2em 0 #f5ec43;}/*!sc*/ .buhXYs > a > .profileImage.rainbow{box-shadow:none;}/*!sc*/ .buhXYs h3{margin:0 0 2rem;font-size:1.8rem;}/*!sc*/ .buhXYs h3 small{display:block;margin-top:2rem;}/*!sc*/ .buhXYs p{display:-webkit-box;-webkit-line-clamp:3;-webkit-box-orient:vertical;overflow:hidden;text-overflow:ellipsis;font-size:1.6rem;font-style:italic;}/*!sc*/ .buhXYs a.about-page-link{padding:2px 10px 0 0;border:2px dashed;background-color:#106a00;font-family:"HackerNoon";font-size:17px;color:#fff;}/*!sc*/ .buhXYs a.about-page-link .new-sticker{background:yellow;-webkit-transform:rotate(-40deg);-ms-transform:rotate(-40deg);transform:rotate(-40deg);display:inline-block;padding:5px;margin-right:10px;color:#234a00;}/*!sc*/ .buhXYs a.about-page-link:hover{background:#518d38;cursor:pointer;}/*!sc*/ .buhXYs a.about-page-link i{font-size:16px;margin-right:7px;}/*!sc*/ .buhXYs .profile_share_mobile{-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;margin:10px 0;}/*!sc*/ .buhXYs .profile_share_mobile img{background:black;min-width:30px;height:30px;padding:5px;border-radius:50%;}/*!sc*/ @media screen and (max-width:1070px){.buhXYs .profile_share_mobile{-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;}}/*!sc*/ @media screen and (max-width:650px){.buhXYs .profile_share_mobile{max-width:100%;}}/*!sc*/ .buhXYs .superpeer-link{background:transparent;border:3px solid #212428;font-weight:900;font-size:14px;display:block;width:100%;text-align:center;padding:20px 0;margin-top:25px;font-family:"IBM Plex Mono",monospace;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-transition:all 120ms ease-in-out;transition:all 120ms ease-in-out;}/*!sc*/ .buhXYs .superpeer-link i{font-size:34px;-webkit-transform:translateY(3px);-ms-transform:translateY(3px);transform:translateY(3px);line-height:1;margin-right:15px;}/*!sc*/ .buhXYs .superpeer-link:hover{background:#0f0;}/*!sc*/ .buhXYs .superpeer-link .book{font-size:16px;line-height:1.3;}/*!sc*/ .buhXYs .superpeer-link .book .line{padding:2px 0 1px 0;cursor:pointer;background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), rgba(0,255,0,0.35) calc(50% - 9px), rgba(0,255,0,0.35) 100% );-webkit-transition:all 120ms ease-in-out;transition:all 120ms ease-in-out;background-size:100% 200%;background-position:0 0;word-break:break-word;}/*!sc*/ data-styled.g124[id="sc-6d048d67-0"]{content:"buhXYs,"}/*!sc*/ .cziptZ .circle-button-wrapper{width:20;height:20;position:relative;top:33px;left:33px;}/*!sc*/ .cziptZ .author-info{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin-bottom:1rem;}/*!sc*/ .cziptZ .tooltip-title{color:black;margin:0px;font-size:1.5rem;}/*!sc*/ .cziptZ p{font-size:1.2rem;color:gray;}/*!sc*/ .cziptZ .author-img{width:50px;height:50px;border-radius:50%;margin-right:1rem;}/*!sc*/ .cziptZ img{width:25px;height:25px;margin-right:1rem;}/*!sc*/ .cziptZ .__react_component_tooltip{pointer-events:auto !important;cursor:pointer;opacity:1 !important;max-width:500px;border:1px solid lightgray;box-shadow:0rem 0rem 1rem lightgray;}/*!sc*/ data-styled.g125[id="sc-6d048d67-1"]{content:"cziptZ,"}/*!sc*/ .evreGv{max-width:280px;padding:1rem;text-align:left;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;margin-bottom:1.5rem;}/*!sc*/ @media screen and (max-width:750px){.evreGv{max-width:320px;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;}}/*!sc*/ @media screen and (max-width:850px){.evreGv{min-width:0px;width:100%;max-width:none;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:start;-webkit-box-align:start;-ms-flex-align:start;align-items:start;margin-bottom:0px;}}/*!sc*/ .evreGv .articles-wrapper{max-width:300px;}/*!sc*/ .evreGv .date{font-size:1rem;color:gray;}/*!sc*/ .evreGv .img{margin:auto;-webkit-flex-shrink:0;-ms-flex-negative:0;flex-shrink:0;border-radius:1rem;margin-bottom:1rem;}/*!sc*/ .evreGv .img img{object-fit:cover;min-height:150px;}/*!sc*/ @media screen and (max-width:640px){.evreGv .img img{min-height:100px;}}/*!sc*/ .evreGv .text{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-direction:column;-ms-flex-line-packalign-direction:column;align-direction:column;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;min-height:105px;}/*!sc*/ @media screen and (max-width:850px){.evreGv .text{margin:10px 2rem;-webkit-flex:1;-ms-flex:1;flex:1;min-height:0px;}}/*!sc*/ .evreGv .divider-bullet{height:4px;width:4px;border-radius:50%;background:gray;margin:0 0.5rem;}/*!sc*/ @media screen and (max-width:640px){.evreGv .divider-bullet{height:2px;width:2px;}}/*!sc*/ .evreGv .related{background:#138A36;color:white;font-weight:bold;padding:0rem 0.5rem;border-radius:0.5rem;font-size:0.8rem;margin-left:auto;}/*!sc*/ @media screen and (max-width:850px){.evreGv .related{margin:0 2rem;min-height:0px;margin-right:auto;margin-left:0px;}}/*!sc*/ .evreGv .ad-tag{background:gold;color:black;}/*!sc*/ .evreGv .card-title{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;}/*!sc*/ @media screen and (max-width:640px){.evreGv .card-title{-webkit-box-pack:start;-webkit-justify-content:start;-ms-flex-pack:start;justify-content:start;}}/*!sc*/ .evreGv .card-info{margin-right:1rem;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;}/*!sc*/ .evreGv .card-info .author-link{color:lightGray;font-size:1.2rem;}/*!sc*/ .evreGv .card-info .author-link:hover{color:#138A36;}/*!sc*/ @media screen and (max-width:640px){.evreGv .card-info .author-link{margin-right:1rem;}}/*!sc*/ .evreGv div{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-box-pack:space-evenly;-webkit-justify-content:space-evenly;-ms-flex-pack:space-evenly;justify-content:space-evenly;}/*!sc*/ .evreGv strong{font-size:2rem;line-height:25px;margin-bottom:10px;}/*!sc*/ @media screen and (max-width:500px){.evreGv strong{fontsize:1.5rem;}}/*!sc*/ .evreGv span{font-size:1.2rem;}/*!sc*/ data-styled.g127[id="sc-65adb81b-0"]{content:"evreGv,"}/*!sc*/ .ktrYOp > pre{overflow-x:scroll;max-width:100%;overflow:hidden;}/*!sc*/ .ktrYOp .annot{background-color:#ffff00;color:#212428;-webkit-transition:background-color 0.3s;transition:background-color 0.3s;}/*!sc*/ .ktrYOp .annot:hover{background-color:#ffff99;cursor:pointer;}/*!sc*/ .ktrYOp pre code{white-space:pre;overflow-x:scroll;width:800px;display:block;}/*!sc*/ @media screen and (max-width:1000px){.ktrYOp pre code{max-width:95vw;}}/*!sc*/ .ktrYOp .previewWarning,.ktrYOp .previewWarning > a{color:#a09a00;text-align:center;margin-bottom:10px;}/*!sc*/ .ktrYOp ul,.ktrYOp ol{padding-left:20px;margin:0;word-break:break-word;}/*!sc*/ .ktrYOp ol ol{list-style:lower-alpha;}/*!sc*/ .ktrYOp ol ol ol{list-style:lower-roman;}/*!sc*/ .ktrYOp .edit-story{text-align:center;margin:-40px 0 0 0;}/*!sc*/ .ktrYOp > figure{margin:0 auto;}/*!sc*/ .ktrYOp > figure > figcaption{font-size:1rem;}/*!sc*/ .ktrYOp figure,.ktrYOp .image-container{position:relative;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;justify-self:center;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;text-align:center;max-width:90vw;}/*!sc*/ .ktrYOp figure img,.ktrYOp .image-container img{cursor:pointer;max-width:90vw;}/*!sc*/ .ktrYOp figure span,.ktrYOp .image-container span{position:initial !important;}/*!sc*/ .ktrYOp figure.feat,.ktrYOp .image-container.feat{grid-column:1 / -1;min-width:100%;border-radius:5px;}/*!sc*/ @media screen and (min-width:768px){.ktrYOp figure.feat .react-loading-skeleton,.ktrYOp .image-container.feat .react-loading-skeleton{height:450px !important;}}/*!sc*/ .ktrYOp .left-50,.ktrYOp .right-50{width:50%;margin-bottom:1em;clear:initial;}/*!sc*/ .ktrYOp .left-50{float:left;margin-right:2em;}/*!sc*/ .ktrYOp .right-50{float:right;margin-left:2em;}/*!sc*/ .ktrYOp .image-caption{line-height:0;display:block;margin:0;border:0px;display:block;font-size:13px;font-style:italic;font-weight:normal;color:rgb(78,92,110);padding:2px 0px;line-height:16px;text-align:center;min-height:1em;outline:none;background:none;resize:none;-webkit-user-select:text;-moz-user-select:text;-ms-user-select:text;user-select:text;cursor:text;}/*!sc*/ .ktrYOp .youtube-container{position:relative;padding-bottom:56.25%;padding-top:25px;height:0;}/*!sc*/ .ktrYOp .youtube-container iframe{position:absolute;top:0;left:0;width:100%;height:100%;}/*!sc*/ .ktrYOp .embed-hn-story{box-shadow:#b9ffb9 0px 0.2em,#b9ffb9 0px -0.2em,#b9ffb9 0.2em 0px,#b9ffb9 -0.2em 0px,#0f0 0.2em 0.4em, #0f0 0.4em 0.2em,#005e00 0.4em 0.6em,#005e00 0.6em 0.4em;cursor:pointer;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;margin:0 auto;max-width:450px;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;}/*!sc*/ .ktrYOp .embed-hn-story .card-image-container img{height:100%;width:100%;object-fit:contain;}/*!sc*/ .ktrYOp .embed-hn-story .card-info h4{margin:0 5px;}/*!sc*/ .ktrYOp .embed-hn-story .card-info span{display:-webkit-box;font-size:13px;margin:5px;height:2.6em;max-height:2.6em;margin-top:0.32333em;line-height:1.3em;-webkit-letter-spacing:normal;-moz-letter-spacing:normal;-ms-letter-spacing:normal;letter-spacing:normal;word-wrap:break-word;overflow:hidden;-webkit-line-clamp:2;-webkit-box-orient:vertical;text-overflow:ellipsis;}/*!sc*/ .ktrYOp .codepen-container,.ktrYOp .codesandbox-container{grid-column:1 / -1;}/*!sc*/ .ktrYOp .codepen-container iframe,.ktrYOp .codesandbox-container iframe{border:none;border-radius:5px;box-shadow:0 0 10px rgba(0,0,0,0.1);width:100%;height:500px;}/*!sc*/ .ktrYOp > blockquote{font-size:2rem;word-break:break-word;font-style:italic;margin-left:0;margin-right:0;padding:2rem 0;text-align:left;}/*!sc*/ @media screen and (min-width:768px){.ktrYOp > blockquote{font-size:2.5rem;}}/*!sc*/ .ktrYOp .paragraph{min-width:0;margin:0 0 25px 0;word-wrap:break-word;}/*!sc*/ .ktrYOp .line-space{margin:0 !important;}/*!sc*/ .ktrYOp h2{font-size:1.5em;}/*!sc*/ .ktrYOp .reactions{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;gap:6px;}/*!sc*/ .ktrYOp .paragraph a,.ktrYOp .slogging a,.ktrYOp blockquote a,.ktrYOp p a,.ktrYOp .h2 a,.ktrYOp .h3 a,.ktrYOp .h4 a,.ktrYOp ul li a,.ktrYOp ol li a,.ktrYOp h1 a,.ktrYOp h2 a,.ktrYOp h3 a{color:black;padding:2px 0 1px 0;background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), rgba(0,255,0,0.35) calc(50% - 9px), rgba(0,255,0,0.35) 100% );-webkit-transition:background-position 120ms ease-in-out,padding 120ms ease-in-out;transition:background-position 120ms ease-in-out,padding 120ms ease-in-out;background-size:100% 200%;background-position:0 0;word-break:break-word;}/*!sc*/ .ktrYOp .paragraph a:hover,.ktrYOp .slogging a:hover,.ktrYOp blockquote a:hover,.ktrYOp p a:hover,.ktrYOp .h2 a:hover,.ktrYOp .h3 a:hover,.ktrYOp .h4 a:hover,.ktrYOp ul li a:hover,.ktrYOp ol li a:hover,.ktrYOp h1 a:hover,.ktrYOp h2 a:hover,.ktrYOp h3 a:hover{background-image:linear-gradient( transparent 0%, transparent calc(50% - 9px), rgba(0,255,0,1) calc(50% - 9px), rgba(0,255,0,1) 100% );background-position:0 100%;}/*!sc*/ .ktrYOp .paragraph a:focus,.ktrYOp .slogging a:focus,.ktrYOp blockquote a:focus,.ktrYOp p a:focus,.ktrYOp .h2 a:focus,.ktrYOp .h3 a:focus,.ktrYOp .h4 a:focus,.ktrYOp ul li a:focus,.ktrYOp ol li a:focus,.ktrYOp h1 a:focus,.ktrYOp h2 a:focus,.ktrYOp h3 a:focus{text-shadow:1px 1px 0 #0b0;}/*!sc*/ .ktrYOp tr,.ktrYOp th,.ktrYOp td{border:1px solid;border-collapse:collapse;}/*!sc*/ .ktrYOp th{width:300px;}/*!sc*/ .ktrYOp table{width:100%;border-spacing:0;}/*!sc*/ .ktrYOp .tags{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;}/*!sc*/ .ktrYOp .skeleton.meta{grid-column:1 / -1;display:grid;grid-template-columns:auto 1fr;}/*!sc*/ .ktrYOp .skeleton.meta > div{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;}/*!sc*/ .ktrYOp .skeleton.meta > div:first-child{justify-self:start;}/*!sc*/ .ktrYOp .skeleton.meta > div:last-child{justify-self:end;}/*!sc*/ data-styled.g141[id="sc-2e79ac2f-0"]{content:"ktrYOp,"}/*!sc*/ .cdKvIK{position:fixed;z-index:10;background-color:white;width:-webkit-fit-content;width:-moz-fit-content;width:fit-content;height:40px;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;background-color:#3c3c3b;border:1px solid white;border-radius:5px;}/*!sc*/ .cdKvIK button{background-color:#3c3c3b;border:none;margin-left:10px;color:white;}/*!sc*/ .cdKvIK button:hover{cursor:pointer;}/*!sc*/ data-styled.g149[id="sc-2e79ac2f-8"]{content:"cdKvIK,"}/*!sc*/ .kIDgmw{width:20px;height:20px;position:absolute;bottom:-10px;left:30px;z-index:-1;background-color:#3c3c3b;border-bottom:1px solid white;border-right:1px solid white;-webkit-transform:rotate(45deg);-ms-transform:rotate(45deg);transform:rotate(45deg);}/*!sc*/ data-styled.g150[id="sc-2e79ac2f-9"]{content:"kIDgmw,"}/*!sc*/ .gYRgFU .dabytag{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:column;-ms-flex-direction:column;flex-direction:column;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;max-width:850px;margin:auto;margin-top:3rem;}/*!sc*/ .gYRgFU .dabytag .da-toggle-btn{margin-left:auto;position:relative;top:4rem;right:1rem;z-index:3;background:white;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;border-radius:50%;padding:0.5rem;cursor:pointer;}/*!sc*/ .gYRgFU .related-section{margin-bottom:50px;}/*!sc*/ .gYRgFU .related-section .articles-wrapper{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-box-pack:space-around;-webkit-justify-content:space-around;-ms-flex-pack:space-around;justify-content:space-around;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;margin-bottom:200px;}/*!sc*/ .gYRgFU .topics-section,.gYRgFU .lang-section,.gYRgFU .related-section{margin:auto;width:98%;max-width:850px;}/*!sc*/ .gYRgFU .topics-section h4,.gYRgFU .lang-section h4,.gYRgFU .related-section h4{font-size:3rem;}/*!sc*/ .gYRgFU .topics-section .tags,.gYRgFU .lang-section .tags,.gYRgFU .related-section .tags{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;}/*!sc*/ @media screen and (max-width:850px){.gYRgFU .topics-section,.gYRgFU .lang-section,.gYRgFU .related-section{padding:2rem;width:100%;}.gYRgFU .topics-section h4,.gYRgFU .lang-section h4,.gYRgFU .related-section h4{margin-left:2rem;margin-bottom:1rem;font-size:3rem;}.gYRgFU .topics-section .tags,.gYRgFU .lang-section .tags,.gYRgFU .related-section .tags{-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;margin:1rem;}}/*!sc*/ @media screen and (max-width:480px){.gYRgFU .topics-section,.gYRgFU .lang-section,.gYRgFU .related-section{padding:0 1rem;}.gYRgFU .topics-section h4,.gYRgFU .lang-section h4,.gYRgFU .related-section h4{margin-left:1rem;margin-bottom:1rem;font-size:2rem;}.gYRgFU .topics-section .tags,.gYRgFU .lang-section .tags,.gYRgFU .related-section .tags{-webkit-box-pack:start;-webkit-justify-content:flex-start;-ms-flex-pack:start;justify-content:flex-start;margin:0px;}}/*!sc*/ data-styled.g151[id="sc-738aab49-0"]{content:"gYRgFU,"}/*!sc*/ .ensLvG{width:850px;height:185.5px;background-color:#009300;position:relative;overflow:hidden;-webkit-transition:filter 0.5s;transition:filter 0.5s;border-radius:1rem;}/*!sc*/ .ensLvG .l1{display:none;}/*!sc*/ @media screen and (max-width:399px){.ensLvG{width:calc(100vw - 4rem);height:75px;}}/*!sc*/ @media screen and (max-width:850px){.ensLvG{width:95%;}}/*!sc*/ .ensLvG:hover{cursor:pointer;}/*!sc*/ .ensLvG .info{width:100%;height:100%;position:absolute;z-index:2;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-direction:row;-ms-flex-direction:row;flex-direction:row;-webkit-box-pack:justify;-webkit-justify-content:space-between;-ms-flex-pack:justify;justify-content:space-between;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;color:white;margin:0 0 0 50px;}/*!sc*/ @media screen and (max-width:690px){.ensLvG .info{margin-left:20px;}}/*!sc*/ .ensLvG .info img{width:80px;}/*!sc*/ @media screen and (max-width:690px){.ensLvG .info img{width:30px;height:30px;}}/*!sc*/ .ensLvG .info p{text-transform:uppercase;width:55%;max-height:100%;font-family:"HackerNoon",sans-serif;text-align:center;font-size:18px;margin-right:90px;}/*!sc*/ @media screen and (max-width:690px){.ensLvG .info p{font-size:10px;width:50%;margin-right:50px;}}/*!sc*/ .ensLvG .background{position:absolute;z-index:1;}/*!sc*/ .ensLvG .background .l1{width:400px;height:600px;background-color:#29c929;border-radius:30%;position:absolute;left:-200px;top:-10px;}/*!sc*/ @media screen and (max-width:690px){.ensLvG .background .l1{width:200px;height:300px;left:-100px;top:-5px;}}/*!sc*/ .ensLvG .background .d1{width:400px;height:600px;background-color:#007200;position:absolute;left:300px;top:-10px;z-index:4;}/*!sc*/ @media screen and (max-width:690px){.ensLvG .background .d1{width:220px;height:300px;left:140px;top:-5px;}}/*!sc*/ .ensLvG .background .l2{width:120px;height:200px;background-color:#29c929;border-radius:40px;position:absolute;left:250px;top:-100px;-webkit-transform:rotate(55deg);-ms-transform:rotate(55deg);transform:rotate(55deg);}/*!sc*/ @media screen and (max-width:690px){.ensLvG .background .l2{width:60px;height:100px;left:125px;top:-50px;}}/*!sc*/ .ensLvG .background .l3{width:120px;height:200px;background-color:#29c929;border-radius:60px;position:absolute;left:690px;top:-50px;-webkit-transform:rotate(55deg);-ms-transform:rotate(55deg);transform:rotate(55deg);z-index:5;}/*!sc*/ @media screen and (max-width:690px){.ensLvG .background .l3{width:60px;height:100px;left:345px;top:-25px;border-radius:30px;}}/*!sc*/ .ensLvG .background .d2{width:200px;height:200px;background-color:#007200;position:absolute;left:250px;border-radius:50%;top:-60px;z-index:4;}/*!sc*/ @media screen and (max-width:690px){.ensLvG .background .d2{width:100px;height:100px;left:125px;top:-30px;}}/*!sc*/ .ensLvG .background .m1{width:70px;height:70px;background-color:#009300;position:absolute;left:250px;border-radius:50%;top:123px;z-index:5;}/*!sc*/ @media screen and (max-width:690px){.ensLvG .background .m1{width:40px;height:40px;left:115px;top:56px;}}/*!sc*/ data-styled.g178[id="sc-a0a54eeb-0"]{content:"ensLvG,"}/*!sc*/ .jvdbKp{max-width:850px;margin:auto;}/*!sc*/ .jvdbKp h4{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;font-size:3rem;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;text-align:center;text-transform:uppercase;margin:5rem 0 rem 0;}/*!sc*/ .jvdbKp a{margin:0px;}/*!sc*/ .jvdbKp .web-tags{display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-flex-wrap:wrap;-ms-flex-wrap:wrap;flex-wrap:wrap;-webkit-box-pack:center;-webkit-justify-content:center;-ms-flex-pack:center;justify-content:center;}/*!sc*/ @media screen and (max-width:850px){.jvdbKp h4{margin-left:3rem;margin-bottom:3rem;font-size:2.5rem;}}/*!sc*/ @media screen and (max-width:650px){.jvdbKp .web-tags{-webkit-box-pack:start;-webkit-justify-content:flex-start;-ms-flex-pack:start;justify-content:flex-start;margin-left:2rem;}.jvdbKp h4{margin-left:3rem;margin-bottom:3rem;font-size:2rem;}}/*!sc*/ @media screen and (max-width:480px){.jvdbKp{margin:0;}.jvdbKp h4{margin-left:1rem;margin-bottom:1rem;font-size:2rem;}.jvdbKp .web-tags{-webkit-box-pack:start;-webkit-justify-content:flex-start;-ms-flex-pack:start;justify-content:flex-start;}}/*!sc*/ data-styled.g179[id="sc-fee3e5e9-0"]{content:"jvdbKp,"}/*!sc*/ .dzAAXf{padding:0.5rem 1.5rem;margin:0 1rem 1rem 0;display:-webkit-box;display:-webkit-flex;display:-ms-flexbox;display:flex;-webkit-align-items:center;-webkit-box-align:center;-ms-flex-align:center;align-items:center;border-radius:0.5rem;font-weight:bold;box-shadow:0 0 3px 0 lightgray;}/*!sc*/ .dzAAXf:hover{background:#138a36;color:white;}/*!sc*/ @media screen and (max-width:640px){.dzAAXf{font-size:1.2rem;padding:0.5rem 1.5rem;}}/*!sc*/ data-styled.g180[id="sc-fee3e5e9-1"]{content:"dzAAXf,"}/*!sc*/ .yKmBk{-webkit-align-self:center;-ms-flex-item-align:center;align-self:center;margin:5px;}/*!sc*/ data-styled.g181[id="sc-fee3e5e9-2"]{content:"yKmBk,"}/*!sc*/ </style></head><body><noscript><iframe src="https://www.googletagmanager.com/ns.html?id=GTM-WGQVQ44" height="0" width="0" style="display:none;visibility:hidden"></iframe></noscript><div id="__next" data-reactroot=""><div class="sc-9d336bae-0 bRkRGv"><header class="sc-eeb22f6c-0 eTNptX"><div class="mainNav" style="background:;background-image:"><div class="left-portion"><div class="search-container active"><div class="input-holder"><div class="ais-SearchBox"><form novalidate="" class="ais-SearchBox-form" action="" role="search"><input type="search" placeholder="Discover Anything" autoComplete="off" autoCorrect="off" autoCapitalize="off" spellcheck="false" required="" maxLength="512" value="" class="ais-SearchBox-input"/><button type="submit" title="Submit your search query." class="ais-SearchBox-submit"><svg class="ais-SearchBox-submitIcon" xmlns="http://www.w3.org/2000/svg" width="10" height="10" viewBox="0 0 40 40" aria-hidden="true"><path d="M26.804 29.01c-2.832 2.34-6.465 3.746-10.426 3.746C7.333 32.756 0 25.424 0 16.378 0 7.333 7.333 0 16.378 0c9.046 0 16.378 7.333 16.378 16.378 0 3.96-1.406 7.594-3.746 10.426l10.534 10.534c.607.607.61 1.59-.004 2.202-.61.61-1.597.61-2.202.004L26.804 29.01zm-10.426.627c7.323 0 13.26-5.936 13.26-13.26 0-7.32-5.937-13.257-13.26-13.257C9.056 3.12 3.12 9.056 3.12 16.378c0 7.323 5.936 13.26 13.258 13.26z"></path></svg></button><button type="reset" title="Clear the search query." class="ais-SearchBox-reset" hidden=""><svg class="ais-SearchBox-resetIcon" xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 20" width="10" height="10" aria-hidden="true"><path d="M8.114 10L.944 2.83 0 1.885 1.886 0l.943.943L10 8.113l7.17-7.17.944-.943L20 1.886l-.943.943-7.17 7.17 7.17 7.17.943.944L18.114 20l-.943-.943-7.17-7.17-7.17 7.17-.944.943L0 18.114l.943-.943L8.113 10z"></path></svg></button></form></div><img src="https://hackernoon.imgix.net/search-new.png?w=19&amp;h=19" class="search" alt="Search icon" width="19" height="19"/></div></div></div><a class="logo" href="/"><span class="desktop" style="background-color:;padding:5px;border-radius:5px"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Hackernoon logo" srcSet="https://hackernoon.imgix.net/hn-logo.png?auto=format&amp;fit=max&amp;w=256 1x, https://hackernoon.imgix.net/hn-logo.png?auto=format&amp;fit=max&amp;w=640 2x" src="https://hackernoon.imgix.net/hn-logo.png?auto=format&amp;fit=max&amp;w=640" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span></span><span class="mobile"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Hackernoon logo" srcSet="https://hackernoon.imgix.net/hn-icon.png?auto=format&amp;fit=max&amp;w=48 1x, https://hackernoon.imgix.net/hn-icon.png?auto=format&amp;fit=max&amp;w=96 2x" src="https://hackernoon.imgix.net/hn-icon.png?auto=format&amp;fit=max&amp;w=96" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span></span></a><div class="right-portion"><div style="width:fit-content" class="sc-eeb22f6c-1 cOdmIY"><a style="color:#003b00;border-color:#003b00;background-color:#88ff88;border-radius:5px" href="/reader-boot" class="sc-b3d23cc4-0 jECpNX">Read</a><a style="color:#003b00;border-color:#003b00;background-color:#88ff88;border-radius:5px;margin-right:2rem" href="https://app.hackernoon.com/new" class="sc-b3d23cc4-0 jECpNX">Write</a></div><div><img width="35" height="35" src="https://hackernoon.imgix.net/unread-bell.png?w=40" style="vertical-align:middle" alt="see notifications" class="sc-4d156c87-0 hslCzy"/><div class="sc-4d156c87-1 izlxCY"><div class="header">Notifications</div><div class="content"></div><div style="display:flex"><div class="more">see <!-- --> more</div></div></div></div><div class="sc-dd1bca92-0 jSiCMG"><div data-focus-guard="true" tabindex="-1" style="width:1px;height:0px;padding:0;overflow:hidden;position:fixed;top:1px;left:1px"></div><div data-focus-lock-disabled="disabled"><button aria-label="Toggle menu" aria-expanded="false" aria-controls="main-menu" class="sc-14b24a79-0 ihbTZc"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 22 20" width="22" style="fill:"><path style="fill:" d="M21 9h1v2h-1v1H1v-1H0V9h1V8h20v1zM21 17h1v2h-1v1H1v-1H0v-2h1v-1h20v1zM22 1v2h-1v1H1V3H0V1h1V0h20v1h1z"></path></svg></button><div aria-hidden="true" style="background-color:" class="sc-16ad823d-0 bfEqpI"><div class="mobile-header"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="hackernoon-logo" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img srcSet="https://hackernoon.imgix.net/hn-icon.png?auto=format&amp;fit=max&amp;w=96 1x, https://hackernoon.imgix.net/hn-icon.png?auto=format&amp;fit=max&amp;w=96 2x" src="https://hackernoon.imgix.net/hn-icon.png?auto=format&amp;fit=max&amp;w=96" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" class="hackernoon-logo" loading="lazy"/></noscript></span><div class="mobile-header-left"><a href="https://app.hackernoon.com/signup" class="mobile-auth">LOGIN / SIGNUP</a><img class="close-nav-img" src="https://hackernoon.imgix.net/icons/SVG/awesome/Window%20Close.svg"/></div></div><div class="sc-16ad823d-1 kcgCcU"></div></div></div><div data-focus-guard="true" tabindex="-1" style="width:1px;height:0px;padding:0;overflow:hidden;position:fixed;top:1px;left:1px"></div></div></div></div><div class="sc-72f8e89d-0 lkKurX subNav" style="border-top:;background-color:;color:"><ul style="background-color:" class="sc-b69cf9f6-0 kTjQvw"></ul></div><div><div style="background:;color:" class="sc-507e8eeb-0 iocYRY"><a class="logo" href="/"><img src="/hn-logo.png" alt="Hackernoon logo"/></a><a style="color:" class="daLink" target="_blank" rel="sponsored"><span style="color:;display:flex;align-items:center;background:;padding:0 10px;border-radius:5px"></span></a><div class="colorPickerIcon"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="paint-brush" srcSet="https://hackernoon.imgix.net/brush2.png?w=25&amp;auto=format&amp;fit=max 1x, https://hackernoon.imgix.net/brush2.png?w=25&amp;auto=format&amp;fit=max 2x" src="https://hackernoon.imgix.net/brush2.png?w=25&amp;auto=format&amp;fit=max" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span></div></div></div><div class="sc-9de06f04-0 byYhvg story-nav show"><div class="title"><span class="story-title">How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? </span><span class="by"> <!-- -->by</span><a class="profile" href="/u/bastiane">@<!-- -->bastiane</a><div class="profile-img"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img srcSet="https://hackernoon.com/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?auto=format&amp;fit=max&amp;w=32 1x, https://hackernoon.com/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?auto=format&amp;fit=max&amp;w=64 2x" src="https://hackernoon.com/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?auto=format&amp;fit=max&amp;w=64" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span></div></div><div class="sharing"></div></div></header><div style="position:fixed;z-index:9999;top:16px;left:16px;right:16px;bottom:16px;pointer-events:none"></div><main class="sc-9d336bae-1 ghWRJY"><div class="sc-d7dc08c8-0 gANdmI"><div class="sc-93e186d7-0 eROqxA"><div class="metaContainer desktop-no-show"><div class="sc-93e186d7-5 fEpdfH"><div class="sc-93e186d7-4 ehdhzV"><span class="story-stat"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 22 22" width="22" style="width:14px;fill:darkgray"><path style="width:14px;fill:darkgray" d="M22 7v2h-1v1h-1v1h-1v1h-1v1h-1v5h1v4h-2v-1h-2v-1h-2v-1h-2v1H8v1H6v1H4v-4h1v-5H4v-1H3v-1H2v-1H1V9H0V7h7V5h1V3h1V1h1V0h2v1h1v2h1v2h1v2h7z"></path></svg> <!-- -->669<!-- --> <!-- -->reads</span></div></div></div><div class="story-topLine"><div class="story-stats"><span class="story-stat mobile-no-show"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 22 22" width="22" style="width:14px"><path style="width:14px" d="M22 7v2h-1v1h-1v1h-1v1h-1v1h-1v5h1v4h-2v-1h-2v-1h-2v-1h-2v1H8v1H6v1H4v-4h1v-5H4v-1H3v-1H2v-1H1V9H0V7h7V5h1V3h1V1h1V0h2v1h1v2h1v2h1v2h7z"></path></svg> <!-- -->669<!-- --> <!-- -->reads</span></div><div class="story-admin"></div></div><h1 class="story-title" style="text-align:left">How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? </h1><div class="title-bottom"><div class="title-bottom-left"><span class="header-handle " data-tip="true" data-for="story-author" aria-label="bookmark story" data-delay-hide="1000"><span> by </span><a> <!-- -->Bastiane</a></span><span class="divider-bullet"></span><span class="published-date">October 31st, 2019</span></div><div class="title-bottom-right"><div style="flex-shrink:0"><span style="display:flex;cursor:pointer" data-tip="true" data-for="terminal-view"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Read on Terminal Reader" srcSet="https://hackernoon.imgix.net/computer.png?auto=format&amp;fit=max&amp;w=32 1x, https://hackernoon.imgix.net/computer.png?auto=format&amp;fit=max&amp;w=48 2x" src="https://hackernoon.imgix.net/computer.png?auto=format&amp;fit=max&amp;w=48" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span></span></div><div style="flex-shrink:0"><span style="display:flex;cursor:pointer"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Read this story w/o Javascript" data-tip="true" data-for="arweave-backup" srcSet="https://hackernoon.imgix.net/images/Lite%20Icon%20%4025px.png?auto=format&amp;fit=max&amp;w=32 1x, https://hackernoon.imgix.net/images/Lite%20Icon%20%4025px.png?auto=format&amp;fit=max&amp;w=48 2x" src="https://hackernoon.imgix.net/images/Lite%20Icon%20%4025px.png?auto=format&amp;fit=max&amp;w=48" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span></span></div></div></div><div class="divider-line"></div><div class="tldr-langs"><div class="sc-93e186d7-5 fEpdfH"><div class="sc-93e186d7-4 ehdhzV"><div class="sc-93e186d7-1 eiYCFa"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="tldr-logo" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Open TLDR" srcSet="https://hackernoon.imgix.net/tl;dr-dark.png?auto=format&amp;fit=max&amp;w=64 1x, https://hackernoon.imgix.net/tl;dr-dark.png?auto=format&amp;fit=max&amp;w=128 2x" src="https://hackernoon.imgix.net/tl;dr-dark.png?auto=format&amp;fit=max&amp;w=128" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" class="tldr-logo" loading="lazy"/></noscript></span><img src="https://hackernoon.imgix.net/arrow-dark.png" alt="tldt arrow" width="12px" height="12px" class="tldr-arrow "/></div></div></div><div class="sc-93e186d7-3 bhpHZN"></div></div><div class="tldr-no-show"><h2>Too Long; Didn&#x27;t Read</h2> Machine Learning (ML) enables a move away from having to program the machine to true autonomy (self-learned) Machines make predictions and improve insights based on patterns they identify in data without humans telling them what to do. The adoption of ML has been rapidly advancing across various business sectors. Nearly half of the companies have incorporated one or more artificial intelligence capabilities in their process. The transition to ML could be more than 10 times harder than the transition to mobile technology. It’s not hard to see why ML is expected to be even more transformative than mobile technology.<div class="mentions-container"><div class="mentions-box"><h3>Companies<!-- --> Mentioned</h3><div class="mentions-img-wrapper"><div title="Amazon" class="sc-93e186d7-6 dPrQoP"><a href="/company/amazon" style="text-align:left" target="_blank" rel="noopener noreferrer"><div class="img"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="img" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%;object-fit:contain"/><noscript><img data-tip="true" data-for="tldr-mention-amazon" alt="Mention Thumbnail" src="http://logo.bigpicture.io/logo/amazon.com" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%;object-fit:contain" class="img" loading="lazy"/></noscript></span></div></a></div><div title="BUNCH" class="sc-93e186d7-6 dPrQoP"><a href="/company/bunch" style="text-align:left" target="_blank" rel="noopener noreferrer"><div class="img"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="img" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%;object-fit:contain"/><noscript><img data-tip="true" data-for="tldr-mention-bunch" alt="Mention Thumbnail" src="http://logo.bigpicture.io/logo/meetbunch.com" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%;object-fit:contain" class="img" loading="lazy"/></noscript></span></div></a></div></div></div></div></div></div><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="image-container feat" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="featured image - How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? " srcSet="https://hackernoon.imgix.net/drafts/sas327i.png?auto=format&amp;fit=max&amp;w=640 1x, https://hackernoon.imgix.net/drafts/sas327i.png?auto=format&amp;fit=max&amp;w=1200 2x" src="https://hackernoon.imgix.net/drafts/sas327i.png?auto=format&amp;fit=max&amp;w=1200" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" class="image-container feat" loading="lazy"/></noscript></span><div class="sc-6d048d67-0 buhXYs profile"><div class="sc-6d048d67-1 cziptZ"><div class="profileImageContainer "><span style="box-sizing:border-box;display:block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:absolute;top:0;left:0;bottom:0;right:0"><img data-for="author-tooltip" data-tip="true" data-delay-hide="200" alt="Bastiane HackerNoon profile picture" href="/u/bastiane" src="" decoding="async" data-nimg="fill" class="profileImage " style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%;object-fit:cover"/><noscript><img data-for="author-tooltip" data-tip="true" data-delay-hide="200" alt="Bastiane HackerNoon profile picture" href="/u/bastiane" sizes="100vw" srcSet="https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=100&amp;auto=format&amp;fit=max 640w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=100&amp;auto=format&amp;fit=max 750w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=100&amp;auto=format&amp;fit=max 828w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=100&amp;auto=format&amp;fit=max 1080w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=100&amp;auto=format&amp;fit=max 1200w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=100&amp;auto=format&amp;fit=max 1920w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=100&amp;auto=format&amp;fit=max 2048w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=100&amp;auto=format&amp;fit=max 3840w" src="https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=100&amp;auto=format&amp;fit=max" decoding="async" data-nimg="fill" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%;object-fit:cover" class="profileImage " loading="lazy"/></noscript></span></div></div></div><div><div class="sc-2e79ac2f-0 ktrYOp"><div><p class="paragraph">In my <a href="https://medium.com/swlh/redefining-robots-demystify-next-generation-ai-enabled-robotics-fec64bfeb66c?ref=hackernoon.com" target="_blank" rel="noopener noreferrer ugc">previous article</a>, I talked about the biggest difference that Machine Learning (ML) brings: <strong>ML enables a move away from having to program the machine to true autonomy (self-learned)</strong>. Machines make predictions and improve insights based on patterns they identify in data without humans explicitly telling them what to do. That’s why ML is particularly useful for challenging problems that are difficult for people to explain to machines. It also means that ML can make your products more personalized, more automated, and more precise. Advanced algorithms, massive data, and cheap hardware are enabling ML to become the main driver of GDP.</p><p class="paragraph">The adoption of ML has been rapidly advancing across various business sectors. Nearly half of the companies have incorporated one or more artificial intelligence capabilities in their process and another 30% are piloting AI projects, according to <a href="https://www.mckinsey.com/featured-insights/artificial-intelligence/ai-adoption-advances-but-foundational-barriers-remain?ref=hackernoon.com" target="_blank" rel="noopener noreferrer ugc">Mckinsey</a>’s recent survey. </p><p class="paragraph">It’s not hard to see why ML is expected to be even more transformative than mobile technology. However, the transition to ML could also be more than 10 times harder than the transition to mobile. Before we talk about why that’s the case, let’s go through the basics.</p><h2 id="h-machine-learning-basics-what-are-ai-and-ml">Machine Learning Basics: What are AI and ML?</h2><p class="paragraph">There’s no universally agreed definition of AI and the definition changes all the time. Once a certain task is performed by a machine, the task is no longer in the scope of AI. ML is a subset of AI. CMU professor Tom M. Mitchell defined Machine Learning to be <strong>a study of computer algorithms that allow computer programs to automatically improve through experience.</strong></p><p class="paragraph"><strong>Types of ML</strong></p><p class="paragraph">There are three main types of machine learning:</p><p class="paragraph"><strong>1. Supervised learning</strong></p><p class="paragraph">The most common one and widely used type of learning. The algorithms learn from labeled data, i.e. training data sets that are tagged with the outcome the model is trying to predict. In short, it’s about predicting outcomes.</p><p class="paragraph"><strong>2. Unsupervised learning</strong></p><p class="paragraph">On the other hand, unsupervised learning algorithms learn to identify patterns in the data without labeled data. It can be used in clustering, association, and anomaly detection problems. There’s also semi-supervised learning which is essentially a hybrid between supervised and unsupervised learning.</p><p class="paragraph"><strong>3. Reinforcement learning</strong></p><p class="paragraph">The algorithms learn as they get feedback on corresponding predictions over time. RL is used in control domains such as robotics or self-driving cars.</p><h2 id="h-types-of-machine-learning-products">Types of Machine Learning Products</h2><p class="paragraph">Depending on the types of products and where the core values come from, you will require different skill sets in your team and need to focus on different parts of the products.</p><p class="paragraph"><strong>Enterprise vs. Consumer</strong></p><p class="paragraph">Consumer ML products such as smart speakers have a stronger social component than their counterparts in enterprise segments. Therefore, user experience (UX) plays a more critical part in designing consumer ML products and ML tends to become an enabler for better UX. </p><p class="paragraph">For example, NLP (natural language processing) is used to improve the interaction between Alexa and its users. On the other hand, the core value of enterprise, especially industrial ML products, such as predictive maintenance software, tends to come from the functional performance (e.g. accuracy) of their predictions. </p><p class="paragraph">This is not to say that UX is not important for enterprise ML products. However, this is something to consider when you only have limited resources and need to focus on optimizing parts of your products.</p><p class="paragraph"><strong>Are you building an ML product or applying ML to your product?</strong></p><p class="paragraph">If the core value of your product comes from ML models, then you are likely building an ML product. On the other hand, if ML is only used to enhance the experience or performance of your product, then you are most likely applying ML to your product. </p><p class="paragraph">In this case, it’s essential to understand the input and output of the models but not the technical details like architecture or whether the ML models are based on CNN (Convolutional Neural Network) or R-CNN. For example, the model takes demographic data of users to predict their monthly spending on the platform. </p><p class="paragraph">Many companies or teams will also leverage existing solutions so they don’t reinvent the wheel. On the other hand, building ML products often requires PMs to be more technical to help the team navigate key decisions and trade-offs.</p><p class="paragraph">The organization structures also vary. For companies building ML products or large corporations with heavy investments in ML, like Facebook and Google, it’s common to hire ML researchers/scientists and pair them with ML engineers. </p><p class="paragraph">On the other hand, for companies applying ML to their products or smaller companies with resource constraints, it’s probably better to hire multi-disciplinary ML engineers or train your software engineers to learn ML instead of hiring ML researchers/scientists.</p><p class="paragraph"><strong>Building ML products is often interdisciplinary</strong></p><p class="paragraph">Even if you are building an ML product, it’s rarely the case that it will only involve ML. It’s often interdisciplinary and involves not only ML models but also software engineering, back-end infrastructure, data analytics, UX/UI design, and sometimes hardware. </p><p class="paragraph">PMs need to be able to manage cross-functional teams and deal with interdependencies and potential clashes among teams. ML is fundamentally different from other disciplines as we will explain more in the following paragraph. </p><p class="paragraph">It becomes even more complex if you are building ML products for the physical world like robotics or self-driving cars. </p><p class="paragraph">PMs need to know what can and cannot be done with ML and when we should and should not use ML.</p><h2 id="h-other-key-ml-concepts-to-understand">Other key ML concepts to understand</h2><p class="paragraph"><strong>Overfitting</strong>: is a type of error that happens when models are too closely fit a specific set of data points. Robust ML models will perform well not only on “training datasets” but also on “validation datasets”. However, in the case of overfitting, the performance on the training data increases but the performance on unseen (validation) data becomes worse.</p><p class="paragraph"><strong>Deep Learning (DL)</strong>: primarily used for image classification. DL uses a deep neural network and takes labeled images as input. Each layer of the neural network will transform the input into a slightly more abstract and composite representation. Eventually, the model learns to recognize objects in the images.</p><p class="paragraph"><strong>Natural Language Processing (NLP)</strong>: a field of computer science for machines to understand human languages. It doesn’t necessarily involve ML. NLP is used for chatbots, voice assistants, or preprocessing data.</p><h2 id="h-challenges-in-managing-ml-products">Challenges in Managing ML Products</h2><p class="paragraph"><strong>1. Experimentation is a crucial part of ML</strong></p><p class="paragraph">Just because ML involves code and data doesn’t make it similar to software engineering. In fact, the two disciplines couldn’t be more different. Unlike software engineering, developing machine learning products takes a lot more experiments and therefore involves more uncertainties and variabilities. </p><p class="paragraph">Software engineering is a deterministic process of writing rules for machines to follow while machine learning is more probabilistic as it automates the task of writing the rules.</p><p class="paragraph">For example, if you want to teach a machine to recognize a cat. With software engineering, you may come up with rules like “a cat has 4 legs and 2 pointy ears.” </p><p class="paragraph">But how is that different from a dog? If you use deep learning, instead of explicit rules, you will feed the machine with a bunch of cat photos (labeled images) and let the machine learn by itself. </p><p class="paragraph">By doing so, you let machines write the rules by themselves. What you and your team do is to define the problem, prepare data, build a set of models, test, and iterate until you have a model that delivers desired results.</p><p class="paragraph">That’s why teams generally need to take more risks when developing ML products. It’s important for PMs to help set the right expectations to avoid potential clashes among teams. </p><p class="paragraph">For instance, software engineers may feel that ML team is not giving them clear enough requirements without appreciating the nature of ML products. It’s also crucial to have engineers work closely with researchers/scientists so they can balance each other. </p><p class="paragraph">More importantly, it’s better to have end-to-end systems working sooner to make sure that the algorithms that ML teams have been working on actually aligned with business goals.</p><p class="paragraph"><strong>2. Developing ML is a highly iterative process.</strong></p><p class="paragraph">As mentioned before, ML is well suited for solving problems that are too complicated for humans to program explicitly. Models need to be trained, tested, and tuned. Often times scientists have to test a few approaches before choosing a satisfying one. </p><p class="paragraph">That’s why it’s often more difficult to define milestones and estimate the timeline for ML products. Due to the nature of ML products, it’s critical for product managers to clearly define requirements and metrics and ensure that the team frequently test models against desired metrics.</p><p class="paragraph"><strong>3. There are more structural challenges beyond technical ones.</strong></p><p class="paragraph">Because ML is so different from software engineering, it requires some fundamental organizational changes: experimental culture, data analytics-driven mindset, and more openness towards uncertainties, to name a few. Incumbents could face “innovator’s dilemma” if they treat ML as a purely technical problem and overlook the associated organizational changes. </p><p class="paragraph">It is particularly challenging for companies such as robot makers who used to pursue high precision to develop ML products internally. </p><p class="paragraph">In addition, ML products need large datasets for training. Companies need to build their own data pipeline and infrastructure to support the scaling of ML products.</p><p class="paragraph"><strong>4. ML is still a new field and it will keep evolving.</strong></p><p class="paragraph">The term “software engineering” first appeared in 1965, 15 years after programming languages started to appear. Almost 20 years later, the Software Engineering Institute was established to manage the software engineering process. And today we have generally accepted best practices for software engineering. </p><p class="paragraph">Machine learning, on the other hand, only started to flourish as a separate field in the 1990s. </p><p class="paragraph">Deep learning, a subset of ML that has set new records in accuracy for many problems including image recognition and NLP, wasn’t widely discussed until the rise of AlexNet in 2012. Compared to software engineering, ML is still in its infancy and therefore lacks industry standards, metrics, infrastructure, and tools. Companies are still exploring best practices and kill applications.</p><p class="paragraph"><strong>5. Explainability and interpretability issues with ML products</strong></p><p class="paragraph">Many ML algorithms lack transparency, acting like a black box that takes input (e.g. images) and outputs predictions (e.g. what/who the objects/people in the images are). This makes it difficult for product managers to explain how ML models work and get buy-ins from users and stakeholders. </p><p class="paragraph">Especially in critical domains like healthcare, accountability and transparency are extremely important. It’s challenging to ensure alignment between ML work and customer problems without a clear understanding of how an algorithm actually works.</p><p class="paragraph">With all these challenges, how should we go about managing ML products? Where do good PM instincts go bad for ML products? In Part II, I will talk more about my learnings and best practices.</p><p class="paragraph"><em></em></p><p class="paragraph"><em>Bastiane Huang is a Product Manager at Osaro, a San Francisco based startup that builds machine learning software for robotic vision and control. She has worked for Amazon in its Alexa group and with Harvard Business Review and the university’s Future of Work Initiative.</em><a href="https://medium.com/@Bastiane?ref=hackernoon.com" target="_blank" rel="noopener noreferrer ugc"><em></em></a></p><p class="paragraph"><em>(Image Source: </em><a href="https://ssir.org/articles/entry/demystifying_machine_learning_for_global_development?ref=hackernoon.com" target="_blank" rel="noopener noreferrer ugc"><em>https://ssir.org/articles/entry/demystifying_machine_learning_for_global_development</em></a><em>)</em><br/><br/></p></div><div style="visibility:hidden" class="sc-2e79ac2f-8 cdKvIK"><button><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 22 22" width="22" style="width:18px;fill:white"><path style="width:18px;fill:white" d="M16 9h1v2h-1v1h-1v1h-1v1h-1v1h-1v1h-1v1h-1v1H9v1H8v1H7v1H6v1H0v-6h1v-1h1v-1h1v-1h1v-1h1v-1h1v-1h1V9h1V8h1V7h1V6h1V5h2v1h1v1h1v1h1v1zM22 4v2h-1v1h-1v1h-1v1h-1V8h-1V7h-1V6h-1V5h-1V4h-1V3h1V2h1V1h1V0h2v1h1v1h1v1h1v1h1z"></path></svg></button><button><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 22" width="22" style="width:18px;fill:white"><path style="width:18px;fill:white" d="M20 3v2h-1v2h-1v1h-5V7h-2v1h-1v1H9v4h1v1h1v1h2v-1h5v1h1v2h1v2h-1v2h-1v1h-5v-1h-1v-2h-1v-2h-1v-1H9v-1H8v-1H7v1H2v-1H1v-2H0v-2h1V8h1V7h5v1h1V7h1V6h1V5h1V3h1V1h1V0h5v1h1v2h1z"></path></svg></button><button><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 22" width="22" style="width:18px;fill:white"><path style="width:18px;fill:white" d="M14 19v2h-1v1H1v-1H0V5h1V4h3v15h10z"></path><path style="width:18px;fill:white" d="M20 6v11h-1v1H6v-1H5V1h1V0h8v6h6z"></path><path style="width:18px;fill:white" d="M20 4v1h-5V0h1v1h1v1h1v1h1v1h1z"></path></svg></button><a style="margin-left:15px;color:white" href="#commentSection"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 22 19" width="22" style="width:18px;fill:white"><path style="width:18px;fill:white" d="M21 6V4h-1V3h-1V2h-2V1h-3V0H8v1H5v1H3v1H2v1H1v2H0v6h1v2h1v2H1v1H0v2h5v-1h1v-1h2v1h6v-1h3v-1h2v-1h1v-1h1v-2h1V6h-1ZM6 13h1v-1h1v-2H6V5h4v8H9v1H6v-1Zm6 0h1v-1h1v-2h-2V5h4v8h-1v1h-3v-1Z"></path></svg></a><button style="margin-right:10px"><svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 20 20" width="22" style="width:18px;fill:white"><path style="width:18px;fill:white" d="M20 2v12h-1v1h-2v1h-6v-1H4v1H3v4H1V3H0V1h1V0h2v1h1v2H3v1h1V3h7v1h6V3h2V2h1z"></path></svg></button><div class="sc-2e79ac2f-9 kIDgmw"></div></div></div></div><span style="width:1px;height:1px"></span></div><div class="sc-738aab49-0 gYRgFU"><div class="dabytag"><div class="sc-a0a54eeb-0 ensLvG"><a href="https://ad.doubleclick.net/ddm/trackclk/N1700473.5487816HACKERNOON/B32575813.405683738;dc_trk_aid=597649453;dc_trk_cid=223410562;dc_lat=;dc_rdid=;tag_for_child_directed_treatment=;tfua=;gdpr=${GDPR};gdpr_consent=${GDPR_CONSENT_755};ltd=;dc_tdv=1" target="_blank"><span style="box-sizing:border-box;display:block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:absolute;top:0;left:0;bottom:0;right:0"><img alt="Miro-Leaders" src="" decoding="async" data-nimg="fill" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Miro-Leaders" sizes="100vw" srcSet="https://hackernoon.imgix.net/images/img-ql53l5p.png?auto=format&amp;fit=max&amp;w=640 640w, https://hackernoon.imgix.net/images/img-ql53l5p.png?auto=format&amp;fit=max&amp;w=750 750w, https://hackernoon.imgix.net/images/img-ql53l5p.png?auto=format&amp;fit=max&amp;w=828 828w, https://hackernoon.imgix.net/images/img-ql53l5p.png?auto=format&amp;fit=max&amp;w=1080 1080w, https://hackernoon.imgix.net/images/img-ql53l5p.png?auto=format&amp;fit=max&amp;w=1200 1200w, https://hackernoon.imgix.net/images/img-ql53l5p.png?auto=format&amp;fit=max&amp;w=1920 1920w, https://hackernoon.imgix.net/images/img-ql53l5p.png?auto=format&amp;fit=max&amp;w=2048 2048w, https://hackernoon.imgix.net/images/img-ql53l5p.png?auto=format&amp;fit=max&amp;w=3840 3840w" src="https://hackernoon.imgix.net/images/img-ql53l5p.png?auto=format&amp;fit=max&amp;w=3840" decoding="async" data-nimg="fill" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span> </a></div></div><div style="display:flex;align-items:flex-end;justify-content:center"><div>L O A D I N G<br/>. . . comments &amp; <span style="font-style:italic"> more!</span><br/></div></div><br/><section><div class="sc-104e382f-0 dGrQDi authorBio-section"><h3>About Author</h3><div class="row"><div class="avatar "><a href="/u/bastiane"><span style="box-sizing:border-box;display:block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:absolute;top:0;left:0;bottom:0;right:0"><img alt="Bastiane HackerNoon profile picture" src="" decoding="async" data-nimg="fill" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%;object-fit:cover"/><noscript><img alt="Bastiane HackerNoon profile picture" sizes="100vw" srcSet="https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=200&amp;auto=format&amp;fit=max 640w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=200&amp;auto=format&amp;fit=max 750w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=200&amp;auto=format&amp;fit=max 828w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=200&amp;auto=format&amp;fit=max 1080w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=200&amp;auto=format&amp;fit=max 1200w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=200&amp;auto=format&amp;fit=max 1920w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=200&amp;auto=format&amp;fit=max 2048w, https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=200&amp;auto=format&amp;fit=max 3840w" src="https://hackernoon.imgix.net/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg?w=200&amp;auto=format&amp;fit=max" decoding="async" data-nimg="fill" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%;object-fit:cover" loading="lazy"/></noscript></span></a></div><div class="author-info"><div class="author-info-top"><span class="author-name-handle"><strong>Bastiane</strong><span class="handle"><a href="/u/bastiane">@<!-- -->bastiane</a></span></span><div class="sc-9d94a5e5-4 jtwMgp"><form class="author-email-form"><div class="emailContainer"><input type="email" placeholder="name@company.com" name="email" required="" value=""/><button class="sc-9d94a5e5-2 fEEqoW plus-icon subscribe-tooltip sub-btn"><div><span data-tip="true" data-for="subscribe-btn-tooltip">Subscribe <i class=""></i></span></div></button></div></form></div></div><span class="bio">Read writing from me bastiane.substack.com — Future of Work, ML, Robotics 2.0, Startup, Product Mgmt</span><div class="author-cta-wrapper"><a class="bio-cta" href="/u/bastiane"><i style="font-size:1.8rem"></i>Read my stories</a><a class="bio-cta" href="/about/bastiane"><i style="font-size:1.8rem"></i>About @bastiane</a></div></div></div></div></section><div id="commentSection"></div><section class="topics-section"><h4>TOPICS</h4><div class="tags"><a class="sc-29806bfb-0 cdoWeI parent-category" href="/c/product-management"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="purcat-img" srcSet="https://cdn.hackernoon.com/icons/SVG/Product%20Management.svg?auto=format&amp;fit=max&amp;w=32 1x, https://cdn.hackernoon.com/icons/SVG/Product%20Management.svg?auto=format&amp;fit=max&amp;w=48 2x" src="https://cdn.hackernoon.com/icons/SVG/Product%20Management.svg?auto=format&amp;fit=max&amp;w=48" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span><span style="text-transform:uppercase;color:white;margin-left:1rem">product-management</span></a><a class="sc-bc42364f-0 ghXAMP" href="/tagged/product"> #<!-- -->product</a><a class="sc-bc42364f-0 ghXAMP" href="/tagged/product-managers"> #<!-- -->product-managers</a><a class="sc-bc42364f-0 ghXAMP" href="/tagged/product-manager-struggles"> #<!-- -->product-manager-struggles</a><a class="sc-bc42364f-0 ghXAMP" href="/tagged/artificial-intellingence"> #<!-- -->artificial-intellingence</a><a class="sc-bc42364f-0 ghXAMP" href="/tagged/machine-learning-use-cases"> #<!-- -->machine-learning-use-cases</a><a class="sc-bc42364f-0 ghXAMP" href="/tagged/data-science"> #<!-- -->data-science</a><a class="sc-bc42364f-0 ghXAMP" href="/tagged/latest-tech-stories"> #<!-- -->latest-tech-stories</a><a class="sc-bc42364f-0 ghXAMP" href="/tagged/hackernoon-top-story"> #<!-- -->hackernoon-top-story</a></div></section><div class="sc-fee3e5e9-0 jvdbKp"><h4>THIS ARTICLE WAS FEATURED IN<!-- -->...</h4><div class="web-tags"><a href="https://www.arweave.net/P_ztYEnWM7eYId0FonBhydH-BsM2bitTOoYesbAB2sc" target="_blank" rel="nofollow" class="sc-fee3e5e9-2 yKmBk"><div style="width:fit-content" class="sc-fee3e5e9-1 dzAAXf"><div style="display:flex;align-items:center;justify-self:center"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="filter:invert(0%);position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img srcSet="https://hackernoon.imgix.net/images/arweave.png?auto=format&amp;fit=max&amp;w=32 1x, https://hackernoon.imgix.net/images/arweave.png?auto=format&amp;fit=max&amp;w=48 2x" src="https://hackernoon.imgix.net/images/arweave.png?auto=format&amp;fit=max&amp;w=48" decoding="async" data-nimg="intrinsic" style="filter:invert(0%);position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span><div style="margin-left:5px">Permanent on Arweave</div></div></div></a><a href="https://terminal.hackernoon.com/how-to-manage-machine-learning-products-part-i-why-is-managing-machine-learning-products-so-hard-a-i91i32qd?ref=hackernoon" target="_blank" rel="nofollow" class="sc-fee3e5e9-2 yKmBk"><div class="sc-fee3e5e9-1 dzAAXf"><span style="display:flex;cursor:pointer" data-tip="true" data-for="terminal-view"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Read on Terminal Reader" srcSet="https://hackernoon.imgix.net/computer.png?auto=format&amp;fit=max&amp;w=32 1x, https://hackernoon.imgix.net/computer.png?auto=format&amp;fit=max&amp;w=48 2x" src="https://hackernoon.imgix.net/computer.png?auto=format&amp;fit=max&amp;w=48" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span></span> Terminal</div></a><a href="/lite/how-to-manage-machine-learning-products-part-i-why-is-managing-machine-learning-products-so-hard-a-i91i32qd?ref=hackernoon" target="_blank" rel="nofollow" class="sc-fee3e5e9-2 yKmBk"><div class="sc-fee3e5e9-1 dzAAXf"><span style="display:flex;cursor:pointer"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Read this story w/o Javascript" data-tip="true" data-for="lite-tooltip" srcSet="https://hackernoon.imgix.net/images/Lite%20Icon%20%4025px.png?auto=format&amp;fit=max&amp;w=32 1x, https://hackernoon.imgix.net/images/Lite%20Icon%20%4025px.png?auto=format&amp;fit=max&amp;w=48 2x" src="https://hackernoon.imgix.net/images/Lite%20Icon%20%4025px.png?auto=format&amp;fit=max&amp;w=48" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span></span> Lite</div></a><a href="https://www.tefter.io/~hackernoon/bookmarks?page=461" target="_blank" rel="nofollow" style="z-index:1" class="sc-fee3e5e9-2 yKmBk"><div class="sc-fee3e5e9-1 dzAAXf"><img src="https://t0.gstatic.com/faviconV2?client=SOCIAL&amp;type=FAVICON&amp;fallback_opts=TYPE,SIZE,URL&amp;url=https://www.tefter.io/~hackernoon/bookmarks?page=461&amp;size=16" width="16px" height="16px" style="margin-right:5px"/><span>Tefter</span></div></a><a href="https://coinerblog.com/how-to-manage-machine-learning-products-part-i-why-is-managing-machine-learning-products-so-hard-a-i91i32qd/" target="_blank" rel="nofollow" style="z-index:1" class="sc-fee3e5e9-2 yKmBk"><div class="sc-fee3e5e9-1 dzAAXf"><img src="https://t0.gstatic.com/faviconV2?client=SOCIAL&amp;type=FAVICON&amp;fallback_opts=TYPE,SIZE,URL&amp;url=https://coinerblog.com/how-to-manage-machine-learning-products-part-i-why-is-managing-machine-learning-products-so-hard-a-i91i32qd/&amp;size=16" width="16px" height="16px" style="margin-right:5px"/><span>Coinerblog</span></div></a><a href="https://learnrepo.com/232-stories-to-learn-about-product" target="_blank" rel="nofollow" style="z-index:1" class="sc-fee3e5e9-2 yKmBk"><div class="sc-fee3e5e9-1 dzAAXf"><img src="https://t0.gstatic.com/faviconV2?client=SOCIAL&amp;type=FAVICON&amp;fallback_opts=TYPE,SIZE,URL&amp;url=https://learnrepo.com/232-stories-to-learn-about-product&amp;size=16" width="16px" height="16px" style="margin-right:5px"/><span>Learnrepo</span></div></a><a href="https://learnrepo.com/537-stories-to-learn-about-data-science" target="_blank" rel="nofollow" style="z-index:1" class="sc-fee3e5e9-2 yKmBk"><div class="sc-fee3e5e9-1 dzAAXf"><img src="https://t0.gstatic.com/faviconV2?client=SOCIAL&amp;type=FAVICON&amp;fallback_opts=TYPE,SIZE,URL&amp;url=https://learnrepo.com/537-stories-to-learn-about-data-science&amp;size=16" width="16px" height="16px" style="margin-right:5px"/><span>Learnrepo</span></div></a></div></div><section class="related-section"><h4>RELATED STORIES</h4><div class="articles-wrapper"><div><div><div class="sc-65adb81b-0 evreGv"><div class="img"><a href="https://ad.doubleclick.net/ddm/trackclk/N1700473.5487816HACKERNOON/B32575813.405683738;dc_trk_aid=597649453;dc_trk_cid=223410562;dc_lat=;dc_rdid=;tag_for_child_directed_treatment=;tfua=;gdpr=${GDPR};gdpr_consent=${GDPR_CONSENT_755};ltd=;dc_tdv=1" style="display:contents" target="_blank" rel="noopener noreferrer"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="img" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Article Thumbnail" srcSet="https://hackernoon.imgix.net/images/img-8u03mx2.jpeg?auto=format&amp;fit=max&amp;w=500 1x, https://hackernoon.imgix.net/images/img-8u03mx2.jpeg?auto=format&amp;fit=max&amp;w=500 2x" src="https://hackernoon.imgix.net/images/img-8u03mx2.jpeg?auto=format&amp;fit=max&amp;w=500" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" class="img" loading="lazy"/></noscript></span></a></div><div class="text"><strong><a href="https://ad.doubleclick.net/ddm/trackclk/N1700473.5487816HACKERNOON/B32575813.405683738;dc_trk_aid=597649453;dc_trk_cid=223410562;dc_lat=;dc_rdid=;tag_for_child_directed_treatment=;tfua=;gdpr=${GDPR};gdpr_consent=${GDPR_CONSENT_755};ltd=;dc_tdv=1" style="text-decoration:none;text-align:left" target="_blank" rel="noopener noreferrer">Welcome to Miro - The Innovation Workspace!</a></strong><div class="card-title"><div class="card-info"><span class="author"><span style="color:gray">visit</span> <strong><a class="author-link" target="_blank" rel="noopener noreferrer" href="https://ad.doubleclick.net/ddm/trackclk/N1700473.5487816HACKERNOON/B32575813.405683738;dc_trk_aid=597649453;dc_trk_cid=223410562;dc_lat=;dc_rdid=;tag_for_child_directed_treatment=;tfua=;gdpr=${GDPR};gdpr_consent=${GDPR_CONSENT_755};ltd=;dc_tdv=1"> <!-- -->Miro-Leaders<!-- --> </a></strong></span><div></div></div><a class="related ad-tag" target="_blank" rel="noopener noreferrer" href="https://ad.doubleclick.net/ddm/trackclk/N1700473.5487816HACKERNOON/B32575813.405683738;dc_trk_aid=597649453;dc_trk_cid=223410562;dc_lat=;dc_rdid=;tag_for_child_directed_treatment=;tfua=;gdpr=${GDPR};gdpr_consent=${GDPR_CONSENT_755};ltd=;dc_tdv=1"><span class="centered "> <!-- -->#<!-- -->Sponsored</span></a></div></div></div></div></div><div class="sc-65adb81b-0 evreGv"><div class="img"><a href="../-what-no-one-tells-you-about-being-a-product-manager-at-an-early-stage-startup-over-a-year-ago-i8v3znt" style="display:contents" target="_blank" rel="noopener noreferrer"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="img" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Article Thumbnail" srcSet="https://hackernoon.imgix.net/images/ami3zkx.jpg?auto=format&amp;fit=max&amp;w=260 1x, https://hackernoon.imgix.net/images/ami3zkx.jpg?auto=format&amp;fit=max&amp;w=260 2x" src="https://hackernoon.imgix.net/images/ami3zkx.jpg?auto=format&amp;fit=max&amp;w=260" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" class="img" loading="lazy"/></noscript></span></a></div><div class="text"><strong><a href="../-what-no-one-tells-you-about-being-a-product-manager-at-an-early-stage-startup-over-a-year-ago-i8v3znt" style="text-decoration:none;text-align:left" target="_blank" rel="noopener noreferrer">What No One Told Me About Being a Product Manager at an Early Stage Startup</a></strong><div class="card-title"><div class="card-info"><span class="author"><span style="color:gray">by</span> <strong><a class="author-link" href="https://hackernoon.com/u/bastiane">bastiane<!-- --> </a></strong></span><div></div><div class="divider-bullet"></div><div class="date">Oct 31, 2019</div></div><a class="related" href="/tagged/startup"><span class="centered"> <!-- -->#<!-- -->startup</span></a></div></div></div><div class="sc-65adb81b-0 evreGv"><div class="img"><a href="../5-types-of-machine-learning-algorithms-you-should-know-kz2dx2002" style="display:contents" target="_blank" rel="noopener noreferrer"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="img" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Article Thumbnail" srcSet="https://hackernoon.imgix.net/drafts/e11c20yk.png?auto=format&amp;fit=max&amp;w=260 1x, https://hackernoon.imgix.net/drafts/e11c20yk.png?auto=format&amp;fit=max&amp;w=260 2x" src="https://hackernoon.imgix.net/drafts/e11c20yk.png?auto=format&amp;fit=max&amp;w=260" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" class="img" loading="lazy"/></noscript></span></a></div><div class="text"><strong><a href="../5-types-of-machine-learning-algorithms-you-should-know-kz2dx2002" style="text-decoration:none;text-align:left" target="_blank" rel="noopener noreferrer">5 Types of Machine Learning Algorithms You Should Know</a></strong><div class="card-title"><div class="card-info"><span class="author"><span style="color:gray">by</span> <strong><a class="author-link" href="https://hackernoon.com/u/nikhilgupta">nikhilgupta<!-- --> </a></strong></span><div></div><div class="divider-bullet"></div><div class="date">Sep 23, 2019</div></div><a class="related" href="/tagged/machine-learning"><span class="centered"> <!-- -->#<!-- -->machine-learning</span></a></div></div></div><div class="sc-65adb81b-0 evreGv"><div class="img"><a href="../5-ways-ai-artificial-intelligence-can-help-grow-your-small-business-19133274" style="display:contents" target="_blank" rel="noopener noreferrer"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="img" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Article Thumbnail" srcSet="https://images.unsplash.com/photo-1516110833967-0b5716ca1387?ixlib=rb-1.2.1&amp;q=80&amp;fm=jpg&amp;crop=entropy&amp;cs=tinysrgb&amp;w=1080&amp;fit=max&amp;ixid=eyJhcHBfaWQiOjEwMDk2Mn0%3Fauto%3Dformat&amp;auto=format 1x, https://images.unsplash.com/photo-1516110833967-0b5716ca1387?ixlib=rb-1.2.1&amp;q=80&amp;fm=jpg&amp;crop=entropy&amp;cs=tinysrgb&amp;w=1080&amp;fit=max&amp;ixid=eyJhcHBfaWQiOjEwMDk2Mn0%3Fauto%3Dformat&amp;auto=format 2x" src="https://images.unsplash.com/photo-1516110833967-0b5716ca1387?ixlib=rb-1.2.1&amp;q=80&amp;fm=jpg&amp;crop=entropy&amp;cs=tinysrgb&amp;w=1080&amp;fit=max&amp;ixid=eyJhcHBfaWQiOjEwMDk2Mn0%3Fauto%3Dformat&amp;auto=format" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" class="img" loading="lazy"/></noscript></span></a></div><div class="text"><strong><a href="../5-ways-ai-artificial-intelligence-can-help-grow-your-small-business-19133274" style="text-decoration:none;text-align:left" target="_blank" rel="noopener noreferrer">5 Ways AI Can Help Grow Your Small Business</a></strong><div class="card-title"><div class="card-info"><span class="author"><span style="color:gray">by</span> <strong><a class="author-link" href="https://hackernoon.com/u/lanre-onibalusi">lanre-onibalusi<!-- --> </a></strong></span><div></div><div class="divider-bullet"></div><div class="date">Dec 10, 2019</div></div><a class="related" href="/tagged/ai"><span class="centered"> <!-- -->#<!-- -->ai</span></a></div></div></div><div class="sc-65adb81b-0 evreGv"><div class="img"><a href="../5-ways-to-improve-customer-experience-with-ai-2i1f3707" style="display:contents" target="_blank" rel="noopener noreferrer"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="img" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Article Thumbnail" srcSet="https://hackernoon.imgix.net/images/yJ9Djvf2sbRr9AAnMK4EevMORGh2-0k7u35ty.jpeg?auto=format&amp;fit=max&amp;w=260 1x, https://hackernoon.imgix.net/images/yJ9Djvf2sbRr9AAnMK4EevMORGh2-0k7u35ty.jpeg?auto=format&amp;fit=max&amp;w=260 2x" src="https://hackernoon.imgix.net/images/yJ9Djvf2sbRr9AAnMK4EevMORGh2-0k7u35ty.jpeg?auto=format&amp;fit=max&amp;w=260" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" class="img" loading="lazy"/></noscript></span></a></div><div class="text"><strong><a href="../5-ways-to-improve-customer-experience-with-ai-2i1f3707" style="text-decoration:none;text-align:left" target="_blank" rel="noopener noreferrer">5 Ways to Improve Customer Experience With AI</a></strong><div class="card-title"><div class="card-info"><span class="author"><span style="color:gray">by</span> <strong><a class="author-link" href="https://hackernoon.com/u/Shardul-Bhatt">Shardul-Bhatt<!-- --> </a></strong></span><div></div><div class="divider-bullet"></div><div class="date">Aug 26, 2021</div></div><a class="related" href="/tagged/ai"><span class="centered"> <!-- -->#<!-- -->ai</span></a></div></div></div><div class="sc-65adb81b-0 evreGv"><div class="img"><a href="../6-biggest-business-technology-trends-in-2020-00q32d9" style="display:contents" target="_blank" rel="noopener noreferrer"><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" class="img" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="Article Thumbnail" srcSet="https://hackernoon.imgix.net/drafts/3s1iv32zt.png?auto=format&amp;fit=max&amp;w=260 1x, https://hackernoon.imgix.net/drafts/3s1iv32zt.png?auto=format&amp;fit=max&amp;w=260 2x" src="https://hackernoon.imgix.net/drafts/3s1iv32zt.png?auto=format&amp;fit=max&amp;w=260" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" class="img" loading="lazy"/></noscript></span></a></div><div class="text"><strong><a href="../6-biggest-business-technology-trends-in-2020-00q32d9" style="text-decoration:none;text-align:left" target="_blank" rel="noopener noreferrer">6 Business Technology Trends in 2020</a></strong><div class="card-title"><div class="card-info"><span class="author"><span style="color:gray">by</span> <strong><a class="author-link" href="https://hackernoon.com/u/neil-haboush">neil-haboush<!-- --> </a></strong></span><div></div><div class="divider-bullet"></div><div class="date">Nov 15, 2019</div></div><a class="related" href="/tagged/business"><span class="centered"> <!-- -->#<!-- -->business</span></a></div></div></div></div></section><div class="sc-92a1b621-1 SWeJa"><a class="fs-hn-cta" href="https://hackernoon.com/login"><div class="cta-top"><small>Join HackerNoon</small><span style="box-sizing:border-box;display:inline-block;overflow:hidden;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;position:relative;max-width:100%"><span style="box-sizing:border-box;display:block;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0;max-width:100%"><img style="display:block;max-width:100%;width:initial;height:initial;background:none;opacity:1;border:0;margin:0;padding:0" alt="" aria-hidden="true" src="" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%"/><noscript><img alt="loading" srcSet="https://hackernoon.com/watch-gif.gif?auto=format&amp;fit=max&amp;w=96 1x, https://hackernoon.com/watch-gif.gif?auto=format&amp;fit=max&amp;w=256 2x" src="https://hackernoon.com/watch-gif.gif?auto=format&amp;fit=max&amp;w=256" decoding="async" data-nimg="intrinsic" style="position:absolute;top:0;left:0;bottom:0;right:0;box-sizing:border-box;padding:0;border:none;margin:auto;display:block;width:0;height:0;min-width:100%;max-width:100%;min-height:100%;max-height:100%" loading="lazy"/></noscript></span></div><strong>Latest technology trends. Customized Experience. Curated Stories. Publish Your Ideas </strong></a></div></div></main></div></div><script id="__NEXT_DATA__" type="application/json">{"props":{"pageProps":{"data":{"pageLang":"en","datePublished":"2019-10-31","slug":"how-to-manage-machine-learning-products-part-i-why-is-managing-machine-learning-products-so-hard-a-i91i32qd","articleBody":"In my , I talked about the biggest difference that Machine Learning (ML) brings: . Machines make predictions and improve insights based on patterns they identify in data without humans explicitly telling them what to do. That’s why ML is particularly useful for challenging problems that are difficult for people to explain to machines. It also means that ML can make your products more personalized, more automated, and more precise. Advanced algorithms, massive data, and cheap hardware are enabling ML to become the main driver of GDP. previous article ML enables a move away from having to program the machine to true autonomy (self-learned) The adoption of ML has been rapidly advancing across various business sectors. Nearly half of the companies have incorporated one or more artificial intelligence capabilities in their process and another 30% are piloting AI projects, according to ’s recent survey. Mckinsey It’s not hard to see why ML is expected to be even more transformative than mobile technology. However, the transition to ML could also be more than 10 times harder than the transition to mobile. Before we talk about why that’s the case, let’s go through the basics. Machine Learning Basics: What are AI and ML? There’s no universally agreed definition of AI and the definition changes all the time. Once a certain task is performed by a machine, the task is no longer in the scope of AI. ML is a subset of AI. CMU professor Tom M. Mitchell defined Machine Learning to be a study of computer algorithms that allow computer programs to automatically improve through experience. Types of ML There are three main types of machine learning: 1. Supervised learning The most common one and widely used type of learning. The algorithms learn from labeled data, i.e. training data sets that are tagged with the outcome the model is trying to predict. In short, it’s about predicting outcomes. 2. Unsupervised learning On the other hand, unsupervised learning algorithms learn to identify patterns in the data without labeled data. It can be used in clustering, association, and anomaly detection problems. There’s also semi-supervised learning which is essentially a hybrid between supervised and unsupervised learning. 3. Reinforcement learning The algorithms learn as they get feedback on corresponding predictions over time. RL is used in control domains such as robotics or self-driving cars. Types of Machine Learning Products Depending on the types of products and where the core values come from, you will require different skill sets in your team and need to focus on different parts of the products. Enterprise vs. Consumer Consumer ML products such as smart speakers have a stronger social component than their counterparts in enterprise segments. Therefore, user experience (UX) plays a more critical part in designing consumer ML products and ML tends to become an enabler for better UX. For example, NLP (natural language processing) is used to improve the interaction between Alexa and its users. On the other hand, the core value of enterprise, especially industrial ML products, such as predictive maintenance software, tends to come from the functional performance (e.g. accuracy) of their predictions. This is not to say that UX is not important for enterprise ML products. However, this is something to consider when you only have limited resources and need to focus on optimizing parts of your products. Are you building an ML product or applying ML to your product? If the core value of your product comes from ML models, then you are likely building an ML product. On the other hand, if ML is only used to enhance the experience or performance of your product, then you are most likely applying ML to your product. In this case, it’s essential to understand the input and output of the models but not the technical details like architecture or whether the ML models are based on CNN (Convolutional Neural Network) or R-CNN. For example, the model takes demographic data of users to predict their monthly spending on the platform. Many companies or teams will also leverage existing solutions so they don’t reinvent the wheel. On the other hand, building ML products often requires PMs to be more technical to help the team navigate key decisions and trade-offs. The organization structures also vary. For companies building ML products or large corporations with heavy investments in ML, like Facebook and Google, it’s common to hire ML researchers/scientists and pair them with ML engineers. On the other hand, for companies applying ML to their products or smaller companies with resource constraints, it’s probably better to hire multi-disciplinary ML engineers or train your software engineers to learn ML instead of hiring ML researchers/scientists. Building ML products is often interdisciplinary Even if you are building an ML product, it’s rarely the case that it will only involve ML. It’s often interdisciplinary and involves not only ML models but also software engineering, back-end infrastructure, data analytics, UX/UI design, and sometimes hardware. PMs need to be able to manage cross-functional teams and deal with interdependencies and potential clashes among teams. ML is fundamentally different from other disciplines as we will explain more in the following paragraph. It becomes even more complex if you are building ML products for the physical world like robotics or self-driving cars. PMs need to know what can and cannot be done with ML and when we should and should not use ML. Other key ML concepts to understand : is a type of error that happens when models are too closely fit a specific set of data points. Robust ML models will perform well not only on “training datasets” but also on “validation datasets”. However, in the case of overfitting, the performance on the training data increases but the performance on unseen (validation) data becomes worse. Overfitting : primarily used for image classification. DL uses a deep neural network and takes labeled images as input. Each layer of the neural network will transform the input into a slightly more abstract and composite representation. Eventually, the model learns to recognize objects in the images. Deep Learning (DL) : a field of computer science for machines to understand human languages. It doesn’t necessarily involve ML. NLP is used for chatbots, voice assistants, or preprocessing data. Natural Language Processing (NLP) Challenges in Managing ML Products 1. Experimentation is a crucial part of ML Just because ML involves code and data doesn’t make it similar to software engineering. In fact, the two disciplines couldn’t be more different. Unlike software engineering, developing machine learning products takes a lot more experiments and therefore involves more uncertainties and variabilities. Software engineering is a deterministic process of writing rules for machines to follow while machine learning is more probabilistic as it automates the task of writing the rules. For example, if you want to teach a machine to recognize a cat. With software engineering, you may come up with rules like “a cat has 4 legs and 2 pointy ears.” But how is that different from a dog? If you use deep learning, instead of explicit rules, you will feed the machine with a bunch of cat photos (labeled images) and let the machine learn by itself. By doing so, you let machines write the rules by themselves. What you and your team do is to define the problem, prepare data, build a set of models, test, and iterate until you have a model that delivers desired results. That’s why teams generally need to take more risks when developing ML products. It’s important for PMs to help set the right expectations to avoid potential clashes among teams. For instance, software engineers may feel that ML team is not giving them clear enough requirements without appreciating the nature of ML products. It’s also crucial to have engineers work closely with researchers/scientists so they can balance each other. More importantly, it’s better to have end-to-end systems working sooner to make sure that the algorithms that ML teams have been working on actually aligned with business goals. 2. Developing ML is a highly iterative process. As mentioned before, ML is well suited for solving problems that are too complicated for humans to program explicitly. Models need to be trained, tested, and tuned. Often times scientists have to test a few approaches before choosing a satisfying one. That’s why it’s often more difficult to define milestones and estimate the timeline for ML products. Due to the nature of ML products, it’s critical for product managers to clearly define requirements and metrics and ensure that the team frequently test models against desired metrics. 3. There are more structural challenges beyond technical ones. Because ML is so different from software engineering, it requires some fundamental organizational changes: experimental culture, data analytics-driven mindset, and more openness towards uncertainties, to name a few. Incumbents could face “innovator’s dilemma” if they treat ML as a purely technical problem and overlook the associated organizational changes. It is particularly challenging for companies such as robot makers who used to pursue high precision to develop ML products internally. In addition, ML products need large datasets for training. Companies need to build their own data pipeline and infrastructure to support the scaling of ML products. 4. ML is still a new field and it will keep evolving. The term “software engineering” first appeared in 1965, 15 years after programming languages started to appear. Almost 20 years later, the Software Engineering Institute was established to manage the software engineering process. And today we have generally accepted best practices for software engineering. Machine learning, on the other hand, only started to flourish as a separate field in the 1990s. Deep learning, a subset of ML that has set new records in accuracy for many problems including image recognition and NLP, wasn’t widely discussed until the rise of AlexNet in 2012. Compared to software engineering, ML is still in its infancy and therefore lacks industry standards, metrics, infrastructure, and tools. Companies are still exploring best practices and kill applications. 5. Explainability and interpretability issues with ML products Many ML algorithms lack transparency, acting like a black box that takes input (e.g. images) and outputs predictions (e.g. what/who the objects/people in the images are). This makes it difficult for product managers to explain how ML models work and get buy-ins from users and stakeholders. Especially in critical domains like healthcare, accountability and transparency are extremely important. It’s challenging to ensure alignment between ML work and customer problems without a clear understanding of how an algorithm actually works. With all these challenges, how should we go about managing ML products? Where do good PM instincts go bad for ML products? In Part II, I will talk more about my learnings and best practices. Bastiane Huang is a Product Manager at Osaro, a San Francisco based startup that builds machine learning software for robotic vision and control. She has worked for Amazon in its Alexa group and with Harvard Business Review and the university’s Future of Work Initiative. (Image Source: https://ssir.org/articles/entry/demystifying_machine_learning_for_global_development )","arweave":"P_ztYEnWM7eYId0FonBhydH-BsM2bitTOoYesbAB2sc","createdAt":"2019-10-31T08:59:42.628Z","draftId":"TpLjMoqOKHNpnuGFaqtA","excerpt":"In my previous article, I talked about the biggest difference that Machine Learning (ML) brings: ML enables a move away from having to program the machine to true autonomy (self-learned). Machines make predictions and improve insights based on patterns they identify in data without humans explicitly telling them what to do. That’s why ML is particularly useful for challenging problems that are difficult for people to explain to machines. It also means that ML can make your products more personalized, more automated, and more precise. Advanced algorithms, massive data, and cheap hardware are enabling ML to become the main driver of GDP.","featureImgColor":"rgb(59 69 178 / 70%)","firstSeenAt":false,"id":"nsDiwmmlR8XgLRYtt2yc","mainImage":"https://hackernoon.imgix.net/drafts/sas327i.png","mainImageHeight":333,"mainImageWidth":592,"markup":"\u003cdiv class=\"paragraph\"\u003eIn my \u003ca href=\"https://medium.com/swlh/redefining-robots-demystify-next-generation-ai-enabled-robotics-fec64bfeb66c\"\u003eprevious article\u003c/a\u003e, I talked about the biggest difference that Machine Learning (ML) brings: \u003cstrong\u003eML enables a move away from having to program the machine to true autonomy (self-learned)\u003c/strong\u003e. Machines make predictions and improve insights based on patterns they identify in data without humans explicitly telling them what to do. That’s why ML is particularly useful for challenging problems that are difficult for people to explain to machines. It also means that ML can make your products more personalized, more automated, and more precise. Advanced algorithms, massive data, and cheap hardware are enabling ML to become the main driver of GDP.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe adoption of ML has been rapidly advancing across various business sectors. Nearly half of the companies have incorporated one or more artificial intelligence capabilities in their process and another 30% are piloting AI projects, according to \u003ca href=\"https://www.mckinsey.com/featured-insights/artificial-intelligence/ai-adoption-advances-but-foundational-barriers-remain\"\u003eMckinsey\u003c/a\u003e’s recent survey. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIt’s not hard to see why ML is expected to be even more transformative than mobile technology. However, the transition to ML could also be more than 10 times harder than the transition to mobile. Before we talk about why that’s the case, let’s go through the basics.\u003c/div\u003e\u003ch2 id=\"h-machine-learning-basics-what-are-ai-and-ml\"\u003eMachine Learning\u0026nbsp;Basics: What are AI and\u0026nbsp;ML?\u003c/h2\u003e\u003cdiv class=\"paragraph\"\u003eThere’s no universally agreed definition of AI and the definition changes all the time. Once a certain task is performed by a machine, the task is no longer in the scope of AI. ML is a subset of AI. CMU professor Tom M. Mitchell defined Machine Learning to be \u003cstrong\u003ea study of computer algorithms that allow computer programs to automatically improve through experience.\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eTypes of\u0026nbsp;ML\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThere are three main types of machine learning:\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e1. Supervised learning\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe most common one and widely used type of learning. The algorithms learn from labeled data, i.e. training data sets that are tagged with the outcome the model is trying to predict. In short, it’s about predicting outcomes.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e2. Unsupervised learning\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eOn the other hand, unsupervised learning algorithms learn to identify patterns in the data without labeled data. It can be used in clustering, association, and anomaly detection problems. There’s also semi-supervised learning which is essentially a hybrid between supervised and unsupervised learning.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e3. Reinforcement learning\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe algorithms learn as they get feedback on corresponding predictions over time. RL is used in control domains such as robotics or self-driving cars.\u003c/div\u003e\u003ch2 id=\"h-types-of-machine-learning-products\"\u003eTypes of Machine Learning\u0026nbsp;Products\u003c/h2\u003e\u003cdiv class=\"paragraph\"\u003eDepending on the types of products and where the core values come from, you will require different skill sets in your team and need to focus on different parts of the products.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eEnterprise vs. Consumer\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eConsumer ML products such as smart speakers have a stronger social component than their counterparts in enterprise segments. Therefore, user experience (UX) plays a more critical part in designing consumer ML products and ML tends to become an enabler for better UX. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eFor example, NLP (natural language processing) is used to improve the interaction between Alexa and its users. On the other hand, the core value of enterprise, especially industrial ML products, such as predictive maintenance software, tends to come from the functional performance (e.g. accuracy) of their predictions. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThis is not to say that UX is not important for enterprise ML products. However, this is something to consider when you only have limited resources and need to focus on optimizing parts of your products.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eAre you building an ML product or applying ML to your product?\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIf the core value of your product comes from ML models, then you are likely building an ML product. On the other hand, if ML is only used to enhance the experience or performance of your product, then you are most likely applying ML to your product. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIn this case, it’s essential to understand the input and output of the models but not the technical details like architecture or whether the ML models are based on CNN (Convolutional Neural Network) or R-CNN. For example, the model takes demographic data of users to predict their monthly spending on the platform. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eMany companies or teams will also leverage existing solutions so they don’t reinvent the wheel. On the other hand, building ML products often requires PMs to be more technical to help the team navigate key decisions and trade-offs.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe organization structures also vary. For companies building ML products or large corporations with heavy investments in ML, like Facebook and Google, it’s common to hire ML researchers/scientists and pair them with ML engineers. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eOn the other hand, for companies applying ML to their products or smaller companies with resource constraints, it’s probably better to hire multi-disciplinary ML engineers or train your software engineers to learn ML instead of hiring ML researchers/scientists.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eBuilding ML products is often interdisciplinary\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eEven if you are building an ML product, it’s rarely the case that it will only involve ML. It’s often interdisciplinary and involves not only ML models but also software engineering, back-end infrastructure, data analytics, UX/UI design, and sometimes hardware. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003ePMs need to be able to manage cross-functional teams and deal with interdependencies and potential clashes among teams. ML is fundamentally different from other disciplines as we will explain more in the following paragraph. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIt becomes even more complex if you are building ML products for the physical world like robotics or self-driving cars. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003ePMs need to know what can and cannot be done with ML and when we should and should not use ML.\u003c/div\u003e\u003ch2 id=\"h-other-key-ml-concepts-to-understand\"\u003eOther key ML concepts to understand\u003c/h2\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eOverfitting\u003c/strong\u003e: is a type of error that happens when models are too closely fit a specific set of data points. Robust ML models will perform well not only on “training datasets” but also on “validation datasets”. However, in the case of overfitting, the performance on the training data increases but the performance on unseen (validation) data becomes worse.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eDeep Learning (DL)\u003c/strong\u003e: primarily used for image classification. DL uses a deep neural network and takes labeled images as input. Each layer of the neural network will transform the input into a slightly more abstract and composite representation. Eventually, the model learns to recognize objects in the images.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eNatural Language Processing (NLP)\u003c/strong\u003e: a field of computer science for machines to understand human languages. It doesn’t necessarily involve ML. NLP is used for chatbots, voice assistants, or preprocessing data.\u003c/div\u003e\u003ch2 id=\"h-challenges-in-managing-ml-products\"\u003eChallenges in Managing ML\u0026nbsp;Products\u003c/h2\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e1. Experimentation is a crucial part of\u0026nbsp;ML\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eJust because ML involves code and data doesn’t make it similar to software engineering. In fact, the two disciplines couldn’t be more different. Unlike software engineering, developing machine learning products takes a lot more experiments and therefore involves more uncertainties and variabilities. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eSoftware engineering is a deterministic process of writing rules for machines to follow while machine learning is more probabilistic as it automates the task of writing the rules.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eFor example, if you want to teach a machine to recognize a cat. With software engineering, you may come up with rules like “a cat has 4 legs and 2 pointy ears.” \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eBut how is that different from a dog? If you use deep learning, instead of explicit rules, you will feed the machine with a bunch of cat photos (labeled images) and let the machine learn by itself. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eBy doing so, you let machines write the rules by themselves. What you and your team do is to define the problem, prepare data, build a set of models, test, and iterate until you have a model that delivers desired results.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThat’s why teams generally need to take more risks when developing ML products. It’s important for PMs to help set the right expectations to avoid potential clashes among teams. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eFor instance, software engineers may feel that ML team is not giving them clear enough requirements without appreciating the nature of ML products. It’s also crucial to have engineers work closely with researchers/scientists so they can balance each other. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eMore importantly, it’s better to have end-to-end systems working sooner to make sure that the algorithms that ML teams have been working on actually aligned with business goals.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e2. Developing ML is a highly iterative process.\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eAs mentioned before, ML is well suited for solving problems that are too complicated for humans to program explicitly. Models need to be trained, tested, and tuned. Often times scientists have to test a few approaches before choosing a satisfying one. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThat’s why it’s often more difficult to define milestones and estimate the timeline for ML products. Due to the nature of ML products, it’s critical for product managers to clearly define requirements and metrics and ensure that the team frequently test models against desired metrics.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e3. There are more structural challenges beyond technical ones.\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eBecause ML is so different from software engineering, it requires some fundamental organizational changes: experimental culture, data analytics-driven mindset, and more openness towards uncertainties, to name a few. Incumbents could face “innovator’s dilemma” if they treat ML as a purely technical problem and overlook the associated organizational changes. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIt is particularly challenging for companies such as robot makers who used to pursue high precision to develop ML products internally. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIn addition, ML products need large datasets for training. Companies need to build their own data pipeline and infrastructure to support the scaling of ML products.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e4. ML is still a new field and it will keep evolving.\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe term “software engineering” first appeared in 1965, 15 years after programming languages started to appear. Almost 20 years later, the Software Engineering Institute was established to manage the software engineering process. And today we have generally accepted best practices for software engineering. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eMachine learning, on the other hand, only started to flourish as a separate field in the 1990s. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eDeep learning, a subset of ML that has set new records in accuracy for many problems including image recognition and NLP, wasn’t widely discussed until the rise of AlexNet in 2012. Compared to software engineering, ML is still in its infancy and therefore lacks industry standards, metrics, infrastructure, and tools. Companies are still exploring best practices and kill applications.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e5. Explainability and interpretability issues with ML products\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eMany ML algorithms lack transparency, acting like a black box that takes input (e.g. images) and outputs predictions (e.g. what/who the objects/people in the images are). This makes it difficult for product managers to explain how ML models work and get buy-ins from users and stakeholders. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eEspecially in critical domains like healthcare, accountability and transparency are extremely important. It’s challenging to ensure alignment between ML work and customer problems without a clear understanding of how an algorithm actually works.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eWith all these challenges, how should we go about managing ML products? Where do good PM instincts go bad for ML products? In Part II, I will talk more about my learnings and best practices.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cem\u003e\u003c/em\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cem\u003eBastiane Huang is a Product Manager at Osaro, a San Francisco based startup that builds machine learning software for robotic vision and control. She has worked for Amazon in its Alexa group and with Harvard Business Review and the university’s Future of Work Initiative.\u003c/em\u003e\u003ca href=\"https://medium.com/@Bastiane\"\u003e\u003cem\u003e\u003c/em\u003e\u003c/a\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cem\u003e(Image Source: \u003c/em\u003e\u003ca href=\"https://ssir.org/articles/entry/demystifying_machine_learning_for_global_development\"\u003e\u003cem\u003ehttps://ssir.org/articles/entry/demystifying_machine_learning_for_global_development\u003c/em\u003e\u003c/a\u003e\u003cem\u003e)\u003c/em\u003e\u003cbr\u003e\u003cbr\u003e\u003c/div\u003e","mentions":[{"image":"http://logo.bigpicture.io/logo/amazon.com","name":"Amazon","collection":"companies","id":"amazon","manual":false},{"image":"http://logo.bigpicture.io/logo/meetbunch.com","name":"BUNCH","id":"bunch","collection":"companies","manual":false},{"image":"http://logo.bigpicture.io/logo/facebook.com","name":"Facebook","collection":"companies","id":"facebook","manual":false},{"image":"http://logo.bigpicture.io/logo/google.com","name":"Google","collection":"companies","id":"google","manual":false}],"owner":"scs5nOK9NyMO4BF4ZAR8uv2d4eA2","parentCategory":"product-management","profile":{"about_page_settings":{"blocked":false,"createdAt":"2021-12-16T20:59:55.169Z","owner":"scs5nOK9NyMO4BF4ZAR8uv2d4eA2","published":true,"style":{"headline_pos":"center","layout":0,"skin":0},"updatedAt":"2021-12-16T20:59:55.169Z"},"adLink":"https://bastiane.substack.com","adText":"Subscribe to My Newsletter","avatar":"https://hackernoon.com/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg","bio":"Read writing from me bastiane.substack.com — Future of Work, ML, Robotics 2.0, Startup, Product Mgmt","callToActions":[{"active":true,"icon":"fa fa-book","id":"65931c02b2bf8","name":"Read My Stories","url":"https://hackernoon.com/u/bastiane","text":"Read My Stories"}],"displayName":"Bastiane","handle":"bastiane","isTrusted":false,"allowSubscribers":true},"publishedAt":1572512383.519,"tags":["product","product-managers","product-manager-struggles","artificial-intellingence","machine-learning-use-cases","data-science","latest-tech-stories","hackernoon-top-story"],"title":"How to Manage Machine Learning Products Part I: Why is managing machine learning products so hard? ","tldr":" Machine Learning (ML) enables a move away from having to program the machine to true autonomy (self-learned) Machines make predictions and improve insights based on patterns they identify in data without humans telling them what to do. The adoption of ML has been rapidly advancing across various business sectors. Nearly half of the companies have incorporated one or more artificial intelligence capabilities in their process. The transition to ML could be more than 10 times harder than the transition to mobile technology. It’s not hard to see why ML is expected to be even more transformative than mobile technology.","backlinks":{"fetched":"2024-10-19T17:05:17.518Z","urls":["https://www.tefter.io/~hackernoon/bookmarks?page=461","https://coinerblog.com/how-to-manage-machine-learning-products-part-i-why-is-managing-machine-learning-products-so-hard-a-i91i32qd/","https://learnrepo.com/232-stories-to-learn-about-product","https://learnrepo.com/537-stories-to-learn-about-data-science"]},"annotations":[],"fromMongo":true,"relatedStories":[{"id":"WnXNHi3bu6hkhQ5ADOVW","active":true,"category":[],"companyName":"Miro-Leaders","customAd":"https://cdn.hackernoon.com/images/img-ql53l5p.png","firstColor":"#29c929","font":"HackerNoon","fontColor":"#FFFFFF","image":"https://cdn.hackernoon.com/images/img-8u03mx2.jpeg","link":"https://ad.doubleclick.net/ddm/trackclk/N1700473.5487816HACKERNOON/B32575813.405683738;dc_trk_aid=597649453;dc_trk_cid=223410562;dc_lat=;dc_rdid=;tag_for_child_directed_treatment=;tfua=;gdpr=${GDPR};gdpr_consent=${GDPR_CONSENT_755};ltd=;dc_tdv=1","logo":"","parentCategory":["management","product-management","business","finance","startups","remote-work","tech-companies","tech-stories"],"secondColor":"#009300","tags":[],"text":"Welcome to Miro - The Innovation Workspace","thirdColor":"#007200","type":"tag","website":"https://ad.doubleclick.net/ddm/trackclk/N1700473.5487816HACKERNOON/B32575813.405683738;dc_trk_aid=597649453;dc_trk_cid=223410562;dc_lat=;dc_rdid=;tag_for_child_directed_treatment=;tfua=;gdpr=${GDPR};gdpr_consent=${GDPR_CONSENT_755};ltd=;dc_tdv=1","blockedStories":["4wVvOSc66xgqLHQvNGRe","yWgifp9fmjH2N0rRHysm"]},{"id":"vklAThmRLVBm0E1HNzQz","title":"What No One Told Me About Being a Product Manager at an Early Stage Startup","slug":"-what-no-one-tells-you-about-being-a-product-manager-at-an-early-stage-startup-over-a-year-ago-i8v3znt","mainImage":"https://cdn.hackernoon.com/images/ami3zkx.jpg","tags":["startup","startups-advice","career-advice","product-manager-struggles","product-manager-real-life","product-management-careers","latest-tech-stories","hackernoon-top-story"],"profile":{"displayName":"Bastiane","callToActions":[{"icon":"fa fa-book","name":"Read My Stories","active":true,"id":"65931c02b2bf8","url":"https://hackernoon.com/u/bastiane"}],"bio":"Read writing from me bastiane.substack.com — Future of Work, ML, Robotics 2.0, Startup, Product Mgmt","handle":"bastiane","avatar":"https://hackernoon.com/images/avatars/scs5nOK9NyMO4BF4ZAR8uv2d4eA2.jpg","adLink":null,"about_page_settings":{},"adText":null},"fromSlack":false,"publishedAt":"2019-10-31T22:26:57.742Z"},{"id":"yQmpbBTtGIoiR6jbkhbC","title":"5 Types of Machine Learning Algorithms You Should Know","slug":"5-types-of-machine-learning-algorithms-you-should-know-kz2dx2002","mainImage":"https://cdn.hackernoon.com/drafts/e11c20yk.png","tags":["machine-learning","data-science","artificial-intellingence","ai","ml","latest-tech-stories","machine-learning-algorithms","linear-regression"],"profile":{"github":null,"wallet":"0xa0c83eeb35d59b908cdb582fc16c5f0ec37b26f4","rejected":{"total":5,"Other":5},"displayName":"Nikhil Gupta","callToActions":[{"name":"Contact Us - Hire Me for Digital Marketing","icon":"","active":true,"id":"aa2948c30086b-brand","url":"https://www.linkedin.com/in/nikhilguptadigital/"},{"name":"Hire Me","icon":"","active":true,"id":"cl7ft9wlj0003356t5co5o4nc","url":"https://www.linkedin.com/in/nikhilguptadigital/"},{"name":"Portfolio","icon":"","active":true,"id":"cl7ft9wli0000356tt5ymmnu1","url":"https://www.linkedin.com/in/nikhilguptadigital/"}],"facebook":"nikhilgupta2701","bio":"Crypto Trader, Digital Marketer, Growth Hacker, and Crypto Marketing ","handle":"nikhilgupta","medium":"itsbrandonjohn","linkedin":"https://www.linkedin.com/in/nikhilguptadigital/","avatar":"https://cdn.hackernoon.com/images/xek4YOyO4qQV43q8QyBDL1XsDbw1-ce93t1x.jpeg","socialMedia":{"facebook":"nikhilgupta2701","linkedin":"https://www.linkedin.com/in/nikhilguptadigital/","instagram":"mrnikhilgupta"},"interested_tags":["windows","windows-10","error-handling","latest-tech-stories","pc","tech-support"],"twitter":null,"adIcon":"far fa-grin-beam","adLink":"https://nikhilgupta.digital/","about_page_settings":{},"long_bio":"","pub":"mXsJ7QvxxlwlFMgnkaYhj_L6WsXehLWvPbWxnLnOnuY.taKi7K9PjUX0jpWo0fgZg9z5xH6fy5SUHz3abbUt44w","publicBookmarks":true,"adText":"Nikhil Gupta"},"fromSlack":false,"publishedAt":"2019-09-23T01:30:49.653Z"},{"id":"1PUMeEkufNtLAwzTeg0k","title":"5 Ways AI Can Help Grow Your Small Business","slug":"5-ways-ai-artificial-intelligence-can-help-grow-your-small-business-19133274","mainImage":"https://images.unsplash.com/photo-1516110833967-0b5716ca1387?ixlib=rb-1.2.1\u0026q=80\u0026fm=jpg\u0026crop=entropy\u0026cs=tinysrgb\u0026w=1080\u0026fit=max\u0026ixid=eyJhcHBfaWQiOjEwMDk2Mn0","tags":["ai","artificial-intellingence","small-business","ai-for-small-business","chatbot","latest-tech-stories","recruitment","marketing"],"profile":{"github":null,"displayName":"Lanre Onibalusi","callToActions":[{"name":"Get in touch","icon":"far fa-dice-d20","active":true,"id":"c090f3c4fdc4b-brand","url":"http://www.lanroni.com"},{"name":"Read My Stories","icon":"fa fa-book","active":true,"id":"9c5caabb4d031","url":"https://hackernoon.com/u/lanre-onibalusi"},{"name":"Get in touch","icon":"far fa-dice-d20","active":true,"id":"597c618b8df3a-brand","url":"http://www.lanroni.com"}],"facebook":null,"bio":"Digital Marketing Expert/Consultant. Thought Leader. Interested in all things TECH.","handle":"lanre-onibalusi","linkedin":"https://www.linkedin.com/in/lanre-onibalusi-40387860","avatar":"https://hackernoon.com/images/avatars/bpLjRaRr1iSQqr20lcQAem0T8qy2.jpg","medium":null,"socialMedia":{"twitter":"Onibalusi","linkedin":"https://www.linkedin.com/in/lanre-onibalusi-40387860"},"interested_tags":["ai","artificial-intellingence","small-business","ai-for-small-business","chatbot","latest-tech-stories","recruitment","marketing"],"twitter":"Onibalusi","adIcon":"far fa-dice-d20","adLink":"http://www.lanroni.com","name":null,"about_page_settings":{},"long_bio":"","pub":"iPtNOtsmX2HnvgtvjruiUujP6fHA0KNpuJflWbqceuQ.bI_QW8G-_RaeD9_fR6AH7RB1XJdllhBmTOv-VlF8UL4","publicBookmarks":true,"adText":"Get in touch","isReader":true},"fromSlack":false,"publishedAt":"2019-12-10T22:56:25.808Z"},{"id":"MYX31bzhhaaUMq1WUtyd","title":"5 Ways to Improve Customer Experience With AI","slug":"5-ways-to-improve-customer-experience-with-ai-2i1f3707","mainImage":"https://cdn.hackernoon.com/images/yJ9Djvf2sbRr9AAnMK4EevMORGh2-0k7u35ty.jpeg","tags":["ai","ai-applications","customer-experience-tips","customer-experience","artificial-intellingence","artificial-intelligence-basics","chatbots","future"],"profile":{"youtube":"UCiDNZOSA_xP0JHoFPkbCQ4A","github":"BoTreeConsulting","callToActions":[{"name":"We are hiring!","icon":"","active":true,"id":"382b7809676c5-brand","url":"https://www.botreetechnologies.com/contact"},{"name":"Nominated for 2022 - Rawr For Ror","icon":"fa-star","active":true,"id":"2022 rawr for ror","url":"https://www.noonies.tech/2022/programming/2022-rawr-for-ror"}],"displayName":"BoTree Technoloiges","facebook":"shardulsbhatt","bio":"Shardul stands as the CEO of BoTree - a global innovation ecosystem that provides product engineering services.","handle":"Shardul-Bhatt","instagram":"shardul.bhatt","linkedin":"https://www.linkedin.com/in/shardul-sam/","medium":"","avatar":"https://cdn.hackernoon.com/images/yJ9Djvf2sbRr9AAnMK4EevMORGh2-t4035mk.jpeg","socialMedia":{"youtube":"UCiDNZOSA_xP0JHoFPkbCQ4A","github":"BoTreeConsulting","twitter":"shardulbhatt","facebook":"shardulsbhatt","instagram":"shardul.bhatt","linkedin":"https://www.linkedin.com/in/shardul-sam/"},"preferredCharity":null,"showStatsPublicly":true,"paymentPointer":null,"twitter":"shardulbhatt","adIcon":"","adLink":"https://www.botreetechnologies.com/contact","awards":{"noonies2022nom_2022 rawr for ror":{"awardUrl":"https://www.noonies.tech/2022/programming/2022-rawr-for-ror","year":"2022","description":"nomination","awardImgUrl":"","title":"2022 - Rawr For Ror"}},"publicBookmarks":true,"adText":"We are hiring!"},"fromSlack":false,"publishedAt":"2021-08-26T20:57:13.689Z"},{"id":"ieKMPpg2QAssYAqkzLPl","title":"6 Business Technology Trends in 2020","slug":"6-biggest-business-technology-trends-in-2020-00q32d9","mainImage":"https://cdn.hackernoon.com/drafts/3s1iv32zt.png","tags":["business","technology","technology-updates","technology-trends","technology-strategy","artificial-intellingence","latest-tech-stories","2020"],"profile":{"github":null,"callToActions":[{"name":"Read My Stories","icon":"fa fa-book","active":true,"id":"5f9ee4ca4ff62","url":"https://hackernoon.com/u/neil-haboush"}],"displayName":"Neil Haboush","facebook":"neil.haboush.79","bio":"CEO of Good Mind Hunting, speaker, blogger, golfer.","handle":"neil-haboush","avatar":"https://hackernoon.com/images/avatars/SMREaBReVvXrXQTlHbrkMtRjOU63.jpg","medium":"neilhaboushjudgement","linkedin":"https://www.linkedin.com/in/neilhaboush","socialMedia":{"twitter":"haboushneil","facebook":"neil.haboush.79","linkedin":"https://www.linkedin.com/in/neilhaboush"},"interested_tags":["business","technology","technology-updates","technology-trends","technology-strategy","artificial-intellingence","latest-tech-stories","2020"],"twitter":"haboushneil","adIcon":"","adLink":null,"about_page_settings":{},"long_bio":"","publicBookmarks":true,"adText":null},"fromSlack":false,"publishedAt":"2019-11-15T18:38:07.386Z"},{"id":"JpgHd6vgJQnjXCOisU4M","title":"7 Ways AI \u0026 Robotics Are Disrupting Healthcare Right Now","slug":"7-ways-ai-and-robotics-are-disrupting-healthcare-right-now-un7n34s9","mainImage":"https://cdn.hackernoon.com/drafts/ug16344r.png","tags":["ai","artificial-intellingence","robotics","healthtech","healthcare","transforming-healthcare","latest-tech-stories","healthcare-bots"],"profile":{"github":null,"displayName":"Yaroslav Kuflinski","callToActions":[{"name":"Read My Stories","icon":"fa fa-book","active":true,"id":"0b563d6dc430d","url":"https://hackernoon.com/u/y.kuflinsky"}],"facebook":null,"bio":"Yaroslav Kuflinski is AI/ML Observer at Iflexion.","handle":"y.kuflinsky","avatar":"https://hackernoon.com/images/avatars/TtW1FT1QzOYo8RLSzRdB74qFkXC3.jpg","linkedin":"https://www.linkedin.com/in/kuflinski-yaroslav-87807b79","medium":null,"socialMedia":{"linkedin":"https://www.linkedin.com/in/kuflinski-yaroslav-87807b79"},"interested_tags":["php","php-development","php-framework","php-web-development","web-dev","web-development","software-development","latest-tech-stories"],"twitter":null,"adIcon":null,"adLink":null,"long_bio":"","about_page_settings":{},"pub":"mRflB9A3L2qHE_DKGxV9FRzmoPYJHeOPnfJrybxZQbg.yonFghpZrddDgGXeel4MWVNV0YAST_FwuNzVT7gnv3w","publicBookmarks":true,"adText":null},"fromSlack":false,"publishedAt":"2019-09-20T12:28:15.844Z"},{"id":"Aa1ud8NmKFDKmtyBIsWK","title":"7 ways AI Revolutionizes Cancer Prediction, Detection, and Treatment","slug":"7-ways-ai-revolutionizes-cancer-prediction-detection-and-treatment","mainImage":"https://cdn.hackernoon.com/images/dtsFKqwL3KZ43BFFEoYwTdyns4r1-8d236id.jpeg","tags":["artificial-intellingence","ai-in-healthcare","medical-technology","healthcare-tech","ai-in-cancer-detection","ai-cancer-prediction","ai-cancer-treatment","good-company"],"profile":{"youtube":"UCbrWfEktboUf0SeoqePATGA","github":"","displayName":"ITRex","callToActions":[{"icon":"","name":"Bring us your challenge!","active":true,"id":"108531ddddd2d-brand","url":"https://itrexgroup.com/contact-us/"},{"name":"Read My Stories","icon":"fa fa-book","active":true,"id":"0c214e59b5313","url":"https://hackernoon.com/u/itrex"},{"icon":"","name":"Portfolio","active":true,"id":"baf403d8c37d5","url":"https://itrexgroup.com/case-studies/"},{"icon":"","name":"Now Hiring","active":true,"id":"19e8bbcabea6d","url":"https://itrexgroup.com/jobs/"},{"name":"2021 - HackerNoon Contributor of the Year - TECH","icon":"fa-trophy","active":true,"id":"HackerNoon Contributor of the Year - TECH","url":"https://www.noonies.tech/award/2021-hackernoon-contributor-of-the-year-tech"},{"icon":"fa-trophy","name":"2021 - HackerNoon Contributor of the Year - CONTINUOUS-INTEGRATION","active":true,"id":"HackerNoon Contributor of the Year - CONTINUOUS-INTEGRATION","url":"https://www.noonies.tech/award/2021-hackernoon-contributor-of-the-year-continuous-integration"},{"name":"2021 - HackerNoon Contributor of the Year - HEALTHCARE","icon":"fa-trophy","active":true,"id":"HackerNoon Contributor of the Year - HEALTHCARE","url":"https://www.noonies.tech/award/2021-hackernoon-contributor-of-the-year-healthcare"}],"facebook":"itrexgroup","bio":"Emerging Tech Development \u0026 Consulting: Artificial Intelligence. Advanced Analytics. Machine Learning. Big Data. Cloud","handle":"itrex","avatar":"https://hackernoon.com/images/dtsFKqwL3KZ43BFFEoYwTdyns4r1-6s033gh.jpeg","instagram":"itrexgroup","linkedin":"https://www.linkedin.com/company/itrex-group/","medium":"","socialMedia":{"youtube":"UCbrWfEktboUf0SeoqePATGA","twitter":"ITRexGroup","facebook":"itrexgroup","instagram":"itrexgroup","linkedin":"https://www.linkedin.com/company/itrex-group/"},"interested_tags":["cloud-computing","data-science","innovation","technology","entrepreneurship","artificial-intelligence","ecommerce","ai","software-engineering","analytics","business","big-data","tech","machine-learning","automation","software-development","computer-vision","cloud","augmented-reality","machine learning","virtual reality","healthcare technology","IoT","DevOps"],"showStatsPublicly":false,"twitter":"ITRexGroup","adIcon":"","adLink":"https://itrexgroup.com/contact-us/","awards":{"noonies":{"awardUrl":"https://www.noonies.tech/award/2021-hackernoon-contributor-of-the-year-technology-trends","year":"2021","description":"Innovative development company that shares great technology insights and trends with readers","awardImgUrl":"https://www.noonies.tech/award/2021-hackernoon-contributor-of-the-year-technology-trends/winner","title":"2021 - HackerNoon Contributor of the Year - TECHNOLOGY-TRENDS"}},"about_page_settings":{},"long_bio":"ITRex Group is a global technology consulting and enterprise software engineering company.\n\n\nSince 2009, ITRex has delivered 500+ industry-specific solutions to large enterprises, medium-sized companies, and innovative startups. The company's client pool includes Procter \u0026 Gamble, Walmart, JibJab, Hyginex, TASC, PotentiaMetrics, Dun \u0026 Bradstreet, DealMe, Warner Bros., 21st Century Fox, DogVacay, and Dollar Shave Club, among others.\n\n\nITRex Group focuses on emerging technologies, such as the Internet of Things, Big Data and data science, different subsets of artificial intelligence, robotic process automation, and extended reality. The company's domain expertise spans retail and eCommerce, healthcare and biotechnology, education and eLearning, media and entertainment, and supply chain management solutions.","superpeerLink":"","publicBookmarks":false,"adText":"Bring us your challenge!","isTrusted":false,"isBrand":true},"fromSlack":false,"publishedAt":"2021-10-25T18:18:22.606Z"}],"tagAd":{"id":"WnXNHi3bu6hkhQ5ADOVW","active":true,"category":[],"companyName":"Miro-Leaders","customAd":"https://cdn.hackernoon.com/images/img-ql53l5p.png","firstColor":"#29c929","font":"HackerNoon","fontColor":"#FFFFFF","image":"https://cdn.hackernoon.com/images/img-8u03mx2.jpeg","link":"https://ad.doubleclick.net/ddm/trackclk/N1700473.5487816HACKERNOON/B32575813.405683738;dc_trk_aid=597649453;dc_trk_cid=223410562;dc_lat=;dc_rdid=;tag_for_child_directed_treatment=;tfua=;gdpr=${GDPR};gdpr_consent=${GDPR_CONSENT_755};ltd=;dc_tdv=1","logo":"","parentCategory":["management","product-management","business","finance","startups","remote-work","tech-companies","tech-stories"],"secondColor":"#009300","tags":[],"text":"Welcome to Miro - The Innovation Workspace","thirdColor":"#007200","type":"tag","website":"https://ad.doubleclick.net/ddm/trackclk/N1700473.5487816HACKERNOON/B32575813.405683738;dc_trk_aid=597649453;dc_trk_cid=223410562;dc_lat=;dc_rdid=;tag_for_child_directed_treatment=;tfua=;gdpr=${GDPR};gdpr_consent=${GDPR_CONSENT_755};ltd=;dc_tdv=1","blockedStories":["4wVvOSc66xgqLHQvNGRe","yWgifp9fmjH2N0rRHysm"]},"staticData":{"frLangTooltip":"Lisez cette histoire en Français!","about":"About","enLangTooltip":"Read this story in the original language, English!","loggedOutBookmark":"Create an account to store your bookmarks","learnMore":"Learn More","stats":"Stats","editStory":"Edit Story","audioPresented":"Audio Presented by","by":"by","audioTranslationText":null,"newStory":"New Story","loggedInBookmark":"Bookmark story","esLangTooltip":"Lee esta historia en Español!","relatedStories":"RELATED STORIES","addComment":"Add Comment","ptLangTooltip":"Leia esta história em português!","hiLangTooltip":"इस कहानी को हिंदी में पढ़ें!","comments":"Comments","removeBookmark":"Remove bookmark","commentReply":"Reply","minutes":"min","reads":"reads","trLangTooltip":"Bu hikayeyi Türkçe okuyun!","tags":"TOPICS","jaLangTooltip":"この物語を日本語で読んでください!","bnLangTooltip":"এই গল্পটি বাংলায় পড়ুন!","storyMentions":"MENTIONED IN THIS STORY","ruLangTooltip":"Прочтите эту историю на русском языке!","deLangTooltip":"Lesen Sie diese Geschichte auf Deutsch!","featuredIn":"THIS ARTICLE WAS FEATURED IN","tldrTitle":"Too Long; Didn't Read","koLangTooltip":"이 이야기를 한국어로 읽어보세요!","zhLangTooltip":"用繁體中文閱讀這個故事!","viLangTooltip":"Đọc bài viết này bằng tiếng Việt!"},"stats":{"pageviews":669},"socialPreviewImage":"https://hackernoon.imgix.net/drafts/sas327i.png","imageSizes":{},"parsed":"\u003cdiv class=\"paragraph\"\u003eIn my \u003ca href=\"https://medium.com/swlh/redefining-robots-demystify-next-generation-ai-enabled-robotics-fec64bfeb66c\"\u003eprevious article\u003c/a\u003e, I talked about the biggest difference that Machine Learning (ML) brings: \u003cstrong\u003eML enables a move away from having to program the machine to true autonomy (self-learned)\u003c/strong\u003e. Machines make predictions and improve insights based on patterns they identify in data without humans explicitly telling them what to do. That’s why ML is particularly useful for challenging problems that are difficult for people to explain to machines. It also means that ML can make your products more personalized, more automated, and more precise. Advanced algorithms, massive data, and cheap hardware are enabling ML to become the main driver of GDP.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe adoption of ML has been rapidly advancing across various business sectors. Nearly half of the companies have incorporated one or more artificial intelligence capabilities in their process and another 30% are piloting AI projects, according to \u003ca href=\"https://www.mckinsey.com/featured-insights/artificial-intelligence/ai-adoption-advances-but-foundational-barriers-remain\"\u003eMckinsey\u003c/a\u003e’s recent survey. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIt’s not hard to see why ML is expected to be even more transformative than mobile technology. However, the transition to ML could also be more than 10 times harder than the transition to mobile. Before we talk about why that’s the case, let’s go through the basics.\u003c/div\u003e\u003ch2 id=\"h-machine-learning-basics-what-are-ai-and-ml\"\u003eMachine Learning\u0026nbsp;Basics: What are AI and\u0026nbsp;ML?\u003c/h2\u003e\u003cdiv class=\"paragraph\"\u003eThere’s no universally agreed definition of AI and the definition changes all the time. Once a certain task is performed by a machine, the task is no longer in the scope of AI. ML is a subset of AI. CMU professor Tom M. Mitchell defined Machine Learning to be \u003cstrong\u003ea study of computer algorithms that allow computer programs to automatically improve through experience.\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eTypes of\u0026nbsp;ML\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThere are three main types of machine learning:\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e1. Supervised learning\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe most common one and widely used type of learning. The algorithms learn from labeled data, i.e. training data sets that are tagged with the outcome the model is trying to predict. In short, it’s about predicting outcomes.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e2. Unsupervised learning\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eOn the other hand, unsupervised learning algorithms learn to identify patterns in the data without labeled data. It can be used in clustering, association, and anomaly detection problems. There’s also semi-supervised learning which is essentially a hybrid between supervised and unsupervised learning.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e3. Reinforcement learning\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe algorithms learn as they get feedback on corresponding predictions over time. RL is used in control domains such as robotics or self-driving cars.\u003c/div\u003e\u003ch2 id=\"h-types-of-machine-learning-products\"\u003eTypes of Machine Learning\u0026nbsp;Products\u003c/h2\u003e\u003cdiv class=\"paragraph\"\u003eDepending on the types of products and where the core values come from, you will require different skill sets in your team and need to focus on different parts of the products.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eEnterprise vs. Consumer\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eConsumer ML products such as smart speakers have a stronger social component than their counterparts in enterprise segments. Therefore, user experience (UX) plays a more critical part in designing consumer ML products and ML tends to become an enabler for better UX. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eFor example, NLP (natural language processing) is used to improve the interaction between Alexa and its users. On the other hand, the core value of enterprise, especially industrial ML products, such as predictive maintenance software, tends to come from the functional performance (e.g. accuracy) of their predictions. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThis is not to say that UX is not important for enterprise ML products. However, this is something to consider when you only have limited resources and need to focus on optimizing parts of your products.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eAre you building an ML product or applying ML to your product?\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIf the core value of your product comes from ML models, then you are likely building an ML product. On the other hand, if ML is only used to enhance the experience or performance of your product, then you are most likely applying ML to your product. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIn this case, it’s essential to understand the input and output of the models but not the technical details like architecture or whether the ML models are based on CNN (Convolutional Neural Network) or R-CNN. For example, the model takes demographic data of users to predict their monthly spending on the platform. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eMany companies or teams will also leverage existing solutions so they don’t reinvent the wheel. On the other hand, building ML products often requires PMs to be more technical to help the team navigate key decisions and trade-offs.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe organization structures also vary. For companies building ML products or large corporations with heavy investments in ML, like Facebook and Google, it’s common to hire ML researchers/scientists and pair them with ML engineers. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eOn the other hand, for companies applying ML to their products or smaller companies with resource constraints, it’s probably better to hire multi-disciplinary ML engineers or train your software engineers to learn ML instead of hiring ML researchers/scientists.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eBuilding ML products is often interdisciplinary\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eEven if you are building an ML product, it’s rarely the case that it will only involve ML. It’s often interdisciplinary and involves not only ML models but also software engineering, back-end infrastructure, data analytics, UX/UI design, and sometimes hardware. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003ePMs need to be able to manage cross-functional teams and deal with interdependencies and potential clashes among teams. ML is fundamentally different from other disciplines as we will explain more in the following paragraph. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIt becomes even more complex if you are building ML products for the physical world like robotics or self-driving cars. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003ePMs need to know what can and cannot be done with ML and when we should and should not use ML.\u003c/div\u003e\u003ch2 id=\"h-other-key-ml-concepts-to-understand\"\u003eOther key ML concepts to understand\u003c/h2\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eOverfitting\u003c/strong\u003e: is a type of error that happens when models are too closely fit a specific set of data points. Robust ML models will perform well not only on “training datasets” but also on “validation datasets”. However, in the case of overfitting, the performance on the training data increases but the performance on unseen (validation) data becomes worse.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eDeep Learning (DL)\u003c/strong\u003e: primarily used for image classification. DL uses a deep neural network and takes labeled images as input. Each layer of the neural network will transform the input into a slightly more abstract and composite representation. Eventually, the model learns to recognize objects in the images.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003eNatural Language Processing (NLP)\u003c/strong\u003e: a field of computer science for machines to understand human languages. It doesn’t necessarily involve ML. NLP is used for chatbots, voice assistants, or preprocessing data.\u003c/div\u003e\u003ch2 id=\"h-challenges-in-managing-ml-products\"\u003eChallenges in Managing ML\u0026nbsp;Products\u003c/h2\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e1. Experimentation is a crucial part of\u0026nbsp;ML\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eJust because ML involves code and data doesn’t make it similar to software engineering. In fact, the two disciplines couldn’t be more different. Unlike software engineering, developing machine learning products takes a lot more experiments and therefore involves more uncertainties and variabilities. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eSoftware engineering is a deterministic process of writing rules for machines to follow while machine learning is more probabilistic as it automates the task of writing the rules.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eFor example, if you want to teach a machine to recognize a cat. With software engineering, you may come up with rules like “a cat has 4 legs and 2 pointy ears.” \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eBut how is that different from a dog? If you use deep learning, instead of explicit rules, you will feed the machine with a bunch of cat photos (labeled images) and let the machine learn by itself. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eBy doing so, you let machines write the rules by themselves. What you and your team do is to define the problem, prepare data, build a set of models, test, and iterate until you have a model that delivers desired results.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThat’s why teams generally need to take more risks when developing ML products. It’s important for PMs to help set the right expectations to avoid potential clashes among teams. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eFor instance, software engineers may feel that ML team is not giving them clear enough requirements without appreciating the nature of ML products. It’s also crucial to have engineers work closely with researchers/scientists so they can balance each other. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eMore importantly, it’s better to have end-to-end systems working sooner to make sure that the algorithms that ML teams have been working on actually aligned with business goals.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e2. Developing ML is a highly iterative process.\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eAs mentioned before, ML is well suited for solving problems that are too complicated for humans to program explicitly. Models need to be trained, tested, and tuned. Often times scientists have to test a few approaches before choosing a satisfying one. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThat’s why it’s often more difficult to define milestones and estimate the timeline for ML products. Due to the nature of ML products, it’s critical for product managers to clearly define requirements and metrics and ensure that the team frequently test models against desired metrics.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e3. There are more structural challenges beyond technical ones.\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eBecause ML is so different from software engineering, it requires some fundamental organizational changes: experimental culture, data analytics-driven mindset, and more openness towards uncertainties, to name a few. Incumbents could face “innovator’s dilemma” if they treat ML as a purely technical problem and overlook the associated organizational changes. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIt is particularly challenging for companies such as robot makers who used to pursue high precision to develop ML products internally. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eIn addition, ML products need large datasets for training. Companies need to build their own data pipeline and infrastructure to support the scaling of ML products.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e4. ML is still a new field and it will keep evolving.\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eThe term “software engineering” first appeared in 1965, 15 years after programming languages started to appear. Almost 20 years later, the Software Engineering Institute was established to manage the software engineering process. And today we have generally accepted best practices for software engineering. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eMachine learning, on the other hand, only started to flourish as a separate field in the 1990s. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eDeep learning, a subset of ML that has set new records in accuracy for many problems including image recognition and NLP, wasn’t widely discussed until the rise of AlexNet in 2012. Compared to software engineering, ML is still in its infancy and therefore lacks industry standards, metrics, infrastructure, and tools. Companies are still exploring best practices and kill applications.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cstrong\u003e5. Explainability and interpretability issues with ML products\u003c/strong\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eMany ML algorithms lack transparency, acting like a black box that takes input (e.g. images) and outputs predictions (e.g. what/who the objects/people in the images are). This makes it difficult for product managers to explain how ML models work and get buy-ins from users and stakeholders. \u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eEspecially in critical domains like healthcare, accountability and transparency are extremely important. It’s challenging to ensure alignment between ML work and customer problems without a clear understanding of how an algorithm actually works.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003eWith all these challenges, how should we go about managing ML products? Where do good PM instincts go bad for ML products? In Part II, I will talk more about my learnings and best practices.\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cem\u003e\u003c/em\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cem\u003eBastiane Huang is a Product Manager at Osaro, a San Francisco based startup that builds machine learning software for robotic vision and control. She has worked for Amazon in its Alexa group and with Harvard Business Review and the university’s Future of Work Initiative.\u003c/em\u003e\u003ca href=\"https://medium.com/@Bastiane\"\u003e\u003cem\u003e\u003c/em\u003e\u003c/a\u003e\u003c/div\u003e\u003cdiv class=\"paragraph\"\u003e\u003cem\u003e(Image Source: \u003c/em\u003e\u003ca href=\"https://ssir.org/articles/entry/demystifying_machine_learning_for_global_development\"\u003e\u003cem\u003ehttps://ssir.org/articles/entry/demystifying_machine_learning_for_global_development\u003c/em\u003e\u003c/a\u003e\u003cem\u003e)\u003c/em\u003e\u003cbr\u003e\u003cbr\u003e\u003c/div\u003e","audioData":null},"slug":"how-to-manage-machine-learning-products-part-i-why-is-managing-machine-learning-products-so-hard-a-i91i32qd"},"__N_SSG":true},"page":"/[slug]","query":{"slug":"how-to-manage-machine-learning-products-part-i-why-is-managing-machine-learning-products-so-hard-a-i91i32qd"},"buildId":"xXlSxcnUdbwy3ckXHYhzq","isFallback":false,"dynamicIds":[83253,52876,50834,88554],"gsp":true,"scriptLoader":[{"id":"gtag_manager","strategy":"afterInteractive","dangerouslySetInnerHTML":{"__html":"(function(w,d,s,l,i){w[l]=w[l]||[];w[l].push({'gtm.start':new Date().getTime(),event:'gtm.js'});var f=d.getElementsByTagName(s)[0],j=d.createElement(s),dl=l!='dataLayer'?'\u0026l='+l:'';j.async=true;j.src='https://www.googletagmanager.com/gtm.js?id='+i+dl;f.parentNode.insertBefore(j,f);})(window,document,'script','dataLayer','GTM-WGQVQ44')"}}]}</script><div> <script type="text/javascript"> var _iub = _iub || []; _iub.csConfiguration = {"applyGdprForCH":false,"askConsentAtCookiePolicyUpdate":true,"countryDetection":true,"enableFadp":true,"enableLgpd":true,"enableTcf":true,"enableUspr":true,"gdprAppliesGlobally":false,"googleAdditionalConsentMode":true,"lang":"en","lgpdAppliesGlobally":false,"perPurposeConsent":true,"siteId":1848357,"tcfPurposes":{"2":"consent_only","7":"consent_only","8":"consent_only","9":"consent_only","10":"consent_only"},"cookiePolicyId":18778700, "banner":{ "acceptButtonCaptionColor":"white","acceptButtonColor":"#00d500","acceptButtonDisplay":true,"backgroundColor":"#000001","brandBackgroundColor":"#00FF00","brandTextColor":"#000000","closeButtonRejects":true,"customizeButtonCaptionColor":"#FFFFFF","customizeButtonColor":"#00AA00","customizeButtonDisplay":true,"explicitWithdrawal":true,"listPurposes":true,"logo":"https://hackernoon.imgix.net/hn-logo.png?auto=format&fit=max&w=320","ownerName":"Hacker Noon","position":"float-bottom-left","rejectButtonDisplay":true,"showPurposesToggles":true,"showTotalNumberOfProviders":true }}; </script> <script type="text/javascript" src="https://cs.iubenda.com/autoblocking/1848357.js"></script> <script type="text/javascript" src="//cdn.iubenda.com/cs/tcf/stub-v2.js"></script> <script type="text/javascript" src="//cdn.iubenda.com/cs/tcf/safe-tcf-v2.js"></script> <script type="text/javascript" src="//cdn.iubenda.com/cs/gpp/stub.js"></script> <script type="text/javascript" src="//cdn.iubenda.com/cs/iubenda_cs.js" charset="UTF-8" async></script> </div></body></html>

Pages: 1 2 3 4 5 6 7 8 9 10