CINXE.COM

Search results for: lattice reduction

<!DOCTYPE html> <html lang="en" dir="ltr"> <head> <!-- Google tag (gtag.js) --> <script async src="https://www.googletagmanager.com/gtag/js?id=G-P63WKM1TM1"></script> <script> window.dataLayer = window.dataLayer || []; function gtag(){dataLayer.push(arguments);} gtag('js', new Date()); gtag('config', 'G-P63WKM1TM1'); </script> <!-- Yandex.Metrika counter --> <script type="text/javascript" > (function(m,e,t,r,i,k,a){m[i]=m[i]||function(){(m[i].a=m[i].a||[]).push(arguments)}; m[i].l=1*new Date(); for (var j = 0; j < document.scripts.length; j++) {if (document.scripts[j].src === r) { return; }} k=e.createElement(t),a=e.getElementsByTagName(t)[0],k.async=1,k.src=r,a.parentNode.insertBefore(k,a)}) (window, document, "script", "https://mc.yandex.ru/metrika/tag.js", "ym"); ym(55165297, "init", { clickmap:false, trackLinks:true, accurateTrackBounce:true, webvisor:false }); </script> <noscript><div><img src="https://mc.yandex.ru/watch/55165297" style="position:absolute; left:-9999px;" alt="" /></div></noscript> <!-- /Yandex.Metrika counter --> <!-- Matomo --> <!-- End Matomo Code --> <title>Search results for: lattice reduction</title> <meta name="description" content="Search results for: lattice reduction"> <meta name="keywords" content="lattice reduction"> <meta name="viewport" content="width=device-width, initial-scale=1, minimum-scale=1, maximum-scale=1, user-scalable=no"> <meta charset="utf-8"> <link href="https://cdn.waset.org/favicon.ico" type="image/x-icon" rel="shortcut icon"> <link href="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/css/bootstrap.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/plugins/fontawesome/css/all.min.css" rel="stylesheet"> <link href="https://cdn.waset.org/static/css/site.css?v=150220211555" rel="stylesheet"> </head> <body> <header> <div class="container"> <nav class="navbar navbar-expand-lg navbar-light"> <a class="navbar-brand" href="https://waset.org"> <img src="https://cdn.waset.org/static/images/wasetc.png" alt="Open Science Research Excellence" title="Open Science Research Excellence" /> </a> <button class="d-block d-lg-none navbar-toggler ml-auto" type="button" data-toggle="collapse" data-target="#navbarMenu" aria-controls="navbarMenu" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <div class="w-100"> <div class="d-none d-lg-flex flex-row-reverse"> <form method="get" action="https://waset.org/search" class="form-inline my-2 my-lg-0"> <input class="form-control mr-sm-2" type="search" placeholder="Search Conferences" value="lattice reduction" name="q" aria-label="Search"> <button class="btn btn-light my-2 my-sm-0" type="submit"><i class="fas fa-search"></i></button> </form> </div> <div class="collapse navbar-collapse mt-1" id="navbarMenu"> <ul class="navbar-nav ml-auto align-items-center" id="mainNavMenu"> <li class="nav-item"> <a class="nav-link" href="https://waset.org/conferences" title="Conferences in 2024/2025/2026">Conferences</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/disciplines" title="Disciplines">Disciplines</a> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/committees" rel="nofollow">Committees</a> </li> <li class="nav-item dropdown"> <a class="nav-link dropdown-toggle" href="#" id="navbarDropdownPublications" role="button" data-toggle="dropdown" aria-haspopup="true" aria-expanded="false"> Publications </a> <div class="dropdown-menu" aria-labelledby="navbarDropdownPublications"> <a class="dropdown-item" href="https://publications.waset.org/abstracts">Abstracts</a> <a class="dropdown-item" href="https://publications.waset.org">Periodicals</a> <a class="dropdown-item" href="https://publications.waset.org/archive">Archive</a> </div> </li> <li class="nav-item"> <a class="nav-link" href="https://waset.org/page/support" title="Support">Support</a> </li> </ul> </div> </div> </nav> </div> </header> <main> <div class="container mt-4"> <div class="row"> <div class="col-md-9 mx-auto"> <form method="get" action="https://publications.waset.org/abstracts/search"> <div id="custom-search-input"> <div class="input-group"> <i class="fas fa-search"></i> <input type="text" class="search-query" name="q" placeholder="Author, Title, Abstract, Keywords" value="lattice reduction"> <input type="submit" class="btn_search" value="Search"> </div> </div> </form> </div> </div> <div class="row mt-3"> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Commenced</strong> in January 2007</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Frequency:</strong> Monthly</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Edition:</strong> International</div> </div> </div> <div class="col-sm-3"> <div class="card"> <div class="card-body"><strong>Paper Count:</strong> 5196</div> </div> </div> </div> <h1 class="mt-3 mb-3 text-center" style="font-size:1.6rem;">Search results for: lattice reduction</h1> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5196</span> Models to Calculate Lattice Spacing, Melting Point and Lattice Thermal Expansion of Ga₂Se₃ Nanoparticles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mustafa%20Saeed%20Omar">Mustafa Saeed Omar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The formula which contains the maximum increase of mean bond length, melting entropy and critical particle radius is used to calculate lattice volume in nanoscale size crystals of Ga₂Se₃. This compound belongs to the binary group of III₂VI₃. The critical radius is calculated from the values of the first surface atomic layer height which is equal to 0.336nm. The size-dependent mean bond length is calculated by using an equation-free from fitting parameters. The size-dependent lattice parameter then is accordingly used to calculate the size-dependent lattice volume. The lattice size in the nanoscale region increases to about 77.6 A³, which is up to four times of its bulk state value 19.97 A³. From the values of the nanosize scale dependence of lattice volume, the nanoscale size dependence of melting temperatures is calculated. The melting temperature decreases with the nanoparticles size reduction, it becomes zero when the radius reaches to its critical value. Bulk melting temperature for Ga₂Se₃, for example, has values of 1293 K. From the size-dependent melting temperature and mean bond length, the size-dependent lattice thermal expansion is calculated. Lattice thermal expansion decreases with the decrease of nanoparticles size and reaches to its minimum value as the radius drops down to about 5nm. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ga%E2%82%82Se%E2%82%83" title="Ga₂Se₃">Ga₂Se₃</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20volume" title=" lattice volume"> lattice volume</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20thermal%20expansion" title=" lattice thermal expansion"> lattice thermal expansion</a>, <a href="https://publications.waset.org/abstracts/search?q=melting%20point" title=" melting point"> melting point</a>, <a href="https://publications.waset.org/abstracts/search?q=nanoparticles" title=" nanoparticles"> nanoparticles</a> </p> <a href="https://publications.waset.org/abstracts/123069/models-to-calculate-lattice-spacing-melting-point-and-lattice-thermal-expansion-of-ga2se3-nanoparticles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/123069.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">169</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5195</span> Remarks on the Lattice Green&#039;s Function for the Anisotropic Face Cantered Cubic Lattice</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jihad%20H.%20Asad">Jihad H. Asad</a> </p> <p class="card-text"><strong>Abstract:</strong></p> An expression for the Green’s function (GF) of anisotropic face cantered cubic (IFCC) lattice is evaluated analytically and numerically for a single impurity problem. The density of states (DOS), phase shift and scattering cross section are expressed in terms of complete elliptic integrals of the first kind. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=lattice%20Green%27s%20function" title="lattice Green&#039;s function">lattice Green&#039;s function</a>, <a href="https://publications.waset.org/abstracts/search?q=elliptic%20integral" title=" elliptic integral"> elliptic integral</a>, <a href="https://publications.waset.org/abstracts/search?q=physics" title=" physics"> physics</a>, <a href="https://publications.waset.org/abstracts/search?q=cubic%20lattice" title=" cubic lattice"> cubic lattice</a> </p> <a href="https://publications.waset.org/abstracts/5976/remarks-on-the-lattice-greens-function-for-the-anisotropic-face-cantered-cubic-lattice" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/5976.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">466</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5194</span> Evaluation of Structural Integrity for Composite Lattice Structure</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Jae%20Moon%20Im">Jae Moon Im</a>, <a href="https://publications.waset.org/abstracts/search?q=Kwang%20Bok%20Shin"> Kwang Bok Shin</a>, <a href="https://publications.waset.org/abstracts/search?q=Sang%20Woo%20Lee"> Sang Woo Lee</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this paper, evaluation of structural integrity for composite lattice structure was conducted by compressive test. Composite lattice structure was manufactured by carbon fiber using filament winding method. In order to evaluate the structural integrity of composite lattice structure, compressive test was done using anti-buckling fixture. The delamination occurred 84 Tons of compressive load. It was found that composite lattice structure satisfied the design requirements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=composite%20material" title="composite material">composite material</a>, <a href="https://publications.waset.org/abstracts/search?q=compressive%20test" title=" compressive test"> compressive test</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a>, <a href="https://publications.waset.org/abstracts/search?q=structural%20integrity" title=" structural integrity"> structural integrity</a> </p> <a href="https://publications.waset.org/abstracts/73662/evaluation-of-structural-integrity-for-composite-lattice-structure" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/73662.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">502</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5193</span> The Spectral Power Amplification on the Regular Lattices</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Kotbi%20Lakhdar">Kotbi Lakhdar</a>, <a href="https://publications.waset.org/abstracts/search?q=Hachi%20Mostefa"> Hachi Mostefa</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We show that a simple transformation between the regular lattices (the square, the triangular, and the honeycomb) belonging to the same dimensionality can explain in a natural way the universality of the critical exponents found in phase transitions and critical phenomena. It suffices that the Hamiltonian and the lattice present similar writing forms. In addition, it appears that if a property can be calculated for a given lattice then it can be extrapolated simply to any other lattice belonging to the same dimensionality. In this study, we have restricted ourselves on the spectral power amplification (SPA), we note that the SPA does not have an effect on the critical exponents but does have an effect by the criticality temperature of the lattice; the generalisation to other lattice could be shown according to the containment principle. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=ising%20model" title="ising model">ising model</a>, <a href="https://publications.waset.org/abstracts/search?q=phase%20transitions" title=" phase transitions"> phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20temperature" title=" critical temperature"> critical temperature</a>, <a href="https://publications.waset.org/abstracts/search?q=critical%20exponent" title=" critical exponent"> critical exponent</a>, <a href="https://publications.waset.org/abstracts/search?q=spectral%20power%20amplification" title=" spectral power amplification"> spectral power amplification</a> </p> <a href="https://publications.waset.org/abstracts/64570/the-spectral-power-amplification-on-the-regular-lattices" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/64570.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">311</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5192</span> Energy Saving Techniques for MIMO Decoders </h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Zhuofan%20Cheng">Zhuofan Cheng</a>, <a href="https://publications.waset.org/abstracts/search?q=Qiongda%20Hu"> Qiongda Hu</a>, <a href="https://publications.waset.org/abstracts/search?q=Mohammed%20El-Hajjar"> Mohammed El-Hajjar</a>, <a href="https://publications.waset.org/abstracts/search?q=Basel%20Halak"> Basel Halak</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Multiple-input multiple-output (MIMO) systems can allow significantly higher data rates compared to single-antenna-aided systems. They are expected to be a prominent part of the 5G communication standard. However, these decoders suffer from high power consumption. This work presents a design technique in order to improve the energy efficiency of MIMO systems; this facilitates their use in the next generation of battery-operated communication devices such as mobile phones and tablets. The proposed optimization approach consists of the use of low complexity lattice reduction algorithm in combination with an adaptive VLSI implementation. The proposed design has been realized and verified in 65nm technology. The results show that the proposed design is significantly more energy-efficient than conventional K-best MIMO systems. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=energy" title="energy">energy</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20reduction" title=" lattice reduction"> lattice reduction</a>, <a href="https://publications.waset.org/abstracts/search?q=MIMO" title=" MIMO"> MIMO</a>, <a href="https://publications.waset.org/abstracts/search?q=VLSI" title=" VLSI "> VLSI </a> </p> <a href="https://publications.waset.org/abstracts/45939/energy-saving-techniques-for-mimo-decoders" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/45939.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">330</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5191</span> Electro-Hydrodynamic Analysis of Low-Pressure DC Glow Discharge by Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ji-Hyok%20Kim">Ji-Hyok Kim</a>, <a href="https://publications.waset.org/abstracts/search?q=Il-Gyong%20Paek"> Il-Gyong Paek</a>, <a href="https://publications.waset.org/abstracts/search?q=Yong-Jun%20Kim"> Yong-Jun Kim</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We propose a numerical model based on drift-diffusion theory and lattice Boltzmann method (LBM) to analyze the electro-hydrodynamic behavior in low-pressure direct current (DC) glow discharge plasmas. We apply the drift-diffusion theory for 4-species and employ the standard lattice Boltzmann model (SLBM) for the electron, the finite difference-lattice Boltzmann model (FD-LBM) for heavy particles, and the finite difference model (FDM) for the electric potential, respectively. Our results are compared with those of other methods, and emphasize the necessity of a two-dimensional analysis for glow discharge. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=glow%20discharge" title="glow discharge">glow discharge</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20Boltzmann%20method" title=" lattice Boltzmann method"> lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20analysis" title=" numerical analysis"> numerical analysis</a>, <a href="https://publications.waset.org/abstracts/search?q=plasma%20simulation" title=" plasma simulation"> plasma simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=electro-hydrodynamic" title=" electro-hydrodynamic"> electro-hydrodynamic</a> </p> <a href="https://publications.waset.org/abstracts/177515/electro-hydrodynamic-analysis-of-low-pressure-dc-glow-discharge-by-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/177515.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">120</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5190</span> Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=N.%20Laosiripojana">N. Laosiripojana</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Tepamatr"> P. Tepamatr</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=bismuth" title="bismuth">bismuth</a>, <a href="https://publications.waset.org/abstracts/search?q=platinum" title=" platinum"> platinum</a>, <a href="https://publications.waset.org/abstracts/search?q=water%20gas%20shift" title=" water gas shift"> water gas shift</a>, <a href="https://publications.waset.org/abstracts/search?q=ceria" title=" ceria"> ceria</a> </p> <a href="https://publications.waset.org/abstracts/85167/water-gas-shift-activity-of-ptbiceo2-catalysts-for-hydrogen-production" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/85167.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">348</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5189</span> Two-Dimensional Symmetric Half-Plane Recursive Doubly Complementary Digital Lattice Filters</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ju-Hong%20Lee">Ju-Hong Lee</a>, <a href="https://publications.waset.org/abstracts/search?q=Chong-Jia%20Ciou"> Chong-Jia Ciou</a>, <a href="https://publications.waset.org/abstracts/search?q=Yuan-Hau%20Yang"> Yuan-Hau Yang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper deals with the problem of two-dimensional (2-D) recursive doubly complementary (DC) digital filter design. We present a structure of 2-D recursive DC filters by using 2-D symmetric half-plane (SHP) recursive digital all-pass lattice filters (DALFs). The novelty of using 2-D SHP recursive DALFs to construct a 2-D recursive DC digital lattice filter is that the resulting 2-D SHP recursive DC digital lattice filter provides better performance than the existing 2-D SHP recursive DC digital filter. Moreover, the proposed structure possesses a favorable 2-D DC half-band (DC-HB) property that allows about half of the 2-D SHP recursive DALF&rsquo;s coefficients to be zero. This leads to considerable savings in computational burden for implementation. To ensure the stability of a designed 2-D SHP recursive DC digital lattice filter, some necessary constraints on the phase of the 2-D SHP recursive DALF during the design process are presented. Design of a 2-D diamond-shape decimation/interpolation filter is presented for illustration and comparison. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=all-pass%20digital%20filter" title="all-pass digital filter">all-pass digital filter</a>, <a href="https://publications.waset.org/abstracts/search?q=doubly%20complementary" title=" doubly complementary"> doubly complementary</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a>, <a href="https://publications.waset.org/abstracts/search?q=symmetric%20half-plane%20digital%20filter" title=" symmetric half-plane digital filter"> symmetric half-plane digital filter</a>, <a href="https://publications.waset.org/abstracts/search?q=sampling%20rate%20conversion" title=" sampling rate conversion"> sampling rate conversion</a> </p> <a href="https://publications.waset.org/abstracts/40663/two-dimensional-symmetric-half-plane-recursive-doubly-complementary-digital-lattice-filters" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/40663.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">438</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5188</span> Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Lorang">Xavier Lorang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Tahmasebimoradi"> Ahmadali Tahmasebimoradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetra%20Mang"> Chetra Mang</a>, <a href="https://publications.waset.org/abstracts/search?q=Sylvain%20Girard"> Sylvain Girard</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20element%20model" title=" finite element model"> finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20imperfections" title=" geometric imperfections"> geometric imperfections</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structures" title=" lattice structures"> lattice structures</a>, <a href="https://publications.waset.org/abstracts/search?q=propagation%20of%20uncertainty" title=" propagation of uncertainty"> propagation of uncertainty</a> </p> <a href="https://publications.waset.org/abstracts/130259/geometric-imperfections-in-lattice-structures-a-simulation-strategy-to-predict-strength-variability" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130259.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">187</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5187</span> Identity-Based Encryption: A Comparison of Leading Classical and Post-Quantum Implementations in an Enterprise Setting</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Emily%20Stamm">Emily Stamm</a>, <a href="https://publications.waset.org/abstracts/search?q=Neil%20Smyth"> Neil Smyth</a>, <a href="https://publications.waset.org/abstracts/search?q=Elizabeth%20O%27Sullivan"> Elizabeth O&#039;Sullivan</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Identity-Based Encryption (IBE), an identity, such as a username, email address, or domain name, acts as the public key. IBE consolidates the PKI by eliminating the repetitive process of requesting public keys for each message encryption. Two of the most popular schemes are Sakai-Kasahara (SAKKE), which is based on elliptic curve pairings, and the Ducas, Lyubashevsky, and Prest lattice scheme (DLP- Lattice), which is based on quantum-secure lattice cryptography. In or- der to embed the schemes in a standard enterprise setting, both schemes are implemented as shared system libraries and integrated into a REST service that functions at the enterprise level. The performance of both schemes as libraries and services is compared, and the practicalities of implementation and application are discussed. Our performance results indicate that although SAKKE has the smaller key and ciphertext sizes, DLP-Lattice is significantly faster overall and we recommend it for most enterprise use cases. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=identity-based%20encryption" title="identity-based encryption">identity-based encryption</a>, <a href="https://publications.waset.org/abstracts/search?q=post-quantum%20cryptography" title=" post-quantum cryptography"> post-quantum cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice-based%20cryptography" title=" lattice-based cryptography"> lattice-based cryptography</a>, <a href="https://publications.waset.org/abstracts/search?q=IBE" title=" IBE"> IBE</a> </p> <a href="https://publications.waset.org/abstracts/146066/identity-based-encryption-a-comparison-of-leading-classical-and-post-quantum-implementations-in-an-enterprise-setting" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/146066.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">136</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5186</span> X-Ray Analysis and Grain Size of CuInx Ga1-X Se2 Solar Cells</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20I.%20Al-Bassam">A. I. Al-Bassam</a>, <a href="https://publications.waset.org/abstracts/search?q=A.%20M.%20El-Nggar"> A. M. El-Nggar</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Polycrystalline Cu In I-x GaxSe2 thin films have been fabricated. Some physical properties such as lattice parameters, crystal structure and microstructure of Cu In I-x GaxSe2 were determined using X-ray diffractometry and scanning electron microscopy. X-ray diffraction analysis showed that the films with x ≥ 0.5 have a chalcopyrite structure and the films with x ≤ 0.5 have a zinc blende structure. The lattice parameters were found to vary linearly with composition over a wide range from x = 0 to x =1.0. The variation of lattice parameters with composition was found to obey Vegard's law. The variation of the c/a with composition was also linear. The quality of a wide range of Cu In I-xGaxSe2 thin film absorbers from CuInSe to CuGaSe was evaluated by Photoluminescence (PL) measurements. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=grain%20size" title="grain size">grain size</a>, <a href="https://publications.waset.org/abstracts/search?q=polycrystalline" title=" polycrystalline"> polycrystalline</a>, <a href="https://publications.waset.org/abstracts/search?q=solar%20cells" title=" solar cells"> solar cells</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20parameters" title=" lattice parameters"> lattice parameters</a> </p> <a href="https://publications.waset.org/abstracts/14747/x-ray-analysis-and-grain-size-of-cuinx-ga1-x-se2-solar-cells" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/14747.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">504</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5185</span> Phase Transitions of Cerium and Neodymium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khundadze">M. Khundadze</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Varazashvili"> V. Varazashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Lejava"> N. Lejava</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jorbenadze"> R. Jorbenadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase transitions of cerium and neodymium are investigated by using high-temperature scanning calorimeter (HT-1500 Seteram). For cerium two types of transformation are detected: at 350-372 K - hexagonal close packing (hcp) - face-centered cubic lattice (fcc) transition, and at 880-960K the face-centered cubic lattice (fcc) transformation into body-centered cubic lattice (bcc). For neodymium changing of hexagonal close packing (hcp) into the body-centered cubic lattice (bcc) is detected at 1093-1113K. The thermal characteristics of transitions – enthalpy, entropy, temperature domains – are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium" title="cerium">cerium</a>, <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title=" calorimetry"> calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20of%20phase%20transitions" title=" enthalpy of phase transitions"> enthalpy of phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=neodymium" title=" neodymium "> neodymium </a> </p> <a href="https://publications.waset.org/abstracts/28941/phase-transitions-of-cerium-and-neodymium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/28941.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">324</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5184</span> Thermal Effects of Phase Transitions of Cerium and Neodymium</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=M.%20Khundadze">M. Khundadze</a>, <a href="https://publications.waset.org/abstracts/search?q=V.%20Varazashvili"> V. Varazashvili</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Lejava"> N. Lejava</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Jorbenadze"> R. Jorbenadze</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Phase transitions of cerium and neodymium are investigated by using high temperature scanning calorimeter (HT-1500 Seteram). For cerium two types of transformation are detected: at 350-372 K - hexagonal close packing (hcp) - face-centered cubic lattice (fcc) transition, and in 880-960K the face-centered cubic lattice (fcc) transformation into body-centered cubic lattice (bcc). For neodymium changing of hexagonal close packing (hcp) into body-centered cubic lattice (bcc) is detected at 1093-1113K. The thermal characteristics of transitions – enthalpy, entropy, temperature domains – are reported. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=cerium" title="cerium">cerium</a>, <a href="https://publications.waset.org/abstracts/search?q=calorimetry" title=" calorimetry"> calorimetry</a>, <a href="https://publications.waset.org/abstracts/search?q=neodymium" title=" neodymium"> neodymium</a>, <a href="https://publications.waset.org/abstracts/search?q=enthalpy%20of%20phase%20transitions" title=" enthalpy of phase transitions"> enthalpy of phase transitions</a>, <a href="https://publications.waset.org/abstracts/search?q=neodymium" title=" neodymium "> neodymium </a> </p> <a href="https://publications.waset.org/abstracts/27896/thermal-effects-of-phase-transitions-of-cerium-and-neodymium" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/27896.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5183</span> Generalization of Clustering Coefficient on Lattice Networks Applied to Criminal Networks</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Christian%20H.%20Sanabria-Monta%C3%B1a">Christian H. Sanabria-Montaña</a>, <a href="https://publications.waset.org/abstracts/search?q=Rodrigo%20Huerta-Quintanilla"> Rodrigo Huerta-Quintanilla</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A lattice network is a special type of network in which all nodes have the same number of links, and its boundary conditions are periodic. The most basic lattice network is the ring, a one-dimensional network with periodic border conditions. In contrast, the Cartesian product of d rings forms a d-dimensional lattice network. An analytical expression currently exists for the clustering coefficient in this type of network, but the theoretical value is valid only up to certain connectivity value; in other words, the analytical expression is incomplete. Here we obtain analytically the clustering coefficient expression in d-dimensional lattice networks for any link density. Our analytical results show that the clustering coefficient for a lattice network with density of links that tend to 1, leads to the value of the clustering coefficient of a fully connected network. We developed a model on criminology in which the generalized clustering coefficient expression is applied. The model states that delinquents learn the know-how of crime business by sharing knowledge, directly or indirectly, with their friends of the gang. This generalization shed light on the network properties, which is important to develop new models in different fields where network structure plays an important role in the system dynamic, such as criminology, evolutionary game theory, econophysics, among others. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=clustering%20coefficient" title="clustering coefficient">clustering coefficient</a>, <a href="https://publications.waset.org/abstracts/search?q=criminology" title=" criminology"> criminology</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized" title=" generalized"> generalized</a>, <a href="https://publications.waset.org/abstracts/search?q=regular%20network%20d-dimensional" title=" regular network d-dimensional"> regular network d-dimensional</a> </p> <a href="https://publications.waset.org/abstracts/71972/generalization-of-clustering-coefficient-on-lattice-networks-applied-to-criminal-networks" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/71972.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">411</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5182</span> Running the Athena Vortex Lattice Code in JAVA through the Java Native Interface</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Okonkwo">Paul Okonkwo</a>, <a href="https://publications.waset.org/abstracts/search?q=Howard%20Smith"> Howard Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=AVL" title=" AVL"> AVL</a>, <a href="https://publications.waset.org/abstracts/search?q=JNI" title=" JNI"> JNI</a> </p> <a href="https://publications.waset.org/abstracts/22131/running-the-athena-vortex-lattice-code-in-java-through-the-java-native-interface" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22131.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">565</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5181</span> Sinusoidal Roughness Elements in a Square Cavity</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Muhammad%20Yousaf">Muhammad Yousaf</a>, <a href="https://publications.waset.org/abstracts/search?q=Shoaib%20Usman"> Shoaib Usman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Numerical studies were conducted using Lattice Boltzmann Method (LBM) to study the natural convection in a square cavity in the presence of roughness. An algorithm basedon a single relaxation time Bhatnagar-Gross-Krook (BGK) model of Lattice Boltzmann Method (LBM) was developed. Roughness was introduced on both the hot and cold walls in the form of sinusoidal roughness elements. The study was conducted for a Newtonian fluid of Prandtl number (Pr) 1.0. The range of Ra number was explored from 103 to 106 in a laminar region. Thermal and hydrodynamic behavior of fluid was analyzed using a differentially heated square cavity with roughness elements present on both the hot and cold wall. Neumann boundary conditions were introduced on horizontal walls with vertical walls as isothermal. The roughness elements were at the same boundary condition as corresponding walls. Computational algorithm was validated against previous benchmark studies performed with different numerical methods, and a good agreement was found to exist. Results indicate that the maximum reduction in the average heat transfer was16.66 percent at Ra number 105. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Lattice%20Boltzmann%20method" title="Lattice Boltzmann method">Lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=natural%20convection" title=" natural convection"> natural convection</a>, <a href="https://publications.waset.org/abstracts/search?q=nusselt%20number" title=" nusselt number"> nusselt number</a>, <a href="https://publications.waset.org/abstracts/search?q=rayleigh%20number" title=" rayleigh number"> rayleigh number</a>, <a href="https://publications.waset.org/abstracts/search?q=roughness" title=" roughness"> roughness</a> </p> <a href="https://publications.waset.org/abstracts/26916/sinusoidal-roughness-elements-in-a-square-cavity" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/26916.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">527</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5180</span> Integrating the Athena Vortex Lattice Code into a Multivariate Design Synthesis Optimisation Platform in JAVA</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Okonkwo">Paul Okonkwo</a>, <a href="https://publications.waset.org/abstracts/search?q=Howard%20Smith"> Howard Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology by Mark Drela allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=AVL" title=" AVL"> AVL</a>, <a href="https://publications.waset.org/abstracts/search?q=JNI" title=" JNI"> JNI</a> </p> <a href="https://publications.waset.org/abstracts/22130/integrating-the-athena-vortex-lattice-code-into-a-multivariate-design-synthesis-optimisation-platform-in-java" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/22130.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">582</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5179</span> Exactly Fractional Solutions of Nonlinear Lattice Equation via Some Fractional Transformations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=A.%20Zerarka">A. Zerarka</a>, <a href="https://publications.waset.org/abstracts/search?q=W.%20Djoudi"> W. Djoudi</a> </p> <p class="card-text"><strong>Abstract:</strong></p> We use some fractional transformations to obtain many types of new exact solutions of nonlinear lattice equation. These solutions include rational solutions, periodic wave solutions, and doubly periodic wave solutions. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=fractional%20transformations" title="fractional transformations">fractional transformations</a>, <a href="https://publications.waset.org/abstracts/search?q=nonlinear%20equation" title=" nonlinear equation"> nonlinear equation</a>, <a href="https://publications.waset.org/abstracts/search?q=travelling%20wave%20solutions" title=" travelling wave solutions"> travelling wave solutions</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20equation" title=" lattice equation "> lattice equation </a> </p> <a href="https://publications.waset.org/abstracts/20487/exactly-fractional-solutions-of-nonlinear-lattice-equation-via-some-fractional-transformations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/20487.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">657</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5178</span> Advancing Hydrogen Production Through Additive Manufacturing: Optimising Structures of High Performance Electrodes</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Fama%20Jallow">Fama Jallow</a>, <a href="https://publications.waset.org/abstracts/search?q=Melody%20Neaves"> Melody Neaves</a>, <a href="https://publications.waset.org/abstracts/search?q=Professor%20Mcgregor"> Professor Mcgregor</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The quest for sustainable energy sources has driven significant interest in hydrogen production as a clean and efficient fuel. Alkaline water electrolysis (AWE) has emerged as a prominent method for generating hydrogen, necessitating the development of advanced electrode designs with improved performance characteristics. Additive manufacturing (AM) by laser powder bed fusion (LPBF) method presents an opportunity to tailor electrode microstructures and properties, enhancing their performance. This research proposes investigating the AM of electrodes with different lattice structures to optimize hydrogen production. The primary objective is to employ advanced modeling techniques to identify and select two optimal lattice structures for electrode fabrication. LPBF will be used to fabricate electrodes with precise control over lattice geometry, pore size, and distribution. The performance evaluation will encompass energy consumption and porosity analysis. AWE will assess energy efficiency, aiming to identify lattice structures with enhanced hydrogen production rates and reduced power requirements. Computed tomography (CT) scanning will analyze porosity to determine material integrity and mass transport characteristics. The research aims to bridge the gap between AM and hydrogen production by investigating lattice structures potential in electrode design. By systematically exploring lattice structures and their impact on performance, this study aims to provide valuable insights into the design and fabrication of highly efficient and cost-effective electrodes for AWE. The outcomes hold promise for advancing hydrogen production through AM. The research will have a significant impact on the development of sustainable energy sources. The findings from this study will help to improve the efficiency of AWE, making it a more viable option for hydrogen production. This could lead to a reduction in our reliance on fossil fuels, which would have a positive impact on the environment. The research is also likely to have a commercial impact. The findings could be used to develop new electrode designs that are more efficient and cost-effective. This could lead to the development of new hydrogen production technologies, which could have a significant impact on the energy market. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=hydrogen%20production" title="hydrogen production">hydrogen production</a>, <a href="https://publications.waset.org/abstracts/search?q=electrode" title=" electrode"> electrode</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a>, <a href="https://publications.waset.org/abstracts/search?q=Africa" title=" Africa"> Africa</a> </p> <a href="https://publications.waset.org/abstracts/172491/advancing-hydrogen-production-through-additive-manufacturing-optimising-structures-of-high-performance-electrodes" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/172491.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5177</span> Calculation of Lattice Constants and Band Gaps for Generalized Quasicrystals of InGaN Alloy: A First Principle Study</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Rohin%20Sharma">Rohin Sharma</a>, <a href="https://publications.waset.org/abstracts/search?q=Sumantu%20Chaulagain"> Sumantu Chaulagain</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents calculations of total energy of InGaN alloy carried out in a disordered quasirandom structure for a triclinic super cell. This structure replicates the disorder and composition effect in the alloy. First principle calculations within the density functional theory with the local density approximation approach is employed to accurately determine total energy of the system. Lattice constants and band gaps associated with the ground states are then estimated for different concentration ratios of the alloy. We provide precise results of quasirandom structures of the alloy and their lattice constants with the total energy and band gap energy of the system for the range of seven different composition ratios and their respective lattice parameters. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=DFT" title="DFT">DFT</a>, <a href="https://publications.waset.org/abstracts/search?q=ground%20state" title=" ground state"> ground state</a>, <a href="https://publications.waset.org/abstracts/search?q=LDA" title=" LDA"> LDA</a>, <a href="https://publications.waset.org/abstracts/search?q=quasicrystal" title=" quasicrystal"> quasicrystal</a>, <a href="https://publications.waset.org/abstracts/search?q=triclinic%20super%20cell" title=" triclinic super cell"> triclinic super cell</a> </p> <a href="https://publications.waset.org/abstracts/81138/calculation-of-lattice-constants-and-band-gaps-for-generalized-quasicrystals-of-ingan-alloy-a-first-principle-study" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/81138.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">188</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5176</span> A Numerical Hybrid Finite Element Model for Lattice Structures Using 3D/Beam Elements</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Tahmasebimoradi">Ahmadali Tahmasebimoradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Chetra%20Mang"> Chetra Mang</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Lorang"> Xavier Lorang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Thanks to the additive manufacturing process, lattice structures are replacing the traditional structures in aeronautical and automobile industries. In order to evaluate the mechanical response of the lattice structures, one has to resort to numerical techniques. Ansys is a globally well-known and trusted commercial software that allows us to model the lattice structures and analyze their mechanical responses using either solid or beam elements. In this software, a script may be used to systematically generate the lattice structures for any size. On the one hand, solid elements allow us to correctly model the contact between the substrates (the supports of the lattice structure) and the lattice structure, the local plasticity, and the junctions of the microbeams. However, their computational cost increases rapidly with the size of the lattice structure. On the other hand, although beam elements reduce the computational cost drastically, it doesn’t correctly model the contact between the lattice structures and the substrates nor the junctions of the microbeams. Also, the notion of local plasticity is not valid anymore. Moreover, the deformed shape of the lattice structure doesn’t correspond to the deformed shape of the lattice structure using 3D solid elements. In this work, motivated by the pros and cons of the 3D and beam models, a numerically hybrid model is presented for the lattice structures to reduce the computational cost of the simulations while avoiding the aforementioned drawbacks of the beam elements. This approach consists of the utilization of solid elements for the junctions and beam elements for the microbeams connecting the corresponding junctions to each other. When the global response of the structure is linear, the results from the hybrid models are in good agreement with the ones from the 3D models for body-centered cubic with z-struts (BCCZ) and body-centered cubic without z-struts (BCC) lattice structures. However, the hybrid models have difficulty to converge when the effect of large deformation and local plasticity are considerable in the BCCZ structures. Furthermore, the effect of the junction’s size of the hybrid models on the results is investigated. For BCCZ lattice structures, the results are not affected by the junction’s size. This is also valid for BCC lattice structures as long as the ratio of the junction’s size to the diameter of the microbeams is greater than 2. The hybrid model can take into account the geometric defects. As a demonstration, the point clouds of two lattice structures are parametrized in a platform called LATANA (LATtice ANAlysis) developed by IRT-SystemX. In this process, for each microbeam of the lattice structures, an ellipse is fitted to capture the effect of shape variation and roughness. Each ellipse is represented by three parameters; semi-major axis, semi-minor axis, and angle of rotation. Having the parameters of the ellipses, the lattice structures are constructed in Spaceclaim (ANSYS) using the geometrical hybrid approach. The results show a negligible discrepancy between the hybrid and 3D models, while the computational cost of the hybrid model is lower than the computational cost of the 3D model. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=Ansys" title=" Ansys"> Ansys</a>, <a href="https://publications.waset.org/abstracts/search?q=geometric%20defects" title=" geometric defects"> geometric defects</a>, <a href="https://publications.waset.org/abstracts/search?q=hybrid%20finite%20element%20model" title=" hybrid finite element model"> hybrid finite element model</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a> </p> <a href="https://publications.waset.org/abstracts/130258/a-numerical-hybrid-finite-element-model-for-lattice-structures-using-3dbeam-elements" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130258.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">112</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5175</span> Generalized Vortex Lattice Method for Predicting Characteristics of Wings with Flap and Aileron Deflection</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Mondher%20Yahyaoui">Mondher Yahyaoui</a> </p> <p class="card-text"><strong>Abstract:</strong></p> A generalized vortex lattice method for complex lifting surfaces with flap and aileron deflection is formulated. The method is not restricted by the linearized theory assumption and accounts for all standard geometric lifting surface parameters: camber, taper, sweep, washout, dihedral, in addition to flap and aileron deflection. Thickness is not accounted for since the physical lifting body is replaced by a lattice of panels located on the mean camber surface. This panel lattice setup and the treatment of different wake geometries is what distinguish the present work form the overwhelming majority of previous solutions based on the vortex lattice method. A MATLAB code implementing the proposed formulation is developed and validated by comparing our results to existing experimental and numerical ones and good agreement is demonstrated. It is then used to study the accuracy of the widely used classical vortex-lattice method. It is shown that the classical approach gives good agreement in the clean configuration but is off by as much as 30% when a flap or aileron deflection of 30° is imposed. This discrepancy is mainly due the linearized theory assumption associated with the conventional method. A comparison of the effect of four different wake geometries on the values of aerodynamic coefficients was also carried out and it is found that the choice of the wake shape had very little effect on the results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aileron%20deflection" title="aileron deflection">aileron deflection</a>, <a href="https://publications.waset.org/abstracts/search?q=camber-surface-bound%20vortices" title=" camber-surface-bound vortices"> camber-surface-bound vortices</a>, <a href="https://publications.waset.org/abstracts/search?q=classical%20VLM" title=" classical VLM"> classical VLM</a>, <a href="https://publications.waset.org/abstracts/search?q=generalized%20VLM" title=" generalized VLM"> generalized VLM</a>, <a href="https://publications.waset.org/abstracts/search?q=flap%20deflection" title=" flap deflection"> flap deflection</a> </p> <a href="https://publications.waset.org/abstracts/9274/generalized-vortex-lattice-method-for-predicting-characteristics-of-wings-with-flap-and-aileron-deflection" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/9274.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">435</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5174</span> Modification of the Athena Vortex Lattice Code for the Multivariate Design Synthesis Optimisation of the Blended Wing Body Aircraft</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Paul%20Okonkwo">Paul Okonkwo</a>, <a href="https://publications.waset.org/abstracts/search?q=Howard%20Smith"> Howard Smith</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper describes a methodology to integrate the Athena Vortex Lattice Aerodynamic Software for automated operation in a multivariate optimisation of the Blended Wing Body Aircraft. The Athena Vortex Lattice code developed at the Massachusetts Institute of Technology by Mark Drela allows for the aerodynamic analysis of aircraft using the vortex lattice method. Ordinarily, the Athena Vortex Lattice operation requires a text file containing the aircraft geometry to be loaded into the AVL solver in order to determine the aerodynamic forces and moments. However, automated operation will be required to enable integration into a multidisciplinary optimisation framework. Automated AVL operation within the JAVA design environment will nonetheless require a modification and recompilation of AVL source code into an executable file capable of running on windows and other platforms without the –X11 libraries. This paper describes the procedure for the integrating the FORTRAN written AVL software for automated operation within the multivariate design synthesis optimisation framework for the conceptual design of the BWB aircraft. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=aerodynamics" title="aerodynamics">aerodynamics</a>, <a href="https://publications.waset.org/abstracts/search?q=automation" title=" automation"> automation</a>, <a href="https://publications.waset.org/abstracts/search?q=optimisation" title=" optimisation"> optimisation</a>, <a href="https://publications.waset.org/abstracts/search?q=AVL" title=" AVL"> AVL</a> </p> <a href="https://publications.waset.org/abstracts/16398/modification-of-the-athena-vortex-lattice-code-for-the-multivariate-design-synthesis-optimisation-of-the-blended-wing-body-aircraft" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/16398.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">656</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5173</span> Simulation and Experimental Verification of Mechanical Response of Additively Manufactured Lattice Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=P.%20Karlsson">P. Karlsson</a>, <a href="https://publications.waset.org/abstracts/search?q=M.%20%C3%85sberg"> M. Åsberg</a>, <a href="https://publications.waset.org/abstracts/search?q=R.%20Eriksson"> R. Eriksson</a>, <a href="https://publications.waset.org/abstracts/search?q=P.%20Krakhmalev"> P. Krakhmalev</a>, <a href="https://publications.waset.org/abstracts/search?q=N.%20Str%C3%B6mberg"> N. Strömberg</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Additive manufacturing of lattice structures is promising for lightweight design, but the mechanical response of the lattices structures is not fully understood. This investigation presents the results of simulation and experimental investigations of the grid and shell-based gyroid lattices. Specimens containing selected lattices were designed with an in-house software and manufactured from 316L steel with Renishaw AM400 equipment. Results of simulation and experimental investigations correlated well. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=additive%20manufacturing" title="additive manufacturing">additive manufacturing</a>, <a href="https://publications.waset.org/abstracts/search?q=computed%20tomography" title=" computed tomography"> computed tomography</a>, <a href="https://publications.waset.org/abstracts/search?q=material%20characterization" title=" material characterization"> material characterization</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structures" title=" lattice structures"> lattice structures</a>, <a href="https://publications.waset.org/abstracts/search?q=robust%20lightweight%20design" title=" robust lightweight design"> robust lightweight design</a> </p> <a href="https://publications.waset.org/abstracts/142832/simulation-and-experimental-verification-of-mechanical-response-of-additively-manufactured-lattice-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/142832.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">164</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5172</span> Pythagorean-Platonic Lattice Method for Finding all Co-Prime Right Angle Triangles</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Anthony%20Overmars">Anthony Overmars</a>, <a href="https://publications.waset.org/abstracts/search?q=Sitalakshmi%20Venkatraman"> Sitalakshmi Venkatraman</a> </p> <p class="card-text"><strong>Abstract:</strong></p> This paper presents a method for determining all of the co-prime right angle triangles in the Euclidean field by looking at the intersection of the Pythagorean and Platonic right angle triangles and the corresponding lattice that this produces. The co-prime properties of each lattice point representing a unique right angle triangle are then considered. This paper proposes a conjunction between these two ancient disparaging theorists. This work has wide applications in information security where cryptography involves improved ways of finding tuples of prime numbers for secure communication systems. In particular, this paper has direct impact in enhancing the encryption and decryption algorithms in cryptography. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=Pythagorean%20triples" title="Pythagorean triples">Pythagorean triples</a>, <a href="https://publications.waset.org/abstracts/search?q=platonic%20triples" title=" platonic triples"> platonic triples</a>, <a href="https://publications.waset.org/abstracts/search?q=right%20angle%20triangles" title=" right angle triangles"> right angle triangles</a>, <a href="https://publications.waset.org/abstracts/search?q=co-prime%20numbers" title=" co-prime numbers"> co-prime numbers</a>, <a href="https://publications.waset.org/abstracts/search?q=cryptography" title=" cryptography"> cryptography</a> </p> <a href="https://publications.waset.org/abstracts/80590/pythagorean-platonic-lattice-method-for-finding-all-co-prime-right-angle-triangles" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/80590.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">239</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5171</span> Numerical Simulation Using Lattice Boltzmann Technique for Mass Transfer Characteristics in Liquid Jet Ejector</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20S.%20Agrawal">K. S. Agrawal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> The performance of jet ejector was studied in detail by different authors. Several authors have studied mass transfer characteristics like interfacial area, mass transfer coefficients etc. In this paper, we have made an attempt to develop PDE model by considering bubble properties and apply Lattice-Boltzmann technique for PDE model. We may present the results for the interfacial area which we have obtained from our numerical simulation. Later the results are compared with previous work. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=jet%20ejector" title="jet ejector">jet ejector</a>, <a href="https://publications.waset.org/abstracts/search?q=mass%20transfer%20characteristics" title=" mass transfer characteristics"> mass transfer characteristics</a>, <a href="https://publications.waset.org/abstracts/search?q=numerical%20simulation" title=" numerical simulation"> numerical simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=Lattice-Boltzmann%20technique" title=" Lattice-Boltzmann technique"> Lattice-Boltzmann technique</a> </p> <a href="https://publications.waset.org/abstracts/47050/numerical-simulation-using-lattice-boltzmann-technique-for-mass-transfer-characteristics-in-liquid-jet-ejector" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/47050.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">369</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5170</span> Numerical Study of Wettability on the Triangular Micro-pillared Surfaces Using Lattice Boltzmann Method</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Ganesh%20Meshram">Ganesh Meshram</a>, <a href="https://publications.waset.org/abstracts/search?q=Gloria%20Biswal"> Gloria Biswal</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In this study, we present the numerical investigation of surface wettability on triangular micropillar surfaces by using a two-dimensional (2D) pseudo-potential multiphase lattice Boltzmann method with a D2Q9 model for various interaction parameters of the range varies from -1.40 to -2.50. Initially, simulation of the equilibrium state of a water droplet on a flat surface is considered for various interaction parameters to examine the accuracy of the present numerical model. We then imposed the microscale pillars on the bottom wall of the surface with different heights of the pillars to form the hydrophobic and superhydrophobic surfaces which enable the higher contact angle. The wettability of surfaces is simulated with water droplets of radius 100 lattice units in the domain of 800x800 lattice units. The present study shows that increasing the interaction parameter of the pillared hydrophobic surfaces dramatically reduces the contact area between water droplets and solid walls due to the momentum redirection phenomenon. Contact angles for different values of interaction strength have been validated qualitatively with the analytical results. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=contact%20angle" title="contact angle">contact angle</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20boltzmann%20method" title=" lattice boltzmann method"> lattice boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=d2q9%20model" title=" d2q9 model"> d2q9 model</a>, <a href="https://publications.waset.org/abstracts/search?q=pseudo-potential%20multiphase%20method" title=" pseudo-potential multiphase method"> pseudo-potential multiphase method</a>, <a href="https://publications.waset.org/abstracts/search?q=hydrophobic%20surfaces" title=" hydrophobic surfaces"> hydrophobic surfaces</a>, <a href="https://publications.waset.org/abstracts/search?q=wenzel%20state" title=" wenzel state"> wenzel state</a>, <a href="https://publications.waset.org/abstracts/search?q=cassie-baxter%20state" title=" cassie-baxter state"> cassie-baxter state</a>, <a href="https://publications.waset.org/abstracts/search?q=wettability" title=" wettability"> wettability</a> </p> <a href="https://publications.waset.org/abstracts/167911/numerical-study-of-wettability-on-the-triangular-micro-pillared-surfaces-using-lattice-boltzmann-method" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/167911.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">69</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5169</span> Compressible Lattice Boltzmann Method for Turbulent Jet Flow Simulations</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=K.%20Noah">K. Noah</a>, <a href="https://publications.waset.org/abstracts/search?q=F.-S.%20Lien"> F.-S. Lien</a> </p> <p class="card-text"><strong>Abstract:</strong></p> In Computational Fluid Dynamics (CFD), there are a variety of numerical methods, of which some depend on macroscopic model representatives. These models can be solved by finite-volume, finite-element or finite-difference methods on a microscopic description. However, the lattice Boltzmann method (LBM) is considered to be a mesoscopic particle method, with its scale lying between the macroscopic and microscopic scales. The LBM works well for solving incompressible flow problems, but certain limitations arise from solving compressible flows, particularly at high Mach numbers. An improved lattice Boltzmann model for compressible flow problems is presented in this research study. A higher-order Taylor series expansion of the Maxwell equilibrium distribution function is used to overcome limitations in LBM when solving high-Mach-number flows. Large eddy simulation (LES) is implemented in LBM to simulate turbulent jet flows. The results have been validated with available experimental data for turbulent compressible free jet flow at subsonic speeds. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=compressible%20lattice%20Boltzmann%20method" title="compressible lattice Boltzmann method">compressible lattice Boltzmann method</a>, <a href="https://publications.waset.org/abstracts/search?q=multiple%20relaxation%20times" title=" multiple relaxation times"> multiple relaxation times</a>, <a href="https://publications.waset.org/abstracts/search?q=large%20eddy%20simulation" title=" large eddy simulation"> large eddy simulation</a>, <a href="https://publications.waset.org/abstracts/search?q=turbulent%20jet%20flows" title=" turbulent jet flows"> turbulent jet flows</a> </p> <a href="https://publications.waset.org/abstracts/89310/compressible-lattice-boltzmann-method-for-turbulent-jet-flow-simulations" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/89310.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">274</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5168</span> Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Chetra%20Mang">Chetra Mang</a>, <a href="https://publications.waset.org/abstracts/search?q=Ahmadali%20Tahmasebimoradi"> Ahmadali Tahmasebimoradi</a>, <a href="https://publications.waset.org/abstracts/search?q=Xavier%20Lorang"> Xavier Lorang</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=geometric%20defects" title="geometric defects">geometric defects</a>, <a href="https://publications.waset.org/abstracts/search?q=lattice%20structure" title=" lattice structure"> lattice structure</a>, <a href="https://publications.waset.org/abstracts/search?q=mechanical%20strength" title=" mechanical strength"> mechanical strength</a>, <a href="https://publications.waset.org/abstracts/search?q=uncertainty%20propagation" title=" uncertainty propagation"> uncertainty propagation</a> </p> <a href="https://publications.waset.org/abstracts/130786/analysis-of-correlation-between-manufacturing-parameters-and-mechanical-strength-followed-by-uncertainty-propagation-of-geometric-defects-in-lattice-structures" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/130786.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">123</span> </span> </div> </div> <div class="card paper-listing mb-3 mt-3"> <h5 class="card-header" style="font-size:.9rem"><span class="badge badge-info">5167</span> Coupling of Two Discretization Schemes for the Lattice Boltzmann Equation</h5> <div class="card-body"> <p class="card-text"><strong>Authors:</strong> <a href="https://publications.waset.org/abstracts/search?q=Tobias%20Horstmann">Tobias Horstmann</a>, <a href="https://publications.waset.org/abstracts/search?q=Thomas%20Le%20Garrec"> Thomas Le Garrec</a>, <a href="https://publications.waset.org/abstracts/search?q=Daniel-Ciprian%20Mincu"> Daniel-Ciprian Mincu</a>, <a href="https://publications.waset.org/abstracts/search?q=Emmanuel%20L%C3%A9v%C3%AAque"> Emmanuel Lévêque</a> </p> <p class="card-text"><strong>Abstract:</strong></p> Despite the efficiency and low dissipation of the stream-collide formulation of the Lattice Boltzmann (LB) algorithm, which is nowadays implemented in many commercial LBM solvers, there are certain situations, e.g. mesh transition, in which a classical finite-volume or finite-difference formulation of the LB algorithm still bear advantages. In this paper, we present an algorithm that combines the node-based streaming of the distribution functions with a second-order finite volume discretization of the advection term of the BGK-LB equation on a uniform D2Q9 lattice. It is shown that such a coupling is possible for a multi-domain approach as long as the overlap, or buffer zone, between two domains, is achieved on at least 2Δx. This also implies that a direct coupling (without buffer zone) of a stream-collide and finite-volume LB algorithm on a single grid is not stable. The critical parameter in the coupling is the CFL number equal to 1 that is imposed by the stream-collide algorithm. Nevertheless, an explicit filtering step on the finite-volume domain can stabilize the solution. In a further investigation, we demonstrate how such a coupling can be used for mesh transition, resulting in an intrinsic conservation of mass over the interface. <p class="card-text"><strong>Keywords:</strong> <a href="https://publications.waset.org/abstracts/search?q=algorithm%20coupling" title="algorithm coupling">algorithm coupling</a>, <a href="https://publications.waset.org/abstracts/search?q=finite%20volume%20formulation" title=" finite volume formulation"> finite volume formulation</a>, <a href="https://publications.waset.org/abstracts/search?q=grid%20refinement" title=" grid refinement"> grid refinement</a>, <a href="https://publications.waset.org/abstracts/search?q=Lattice%20Boltzmann%20method" title=" Lattice Boltzmann method"> Lattice Boltzmann method</a> </p> <a href="https://publications.waset.org/abstracts/61400/coupling-of-two-discretization-schemes-for-the-lattice-boltzmann-equation" class="btn btn-primary btn-sm">Procedia</a> <a href="https://publications.waset.org/abstracts/61400.pdf" target="_blank" class="btn btn-primary btn-sm">PDF</a> <span class="bg-info text-light px-1 py-1 float-right rounded"> Downloads <span class="badge badge-light">379</span> </span> </div> </div> <ul class="pagination"> <li class="page-item disabled"><span class="page-link">&lsaquo;</span></li> <li class="page-item active"><span class="page-link">1</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=2">2</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=3">3</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=4">4</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=5">5</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=6">6</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=7">7</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=8">8</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=9">9</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=10">10</a></li> <li class="page-item disabled"><span class="page-link">...</span></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=173">173</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=174">174</a></li> <li class="page-item"><a class="page-link" href="https://publications.waset.org/abstracts/search?q=lattice%20reduction&amp;page=2" rel="next">&rsaquo;</a></li> </ul> </div> </main> <footer> <div id="infolinks" class="pt-3 pb-2"> <div class="container"> <div style="background-color:#f5f5f5;" class="p-3"> <div class="row"> <div class="col-md-2"> <ul class="list-unstyled"> About <li><a href="https://waset.org/page/support">About Us</a></li> <li><a href="https://waset.org/page/support#legal-information">Legal</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/WASET-16th-foundational-anniversary.pdf">WASET celebrates its 16th foundational anniversary</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Account <li><a href="https://waset.org/profile">My Account</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Explore <li><a href="https://waset.org/disciplines">Disciplines</a></li> <li><a href="https://waset.org/conferences">Conferences</a></li> <li><a href="https://waset.org/conference-programs">Conference Program</a></li> <li><a href="https://waset.org/committees">Committees</a></li> <li><a href="https://publications.waset.org">Publications</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Research <li><a href="https://publications.waset.org/abstracts">Abstracts</a></li> <li><a href="https://publications.waset.org">Periodicals</a></li> <li><a href="https://publications.waset.org/archive">Archive</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Open Science <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Philosophy.pdf">Open Science Philosophy</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Science-Award.pdf">Open Science Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Open-Society-Open-Science-and-Open-Innovation.pdf">Open Innovation</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Postdoctoral-Fellowship-Award.pdf">Postdoctoral Fellowship Award</a></li> <li><a target="_blank" rel="nofollow" href="https://publications.waset.org/static/files/Scholarly-Research-Review.pdf">Scholarly Research Review</a></li> </ul> </div> <div class="col-md-2"> <ul class="list-unstyled"> Support <li><a href="https://waset.org/page/support">Support</a></li> <li><a href="https://waset.org/profile/messages/create">Contact Us</a></li> <li><a href="https://waset.org/profile/messages/create">Report Abuse</a></li> </ul> </div> </div> </div> </div> </div> <div class="container text-center"> <hr style="margin-top:0;margin-bottom:.3rem;"> <a href="https://creativecommons.org/licenses/by/4.0/" target="_blank" class="text-muted small">Creative Commons Attribution 4.0 International License</a> <div id="copy" class="mt-2">&copy; 2024 World Academy of Science, Engineering and Technology</div> </div> </footer> <a href="javascript:" id="return-to-top"><i class="fas fa-arrow-up"></i></a> <div class="modal" id="modal-template"> <div class="modal-dialog"> <div class="modal-content"> <div class="row m-0 mt-1"> <div class="col-md-12"> <button type="button" class="close" data-dismiss="modal" aria-label="Close"><span aria-hidden="true">&times;</span></button> </div> </div> <div class="modal-body"></div> </div> </div> </div> <script src="https://cdn.waset.org/static/plugins/jquery-3.3.1.min.js"></script> <script src="https://cdn.waset.org/static/plugins/bootstrap-4.2.1/js/bootstrap.bundle.min.js"></script> <script src="https://cdn.waset.org/static/js/site.js?v=150220211556"></script> <script> jQuery(document).ready(function() { /*jQuery.get("https://publications.waset.org/xhr/user-menu", function (response) { jQuery('#mainNavMenu').append(response); });*/ jQuery.get({ url: "https://publications.waset.org/xhr/user-menu", cache: false }).then(function(response){ jQuery('#mainNavMenu').append(response); }); }); </script> </body> </html>

Pages: 1 2 3 4 5 6 7 8 9 10